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Abstract

Trapped ions are among the leading platforms for the realization of scalable quantum
information processing (QIP). A hybrid system composed of different species of ions
extends the control capabilities of the system by providing new capabilities and extra
degrees of freedom. A significant advantage of using two species of ion is the ability to
individually manipulate and read out the state of one ion species without disturbing
the quantum information stored in the internal states of the other.

In this thesis I demonstrate different elements required for the control of mixed-
species ion chains composed of calcium and beryllium ions. One of the main results is
the first realization of repeated measurements of quantum correlations of two beryllium
ions that preserve their quantum entanglement. This is possible by reading out a co-
trapped calcium ion that has previously interacted with the beryllium ions. Real-time
feedback of the classical control system allows us to prepare and retain entangled states
for up to fifty measurement rounds. The measurements consist of a series of quantum
gates between the three ions, which involve mixed-species gates between beryllium
hyperfine states and calcium electronic states. Independent experiments, also described
in this thesis, show mixed-species entangled state fidelities of 98.4(9)% for two ions, and
93.8(5)% for three ions. The low-crosstalk mixed-species operations demonstrated in
this work can be useful in quantum error correction as well as quantum metrology.

The abilities of the classical control system and the precise control of mixed-species
chains are further exploited to deterministically realize an arbitrary unitary operation
on a single ion two-level system (qubit) using measurement-base quantum computing
(MBQC). Within this framework, sequences of adaptive measurements on entangled
states in a larger multi-qubit Hilbert space are used to realize quantum operations on
the two-dimensional space of a single target qubit. As opposed to standard MBQC,
entanglement is created on demand when needed in this thesis to minimize the addi-
tional resources required to control the target qubit. The work presented in this thesis
provides the first not post-selected realization of single-qubit unitaries in the MBQC
paradigm.

Future algorithms will involve the manipulation of multiple ion chains of different
types whose structure is continuously reconfigured through transport and splitting/re-
combination. This thesis also discusses the characterization of transport and separation
of single and mixed-species ion chains. It shows the reliable splitting of single-species
chains composed of two ions with a residual motional excitation below 1.6 quanta for
calcium and below 0.7 quanta for beryllium. Mixed-species transport and splitting are
also investigated. However, more characterization is required to make these processes
reliable.

Finally, this thesis also describes technical advancements in the software interface
used for controlling and calibrating experiments. The interface consists of a low-level
structure written in C++ that controls all the physical details of the apparatus, and
provides a set of command structures that are independent of details of the physical
setup and allow the users to write control scripts at a high level of abstraction. These
tools are complemented by an improved graphical user interface that provides users
with a significant degree of automation and sophisticated scheduling of calibration
experiments through a Python-based scripting interface.

This is the second edition of the thesis, released on the 22th of May 2020. The first
edition was released on the 25th of March 2020.
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Riassunto

Gli ioni intrappolati rappresentano una delle piattaforme più promettenti per la
realizzazione di un computer quantistico capace di risolvere problemi attualmente irri-
solvibili. Le capacità di controllo del sistema quantistico possono essere estese tramite
un approccio ibrido basato sull’utilizzo di diverse specie di ioni. In particolare, la
possibilità di manipolare e misurare lo stato di ciascuna specie, senza influenzare l’in-
formazione quantistica memorizzata nell’altra, rappresenta un vantaggio significativo
di questo approccio.

In questa tesi sono discussi diversi requisiti necessari per il controllo di catene di ioni
formate da calcio e berillio. Tra i risultati principali presentiamo il primo esperimento
in grado di misurare ripetutamente le correlazioni quantistiche tra due ioni berillio pre-
servando il loro stato di entanglement quantistico. Ciò è possibile attraverso la misura
dello stato di uno ione calcio presente nella stessa trappola. L’informazione derivante
dalla misura viene processata in tempo reale dal nostro sistema di controllo permet-
tendo di stabilizzare gli stati di entanglement fino a cinquanta ripetizioni della misura.
L’estrazione delle correlazioni è basata su sequenze di operazioni che sfruttano l’intera-
zione tra due livelli iperfini del berillio e due livelli elettronici del calcio. L’accuratezza
di queste operazioni, misurata con esperimenti specifici anch’essi discussi in questa tesi,
si attesta attorno al 98.4(9)% per operazioni tra due ioni e attorno al 93.8(5)% per
operazioni con tre ioni. Le tecniche utilizzate in questo esperimento possono essere
direttamente impiegate per algoritmi di correzione quantistica e metrologia.

In un secondo esperimento dimostriamo la prima realizzazione deterministica di
operazioni unitarie su un sistema a due livelli (qubit) nel formalismo di measurement-
based quantum computing (MBQC). In quest’approccio, operazioni quantistiche vengo-
no eseguite tramite sequenze di misure adattive su stati di entanglement estesi su molti
qubit. A differenza dell’approccio definito nell’ambito di MBQC, nel nostro esperimen-
to l’entanglement viene creato solamente quando necessario consentendo di diminuire
il numero di risorse necessarie ad eseguire l’algoritmo. Anche in questo caso sfruttiamo
le principali proprietà del nostro sistema di controllo e le tecniche di manipolazione di
catene di ioni con specie differenti.

Esperimenti futuri, basati sulla tecnologia degli ioni intrappolati, richiederanno la
manipolazione di molteplici catene di ioni la cui struttura sarà continuamente modifi-
cata attraverso sequenze di trasporto e separazione/ricombinazione. Per garantire la
massima accuratezza delle operazioni è fondamentale ridurre il più possibile l’eccitazio-
ne meccanica derivante da imperfezioni sperimentali. Nell’arco di questa tesi abbiamo
caratterizzato il trasporto e la separazione di catene di ioni formate da due ioni della
stessa specie e di due specie diverse. Sebbene la separazione di specie differenti non
sia ancora affidabile dimostriamo ottimi risultati per la separazione di catene con due
ioni della stessa specie. Nel caso del berillio otteniamo eccitazioni residue inferiori a 0.7
quanti di moto, mentre per il calcio le eccitazioni sono inferiori a 1.6 quanti.

Per finire, questa tesi presenta dei progressi tecnici sull’interfaccia di program-
mazione utilizzata per la scrittura di esperimenti e per la calibrazione di parametri
sperimentali. In particolare, viene descritta un’interfaccia di basso livello sviluppata in
C++ che incapsula tutti i dettagli dell’apparato sperimentale garantendo la possibilità
di programmare esperimenti ad un alto livello di astrazione. Questi strumenti sono com-
binati con un’interfaccia grafica migliorata che consente una maggiore automazione e
una pianificazione sofisticata degli esperimenti di calibrazione attraverso un’interfaccia
di scripting basata su Python.

Questa è la seconda edizione della tesi pubblicata il 22 Maggio 2020. La prima
edizione è stat pubblicata il 25 Marzo 2020.
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1 Introduction

In a remarkable paper published in 1936 [1], Alan Turing proposed an abstract notion of a
computing device, now known as the universal Turing machine, that is capable of solving
any mathematical problem that can be expressed in a symbolic form. A few years later, John
von Neumann introduced a theoretical model (still used in modern computers) describing
a simple structure for practically building a computing device that is as capable as the
universal Turing machine. This concept implies that all computers, independently of the
physical implementation, are equivalent in terms of the type of tasks they can solve. Finding
the solution to a problem then transforms into developing an algorithm using a convenient
mathematical framework (e.g., the Turing machine), instead of inventing a new computing
technique on some physical device.

Since these early works, modern computers facilitated many technological advancements
and are now indispensable to our everyday lives. However, the classical nature of the
information theory that governs modern computers is just an approximation of physical
reality; nature is quantum, not classical. While, in theory, a classical computer could be
used to simulate phenomena described by quantum mechanics, it appears to be impossible
to do it in anefficient way1. Devices that process information at the quantum level, known
as quantum computers, offer a speed advantage over classical computers. In 1985, David
Deutsch described a quantum model for computation, the Quantum Turing Machine, and
showed that it could efficiently solve problems that are not efficiently solvable on a classical
Turing machine [2]. This result laid the ground for the development of quantum mechanical
computers.

1.1 Quantum information processing

The main properties at the core of Quantum Information Processing (QIP) are quantum
superposition, interference, and entanglement. Similarly to the classical bit ( ′0′ or ′1′),
introduced by Shannon in 1948 [3] as the unit of classical information, the qubit is the unit
of quantum information. The general state of a qubit can be written as α |0〉+β |1〉2, where
|0〉 and |1〉 are two discrete states, and α and β are complex numbers.

There are several areas in which quantum information processing could be advantage-
ous. One of them is the simulation of quantum systems, as proposed by Richard Feynman
in 1982 [4]. In principle, classical simulation can be used to simulate quantum systems.
In this approach, quantum systems are encoded in a quantum memory (i.e., a register of
qubits) that is proportional in size with the system state. A classical register can then de-
scribe each qubit, and the interaction between qubits could in principle be simulated with
a classical computer. However, adding one extra qubit to the classical register doubles the
classical memory required, due to the possibility of quantum entanglement [5, 6]. As a
result, a quantum system described by approximately 50 interacting qubits is at the limit

1Roughly speaking, an efficient algorithm solves a problem in time polynomial in the problem’s size.
2In the next chapters the qubit states |0〉 and |1〉 are replaced with the states |↑〉 and |↓〉, as they refer

to two particular energy levels of a trapped ion.

1
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of the computational power of modern classical supercomputers. These complex systems
appear in various fields, such as solid-state physics, chemistry, material science and biology
[7]. To solve these problems more efficiently, with quantum simulation [5, 8], we simulate
the behavior of a quantum system by controlling the quantum register describing the sys-
tem. More recently, hybrid approaches that combine the strength of classical and quantum
computation have been proposed to simulate complex quantum chemistry operations [9, 10].

In addition to problems in quantum physics and related derivatives, it has also been
shown that a quantum computer offers a speed-up for problems like the factorization of large
integers [11] 3, solving a linear system of equations [12], and searching unsorted databases
[13].

The long term goal for quantum information processing is the realization of a large-
scale universal quantum computer that is capable of executing any quantum algorithm that
can be encoded in its register. There are five necessary conditions required for building
a quantum computer, as discussed by Di Vincenzo [14]: a scalable physical system with
well-defined qubits, the ability to initialize the qubit in a particular state, robust storage
of information, a "universal" set of gates, and the ability of reading out the state of the
qubit. Several physical platforms have been investigated for potentially building a quantum
computer. Superconducting qubits [15, 16] and trapped atomic ions [17, 18, 19] are among
the leading candidates.

1.2 Trapped ions for QIP

In the trapped-ion approach, two particular electronic energy states of a single ion implement
the qubit. What makes ions an ideal choice for qubits is that ions of the same species are
identical by nature and that the atomic properties are well understood. The fact that
they are charged also allows the possibility of confining them with electromagnetic forces.
Typically the ions are stored and manipulated in vacuum at pressures below 10−11 mbar
to decouple them from the environment and to minimize collisions with background gases
[20]. As a result, ions can be stably trapped, allowing robust information storage. For
QIP purposes, the most common ion trap design is the Paul trap [21]. Paul traps use
a combination of static and radio-frequency (rf) voltages applied on specific electrodes to
confine ions in specific locations.

There are two possible types of qubits and both are used in the work included in this
thesis: ground state qubits and optical qubits [18]. Ground state qubits consist of two energy
levels in the ground state manifold of an ion; optical qubits are instead implemented between
one energy level in the ground state manifold and one in a metastable excited state. While
optical qubits offer some technical advantages, they exhibit a lifetime of approximately 1 s
(the time it takes for an ion in the higher energy qubit state to spontaneously decay to
a lower energy level) and stabilizing optical frequencies to the same frequency stability as
microwave oscillators is a major challenge. Ground state qubits have a lifetime which can be
years long, and, in some cases, information can be robustly stored for several minutes [22,
23]. However, if the ground state manifold possesses additional states beyond those defining
the qubit, there could be mechanisms that lead to a leakage of the population outside the
qubit subspace. It is possible to account for this type of error in a large scale quantum
computer but this comes at the cost of more resources [24].

3However, it has not been proven yet that no classical factorization algorithms exist that are equally
efficient or better than the quantum algorithm.
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In our experiments, we use a ground state qubit defined between two energy levels in
the hyperfine ground state of a beryllium ion (9Be+), and an optical qubit defined on a
dipole forbidden transition of a calcium ion (40Ca+). All qubit operations, such as state
initialization, quantum gates, and state detection, are performed with lasers. When two
or more ions are stored in a single potential well, they couple to one another via their
mutual repulsion. We use this coupling to transfer quantum information between ions and
to generate entanglement [25]. The motion of the ions is also cooled with lasers to achieve
the highest gate accuracy. Details about all these operations will follow in later chapters.

A large scale quantum computer based on trapped ions requires to be able to control
and manipulate thousands of ions. Within a single potential well, only a few tens of ions can
likely be manipulated with the precise control required for executing quantum algorithms.
A more promising approach is the ‘Quantum Charge-Coupled Device’ (QCCD) architec-
ture [26, 27]. In this framework, a complex set of electrodes is used to create physically
separated trapping locations. Each region is then used for qubit readout, manipulation
and storage. Ions are shuttled between different regions by varying the electrode voltages.
This architecture is more scalable than the single well approach; however, it requires careful
management of ion transport, a large number of electronic connections, and a large number
of lasers beams. Various techniques like chip-integrated beam delivery [28, 29] and integ-
rated voltage sources [30] have been explored in recent years to address these issues. One
other proposal that is gaining more interest is a modular approach. Here multiple "unit-cell
traps", each holding few tens of ions, are linked together by photonic interfaces to perform
large-scale algorithms [31, 19, 32]. Although recent results showed the preparation of en-
tangled states through a photonic interface at a higher-rates and with improved fidelities [33]
compared to prior studies, more research is needed to reach the levels required by complex
protocols.

1.3 Mixed-species for QIP

One of the first proposed application of mixed-species is the sympathetic cooling of one
type of ion by a second one of a different species [27]. Scalable QIP experiments indeed
require the ability to cool the motion of ions close to the quantum ground state while
preserving the quantum information stored in the qubit. The dissipation process induced
by direct laser cooling destroys the quantum superposition of the qubit states. Therefore,
co-trapping another species of ion allows to laser cool the second species, while the the
first one is sympathetically cooled due to the Coulomb repulsion. Early demonstrations of
sympathetic cooling date back to the 1980s [34, 35].

More recently two species of ions have been used in QIP experiments for high-fidelity
detection of one species with quantum non-demolition measurements [36], state initialization
and readout of molecular ions using quantum-logic spectroscopy [37, 38], the preparation of
entangled states [39, 40, 41, 42] and the teleportation of a gate between separated qubits
[43].

One other application for a mixed-species processor is quantum error correction (QEC).
Coping with errors arising from noise and imperfect gate operations is a primary challenge
in the quest of large-scale quantum computers. QEC relies on the ability to encode one
or more logical qubits in multiple physical qubits. Individual errors in the physical qubits
have to be detected and corrected without perturbing the state of the logical qubit [44,
45]. The most prominent protocols for QEC, detect errors using ancillary qubits to perform
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measurements of the quantum correlations between multiple qubits [6, 46]. With trapped
ions, state detection relies on photon scattering, which heats the motion of the ions. This
limits the ability to perform further gates, which usually require the ions motion to be
cooled close to the motional ground state. For this reason, using two species of ions, one
for the ancilla and the other for the data qubits, is beneficial for QEC. If there is enough
spectroscopic separation between the two species, the detection of the ancilla does not
perturb the information stored in the data qubits. Moreover, the ancilla ion can be used
to cool the motion of the ions sympathetically after detection, and the same ancilla qubit
could be re-initialized for a new round of measurement.

In this thesis, we used a mixed-species setup to perform joint measurements of the state
of two beryllium ions using a calcium ion as an ancilla. We further used the ability of our
control system to modify the experimental sequence in real time to prepare and stabilize
entangled states [42].

A second significant result discussed in this thesis is the deterministic realization of
an arbitrary single-qubit gate in the Measurement-Based Quantum Computation (MBQC)
formalism. As opposed to the circuit model, that is a direct quantum generalization of the
classical construct, MBQC is a conceptually different paradigm for quantum computation.
Quantum operations are not performed by applying a sequence of quantum gates, but rather
a series of adaptive measurements on an entangled state of qubits. A general single-qubit
unitary in the MBQC formalism requires an entangled state of four qubits and three adaptive
measurements. In this work, the single-qubit unitary is performed using a mixed-species
chain composed of two qubits, where entanglement is created on demand to reduce the
number of resources.

1.4 Thesis outline

Chapter 2 presents the experimental apparatus used in this thesis. After a short description
of the segmented trap, I introduce the concepts of normal modes, single-qubit coherent
operations, the relevant level structures of 40Ca+ and 9Be+ ions, and I will summarize
dissipative operations including cooling, state detection and preparation. I then conclude
the chapter introducing the normal modes of motion of mixed-species ion chains.

Chapter 3 is dedicated to the techniques required for state readout. In the trapped-ion
architecture, state dependent fluorescence is the most common method for qubit detection.
The first part of the chapter describes the most common techniques for state discrimination.
The rest of the chapter is dedicated to the description of processes that lead to population
leakage during detection. Depending on the choice of qubit, these processes can lead to
readout errors if not taken into account. I will present real-time detection techniques that
make use of the temporal information carried by the detected photons to improve state
discrimination.

Having covered the basic techniques for ion trapping, cooling and detection, Chapter 4
discusses the main features of the experimental control system. At first, I will present the
most recent software modifications introduced for the flexible control of arbitrary mixed-
species ion chains. The chapter continues summarizing ion transport and separation op-
erations, and the experiments used to characterize their performance with mixed-species
chains. Finally, the chapter is concluded with the description of various experimental tech-
niques such as ion reordering and recrystallization that are necessary for the experiments
discussed in later chapters.
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Chapter 5, discusses various coherent experiments performed in this thesis to better
characterize the experimental setup. These include Ramsey sequences to measure motional
coherence and the spectral isolation between the two ion species, the characterization of
mixed-species normal modes, and finally theory and results of mixed-species entangling
gates.

With all mixed-species techniques in place, Chapter 6 discusses the experimental real-
ization of a protocol for the repeated extraction of quantum correlations of two beryllium
ions using a co-trapped calcium ion. We use the ability of our control system to feedback
upon calcium detection to stabilize the beryllium qubit in a parity subspace for a sequence
including up to 50 rounds of measurements. Using similar techniques we also show the
deterministic preparation and stabilization of Bell states. The chapter discusses the various
details of this experiment, from the pulse sequence to the analysis of the data with a focus
on the modeling of the experiment.

In Chapter 7 I will discuss the experimental realization of an arbitrary single-qubit op-
eration in the measurement based quantum computing (MBQC) formalism. The chapter
starts with an introduction to MBQC where I highlight the main differences with the stand-
ard circuit model approach. I will then continue with a circuit model derivation of an
arbitrary single-qubit gate in the MBQC architecture. The chapter is then concluded with
preliminary experimental results.

Chapter 8 concludes this thesis providing a summary of the main experimental results
and future outlooks.



2 Mixed-species setup

The long term vision behind the setup is the QCCD architecture introduced in the previous
chapter (quantum charged-coupled device) in which ion transport, separation/recombination
as well as sympathetic cooling with a second ion species play an essential role. The trap
used for all the experimental results shown in this thesis is a segmented, linear design, which
was specifically designed to trap calcium and beryllium ions simultaneously.

Within this chapter, I first introduce the segmented trap, briefly review the main con-
cepts about qubit manipulation and present the techniques for state preparation, manip-
ulation, and readout for both calcium and beryllium. I conclude with an overview of the
physics and the experimental challenges of working with both ion species trapped in the
same potential well.

2.1 Segmented trap overview

The segmented trap, designed and fabricated by Daniel Kienzler, consists of a stack of gold
plated alumina wafers. An exploded view of the wafer stack, and a cross-section of the design
is shown in Figure 2.1. The stack is mounted onto a filter board and placed inside a vacuum
chamber. Further details about the setup can be found in the thesis of Daniel Kienzler and
Hsiang-Yu Lo [47, 48]. The central two electrode wafers form the linear Paul trap, and each
contains one radio-frequency (rf) electrode and 15 dc electrodes1. The segmented structure
of the dc electrodes along the axis is designed to provide two loading zones, three zones
for experimental quantum control or ion storage, and two splitting/recombination regions.
On both ends of the trap, there are two loading zones through each of which neutral atom
beams from one calcium and one beryllium oven pass. This configuration allows flexibility
while loading, and limits the charging effect from the photo-ionization lasers to this area of
the trap. The electrodes in the loading zones are the widest (500 µm), and the maximum
axial trapping frequencies are smaller than those achievable in the central regions with the
same maximum voltage. The three experimental/storage regions realize a simplified version
of the QCCD architecture and are the dedicated areas for the quantum control of the ion
chains. Each of those is centered on an electrode of width 300 µm. In between each of
the experimental regions there is a zone consisting of three finger-electrodes (150 µm wide)
optimized to achieve tight axial confinement during splitting and recombination operations.

A custom arbitrary-waveform generator [49] produces the dc voltages required to control
the time-varying potential wells. For most of the experiments discussed in this thesis,
the ions are manipulated in the center of the trap at 20 µm from the geometrical center
(Figure 2.1e). The main reason for not working precisely in the center is that at 20 µm,
the axial pseudo-potential gradient is lower (see Section 5.2.1 for more details.) The ions
are loaded in the left loading zone of the trap (electrodes 2-17 in Figure 2.1e) at −1870 µm
from the trap center and are then transported to the central experimental zone. For this

1dc stands for direct current. In the ion trapping community though it is usually a synonym of static
fields and the electrodes that are used to form the static fields (‘dc electrodes’). This sometimes inaccurate
convention is used throughout the text to adhere to the convention.

6
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operation, we use a "loading conveyor" waveform, which starts with simultaneous wells in
the loading and experimental zones that are merged in the experiment zone by the transport
waveform.

We apply an rf voltage at Ω
rf
≈ 2π × 113.5 MHz with a peak-to-peak amplitude of

V
rf
∼700 V to the radio-frequency (rf) electrodes. This is generated by a stable rf source2

followed by a helical resonator. An ion near the center of the trap (x, y, z = 0) is confined
by an approximate electric potential given by

V (x, y, z, t) =
1

2
V

dc
(αzz

2 − αxx2 − αyy2) +
1

2
V

rf
(βxx

2 + βyy
2) cos(Ωrft) (2.1)

in which αi and βj (i, j ∈ x, y, z) are geometric factors. The rf potential confines the ion
along the radial direction x− y while the dc potential confines it along the trap axis z. For
an ion with mass m, the motion along the trap axis is mostly static, with an oscillation
frequency of

ωz =
√
eαzVdc

/m . (2.2)

Along the radial direction, the equations of motion are found by solving
d2u/dt2 = −e/m∂2V (x, y, z, t)/∂u2 for u = x, y which can be written in terms of a Mathieu
equations [26, 21] with parameters

au = −4eαuVdc

mΩ2
rf

,

qx = −qy =
2eβxVrf

mΩ2
rf

.

(2.3)

An exponential series is used to solve the Mathieu equations [50]. The lowest order of the
solutions yield secular harmonic oscillations at frequencies

ω
rf ,u =

Ω
rf

2

√
au +

q2
u

2
(2.4)

superposed with a small excursion at the trap frequency Ω
rf
, called micromotion, whose

amplitude is proportional to m−1.

In the ideal case, along the trap axis (x = 0, y = 0), there is no radial micromotion since
the rf potential is null. Fabrication defects or poor alignment can lead to a rf component
in the axial direction, which in turn causes intrinsic micromotion. Stray electric fields shift
the ion equilibrium position away from the trap axis, causing excess micromotion, which
is primarily radial. Compensating stray fields is of crucial importance, especially when
working with mixed-species since the radial displacement varies depending on the mass of
the ions. This induces a deformation of the crystal and consequently changes the amplitude,
frequency and direction of the normal modes of motion, which are critical for laser cooling
and multi-qubit gates.

To compensate excess micromotion, we use a set of 28 electrodes hosted in two wafers
below and above the central dc/rf electrodes (Figure 2.1b) and controlled by a slow DAC
(Digital to Analog Converter) embedded in our control system3. The reason for the large
electrode count is the need to simultaneously compensate excess micromotion in different
regions of the trap.

2Rohde&Schwarz SMC100A rf signal generator
3Analog devices’ AD5371 evaluation board
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Figure 2.1: Segmented trap: a. Assembly of the wafer stack. b. Detailed view of the assembly
close to the trap electrodes. c. Empty filter board. d. View of the trap showing the position and
dimension of the shim electrodes relative to the dc ones. e. Dc electrode numbering and dimension
(in µm). The ion to electrode distance is '180 µm.

2.2 Normal modes of motion

The derivation presented in this section follows closely the one described in [51]. The task
is to the calculate the equilibrium position and the motional oscillations for a set of N
ions trapped in a single potential well. For this purpose, we assume the temperature of
the ions to be low enough such that the oscillations around their equilibrium position is
small compared to the ion-ion distance. We also assume that each ion has a mass mj (with
j ∈ [1, N ]), and that the charge +e carried by each ion is the same.

For convenience, we also denote the ions coordinates as 3N scalars z1, . . . , z3N ({zi}, i ∈
[1, 3N ]) which are used to define the N vectors describing the ions position r1, . . . , rN
({rj}, j ∈ [1, N ]). Since we are only interested at the dynamics of the secular motion with
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coordinate rj , the potential described by Equation 2.1, can be approximated by

Φ(rj ,mj) = φst(rj) + Φpond(rj ,mj) , (2.5)

where φst is the static term of Equation 2.1, and the ponderomotive term Φpond is

Φpond (rj ,m) =
e|∇φrf |2

4mjΩ2
rf

. (2.6)

This last expression is derived by averaging the kinetic energy of the driven micromotion at
frequency Ωrf. Further discussion about the validity of this approximation can be found in
[52].

With these assumptions, we can write the kinetic energy T , and potential energy U of
N ions in a potential described by Equation 2.5:

T =

N∑
j=1

mj

2
ṙ2
j

U =
N∑
j=1

eΦ (rj ,mj) +
1

2

N∑
j,l=1,j 6=l

1

4πε0

e2

|rl − rj |

(2.7)

The equilibrium position {z0
i } can be found by solving ∂U/∂zi = 0, which in general

requires numerical methods. The 3N × 3N symmetric Hessian matrix, required to calcu-
late the normal modes, can be found by a Taylor expansion of the potential around the
equilibrium position:

H ′ik =
1

√
mimk

∂2U

∂zi∂zk

∣∣∣∣
{zi}

. (2.8)

For mixed-species ion chains, it is convenient to rewrite the coordinates zi with mass-
weighted coordinates z′i =

√
mizi [51]. The normal modes are then found by solving the

Lagrangian equations of motion, defined in terms of the displacement from the equilibrium
position ζ ′i = z′i − z0′

i :

ζ̈ ′k +

3N∑
i=1

H ′ikζ
′
i = 0. (2.9)

Assuming ζ ′k = ζ0
ke
iωt as an Ansatz yield a linear system of equations. The normal

modes of motion are then defined by the eigenvalues and eigenvectors of the Hessian matrix
H ′ik. The eigenvalues are ω

2
α, where ωα is the motional frequency of the α normal mode with

α ∈ [1, 3N ]. The individual ion coordinates ζ ′i can be written in terms of the eigenvectors
e′i,α as

ζ ′i =

3N∑
α=1

e′i,αζ
′
α . (2.10)

High-fidelity experiments generally require the motional modes to be close to the ground
state. In this scenario, we consider the ion motion to be well described by a quantum
harmonic oscillator. Each normal mode is described as an independent oscillator, and the
motion can be quantized by defining the position and momentum operators as

ζ̂ ′α =
σ′α√

2

(
âα + â†α

)
,

p̂′α = i
~√
2σ′α

(
âα − â†α

)
.

