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Abstract
We analyse shear stress and normal stress data obtained by cone-partitioned-plate (CPP) shear rheometry in recent years. The data
sets of Schweizer et al. (Rheol. Acta 47, 943–957, 2008) and Costanzo et al. (Macromolecules 49, 3925–3935, 2016; & Fluids 4,
28, 2019) on nearly monodisperse polystyrene melts and solutions are considered to be among the most reliable shear data
available. The Doi-Edwards independent alignment (DEIA) model (J. Chem. Soc., Faraday Transactions 2: Molecular and
Chemical Physics 74, 1802–1832, 1978a,b) allows for quantitative description of the steady-state values of shear viscosity
ηðγ:Þ and first normal stress coefficient ψ1ðγ

:Þ , while it underpredicts the stress overshoot of the stress growth coefficient of
the shear stress, η+(t), and fails in predicting a stress overshoot of the stress growth coefficient of first normal stress difference,
ψþ
1 tð Þ . On the other hand, the extended interchain pressure (EIP) model (J. Rheol. 64, 95–110, 2020) provides an excellent

prediction of the stress overshoots of both shear stress and first normal stress difference, while overpredicting the steady-state
shear viscosity and the first normal stress coefficient.We demonstrate that the shear stress overshoot is the result of a combination
of orientational stress overshoot and stretch overshoot, while the normal stress overshoot depends solely on the overshoot of the
stretch. Based on these considerations, we propose a novel constitutive approach consisting of a combination of the DEIA and the
EIP model, and predictions of this approach are found to be in quantitative agreement with the data sets of Schweizer et al. and
Costanzo et al. within experimental accuracy.

Keywords Shear rheometry . Cone-partitioned-plate . Doi-Edwardsmodel . MSFmodel . Shear stress overshoot . Normal stress
overshoot . Polystyrene melts and solutions

Introduction

The molecular structure of polymeric melts and solutions
plays the primary role in determining their rheological prop-
erties; hence, the constitutive equations based on mesoscopic
molecular modelling are significant in rheological modelling.
In particular, the tube-based models have been able to reflect

fundamental molecular aspects of polymers through averag-
ing the effect of neighbouring chains on the test chain via a
mean-field approach. The tube model of Doi-Edwards (DE)
(Doi and Edwards 1978b; Doi and Edwards 1978a; Doi and
Edwards 1979; Doi and Edwards 1986) was originally devel-
oped for monodisperse linear polymers based on the idea of
the reptating motion of a linear entangled chain with molar
massM in a tube with equilibrium contour length of L0 =Na0,
where N is the number of primitive path steps connecting two
consecutive entanglements, and a0 is the tube diameter. The
tube concept is based on the hypothetical view of a test chain
laterally confined in a mesh of constraints created by the sur-
rounding chains having the same molar mass as the test chain.
Upon deformation, the recovery of the contour length of the
primitive chain (i.e. relaxation) occurs due to the reptation
(chain diffusion) and retraction mechanisms. As originally
described by de Gennes (De Gennes 1971), during reptation,
the test chain escapes from the tube by sliding back and forth
within the tube until completely moves its mass out of the
original tube. The relaxation time associated with the reptation
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mechanism is the disengagement (or reptation) time τd ∝M3.
During the fast retraction mechanism, the contour length is
recovered after a Rouse relaxation process governed by the
Rouse time τR ∝M2. Based on the independent alignment ap-
proximation (IA) of DE theory (DEIA), the tube segments are
assumed to be aligned independently in the field of flow
where stress after rapid equilibration of chain stretch is created
by affine rotation of tube segments (see Fig. 1 of Narimissa
and Wagner 2019). The tube model with and without the IA
assumption generates similar predictions for uniaxial

extensional flow, yet, the predictions of biaxial flows and
the second normal stress difference in shear flow are different.

Doi and Edwards showed (Doi and Edwards 1978a, see
e.g. their Fig. 6 for the damping function) that their tubemodel
is in nearly quantitative agreement with the stress relaxation
data after step shear strain of Osaki et al. (Fukuda et al. 1975;
Osaki et al. 1975; Osaki et al. 1976). However, the tube model
cannot predict the occurrence of overshoot in the first normal
stress function in shear, and it does not predict chain stretch in
elongational flow leading to the extension-thinning exponent
of − 1 as opposed to the experimentally observed exponent of
approximately − 0.5 in polymer melts (Narimissa andWagner
2019). Several modifications have been made to the original
tube model to address its shortcomings for modelling the lin-
ear and nonlinear viscoelastic rheology of polymers. In the
linear-viscoelastic regime (LVE), contour length fluctuations
(CLF) (Doi 1981) and constraint release (CR) (Daoud and De
Gennes 1979) were introduced to the DEmodel to address the
experimentally observed disagreements between the LVE be-
haviours of linear entangled polymers and the theory, specif-
ically the 3.4 power scaling of the zero-shear viscosity. In the
nonlinear-viscoelastic regime, the predictions of the DE mod-
el are only in qualitative agreement with the flow behaviour of
monodisperse linear entangled polymers subjected to shear
deformation, and the model does not predict the strain hard-
ening in the start-up of the extensional flows (Wagner et al.
2005).We note that the DEIA single integral equation is of the
Kaye-BKZ type (Bernstein et al. 1963) and as shown by
Samurkas et al. (1989) (see also Laun and Schuch 1989), the
Kaye-BKZ and Wagner (Wagner 1977) single integral equa-
tions cannot simultaneously describe both strain softening in
shear and extreme strain hardening in planar extension using a
damping function obtained from one of these flows. These
discrepancies between model and experimental evidence have
led to the introduction of convective constraint release (CCR)
(Ianniruberto and Marrucci 1996) (to avoid the excessive
shear thinning of the DEmodel) as well as chain stretch mech-
anisms (Doi and Edwards 1986; Marrucci and Grizzuti 1988)
in predominantly differential approximations and variations of
the tube model with pre-averaged chain stretch (see Review
(Narimissa and Wagner 2019) for more details).

Regarding the tube model-based constitutive equations
without pre-averaged chain stretch (Narimissa and Wagner
2019) for polydisperse melts, the molecular stress function
(MSF) model (Wagner et al. 2001; Wagner and Schaeffer
1992b; Wagner and Schaeffer 1993; Wagner and Schaeffer
1994; Wagner et al. 2003) and the hierarchical multi-mode
molecular stress function (HMMSF) model (Narimissa et al.
2015; Narimissa et al. 2016; Narimissa and Wagner 2016a;
Narimissa and Wagner 2016b; Narimissa and Wagner 2016;
Narimissa and Wagner 2018) were developed based on the
strain-dependent tube diameter theory of Marrucci and de
Cindio (1980) (Marrucci and de Cindio 1980). In the MSF

Fig. 1 Comparison between the predictions (red lines) of the EIP model
(Eqs. (13) and (14)) and the shear stress growth coefficient η+(t), and the
first normal stress growth coefficient ψþ

1 tð Þ of PS-206k at 180 °C
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and HMMSF models, the constraint release (CR) only affects
the chain stretch and tube diameter, which is in contrast to the
differential tube-basedmodels with pre-averaged chain stretch
(refer to section B of Narimissa and Wagner 2019) where
CCR is taken primarily to be a mechanism for relaxing tube
orientation. Furthermore, the validity of the CR only in shear
deformation was well depicted by Bastian (Bastian 2001) (see
Fig. 3 in Narimissa and Wagner 2016) showing that during
shear flow, the affine change in tube cross-sectional area con-
tinues, and the topological constraints above and below the
chain are released; hence, tube diameter returns to its equilib-
rium value a0. This contrasts with the extensional flow where
the CR effect is compensated by the advection of
neighbouring topological constraints, hence, a minimum tube
diameter and maximum stretch are achieved.

To explain the difference between the extensional flow
behaviours of melts and solutions, Ianniruberto (2015) and
Park and Ianniruberto (2017) proposed a flow-induced mo-
nomeric friction ζ reduction mechanism which is only effec-
tive in melts. Due to ζ reduction, the relaxation times become
time-dependent during fast deformations. However, recent
molecular dynamics (MD) simulations of stress relaxation
after elongational flow of a highly oriented entangled poly-
mer melt using a Kremer-Grest bead spring model failed to
find direct evidence of monomeric friction reduction
(O’Connor et al. 2019). On the other hand, Costanzo et al.
(2016) showed the insignificance of the CCR and ζ reduction
mechanisms during the fast shear deformation of monodis-
perse polystyrene (PS) melts and solutions. They claimed
that in order to capture the occurrence of undershoot during
fast shear flows, an essentially phenomenological concept
generated from molecular dynamic simulations (Nafar
Sefiddashti et al. 2014), i.e. tumbling, must be considered.
In addition, inclusion of the tumbling function in the stretch
evolution equation (i.e. tumbling-induced stretch reduction)
also allowed predicting the steady-state values of the first
and second normal stress difference of PS solutions
(Costanzo et al. 2018).