(2.11)
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where σ′α =
√

~/ωα and âα (â†α) is a lowering (rising) ladder operator. Further discus-
sion about the normal modes properties for a mixed-species ion chain can be found in
Section 2.8.1.

2.3 Coherent laser-ion interaction

As explained in the previous section, a trapped ion can be modeled as a particle confined in a
quadratic potential along the axial and the radial directions. For the experiments described
in this thesis, the ion motion in a certain normal mode can then be well-described by a
quantum harmonic oscillator, with energy-eigenstates {|n〉m} (n ∈ N) and frequency ωm.
In our experiments, the motional frequencies range from ∼ 2π×300 kHz to ∼ 2π×13 MHz.
The qubit is a unit of quantum information and can be stored in any chosen pair of internal
levels. These two internal states of the ion are modeled as a two-level system with states
|↓〉 and |↑〉. Throughout this thesis, state |↓〉 always refers to the lower energy state. With
that, the definition of the operators introduced in this section iapplies to any choice of the
qubit. The energy difference ~ω0 between the internal states |↓〉 and |↑〉 varies depending
on the qubit choice. In our experiments the qubit transition frequency for beryllium is
ω0 ∼ 2π×1 GHz; for calcium instead, it ranges from ∼ 2π×330 MHz in the case of the
ground state qubit to ∼ 2π×400 THz for the optical qubit.

The Hamiltonian for the ion and motion is

H0 = Hqubit +Hmotion =
~ω0

2
σ̂z +

∑
i

~ωm,i(â†i âi + 1/2) , (2.12)

where σ̂z is the Pauli operator σ̂z = |↑〉 〈↑| − |↓〉 〈↓|, and âi (â†i ) is the the lowering (raising)
operator for the harmonic oscillator of the i motional mode.

Lasers or rf fields are used to coherently manipulate the state of the system. Follow-
ing a standard treatment found in [50], the Hamiltonian that describes the interaction of
an ion with a laser with frequency ωl and phase φ can be written under the appropriate
approximations [50] as

HI =
~Ω0

2
eik·Rei(φ−ωlt)σ̂+ +H.c. , (2.13)

where k is the wave-vector of the laser field, R the external position operator for the ion
center of mass written in a coordinate system that lines up with the directions of the normal
mode vectors of the ion motion in the trap, σ̂+ = |↑〉 〈↓| the spin flip operator, and Ω0 is the
resonant Rabi frequency which depends on atomic parameters and the laser/microwave field
strength. For a single ion, the term k ·R can be rewritten introducing the the Lamb-Dicke
parameter ηi as

k ·R =

3∑
i=1

ηi

(
â†i + âi

)
, ηi = ki

√
~

2mωm,i
, (2.14)

in which ki represents the projection of the laser wave-vector onto the axis of the i-th
motional mode. In our setup, for typical axial trapping frequencies of ∼ 2π×2 MHz, the
Lamb-Dicke parameter is η ≈ 0.05 for the calcium 729 nm qubit manipulation beam which
is at 45 degrees to the trap axis (Section 2.5.2), while in the case of the beryllium Raman
beams it can be as large as η ≈ 0.4 (Section 2.5.1).
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Moving into the interaction picture with respect to the bare Hamiltonian H0, and con-
sidering only one motional mode 4, we can rewrite Equation 2.13 as

H ′I =
~
2

Ω0 exp
[
iη
(
â†eiωmt + âe−iωmt

)]
σ̂+e

i(φ−δt) + h.c , (2.15)

where δ = ωl−ω0 is the detuning between the laser and the qubit frequency. Making use of
the rotating-wave approximation (RWA), this Hamiltonian features resonances for δ = sωm,
with s being an integer. The three most relevant ones are the carrier, at δ = 0, the red
sideband at δ = −ωm , and the blue sideband for δ = +ωm. More generally for any s the
Rabi frequency for the transition |↓, n〉 ↔ |↑, n+ s〉 is

Ωn+s,n = Ω0

∣∣∣〈n+ s
∣∣∣eiη(â+â†)

∣∣∣n〉∣∣∣
= Ω0 exp

(
−η2/2

)
η|s|
√
nmin!

nmax!
L(|s|)
nmin

(
η2
)
,

(2.16)

where nmin = min(n, n+ s), and nmax = max(n, n+ s), and L(|s|)
nmin

(
η2
)
are the generalized

Laguerre polynomials

L(|s|)
nmin

(
η2
)

=

nmin∑
k=0

(−1)k
(
nmin + |s|
nmin − k

)
η2k

k!
. (2.17)

A considerable simplification to Equation 2.15 comes when working in the Lamb-Dicke

regime, which is applicable when η
√〈

(â† + â)
2
〉
� 1. Under this assumption, and making

use of the RWA, the three main transitions introduced above take the form of simpler
Hamiltonians

Hcarr =
~
2

Ω0

(
σ̂+e

iφ + σ̂−e
−iφ
)
,

Hrsb =
~
2

Ω0η
(
iâσ̂+e

iφ − iâ†σ̂−e−iφ
)
,

Hbsb =
~
2

Ω0η
(
iâ†σ̂+e

iφ − iâσ̂−e−iφ
)
.

(2.18)

An ion initialized in |↓, 1〉 will thus exhibit resonant Rabi oscillations between states |↓, 1〉 ↔
|↑, 1〉, |↓, 1〉 ↔ |↑, 0〉 and |↓, 1〉 ↔ |↑, 2〉 under the effect of the carrier, the red and blue
sideband Hamiltonian respectively. In the Lamb-Dicke regime, Equation 2.16 for the carrier
and the two sidebands Rabi frequencies simplifies to

Ωcarr = Ω0 ,Ωrsb,n,n−1 = Ω0η
√
n and Ωbsb,n,n+1 = Ω0η

√
n+ 1 . (2.19)

Figure 2.2 gives a graphical representation of the coupled ion-oscillator system, showing the
transitions driven by the carrier and first red/blue sideband Hamiltonians. It is important
to note that one can get resonant Rabi oscillations also without the the Lamb-Dicke regime
approximation, but the matrix elements are different from the approximate values (see
Figure 2.2b).

4For this assumption to hold, we assume that the laser is tuned close to a resonance which involves only
one motional mode (i.e. the axial) such that excitations on other modes can be neglected (weak coupling
regime).
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Figure 2.2: Spin-motion structure. a Energy ladder for the coupled spin-motion system. High-
lighted are the three main transition frequencies: carrier (green), the red sideband (red), and the
blue sideband (blue) b Rabi frequency strength as a function of the phonon occupancy obtained
from Equation 2.16 for |s| = 0, 1 and 2. The solid lines are for a Lamb-Dicke parameter η = 0.4,
which is a typical value for the experiments involving only one beryllium ion presented in this thesis.
The dashed lines are for η = 0.05, which is the value we have for our calcium 729 nm beam.

2.3.1 Rabi oscillations and single qubit rotations

A general superposition |Ψ(t)〉 of the states shown in Figure 2.2a can be written as

|Ψ(t)〉 =
∞∑
n=0

c↓,n(t) |↓, n〉+ c↑,n(t) |↑, n〉 . (2.20)

The evolution under the Hamiltonian of Equation 2.15 can be analytically solved to obtain
the rotation operator R (

c↑,n+s(t)
c↓,n(t)

)
= Rsn(t, δ, φ)

(
c↑,n+s(0)
c↓,n(0)

)
(2.21)

with

Rsn(t, δ, φ) =

 e−iδ
′t/2
(

cos Ω̃snt
2 + i δ

′

Ω̃sn
sin Ω̃snt

2

)
e−iδ

′t/2
(
−iΩn+s,n

fsn
ei(φ+|s|π

2 )
)

sin Ω̃snt
2

eiδ
′t/2
(
−iΩn+s,n

Ω̃sn
e−i(φ+|s|π

2 )
)

sin Ω̃snt
2 eiδ

′t/2
(

cos Ω̃snt
2 − i

δ′

Ω̃sn
sin Ω̃snt

2

) 
(2.22)

where δ′ = δ−sωm is laser the detuning from the s sideband frequency and Ω̃s
n =

√
Ω2
n+s,nδ

′2

is the effective Rabi frequency.

Assuming that the laser field is on resonance with either the carrier or one sideband, δ′ =
0, the rotation operator Rsn, res (t, φ) that describes a generalized form of Rabi oscillation
between pairs of states is

Rsn, res (θn+s,n, φ) =

[
cos

θn+s,n
2 −iei(φ+|s|π

2 ) sin
θn+s,n

2

−ie−i(φ+|s|π
2 ) sin

θn+s,n
2 cos

θn+s,n
2

]
, (2.23)

where θn+s,n = Ωn+s,nt and φ describe the rotation angles of the rotation matrix Rsn, res .
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For carrier rotations and in the Lamb-Dicke approximation, θ = Ω0t and the rotation
matrix can be simply written as:

R(θ, φ) =

[
cos θ2 −iei(φ) sin θ

2

−ie−i(φ) sin θ
2 cos θ2

]
. (2.24)

2.4 Stages of an experiment

Each run of the experiments presented in this thesis consists of a similar sequence of steps.
Depending on the crystal characteristics each step might vary, but broadly speaking, the
typical sequence is as follow:

1. Cooling of motional modes

2. Internal state preparation

3. Qubit manipulation

4. Internal state detection

In our notation, a sequence of these four steps is called an experimental shot. We
then repeat the same shot up to several thousand times to gather statistics and infer the
state population. In our notation, we call the sequence of experimental shots a data point.
Scans are a collection of data points where, for each point, a different setting of the control
parameters is used.

Within the next sections, the first three stages will be presented together with the
experimental details for both calcium and beryllium. Chapter 3 introduces the basics of
internal state detection and describes the techniques for state discrimination.

2.5 Beryllium and calcium ions

2.5.1 Beryllium ion

Beryllium is the lightest ion species commonly used for QIP, giving the advantage of tighter
confinement and stronger coupling of the motion to light fields. It features a hyperfine
ground state with two manifolds, F = 1 and F = 2 deriving from the coupling of the
total electron angular momentum J with the nuclear spin I = 3/2. In our experiment, a
magnetic field of 119.45 G splits the degeneracy of the hyperfine ground states, thus al-
lowing us to isolate individual transitions between different mF states. These transition
can be driven with microwaves fields [53] or two-photon stimulated Raman transitions [26,
54]. In our experiment, coherent manipulation of these transitions is performed using a
two-photon stimulated Raman process that couples the S1/2, F = 1 and S1/2, F = 2 mani-
folds through the P1/2 states. At this magnetic field, the energy splitting of the transition
|F = 2,mF = 0〉 ↔ |F = 1,mF = 1〉 is, to first order, insensitive to magnetic field fluc-
tuations. We call this qubit transition FIQ (field-independent qubit), and it exhibits a
coherence time5 of ∼4 s [48].

5In quantum information processing, a qubit is said to be coherent as long as there is a well-defined
phase relationship between the two states defining the qubit. If the qubit is perfectly isolated, coherence
would be maintained indefinitely, but no qubit manipulation would be possible. Coupling the qubit to the
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Figure 2.3: 9Be+ level structure at a magnetic field of 119.45 G. The hyperfine levels that are
accessible throughout a typical experimental sequence are highlighted in black. The solid lines
represent the lasers used for the manipulation. The Raman beams can be tuned to drive the FDQ,
FIQ, FIS transition.

Figure 2.3 shows the level scheme of beryllium at the magnetic field value used in this
thesis, and Figure 2.4 shows the beam configuration with respect to the vacuum cham-
ber. All transitions are driven with lasers around 313 nm. State readout is performed on
the closed

∣∣S1/2, F = 2,mF = 2
〉
↔
∣∣P3/2, F = 3,mF = 3

〉
transition, which has a natural

linewidth of 2π×19.4 MHz. For this transition to be closed, the laser coupling the two states
needs to be purely σ+ polarized. If the ion is initially in the state

∣∣S1/2, F = 2,mF = 2
〉
, it

will be excited to the
∣∣P3/2, F = 3,mF = 3

〉
level from which it will decay emitting photons

at 313 nm that can be detected with photomultiplier tube (PMT) or a camera. Ideally, if
the ion is in any other state in the S1/2 manifold, it will not scatter any photon. There are
two main sources of infidelity associated with this readout scheme: the first one is polariza-

external world opens a channel for information loss. In trapped-ions, magnetic field noise is one of the
leading mechanisms for the loss of information. Noise in the magnetic field perturbs the relative energy
difference of the qubit states and thus their relative phase in an uncontrolled way.
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tion impurity of the readout beam, which leads to a small chance of decaying to other S1/2

states outside the readout cycling transition [55, 48, 56]. The other is off-resonant pumping
of the dark states into the bright

∣∣S1/2, F = 2,mF = 2
〉
level [56, 57, 55, 58]. Chapter 3 goes

more into the details of state readout and illustrates tools that can mitigate these sources
of infidelity. Doppler cooling (see Section 2.7.1)is also performed on the readout transition.

State initialization and repumping are carried out with two laser beams, close to res-
onance with the

∣∣S1/2, F = 2,mF = 1
〉
↔
∣∣P1/2, F = 2,mF = 2

〉
and |F = 1,mF = 1〉 ↔∣∣P1/2, F = 2,mF = 2

〉
transitions. Together they are used to optically pump the popula-

tion to
∣∣S1/2, F = 2,mF = 2

〉
.

Along with the FIQ transition mentioned earlier, we also employ two other transitions
depicted in Figure 2.3 as FDQ (field-dependent qubit) and FIS (shelving for the field-
independent qubit). The first one is the simplest to drive, thus we use it in state preparation
(Section 2.6)and for sideband cooling (Section 2.7.4), where optical pumping is performed
repeatedly. The second shelves the state |F = 2,mF = 0〉 for better detection fidelity.

The detuning of the Raman lasers from the P1/2 manifold is ∼230 GHz, as a tradeoff
between sufficiently large Rabi frequency and low scattering rate. The effective Raman Rabi
frequency can be derived assuming two monochromatic laser fields that couple the qubits
states though the different excited states |em〉 that compose the P manifolds. The two
fields, Er and Eb can be written as Ei = ε̂iEi cos (ki · r− ωit+ φi) for i ∈ {b, r}, where Ei
and ε̂i are the amplitude and polarization of the electric fields, ki is the wave vector, and ωi
and φi the frequency and phase of the laser. For Raman carrier operations, the frequency
of the two lasers is chosen such that ω0 = ωb − ωr, with ω0 the qubit transition frequency.
Assuming that the "blue" Raman beam couples the levels |↓〉 and |em〉, while the "red"
Raman beam the states |↑〉 and |em〉, one can define the single-photon Rabi frequencies
as gr,em ≡

Er(em|d·ε̂r|↑)
h and gb,em ≡

Eb(em|d·ε̂b|↓)
h , where d is the atomic dipole. Under the

assumption of large Raman detuning (∆� gr,em , gr,em for all m) it can then be shown that
the effective Raman Rabi frequency is [48]

|Ω| = Ω0 =
∑
m

gb,emg
∗
r,em

2∆

=
EbEr
2~2

∑
m

〈2 |d · ε̂r| em〉 〈em |d · ε̂b| 1〉
∆m

(2.25)

Associated with the Raman process, there are two well-known sources of infidelities: Raman
and Rayleigh scattering [59]. In both cases, it is an undesired off-resonant scattering from
the P manifolds. A detailed description of the two scattering processes can be found in
the thesis of Hsiang-Yu Lo [48]. The Raman off-resonant scattering rate is proportional to
1/∆2, and it can be mitigated by increasing the detuning at the cost of reducing the Rabi
frequency.

Figure 2.4 shows a schematic of the configurations for the Raman beams which are
available in our apparatus. We can choose to drive any transition either with co-propagating
beams or with lasers at 90 degrees to each other. The difference is in the effective k = kb−kr

wave-vector, is, in turn, related to the Lamb-Dicke parameter η through Equation 2.14. In
the case of co-propagating beams, the effective kco vector value is kco ≈30 m−1, which
is almost negligible compared to |kr| and |kb|. Therefore the Lamb-Dicke parameter is
η ≈ 0 making this configuration ideal to drive motion-insensitive transitions, since it largely
decouples the operations from motional imperfections like Rabi frequency fluctuations due
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Figure 2.4: Top-down view of the vacuum chamber showing the different orientations of the beryl-
lium lasers. Considering only the Raman beams, the green arrow marks the direction of the kb

wave-vector, while the blue arrow the kr wave-vector. In the optical setup, a flip mirror determines
whether the co-propagating Raman beams enter through port 4 or port 1. Depending on the choice,
the resulting k90 wave-vector (see text) is either parallel or perpendicular to the trap axis, allowing
to couple to either the axial or the radial modes of motion.

to micromotion and imperfect cooling. We make use of this feature for the FDQ and
FIS pulses that prepare the ion before readout of the FIQ populations. Another relevant
property of this configuration is that the relative path difference between the two beams is
small, resulting in a relatively stable phase relationship over the course of taking an data
point that is important for the experiments described in later chapters.

In the case of beams at 90 deg, the effective k90 vector is k90 ≈ 2.8× 108m−1, that is on
the order of |kr| and |kb| themselves. This configuration is used for driving motion-sensitive
transitions. Depending on the pair of beams that we choose to use, k90 is parallel to the
trap axis or perpendicular to it giving access to either the axial modes of motion or the
radials.

One important imperfection in our trap is that the beryllium ions exhibit strong axial
micromotion, which we cannot compensate by controlling the dc voltages of the shim elec-
trodes introduced in Section 2.1. The effect is a modulation of the axial position of the ion
in phase with the trap rf frequency Ωrf ∼ 2π×113.5 MHz. In the frame of reference of the
ion, the Doppler shift induced by axial micromotion adds sidebands to the laser spectrum at
integer multiples of the drive frequency. The strength of these sidebands is parameterized
by a beam-dependent modulation index β given by [60]

β = kzzmm, (2.26)

where axial component of the kz beam wave vector and zmm is the micromotion amplitude.
We counterbalance the Doppler shifts by modulating the frequency of the cooling, repump,
detection, and Raman beams in phase with the trap rf frequency with the use of EOMs.
A more detailed description of the setup and the EOM tuning procedures for the detection
beams can be found in the Ph.D. thesis of Hsiang-Yu Lo [48], while for the Raman beams
in the one of Vlad Negnevitsky [61].
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Figure 2.5: FIQ Rabi oscillations before and after the breadboard installation. For both plots, the
pulse time in the x-axis is such that there should be visible up to 70π Rabi oscillations. Fitting
the damping rate of the oscillation’s contrast, we measure a 20× improvement after the installation
of the breadboard. We believe that most of the improvements derive from the suppression of non-
common mode vibrations due to the rigid connection to the vacuum chamber.

Setup improvements

Throughout my Ph.D., we spent much effort trying to improve the overall fidelity of the
beryllium gates, with a focus on Rabi frequency noise, through improvements of the appar-
atus.

The generation of a high power source at 313 nm has been discussed in depth in the Ph.D.
thesis of Hsiang-Yu Lo [48] and follows the approach demonstrated in [62]. It consists of two
stages: first, a sum-frequency generation stage (SFG), which generates light at 626.546 nm
using two input lasers at 1551.44 nm and 1050.98 nm. The 626 nm light is then coupled into
a polarization-maintaining fiber and sent to a frequency doubling cavity that generates the
light at 313.273 nm. For the experiments presented in Chapter 6, the doubling cavity was
installed by Hsiang-Yu Lo and was based on the design described in [62]. With this cavity,
we measured fast intensity noise (from 50 kHz to 500 kHz) on the 313 nm output of ∼ 10%.
After the results of Chapter 6, we replaced the cavity with a commercial solution offered
by Toptica. The double piezo locking system installed by Toptica improved the overall
stability of the lock, and we also noticed a reduction in the fast intensity noise (from 50 kHz
to 500 kHz) at 313 nm to < 2% in daily operations.

To mitigate beam pointing fluctuations of the Raman beams, we worked on the mechan-
ical elements right before the vacuum chamber. The chamber is surrounded by four optical
breadboards that supply the beams at the four different viewports. The last mechanical
element before the viewports is a housing box that is rigidly connected to the chamber.
It contains optics to overlap and focus beams with different wavelengths. To improve the
mechanical stability, we re-designed the breadboards and the focusing box of viewport 3
and 4 of Figure 2.4. We rigidly connected the breadboard to the chamber, making all the
vibration common mode, and also added the possibility to enclose the laser beam path
completely to mitigate beam pointing fluctuations caused by turbulent airflow. A second
improvement to beam pointing fluctuations came from the use of UV-capable photonic
crystal fibers [63], which replaced the periscopes that connected the optical table to the
breadboards. Figure 2.5 shows a comparison of Rabi oscillations before and after the setup
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Figure 2.6: 40Ca+ level structure at a magnetic field of 119.45 G. In dark are highlighted all the
accessible levels, while in green the two qubit levels used throughout this thesis.The solid lines
represent the lasers used for the ion manipulation.

improvements. Since both changes happened at the same time, it is hard to say which of
the two contributed the most to the improvement.

2.5.2 Calcium ion

The other ion species used in our setup is calcium, 40Ca+. Compared to beryllium, it is
approximately four times heavier, it has low-lying D manifolds, and it has no nuclear spin,
which reduces the number of ground-state electronic levels due to the lack of hyperfine
structure. Figure 2.6 shows the level structure of calcium at the magnetic field of 119.45 G,
and Figure 2.7 shows the orientation of the lasers used for the manipulation of the ion.

There are two typical choices for the qubit. The first one, not yet used in our ex-
periments, is between the two ground-state levels whose frequency difference is ω0 =
2π×334.7 MHz [64]. The second one is on the quadrupole transition between the ground
state and the excited D5/2 manifold. The latter is usually called the optical qubit, and
it is driven with a narrow linewidth laser at 729.35 nm. With the current beam config-
uration, there are two possible choices for the optical qubit. One is between the states∣∣S1/2,mJ = 1/2

〉
↔
∣∣D5/2,mJ = −3/2

〉
, and the second between

∣∣S1/2,mJ = 1/2
〉
↔
∣∣D5/2,mJ = +3/2

〉
.

For the purpose of this thesis, only the second transition is relevant, and the qubit states are
highlighted in green in Figure 2.6. Experiments described in [65] and conducted by Christa
Flühmannn also made use of the other transition. These were performed coincident with
the work in this thesis.
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Compared to the 4 s coherence time of the field-independent qubit of beryllium, the
coherence time of the optical qubit in calcium is only ∼1.7 ms. One of the reasons is the
transition frequency sensitivity to the magnetic field, which is 1.12 MHz/G. We measured
that, on the millisecond timescale, the magnetic field fluctuates with standard deviation
σm ≈81 µG. The other source of decoherence is laser linewidth, which we estimated to be
σl ≈ 2π×99 Hz. More details about these measurements, including the techniques employed
for the magnetic field stabilization and the 729 laser setup, can be found in [66].

For typical axial trapping frequencies ωz ' 2π×2 MHz, the Lamb-Dicke parameter for
the 729 nm beam at 45° to the trap axis is η ' 0.05. As a consequence, the Lamb-Dicke
approximation introduced in Section 2.3 is fulfilled for a broad set of motional levels {n}
(n < 50), making calcium an ideal choice for motional state engineering [67, 68, 69, 70, 71,
67, 48, 66].

State readout, cooling, and state preparation are on the transition between S1/2 ↔ P1/2

at 396.96 nm. This transition has a linewidth of roughly 2π×22.7 MHz, and it is not closed:
an ion in the P1/2 level can decay either to the S1/2 states or to the meta-stable D3/2

manifold with an approximate branching ration of 20 : 1. Experimentally we repump the
population decayed into D3/2 with an 866.45 nm laser with two different frequencies. Two
frequencies are needed due to the large Zeeman’s shift of D3/2 states caused by the magnetic
field at 119.45 G [47]. The light has a mixture of σ̂+ and σ̂− polarization, thus allowing the
repumping from all relevant states in the D3/2 manifold.

The D5/2 manifold is repumped to the ground state manifold by coupling to the short-
lived P3/2 manifold with a laser at 854.44 nm. The ion quickly decays to from the P3/2 state
to the S1/2 manifold emitting a photon at 393 nm.

2.6 Internal state preparation

The qubit is defined between two particular atomic states. State preparation ensures that
the ion population is initialized into a specific state. The most common technique used for
state preparation is optical pumping [72]. During this process, a laser beam couples the
undesired states to a short-lived state, which has a non-zero probability of decaying to the
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desired state. The desired state is the dark state of the process, and its population increases
as photons are scattered. For trapped ions, the state preparation fidelity can easily be above
99%, mostly limited by laser imperfections such as polarization impurity [18].

Calcium

We depopulate the unwanted ground-state level
∣∣S1/2,mJ = −1/2

〉
by coupling a σ+-polarized

397 laser resonantly to the transition
∣∣S1/2,mJ = −1/2

〉
↔
∣∣P1/2,mJ = 1/2

〉
. After a few

µs, approximately 99.7% of the population is in the |↓〉 state. The main source of infidelity
comes from π−polarization impurity [47]. As mentioned before, the 397 nm laser has both
σ+ and σ− components. Therefore we solely rely on frequency selectivity since the σ− com-
ponent is 444 MHz detuned from resonance. Further discussion about discrepancies of the
experimental results from simulations can be found in Daniel Kienzler’s thesis [47].

Beryllium

As mentioned in Section 2.5.1, state initialization and repumping is performed with a pair of
σ+ polarized beams that optically repump the states |F = 1,mF = 1〉 and |F = 2,mF = 1〉
to |F = 2,mF = 2〉. Experimentally we observe that imperfect polarization of these beams
is the major source of infidelity for state preparation.

To describe the state preparation infidelity we can assume that one of the repump
beams, the one that couples the states

∣∣S1/2, F = 1,mF = 1
〉
→
∣∣P1/2

〉
has some impure π

polarization component [48]. This assumption is justified since this beam is the closest
to resonance

∣∣S1/2, F = 2,mF = 2
〉
→

∣∣P1/2

〉
, which can lead to a population leakage

outside the
∣∣S1/2, F = 2,mF = 2

〉
state through a non σ+ transition. An ion initially in

state
∣∣S1/2, F = 2,mF = 2

〉
can off-resonantly absorb a π polarized photon and get excited

in the state
∣∣P1/2, F = 2,mF = 2

〉
, from which it will decay to

∣∣S1/2, F = 2,mF = 1
〉
or∣∣S1/2, F = 1,mF = 1

〉
. The infidelity caused by this process can be shown to be [48]:

einit =
4(1 + s0)επ

1 + s0 + 4δ2
π/Γ

2
, (2.27)

where s0 is the beam saturation intensity, επ the π polarization component, δπ the detuning
from resonance (for beryllium at 119.45 gauss, δπ = 2π×142.7 MHz) and Γ is the transition
linewidth.

Experimentally, we then optimize the repump beam polarization by measuring how often
the ion is found in the bright state

∣∣S1/2, F = 2,mF = 2
〉
. Figure 2.8a shows an example of

imperfect state preparation, where at zero photon counts, there still is a significant amount
of population, implying that part of the population leaked outside the

∣∣S1/2, F = 2,mF = 2
〉

state. By adjusting the polarization of the beams with a λ/4 and λ/2 waveplates right before
the viewport of the vacuum chamber, it is possible to suppress the dark state population,
as shown in Figure 2.8b.

Another step of state preparation is necessary when working with the magnetic field-
insensitive qubit. For this purpose, a resonant FDQ π-pulse transfers the population to
the state |F = 1,mF = 1〉. For the best transfer fidelity, the transition is driven with co-
propagating Raman beams in order to decouple the operation from motional imperfections.

Chapter 3 explains in more detail why for intermediate counts the histogram shape does
not follow exactly the Poisson distribution.
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Figure 2.8: Photon count distribution for an ion prepared in the bright state. Panel a: histogram
in the case of imperfect state preparation, where the blue dashed line is the simple Poisson fit for an
ion in the dark state. The fitted residual population in the dark state is 0.3(1)%. The red dashed
line is the fit for a Poisson distribution for a bright ion. Panel b: After optimizing the polarization,
the dark state population at 0 counts is suppressed. Only the bright-to-dark leakage is still visible.
For both plots, the data is a collection of 50000 detections.

2.7 Cooling of motional modes

High-fidelity gates usually require the motional modes of an ion crystal to be as close as
possible to the ground state. To achieve this limit, we make use of a combination of steps.
First, we apply Doppler cooling using a laser beam far detuned from an allowed dipole
transition. This has a large capture range and thus is used to recover from large motional
excitation. The second stage is a standard Doppler cooling sequence to reach the resolved-
sideband regime on all the modes. For calcium, the next step is Electromagnetically-induced
transparency (EIT) cooling, which is a fast and broadband cooling technique used to bring
the population of all the calcium modes below n̄ = 1. For beryllium, this technique is not
applicable with the current laser setup. As the last step, resolved-sideband cooling is useful
to cool very close to the motional ground state.

An introduction to each of those cooling techniques together with ion-specific imple-
mentation details is given in the following subsections.

2.7.1 Doppler cooling

For the description of the Doppler cooling technique I will follow a similar approach to the
one explained in [51]. In particular, I will assume the Doppler cooling of a single trapped
ion, where, in a simplified picture, the ion is a two-level system interacting with a light field
red-detuned from the resonance of a dipole-allowed transition. We also assume that the
motional frequency ωm is smaller than the transition linewidth Γ. We call this regime the
weak-binding limit [73].

Following a semi classical treatment [74], the probability of finding the ion in the excited
state is

pee =
s/2

1 + s+ (2∆/Γ)2
, (2.28)
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where s = 2|Ω0|2/Γ2 is the saturation parameter which depends on the on-resonance Rabi
frequency Ω0, and ∆ is the detuning from resonance.

The rate at which the ion kinetic energy is cooled is then [51]

dEK
dt

=
2~Γ

m

(
dpee
d∆

)
(k · p)2

2m
, (2.29)

wherem is the mass of the ion, k is the cooling laser wave vector, and p is the ion momentum.
The term k · p can be written in terms of the normal modes coordinates (see Section 2.2)
as [51]

k · p =
3∑

α=1

√
mk · e′αp′α (2.30)

where e′α is the vector of the normal modes eigenvectors.

Assuming a quantized harmonic oscillator, the term p′α can be written as in Equa-
tion 2.11. As a result the cooling rate for mode α can be written in terms of quanta per
seconds as

dnα
dt

= 2ωαη
2
α(nα + 1/2)Γ

(
dpee
d∆

)
. (2.31)

From the latter equation we can see that the cooling rate is proportional to the Lamb-Dicke
parameter for mode α, and that it is largest when the detuning is set to be at the steepest
point of the absorption profile ∆ = Γ

√
1 + s/2.

The cooling process is limited by the random nature of photon absorption and emission
which lead to a momentum diffusion that heats the ion [51, 50]. The absorption and
emission of photons can be considered to be independent under the assumption of weak
Rabi frequency (Ω� ∆,Γ). In this case, the heating rate can be described by

dnα
dt

= Γpee

(
η2
α +

2/5~2|k|2|eα|2

2m

)
. (2.32)

The first term is simply the absorption of a photon from the laser, while the second term
describes the recoil effect during spontaneous emission. In this particular expression, the
recoil term assumes a dipole emission pattern, and is an average over all the possible emission
directions. This assumption is justified in the case of beryllium, where the emission pattern
is that of a dipole since it only emits σ+ photons. However, the emission pattern of calcium
is a mixture of σ+ and π polarization; in this case, Equation 2.32 needs to be modified to
take it into account. Since it is not too important for the purpose of this thesis, and for
simplicity, I will ignore this difference.

At equilibrium, the cooling and heating rates will balance, and the motional modes will
reach an equilibrium temperature [50]. Assuming ∆ = Γ

√
1 + s/2, the lowest achievable

temperature is [50]

TD =
~Γ
√

1 + s

4kB
(1 + 2/5) . (2.33)

Calcium

Calcium Doppler cooling makes use of two laser frequency components at 397 nm. The
first one is π-polarized and couples the

∣∣S1/2,mJ = 1/2
〉
↔
∣∣P1/2,mJ = 1/2

〉
, the second

one is σ+-polarized and couples
∣∣S1/2,mJ = −1/2

〉
↔
∣∣P1/2,mJ = 1/2

〉
. We drive those
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transitions at roughly half the saturation intensity with a detuning ∼ 5−10 MHz red from
the resonance for about 600 µs. Typical trapping frequencies used in our experiments are
ωz ' 2π×1.5 MHz for the axial modes, and ωx ' 2π×2.5 MHz and ωy ' 2π×3.5 MHz, for
the two radial modes. The corresponding mean thermal occupancy for the axial and radial
modes after cooling is n̄ax ' 5 and n̄rad ' 3− 4.

Beryllium

Beryllium Doppler cooling utilizes the cycling transition that couples the
∣∣S1/2, F = 2,mF = 2

〉
level to the

∣∣P3/2, F = 3,mF = 3
〉
state. The beam is ∼10 MHz red detuned and has an

intensity of ≈2.5 µW focused on ∼60 µm spot size. The beam propagates along the B field
and is σ+ polarized. To ensure polarization purity, we use a Glan-Laser polarizer6 and a set
of λ/2 and λ/4 waveplates to correct for birefringence on the vacuum chamber viewport.

Imperfect polarization of the cooling beam leads to leakage pathways outside the cycling
transition. The two states that get mostly populated are |F = 2,mF = 1〉 and |F = 1,mF = 1〉.
During Doppler cooling, we continuously repump those states to

∣∣S1/2, F = 2,mF = 2
〉
with

the repump beams introduced in Section 2.5.1.

The typical trapping frequencies for beryllium are ∼ 2π×2.5 MHz for the axial mode
and ∼ 2π × 10−12 MHz for the two radial ones. After a cycle of Doppler cooling, which
usually lasts for 600 µs, the average thermal state occupancy is n̄ax ' 4 and n̄rad ' 1 for
the axial and the radial modes, respectively.

2.7.2 Far-detuned Doppler cooling

Far red-detuned Doppler cooling usually referred to as pre-cooling, is usually the first stage
of the cooling sequence. Background gas collisions, imperfect transport, frequency drifts of
the resonant detection laser might lead to large motional excitations. Therefore, a standard
cooling mechanism such as Doppler cooling will be less effective due to a Doppler shift of
the resonant transition frequency. Pre-cooling usually lasts for several milliseconds, and its
large capture range decreases the probability of losing the ions.

Calcium

We use the π-polarized component of 397 nm laser, that is red detuned by ≈40 MHz from
the

∣∣S1/2,mJ = 1/2
〉
↔
∣∣P1/2,mJ = 1/2

〉
transition and at ≈ 100 saturation intensities

[47]. The presence of just π polarized light implies that, as the photons are scattered, both
ground state levels will be occupied with populations depending on the decay branching
ratio from the excited P1/2 manifold. For an ion in state

∣∣S1/2,mJ = −1/2
〉
the pre-cooling

laser is detuned by ≈200 MHz from the
∣∣S1/2,mJ = −1/2

〉
↔
∣∣P1/2,mJ = −1/2

〉
.

Beryllium

The pre-cooling laser has an intensity of ∼1 mW focused to a waist of ∼60 µm, and is
∼600 MHz detuned from the

∣∣S1/2, F = 2,mF = 2
〉
↔
∣∣P3/2, F = 3,mF = 3

〉
transition.

The pulse lasts on average for 2−3 ms. In beryllium, pre-cooling does not just recover from
large excitations of the motion but also serves as an off-resonant repumper for the dark
states in the S1/2 manifold. The high optical power increases the probability of scattering

6Thorlabs GLB10-UV
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Figure 2.9: Pre-cooling repumping time trace. For an ion intially prepared in the shelved state
|F = 1,mF = −1〉 we measure the probability of detecting the ion in state |F = 2,mF = 2〉 as a
function of the pre-cooling pumping time.
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Figure 2.10: EIT lineshape as a function of the π detuning, for three different values of σ detun-
ing. In each case the Ωσ is adjusted such that the EIT resonance is at ∆ = 2π×2.5 MHz, which
corresponds to the typical lowest radial freqeuncy we have with calcium experiments. Ωπ = Ωσ/100
and Γ = 2π×22.7 MHz

photons off-resonantly from any of those levels, and the σ+ polarization ensures that this
shifts the population towards the

∣∣S1/2, F = 2,mF = 2
〉
state.

The repumping time of an ion initially prepared in the shelved state |F = 1,mF = −1〉
is used as a diagnostic for optimizing the detuned beam alignment. Figure 2.9 shows the
probability of detecting the ion in the |F = 2,mF = 2〉 state a function of the pre-cooling
pulse time for an ion initially prepared in the shelved state.

2.7.3 Electromagnetically-induced transparency cooling

To go beyond the Doppler limit with a calcium ion, we use Electromagnetically-Induced
Transparency (EIT) cooling [75], which acts on the S1/2 ↔ P1/2 transition. The Doppler
temperature is limited by the natural linewidth of the cooling transition, which for calcium
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is 2π×22.7 MHz. EIT cooling goes beyond the Doppler limit by creating a spectral feature
that is narrower than the natural linewidth of the S1/2 ↔ P1/2 transition. With the current
optical setup, EIT cooling can only be performed on calcium.

A detailed theoretical description of EIT cooling can be found in [50, 76]. In our setup,
we make use of two counter-propagating 397 nm beams at 45 degrees to the trap axis such
that there is sufficient overlap of the difference wave vector k to all the modes. One of the
beams is σ+ polarized7, and drives the transition

∣∣S1/2,mJ = −1/2
〉
↔
∣∣P1/2,mJ = 1/2

〉
,

blue detuned by ∆σ∼10 MHz. The other one is weaker, purely π polarized, and couples
the transition

∣∣S1/2,mJ = 1/2
〉
↔
∣∣P1/2,mJ = 1/2

〉
with a similar blue detuning ∆π ≈

∆σ. We also assume that the excited state |e〉 =
∣∣P1/2,mJ = 1/2

〉
decays to the states∣∣S1/2,mJ = −1/2

〉
and

∣∣S1/2,mJ = 1/2
〉
at a rate rate Γσ and Γπ, respectively.

The strong coupling of the σ+ laser to the excited
∣∣P1/2,mJ = 1/2

〉
state creates an

absorption profile for the weaker π-polarized laser that is advantageous for cooling. In
particular, it can be shown that the scattering rate on the π-transition

∣∣S1/2,mJ = 1/2
〉
↔∣∣P1/2,mJ = 1/2

〉
is [50]

W (δ) = Γρee(δ) =
4δ2Ω2

πΩ2
σΓ2

D
, (2.34)

where Γ = Γπ + Γσ is the total decay rate, ρee is the population of the excited state as a
function of the detuning δ = ∆π −∆σ, Ωπ (Ωσ) is the Rabi frequency associated to the π
(σ) transition and the denominator is 8

D =8δ2Ω2
σΩ2

πΓ + 4δ2Γ2
(
Ω2
σΓπ + Ω2

πΓσ
)

+ 16δ2
[
∆2
σΩ2

πΓσ + ∆2
πΩ2

σΓπ
]

+ 8∆σδΩ
4
πΓσ

− 8∆πδΩ
4
σΓπ +

(
Ω2
σ + Ω2

π

)2 (
Ω2
σΓπ + Ω2

πΓσ
)
.

(2.35)

The lineshape as a function of the detuning ∆π is shown in Figure 2.10. For Ωσ � Ωπ, it
features a zero for ∆π = ∆σ, and a sharp resonance centered at ∆π = ∆σ + δ [50, 76, 75],
with

∆ =

√
∆2
σ + Ω2

σ − |∆σ|
2

(2.36)

originating from the ac Stark shift of the σ+ laser. For optimal cooling of mode m, it is
possible to adjust the parameters (∆σ, Ωσ) such that ∆ = ωm, with ωm the frequency of the
motional mode. In this case, and for ∆π = ∆σ, the ion can resonantly absorb a π-polarized
photon at the cost of one quantum of motion ~ωm leading to cooling. The absorption at
∆π = ∆σ − ωm sets the cooling limit, which for ∆ = +ωm happens at a lower rate since
W (−ωm) < W (ωm). It can be shown that for ∆ = ωm, the motional occupancy of mode m
after EIT cooling is a thermal state with an average phonon number of [76, 50]

n̄ '
(

Γ

4∆σ

)2

. (2.37)

7In our setup, the σ+ beam does not have a pure polarization, but it is in an equal mixture of σ+

and σ− polarization.Since the σ− component is about 20 linewidths detuned from the undesired transition∣∣S1/2,mJ = 1/2
〉
↔

∣∣P1/2,mJ = −1/2
〉
, it results in a negligible contribution to the heating.

8In the literature, there are two slightly different expressions for the denominator that originates from
two different sources. The first is in [77], while the second is [78]. In [77], the Bloch equations are not given;
thus, it is not possible to verify the result. It may be that they made a particular assumption to the decay
rates, which are not stated in the paper. The difference is mostly visible in the width of the EIT resonance.
From a qualitative comparison of the expected lineshape with the experimental parameters given in the
text, the width of the resonance can be up to twice as broad for [77].
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Figure 2.11: One cycle of resolved-sideband cooling. First a a red sideband pulse is applyed (orange
arrows) and consequently the spin in reset to the ground state (green arrows). Repeating this cycle
several times gradually pumps the population in |↓, n = 0〉.

A thermal occupancy close to the ground state of motion is thus achievable for large detun-
ings ∆σ + ∆π � Γ, at the cost of higher σ Rabi frequency (Equation 2.36). One implicit
assumption that we made in this treatment is that spontaneous emission does not alter the
average motional quantum number. This assumption is valid as long as we start in the
Lamb-Dicke regime [76], as the spontaneous emission predominantly happens through car-
rier scattering, thus leaving the motional states mostly untouched (in general, the average
energy per scattering event is η2Ω).

In the experiment we mostly work in the low detuning regime, with ∆σ ≈ Γ. This allow
us to bring all the calcium motional modes below n̄ = 1 within ∼300 µs of EIT cooling. To
reach the ground state of motion we then apply sideband cooling.

2.7.4 Resolved-sideband cooling

Resolved-sideband cooling, also referred to as sideband cooling, is applied as the last cooling
step, and it is used to cool specific motional modes near the ground state of motion. It works
in the strong-binding regime [73], where the linewidth Γ of the transition used for cooling is
small compared to motional mode frequency ωm. Sideband cooling generally relies on the
manipulation of the qubit transition |↓〉 ↔ |↑〉 to optically pump into the state |↓, n = 0〉,
where n = 0 is the harmonic oscillator ground state. A cycle of sideband cooling consists
of two steps. For an ion initially in state |↓, n〉, we first drive the |↓, n〉 ↔ |↑, n− 1〉 red
sideband transition, to remove a quantum of motion. In a second step, the internal state
of the qubit is reset to |↓〉 by coupling the excited state |↑〉 to a short-lived atomic level
that decays to |↓〉. The process is then repeated until the system reaches the ground state
|↓, n = 0〉. A schematics diagram of the process can be seen in Figure 2.11.

Generally, the initial population is not in a well defined Fock state but rather in a
thermal distribution with an average phonon number n̄, in which each motional state has
its own red sideband Rabi frequency (Section 2.3). As the population shifts towards the
motional ground state, the average red sideband Rabi frequency decreases. To partially
mitigate this effect and to increase the cooling efficiency, at each cycle, we lengthen the red
sideband pulse time.
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The primary heating mechanisms are off-resonant driving of the carrier transition and
blue sideband transitions. Carrier excitations happen with probability [Ω/(2ωm)]2, but will
mostly decay back on the carrier transition [50]. Heating occurs if there is a decay along
the blue sideband transition after a carrier excitation. The rate at which this happens
is [Ω/(2ωm)]2η̃2Γ, where η̃ is the Lamb-Dicke parameter for this decay path9. The other
heating mechanism is the off-resonant excitation of the blue sideband transition followed
by a decay on the carrier transition. The rate at which this decay process happens is
[ηΩ/(4ωm)]2Γ, with η the Lamb-Dicke parameter for the sideband excitation. Finally, it
can be shown that these two heating mechanisms limit the ground state occupancy to
p0 ≈ 1− (Γ/2ωm)2, which is close to 1 [50].

In calcium, the small Lamb-Dicke parameter η ' 0.05, makes the sideband transition
more susceptible to the off-resonant excitation of the carrier and blue sideband. We mitigate
this effect by shaping the sideband pulse amplitude to reduce the spectral power at the
carrier and blue sideband frequencies.

The figure of merit for the calibration of sideband cooling parameters is the contrast
of the blue sideband Rabi oscillations. Consider a single ion initially prepared in |↓〉 and
with a motional state probability distribution {pn}. For thermal states, it can be written
as pn,therm = n̄n/(1 + n̄)n+1, where the the term n̄ is the average motional state occupancy.
Under the application of a resonant blue sideband pulse, it can be shown from Equation 2.22
that state |↓〉 evolves according to

p↓(t) = 1− p↑(t) = 1−
∞∑
n=0

pn sin2 Ωn+1,nt

2

=
1

2
+

1

2

∞∑
n=0

pn cos(Ωn+1,nt) ,

(2.38)

where the resonant blue sideband Rabi frequency, Ωn+1,n, can be calculated from Equa-
tion 2.16. Figure 2.12, shows a set of possible blue sideband Rabi oscillations for beryllium
(panel a) and for calcium (panel b) for a thermal state distribution with n̄ ∈ [0, 5]. In
the ideal case of perfect cooling (n̄ = 0), oscillations are between the states |↓, 0〉 ↔ |↑, 1〉.
Experimentally, blue sideband pulses with duration in the highlighted green area provide a
sensitive measure to minimize the temperature of the ion. At the end of the optimization,
a fit of Equation 2.38 to the experimental blue sideband oscillations, assuming a thermal
probability distribution, give a measure of the average motional state occupancy n̄.

Experimentally, we replace the blue sideband pulse with a carrier π-pulse followed by a
red sideband pulse. The effect is analogous to driving the blue sideband, but it provides a
direct calibration of the red sideband frequency, which is the parameter used in sideband
cooling.

Beryllium

Due to the beam geometry (see Section 2.5.1), sideband cooling can either be performed on
the axial or radial modes. In all the experiments described here, the axial modes are the
only ones that are sideband cooled.

9In general, the Lamb-Dicke parameter η̃ for the decay along the blue sideband is different from the
Lamb-Dicke parameter η that is related to the excitation of the sideband transition, since that photons
can be emitted in any direction and not just along the cooling laser’s wave vector. On top of this, some
experimental realizations make use of three level system, for which the emitted photon can have a different
wavelength from that of the cooling laser [50].



28 CHAPTER 2. MIXED-SPECIES SETUP

0 25 50 75 100
BSB time [us]

0.0

0.2

0.4

0.6

0.8

1.0
P

(
) B

e
a.

0 25 50 75 100
BSB time [us]

P
(

) C
a

b.

Figure 2.12: Blue sideband Rabi oscillations for beryllium (panel a) and calcium (panel b), as-
suming thermal state distribution with n̄ ∈ [0, 5] (the curve with the biggest contrast corresponds
to the lowest excitiation). In both cases, the Lamb-Dicke approximation is not applied. In the
case of beryllium, the resonant carrier Rabi frequency is assumed to be Ω0 = 2π×0.3 MHz and
η = 0.4 corresponding to the typical experimental parameters of the FDQ transition. For calcium
Ω0 = 2π×1 MHz and η = 0.05.

Experimentally, Raman beams at a 90° drive the FDQ red sideband transition. For
a single-species beryllium crystal, the red sideband Rabi frequency vanishes for motional
state n ≈ 22 due to the Lamb-Dicke paramter η ≈ 0.4. For optimal cooling, it is necessary
to pump the population from higher Fock states below this number. We found that a few
rounds of second-order sideband cooling achieve this goal and improve the overall contrast
of the carrier Rabi oscillations driven with the motion-sensitive configuration. For a mixed-
species crystal this trick is not necessary since the motional modes can be sympathetically
cooled below this point by calcium EIT cooling.

2.8 Mixed-species normal modes and basic sequence

In Section 2.2, I defined the normal modes of motion and introduced the basic operations
to cool and initialize calcium and beryllium ions. Within this section, I will first present
the main characteristics of mixed-species normal modes in the case of ion chains composed
of calcium-beryllium and beryllium-calcium-beryllium. Finally, I will present the basic
experimental sequence used for the mixed-species experiments described in this thesis.

2.8.1 Normal modes characteristics

In general, the normal modes of motion of mixed-species present several features, which
mostly depend on the mass-ratio of the two species. In Table 2.1, is shown an example of
the normal modes eigenfrequency and eigenvectors for the a beryllium-calcium ion chain.
The values are the typical ones used in the mixed-species experiments presented in this
thesis. The eigenvector e′i,α are in turn related to the Lamb-Dicke parameter ηj,α by

ηj,α =

√
~

2mjωα
k · e′j,α, (2.39)

where k is the laser wave vector used to couple to the normal mode α.
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Be+ Ca+

ωα/2π e′x1,α e′y1,α e′z1,α e′x2,α e′y2,α e′z2,α
(MHz)
1.779 0 0 0.272 0 0 0.962
2.145 0 −0.014 0 0 1 0
3.226 0.013 0 0 −1 0 0
4.614 0 0 0.962 0 0 −0.272
13.023 0 −1 0 0 −0.014 0
13.976 1 0 0 0.013 0 0

Table 2.1: Normal mode eigenfrequencies and mass-weighted eigenvectors for beryllium-calcium
crystal. The single calcium secular frequencies used for the calculations are [ωx, ωy, ωz] = 2π ×
[2.4, 3.4, 1.5]MHz. The calculated eigenfrequencies are the typical values used for the beryllium-
calcium experiments presented in this thesis.

In-phase “COM”

EGY
Out-of-phase “STR”

9Be+ 40Ca+ 9Be+

Figure 2.13: Axial motional modes of the beryllium-calcium-beryllium ion chain. The arrow lengths
are not in scale with the amplitude of the oscialltions.

One interesting feature in Table 2.1, is that the radial modes of motion (x, y) for the
two species are almost independent. To understand it, we have to remember the in the
radial plane the confining potential felt by each species is proportional to m−1. This means
that if we consider the motion of the two species as independent (neglecting the Coulomb
repulsion), the radial frequencies for the two ions would have different values. As a result,
in the coupled case, the energy exchange due to the Coulomb coupling is far off-resonant
and has a small effect on the resulting motion [51].

A similar behavior can also be observed in Table 2.2, where the normal modes frequencies
and eigenvectors are shown for a beryllium-calcium-beryllium ion chain. Figure 2.13, shows
the axial motional modes for this particular ion chain. It is worth noticing that for the
motional mode labeled as "STR" (stretch mode), the two beryllium ions oscillates out-of-
phase with respect to each other, while the calcium ion does not move. This feature is
particularly important for the experiments presented in Chapter 6 because it means that
the calcium lasers cannot excite, nor cool, this motional mode.

A detailed experimental investigation of shifts from the theoretical normal mode struc-
ture, can be found in Section 5.2.1.
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Be+
1 Ca+ Be+

2

ωα/2π e′x1,α e′y1,α e′z1,α e′x2,α e′y2,α e′z2,α e′x3,α e′y3,α e′z3,α
(MHz)
1.56 0 0 0.312 0 0 0.897 0 0 0.312 COM
2.141 0 -0.013 0 0 1 0 0 -0.013 0
3.064 0.012 0 0 -1 0 0 0.012 0 0
4.194 0 0 -0.707 0 0 0 0 0 0.707 STR
4.284 0 0 0.634 0 0 -0.442 0 0 0.634 EGY
13.179 0 0.707 0 0 0 0 0 -0.707 0
13.179 0 0.707 0 0 -0.019 0 0 -0.707 0
13.963 0.707 0 0 0 0 0 -0.707 0 0
13.963 -0.707 0 0 -0.017 0 0 -0.707 0 0

Table 2.2: Normal mode eigenfrequencies and eigenvectors for beryllium-calcium-beryllium crys-
tal. The single calcium secular frequencies used for the calculations are [ωx, ωy, ωz] = 2π ×
[2.6, 3.4, 1.15]MHz. The calculated eigenfrequencies are the typical values used for the beryllium-
calcium experiments presented in this thesis. In the last column I highlighted the three axial modes
with the naming convention used in this thesis.

2.8.2 Basic experimental sequence

Figure 2.14 shows an oscilloscope view of a typical pulse sequence for the cooling and de-
tection used for mixed species experiments. The structure of the experimental sequence is
common for all mixed-species experiments presented in this thesis. The main differences are
in the sideband cooling stage and in the qubit manipulation. The majority of the results
presented in later chapters involve coupling between ions of different species. This is best
achieved by addressing the axial mode of motion (usually the in-phase mode, also referred
to as "COM" in this thesis) which involve a significant motion from both species, according
to Table 2.1 and Table 2.2. To achieve the highest gate fidelities the axial modes of motion
are usually cooled near the ground state. For the mixed-species ion chain configurations
(beryllium-calcium and beryllium-calcium -beryllium), beryllium sideband cooling is typic-
ally used to ground-state cool the higher axial normal modes, due to the larger Lamb-Dicke
parameter. Finally beryllium or calcium sideband cooling is used to groud-state cool the
in-phase axial mode, which is the principal motional mode used for coupling the two species.