Recently, we developed an extended interchain pressure
(EIP) model for monodisperse polystyrene melts and concen-
trated polystyrene solutions in oligomeric styrene (Narimissa
et al. 2020). The EIP model explains the effect of molar mass
of the solvent on the extension-thickening behaviour of solu-
tions, and with only 2 equations (i.e. stress equation and
stretch evolution equation) and without any free nonlinear-
viscoelastic parameter, the EIP model predicts that at low

Weissenberg numbers WiR ¼ ε̇τR < 1, melts and solutions
show extension-thinning, while at WiR ≅ 1 solutions switch
to extension-thickening or show a more or less constant
steady-state elongational viscosity, and melts continue with
extension-thinning behaviour with a scaling of ηE∝Wi−0:5R .
The EIP model explains quantitatively the effects of molar

mass of solvent and of polymer concentration on the
elongational viscosity in the investigated concentration range
from 10 to 100% (melt), based solely on the linear-viscoelastic
characterization and in agreement with available experimental
evidence (Acharya et al. 2008; Bach et al. 2003; Bhattacharjee
et al. 2002; Huang et al. 2013a; Huang et al. 2015; Huang et al.
2013b). However, the applicability of the EIP model to shear
flow has not been tested.

On the experimental side, nonlinear shear rheometry with
cone-plate and plate-plate tools of polymer liquids at large
Weissenberg numbers is affected by the formation of flow
instabilities such as shear banding, wall slip and most impor-
tantly, the edge fracture (Costanzo et al. 2016; Tanner and
Keentok 1983), while normal stress difference measurements
are hampered by limited compliance of cone-plate rheometers
(Meissner et al. 1989; Schweizer et al. 2008). For example,
Osaki et al. (2000) investigated the overshoot and detected
also undershoot in both growth coefficients of shear stress
and first normal stress in a series of PS solutions up to high

shear rates. They noticed that at shear rates γ̇ > 50s−1, both
stresses continue increasing and steady state was not
attainable. Later, Auhl et al. (2008) reported that in monodis-
perse polyisoprene melts, the shear stress growth coefficient
demonstrates both overshoot and undershoot only at Wi = 14,
while overshoot in the first normal stress difference occurs
much later in time when no undershoot was detected. They
noted that experimental shear data for high molecular mass
polymers at large strains must be treated with caution due to
instabilities such as edge fracture and (possibly) wall slip.
Menezes and Graessley (1982) demonstrated that by incorpo-
rating an equilibration time in a simplified (Wagner type) BKZ
constitutive equation (Wagner 1977), it is possible to predict
overshoot as well as undershoot with damping functions ob-
tained from step-strain relaxation data. Tanner and Keentok
(1983) and Keentok and Xue (1999) conducted comprehen-
sive studies on the edge fracture phenomenon and showed that
this flow instability effect is governed by the second normal
stress difference of the material. In a series of publications on
shear banding, Wang and co-workers (Boukany and Wang
2007; Ravindranath et al. 2008; Tapadia and Wang 2006)
claimed that entangled polymeric systems fail to maintain uni-
form deformation when sheared on time scales faster than their
terminal relaxation time and no stable shear flow is possible
after the shear stress overshoot. Schweizer et al. (2008) sug-
gested that edge fracture might initiate shear banding.
Following Wang and co-workers’ findings (Boukany and
Wang 2007, Ravindranath et al. 2008, Tapadia and Wang
2006), Moorcroft and Fielding (2013) applied the Rolie-Poly
model to show that in start-up shear flows, shear banding (i.e.
purely elastic flow instability) occurs as the result of stress
overshoot. They also proposed a stability criterion for start-
up shear flow when the flow becomes unstable to banding.

489Rheol Acta (2020) 59:487–506



Meissner et al. (1989) were the first searching for an exper-
imental method to deal with the onset of flow instabilities in
the form of material separation (i.e. edge fracture) at the rim of
the sample in cone-plate (CP) rheometry, and they introduced
the cone-partitioned-plate (CPP) geometry by partitioning the
plate of the CP system into an inner disk connected with the
measuring transducer, and an outer ring fixed to the instru-
ment frame. Following Meissner et al. (1989), significant
progress in rotational shear rheometry was made by the devel-
opment of CPP tools (Schweizer and Schmidheiny 2013;
Schweizer and Stöckli 2008; Schweizer et al. 2004), which
alleviate the negative impacts of the edge fracture on torque
and normal stress measurements by expanding the sample
volume, hence postponing its effect on the (inner) measure-
ment partition (see (Costanzo et al. 2016) for more details).
Snijkers and Vlassopoulos (2011) showed that the edge frac-
ture in standard rotational rheometers (cone-and-plate or plate-
plate geometries) plays a catastrophic role in the bulk mea-
surement of the shear rheology of the fluid. Furthermore, they
summarized the earlier results obtained by CP rheometry (be-
fore the introduction of cone-partitioned-plate geometry) and
clearly showed that no homogeneous shear flow can be
achieved at high Weissenberg numbers (Wi). Thus, all earlier
reports of steady-state shear viscosity at high Wi including
shear stress undershoot followed by steady-state before the
introduction of CPP rheometry are questionable.

Through the introduction of CPP, higherWimeasurements
became possible. In CPP rheometry, it is assumed that effects
such as edge fracture and/or shear banding are limited to the
outer partition, and shear flow stays homogeneous in the in-
nermost partition. Although no proof of such assumption has
been presented so far and it remains unclear at which Wi the
limits of CPP rheometry are reached, enhanced reliability of
CPP measurements at higher Wi as compared to CP was re-
ported (Snijkers and Vlassopoulos 2011). The shear data of
Costanzo et al. 2016 and Stephanou et al. (2017) showed that
at highWi, the overshoot in stress growth coefficient is follow-
ed by a shear stress minimum (i.e. undershoot) before reaching
the steady state. Snijkers and Vlassopoulos (2011) did not
mention undershoot, although a slight undershoot is seen in
their shear data. Whether the undershoot observed at high Wi
with CPP is a true phenomenon or caused by e.g. shear
banding penetrating into the inner partition is still an open
question. Costanzo et al. (2018) did not detect any undershoot
in transient first normal stress difference of PS solutions, and
they (Costanzo et al. 2016; Costanzo et al. 2018) related the
undershoot in the shear stress growth coefficient to the molec-
ular tumbling relaxation mechanism within the entangled
polymer chains (Nafar Sefiddashti et al. 2015) and proposed
a phenological modification to a tube-based model to account
for molecular tumbling. Stephanou et al. (2017) used the
tumbling-snake model to explain overshoot and undershoot
of a concentrated PS solution. However, the molecular

tumbling relaxation mechanism was experimentally observed
only in dilute DNA solutions as summarized by Smith et al.
(1999) for concentrations 104 − 105 times lower than the con-
centration when coiled molecules begin to overlap. Therefore,
the credibility of molecular tumbling theory in concentrated
polymer solutions and polymer melts is highly disputed, and
the citation of this theoretical phenomenon has been primarily
reliant on molecular dynamic simulations (e.g. Nafar
Sefiddashti et al. 2015, 2017, 2019a,b and Masubuchi et al.
2018) for such polymeric systems. However, the undershoot
effect seen in these simulations is much less pronounced than
what is observed experimentally, and the most recent molecu-
lar dynamic simulations (Kremer-Grest chains) study conduct-
ed by Anwar and Graham (2019) did not show the occurrence
of undershoot in either shear stress growth coefficient or the
first normal stress coefficient of entangled polymers.
Therefore, due to the ambiguity of the nature of the experi-
mentally observed shear stress undershoot as well as the dis-
puted numerical simulation basis of the molecular tumbling
theory, we refrain frommodelling the undershoot in this study;
yet, we will concentrate on a quantitative description of the
shear stress and first normal stress overshoots. We also refrain
from considering the second normal stress function N2, which
depends on the curvature at the rim of the sample in cone-plate
rheometry and which mirrors the undefined and/or unstable
free surface situation at the rim (see e.g. Schweizer et al.
2008; Venerus 2007).