Further details about the experimental sequences will be given throughout the thesis
when presenting results.
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Figure 2.14: Pulse sequence diagram of a mixed-species experimental shot; At the bottom the
typical length for each step of the sequence.



3 State readout

Upon completion of the experimental sequence, the qubit states are read out. For all
the experiments described in this thesis, the preferred readout method is state-dependent
fluorescence [79, 80, 81]. With this technique, a detection laser beam resonantly couples one
of the two qubit states to an excited state via a dipole allowed transition. For an ion initially
in |ψ〉 = a |bright〉 + b |dark〉, the detection collapses the state into the bright state with
probability |a|2. During detection, a bright ion fluoresces at a rate of 107 − 108 photons/s.
The wavelength of the fluorescence photons is 397 nm for calcium and 313 nm for beryllium.
An in-vacuum objective, effectively covering 4.4% of the 4π solid angle [48], captures some
of the emitted photons which are then detected with a photomultiplier tube (PMT). The
PMT quantum efficiency (26.5% at 313 nm and 30% at 397 nm), together with an estimated
loss of ≈ 15% in optics and vacuum chamber windows, limits the total detection efficiency
to ≈ 1% [48]. As a result, for a typical detection time of 200 µs, the average number of
photons detected for a bright ion is 30.

Assuming that the detection of photons happens at a constant rate and independently
of the time of previous detection events1, the photon count distribution follows Poisson
statistics. The Poisson distribution is defined as

P (n|λ) =
λne−λ

n!
, (3.1)

where λ is the average number of photons detected within an detection interval td. Ideally,
for an ion initialized in the dark state, the average number of photons is λD = 0. Despite this,
stray light shining on the detector,electrical noise and cosmic rays contribute to an average
background photon counts λD = RDtd, where RD is the background photon counting rate.
In our experiments in 200 µs the average background counts are λD < 0.5. For an ion in
the bright state, the average number of photons detected within the detection time td is
λB = (RB +RD)td, with RB the detected photon fluorescence rate2.

For a single ion in state |ψ〉 = a |bright〉+b |dark〉, the probability of detecting n photons
within a detection interval td is a superposition of two Poisson distribution

p(n) = p0P (n|λD) + p1P (n|λB), (3.2)

where, p0 = |b|2 is the probability that the ion collapses in the dark state and p1 = |a|2 the
probability that the ion is collapsed in the bright state.

At the end of the detection, the number of photons detected by the PMT is transmitted
to the control electronics that manages the experiment (see Chapter 4), where it is processed
to discriminate the state of the ion. The discrimination relies on data processing, as relevant
information is carried by the number of photons detected, but also the time at which they

1We expect this assumption to hold since the detection of a photon is a rare event.
2RB , RD already take into account the global detection efficiency of the setup, which depends both on

the properties of the lens system (ie. numerical aperture, lens coating etc...) and on the quantum efficiency
of the PMT.

32
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are detected. For the rest of chapter whenever I talk about ’detection’ I will refer to the act
of measuring the ion fluorescence, while ’readout’ refers to qubit state discrimination.

Within this chapter I will first describe the standard techniques used for state discrimin-
ation. I will then focus the attention to the case in which the photon counting distribution
does not follow the Poisson one, due to pumping mechanisms that alter the ion population
during detection. The chapter continues summarizing and presenting experimental results
of readout techniques that are based on the photon arrival time. Finally, I will extend these
methods to a novel technique that offers the possibility of further reducing the detection
time using entropy gain as a key element.

3.1 Thresholding

Thresholding is the simplest method for discriminating a bright ion from a dark one. The
state of the ion is determined by comparing the total number of photons n collected during
a detection event to a threshold value nth. Trials where n ≥ nth label the qubit in the bright
state, those with n < nth label the qubit in the dark state. At the end of a data point, the
fraction of times that the ion produced fluorescence above (below) threshold gives the value
for the probability of being bright (dark) P (b) (P (d)).

For Poisson distributions, it can be shown [58] that the optimal threshold lies at the
intersection of the two distributions

nc =
λB

ln
(

1 + λB
λD

) . (3.3)

It follows that the discrimination error is purely statistical and it is proportional to the
overlap of the two distributions.

One of the main advantages of thresholding is that it is computationally fast and allows
state discrimination after a single detection shot. This feature is particularly important
for advanced experiments, like teleportation and quantum error correction, which require
conditional operations based on the readout within the same experimental shot. For these
particular cases, single shot readout needs to be of high fidelity. Experimentally it is thus
advisable to suppress the background count rate RD as much as possible while improving
the bright fluorescence rate RB.

The thresholding method can also be extended to crystals composed of m ions of the
same species. Assuming that the ions are equally illuminated by a detection beam and
that no spatial resolution of the emitted photons is possible3, the probability of detecting
n photons is a linear combination of m+ 1 Poisson distribution

p(n) =
m∑
i=0

piP (n|λi) (3.4)

where P (n|λi) is defined in Equation 3.1 and the average photon counts are approximately
λi = λ0 + i(λ1 − λ0) for equally illuminated ions, where λ0 and λ1 are the means of the
0-th and first Poisson distributions. In this case m thresholds are needed to perform state

3Spatial resolution is possible by mapping different ions in the chain to different channels of a multi-
channel PMT array [82] or to different pixels of an electron-multiplied CCD camera [83]. In all the experi-
ments presented in this thesis, readout is done primarily through a single channel PMT.
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εB-2BεD-B

Figure 3.1: Thresholding error. The red solid curve is a simulated histogram for two ions with
Poisson means λ0 = 0.5, λ1 = 25 and λ2 = 50. The light blue dashed lines are the two optimal
thresholds. The discrimitation error is proportional to the area where two Poisson distribution
intersect. From the plot, it is clear that the largest error occurs when discriminating between one
bright ion and two.

discrimination. The variance of the Poisson distribution scales as
√
λi. Therefore the

overlap, and thus the discrimination error, is the largest between P (n|λm−1) and P (n|λm).
Figure 3.1 shows an example of the Poisson distributions for two equally illuminated ions,
with photon means similar to the experimental ones.

3.1.1 Dealing with imperfect readout

Consider the imperfect state readout of a single ion in which there is some non-negligible
overlap between the two Poisson distributions. Extracting the full information about the
quantum state of the ion is still possible under the assumption that one can find the probabil-
ities of being bright P (b) and dark P (d), as introduced above. Therefore this method cannot
be applied for experiments that require single shot readout. The main idea is presented in
the Ph.D. thesis of Jonathan Home [84].

Let’s define p = P (b| |bright〉) as the probability that an ion prepared in the bright state
produces fluorescence above the threshold nc, and q = P (d| |dark〉) the probability the an
ion in the dark states produces fluorescence below the threshold nc. The probability P (b)
that an ion fluoresces above threshold, given that it has probability P (|bright〉) of being
the the bright state, and probability P (|dark〉) of being in the dark one is

P (b) = pP (|bright〉) + (1− q)P (|dark〉) . (3.5)

Similarly we can write the probability P (d) that an ion fluoresces below the threshold.
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Written in form of matrices(
P (d)
P (b)

)
=

(
q 1− p

1− q p

)(
P (|dark〉)
P (|bright〉)

)
. (3.6)

To deduce the state of the ion after detection this matrix can be inverted, and obtain(
P (|dark〉)
P (|bright〉)

)
=

1

p+ q − 1

(
p p− 1

q − 1 q

)(
P (d)
P (b)

)
. (3.7)

This technique can also be generalized to the state readout of more than one ion. For
the case of two ions, two thresholds are needed. Assuming no spatial resolution for the
detected photons, and equal illumination of the detection beams on the two ions, it is
possible to extract the populations P (dd), P (db+ bd) and P (bb) at the end of a data point,
in a similar way to what described above. P (db+ bd) is the probability that one of the two
ions is labeled bright and is defined as P (db + bd) = P (bd) + P (db). The probability that
both ions fluoresce above threshold, assuming that their are both initialized in the bright
state, is P (bb| |BB〉) = p2, where |BB〉 = |bright〉 ⊗ |bright〉 for compactness. Similarly
P (dd| |DD〉) = q2. For each data point the the states can then be calculated as

 P (|DD〉)
P (|DB+BD〉)
P (|BB〉)

 =

1

(p+ q − 1)2

 p2 p(p− 1) (1− p)2

2p(q − 1) 2pq − p− q + 1 2q(p− 1)
(q − 1)2 (q − 1)q q2

 P (dd)
P (db+ bd)
P (bb)

 .

(3.8)

This readout method is also computationally fast, and just requires an initial calibration
of the parameters p and q.

3.2 Histogram fitting

An alternative technique to thresholding is histogram fitting. It consists of fitting a distri-
bution to the aggregate histogram of the counts for an experimental point. This technique
is well suited when the discrimination error with thresholding is significant. It can also
be advantageous when the modeled distribution is not purely Poissonian, as discussed in
Section 3.3.

In our experiments, we implement the least-squares fitting of Equation 3.4 to the ag-
gregate histograms of a data point. The calculation consists of two stages. Initially, we
create a single 1D histogram composed of all the shots of a scan, and by fitting both {pi}
and {λi}, we extract the average photon counts {λi}. In a second step, for each point of
the experiment, the populations {pi} are fitted to the aggregate histogram while keeping
the mean photon counts fixed. Experimentally, we noticed that at least 100 shots per data
point are needed to have reliable fits.

Compared to the previous two methods, histogram fitting is slow, thus we use it only
in post-analysis. During run-time we prefer to use thresholding or the method presented in
Section 3.1.1.
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Figure 3.2: Population leakage in beryllium. In blue is shown the dark-to-bright pumping due to
off-resonant scattering from the dark state, and is intrinsic to the detection technique. In green is
indicated the bright to dark leakage due to polarization impurities of the detection beam.

3.3 Non Poisson statistics

In the previous sections we assumed the that the photon counting statistics is well modeled
by Poisson distributions. One of the assumptions that we made is that once the state of
the ion is collapsed into either the bright or the dark state, the ion continues to fluoresce at
a constant rate. A change in the ion state within a detection event will modify the photon
emission rate. If the time in which the ion switches state is not controlled and happens at
random times, the photon counting statistics deviate from the Poissonian one.

There can be different reasons for which the state of the ion changes. In calcium the
main contribution to state change is spontaneous decay. For our experiment, the dark state
of calcium is the

∣∣D5/2,mJ = 3/2
〉
level, which has a lifetime of ∼1.1 s. This means that, for

a detection time of 200 µs, the probability that the dark state decays to the bright ground
state during the detection is ∼ 10−4. At our current fidelities for other operations this does
not provide a significant restriction.

In beryllium instead there are two different mechanisms that can change the state of the
ion during detection. Those are illustrated in Figure 3.2. The first, is off-resonant pumping
of a dark state into the bright one. The second, is impure polarization of the detection beam
or state mixing that makes the detection transition not closed, thus leading to pumping of
the bright state into the dark one.

3.3.1 Dark-to-bright leakage

To show how the distribution changes, I will follow a similar approach to the one presented
in the Ph.D. theses of Chris Langer and Alice Burrel [55, 58]. Let’s assume that an ion is
initially prepared in the dark state, and that at time t = 0 it begins a detection event of
duration tb. Assuming a dark-to-bright repump rate ω = 1/τ , the probability that the ion
is found in the bright state after time t (t < tb) is

PB(t) = 1− e−t/τ . (3.9)
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It follows that the probability that a decay happens between t and t+ dt is

p(t)dt =
1

τ
e−

t
τ dt . (3.10)

If a repump event always occurs at a well-defined time t (with t < tb), the number of
counts n collected in within a detection interval tb would follow a Poisson distribution with
a mean of λ(t)

λ(t) = RDtb +RB (tb − t) . (3.11)

In reality, the repump time t is a continuous random variable. Therefore, what we need
to calculate is the density of means p(λ). The mean photon counts λ is single valued with
respect to t. We can therefore assume that

|p(t)dt| = |p(λ)dλ| (3.12)

for λ = λ(t). Using Equation 3.10 it follows that

p(λ)dλ = p(t(λ))
dt
dλ

dλ =
1

τ
e−t(λ)/τ dt

dλ
dλ . (3.13)

Extracting t from Equation 3.11, and substituting it into Equation 3.13 we derive the
probability distribution p(λ)dλ as

p(λ)dλ =
1

RBτ
exp

(
λ− tb (RD +RB)

RBτ

)
dλ . (3.14)

It follows that, for an ion prepared in the dark state, the probability Pdark(n, tb) that
we detect n photons within tb is the sum of all the Poisson distributions with mean values
between λD = RDtb and λB = (RD +RB)tb weighted by the density of the means p(λ)

Pdark(n, tb) = PD(tb)P (n|λD) +

∫ λB

λD

p(λ)P (n|λ)dλ

= e−tb/τP (n|λD) +

∫ λB

λD

p(λ)
λne−λ

n!
dλ,

(3.15)

with

X0(n) ≡
∫ λB

λD

p(λ)
λne−λ

n!
dλ

=
e−ξ

RBτ

(
RBτ

RBτ − 1

)n [
G (n+ 1, ξ (RBτ − 1))−G

(
n+ 1,

RDtb
RBτ

(RBτ − 1)

)]
,

(3.16)
where

ξ =
(RB +RD) tb

RBτ
(3.17)

and G(a, x) is the incomplete gamma function

G(a, x) =
1

Γ(a)

∫ x

0
e−mma−1dm , (3.18)

with Γ(a) is the gamma function.
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Figure 3.3: Dark-to-bright leakage for a total detection time of 200 µs. Panel a shows a typical
detection histogram for an ion prepared in the |F = 1,mF = 1〉 state. We fit Equation 3.15 to the
histograms with the dark-to-bright pumping rate τ = 1/ω as a free parameter. The fitted pumping
rate is ω = 102×3.4(3) s−1. Panel b is instead the histogram obtained from an ion in the shelved
state |F = 1,mF = −1〉. The fitted dark-to-bright pumping rate is 23(3) s−1. The latter is just an
approximation since 3.16 only takes into account one decay path.

Beryllium dark-to-bright pumping For the specific case of beryllium, the rate at which
a dark state is pumped into the bright state varies depending on which initial dark state is
populated. A detailed description of this process following a rate-equation treatment can
be found in the thesis of Hsiang-Yu Lo [48] and Chris Langer [55].

In the simple case where the initial dark state is |F = 1,mF = 1〉, the expected pumping
rate is

ω =
1

τ
=

Γ

2

s0

1 + s0 + 4δ2

Γ2

cBR (3.19)

where γ is the natural linewidth of the excited P3/2 manifold, s0 is the saturation intensity
of the detection beam, δ the detuning and cBR is the coupling coefficient for scattering
from the dark state into the bright one. For a beryllium ion at 119.4 G, Γ = 2π×19.4 MHz,
2δ/Γ = 128, s0 = 1/2, and cBR = 2

9α with α = −0.793, the expected rate is ω =240 s−1

[55]. Figure 3.3a shows an example of an histogram obtained for an ion prepared in the
state |F = 1,mF = 1〉. The fitted dark-to-bright pumping rate is ω = 102×3.4(3) s−1 (using
Equation 3.15), which is compatible with a saturation intensity s0 ∼ 0.65.

As already mentioned in Section 2.5.1, it is possible to mitigate the off-resonant repump-
ing by shelving the dark state in the |F = 1,mF = −1〉 level. In this case, a minimum of
four scattering events are necessary to pump the population into the bright state [55, 48].
Figure 3.3 shows the comparison of the photon count distribution for an ion prepared in
the shelved |F = 1,mF = −1〉 state compared to one initialized in |F = 1,mF = 1〉. The
fit to the dark-to-bright pumping for Figure 3.3b doesn’t capture the full dynamics because
this fit only assumes dark-to-bright pumping with just one scattering event. Nevertheless,
it shows that shelving the dark state to the |F = 1,mF = −1〉 reduces the pumping rate by
at least one order of magnitude.

Calcium dark-to-bight pumping Compared to beryllium, calcium suffer less from dark-
to-bright pumping. The lifetime of the D5/2 manifold is τ =1.168(7) s [85], corresponding
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to a dark-to-bright pumping rate of 0.856(5) s−1. This value is ≈ 425 times smaller that
the measured one for beryllium in the state |F = 1,mF = 1〉 .

3.3.2 Bright-to-dark leakage

Let’s now assume that the ion is prepared in the bright state and that during detection the
bright state gets pumped in the dark one at a rate ω̃ = 1/τ̃ . Following a similar derivation
to the one presented earlier, the bright photon count distribution can be shown to be:

Pbright(n) = e−tb/τ̃P (n|λB) +X1(n) , (3.20)

in which

X1(n) =
eξ

RB τ̃

(
RB τ̃

RB τ̃ + 1

)n
× · · ·

· · ·
[
P

(
n+ 1,

(RB +RD)tb
RB τ̃

(RB τ̃ + 1)

)
− P (n+ 1, ξ (RB τ̃ + 1))

]
,

(3.21)

where
ξ =

RDtb
RB τ̃

. (3.22)

Beryllium bright-to-dark pumping In the case where the detection beam has a small
component of π and σ− polarization, the bright state

∣∣S1/2F = 2,mF = 2
〉
can couple,

respectively, to the states
∣∣P3/2,mJ = 1/2

〉
and

∣∣P3/2,mJ = −1/2
〉
leading to decay mech-

anisms outside the cycling transition.

The simplest way to analyze this effect is to assume that all polarization impurity is σ−.
Although the σ− transition is off-resonant by δσ = 2π×446 MHz, which is larger than the
π transition detuning δ = 2π×223 MHz [55], it is more likely to have σ− impurity. For this
scenario, the repumping rate can be written as ω̃ = 1/τ̃ = εσ/τ , where εσ is the amount
of σ− polarization, and 1/τ can be derived from Equation 3.19 assuming a detuning of
δ = 2π×446 MHz, a coupling coefficient cBR = (2/9)α (α = 0.793) [55] and half saturation
intensity s0 = 1/2. The expected repumping rate, assuming εσ = 1, is ω̃ ∼0.3 µs−1. This
theoretical prediction can be used to infer an upper bound to the amount of polarization
impurity εσ. Figure 3.4a shows the measured photon counting distribution for a beryllium
ion prepared in the bright state |F = 2,mF = 2〉 together with the fit of Equation 3.20 to
the data for a total detection time of 200 µs. The extracted bright-to-dark pumping rate is
ω̃ = 78.4(6) s−1 which corresponds to εσ ∼ 2×10−4 σ-polarization impurity. Experimentally
we also verified the population leakage from the bright state by dividing the detection time
into 20 bins and measuring the average number of counts per bin, as shown in Figure 3.4b.
These data are then fitted with a simple exponential decay where the decay rate is kept
constant at ω̃ = 78.4s−1. Except for the first few points, this simple model captures well
the population dynamics.

Calcium bright-to-dark pumping A detailed analysis of the bright-to-dark pumping
mechanism for calcium can be found in Alice Burrel’s Ph.D. thesis [58]. For our setup, one
of the largest contribution is due to magnetic field mixing. The P1/2 → D5/2 transition is
normally forbidden since ∆J = 2. However, a magnetic field could induce a mixing between
states with the same mJ but different value of J . As a result, there is a small probability of
decaying from the P1/2 manifold to D5/2 states, that results in an unwanted shelving during
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Figure 3.4: Bright to dark leakage. Total detection time 200 µs. Panel a shows the average
histogram for an ion prepared in the bright state |F = 2,mF = 2〉. The red dashed line is the
fit to a Poisson distribution with average counts λB = 26.44(1), while the blue line is the fit to
Equation 3.20. The fitted bright to dark leakage rate is ω̃ = 78.4(6) s−1. Panel b plots the average
number of counts detected in consecutive detection bins of 10 µs, showing the loss of population
from the bright state. The solid line is a fit to an exponential decay of the form A exp(ω̃t) + B,
where the decay rate ω̃ is kept fixed at ω̃ = 78.4s−1. In both cases, we plot the average of 50000
experiments.

detection. This phenomenon is more evident at large magnetic fields. In a calcium ion, it
was first measured in a Penning trap experiment [86]. In their work, the authors measured
the branching ratio between the two decay pathways, Γ(P1/2 → D5/2) and Γ(P1/2 → S1/2),
to be

Γ(P1/2 → D5/2)

Γ(P1/2 → S1/2)
= 4.210−7B2 = n−1. (3.23)

Here, B is the value of the magnetic field in Tesla, and n the number of emitted photons
before a shelving event happens. For our experimental setup at 119 G, assuming a detection
efficiency of 0.1%, and an average of 30 counts detected in 200 µs, the estimated shelving
rate is < 10−2 s−1. This corresponds to less then 1 event in 5 × 106 bright state readout
trials, each of duration 200 µs. Therefore, we can effectively neglect it.

3.3.3 Thresholding readout error

The two pumping mechanisms described above increase the overlap between the dark and
the bright state distributions.

To calculate the thresholding discrimination error for a beryllium ion we can consider
the distributions of Figure 3.4a and Figure 3.3b. Here the total detection time is 200 µs, the
leakage rates are ω̃ = 78.4(6) s−1 and ω = 23(3) s−1, respectively for the bright-to-dark and
dark-to-bright leakage. From the Poisson fits to these distributions and from Equation 3.3,
the optimal threshold is calculated to be nc = 9. For an ion prepared in the bright state
(Figure 3.4a), the error eB is the fraction of the population that fluoresce below threshold
and is eB = 0.54%. For an ion prepared in the dark state |F = 1,mF = −1〉 (Figure 3.3a),
the error eD is eD = 0.31%. This value could be improved in various ways. One is to increase
the detection efficiency, which would allow to shorten the detection time. One other way,
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is to completely suppress the bright-to-dark leakage mechanisms by better optimizing the
detection beam polarization.

3.4 Time of arrival of photons

The threshold method assumes that photons are collected for a fixed detection time, and
state discrimination is based on the number of photons detected compared to a given
threshold. In the following section, we will show an alternative readout technique that
is based on the time of arrival of photons. The initial idea to use time-resolved photon
counting was modeled theoretically by Langer [55] and Gambetta [87]. The method con-
sists of dividing the detection bin tb into N shorter sub-bins each of length ts and record
the detected number of photons in each bin {ni}. The detection problem then reduces
to understand whether a given set of counts {ni} originates from an ion in the bright or
dark state. After each sub-bin detection, one could calculate the probabilities that an ion
is in the bright or dark state. Once the confidence level associated to these probabilities
goes above a user-defined threshold, the detection process can be interrupted. This readout
technique is called adaptive maximum likelihood and compared to the threshold method it
has the potential of reducing the overall detection time without sacrificing fidelity. Adaptive
maximum likelihood readout has been successfully demonstrated in different experiments
[36, 88], but it was always applied in post-analysis. As a result, the benefit of shortening the
detection time was not used. In our experiment, we have shown real-time application of this
technique, where the probability distributions where updated after each sub-bin detection
in less than 2 µs. This is due to the ability to perform floating-point calculations directly
on our control electronics (see Chapter 4). As it will be shown later, we are able to shorten
the detection time by approximately 70%, while maintaining a comparable readout fidelity.

At the core of the adaptive maximum likelihood readout there is the evaluation of the
likelihood function pD (pB) that the set of counts is generated by an ion in the dark (bright)
state. For a set of counts {ni}, the likelihoods pB and pD can be written as

pB = P ({ni}|bright), and pD = P ({ni}|dark) . (3.24)

On top of the likelihoods, after each sub-bin detection, one needs to evaluate the estimated
error probability eB (eD) that we have incorrectly deduced an ion to be in the bright state
when pB > pD (pB < pD). This can be calculated as:

eB = 1− P (bright|{ni}) , (3.25)

where P (bright|{ni}) is the probability that an ion was prepared in the bright state given
that we detected a set of counts {ni}. The latter probability can be calculated from Bayes’
rule as:

P (bright|{ni}) =
P ({ni}|bright)

P ({ni})
=

pB
pB + pD

. (3.26)

It follows that
eB =

pD
pB + pD

and eD =
pB

pB + pD
. (3.27)

Once the estimated readout error falls below a user-defined threshold ec, the detection can
be interrupted and the state is labeled as bright (dark) if pB > pD (pB < pD). Convergence
below this threshold is not guaranteed so it is necessary to define a sharp cutoff time tc ≤ tb
to stop the detection when when the algorithm does not succeed within a standard detection
time tb.
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The only thing that now remains to be defined is how to calculate the likelihoods. In
the simplest case of pure Poisson distribution, the likelihood function after the detection of
m sub-bins is [58]

pB =

m∏
i=1

P (ni|(RB +RD)ts), and pD =
m∏
i=1

P (ni|RDts) , (3.28)

where (RB +RD)ts and RDts are the mean photon counts detected during a time bin ts for
a bright and a dark ion, respectively. A pseudo-code description of the adaptive maximum
likelihood estimation algorithm is given in Algorithm 1.

Algorithm 1 Adaptive maximum likelihood
Output State of the ion

1: procedure Adaptive maximum likelihood
2: pB ← 1, pD ← 1
3: for m = 1← 0, N do
4: Detect sub-bin
5: Update likelihoods pB, pD
6: Evaluate errors eB, eD according to Equation 3.27
7: if min(eB, eD) < ec then
8: if pB > pD then
9: Label state bright
10: else
11: Label state dark
12: end if
13: Interrupt detection
14: end if
15: end for
16: if pB > pD then . Reaches here only if the threshold is not reached.
17: Label state bright
18: else
19: Label state dark
20: end if
21: end procedure

3.4.1 Non-Poisson statistics

Like in Section 3.3, pumping mechanisms from one state to the other affect the photon
counting statistics and thus the definitions of the likelihood function. A detailed treatment
of this scenario can be found in Alice Burrell’s Ph.D. thesis [58]. Let’s assume that an ion is
initially prepared in the dark state, and that there is only dark-to-bright pumping at a rate
ω = 1/τ . Based on the results of Section 3.3, we can also make some major simplifications
by making two assumptions. The first one is that pumping rate is small compared to the
sub-bin time ts � τ . The second is that the bin time ts is short enough such that after
a pumping event, the photon counting rate changes immediately from RD to (RD + RB)
at the start of the next sub-bin. In other words, we assume that a leakage happens always
at the beginning of a sub-bin detection and never in the middle, such that we can avoid
the complicated expression of Equation 3.16. Although the validity assumption hasn’t been
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Figure 3.5: Threshold vs. adaptive maximum likelihood. In both panels, the plot of a Rabi
oscillation between 0 and 2π in the FDQ manifold of beryllium. In both cases, the dark state
|F = 1,mF = 1〉 is not shelved into |F = 1,mF = −1〉. In panel a, the readout method is threshold-
ing after a detection time of 200 µs. In panel b, the 200 µs detection window is divided into 20
sub-bins each of length 10 µs. The qubit populations are inferred employing the adaptive maximum
likelihood technique. The dark state likelihood pD is calculated according to Equation 3.30, with a
dark-to-bright repumping rate ω = 1/τ = 102 × 3.4(3) s−1. In contrast, the bright state likelihood
pB is calculated as a product of pure Poisson distributions (Equation 3.28). On average, the time
required to discriminate the state of the ion is 100 µs in the case of adaptive maximum likelihood.

tested in simulation for our parameters, it seems to hold well looking at the quality of the
results discussed later. Moreover, it increases the computational speed of the likelihood.