In this study, we analyse shear stress and normal stress data
of well-defined polystyrene (PS) melts and solutions obtained
by CPP shear rheometry in recent years. The data sets
analysed are among the most reliable shear data available.
After a short introduction of the DEIA and EIP models, we
start our analysis by applying the EIP model to the shear data
of a PS melt investigated by Schweizer et al. (2008).
Comparison of data and model demonstrate the need for a
modification of the model for shear flow. Introduction of CR
was found to be insufficient. An innovating approach to
modelling rotational flows is presented, and predictions are
compared with the data set of Schweizer et al. (2008) as well
as PS melts and solutions data sets of Costanzo et al. (2016)
and Costanzo et al. (2019).

Experimental data and LVE characterization

Materials

The shear rheological modellings of monodisperse polymer
melts and solutions were conducted on a series of PS melts
and PS/oligomeric styrene (OS) solutions with different
weight-average molar masses and weight fractions
previously investigated by Schweizer et al. (2008) and
Costanzo et al. (2016) and Costanzo et al. (2019). Table 1
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displays the characterization of the samples including their
weight percentage, molar mass, polydispersity index (PDI),
testing temperature (T), glass transition temperature (Tg),
and their testing environment.

Rheological measurements

Schweizer et al. (2008) used an MTR 25 rheometer to inves-
tigate the linear and nonlinear shear flow behaviours of PS
206k. MTR 25 allows direct measurement of first and second
normal stresses from a single sample and provides high reso-
lution at high deformation rates (Schweizer et al. 2008).
Costanzo et al. (2016) and Costanzo et al. (2019) used an
ARES rheometer equipped with a cone-partitioned-plate
(CPP) fixture with 6- and 4-mm inner plate radii to analyse
linear and nonlinear shear flow properties of PS melts (PS-
133k, PS-185k, PS-200k) and PS/OS solutions (PS-285/2k-
65, PS-285/2k-47, PS-545/1k-52).

The linear-viscoelastic characterization in the experimental
frequency window was obtained via a parsimonious relaxa-
tion spectrum:

G tð Þ ¼ ∑
i¼1

giexp −t=τ ið Þ ð1Þ

The partial moduli gi and relaxation times τi of the samples
as computed by the IRIS software (Winter and Mours 2006)
are presented in Tables 2 and 3.

The Rouse stretch relaxation time of polymeric systems
τR as a function of the testing temperature T (Kelvin) is
calculated according to Isaki et al. (2003), Menezes and
Graessley (1982), Osaki et al. (1982) and Takahashi et al.
(1993):

τR ¼ 12Mη0
π2ρ RTφ

Mcm

Mφ

� �2:4

ð2Þ

Mcm denotes the critical molar mass in the melt state and
was taken as Mcm = 35000 g/mol (Ferry 1980; Luap et al.
2005; Wagner 2014). ρ is the density of PS melt at the testing
temperature,R is the gas constant, andφ is the volume fraction
of polymer in the solution with φ = 1 specifying the melt. (We
note that volume and weight fraction of PS dissolved in olig-
omeric styrene are nearly identical as the densities of PS and
OS are nearly identical.)

With M being the molar mass of the polymer, the number
of entanglements per chain, Z, is obtained,

Z ¼ M
Me

ð3Þ

The relation between the entanglement molar mass of so-
lution, Me, and melt, Mem, is given by

Me ¼ Memφ
−α ð4Þ

The value of the dilution exponent α is model dependent
(1 < α < 4/3) (Auhl et al. 2009; Bhattacharjee et al. 2002;
Larson 2001; Park and Larson 2003; Watanabe et al. 2004),
and a value of α = 1 is taken here (Huang et al. 2013b). The
number of Kuhn segments between entanglements isNe =Me/
M0, where M0 is the molar mass of the Kuhn segment. For
polystyrene melt, we take Mem = 13300 g/mol [6] and M0 =
610 g/mol (Huang et al. 2013a), and the value of M0 for
polystyrene melts and solutions is assumed to be the same
(Huang et al. 2013b).

According to the DE model, the disengagement (or
reptation) time τd and the zero-shear viscosity η0 are given
by (Dealy et al. 2018),

τd ¼ 3Z3τe ¼ 3ZτR

η0 ¼
π2

12
G0

Nτd
ð5Þ

Table 1 Components, weight percentage, molar mass, polydispersity
index, measuring temperature, Rouse time, disengagement time, zero-
shear viscosity, glass transition temperature, and testing environment of

polystyrene melts and solutions, and oligomeric styrenes. Data summa-
rized from Costanzo et al. (2016), Costanzo et al. (2019) and Schweizer
et al. (2008)

Sample name φ [wt.% of PS] M [g/mol] PDI T [°C] Tg [°C] Rheometer Ref.

PS-206k 100 206,000 1.06 180 - MTR 25 Schweizeret al. (2008)

PS-133k 100 103,000 1.01 160 - ARES Costanzo et al. (2016)

PS-185k 100 185,000 1.03 160 - ARES Costanzo et al. (2016)

PS-200k 100 202,100 1.03 160 - ARES Costanzo et al. (2019)

PS-285/2k-65 64.9 285,000 1.09 150 - ARES Costanzo et al. (2016)

PS-285/2k-47 46.7 285,000 1.09 140 - ARES Costanzo et al. (2016)

PS-545/1k-52 52 545,000 1.12 130 54.0 ARES Costanzo (2020)

1k 0 972 1.12 - - - -

2k 0 1920 1.08 - 60.5 - -
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We identify here τd with the mean quadratic average of the
relaxation times of the discrete relaxation spectrum and calcu-
late η0 from the relaxation spectrum:

τd ¼
∑
i
giτ

2
i

∑
i
giτ i

η0 ¼ ∑
i
giτ i

ð6Þ

Table 4 displays the plateau modulus, Rouse relaxation
time, disengagement time, zero-shear viscosity, number of
entanglements, and number of Kuhn segments between entan-
glements of the samples as described in Eqs. (2), (3) and (6).

The extended interchain pressure model

The tube model of Doi and Edwards (1986) assumes that the
diameter of the tube a0 is constant; i.e. the tension in the

macromolecular chain remains constant and equal to its equi-
librium value even for nonlinear deformations. The extra
stress tensor σ(t) is then the consequence of the orientation
of tube segments due to the flow. The resulting constitutive
equation is of the single integral form, if the tube segments are
assumed to align independently of each other in the flow field
(i.e. the “independent alignment (IA)” approximation):

σ tð Þ ¼ ∫
t

−∞

∂G t−t0ð Þ
∂t0

SIADE t; t0ð Þdt0 ð7Þ

G(t) is the linear-viscoelastic shear relaxation modulus, and

the relative strain measure SIADE is given by

SIADE t; t0ð Þ≡5 u0 t; t0ð Þu0 t; t0ð Þ
u02

� �
¼ 5S t; t0ð Þ ð8Þ

S is the relative second-order orientation tensor. The brack-
et denotes an average over an isotropic distribution of end-to-

Table 2 Parsimonious spectra of PS melt samples by IRIS software (Winter and Mours 2006)

Parsimonious spectrum, i PS-206k, T = 180 °C PS-133k, T = 160 °C PS-185k, T = 160 °C PS-200k, T = 160 °C

gi (Pa) τi (s) gi (Pa) τi (s) gi (Pa) τi (s) gi (Pa) τi (s)

1 4.55E+0.6 2.73E−06 2.84E+07 3.06E−06 1.92E+07 4.76E−06 2.89E+05 1.88E−03
2 4.40E+0.5 3.27E−05 6.68E+05 7.70E−05 5.49E+05 1.02E−04 5.26E+04 1.90E−02
3 1.33E+05 3.23E−04 2.41E+05 4.26E−04 1.94E+05 5.11E−04 4.51E+04 1.04E−01
4 6.10E+04 4.19E−03 1.04E+05 1.95E−03 8.99E+04 2.10E−03 5.15E+04 4.83E−01
5 6.35E+04 4.12E−02 5.72E+04 8.72E−03 4.95E+04 9.27E−03 5.22E+04 2.06E+00

6 7.97E+04 3.45E−01 4.76E+04 3.66E−02 4.08E+04 4.13E−02 4.06E+04 5.43E+00

7 2.28E+04 1.234 4.95E+04 1.41E−01 4.05E+04 1.65E−01 - -

8 - - 3.78E+04 4.60E−01 4.52E+04 5.93E−01 - -

9 - - 5.63E+04 1.11E+00 5.32E+04 2.36E+00 - -

10 - - - - 1.93E+04 4.60E+00 - -

Table 3 Parsimonious spectra of PS solution samples by IRIS software (Winter and Mours 2006)

PS-285k/2k-65, T = 150 °C PS-285k/2k-47, T = 140 °C PS-545k//1k-52, T = 130 °C

Parsimonious spectrum, i gi (Pa) τi (s) gi (Pa) τi (s) gi (Pa) τi (s)

1 3.88E+06 1.21E−05 1.41E+07 3.09E−06 4.50E+06 3.30E−06
2 1.58E+05 2.22E−04 2.04E+05 9.21E−05 1.47E+05 1.06E−04
3 6.14E+04 1.22E−03 7.57E+04 4.55E−04 1.42E+04 4.97E−01
4 2.58E+04 6.51E−03 3.61E+04 1.99E−03 4.17E+04 1.04E−03
5 1.76E+04 3.14E−02 1.87E+04 1.01E−02 1.47E+04 9.68E−03
6 1.78E+04 1.36E−01 1.16E+04 4.99E−02 1.22E+04 7.53E−02
7 2.14E+04 5.93E−01 1.06E+04 2.05E−01 1.52E+04 3.01E+00

8 2.36E+04 2.70E+00 1.09E+04 8.05E−01 1.27E+04 1.35E+01

9 4.34E+03 6.07E+00 1.21E+04 2.86E+00 - -

10 - - 3.04E+02 1.16E+01 - -
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end unit vectors u(t') at creation time t' of the entanglements
by reptation, and can be expressed as a surface integral over
the unit sphere:

h i≡ 1

4π
∯½� sinθ dθ dφ ð9Þ

At the observation time t, the unit vectors u(t') are deformed
to vectors u ' (t, t'), which are calculated from the affine defor-
mation hypothesis (with F−1(t, t') being the relative deforma-
tion gradient tensor) as

u0 t; t0ð Þ ¼ F−1 t; t0ð Þ•u t0ð Þ ð10Þ

u ' = |u'| indicates the length of the vector u'.
The DE model does not account for any strain hardening.

Doi and Edwards (1986) added a stretch process with a stretch
λ of the tube segments to their model in order to explain the
discrepancies of the DE theory at start-up of extensional
flows. Pre-averaging the stretch, i.e. assuming that the stretch
is uniform along the chain contour length and an explicit
function of the observation time λ(t), the extra stress tensor
is given by

σ tð Þ ¼ λ2 tð Þ ∫
t

−∞

∂G t−t0ð Þ
∂t0

SIADE t; t0ð Þdt0 ð11Þ

Equation (11) required finding a stretch evolution
equation, and a vast variety of concepts based on different
kinetic ideas have been proposed in recent years [see e.g.
Doi and Edwards 1986, Doi and Edwards 1986, Pearson
et al. 1989, McLeish and Larson 1998, Mead et al. 1995].
However, it should be noted that Eq. (11) with any func-
tion λ2(t) is not in agreement with experimental results of
reversed elongational flow of a monodisperse polystyrene
melt (Nielsen et al. 2008).

While in models with pre-averaged stretch, the tube
diameter is always assumed to stay constant and equal to
its equilibrium value a0, stretch can also be introduced by

the assumption of a strain-dependent tube diameter, as first
suggested by Marrucci and de Cindio (1980). Accordingly,
the pre-averaging of the stretch can be avoided as well,
which is inherently present in models based on Eq. (11)
or its differential approximations. A generalized tube mod-
el with strain-dependent tube diameter was presented by
Wagner and Schaeffer (1992) (Wagner and Schaeffer
1992a; Wagner and Schaeffer 1993; Wagner and
Schaeffer 1994, and Wagner et al. 2001; Wagner et al.
2001). In the molecular stress function (MSF) theory, tube
segment stretch f = f(t,t′) is the inverse of the relative tube
diameter a:

f t; t0ð Þ ¼ a0=a t; t0ð Þ ð12Þ

which decreases from its equilibrium value a0 with increas-
ing stretch. Considering that the tube diameter a represents the
mean field of the surrounding chains, it is assumed that the
tube diameter is independent of tube segment orientation. The
extra stress is then given as

σ tð Þ ¼ ∫
t

−∞

∂G t−t0ð Þ
∂t0

f 2SIADE t; t0ð Þdt0 ð13Þ

In contrast to Eq. (11), stretch in Eq. (13) does not only
depend on the observation time t, but depends on the strain
history: for time-dependent strain histories, chain segments
with long relaxation times (i.e. at the centre of the chain)
experience higher stretches than chain segments with short
relaxation times (i.e. at the chain ends).

Based on the “interchain tube pressure” concept of
Marrucci and Ianniruberto (2004), Wagner and Rolón-
Garrido (2009b) and Wagner and Rolón-Garrido (2009a) de-
veloped an extended interchain pressure (EIP) model for
monodisperse polystyrene melts consisting of Eq. (13) and
an evolution equation for the molecular stretch f:

∂ f
∂t

¼ f κ : Sð Þ− 1

3

f −1
τR

−
2

3

f 2 f 3−1
� �
3τR

ð14Þ

with the initial conditions f(t = t', t') = 1. The first term on
the right-hand side represents an on average affine stretch rate
with κ the velocity gradient tensor, the second term takes into
account Rouse relaxation with Rouse time τR in the longitu-
dinal direction of the tube and the third term limits molecular
stretch due to the interchain tube pressure in the lateral direc-
tion of a tube segment with tube diameter relaxation time τa =
3τR. It should be noted that in the limit of small stretch, i.e. for
f − 1 < < 1, the interchain pressure term reduces to f 2( f 3 − 1)
≅ 3(f − 1) and the classical relation of Pearson et al. (1989) is
recovered from Eq. (14):

Table 4 Material properties of polystyrene melts and solutions in
oligomeric styrene at temperatures given in Table 1

Sample name GN [Pa] τd [s] τR [s] η0 [Pa s] Z Ne

PS-206k - 0.76 0.056 5.86E+04 15.5 21.8

PS-133k 2.79E+05 0.87 0.16 8.92E+04 10 21.8

PS-185k 2.58E+05 2.88 0.29 2.50E+05 13.9 21.8

PS-200k - 3.98 0.37 3.59E+05 15.2 21.8

PS-285/2k-65 1.04E+05 3.20 0.30 1.06E+05 13.9 33.6

PS-285/2k-47 5.80E+04 2.94 0.44 5.00E+04 10.1 46.3

PS-545k/1k-52 6.76E+04 10.87 0.56 2.25E+05 21.3 41.9
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∂ f
∂t

¼ f κ : Sð Þ− 1

τR
f −1ð Þ ð15Þ

Predictions of Eqs. (13) and (14) were shown to be in
excellent agreement with available elongational flow data of
PS melts and solutions (Narimissa et al. 2020). In the follow-
ing, we test the applicability of the EIP model to shear flow.

Comparison of EIP model predictions
with shear flow data of PS-206k melt

Figure 1 shows the comparison between the transient shear
data of melt PS-206k at 180 °C (Schweizer et al. 2008) and the
EIP model. Step shear rate tests were performed in the range

0:05s−1≤ γ̇≤47:16s−1 at 180 °C, and in the range of 0:2s−1≤
γ̇≤47:16s−1 at 160 °C. The data measured at 160 °C were
time-temperature shifted to 180 °C, corresponding to shear

rates of 1:92s−1≤ γ̇≤452s−1. We restrict attention here to the
stress growth coefficients of the shear stress, η+(t), and the first
normal stress difference, ψþ

1 tð Þ. Measurements of the second
normal stress difference with CPP tools scatter severely
mirroring the instabilities of the free surface at the rim as
discussed in (Schweizer et al. 2008) and will not be considered
here. The EIP model predictions were calculated by Eqs. (13)
and (14) using the parsimonious relaxation spectrum (Table 3)
and a Rouse time τR = 0.056s (Table 4) at the test temperature
(T = 180 °C). Model predictions are in quantitative agreement
with the overshoot of the shear stress growth coefficient η+(t)
for shear rates up to 48 s−1, while at shear rates of 192 s−1 and
452 s−1, the experimental data show a time delay relative to
the predictions (Fig. 1). This is due to a time delay in the
effective motor motion of the rheometer as discussed in
(Schweizer et al. 2008). While the agreement between the
viscosity overshoot of data and model can be rated as excel-
lent in the investigated shear rate range, the steady-state shear
viscosity data are increasingly overpredicted for shear rates

γ̇≥10s−1. The experimental time delay relative to the model
predictions in the rise time of the first normal stress coefficient
ψþ
1 tð Þ is mostly instigated by the limited stiffness of the shear

rheometer in the axial direction causing radial inflow of the
melt (Meissner 1972). The agreement between steady-state

data ofψ1 and model is quantitative only for γ̇ < 10s−1, while
the model again increasingly overpredicts the steady-state
values of ψ1 with increasing shear rate. At higher shear rates,
a shallow overshoot of ψþ

1 tð Þ is predicted which is in qualita-
tive agreement with the data.