Under these assumptions, the probability pdark(m) = e−mts/τ that the ion remains in
the dark states for m sub-bin detections, can be approximated by 1−mts/τ . Similarly, the
probability that it decays within a sub-bin is ts/τ . With all these simplifications, the dark
likelihood function pD after m sub-bins detection can be written as

pD =

(
1− mts

τ

) m∏
i=1

P (ni|RDts) +

(
ts
τ

) m∑
j=1

j−1∏
i=1

P (ni|RDts)
m∏
i=j

P (ni|(RD +RB)ts) ,

(3.29)
where the first term of the sum represents the case in which the ion remains in the dark state
for all the detections, while the second term involves a sum over all the possible sub-bins
j < m in which the dark state could have been pumped in the bright state.

The following recursive expression speeds up the real-time computation reducing it from
O(m2) operations to O(m) [58]:

pD =

(
1− mts

τ

)
Mm +

(
ts
τ

)
Sm , (3.30)

where
M0 = 1, Mk = Mk−1P (nk|RDts)
S0 = 0, Sk = (Sk−1 +Mk−1)P (nk|(RD +RB)ts) .

(3.31)

In the case of bright to dark state leakage, the bright state likelihood pB has similar
expression to Equation 3.30 where the bright and dark Poisson distributions are exchanged.



44 CHAPTER 3. STATE READOUT

0.00

0.25

0.50

0.75

1.00
P

(B
)

a. b.

0 10 20 30 40
0

50

100

150

200

D
et

ec
tio

n 
tim

e 
[u

s]

c.

0 10 20 30 40

d.

pulse time [us]

Figure 3.6: Comparison between adaptive maximum likelihood readout method with and without
correction for the dark-to-bright leakage mechanisms. The experimental sequence consists of a 2π
Rabi oscillation in the FDQ manifold of a single beryllium ion. The different plots originate from
the same set of data which has been post-analyzed with two different methods of updating the
likelihoods. The two panels on the right (panels b and d) take into account the dark-to-bright
leakage and the likelihoods are updated according to Equation 3.30. The two panels on the left
(panels a and c) neglect any leakage mechanism and the likelihoods are updated according to
Equation 3.28. The detection window has been divided into 20 sub-bins each of 10 µs. Panels a and
b show qubit population as a function of the pulse time, obtained with the two different readout
algorithms. The fitted contrast of the oscillation shown in panel a and b are 96(2)% and 97(2)%
respectively. Intuitively we would have expected to observe a difference in the fitted contrast since
that Equation 3.30 better represent the physical dynamics. However, from simulations, we observe
that our results are currently limited by Raman gate fidelities. In particular, we see that a difference
between the two readout methods becomes visible only for gate fidelities & 99%. Panels c and d
instead show the average discrimination time as a function of the pulse time. One clear trend is
that the discrimination time gets longer if the leakage mechanism is taken into account due to the
need for higher statistics.

Figure 3.5 shows a comparison between thresholding and adaptive maximum likelihood
when performing a 2π Rabi oscillation on the FDQ transition of beryllium. In this exper-
iment, the detection window has been divided into 20 sub-bins of 10 µs duration. For the
adaptive maximum likelihood method we set the threshold error ec = 10−4, and we just
took into account the dark to bright pumping mechanism. This assumption is justified from
results presented in the previous section,where the dark to bright leakage rate is dominant
if the dark state is the |F = 1,mF = 1〉 level.

For this particular set of data, we deliberately did not interrupt the detection to give
us more freedom in post-analysis to compare different methods. For example, we can see
how the result changes if we neglect the leakage mechanism (Figure 3.6). Panels a and c
in Figure 3.6 show results with adaptive maximum likelihood readout where we ignore all
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Figure 3.7: Poisson distributions within a sub-bin detection lasting 10 µs. For a bright ion it is
assumed a mean photon count of 1.25, while it is 0.0025 for a dark ion. For a detection time of
200 µs the expected counts weould be 25 and 0.05 respectively for a bright and a dark ion. These
numbers are comparable to those observed experimentally. Solid lines are just a guide to the eye.

pumping mechanism, while panel b and d take into account the dark-to-bright leakage. By
just considering the contrast of the Rabi oscillations (panels a and b), we can see that the
difference is marginal and within errors the contrast of the Rabi oscillation is the same.
From a theoretical perspective, we expect the fitted contrast to be better in the case where
the leakage mechanisms are taken into account, as the real dynamics is better represented.
However, from simulations, we see that a difference between the two methods becomes
visible only for gate fidelities & 99%. We can then conclude that the results are currently
limited by gate fidelities. Major differences appear if we compare the time required to
discriminate the state of the ion, such that the estimated statistical errors are below the
ec = 10−4 threshold (panels c and d). In this case we see that when the leakage is take into
account, the average detection time is generally longer, due to the need for higher statistics.
In particular, for an ion prepared in the bright state, the readout time is longer because of
the bigger overlap between the histograms of a bright and dark ion (see Figure 3.3a). When
leakage is neglected, the average detection time needed to readout an ion in the dark state
is longer than for an ion in the bright state since consecutive events with n = 0 counts are
needed to attain to the same level of uncertainty.

We can conclude that with the current experimental scattering rates and gate fidelities
there is no clear advantage in using likelihood functions which are corrected for the leakage
mechanisms. Therefore, for the future discussion we will neglect them.

3.4.2 Improving dark state readout time

One issue of dividing the detection time into smaller sub-bins is that there is a significant
overlap of the bright and dark Poisson distributions for each bin. As a consequence it takes
longer to readout the state of an ion prepared in |dark〉 compared to one prepared in |bright〉.
Consider for example Figure 3.7. Here, we plot the Poisson distributions associated to the
detection of an ion prepared in the bright or dark state with mean photon numbers that are
equivalent to those of a 10 µs sub-bin detection. The figure shows that the there is a high
probability of detecting 0 photons even for an ion prepared in the bright state. It follows
that to discriminate an ion in the dark state, one requires several consecutive events where
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no photons are detected to increase the likelihood pD. On the other hand, it is enough to
measure one event where 2 or more photons are detected to immediately conclude that the
ion is in the bright state.

It would then be advantageous to conditionally apply a π-rotation to the ion internal
state before a new sub-bin detection, whenever we suspect the state of the ion is |dark〉.
The decision to apply a π-rotation before the sub-bin m+ 1 readout is based on the expec-
ted entropy gain. A similar approach, but for the calibration of quantum gates has been
proposed by Andrey Lebedev [89] and experimentally realized by Brennan de Neeve [90].

After the detection of m sub-bins, the expected entropy gain for the m + 1 sub-bin
detection is defined as

∆H(m+1) =

nmax∑
ni=0

P (ni)
(
H(m+1)
π (ni)−H(m+1)(ni)

)
, (3.32)

which is a weighted sum, over all the possible detection outcomes, of the difference of the
Shannon entropies H in the case where no pulse is applied H(m+1) compared to the case in
which the π-pulse is applied Hπ. The weight is the total probability P (ni) of measuring ni
photons in the m+ 1 detection, which can be calculated from Poisson distributions as

P (ni) = P (ni|RDts) + P (ni|(RD +RB)ts) . (3.33)

Ultimately, if the entropy gain is positive (∆H(m+1) > 0), the π-pulse is applied.

The Shannon entropy is defined as

H(m+1)(ni) = −
(
P

(m+1)
D (ni) log

[
P

(m+1)
D (ni)

]
+ P

(m+1)
B (ni) log

[
P

(m+1)
B (ni)

])
, (3.34)

where P (m+1)
D (ni) ≡ P (dark|{n0, ..., nm−1, nm, ni}) and P (m+1)

B (ni) ≡ P (bright|{n0, ..., nm−1, nm, ni})
are the total probability that the ion is in the bright or dark state, assuming that ni photons
would be detected in the m+1 sub-bin detection. These two probabilities can be calculated
according to Equation 3.26 from the values of the likelihoods.

If no π-pulse is applied, the likelihoods at step m+ 1 can be recursively calculated as

p
(m+1)
B (ni) =pmBP (ni|(RB +RD)ts)

p
(m+1)
D (ni) =pmBP (ni|RDts) ,

(3.35)

while if a π-pulse is applied

p
(m+1)
B (ni) =pmBP (ni|RDts)

p
(m+1)
D (ni) =pmBP (ni|(RD +RB)ts) .

(3.36)

Algorithm 2 gives a pseudo-code description of the procedure to evaluate the entropy
gain which should be run prior to the m+ 1 sub-bin detection of Algorithm 1.

Figure 3.8 shows a Monte Carlo simulation in which we compared the standard adaptive
maximum likelihood detection to the new method that accounts for the information gain
coming from the internal states population exchange. It shows the total discrimination time
for an ion initially prepared in the bright or in the dark as a function of the total number of
sub-bins that divide a detection window of 200 µs. In the presence of conditional π-pulses
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Algorithm 2 Entropy gain’s algorithm
Input Likelihoods at step m
Output The ion is either in the same state or in the flipped state.

1: procedure Entropy gain(pmB , p
m
D)

2: ∆H(m+1) = 0
3: for ni ← 0, nmax do
4: Update likelihoods for no applied π-pulse (Equation 3.35)
5: Shannon entropy H(m+1)(ni), Equation 3.34.
6: Update likelihoods for applied π-pulse (Equation 3.36)
7: Calculate the Shannon entropy H(m+1)

π (ni)

8: Calculate entropy difference difference δH = H
(m+1)
π (ni)−H(m+1)(ni)

9: ∆H(m+1) += δH ∗ (P (i|RDts) + P (i|(RD +RB)ts))
10: end for
11: if ∆H(m+1) > 0 then
12: Apply π-pulse
13: end if
14: end procedure

(lines with triangles), the dark state discrimination time is significantly reduced. For an ion
prepared in the bright state, the readout time is slightly increased as there can be specific
sequences of detected counts that the algorithm mistakenly presumes as coming from an
ion in the dark state, thus implementing a π pulse.

The difference between the two panels of Figure 3.8 is the background rate. In the first
panel, we assumed no background, RD = 0, while in the second, we assumed an average of
0.1 photons detected in 200 µs. As expected the average discrimination time is shorter in
the case where RD = 0 since the bright and dark Poisson distributions are less overlapped.

In the case of calcium there exist schemes for background-free detection. One possibility
is presented in [91] for which an ion initialized in the ground state S1/2 is excited into the
P1/2 states via a two-photon process through the metastable D3/2 manifold. Once it is in
the P1/2 manifold the ion quickly decays to the ground state emitting a photon at 397 nm.
For this process, two laser beams illuminate simultaneously the ion: one is at 732 nm and
strongly couples the S1/2 manifold to the D3/2 states, and the second is the laser at 866 nm
tuned on the D3/2 ↔ P1/2 transition. A detailed analysis of this two photon process can be
performed following a similar approach to the one described in the Ph.D. thesis of Frieder
Lindenfelser [92]. There, one can find a detailed analysis of the two-photon process, but on
S1/2 → D5/2 transition in calcium, to perform cooling and detection.
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Figure 3.8: Average discrimination time as a function the total number of sub-bins that divide a
detection window. Both panels show the discrimination time for bright and dark states detected with
the standard adaptive maximum likelihood method (connected dots) and the one with conditional
spin flips (triangles). Panel a is the case of no background counts and an average of 25 photons in
200 µs for a bright state. In panel b, the average detected photons for a dark state is 0.1 and 25
for a bright one. On average, the conditional spin-flip method outperforms the standard adaptive
maximum likelihood technique in terms of speed. Note that for these simulations we assumed perfect
population inversion after the application of a π pulse.



4 Mixed-species control

This chapter will be devoted to the description of the experimental tools needed to control
mixed-species ion crystals. The chapter is divided into two main parts: at the beginning,
I will introduce the "Modular Advanced Control of Trapped IONs" (M-ACTION) control
system and the graphic interface that was developed during this thesis to address the current
and expected future requirements. In previous generations of experiments, a comprehens-
ive control system was not essential. However, current and future experiments would be
unmanageable without a control system designed to specifically address all the relevant
experimental requirements.

In the second part, I will instead focus on the control of the motion of an ion chain. In
particular, I will introduce the apparatus and the methods needed for the transport and
splitting/recombination of arbitrary ion-chains. Finally, I will present some results about
single-species and mixed-species transport and splitting experiments.

4.1 Control System

4.1.1 Control System overview

The complexity of QIP experiments performed these days would be unmanageable without
a robust control system that guarantees reproducible outcomes, flexibility, and automation.
The requirements are two-fold: good lower-level electronics as well as a well-structured
user interaction. In the spirit of the QCCD architecture [27], trapped-ion experiments
require to be able to trap arbitrary strings containing multiple ion species, reconfigure their
structure through transport and splitting, manipulate qubits with laser pulses and perform
low-latency feedback upon detection [93]. At the lowest level, this requires regulated rf,
digital and analog i/o with reproducible timing and low-latency computing capabilities that
alter the control system’s output based on external inputs. At a higher level, it means an
Application Programming Interface (API) written in a high-level programming language
that encapsulates as much of the lower level details as possible and provides a set of tools
that allow the user to write and configure experiments at a high level of abstraction. The
M-ACTION system developed within the group together with its Graphical User Interface
(GUI) is designed to tackle those challenges. Details about the hardware and the lower level
infrastructure can be found in Vlad Negnevitsky’s thesis [61]. My focus has instead been
on developing the GUI and improving the high level API.

Figure 4.1 shows the network topology of our control system. At its core, there is a Xilinx
Zynq-7000 chip composed of two ARM CPUs controlling the experiment and connected to
a medium-sized FPGA (Field Programmable Gate Array). The Zynq chip lies on a "master
board", called Zedboard, which also contains various peripheries that connect to the PC
and other time-critical devices.

The Zedboard is connected via a backplane connection to DDS boards (direct-digital
synthesizer), which produce the rf signals required to drive the acousto-optic modulators
(AOMs) that control laser pulses. Each board features four rf channels linked to an FPGA

49



50 CHAPTER 4. MIXED-SPECIES CONTROL

that runs an independent firmware. The presence of an on-board FPGA avoids a continuous
stream of data from the master board. Experimental sequences are loaded on each board
before the execution of each data point via a low latency connection at a rate of ≈ 800−1000
MBPS (megabits per second) [61]. For optimal control of qubits, it is also possible to shape
the frequency and amplitude of each rf pulse [94] with the additional capability of phase
coherence between different channels. Run-time changes to the experimental sequences are
also possible thanks to a low-latency direct link to the master board (≈ 1−3 µs latency).
One extra feature that has been added recently to the DDS boards are analog inputs for
in-loop stabilization of laser pulse intensities. Details will be described in Martin Stadler’s
Ph.D. thesis [95].

Other peripheries directly controlled by the "master" Zedboard include 32 digital out-
puts, used to manage rf switches and to trigger other devices, and eight digital inputs to read
in the signal coming from photomultiplier tubes (PMTs). The latter are used to count the
photons scattered by the ions during the detection sequence and thereby used to determine
the quantum state of the ions (see Chapter 3).

The M-ACTION system also controls the custom-designed arbitrary waveform gener-
ator (AWG) boards that supply the dc electrode voltages, the Direct Ethernet-Adjustable
Transport Hardware (DEATHs). Details about the design and the firmware are found in
the Ph.d. thesis of Ludwig de Clerq and in the bachelor thesis of David Nadlinger [49,
96]. Each card consists of four analog channels linked to a MicroZed board, a smaller ver-
sion of the Zedboard, that runs almost independently from the master Zedboard. A set of
time-dependent sequences of voltages, the waveforms, is loaded on the Microzed’s internal
memory from the PC GUI via Ethernet, and each waveform is stored with an index and a
unique identifier. At the beginning of an experiment point, the master board communicates
via Ethernet to the DEATHS the waveforms that need to run and specifies their order,
speed, and direction. Within the experimental shot, a shared digital trigger starts all the
channels, ensuring a low-latency synchronous execution with the master board.

We use the Xilinx software development kit (SDK) to program and run the experimental
code, written in C++, that controls the M-ACTION system. The C++ GUI, called Ion-
izer2 after the original used in the atomic-clock setups at NIST, provides the front-end
to the experiments and also manages other devices which do not require low-latency syn-
chronous control. These devices are usually experiment-specific, like piezo controllers or
DAC boards, and are controlled by Raspberry Pis that run a python server that handles
the connection with Ionizer. This concludes the overview of the control system infrastruc-
ture, Section 4.1.2 explains the higher-level tools that we developed to program complex
experimental sequences, while Section 4.1.3 explains the features of Ionizer2.

4.1.2 Experiment interface

Experiments up to the repeated stabilizer measurements (Chapter 6) only required the
control of ion crystals trapped in one zone. However, future experiments (and also the
ones discussed in Chapter 7) involve multiple crystals of different types whose structure is
continuously reconfigured through transport and splitting/recombination. For this reason,
over the last year I developed with the help of Tanja Behrle a framework which comprises
of different levels of abstraction. Before going to the details, I will briefly introduce the
preexisting tools mostly developed by Vlad Negnevitsky with contributions from David
Nadlinger and myself, upon which we built the new framework.
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Figure 4.1: Network of the experimental control. On the left hand side is the M-ACTION system
which sits on on a dedicated network and controls all the synchronous devices. In our setup it
currently controls 16 rf channels, 2 PMTs and 32 analog outputs (DEATHs) and 32 digitial outputs.
On the right the asynchronous devices and other PCs, which are on a separate network. Image
taken from the Ph.D. thesis of Vlad Negnevitsky [61].

Preexisting API

At its core, the experiment API (Application Programming Interface) consists of three
independent sets of libraries. One is the interface to program and control the DEATHs,
another one defines and controls rf pulses allowing the execution of experimental sequences
(with the experiment class at its core), and the last defines parameter objects which are
controlled by the user to alter the settings of sequences (the remote parameters class).

The DEATHs API was mostly developed by David Nadlinger and it is discussed in his
master thesis [96]. Further details about the DEATHs usage will follow in Section 4.2.

The remote parameters are the objects that allow the user to set the properties of an
experiment. In the experiment API, these objects are treated like standard C++ types
(int, double, unsigned, bool) and can, for example, be used to set the time of an rf pulse,
or to trigger on and off a particular block of code. Remote parameters are defined and
compiled onto the master board but are mostly controlled by the PC GUI. For this reason
they extend the standard types by offering a way to customize their behavior. To each
remote parameter can be assigned a unique identifier and a name string which will appear
on the PC GUI as a label, and it is possible to specify extra properties like the maximum
and the minimum value that the parameter can take. Remote parameters can be defined
as local or global. Local parameters are defined and accessible only to specific experiments,
while global parameters are shared among all experiments.

Finally, the experiment class is the object that executes an experimental sequence.
The run() function acquires a data point. At first the init_pulse_sequence() function
prepares all the devices to run a user defined sequence. This function is called only once
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at the beginning of a data point. After each shot, the function read_out_pmts() is called
to readout the PMTs and to perform real-time operations like thresholding or branching of
the pulse sequence. Once a data point has been acquired, the results can be manipulated
further (i.e. histogram fitting of the PMT results) and then are sent to the PC GUI for extra
processing and saving. It is worth noticing that there is no concept of scans on the master
board, which is only designed to acquire a data point with a specific set of parameters
defined by the user. Scans are defined only on the PC GUI, which updates the value of the
scanned parameter on the master board before the acquisition of a data point.

Phase coherence and reference time shifts When performing a qubit rotation with a
laser or microwave pulse controlled by a DDS, the phase of the generated rf signal controls
the rotation axis. For QIP operations, it is then essential to control the phase of each pulse
relative to the others in the sequence. In order to ensure phase coherence, at the beginning
of each rf pulse, a hardware multiplier on each DDS board calculates and applies a phase
offset. By default, the phase offset is calculated as φ = ω(t− tref) where ω is the frequency
of the rf pulse which we are about to apply, and tref is a reference time, which by default is
the beginning of the pulse sequence.

For some particular pulse sequences, it might also be useful to be able to shifts the
reference time. For the experiments described in Chapter 6, we shift the reference time to
the beginning of a block of pulses. With this, we decouple the rf phase of the pulses within
the block from the rest of the experimental sequence. Further details about the validity of
this approach can be found in Chapter 6.

Crystal classes

The framework we developed more recently lies on top of the experiment class discussed
above and introduces the concept of crystal classes, which are a code representation of
a trapped ion chain. In particular, a crystal object has information about the ion chain
composition (number of ions, species, and arrangement), the motional modes frequencies,
and all the possible sequences to manipulate a specific ion chain.

One principle followed in the design phase is information hiding, which uses encap-
sulation to hide low-level details within higher-level tools. As a result, it minimizes the
knowledge required to write an experiment and the amount of code that has to be changed
in case of changes to the setup. Figure 4.2 shows a schematic of the experiment API de-
signed for the M-ACTION system. Some elements of encapsulation were already present
in the preexisting API, like the pulse_raman_mono (see below); the new API extends these
elements and adds extra layers of abstraction.

When running an experiment, the set of operations that are run are often the same,
and just the parameters differ. For instance, beryllium Raman pulses are always controlled
by a specific set of AOMs in the setup. What changes, depending on the experiment, are
the parameters like the frequency, the pulse time, or the phase. Therefore the first level of
abstraction consists of defining functions, which run a specific pulse with parameters that are
passed as an argument, hiding some information about the physical setup. For example, in
the case of beryllium, Raman pulses are run through the pulse_raman_mono function. This
function contains all the information about the physical AOM setup like the DDS channels
used, the central frequency of each AOM, and which set of AOMs has to be pulsed for
motion-sensitive and motion-insensitive Raman pulses. This information is hidden from the
user which controls the pulse by parsing a C style structure, param_aom_Be, as an argument
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Figure 4.2: Software hierarchy. a the server handles the requests coming from the control PC,
altering the remote parameters and the executing experiments. Experiments are written by the
users and relay crystal objects and global functions. These are created using a toolbox provided
by the experiment API which also wraps the low-level drivers. b inheritance structure of crystal
objects. At the top the most abstract crystal class. Each lower layer defines methods that child
classes can inherit. c Pseudo-code representation of crystal and transition classes to highlight the
main structure.

to the pulse_Raman_mono function. Within this structure, the user defines which Raman
configuration to use, the transition type (an enumerator defining the transition: FDQ, FIQ,
FIS), the pulse time, the phase and the frequency offset from the carrier frequency of the
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desired transition. The pulse_Raman_mono function then interprets the information and
runs the desired pulse.

The second layer of abstraction is the transition class. A transition object, groups
together the main pulses that can be run on a particular qubit transition, together with the
remote parameters that the user controls. In the example case of beryllium, there are three
possible transitions: FDQ, FIQ, and FIS. Each of these is an instance of a transition
class and contains parameters and functions to run π and π/2 pulses, arbitrary carrier,
and red and blue sideband pulses. When calling any of those pulses, the transition class
defines the param_aom_Be structure starting from the remote parameters and then calls the
pulse_Raman_mono function.

The third level of abstraction is then provided by the crystal object. Depending on the
ion chain configuration, it contains vectors of calcium and beryllium transition classes, and
a list of functions for detection and readout, cooling of the motional modes and operations
which are specific to one particular crystal object. The groups of parameters that control
each operation are automatically generated and are distributed to the different objects
included by the crystal class upon the creation of the crystal object. By default, parameters
are global such that different instances of the same crystal share the same set of parameters.
However, if needed, it is also possible to replace specific blocks of parameters in individual
instances of a crystal.

An experiment then becomes a sequence of function calls on particular instances of
crystal objects, interleaved by transport and splitting/recombination operations.

Phase accumulators There can be cases in which the linearly advancing DDS phase
offset introduced previously is not enough to ensure the phase coherence of two pulses in
the frame of reference of the qubit. For example, in the case of ac Stark shifts, the qubit
phase evolves differently with the qubit drive turned on than with it turned off. In the qubit
frame of reference, this results in a phase difference between pulses that is proportional to
the control pulse length.

To take account of these effects, we introduced phase accumulators which are owned by
the crystal class, and are updated after each pulse of the sequence. To better understand
the way they work, I will take the example case of ac Stark shifts (see Section 5.1.2 for more
details). Let us define ω0 the qubit transition frequency when the qubit drive is off, and
ωd = ω0 + ωac the transition frequency of the qubit when the drive is on, with ωac the ac
Stark shift induced by the drive. To achieve the highest operation fidelity, we set the DDS
frequency to produce a laser frequency which is on resonance with the Stark-shifted qubit
transition ωd. Let us consider the simple pulse sequence shown in Figure 4.3a and assume
that the DDS reference time coincides with the starting time of the first pulse. In the frame
of reference of the laboratory, at the beginning of the second pulse, the accumulated DDS
phase is φDDS = ωd(tp+tw), where tp is the duration of the first pulse and tw is the wait time
between the two pulses. The phase accumulated by the qubit is instead φq = ωdtp + ω0tw.
Therefore to ensure a fixed phase relation, an extra phase offset φoff = (ω0−ωd)tw = −ωactw
has to be added to the rf signal generated by the DDSs that drive the second pulse of the
sequence.

In the case of beryllium, the calculation is more complicated since the same transition
can be driven with two Raman beam configurations (co-propagating and perpendicular
beams), with different beam intensities and thus different Stark shifts. To take this into
account, we define for each beryllium transition a phase accumulator. Consider the pulse



4.1. CONTROL SYSTEM 55

tref

tw

Phasequbit

PhaseDDS

tref

t1

Phasequbit

t2

Phase90-DDS

Phaseco-DDS

Co

90

tp

Figure 4.3: Phase accumulation. a. Simple scenario where one pulse is driven on resonance without
the Stark-shifted transition frequency ωd. The phase accumulated by the DDS hardware multiplier
at the beginning of the second pulse is φDDS = ωd(tp+tw). The qubit phase evolves at the bare qubit
freqeuncy ω0, and the accumulated phase at the beginning of the second pulse is φq = ωdtp + ω0tw.
To maintain phase coherence with respect to the qubit, the phase accumulators of the crystal class
change the DDS phase by φoff = (ω0−ωd)tw. b. The Stark shift associated to the motion-insentive
and motion-sensitive configuration can be differnet, ωcod , ω

90
d . Assuming a stable phase relationship

between the two, to maintain phase coherence with the qubit, two phase accumulators are updated
after each pulse according to the protocol described in the text.

sequence in Figure 4.3b, and assume the ac Stark shifted qubit transition frequency for the
co-propagating beams to be ωcod , and ω90

d for the beams at 90°. Assume also that the relative
phase between the two configurations is stable such that the only effect we have to consider
is the different Stark shift 1. At the beginning of the second co-propagating pulse the phase
accumulated by the DDS is φcoDDS = ωcod t1 + ωcod t2, while the phase accumulated by the
qubit is φq = ωcod t1 + ω90

d t2, where t1 and t2 are the pulse duration of the first and second
pulse. It follows that the phase that needs to be added to maintain the phase coherence is
φcooff = t2(ω90

d − ωcod ).