In order to improve the shear flow predictions of the EIP
model, we will incorporate the constraint release CR2 relaxa-
tion mechanism into the EIP model and compare its predic-
tions with the PS-206k data in the following section.

Introducing CR2 in the EIP model

The constraint release relaxation mechanism CR2 is based on
the convective constrain release relaxation (CCR) mechanism
in polydisperse polymers which was first introduced by
Marrucci (Marrucci 1996) and Ianniruberto and Marrucci
(Ianniruberto and Marrucci 1996). In brief, the CCR mecha-
nism explains the disentanglement (i.e. the removal of the to-
pological constraints) as a result of flow in the nonlinear re-
gime of shear deformation (Wi > 1). However, the CCR in its
original form results in “hypothetical” creation of constraints/
entanglements (i.e. negative CCR) during flow at high strains
as well as in the case of reverse flow (for more details, see
Narimissa and Wagner 2016, Narimissa and Wagner 2019).
Wagner et al. (2001) and later Narimissa and Wagner (2016)
implemented CR2 in the evolution equation of stretch using a
specific combination of the second-order Rivlin-Ericksen ten-
sors in such way thatCR2 is only active in shear flows, and the
theoretical creation of constraints is avoided inCR2. Therefore,
we introduce a CR2 to the Rouse relaxation time of the evolu-
tion equation of stretch for melts (Eq. (14)),

∂ f
∂t

¼ f κ : Sð Þ− 1

3

f −1
τRCR

−
2

3

f 2 f 3−1
� �
3τRCR

ð16Þ

Here, τRCR is defined as:

1

τRCR
¼ 1

τR
þ βCR2 ð17Þ

CR2 is the result of different convection mechanisms for
tube orientation and tube cross section, and constant strain-
rate flow (for more detail, see review Narimissa and Wagner
2019) is given by:

CR2 ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 : S−A2

1 : S
		 		q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W⋅D : Sj j

p
ð18Þ

Here, A2
1 ¼ 4D2 and A2 ¼ ∂A1

∂t þ A2
1 þ 2 W⋅Dþ D⋅WT

� �
are the second-order Rivlin-Ericksen tensors, and D ¼ 1

2

κþ κTð Þ and W ¼ 1
2 κ−κTð Þ are the rate of deformation and

rotation tensor, respectively. As shown in the Appendix, CR2

can also be expressed in terms of the persistence-of-straining
tensor as proposed by Thompson and Souza Mendez
(Thompson and Souza Mendes 2005a; Thompson and
Souza Mendes 2005b). In simple shear flow, CR2 becomes,

CR2 ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ
:2 S11−S22j j

p
ð19Þ

β (in Eq. (17)) is a free parameter required to obtain agree-
ment with the stress growth coefficient and first normal stress
function measurements.
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Figure 2 shows the comparison between the predictions of
the EIP model with CR2 (Eqs. (13), (16), (17) and (19)) and
the data of the growth coefficients of shear stress and normal
stress of melt PS-206k with β = 2. The incorporation of CR2in
EIP model improves the predictions of the steady-state shear
viscosity and the first normal stress coefficient, and agreement
between the model and data is nearly quantitative up to

γ̇ ¼ 50s−1. However, the underprediction of the viscosity
overshoots at early η+(t) shows progressive deterioration at

increasing shear rates. The underpredictions are even more
evident in the case of the first normal stress growth coefficient

at γ̇ > 50s−1 where the model is incapable of predicting any

significant overshoot. In brief, at shear rates γ̇ > 50s−1, the
constraint release parameter suppresses the overshoot predic-
tions in both η+(t) and ψþ

1 tð Þ; yet, it results in improved pre-
dictions of the steady-state data.

At increasing values of β, the stretch evolution in Eq. (16)
is effectively suppressed, i.e. fi(t, t') ≅ 1, as enhanced Rouse
relaxation and interchain pressure prevent any stretch. The
EIP-CR2 model reduces to the original Doi-Edwards model
(Doi and Edwards 1978a; Doi and Edwards 1978b; Doi and
Edwards 1979; Doi and Edwards 1986) with independent
alignment (DEIA). Figure 3 illustrates the predictions of the
DEIA model, Eq. (7), of the melt data of PS-206k. The DEIA
model agrees quantitatively with the experimental data of the
steady-state shear viscosity and the first normal stress coeffi-
cient while the overshoot in the shear stress growth coefficient
η+(t) is increasingly underpredicted with increasing shear
rates, and no overshoot is predicted in the first normal stress
growth coefficient ψþ

1 tð Þ. This is in line with earlier findings
(Narimissa and Wagner 2018) that the DEIA model can pro-
duce quantitative predictions for the weak maxima (only in
η+(t)) and steady states (in both η+(t) and ψþ

1 tð Þ ) seen for

linear polydisperse melts at shear rates γ̇≤10s−1.
We remind that shear stress overshoot in the DEIA model

is an orientational effect, which is caused by the 12-
component of the orientation tensor (Doi and Edwards 1979),

S12 ¼ u01u02
u02

� �
ð20Þ

S12 first increases with shear deformation, then goes
through a maximum at γ = 2.1 (see e.g. (Wagner and Rolón-
Garrido 2010) and finally approaches zero when the tube seg-
ment is fully aligned in the shear plane. No stress overshoot in
ψþ
1 tð Þ is predicted by the DEIA model because the difference

between the 11 and the 22 components of the orientation ten-
sor increases monotonously to a value of S11 − S22 = 1 (full
alignment in the shear plane) with increasing shear deforma-
tion γ (Doi and Edwards 1979),

S11−S22 ¼ γ S12 ð21Þ

Therefore, we can conclude that while the DEIA model
allows for quantitative description of the steady-state
values of shear viscosity and first normal stress coefficient,
the EIP model (Eqs. (13)) with stretch evolution Eq. (14)
provides excellent prediction of the stress overshoot of
both the stress growth coefficients of the shear stress,
η+(t) and the first normal stress difference, ψþ

1 tð Þ. It is
important to note that in contrast to extensional flows,
stretch evolution in shear flows goes through a maximum

Fig. 2 Comparison between the predictions (red lines) of the EIP model
with CR2(Eqs. (13), (16), (17) and (19)) with β = 2 and the shear stress
growth coefficient η+(t) and the first normal stress growth coefficient ψþ

1
tð Þ of PS-206k at 180 °C
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(see e.g. Wagner and Rolón-Garrido 2010): The stretch
evolution Eq. (14) in shear flow is given by

∂ f
∂t

¼ γ̇ S12−
1

3

f −1
τR

−
2

3

f 2 f 3−1
� �
3τR

ð22Þ

and since S12 goes through a maximum, the stretch f also
goes through a maximum, although this maximum is
shifted to larger shear deformations with increasing shear
rate. While the shear stress overshoot is the result of

orientational stress overshoot and stretch overshoot com-
bined, the normal stress overshoot depends solely on the
overshoot in stretch. Based on these considerations, we
propose in the following a novel constitutive model
consisting of a combination of the DEIA and the EIP
model.

New constitutive approach for rotational
flows

We begin by considering that for flows starting at t = 0, the
extra stress tensor is given by

σ tð Þ ¼ G tð Þ f 2 t; 0ð ÞSIADE t; 0ð Þ

þ ∫
t

0

∂G t−t0ð Þ
∂t0

f 2 t; t0ð ÞSIADE t; t0ð Þdt0 ð23Þ

The first term on the right-hand side accounts for the con-
tribution to the stress tensor of entanglements, which due to
reptation, were created before the inception of flow, i.e. during
the times −∞ < t ≤ 0, and still exist at the time of observation
at time t. These entanglements, which are located at the centre
of the chain, experience the full stretch f(t,0) and the full ori-

entation SIADE t; 0ð Þ between time t = 0, when shear flow
started, and the observation time t. The second (integral) term
provides the stress contribution of entanglements, which were
created by reptation at times t′ during flow, i.e. in the time
frame of 0 < t ' ≤ t, and located more at the chain ends.
Those entanglements experience the relative stretch f(t,t′)
and the relative orientation SIADE t; t0ð Þ between times t′ and t.
Based on the experimental observation of shear flow in the
“Comparison of EIPmodel predictions with shear flow data of
PS-206k melt” section, we assume now that rotational flow
suppresses the stretch of entanglements created during flow,
i.e. f(t,t′) = 1 for 0 < t ' ≤ t, and therefore the stress is given by

σ tð Þ ¼ G tð Þ f 2 t; 0ð ÞSIADE t; 0ð Þ þ ∫
t

0

∂G t−t0ð Þ
∂t0

SIADE t; t0ð Þdt0 ð24Þ

We argue that due to the rotational component of shear,
entanglements created during flow at the chain ends do
not see a reduction of the tube diameter; thus, they do not
experience stretch. This is in line with the concept of
“persistence-of-straining” developed by Thompson and
Souza Mendez (Thompson and Souza Mendes 2005a,
Thompson and Souza Mendes 2005b) as explained in
the Appendix. While extensional flows feature a maximal
intensity of persistence of straining, shear flow is a mar-
ginally weak flow. In contrast to entanglements created
during shear flow, entanglements which already exist be-
fore inception of flow are stretched according to the evo-
lution equation for f(t, 0):

Fig. 3 Comparison between the predictions (red lines) of the DE model
(Eq. (13) with fi(t, t') ≅ 1) and the shear stress growth coefficient η+(t) and
the first normal stress growth coefficient ψþ

1 tð Þ of PS-206k at 180 °C
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∂ f t; 0ð Þ
∂t

¼ f t; 0ð Þ κ : S t; 0ð Þð Þ− 1

3

f t; 0ð Þ−1
τR

−
2

3

f t; 0ð Þ2 f t; 0ð Þ3−1
h i
3τR

ð25Þ

with the initial condition f(t = 0, 0) = 1. Equation (25) is
obtained from Eq. (14) for the case of t′ = 0. We note that
for steady-state shear flow, the stress converges to the
steady-state value of the Doi-Edwards IA Eq. (7):

σ ∞ð Þ ¼ ∫
þ∞

−∞

∂G t−t0ð Þ
∂t0

SIADE t; t0ð Þdt0 ð26Þ

Therefore, Eqs. (24) and (25) combine a description of
the stress overshoot of the shear viscosity (resulting from
a combination of stretch and orientation) as well as the
stress overshoot of the first normal stress coefficient
(which is an effect of the stretch alone), with the steady-
state viscosity of the DEIA model. The model does not
require any nonlinear-viscoelastic parameter but relies
solely on the linear-viscoelastic relaxation modulus G(t)
and the Rouse stretch relaxation time τR as defined in Eq.
(27), which in turn is determined by linear viscoelasticity
and the molar mass of the polystyrene melt.

A frame-indifferent formulation of Eqs. (24) and (25) can
be obtained by considering the “flow strength” or
“rotationality” of deformation (see Appendix).

Comparison of new constitutive approach
to experimental PS melt data

In the following, we compare experimental data of Schweizer
et al. (2008)) and Costanzo et al. (Costanzo et al. 2016;
Costanzo et al. 2019) to predictions of Eqs. (24) and (25).
The comparison between the predictions (lines) of our pro-
posed model for shear flow and the PS melt data (symbols)
are displayed in Figs. 4, 5, 6, 7, 8, 9 and 10.

PS-206k (Schweizer et al. 2008)

Excellent agreements are achieved between the predictions of
Eqs. (24) and (25) and the stress growth coefficient η+(t) of

PS-206k melt at 0:5 s−1≤ γ̇≤452 s−1 (Fig. 4). The observed
signal-delay in the experimental data of η+(t) at higher shear

rates γ̇≥192 s−1 is due to the finite acceleration of the rhe-
ometer (for more details, refer to Eq. 1 and Table 1 of
(Schweizer et al. 2008)). Similarly, the observed signal-
delay in the first normal stress coefficient ψþ

1 tð Þ is due to
the limited stiffness/compliance of the rheometer (Meissner
1972); when under the increasing normal force, the gap of
the compliant rheometer opens and causes the radial inflow
of the melt (Schweizer et al. 2008). Irrespective of the men-
tioned signal delays, the model achieves good agreement with

the experimental data of the overshoot and steady-state values
of ψþ

1 tð Þ for PS-206k at higher shear rates (Fig. 4).
In the case of the steady-state shear flow, Fig. 5 shows

quantitative agreements between the steady shear viscosity
as well as first normal stress data and the predictions of Eqs.
(24) and (25). This is in line with the Doi-Edwards (DEIA)
model (Doi and Edwards 1978a, Doi and Edwards 1978b, Doi
and Edwards 1979, Doi and Edwards 1986) providing quan-
titative prediction of steady shear flow. As explained in the

Fig. 4 Comparison between the predictions (red lines) of Eqs. (24) and
(25) and the shear stress growth coefficient η+(t), and the first normal
stress growth coefficient ψþ

1 tð Þ of PS-206k at 180 °C
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Introduction, data of the second normal stress coefficient, as
reported by Schweizer et al. (2008), show large uncertainty
and will not be considered here.

Figure 6 shows the modelling of the stress relaxation
after start-up of steady shear flow of PS206k by Eqs. (24)
and (25). Quantitative agreement is achieved between
model and experimental data of the shear stress relaxation
coefficient η−(t) at all shear rates. Similar to the results seen
in Fig. 4, the underprediction of the first normal stress
relaxation coefficient ψ−

1 tð Þ is due to the limited
stiffness/compliance of the rheometer (Meissner 1972),
with the difference that under a decreasing normal force,
the gap of the compliant rheometer closes causing radial

outflow of the melt thereby retarding relaxation of the nor-
mal stress.

PS-133k/ PS-185k/PS-200k melts (Costanzo et al.
2016, Costanzo et al. 2019)

Figures 7, 8, 9 and 10 show the modelling of melt data of PS-
133k, PS-185k and PS-200k (Costanzo et al. 2016, Costanzo
et al. 2019) obtained by different experimental set-ups (ARES
rheometer, different CPP tools). The quantitative agreements

Fig. 5 Comparison between the predictions (red lines) of Eqs. (24) and
(25) the steady-state shear viscosity η and steady-state first normal stress
coefficient ψ1 of PS-206k at 180 °C

Fig. 6 Comparison between the predictions (red lines) of Eqs. (24) and
(25) and the shear stress growth coefficient η+(t) and shear stress
relaxation coefficient η−(t) as well as the first normal stress growth
coefficient ψþ

1 tð Þ and the first normal stress relaxation coefficient ψ−
1 tð Þ

of PS206k at 180 °C. Shear rates are identical to Fig. 4
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achieved between the shear stress growth/relaxation coeffi-
cients of PS-133k (Fig. 7), PS-185k (Fig. 8) and PS-200k
(Fig. 9) confirm the success of the model. The overpredictions

seen at higher shear rates in Fig. 8 is caused by the delay of the
torque signal due to limited acceleration of rheometer drive
(Schweizer et al. 2008). At shear strains larger than approxi-
mately 20, an increasing shear stress with increasing deforma-
tion is observed, creating undershoot of the shear stress. As
already explained in the Introduction, we do not intend to
model undershoot in this work.

Figure 10 shows the predictions of the model and the ap-
parent normal stress growth/relaxation coefficients of PS-
200k. The apparent normal stress coefficient ψa is obtained
from the apparent normal stress Na:

Fig. 8 Comparison between the predictions (red lines) of Eqs. (24) and
(25) and the shear stress growth coefficient η+(t) and shear stress
relaxation coefficient η−(t) of PS-185k at 160 °C. Shear rates from top
to bottom: 0.1, 0.178, 0.316, 0.562, 1, 1.78, 3.16, 5.62, 10, 17.8, 31.6 and
56.2 s−1

Fig. 7 Comparison between the predictions (red lines) of Eqs. (24) and
(25) and the shear stress growth coefficient η+(t) and shear stress
relaxation coefficient η−(t) of PS-133k at 160 °C. Shear rates from top
to bottom: 0.1, 0.178, 0.316, 0.562, 1, 1.78, 3.16, 5.62, 10, 17.8 and
31.6 s−1

Fig. 9 Comparison between the predictions (red lines) of Eqs. (24) and
(25) and the shear stress growth coefficient η+(t) and shear stress
relaxation coefficient η−(t) as well as the steady-state shear viscosity η
of PS-200k at 160 °C. Shear rates from top to bottom: 0.1, 0.215, 0.464,
1, 2.15, 4.64, 10 and 21.5 s−1
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ψa ¼ Na=γ̇
2 ð27Þ

Here,Na is defined in terms of themeasured normal force F
of the inner partition with radius Rstem and can be expressed in
terms of the first normal stress difference N1, the second nor-
mal stress difference N2, and the sample radius R (for more
details, see Costanzo et al. 2018),

Na ¼ 2F
πR2

stem

¼ N1 þ 2 N 1 þ 2N2ð Þln R
Rstem

� �
ð28Þ

As |N2| < <N1, Na is mainly determined by N1. For the
start-up shear experiments shown in Fig. 10, Rstem = 3 mm
and R = 5.04 mm. Considering the limited stiffness/
compliance of the rheometer causing a significant delay in
the rise time of the normal force, good agreement between
model predictions and the apparent normal stress coefficient
data is achieved.