Each phase accumulator can be activated and deactivated at any point in time by the
crystal class. At the end of each pulse or wait time, the crystal class updates all the active
phase counters according to the relative Stark shifts. On top of the automatic feedforward
compensation of the ac Stark shifts, there is also the possibility to add a compensating
phase manually. This feature could be useful when the calculation of a phase difference
between the qubit and the DDSs is not trivial, like in the case of the ac Stark shift induced
by bichromatic beams (Section 5.3.4) or if the ion moves through regions with different
strengths of the magnetic field.

4.1.3 GUI

Throughout my Ph.D., one of the projects I have been mostly involved with is the devel-
opment and maintenance of the GUI, named Ionizer2, after the first version developed at

1The latter assumption is not valid experimentally. The relative phase fluctuates at each shot due to
beam path fluctuations. Chapter 6 describes in more detail this scenario, discussing how to work around it.
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Figure 4.4: Overview of the main features of GUI, master board and their connections to external
devices. The black arrows represent Ethernet links using MsgPack RPC as the communication
protocol. All asynchronous devices and scripts are controlled only by Ionizer (GUI), while all
synchronous devices are controlled by the master board. Details about the communication to
synchronous devices (connections with the round endings) can be found in the PhD thesis of Vlad
Negnevitsky [61]

NIST by Till Rosenband and co-workers. Over the years, the code base has been rewritten
to the point that there is almost no residual code from the NIST version.

Ionizer2, written using the Qt C++ library, is a multi-threaded program that provides
a GUI to our control system. It communicates with the master board, the DEATHs, and
other asynchronous devices with an Ethernet protocol based on the MsgPack library. An
overview of the main features of Ionizer and the connectivity to external devices can be
found in Figure 4.4.

Since there are several experimental setups within the group, we wanted the GUI to be
experiment independent to reduce fragmentation of the shared code base and to ensure a
standard way of running experiments and saving data. Experiments and parameters are
defined and compiled on the master board through the experiment API described before. At
startup, Ionizer queries the master board for all the available experiments and the relative
remote parameters (either local or global) and the status of the digital outputs. With this
information, it creates a page for each experiment and populates it with the QT Widgets
associated with the remote parameters. The value displayed on the GUI parameters is
either the default one provided by the master board or the one loaded from a parameter
database stored locally on the PC (if it exists). By changing the GUI parameters, the user
can control the settings of the experiments on the master board. To minimize the amount
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of communication and to ensure that the master board status is always under control, the
parameters are automatically sent to the master board only before running a scan or by an
active press of a button.

On top of the dynamically loaded experimental pages, it also creates static pages that
control the DEATHs waveforms and the various asynchronous devices, like the shim elec-
trodes DAC, the calcium reference cavity piezos [92] or piezo mirror mounts used to position
laser beams. Generally, those devices are controlled by a Raspberry Pi, which runs a python
server that handles the MsgPack connection to Ionizer. Currently, those pages are specific
to particular experimental setups and require the user to write a dedicated QT page that
displays the parameters and handles the connection API to the Raspberry Pi. Despite the
simplicity of connecting a new device to Ionizer, it is a bad practice since it goes against
the experiment independent principle. At the time of writing, there is an ongoing effort to
replace these user-defined pages with a standardized plugin framework that avoids modifica-
tions of the Ionizer code. The idea is to treat each Raspberry Pi (or any other computer-like
device) in a similar way to the master board. In this way, Ionizer creates pages dynamically
by querying the devices about the parameters that need to be displayed and potentially
scanned.

One of the most critical jobs of Ionizer is to run scans. Every remote parameter can
be scanned by any experimental page, with control to the start/stop values, the number
of data points, and the number of shots per data point. At the beginning of a scan, all
the global remote parameters and the local ones of a particular experiment are sent to the
master board and saved in a time-stamped folder, which also contains the results received
by the master board. In this way, we can control and save the status of the experimental
system for each scan. After each data point, the master board communicates to Ionizer the
raw PMT counts and any pre-processed data, called data channel, that the user would like
to display in a plot window (i.e. the average value of the thresholded PMT counts) and save
them to file. When programming the experiment on the master board, the user defines how
many plot windows are needed and a set of data channels that will be displayed as lines in
the plot. In the case of the simultaneous scan of two parameters, Ionizer displays each data
channel as a 2D color plot. At the end of a scan, Ionizer can also fit simple functions to
specific data channels and update the scanned parameter with the fitted value.

Each experiment has a priority that can be changed by the user. If two or more experi-
ments are run in parallel, a scheduler keeps switching between them at a rate proportional
to the priorities of each experiment. In our experiment, a low priority continuous scan that
cools and detects the ion chain is always running in the background, and is continuously
interrupted for more advanced user-defined experiments.

Scripting API

To be able to automate much of the experimental operations and to provide a more sophistic-
ated scheduler for calibration experiments, we developed a Python-based scripting interface.

In Ionizer, the path of an arbitrary number of python scripts can be saved in a dedicated
page, and each script can be run by clicking a button next to its path. When Ionizer launches
a script, it opens a dedicated system console and an Ethernet connection to a local port.
Similarly to the connection to the Raspberry Pis described above, the flow of information
is regulated by a server-client model based on the MsgPack library. If needed, it is also
possible to run more then one script in parallel; in this case, a console and an ethernet
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connection will be created for each script, and on the Ionizer side, they will be independent
of each other.

With scripting, it is possible to reproduce any action that can be performed by hand on
Ionizer. To standardize and simplify the writing of scripts, we wrote a set of libraries that
help with the analysis of raw data, but also provide tools for more advanced scheduling of
calibrations. Differently from the Ionizer scheduler, it is based on a queue system rather
than priorities. A calibration experiment is put at the top of the queue depending on the
repetition time of the other calibrations in the queue but also on the outcome of the previous
calibration scan. Each calibration could have a set of dependencies (i.e. a π time calibration
can have the qubit frequency as a dependency), which are scheduled to run immediately
if the calibration was not successful. On the Ionizer side, a calibration scan run from a
Python script is set to have the maximum priority so that no other scan can run until the
calibration is over.

The goodness of a calibration depends both on the reduced χ̃2 and on heuristics set by
the user, like the contrast of a resonance peak. To increase the stability and the success rate
of calibrations, for frequencies or time calibrations, we also provide functions that retake
scans if at first, the fit was not successful. For example, if a frequency resonance is at first
not found, the code can automatically search for it by increasing the scan range and the
number of data points, and then zoom back into the feature once it is found. Also in this
case, the user can easily customize the search by setting the recursion depth and the range
adjustment for each calibration.

In the experiment, we now make use of these tools daily both in the morning for initial
calibration of parameters and throughout the day to keep them calibrated. As an example,
in the morning after turning on all the lasers and loading a single Be-Ca ion chain, the
calibration script automatically calibrates all the relevant parameters (carrier and motional
frequencies, AC Stark shifts, π and π/2 times for all transitions), but also ground state
cooling of the axial motional modes. In about 15 min, the system is ready for the manual
calibration of the entangling gate and the other experiments that we want to run that day.

At the time of writing, we are also extending the scripting capabilities by allowing the
user to control Ionizer from independent scripts. This is a paradigm shift, as Ionizer will not
own the scripts, but on the contrary, they will own and control Ionizer. This new feature
has the advantage of simplifying the process of writing and debugging scripts since one can
test individual parts of code in an environment like the Jupyter notebook. On the other
side, it increases the risk of fragmentation as the users could write their control system
by using Ionizer only as a subroutine that talks with the master board. Group effort and
careful management will, therefore, be needed to avoid this possibility.

4.2 Transport and splitting

Reliable transport, splitting and recombination of ion chains are critical requirements for
the QCCD architecture [26, 27].

In our setup, initial transport experiments were performed by Ludwig deClercq [49], who
also designed and built the AWG boards that control the dc electrodes, known as Direct
Ethernet-Adjustable Transport Hardware (DEATHs). This allowed us to demonstrate par-
allel transport gates [97, 98], in which we performed parallel coherent sequences of quantum
operations on two beryllium ions in different experimental zones using a single recycled laser
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beam. During his Ph.D. work, transport was also used to perform ion velocimetry, which
was used to improve the control of the velocities required for transport gates [99, 100]. Since
then transport and splitting was used for several purposes: beam alignment (Section 5.1.2),
implementing addressed operation for mixed species (Chapter 6) and also for beam profiling
[61].

Each DEATH consists of a motherboard containing two dual-channel 16-bit DACs, which
are run at 100 MSPS (megasamples per second). Every output is then sent to an amplific-
ation and filtering stage that produce voltages in the range between −9.7 V and 9.7 V with
a bandwidth of 50 MHz [49]. The two DACs are controlled by a Microzed board, which is
a compact version of the Zedboard used as the "master" board in the M-ACTION system.

Transport waveforms consist of voltage samples, stored in the internal memory (BRAM
with a capacity of 240 KB) of the FPGA hosted on the Microzed. When a waveform is
run, the voltage samples are sent to the DAC sequentially in forward or reverse mode, with
an adjustable sampling time. The sampling time (the slowdown parameter, in our coding
terminology) is an integer representing the number of clock cycles, which, together with
the total number of samples of a waveform, defines the execution speed of a waveform. A
slowdown of 0 corresponds to the maximum speed for which the waveform is played at 100
MSPS. A typical slowdown value used in our experiments is 49, which corresponds to a 2
MSPS update rate. For a typical waveform with 500 samples, the total execution time with
a slowdown of 49 is approximately 250 µs.

The DEATH boards are controlled both by Ionizer and by M-ACTION system. Ionizer,
through a dedicated page, loads a JSON2 file containing up to 256 waveforms, for a maximum
sample size of 16384. During the loading, Ionizer sends via Ethernet the waveforms to the
Microzed boards [96] and displays in a dedicated page all the details of each waveform,
such as the index, the description label, number of samples and the starting and ending
voltages. In Ionizer, it is also possible to manually trigger each waveform individually both
in forward and reverse mode, by simply clicking a button. Within an experimental sequence,
a dedicated API controls the correct execution of waveforms. From a user perspective, the
most relevant object in the M-ACTION system is the DeathSequence class, which is used to
create a sequence of waveforms. At the beginning of each data point, this sequence is sent
via Ethernet to the DEATHs using a protocol based on the MessagePack RPC (Remote
Call Procedure) library [96]. During the execution of an experiment shot, a digital signal
triggers the execution of individual waveforms in the sequence.

4.2.1 Waveform generation

Details about the generation of waveforms can be found in the Ph.D. thesis of Vlad Negnevit-
sky [61]. Here I will just give an overview of the process for a better understanding of the
results described in the next sections. It is worth noticing that the solver used for the wave-
form generation always assume single-species operations. However, the generated waveforms
are then experimentally used also for mixed-species transport and splitting. In the following
discussion about the solver architecture, I will assume single-species crystals.

In the segmented trap, we have a total of 30 dc electrodes. A voltage vi on the i-th
electrode generates an electric potential Vi(x, y, z), which is dependent on the electrode
geometry and on its surrounding environment. The potential can be expressed as

Vi(x, y, z) = φi(x, y, z)vj , (4.1)
2JavaScript Object Notation, http://json.org/.
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Figure 4.5: a Electrode moments φi for i ∈ [1, 10], located on the top wafer. On top of the image,
the electrode widths drawn to scale. The central experimental zone is at z =0 µm, the left splitting
region is at z =−422.5 µm and the loading zone at z =−1870 µm. The electrode moments on the
right side of the trap are symmteric around 0 µm. The bottom wafer is ideally the same as the top
wafer. This image was taken from Vlad Negnevitsky Ph.D. thesis [61] b. Profile of the function
P (x) according to Equation 4.8 for different values of (a, b) parameters. The solid line correspond
to (a, b) = (3, 1.5), that is the parametrization we use for the transport operations presented in this
thesis.

where the term φi(x, y, z) is the dimensionless potential moment, which is defined as the
potential at position (x, y, z) generated by the electrode for 1 V test voltage. The total
electric potential and field, for a set of voltages {vi} on all the 30 dc electrodes of the trap,
is

V (x, y, z) =
N=30∑
i=1

φi(x, y, z)vi, ~Eu(x, y, z) =
N=30∑
i=1

vi
∂φi(x, y, z)

∂u
, u ∈ {x, y, z}. (4.2)

As shown in Figure 2.1e, the dc electrodes on the top and the bottom wafers are symmetric.
If the same voltage is applied on opposing electrodes, the electric field in the radial direction
is ideally null everywhere along the trap axis (x = 0 and y = 0). If we assume that the ion is
positioned along the trap axis, and in the absence of stray dc fields in the radial plane, we can
ideally suppress the x and y dependence for the total potential and the potential moments
in Equation 4.2. Opposing electrodes are driven by the same DAC chip, to ensure that
temperature-dependent voltage fluctuation between DACs do not cause voltage differences
that could displace the ions radially.

The potential moment of each electrode is obtained from a COMSOL electrostatic
boundary-element simulation of the trap and its surroundings at points on a 3D grid with
5 µm spacing, along and around the trap axis. Figure 4.5a shows the electrode moments for
the electrodes i ∈ [1, 10] on the left side of the trap. The moments for the electrodes on the
right side are mirrored around z = 0.

A positively charged ion of mass m, given some cooling, will settle at local minima of the
total potential, since the force experienced by the single-charged ion is Fz = −e∂V (z)/∂z.
The potential minimum at location z = p can be engineered to be smooth over a range
of tens of micrometers, and can be well approximated by a quadratic potential around the
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minimum [101]. The shape of the harmonic well can then be described as

Vh(z) =
mω2

2e
(z − p)2 + d , (4.3)

where p is the position of the minimum along the trap axis, d a constant dc offset and

ω2 =
e

m

∂2

∂z2
V (z)

∣∣∣∣
z=p

(4.4)

the trapping frequency at point z = p. Generally, the maximum trapping frequency ω at
the trapping location p is constrained by the second derivatives of the electrode moments
in the trapping location ∂2φi(z)/∂z

2|z=p, the highest achievable electrode voltages, and the
dc offset d (especially if it is positive). By design, the rf electrodes are kept at dc-ground;
therefore, a variation of the dc offset d effectively changes frequencies and directions of the
radial normal modes of motion due to the emergence of a static quadrupole.

Generation of transport waveforms

To be able to shuttle the ions along the trap axis, the voltages applied on the electrodes
must vary with time {v1(t), . . . , v30(t)}. For simplicity, let’s consider the transport of a single
potential well. From Equation 4.3 we can parameterize it by the position, the frequency
and the offset (p, ω, d). For general transport operations, these three quantities can change
in time. Following the approach introduced in the Ph.D. of Ludwig deClerq [49] and in
the master thesis of Robin Oswald [100], the set of voltages {v1(t), . . . , v30(t)}, can then be
derived by solving a constrained optimization routine where the a quadratic cost function is
minimized subject to hardware constraints (vi(t) ∈ [−9.7, 9.7] V and the slew rate, dvi/dt,
limited to 4 V µs−1). The quadratic cost function that we minimize is

C =

∫ tf

t0

{∫ zmax

zmin

G
(
t′, z′

)
D
(
t′, z′

)
dz′

+
N=30∑
i=1

[
r0

(
vi
(
t′
)
− vdef

)2
+ r1

(
dvi (t′)

dt′

)2

+ r2

(
d2vi (t′)

dt′2

)2
]}

dt′
, (4.5)

where zmin and zmax are the trap boundaries. The term D(t, z)

D(t, z) = [V (t, z)− Vh(t, z)]2 =

[(∑
i

vi(t)φi(z)

)
−
(m

2e
ω2(t) (z − p(t))2 + d(t)

)]2

(4.6)

is the discrepancy between the desired harmonic potential and the one generated by the
set of voltages {vi} at time t. This discrepancy is minimized only in a region of interest
of radius R around the potential minimum p, parameterized by a Gaussian term G(t, z) =

exp
(
−[z−p(t)]2
R2(t)

)
. The other terms in the cost functions are used to suppress other unwanted

behaviors. The first, weighted by r0, penalizes the voltage deviation from the defined one
vdef, and it is used to set the voltages outside the region of interest defined by G(t, z) to a
default value. The other two terms, weighted by r1 and r2, penalize the first and second
derivative of a waveform, thus limiting the slew rate requirements on the DEATHs output
[100].

The value of electrodes moments φi is given at discrete points along the trap axis spaced
by 5 µm. As a result, we discretize the cost function C both in space and time on a
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K ×M grid, where K is the number of points along the trap axis (usually K = 943, from
z =−2355 µm to z =2355 µm), and M is the number of timesteps (1 ≤ M ≤ 2000, with
a time step of 20 ns to match the DAC sampling rate). The constrained optimization is
currently done in python using a quadratic programming algorithm [100, 61, 49], which
uses the CvxPy library to automate the process of defining the problem to the Mosek3

solver.

During transport, it is desirable to avoid motional excitations, thus reducing the number
of cooling cycles required within a sequence. For the experiments discussed in this thesis,
the maximum transport speed of the ion is below vmax =5 m s−1. For these speeds, the
motional excitation can be suppressed by parameterizing the position p(t) with a smooth
function that minimizes the impulse on the ion [61, 102, 103], and is written as

p(t)− p (t0) = [p (tf )− p (t0)]P

(
t− t0
tf − t0

)
, (4.7)

where

P (x) =
ρ(x)− ρ(0)

ρ(1)− ρ(0)
, ρ(x) = ln

∣∣∣∣ζ(x)− ie−a

ζ(x)− iea

∣∣∣∣ , ζ(x) = exp[ab(2x− 1)] . (4.8)

The a parameter defines the sharpness of the position profile at the beginning and at the
end of transport, while b determines the slope in the middle. Figure 4.5b shows the profile
of P (x) for different pairs of (a, b) parameters. The typical values used in our experiment
are a = 3 and b = 1.5. The dc offset d(t) and the motional frequency ω(t) follow a similar
trajectory to Equation 4.7. A common choice is P (x) = sin2(πx/2), however this was found
to be somewhat inflexible [61]. For this reason we decided to parameterized the position as
described above.

Splitting waveforms generation

To split an ion chain, the potentials need to be engineered to transition from an initial
single well potential, containing the ion chain we wish to split, to a double well with the
two separated strings [104]. The time-dependent dc potential around the splitting region
can be well approximated by a 4-th order polynomial of the form

Vsep (z, t) = α(t)(z − zs)2 + β(t)(z − zs)4 + γ(t)(z − zs) + δ(t), (4.9)

where the cubic term is assumed to be negligible. This is a valid approximation as long
as the electrode geometry and applied voltages are locally symmetric around the splitting
point zs. In our setup the splitting position zs is located at −422.5 (+422.5) µm from the
trap center, for the left (right) splitting region (Figure 2.1e). The parameter δ specifies the
dc offset at zs, while γ is an axial electric field, which is ideally zero. In practice, axial
stray fields and deviation of the experimental potential moments from the model require
this parameter to be calibrated experimentally. The terms α and β are instead related to
the ion separation distance s and the axial center-of-mass angular frequency ω of a crystal
in this potential by [104]

βs5 + 2αs3 = e
2πε0

ω2 = 2α+ 3βs2 e
m

(4.10)

where ε0 is free-space permittivity and mass m.
3https://www.mosek.com



4.2. TRANSPORT AND SPLITTING 63

At the beginning of the separation process, α is positive, and β is small. During splitting,
β is then increased, while α is gradually lowered to a negative value to create a double well
potential. While α is decreased, it is desirable to maximize the motional frequency ω to
minimize the heating generated by external noise (see Section 4.2.2). This can be achieved
by keeping β as high as possible, as it can be seen from Equation 4.10.

The electrodes involved in the splitting process in the left splitting region are the one
from 4 to 8 (Figure 2.1) and their symmetric counterpart on the bottom dc wafer. The
solver introduced above for the generation of the transport waveforms is not optimal for
the splitting process since it uses a constant number of fixed-parameter wells, and it is
not designed to favor specific parameters at the expense of others [61]. Therefore, Vlad
Negnevitsky [61] defined a new solver, used only for the generation of the splitting wave-
forms, that takes into account the 10 relevant dc electrodes around the splitting region,
and accepts only continuous functions to minimize the cost function. For this purpose, the
electrode moments are fitted with 4-th order polynomials over a 200 µm region of interest
[61]. For each electrode i (i ∈ [4, 5, 6, 7, 8, 19, 20, 21, 22, 23] for the left splitting region), the
fits are of the form

φ̃i (z) = α̃i(z − zs)2 + β̃i(z − zs)4 + γ̃i(z − zs) + δ̃i + g̃i(z − zs)3 , (4.11)

where the tildes is used to denote fitted values. As a result, the fitted separation potential
can be written as Ṽsep (zs) =

∑
i viφ̃i (zs). The {α, β, γ, δ} parameters of Equation 4.9 can

then be calculated from the following
α
β
γ
δ

 =


α̃4 . . . α̃8

β̃4 . . . β̃8

γ̃4 . . . γ̃8

δ̃4 . . . δ̃8


 v4

...
v8

 (4.12)

The solver is then designed to minimize the cost function C defined as

C =

8∑
i=4

[
q1 (α(t)− α̃ivi(t))2 + q2 (γ(t)− γ̃ivi(t))2 + q3

(
δ(t)− δ̃ivi(t)

)2
]
−

8∑
i=4

β̃ivi(t) .

(4.13)
For the left splitting zone, the cost function is minimized only for electrodes from 4 to 8
since the same voltage is then applied to the symmetric counterparts in the bottom wafer.
The parameters q1, q2 and q3 determine how closely the desired α, γ, δ parameters are met,
while trying to maximize β.

The α parameter is lowered from a positive α0 to a negative αf . For the results shown
in this thesis, α0 = −αf = 5 × 106 V/m2, which corresponds to a calcium frequency
ω = 2π×780 kHz (for β = 0), although this choice is arbitrary. During splitting, the primary
goal is the minimization of the motional excitation of the ions. This can arise from heating,
uncontrolled stray fields, and impulsive acceleration (due to uncontrolled waveform voltages)
that can happen around the critical point (α ≈ 0) where the confinement is weak. A small
value of the acceleration close to the critical point, s̈CP, can be guaranteed by controlling
the ion separation distance s [105]. Therefore, it is advantageous to re-parameterize the
voltages in terms of s, instead of α. The waveform generation then proceeds as follows.
Initially, the solver is run k times (typically k = 100) for α values between α0 and αf to
produce a set of voltages ~v[k] for each α[k]. From the α[k] and β[k] parameters obtained
by the solver, it is then possible to calculate a the position s[k] according to Equation 4.10.
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Since s[k] is monotonic with respect to α[k], the voltages are re-parameterized by using a
4−th order spline interpolation to the coordinates sets (x, y) = (s[k], ~v[k]), to obtain v(s).

Now by defining the splitting trajectory s(t) between the initial and final separation (s0

and sf ) as
s(t) = s0 + τ(t)ε (sf − s0) (4.14)

with τ(t) = (t− t0)/(tf − t0), and for ε = 3 [105, 61].

Once s(t) is defined, the set of voltages ~v(t) can directly calculated from the function
~v(s).

For the results presented below, the dc offset parameter δ at position (z − zs), is not
constrained and thus the cost term q3 in Equation 4.13 is set to 0. Experimentally we observe
that the dc offset tends to vary throughout the splitting process, reaching the lowest negative
value (−1.5 V) at the critical point to ensure the highest possible trapping frequency at the
critical point for the range of output voltages that the DEATHs can supply.

For symmetric separation, the axial electric field is ideally γ = 0. Nevertheless, fluctuat-
ing stray field and deviations from the true potential moments may require a compensating
axial field during splitting to reduce the motional excitation. In the current version of the
solver, the γ parameter is set to be γ = γcomp for the entire splitting process. To fine-tune
the axial dc field in the left splitting region (−422.5 µm), we differentially add an extra
voltage to the electrodes on the left (Electrodes 5 and 20) and on the right (Electrodes 7
and 22) side of the splitting zone. From the moments of electrodes 5, 20, 7, 22, it can be
shown that when we differentially add 1 V, the resulting net axial field is 1372.8 V m−1.

The most recent splitting experiments apply the axial dc offset by interpolating the split-
ting waveform with another waveform that adds 1 V to electrodes 7 and 22, and subtracts
it from electrodes 5 and 20. To avoid discontinuities in the voltages, the waveform applying
the differential dc offset is designed to smoothly increase (decrease) the offset voltage to
reach the desired value at the critical point as shown in Figure 4.7b. Details of the inter-
polation procedure will be covered in the upcoming Ph.D. thesis of Francesco Lancellotti
[106].

4.2.2 Single species splitting

Within this section, I will present the splitting experiments of a two-ion crystal of the same
species, highlighting the procedure we followed to optimize the splitting operation in the
laboratory. The figure of merit for the quality of splitting is the motional excitation induced
by splitting on both ions, and the time it takes to separate the ions. The potentials for the
entire waveform set used for splitting are shown in Figure 4.6.

Initially, the two ions are in a single potential well located in the experimental zone in
the center of the trap, z = 0. Here the axial modes of motion are cooled to the ground
state following a sequence similar to the one described in Chapter 2.7. After cooling and
state preparation, the waveform sequence is started. First the ions are transported to the
splitting region on the left side of the trap z = −422.5 µm from the trap center (waveform a
in Figure 4.6). The ions are then separated in two different wells with waveform b, and that
in the well 1 (the rightmost one) is transported to the experimental zone in the center of
the trap, where we measure either the ion fluorescence or the temperature of the motional
modes by applying a blue sideband pulse (Section 2.7.4). A second transport waveform c
shuttles the ion in well 2 to the experimental zone for the diagnostic pulse. Finally, the



4.2. TRANSPORT AND SPLITTING 65

0 500 1000 1500 2000 2500
timestep

1.5

1.0

0.5

0.0

0.5

1.0

1.5
ax

ial
 p

os
iti

on
 (m

m
)

a b1 b2 b3 b4 c

1

0

1

2

3

V

Figure 4.6: Potentials for the entire waveform set used for splitting. Waveform a shuttles the ions
from the experimental zone in the center of the trap to the splitting zone. Waveform b separates
them into two wells and shuttles one well to the central experimental zone while moving the second
well to a storage region. Waveform c shifts the second well to the experimental zone and moves the
first well to a storage region. Waveform b consists of different sections: b2 is the actual splitting
waveform generated with the polynomial solver whereas b4 uses the regular transport solver, with
b1 and b3 being an interpolation between the solvers. This image has been taken from the Ph.D.
thesis of Vlad Negnevitsky [61]

ions are recombined in the same potential well by running the entire sequence in reverse.
All waveforms are generated by the transport solver (Section 4.2.1) with the exception of a
part of the splitting waveform b, labeled as b2 in Figure 4.6 which is instead generated with
the polynomial splitting solver (Section 4.2.1). To smoothly transition from the waveforms
generated by one solver to the other, we add interpolation waveforms (with approximately
100 timesteps), labeled as b1 and b3 in Figure 4.6.