Extension of the new constitutive approach
to PS solutions

Narimissa et al. (2020) showed that for PS solutions in oligo-
meric styrene, the stretch evolution equation (Eq. (14)) is ob-
tained as:

∂ f
∂t

¼ f κ : Sð Þ− 1−
2

3
Φ4

� �
f −1
τR

−
2

3
Φ4 f 2 f 3−1

� �
3τR

ð29Þ

Here,Φ is the effective polymer fraction defined in terms of
the volume fraction of polymer in the solution φ as well as the
ratio between the entanglement molar mass of the PS melt
Mem = 13, 300g/mol and the molar mass of the oligomeric
styrene solvent Mos,

Φ ¼ φ

φþ 1−φð ÞM em=4

M os

for M os < M em=4

Φ ¼ φ for M os≥M em=4

ð30Þ

As explained in Narimissa et al. (2020), the ratio Φ−2/
φ−2 can be considered as a stretch enhancement factor,
which increases the stretch potential of polystyrene dis-
solved in lower mass OS due to lower interchain pressure
in these solutions. Again, in the limit of f − 1 < < 1, the
classical relation of Pearson et al. (1989), Eq. (15), is re-
covered from Eq. (29).

Predictions of Eqs. (13) and (29) were shown to be in
excellent agreement with available elongational flow data
of PS melts and solutions (Narimissa et al. 2020). In the
following, we test the applicability of the new constitutive
approach of Chapter 5 in modelling shear flow of polysty-
rene dissolved in 2k and 1k oligomeric styrene. However, a
preliminary analysis revealed that the stretch enhancement
due to the use of oligomeric solvents with Mos <Mem/4, as
predicted by Eq. (30), does not seem to occur in shear flow.
We attribute this again to the rotational flow component of
shear flow, which brings polymer chains into closer con-
tact with each other, thereby increasing the interchain pres-
sure and reducing the stretch potential. Therefore, for the
2k and 1k solutions considered here, we take Φ = φ in
shear flow and propose the following stretch evolution
equation for the PS solutions in conjunction with the stress
tensor Eq. (24),

∂ f t; 0ð Þ
∂t

¼ f t; 0ð Þ κ : S t; 0ð Þð Þ− 1−
2

3
φ4

� �
f t; 0ð Þ−1

τR
−
2

3
φ4

f t; 0ð Þ2 f t; 0ð Þ3−1

 �
3τR

ð31Þ

A frame-indifferent formulation of Eqs. (24) and (31) is
given in the Appendix.

Figures 11, 12 and 13 show the modelling of the shear
behaviours of the solutions PS-285/2k-65, PS-285/2k-47
and PS-545/1k-52 through our proposed model (i.e. Eqs.
(24) and (31)). We note that in all cases, the agreement of
the shear stress growth component and the data can be
considered as excellent, if at higher shear rates, the exper-
imental time delay of reaching the prescribed shear rate is
taken into account and the minimum in the shear stress

Fig. 10 Comparison between the predictions (red lines) of Eqs. (24) and
(25) and the apparent normal stress growth coefficient ψþ

a tð Þ and the
apparent normal stress relaxation coefficient ψ−

a tð Þ of PS-200k at
160 °C. Shear rates from top to bottom: 0.1, 0.215, 0.464, 1, 2.15, 4.64,
10 and 21.5 s−1
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followed by an increasing stress (i.e. the undershoot) is
neglected. In particular, the location of the shear stress
maximum is correctly predicted.

The growth coefficient of the apparent normal stress ψa

shows strong scatter at small shear rates due to low nor-
mal force signals, and with increasing shear rate, an in-
creasing time delay relative to the predictions is observed
due to limited rheometer compliance. Predictions of ψa

are in qualitative agreement with the data, and in the case

of PS285k/2k-65 and PS285k/2k-47, they are even in
quantitative agreement with the data when the steady state
of the apparent normal stress coefficient is approached
experimentally. The cut-off seen in the experimental data

Fig. 12 Comparison between the predictions (red lines) of Eqs. (24) and
(31) and the shear stress growth coefficient η+(t) and shear stress
relaxation coefficient η−(t) as well as the apparent normal stress growth
coefficient ψþ

a tð Þ and apparent normal stress relaxation coefficient ψ−
a tð Þ

of PS-285/2k-47 at 140 °C. Shear rates from top to bottom: 0.1, 0.178,
0.316, 0.562, 1, 1.78, 3.16, 5.62, 10, 17.8, 31.6, 56.2 and 100 s−1

Fig. 11 Comparison between the predictions (red lines) of Eqs. (24) and
(31) and the shear stress growth coefficient η+(t) and shear stress
relaxation coefficient η−(t) as well as the apparent normal stress growth
coefficient ψþ

a tð Þ and apparent normal stress relaxation coefficient ψ−
a tð Þ

of PS-285/2k-65 at 150 °C. Shear rates from top to bottom: 0.1, 0.178,
0.316, 0.562, 1, 1.78, 3.16, 5.62, 10, 17.8, 31.6, 56.2 and 100 s−1 (only for
shear stress growth coefficient)
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of ψa at the highest shear rate in Fig. 12 is caused by the
overload of the normal force transducer. For PS545k/1k-
52, predictions indicate that at higher shear rates, a stron-
ger than experimentally detected normal stress overshoot
is expected, and the steady state is only reached at very
high shear strains. Whether this discrepancy between
model and data is caused by experimental issues or by
limitations of the model is an open question, and further
research in this area is required.

Conclusions

We have investigated the shear data of Schweizer et al.
(2008) and Costanzo et al. (Costanzo et al. 2016,
Costanzo et al. 2019) on nearly monodisperse polystyrene
melts and solutions obtained by cone-partitioned-plate
(CPP) shear rheometry. The extended interchain pressure
(EIP) model, which allows a quantitative modelling of
elongation flow of polymer melts and solutions, provides
excellent prediction of the stress overshoot of both the
stress growth coefficients of the shear stress, η+(t), and
the first normal stress difference, ψþ

1 tð Þ, but overpredicts
the steady-state shear viscosity and the steady-state first

normal stress coefficient at shear rates γ̇≥10s−1. The in-
troduction of constraint release function CR2 into the EIP
model improves the predictions of the steady-state shear
viscosity and the first normal stress; yet, it causes
underprediction of the overshoots in η+(t) and ψþ

1 tð Þ at
all shear rates. At increasing values of the constraint re-
lease parameter β, this modelling approach (EIP with
CR2) converges to the Doi-Edwards model with indepen-
dent alignment (DEIA) through the suppression of stretch
evolution, i.e. fi(t, t') ≅ 1. The DEIA model shows excel-
lent quantitative predictions of the steady-state shear vis-
cosity and the first normal stress coefficient while it
underpredicts the overshoot in η+(t) and does not predict
an overshoot in ψþ

1 tð Þ. Consequently, we propose a novel
constitutive model consisting of a combination of the
DEIA and the EIP model. In this approach, we distinguish
between entanglements created by reptation before the
inception of flow at time t = 0, i.e. at times − ∞ < t ≤ 0,
and those created by reptation at time t′ during flow, i.e.
at times 0 < t ' ≤ t. Entanglements created before inception
of flow experience the stretch f(t,0) and the orientation

SIADE t; 0ð Þ, while due to the rotationality of shear flow,
entanglements created after inception of flow are not
stretched, i.e. f(t,t′) = 1, but are only oriented according

to the relative orientation SIADE t; t0ð Þ between times t′ and
t. Hence, the stress tensor of this novel constitutive ap-
proach is given as,

σ tð Þ ¼ G tð Þ f 2 t; 0ð ÞSIADE t; 0ð Þ þ ∫
t

0

∂G t−t0ð Þ
∂t0

SIADE t; t0ð Þdt0 ð24′Þ

with the stretch evolution equation for polymer melts

∂ f t; 0ð Þ
∂t

¼ f t; 0ð Þ κ : S t; 0ð Þð Þ− 1

3

f t; 0ð Þ−1
τR

−
2

3

f t; 0ð Þ2 f t; 0ð Þ3−1
h i
3τR

ð25′Þ

We further showed that for the PS solutions in 2k and 1k
oligomeric styrene considered in this study, the stretch evolu-
tion equation can be expressed as

Fig. 13 Comparison between the predictions (red lines) of Eqs. (24) and
(31) and the shear stress growth coefficient η+(t) and shear stress
relaxation coefficient η−(t) as well as the apparent normal stress growth
coefficient ψþ

a tð Þ and the apparent normal stress relaxation coefficient of
PS-545/1k-52 at 130 °C. Shear rates from top to bottom: 0.0178, 0.0316,
0.0562, 0.1, 0.178, 0.316, 0.562, 1, 1.78, 3.16, 5.62, 10, 17.8 and 31.6 s−1
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∂ f t; 0ð Þ
∂t

¼ f t; 0ð Þ κ : S t; 0ð Þð Þ− 1−
2

3
φ4

� �
f t; 0ð Þ−1

τR
−
2

3
φ4

f t; 0ð Þ2 f t; 0ð Þ3−1

 �
3τR

ð31′Þ

For steady-state shear flow, the stress tensor (Eq. (24′))
converges to the steady-state value of the DEIA model,

σ ∞ð Þ ¼ ∫
þ∞

−∞

∂G t−t0ð Þ
∂t0

SIADE t; t0ð Þdt0 ð26′Þ

Equations (24′) and (25′) for melts and Eq. (24′) and (31′) for
solutions combine the description of the stress overshoot of the
shear viscosity (resulting from a combination of stretch and ori-
entation) as well as the stress overshoot of the first normal stress
coefficient (which is an effect of the stretch alone), with the
steady-state viscosity and first normal stress of the DEIA model.
A frame-indifferent formulation of Eqs. (24′) and (25′) can be
obtained by considering the “flow strength” or “rotationality” of
deformation as shown in the Appendix.

Our proposed constitutive model achieves excellent agree-
ment with the experimental data of the overshoot and the
steady-state values of shear viscosity (if the observed stress
minimum is taken as the steady state) and the first or apparent
normal stress as well as the stress relaxation of PS melts (PS-
206k, PS-133k, PS-185k, PS-200k) and PS solutions (PS285/
2k-65, PS285/2k-47 and PS545/1k-52) at a broad range of
shear rates. The assumption of “non-stretching” of entangle-
ments created during rotational flow is therefore in agreement
with available experimental evidence. Future research may
show whether this effect has a possible relationship to the
concept of molecular tumbling. The model does not require
any nonlinear-viscoelastic parameter, but relies solely on the
linear-viscoelastic relaxation modulus G(t) and the Rouse
stretch relaxation time τR, which in turn is determined by
G(t) and the molar mass of the polystyrene melt.

Acknowledgements We are greatly indebted to Salvatore Costanzo for
sharing his data and for helpful suggestions and discussions.

Funding Information Open Access funding provided by Projekt DEAL.

Appendix

Thompson and SouzaMendez (Thompson and SouzaMendes
2005a; Thompson and Souza Mendes 2005b) following the
earlier work of Astarita (1979) defined a persistence-of-
straining tensor P

P≡DW−WD ð32Þ

D is the rate of deformation tensor

D ¼ 1

2
κþ κT
� � ð33Þ

and W the relative rate of rotation tensor

W ¼ 1

2
κ−κT
� �

−Ω ¼ W−Ω ð34Þ

where Ω is the tensor that gives the rate of rotation of the
eigenvectors of D. When P = 0, the flow is extensional corre-
sponding to total persistence of straining.

We note in passing that the constraint release function CR2

in Eq. (18) can be redefined in terms of the persistence-of-
straining tensor as

CR2 ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 P : Sj j

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W⋅D : S
			 			

r
ð35Þ

For shear flow, W ¼ W, and Eq. (18) is recovered from
Eq. (35).

The intensity of P is a local measure of how far from max-
imum is the persistence of straining in a given flow.
Thompson and Souza Mendez (Thompson and Souza
Mendes 2005a, Thompson and Souza Mendes 2005b) define
this intensity as

P ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
P : P

r
ð36Þ

From Eq. (36) follows that P = 0 for extensional flow, P =
D:D for shear flow and P> >D:D for flows which approach
the limit of rigid body motion (Thompson and Souza Mendes
2005a, Thompson and Souza Mendes 2005b). Depending on
the value of P, a frame-indifferent dimensionless measure of
flow type can be constructed

r Pð Þ ¼ 1 for P ¼ 0 ð37aÞ

r Pð Þ ¼ 1−
P

D : D
for P≤D : D and D : D > 0 ð37bÞ

r Pð Þ ¼ 0 for P≥D : D and D : D > 0 ð37cÞ

Thus, r(P) can be considered as a measure of “flow
strength” (Tanner and Huilgol 1975), which decreases with
increasing “rotationality” from r = 1 (irrotational or extension-
al flow, also called “strong” flow) to r = 0 for shear flow
(“marginally weak” flow) and flows approaching the limit of
rigid body motion (“weak” flows). Note that we consider “no
flow”, i.e. P = 0 and simultaneously D :D = 0, as irrotational
and assign a value of r = 1.

We can nowmake use of the rotationality parameter r(P) to
express stretch evolution Eq. (14) for the stretch f(t, t') in a
frame invariant way as
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∂ f
∂t

¼ f κ tð Þr t0ð Þ½ � : S t; t0ð Þ− 1

3

f −1
τR

−
2

3

f 2 f 3−1
� �
3τR

ð38Þ

with the starting condition f(t = t', t') = 1.
For extensional flow, r(t′) = 1 for all times t′, and Eq. (14) is

recovered from Eq. (38).
For start-up of shear flow at time t = 0 with κ(t ≤ 0) = 0 and

κ(t > 0) = κ, the rotationality parameter is given by r(t′ > 0) =
0. It then follows from Eq. (38) that

f t; t0 > 0ð Þ ¼ 1 ð39Þ

because the first term on the right-hand side of Eq. (38) is zero
for t′ > 0, i.e. as intended, stretch of chain segments created
during shear flow is fully suppressed. On the other hand, the
evolution of stretch of entanglements existing before the start-
up of flow is given by,

∂ f t; t0≤0ð Þ
∂t

¼ f κ tð Þ : S


t; t0≤0

�
 �
−
1

3

f −1
τR

−
2

3

f 2 f 3−1
� 

3τR

ð40Þ

as κ(t ' ≤ 0) = 0 and therefore according to Eq. (37a) r(t ' ≤
0) = 1. Equation (40) is equivalent to Eq. (25). From Eqs. (7)
and (39), the extra stress tensor for start-up of shear flow is
then given by

σ tð Þ ¼ G tð Þ f 2 t; 0ð ÞSIADE t; 0ð Þ þ ∫
t

0

∂G t−t0ð Þ
∂t0

SIADE t; t0ð Þdt0 ð41Þ

which is identical to Eq. (24).
Similarly, in the case of PS solutions in oligomeric styrene,

the stretch evolution Eq. (29) can be expressed in a frame
invariant way as

∂ f
∂t

¼ f κ tð Þr t0ð Þ½ �

: S t; t0ð Þ− 1−
2

3
Θ4

� �
f −1
τR

−
2

3
Θ4 f 2 f 3−1

� �
3τR

ð42Þ

with effective polymer fraction Θ

Θ ¼ φþ Φ−φð Þr tð Þ ð43Þ
and Φ given by Eq. (30).

For extensional flow, r(t) = 1 and r(t′) = 1 for all times t and
t′, and Eq. (29) is recovered from Eq. (42).

For start-up of shear flow at time t = 0 and r(t′ > 0) = 0, and
therefore

f t; t0 > 0ð Þ ¼ 1 ð44Þ

Stretch of chain segments created during shear flow is fully
suppressed in solutions as in melts. For entanglements
existing before the start-up of flow, the effective polymer vol-
ume fraction reduces for t > 0 and r(t > 0) = 0 to Θ = φ + (Φ
−φ)r(t) =φ, and as κ(t ' ≤ 0) = 0 and therefore according to
Eq. (37a) r(t ' ≤ 0) = 1, the evolution of the stretch is given by

∂ f
∂t

¼ f κ tð Þ : S


t; t0≤0

�
 �
− 1−

2

3
φ4

� �
f −1
τR

−
2

3
φ4 f 2 f 3−1

� �
3τR

ð45Þ

Eq. (45) is equivalent to Eq. (29).
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