For the initial optimization of the splitting process, we run the full transport and splitting
waveform, and we scan the axial field γ over a few tens of V m−1. We then measure the
fluorescence of the ions in the two wells to identify a range in which the two ions separate
in two different wells. A typical fluorescence scan as a function fo the axial field is shown
in Figure 4.7a, and is characterized by clear ’steps’. Experimentally we set γ to be in the
center of the step where the two ions are in two separate wells. We further optimize the
splitting parameters, like the slowdown, by measuring the axial mode temperature of the
two ions after splitting using sideband probes.

The lowest axial excitation results are shown in Figure 4.8 for a two ion single-species
splitting experiment performed either with calcium (panels a and b) or beryllium (panels c
and d). The figure shows the blue sideband Rabi oscillation for the ion in well 1 (panels a
and c) and in well 2 (panels b and d), from which we extract the average motional occupancy,
according to Equation 2.38.

The initial average thermal occupancy of the axial modes before splitting is n̄COM =
0.18(2) and n̄STR = 0.11(1), measured by running a blue sideband Rabi oscillation on each
mode before the ’single’-ion readout following splitting. The BSB Rabi oscillations are then
fitted according to Equation 2.38 to extract the mean phonon occupancy for each mode. The
splitting is then further optimized by tuning the DEATHs slowdown by minimizing the axial
excitation of the two ions after the separation. We find that the lowest axial excitation is
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Figure 4.7: Separation of a calcium-calcium crystal. a The three curves represent the mean PMT
counts in Well 1, 2, and after recombination. For an axial field between −28 ≤ γ ≤ −20 V m−1

there is one ion in each well. Left (right) of this region, the axial field drives both ions into Well
2 (Well 1). The recombined counts show the fluorescence for a repeated detection of the ions in
a single well. b Axial field in the splitting reagion as a function of the waveform timesteps. The
maximum field of γ =1372.8 V m−1 is applied at the critical point. This waveform is interpolated
with the splitting one. The smooth ramp-up and ramp-down avoid first order discontinuities in the
voltages and ensure that the axial field is present mostly around the critical point.

reached for a splitting time of 350 µs for an ion separation distance of 350 µm(approximately
around timestep 900 in Figure 4.6)), where the 0 time is set to be at the beginning of the
splitting waveform sequence (beginning of waveform b2 in Figure 4.6). After splitting, the
fitted thermal state on the axial mode has a mean phonon number of n̄w1,Z = 1.56(6) and
n̄w2,Z = 1.63(7), respectively for the ion in well 1 and 2.

For beryllium, the initial average thermal occupancy of the axial modes before splitting
is n̄COM = 0.13(2) and n̄STR = 0.19(2). After splitting the fitted thermal state on the axial
mode has a mean phonon number of n̄w1,Z = 0.67(3) and n̄w2,Z = 0.76(3), respectively
for the ion in well 1 and 2. In this case, the optimal time taken to separate the two ions
by 350 µm is 325 µs. The lower excitation achieved with beryllium is due to the larger
axial confinement. In fact, while the the lowest normal mode frequency during the split for
calcium is ∼ 2π×330 kHz, it is almost double for beryllium.

Classical simulation and heating rate To reproduce the results, under the assumption
of an ideal model of the trap, Francesco Lancellotti performed classical simulations of the
entire splitting sequence using the potentials generated by the solvers, following a similar
approach to [105, 107]. Details about the simulation will be presented in his Ph.D. thesis
[106], but at the time of writing, we are still not able to reproduce the experimental results.
Starting from ions with no kinetic energy, the expected thermal state distribution after
splitting should have an average mean phonon number of n̄Ca ≈ 0.2(1) and n̄Be ≈ 0.05(2).

The classical simulation also takes into account the heating caused by technical noise
and anomalous heating, which scales inversely on frequency [108, 101]. Taking this into
account is particularly important since, during splitting, the axial confinement is gradually
reduced to reach a minimum at the critical point (ω ≈ 2π×330 kHz for calcium). The
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Figure 4.8: Axial blue sideband Rabi oscillation after the splitting of single-species two ion crystal.
Panel a and b show the blue sideband Rabi oscillation of two calcium ions after splitting. Before
splitting, the axial motional modes are cooled with interleaved sideband cooling to a thermal occu-
pancy of n̄COM = 0.18(2) and n̄STR = 0.11(1). The fitted thermal states of the axial mode after
splitting have a mean phonon number n̄w1,Z = 1.56(6) and n̄w2,Z = 1.63(7)respectively for the
ion in well 1 and 2. Panel c and d the blue sideband Rabi oscillation of two beryllium ions after
splitting. The initial phonon occupancy of the axial modes is n̄COM = 0.13(2) and n̄STR = 0.19(2).
After splitting, we fit a thermal distribution to the axial mode BSB Rabi oscillation with mean
n̄w1,Z = 0.67(3) and n̄w2,Z = 0.76(3), respectively for the ion in well 1 and 2.

measurement of the heating rate in the splitting zone is experimentally complicated and
require lots of changes to the setup. For an initial estimation, we measured the heating rate
in the experimental zone located in the center of the trap and assumed that the heating
rate at the separation location is comparable. The results are shown in Figure 4.9. To
perform these measurements, a single calcium ion is initially ground state cooled in well
located in the center of the trap and with an axial frequency ωz = 2π×1.1 MHz. The axial
confinement is then adiabatically modified to reach the desired axial frequency ω′z. After
leaving the ion in this configuration for a variable time, the confinement is adiabatically
set back to ωz = 2π×1.1 MHz, and the temperature is measured with the blue sideband
method. The heating rate for an axial frequency ω′z, is then extracted by fitting the increase
of the thermal state’s mean phonon number as a function of increasing time spent in the
potential well with frequency ω′z.

For the classical simulation of splitting, we calculate the expected motional heating by
integrating over a time dependent heating rate [105]

δn̄ =

∫ tf

0
Γ(ωz(t))dt, (4.15)

where Γ(ωz) is the heating rate as a function of frequency.
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Figure 4.9: Heating rate as a function of axial trapping freqeuncy, measured with a single calcium
ion. The experimental sequence used to extract it is described in the text. The solid line is a fit of
the function Γ(ωz) = 1/ωαz + c to the experimental data. The fitted scalig parameter is α = 5.84(5)
and the base line is c = 48(5). The presence of a baseline is probably an indication of technical noise
that dominates at higher frequencies. This hypothesis could be tested measuring heating rates at
higher frequencies.

At the of writing, the classical simulations, together with the heating rate values are not
enough to explain the observed motional excitations. However, there is an on going effort
to improve the trap model and the classical simulations.

4.2.3 Beryllium-calcium splitting

The same splitting waveform sequence was also tried for beryllium-calcium crystals. For
this purpose, before running the splitting waveforms, the in-phase and out-of-phase axial
modes were cooled to the ground state, and the two lowest radial modes were EIT cooled.
Following a similar procedure to that described above, it was possible to find an axial field
that would split the two ions in two separate wells. The splitting routine was not particularly
stable and ions were lost every few hundreds of shots. As a consequence, gathering enough
statistics for the temperature measurement of the motional modes after splitting was hard.

To better understand which part of the splitting sequence was causing this much in-
stability, we first analyzed the mixed-species transport to the splitting zone. One feature of
the transport waveform used for splitting is that the dc offset δ is lowered from δ =1.4 V to
δ =−1.5 V. Such a low dc-offset in the splitting zone is used to achieve the highest possible
axial confinement at the critical point during splitting for the range of output voltages of
the DEATHs. However, in the experimental zone, we use positive dc-offsets for stability of
laser cooling. Experimentally we observed that low dc-offsets require high voltages applied
to the shim electrodes to compensate micromotion in the experimental zone, and for dc
offsets below δ =−1 V, the required voltage is beyond the [−30 V, 30 V] range allowed by
the DACs controlling the shim electrodes. As a consequence, radial micromotion is not
compensated during transport.

The normal modes of motion for a mixed-species crystal change in the presence of
additional static fields, which does not occur for single-species chains [51]. Due to the
weaker radial confinement experienced by the heavier mass ion, static radial fields displace
the heavier ion from the trap axis by more than those of the lighter ion. As a result, a
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varying radial field during transport could cause excitations of the motional modes of the
mixed-species crystal [109].

To test whether the main cause of instability is due to the changing dc offset δ, we
perform two experiments using a beryllium-calcium ion chain. In one case, we do a round
trip transport from the experimental zone to the left splitting zone (z =−422.5 µm) keeping
the dc offset constant at 1.4 V, while, in the second case, the dc offset is gradually lowered
to −1.5 V as the ions approach the splitting zone. At the end of the transport, we measure
the motional occupancy of the axial and radial modes to see if there are any differences in
the excitations. In both cases, the voltages applied to the shim electrodes are such that
micromotion is compensated in the experimental zone in the center of the trap for a dc-
offset δ =1.4 V. Before transporting the ions, the axial modes and the two lowest radial
modes are EIT and sideband cooled (see Section 2.8.1 for the modes’ frequencies). The
measured thermal occupancies are n̄Z1 = 0.005 ± 0.01, n̄Z2 = 0.01(1) and n̄Y1 = 0.18(2)
for the in-phase (Z1), out-of-phase (Z2) and lowest radial mode respectively. To ensure
adiabatic transport, the DEATHs slowdown is set to 100, corresponding to 500 µs needed
to cover −422.5 µm.

After the round trip transport, we perform blue sideband Rabi oscillations on the three
different modes to extract the thermal occupancy, as shown in Figure 4.10. A fit of Equa-
tion 2.38 to the curve, assuming a thermal distribution for the motional states, allows to
extract the average motional occupancy of each mode. It is clearly visible that a varying
offset introduces severe heating especially on the lowest frequency radial mode, with a fi-
nal thermal state with n̄Y 1 = 5.0(7). We explain this result as being due to uncontrolled
radial micromotion compensation during transport, whose effect is to induce a tilt of the
mixed-species crystal which causes an energy coupling between the axial and radial modes.

4.2.4 Next steps

Single species transport and splitting are reliable and well-controlled at moderate velocities.
It is used daily for ion loading, beam alignment (Section 5.1.2), MS gate optimization 5.3.4
and to remove hydrides. Future improvements for single-species experiments might go in
the direction of diabatic transport and splitting, though it would not be my immediate
priority since mixed-species splitting is not yet as reliable.

One current limitation is that the waveform generation purely relies on the simulation
model of the trap. As was performed in previous low-excitation single-species separation
work [105, 110], the experimental characterization of the electrode moments may be bene-
ficial to improve the splitting experiments also for mixed-species.

In the laboratory, we tried different approaches to precisely measure the electrode mo-
ments, and the results will be presented in the Ph.D. thesis of Francesco Lancellotti [106].
So far, the most promising method consists of measuring the radial field experienced by
a single calcium ion, trapped in different locations on the trap axis, when a voltage offset
is applied on a single dc-electrode. The radial field intensity and direction is extracted by
measuring how much the micromotion compensation voltages change with and without the
dc-offset on the single electrode. Initial results seem promising though more investigation
is required to check the quality and accuracy of the results.
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Figure 4.10: Blue sideband Rabi oscialltions on the in-phase axial mode (Z1), out-of-phase axial
mode (Z2), and the lowest radial mode (Y1), after round trip transport to the left splitting zone
(z =−422.5 µm). The plots on the left are taken for a transport seqeunce that kept the dc-offset
constant δ =1.4 V. For the plots on the right the dc-offset was reduced from δ =1.4 V to δ =−1.5 V
as the ion approached the left splitting zone. The initial motional occupancy before transport was
measured to be n̄Z1 = 0.005±0.01, n̄Z2 = 0.01(1) and n̄Y 1 = 0.18(2) for Z1, Z2 and Y 1 respectively.
After the round trip transport the fitted motional occupancy for the case of constant dc-offset is
n̄Z1 = 0.21(2), n̄Z2 = 0.02(1) and n̄Y 1 = 0.22(3), while for the varying dc-offset the fitted motional
occupancyes are n̄Z1 = 0.71(5), n̄Z2 = 0.50(3) and n̄Y 1 = 5.0(7).

4.3 Mixed-species reordering and recrystallization

Keeping a well-defined crystal order is required for mixed species experiments as the normal
mode frequencies and amplitudes depend on the chosen crystal configuration. To maintain
a given order, we follow the approach described in [51] where we make use of the mass
dependence of the total potential.

In the setup, reordering is carried out in the center of the trap using the six closest dc
electrodes (electrodes 7, 8, 9 and 22, 23, 24 of Figure 2.1)). It can be performed manu-
ally by triggering the respective DEATH waveforms directly in Ionizer, or it can be done
automatically by the master board at the beginning of each data point.
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4.3.1 Be-Ca-Be reordering

For the experiments described in Chapter 6 we use a symmetric crystal composed of a
calcium ion placed between two beryllium ions. To reliably achieve this configuration, we
apply a radial displacement by adding a voltage offset to the electrodes 7, 8 and 9. Due to
the weaker radial confinement, the calcium ion displaces further. For axial confinement of
ωZ1 = 2π×≈1.5 MHz, and for an electrode voltage offset of 2 V, the ion chain undergoes
a sudden transition to the lowest energy configuration that resembles an isosceles triangle
with the calcium ion at the outer corner. By removing the radial displacement gradually
while simultaneously running the Doppler cooling sequence, the ions return to the trap axis
with the calcium ion placed between the two beryllium.

4.3.2 Be-Ca reordering

For this configuration, a simple radial displacement isn’t enough for a deterministic reorder
due to the axial symmetry of the trap. Therefore, after applying a radial displacement, we
also introduce a twist in the potential [51, 101] by symmetrically increasing the voltages of
electrodes 7 and 24 and reducing those of electrodes 9 and 22. The initial radial displacement
shifts the two ions off-axis towards electrodes 22,23 and 24, while the twist introduces an
axial displacement towards the electrode’s pair 7 and 22. The lower radial confinement of
calcium results in a larger radial displacement. Consequently, a larger axial displacement
arises due to the higher net axial field (calcium is closer to electrodes 22, 23, 24). As
a consequence, the crystal configuration is tilted towards one side of the trap axis. The
reordering process is then concluded by first removing the radial displacement to bring the
ions back onto the trap axis, with the calcium ion on the side of the chain. Then, as the
last step, the axial displacement is removed, leaving the ion in the desired configuration. To
have a reliable reordering we apply an offset voltage of 2 V for the radial ’push’ and a twist
voltage offset of 0.9 V, for a well whose lowest axial frequency is ωZ1 = 2π×≈1.3 MHz and
with the lowest radial frequency at ωY 1 = 2π×≈2.4 MHz .

4.3.3 Recrystallization

Collisions between the ions and background gas atoms can lead to large motional excitations
that bring the ions into a regime where the detection and Doppler cooling beams are far
off-resonance. In our setup, the rate at which this happens is approximately one event every
half a minute for the beryllium-calcium-beryllium crystal.

To detect these events, we monitor the number of photons scattered during Doppler
cooling. If the photon count is below a given threshold, the master board assumes that
a collision happened during the previous shot. For this reason, it automatically flags the
result of the previous shot as bad and retakes it. If the counts remain below the threshold
for several consecutive shots, the system assumes that the ions are in a state with large
motional excitation. In this case, the master board tries to recover the ions by running a
’recrystallization’ sequence that triggers a waveform with a low axial trapping frequency
≈400 kHz (for calcium). Once the ions are in the low axial frequency potential, successive
sequences of pre-cooling and Doppler cooling pulses are applied until the photons detected
during Doppler cooling are again above the threshold, or until a timeout is reached. In the
case of recovery, the waveform is reset to the original and the last data point is repeated. If
the recrystallization did not succeed, the master board alerts the user with an error message
and waits for inputs.



5 Mixed-species experimental operations

This chapter is devoted to the description of the experimental techniques used for the calib-
ration of parameters and the characterization of mixed-species ion chains. In the beginning,
I will describe the Ramsey techniques, which we use to calibrate frequencies and to estimate
spin and motional coherence. I will then continue by describing the experimental charac-
terization of mixed-species normal modes, and finally, introduce multi-qubits states and the
experimental techniques to create entangled states.

5.1 Ramsey sequence and related techniques

Ramsey sequences [111] are widely used in QIP experiments and metrology. In our experi-
ment, they are primarily used for the calibration of qubit frequencies and the measurement
of the qubit and motional coherence.

Starting from a qubit in state |↓〉, a carrier π/2-pulse with phase φ1 prepares the qubit
in a superposition state

|ψ〉 = R̂(π/2, φ1) |↓〉 =
1√
2

(
|↓〉 − ie−iφ1 |↑〉

)
, (5.1)

where R̂(θ, φ) is the qubit rotation matrix defined in Equation 2.24 1. After this, the qubit
is exposed to a Hamiltonian

HR =
1

2
~δ(t)σ̂z (5.2)

for an interrogation time τ , which results in a state

|ψ〉 =
1√
2

(
|↓〉 − ie−i(φ1+Φ(τ)) |↑〉

)
, (5.3)

where Φ is the phase acquired by the qubit during the interrogation time, and defined as
Φ(τ) =

∫ τ
0 δ(t)dt. The sequence is then concluded by applying a second carrier π/2-pulse

with phase φ2. The population in state |↓〉 is

P↓(τ, δφ) =
1

2
(1− cos(Φ(τ)− δφ)), (5.4)

with δφ = φ2 − φ1.

5.1.1 Bare qubit frequency calibration and coherence

In the simple case where the laser has a small detuning δ0 from the qubit transition frequency,
and in the absence of any source of noise that could perturb the frequency of either the qubit

1Note that in this case we assumed the rotation to be perfectly on resonance with the qubit frequency.
This is a valid assumption for small frequency detunings compared to the overall Rabi frequency (δ � Ω),
since the contrast of the Rabi oscillations is affected only to second order in δ/Ω.

72
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transition or the laser, Φ(τ) = δ0τ . The laser frequency can be calibrated to be on resonance
with the qubit by minimizing P↓(τ, δφ) while scanning the interrogation time τ .

If the phase Φ(τ) − δφ fluctuates, the population P↓ differs at each shot. In this case
the average population can be described by

〈P↓〉 =
1

2
[1− C(τ) cos (〈Φ(τ)− δφ〉)] (5.5)

where C(τ) ∈ [0, 1] accounts for the worsening of the contrast. The shape of C(τ) depends
on the spectral properties of the noise. If Φ is sampled from a normal distribution G(Φ),
representing the contribution to Φ of the various slow noise sources, the fluctuations in Φ
are slower than the Ramsey probe time τ . In this case can then C(τ) can be modeled by a
Gaussian [84]. However, if fluctuations in Φ are faster than the Ramsey probe time τ the
expected shape of C(τ) is an exponential.

By fitting the decay function C(τ) to the Ramsey contrast, it is then possible to extract
the dephasing rate. This technique was used to measure the coherence time of both calcium
and beryllium that are presented in Section 2.5 [68, 66, 48].

5.1.2 ac Stark shift calibration

In the presence of ac Stark shifts, the qubit drive induces a frequency shift ωac to the bare
qubit frequency ω0. A standard Ramsey sequence, in the limit of long wait times and short
π/2 times, does not allow the precise calibration of of ωac since during the interrogation
time τ the qubit evolves according to the bare qubit frequency.

In the mixed-species experiments presented in this thesis, we handle ac Stark shifts in two
different ways. In Chapter 6, the frequency of the relevant carrier rotations (beryllium FIQ
transition and calcium optical transition) are calibrated to be on resonance with the bare
qubit frequency ω0, thus neglecting Stark shifts. This approach facilitates the automatic
calibration of the phases φ = ω0(t − tref ) in the M-ACTION system for phase coherent
pulses (see 4.1.2). Nevertheless, the laser drive is off-resonant, and therefore the fidelity of
each pulse is reduced. For the simple case of a carrier π-pulse the inversion fidelity will be
pinv ≈ Ω2/(Ω2 + ω2

ac). The infidelity then scales as ω2
ac/Ω

2. In our experiment, the highest
infidelity is measured for the beryllium co-carrier FIQ transition, where the Rabi frequency
is Ω ∼ 2π×100 kHz and the measured ac Stark shift is ωac ∼ 2π×5 kHz, leading to infidelity
below 1%.

The experiments presented in Chapter 7 take into account ac Stark shifts, such that the
qubit is driven on resonance with dressed-qubit frequency ωd = ω0 + ωac. In this case, the
pulse fidelity is the highest, but the automatic phase calculation is less trivial and require
the use of the phase accumulators described in Section 4.1.2.

Initially we tried calibrating the Stark-shifted frequency ωd by maximizing the inversion
depth of 2n π-pulses. Figure 5.1a shows the inversion probability after 11 consecutive π-
pulses applied on a single beryllium ion, as a function of the laser frequency. The primary
source of contrast loss is slow intensity noise. For a fluctuating Rabi frequency, the depth of
inversion will be different at each shot, thus reducing the contrast and consequently limiting
the precision of the frequency calibration.

For this particular noise source, this issue was then solved by slightly modifying the pulse
sequence. For an ion initially in state |↓〉, we repeat n pairs of pulses, where the second
pulse of each pair undo the operation done by the first. For an initial rotation R(θ, φ), the
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Figure 5.1: Ac Stark shift calibration for the FIQ carrier transition in beryllium. For both panels,
the Stark shift is calibrated as an offset to the bare carrier frequency. Panel a shows the qubit
population after a sequence of 22 π-pulses in-phase with each other as a function of the carrier
frequency offset. In panel b, the qubit population after a sequence of 22 pairs of π/2 pulses, where
the second pulse of the pair undo the rotation applied by the first. Compared to panel a, where
the scan span is 20 kHz, the scan in panel b is less noisy and has a frequency range of 5 kHz, thus
allowing a more precise calibration. The contrast loss in panel a is mostly due to slow Rabi frequency
noise, which causes shot-to-shot changes to the qubit population. The sequence adopted in panel b
is insensitive to Rabi frequency noise as long as it is slower than the timescale of each pair of pulses.

second pulse can undo the operation by doing the rotation R(θ, φ + π). For this to work
correctly, the rotation angle θ (thus the pulse area) of the two pulses has to be the same. If
the Rabi frequency fluctuation is slow compared to the experiment time, this condition is
satisfied, and the frequency can be calibrated by maximizing the |↓〉 population as a function
of increasing n. Figure 5.1b shows a typical scan used for calibrating the carrier ac Stark
shift, where we used a sequence of 22 pairs of π/2-pulses2. The frequency span of the scan
in panel b is 5 kHz, while the one in panel a is 20 kHz. The fitted frequency uncertainties
is for both cases ∼1 kHz. However, the points in panel b are less scattered. As a result, we
expect to be able to run longer sequences before loosing contrast, thus achieving a higher
frequency precision if necessary.

Beryllium Raman beams alignment

In the case of beryllium, we can measure the Stark shift produced by a single Raman beam
by running a Ramsey sequence in which a single Raman beam is turned on within the
interrogation time τ . Each beam alone causes a qubit phase shift φb due to the Stark effect
without altering the qubit populations. Experimentally, we make use of this feature to
check and optimize the alignment of each beam onto two beryllium ions. The experimental
sequence works as follows: the two beryllium ions are prepared in a single potential well,
where they, after cooling and state preparation, undergo a Ramsey sequence. During the
Ramsey interrogation time, a pulse driven with just a single Raman beam causes a phase
shift φ1 and φ2 (respectively for the first and second ion), which does not alter the qubit
population. The value of the phase offset picked up by each ion depends on the ac Stark shift.
At the end of the interrogation time τ , a final Ramsey π/2 rotation maps the phase offset

2 Experimentally we noticed that the sequence also works for longer pulse times.
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Figure 5.2: FIQ 90 Ramsey beam alignment on a two beryllium chain with single-ion detection
mediated by splitting. In both panels, we plot the populations measured on both ions as a function
of the single-beam Raman pulse time. Applying a single Raman beam pulse withing the Ramsey
interrogation time induce a phase offset φ1 and φ2 proportional to the ac Stark shift felt by ion 1
and 2 respectively. The beam position is adjusted until the phase offset is the same on both ions,
as shown in panel b.

to the qubit populations. The two beryllium ions are then separated into two individual
wells and detected separately to readout the acquired phase. We can then compare and
equalize the differential phase shifts induced by each Raman beam in the Ramsey sequence.
Figure 5.2 shows an example case in which the FIQ 90 beam is calibrated to illuminate the
two ions equally. This technique is also applicable in the case where the two qubits cannot
be individually detected. In this case, the joint population p2 = p1,↓p2,↓ can reach 1 (0),
only if both qubits simultaneously reach |↓〉 (|↑〉).

Another equivalent way of aligning beams is to look at the joint qubit populations
while driving Rabi oscillations. We followed this approach for the experiments involving
beryllium-calcium-beryllium chains. In this case, for an FDQ Rabi oscillation, the joint
detection results in three populations

p0 = pa,↑pb,↑, p2 = pa,↓pb,↓, p1 = 1− p0 − p2 (5.6)

where pa,↑ (pa,↓)and pb,↑ (pb,↓) are the single-ion populations of the state |↑〉 (|↓〉) for ion a
and b, and p0, p1, p2 are the joint probabilities of finding 0, 1, 2 ions in |↓〉. The two qubits
evolve independently, and a misaligned beam will cause Rabi oscillations at two different
Rabi frequencies Ωa and Ωb. Neglecting Stark shift and assuming that the two ions are on
resonance, the population p1 reads:

p1 =
1

2
− 1

4
[cos ((Ωa − Ωb) t) + cos ((Ωa + Ωb) t)] , (5.7)

which describes a rapid oscillation at Ωa + Ωb superposed by a slow oscillation at Ωa − Ωb.
The beam alignment is then optimized by minimizing the Rabi frequency difference, which
is equivalent to minimizing the slow oscillations for long pulse times.

5.1.3 Mixed species spectral isolation

For mixed-species experiments, the decoherence and the Stark shift induced on one species
by the laser beams used to perform detection and manipulation of the other needs to be
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Figure 5.3: Mixed species spectral isolation. FIQ Ramsey sequence with a Ramsey wait time of 1 s.
For the orange curve, the calcium detection beam (at the usual detection powers) is turned on for a
500 ms during the Ramsey probe time. The blue curve is instead the comparison Ramsey sequence
where no extra pulse is on during the probe time. The fitted contrast of the oscillations is 0.51(3)
and 0.53(3) for the blue and orange curve, respectively. The fitted phase offset between the two
curves is 11(5) degrees. The corresponding Stark shift induced by the 397 nm laser on the beryllium
FIQ transition is ωac,397 ' 2π×0.06(3) Hz, which is negligible for all the operations discussed in this
thesis.

taken into account. The protocols described in the next chapters rely on the ability to
encode a quantum state in the FIQ qubit of beryllium while the calcium ion is detected and
re-cooled multiple times.

To measure the influence of the 397 nm laser on the FIQ qubit, we used a Ramsey se-
quence where the 397 nm laser was turned on for 500 ms during a total Ramsey interrogation
time of 1 s. The laser settings are the typical ones that we use during calcium Doppler cool-
ing but for ∼ 103 longer time. We compared the contrast and phase of the Ramsey trace,
in which the phase of the second π/2 pulse was scanned, with and without the 397 nm laser
on during the Ramsey interrogation time. The measured data are shown in Figure 5.3.
The fitted Ramsey contrasts, 0.51(3) and 0.53(3) respectively for the beam off and on, are
comparable within the uncertainties. However, we measure a phase shift of 11(5) degrees in-
duced by the 397 nm beam. This corresponds to an ac Stark shift ωac,397 ' 2π×0.06(3) Hz,
which is negligible for all the operations discussed in this thesis.

Similarly, we measured the ac Stark shift induced by the 729 nm laser on the FIQ qubit,
and we obtained a value consistent with 0. As a result, we do not expect a Stark shift on
the beryllium FIQ transition induced by calcium sideband cooling.

The ac Stark shift on the calcium 729 nm transition induced by the beryllium motion-
sensitive Raman beams is approximately 2π×3 kHz. This effect is particularly important
for the calibration of mixed-species gates (Section 5.3.4), as well as for the experiments in
later chapters.
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5.2 Mixed-species normal mode analysis

5.2.1 Shifts in normal modes due to additional effects

The theoretical description of normal modes presented in Section 2.2 and Section 2.8.1
assumed the potential to have the ideal quadratic form of Equation 2.5. Various exper-
imental imperfections may lead to a real potential which deviates significantly from this.
As a result, the normal modes of a mixed-species crystal can be modified, especially in the
case when terms in the real potential have different effects on the individual ion species.
A list of factors that have an impact on mixed-species normal modes is presented in [51],
while experimental observations on beryllium-magnesium crystals in the NIST linear trap
[112] can be found in [101]. Three factors that affect the mixed-species normal modes are
[51] anharmonicities in the trapping potential, pseudopotential gradients, and the radiation
pressure force due to the laser cooling light. In the following, I will just consider the first
two factors as they are most relevant to the results presented in this thesis. If we consider
an ion chain composed of two ions of different species, the radiation pressure induced by the
Doppler cooling laser only modifies the motional modes when the laser illuminates one of
the two ions. In the experiments discussed in this thesis, there is no quantum operation on
one ion species performed in parallel with Doppler cooling on the other species. Therefore,
the effect on the motional modes induced by radiation pressure can be ignored.

Anharmonicities Anharmonicities in the trapping potential have been studied theoret-
ically and experimentally in [101]. Following the approach of [101], consider a mixed-species
chain composed by two ions with mass m1 and m2. The axial normal modes are of primary
interest in the experiments presented in this thesis. For this reason, we only consider a
purely axial static potential given by V (z) = κ2z

2(1 + z/λ3) [101], where κ2 = 1
2Vdc

αz
according to Equation 2.1, and λ3 = κ2/κ3 is a measure for the anharmonicity. Defining
the mass ratio as µ = m1/m2 (with m1 < m2), and following the approach of Section 2.2,
one can show that the equilibrium positions are

z0
± ' ±

l

22/3

[
1∓ 3

25/3

l

λ3
+

3

27/3

(
l

λ3

)2
]

(5.8)

and the eigenfrequencies

ω± '
√

2eκ2

m1
(1 + µ±

√
µ2 − µ+ 1)1/2

(
1∓ 3

28/3

1− µ√
µ2 − µ+ 1

l

λ3

)
, (5.9)

where, in the latter equation, the positive sign is for the out-of-phase motional mode, and
the negative one for the in-phase mode. In both equations, the parameter l is defined as
l = (e/8πε0κ2)1/3. The normal modes are

e′± '
1√

1 + r2
±

 r±

[
∓1− 3

25/3
1+µ√
µ2−µ+1

1
1+r2±

l
λ3

]
1∓ 3

25/3
1+µ√
µ2−µ+1

r2±
1+r2±

l
λ3

 (5.10)

where r± = [±(µ − 1) +
√
µ2 − µ+ 1]/

√
µ. From these results, the corrections to the

eigenvectors scale as l/λ3, with mass-dependent coefficients.
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in-phase (COM) out-of-phase (STR)
(MHz) (MHz)

Be+ − Ca+ 1.33775(8) 3.46787(9)
Ca+ − Be+ 1.33718(9) 3.4753(1)

Table 5.1: Measured axial mode frequencies for beryllium-calcium and calcium-beryllium crystals.
For the in-phase mode, the frequency shift is δfCOM = 2π × 0.6(1)kHz, while for the out-of-phase
mode is δfSTR = −2π × 7.4(1)kHz.

Pseudopotential gradient Pseudopotential gradients along the trap axis can arise from
fabrication imperfections or from trap designs that deviate from the ideal linear Paul trap
[108]. On a mixed-species ion chain, the effect is a differential force on ions with different
mass [51]. Assuming an ion chain composed of two ions of different species with mass m1,
m2, with m1 < m2, the force generated by a pseudopotential gradient on the ion of mass m1

is F1 = −e∇Φpond (m1), where Φpond (m1) is defined in Equation 2.6. For the other species
with massm2, defining the mass ratio as µ = m1/m2, the force is F2 = F1/µ. As a result, the
separation distance between the ions is changed by approximately ±F1(1 − 1/µ)/

(
m1ω

2
)
,

where ω is the oscillation frequency of the single ion with mass m1, and the sign depends on
the direction of the force [51]. If the force vector points from the lighter ion to the heavier
ion, the separation is reduced; it is increased if the force points in the opposite direction.
It follows that the frequency of the axial normal modes is shifted. In particular, the out-
of-phase mode is the most affected, since it strongly depends on the Coulomb interaction,
which in turn depends on the ion-ion distance.

Experimental observations Experimentally, we observe the effects described above by
measuring how the frequency of the axial normal modes shift when the order of a mixed-
species two ion chain is reversed, from beryllium-calcium to calcium-beryllium. Determ-
inistic preparation of each configuration can be achieved with the techniques described in
Section 4.3.2. In the experiment, the axial modes of the mixed-species ion chain are initially
sideband cooled close to the ground state. The motional frequencies are measured using
the beryllium FIQ red and blue sideband transition, applying a weak sideband pulse such
that the sideband π time is approximately 5 ms. Since that the pulse intensity is low, the
calibrated frequency is the bare sideband frequency without a significant ac Stark shift.
The calibrated motional frequencies are calculated as offsets from the carrier frequency. We
suppress systematic errors coming from miscalibration of the carrier frequency by measuring
both the red and the blue sideband frequencies. The measured axial frequency shifts can
be found in Table 5.1.

The measured axial frequency differences are δfCOM = fCOM,Be-Ca−fCOM,Ca-Be = 2π×
0.6(1)kHz for the in-phase mode, and δfSTR = fSTR,Be-Ca − fSTR,Ca-Be = −2π × 7.4(1)kHz
for the out-of-phase mode.

Figure 5.4 shows the simulated frequency difference between a beryllium-calcium and a
calcium-beryllium crystal in the presence of anharmonicities (panel a), and axial pseudo-
potential gradient (panel b). From simulations, considering the individual contribution of
just the anharmonicity term or the pseudopotential gradient is not enough to reproduce the
measured frequency shifts. As a result, the measured frequency shifts are probably a result
of a combination of both terms. From simulation, the measured shifts are consistent with
an anharmonicity term 1/λ3 ≈220 m−1, and a pseudopotential gradient of ≈0.08 eV m−1.
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Figure 5.4: Simulated axial modes frequency difference between the two-ion mixed-species crystal
in the two different orders, in the presence of a. anharmonicities of the trapping potential, and
b. axial pseudo potential gradient. In both cases the frequency difference is calculated as δf =
fBe-Ca − fCa-Be. The calculation assumes a potential well for which the single calcium trapping
frequencies are {ωx, ωx, ωz} = 2π × {2.4, 3.6, 1.125}MHz. The effect of the axial pseudopotential
gradient is to shift the frequency of both axial modes in the same direction. At the same time the
anharmonicity term alone increases the frequency of one mode while decreasing the other.

This result is also consistent with the observed beryllium sideband Rabi oscillations on a
beryllium-calcium-beryllium crystal. For this ion chain, the calculated eigenfrequencies and
eigenvectors in the presence of anharmonicity (1/λ3 =220 m−1), and axial pseudopotential
gradient (0.08 eV m−1) are shown in Table 5.2.

Before the experiment, the axial modes of motion are ground-state cooled, and the two
lower radial modes are EIT cooled. The motion-sensitive Raman beams are aligned on the
beryllium ions to achieve equal illumination. The observed Rabi oscillation on the FDQ
carrier transition is shown in the top plot of Figure 5.5. The populations are fitted to Rabi
oscillations where two Rabi frequencies are floated, in the absence of decoherence. For the
carrier Rabi oscillations, the fitted Rabi frequency imbalance is 1.4(5)%, which defines the
quality of beam alignment.

Rabi oscillations on the FDQ red sidebands for the COM, STR and EGY modes (after
a carrier π pulse) are shown in the other panels of Figure 5.5. A beat is seen in the

Be+
1 Ca+ Be+

2 Be+
1 Ca+ Be+

2

ωα/2π e′z1,α e′z2,α e′z3,α ηBe1 ηCa ηBe2
(MHz)

COM 1.531 0.313 0.897 0.312 0.170 0.05 0.170
STR 4.101 -0.732 -0.018 0.718 0.242 0.001 0.226
EGY 4.188 0.606 -0.441 0.662 0.199 0.015 0.217

Table 5.2: Axial modes eigenfrequencies and mass weighted eigenvectors and Lamb-Dicke paramet-
ers for beryllium-calcium-beryllium crystal in the presence of anharmonicity (1/λ3 =220 m−1), and
pseudopotential gradient (0.08 eV m−1). The single calcium secular frequencies used for the calcu-
lations are [ωx, ωy, ωz] = 2π× [2.4, 3.4, 1.125]MHz. Note that the eigenvectors, and the Lamb-Dicke
parameters of the two beryllium ions are significantly different on the STR and EGY modes.
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Figure 5.5: Beryllium FDQ Rabi oscillations on the carrier (top panel), and on axial center-of-mass,
‘stretch’ and ‘Egyptian’ red sideband (after a carrier π pulse) modes of the beryllium-calcium-
beryllium crystal. The blue, orange and green points represent respectively the two beryllium
populations where both ions are bright, one is dark, and both dark. The curves are fitted to Rabi
oscillations, where two Rabi frequency Ω1,Ω2 are floated, under the assumptions of no decoherence.
The fitted Rabi imbalance Ω2/Ω1 − 1 are 1.4(5)%, 1.6(8)%, 9.6(2)%, 10.0(2)% respectively for the
Rabi flops on the carrier, and the red sidebands on the COM, STR and EGY modes. The Rabi
oscillations in each plot are driven with the same pair of Raman beams.

Rabi oscillations on the STR and EGY modes, indicating a Rabi frequency imbalance of
9.6(2)% and 10.0(2)%. Quantitatively, these results are in rough agreement with the dif-
ferent Lamb-Dicke parameters of the two beryllium ions given in Table 5.2, thus suggesting
that the main causes for the beating are anharmonicities of the trapping potential and axial
pseudopotential gradient.

For an extra confirmation it would be possible to repeat the measurements at different
rf-amplitudes. This way, it would be possible to separate the two effect since only the
pseudopotential gradient will be affected, but not the anharmonicity.

5.2.2 Motional coherence

The mixed-species gates described in Section 5.3.2, rely on the simultaneous manipulation of
one motional mode and the internal qubit of the ion. Any dephasing of the motional mode
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Figure 5.6: Beryllium-calcium-beryllium axial motional coherence contrasts fitted to
a exp[−(t/t0)2]. Each point is the contrast of a calcium motional coherence sequence, obtained
from Equation 5.11. Panel a. shows the motional coherence of the COM mode, while panel b.
shows the motional coherence of the EGY mode. In both cases, the motional coherence is meas-
ured with and without line triggering. The measured coherence times for the COM mode with and
without line triggering are 5.2(6) ms and 2.8(2) ms. For the EGY mode, the measured coherence
times are 0.92(2) ms and 4.9(2) ms.

used during the gate leads to errors. The sources of motional dephasing are processes causing
fluctuations of the trap potential, like fluctuating electric fields or currents, which change
at every shot of the experiments. A detailed investigation of motional decoherence due to
the coupling with different reservoirs can be found in [113]. A major source of dephasing is
trap frequency fluctuations which can be modeled by the Hamiltonian Hd(t) = ~δm(t)â†â,
where δm(t) is the frequency fluctuation of the motional mode m and the â† (â) is the rising
(lowering) operator for that mode.

Motional dephasing can be probed with a Ramsey technique. For simplicity, assume
that for a given ion chain, the motional quantum states are coherently coupled by a laser
pulse sequence, which excites only one ion. This can be achieved with single-ion addressing
[114], or, for the mixed-species ion chains used in this thesis, by addressing only one ion
species. The motional mode under investigation is initially ground-state cooled, such that
the initial state is |↓, 0〉. As for a standard Ramsey sequence, a carrier π/2-pulse with phase
φ1 prepares the state in (|↓, 0〉 − ie−iφ1 |↑, 0〉)/

√
2. A motion-subtracting sideband π-pulse

then prepares the state in (|↓, 0〉− ie−iφ1 |↓, 1〉)/
√

2. The system is then left to evolve under
the Hamiltonian Hd(t) for a time τ , during which the motional states |↓, 1〉 acquires a phase
e−iΦ(τ), where Φ(τ) =

∫ τ
0 δm(t)dt. The sequence is concluded by another sideband π-pulse

followed by a carrier π/2-pulse with phase φ2. The population in |↓〉 is

P↓(τ, δφ) =
1

2
(1− cos(Φ(τ)− δφ)), (5.11)

with δφ = φ2 − φ1. The oscillation as a function of the δφ is similar in shape to that of
Equation 5.4, with the difference that the motional mode energy fluctuation is probed.

Experimental results for single ion motional coherence measurements can be found in [47,
66]. For a single calcium ion, the axial mode coherence time is measured to be approximately
30 ms, while for the radial modes, it is ≈1 ms. This indicates that the radial confinement
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fluctuates more than the axial one due to rf power fluctuations, as discussed in Paolo
Colciaghi’s Master thesis [115].

To better understand the results discussed in Chapter 6, the motional coherence of
the axial modes of the beryllium-calcium-beryllium crystal was also probed. The Ramsey
sequence is performed on the calcium ion, and the results are shown in Figure 5.6. As
discussed in Chapter 2.8.1, the coupling of the calcium ion to the "stretch" mode is close
to zero; therefore, only the COM and the EGY modes can be probed. We observed that
the coherence times greatly improved when the experiment was line triggered3. The COM
coherence time increased from 2.8(2) ms to 5.2(6) ms, while for the EGY mode it increased
from 0.92(2) ms to 4.9(2) ms. This suggests, the presence of fluctuating electric fields inside
the vacuum chamber in phase with the mains, either on the rf or dc electrodes, probably due
to ground loops or pickup noise. At the time of writing, we have not been able to identify
the source of such a ground loop in our system.

5.3 Multi-qubit gates

To achieve general-purpose quantum computation, it is necessary to be able to perform
operations that span a large Hilbert space. Early theoretical work [116], showed that an
arbitrary computation could decomposed into a set of single-qubit operations and a two-
qubit operation, offering a universal set of gates for the control of an arbitrarily large Hilbert
space. However, gates involving more than two ions can still be beneficial for quantum error
correction (QEC) (see Chapter 6) [117]. The methods described in this section are valid for
both two-qubit and multi-qubit operations.

For trapped ion quantum information processing, several different approaches have been
proposed for the realization of deterministic quantum gates between ions [118, 119, 120, 121,
122, 123]. One of the first two-qubit gates based on the Coulomb interaction between two
ions is the Cirac-Zoller gate [118, 124]. It relies on the ions to be initialized in the motional
ground state and manipulated with individually-addressed red and blue sideband pulses.
Under the application of the red (blue) sideband Hamiltonian, the state amplitude for
|↓, n = 0〉 (|↑, n = 0〉) remains untouched. Conditioned on the ion states, the motional mode
used during the gate is then excited with a single-ion sideband pulse, which in turn affects
the internal state of the other ion when driven with red/blue sidebands. An engineered
sequence of sideband pulses on each ion realizes the entanglement between the internal
states of the two ions.

Current experiments usually replace the Cirac-Zoller gate with geometric phase gates
that are based on the state-dependent motional displacement [119, 125, 122]. Compared
to the Cirac-Zoller gate, geometric phase gates do not require individual-ion addressing,
and the ions do not need to be cooled to the ground-state as long as the Lamb-Dicke
approximation is valid [94, 126, 25].

Within this section, I will first introduce the definitions and the main properties of
multi-qubit entangled states. I will then continue, revisiting the general theory for mixed-
species Mølmer-Sørensen (MS) gates, also presenting the typical techniques used to estimate
the fidelity of the states created within the experiment. Finally, I will present the main
experimental results obtained for a beryllium-calcium and beryllium-calcium-beryllium MS
gates, which will be useful for the later chapters.

3With line triggering each experimental shot is triggered to start at the identical phase in the mains
cycle.
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5.3.1 Bell and GHZ states

A general two-qubit state can be expressed in terms of a linear combination of Bell states,
which form a complete basis for the Hilbert space spanned by two qubits [6]. They are
defined as

|Ψ+〉 =
1√
2

(|↓↑〉+ |↑↓〉), |Ψ−〉 =
1√
2

(|↓↑〉 − |↑↓〉)

|Φ+〉 =
1√
2

(|↓↓〉+ |↑↑〉), |Φ−〉 =
1√
2

(|↓↓〉 − |↑↑〉) .
(5.12)

The states |Ψ±〉 (|Φ±〉) are said to have an odd (even) parity. For two qubits the parity is
defined as (p↓↓+ p↑↑)− (p↓↑+ p↑↓), where pij is the probability of measuring the two qubits
in state i, j ∈ [↓, ↑]. As a result, the parity of the even Bell states is 1, while it is -1 for the
odd Bell states.

Following the approach described in [61], it is possible to show that with a global two-
qubit carrier rotationR2(θ, φ) = R(θ, φ)⊗R(θ, φ) (where R(θ, φ)is defined in Equation 2.24),
one can transform each Bell state into another with the exception of singlet state |Ψ−〉. The
two-qubit rotation matrix in the Bell state basis can be written as [61]:

|Φ+〉 |Φ−〉 |Ψ+〉 |Ψ−〉


|Φ+〉 1− 2 cos2 φ sin2 θ
2 −i sin 2φ sin2 θ

2 −i cosφ sin θ 0

|Φ−〉 i sin 2φ sin2 θ
2 1− 2 sin2 φ sin2 θ

2 − sinφ sin θ 0
|Ψ+〉 −i cosφ sin θ sinφ sin θ cos θ 0
|Ψ−〉 0 0 0 1

from which it is clear that the singlet state |Ψ−〉 is not altered by global rotations. This
feature is important for the experiments presented in Chapter 6.

To explicitly give a set of rotations, assume that the initial state is the triplet |Ψ+〉. As
it will become clear in Section 5.3.2, this is an easy state to prepare with ions. The other
Bell states can then be created by

|Φ+〉 = iR
(π

2
, 0
)
|Ψ+〉

|Φ+〉 = −iR
(π

2
, π
)
|Ψ+〉

|Φ−〉 = ∓R
(π

2
,±π

2

)
|Ψ+〉

(5.13)

One other property of Bell states is that they are simultaneous eigenstates of the SZ =
Z ⊗ Z and SX = X ⊗ X operators. This property will be relevant for the experiments
discussed in later chapters, where we prepared and stabilized Bell states by measuring SZ
and SX and applying correction pulses depending on the measurement outcome.

Bell states can also be generalized to maximally entangled states with more than two
ions. Examples are the Greenberger–Horne–Zeilinger (GHZ) states [127]. For n qubits one
of them can be written as |GHZ〉 = |↓〉⊗n+|↑〉⊗n√

2
. GHZ states composed of 3 qubits, are

particularly relevant for the work presented in this thesis, as they are used for diagnosing
the beryllium-calcium-beryllium multi-qubit gate (see Section 5.3.4).
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5.3.2 Mixed-species Mølmer-Sørensen gate

For the experiments discussed in this thesis, the only multi-qubit entangling gate that
we used is the Mølmer-Sørensen (MS) gate [119, 25, 125], which is closely related to an
alternative technique called the geometric phase gate [122]. For the description of the gate
mechanism, I will assume the case in which the gate is performed between two ions of
different species trapped in the same potential well. Following the two-ion case, the result
will be generalized to the entanglement of N ions.

The MS gate is based on the simultaneous drive of the red and blue sideband, off-resonant
from the shared motional mode with frequency ωm. Each ion, j = 1, 2, is illuminated by a
bichromatic beam with frequencies ωr,j = ω0,j−ωm−δj and ωb,j = ω0,j +ωm+δj , with ω0,j

the carrier transition frequency of ion j, and δj the detuning from the motional sideband.
In the following derivation I will assume that the ions are coupled to a single motional
mode. For this assumption to hold, the laser has to be tuned close to a resonance of a single
motional mode in the weak coupling regime, such that excitations on other modes can be
neglected. Under these assumptions, the driving Hamiltonian in the interaction picture can
be written according to Equation 2.15 as:

Ĥ(t) =
∑
j=1,2

Ĥ
(j)
rsb + Ĥ

(j)
bsb =

∑
j

~
2

Ωj σ̂
(j)
+

(
ei[(ωm+δj)t+φr,j ] + e−i[(ωm+δj)t−φb,j]

)
× exp

[
iη
(
âe−iωmt + â†eiωmt

)]
+ h.c.,

(5.14)

where the sum runs over both ions, the operator σ̂(j)
+ is the raising operator for ion j, φr

(φb) is the phase of the red (blue) sideband, and the Rabi frequencies of the red and blue
sidebands are equal.

In the Lamb-Dicke regime, making the rotating-wave approximation, the above expres-
sion can be written as:

Ĥ(t) =
∑
j=1,2

~
2

Ωj σ̂
(j)
+

(
âe−i(δjt−φr,j) + â†ei(δjt+φb,j)

)
+ h.c. (5.15)

where Ωj = ηjΩ0,j is the sideband Rabi frequency.

Equalizing the sideband Rabi frequency (Ω1 = Ω2 = Ω) and the detuning (δ1 = δ2 = δ),
the previous expression can be written as:

Ĥ(t) = −
∑
j=1,2

~
2

Ω
(
âe−i(δt+φm,j) + â†ei(δt+φm,j)

)
σ̂π

2
−φs,j (5.16)

with
σ̂φs,j = σ̂x cosφs,j + σ̂y sinφs,j , (5.17)

where we introduced the spin phase φs,j = (φr,j + φb,j)/2 and the force phase φm,j =
(φb,j − φr,j)/2.

To gain an intuitive picture of the dynamics, assume that the Hamiltonian is applied to
just a single ion (j = 1). In this case, we can write the propagator for an infinitesimal time
as:

e−iH(t)dt/~ = exp
(
dα(t)a† − dα∗(t)a

)
= D(dα(t)) (5.18)
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where D(dα(t)) is the displacement operator and

dα(t) = 2iΩσπ
2
−φs,1e

i(δt+φm,1)dt (5.19)

is the infinitesimal complex displacement parameter. Note that the displacement strength is
proportional to Ω, and is conditional on the qubit state in the σπ

2
−φs,1 basis, which explains

why φs is called spin phase. The direction of the displacement at a given time t is instead
given by

arg(dα(t)) = ± [π/2 + δt+ φm] , (5.20)

where the ± sign is for the two eigenstates of the σπ
2
−φs,1 operator. At t = 0 the direction

of the "force" in phase space is solely determined by the force phase φm,1.

The dynamics can then be described in the interaction picture phase space4. Assuming
a constant drive Ω = const, the displacement for an eigenstate of the σπ

2
−φs,1 operator,

follows a circular trajectory that closes after a period t = 2π
δ .

When applying the bichromatic pulses to both ions, it is important to remember that
the motional mode is shared and that each ion can have a different φs and φm. Those
phases can be independently set by adjusting the red and blue sideband phases. Let us
assume that the sideband phases are calibrated such that φm,1 = φm,2 = 0 (this assumption
will be justified later in the text). Then, the Hamiltonian of Equation 5.16 can be solved
analytically using the Magnus expansion to get the propagator [128]

ÛMS(t) = D̂
(
α(t)Ŝφs,1,φs,2

)
e
−iΦ(t)Ŝ2

φs,1,φs,2 (5.21)

where Ŝφs,1,φs,2 = σπ
2
−φs,1 + σπ

2
−φs,2 and

α(t) =
Ω

2δ

(
e−iδt − 1

)
Φ(t) =

Ω2

4δ

(
t− sin(δt)

δ

) (5.22)

are the complex displacement parameter and the geometric phase. After a gate duration
tg = 2π/δ, the propagator reads

U(tg) = exp

[
−iΩ

2π

2δ
Ŝ2
φs,1,φs,2

]
. (5.23)

If we set the sideband Rabi frequency Ω = δ/2 the propagator becomes

UMS = exp
(
−iπŜ2

φs,1,φs,2/8
)

(5.24)

which produces the following state mapping:

| ↑↑〉 → 1√
2

{
| ↑↑〉 − iei(φs,1+φs,2)| ↓↓〉

}
| ↑↓〉 → 1√

2
{| ↑↓〉 − i| ↓↑〉}

| ↓↑〉 → 1√
2
{| ↓↑〉 − i| ↑↓〉}

| ↓↓〉 → 1√
2

{
| ↓↓〉 − ie−i(φs,1+φs,2)| ↑↑〉

}
.

(5.25)

4 Defined by the position and momentum coordinates that rotate at the motional frequency ωm with
respect to the laboratory (x, p) coordinates
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Therefore, initializing the two ion states in |↓↓〉, it is possible to create a superposition of
even Bell states.

In the general case in which the force phases acting on the two ions are different, then
after a gate time tg = 2π/δ, the geometric phase acquired by the four basis states (defined
as{|±±〉}, with |±〉j the eigenstates of σπ

2
−φs,j ) is [40]

ϕ|++〉,|−−〉 =
πΩ2

2δ2
cos2

(
φm,1 − φm,2

2

)
ϕ|+−〉,|−+〉 =

πΩ2

2δ2
sin2

(
φm,1 − φm,2

2

)
.

(5.26)

From these relations, assuming Ω = δ/2, the geometric phases for the different parity states
differ by π/8 only if φm,1 − φm,2 = 2nπ with n ∈ N.

Equation 5.21 is also valid for more than two ions, with Ŝ =
∑

j σπ2−φs,j . For an even
number of ions, the creation of GHZ states is straightforward. For an odd number of ions,
the mapping is complicated by the fact that each ion is involved in an even number of
pairwise interactions with the other qubits [125, 61]. Nevertheless, the GHZ states can be
created by an extra π/2 rotation with phase π applied to all qubits before or after the gate.

5.3.3 Parity oscillations and fidelity

Consider two ions initially prepared in |↓↓〉, that are entangled by an MS gate with spin
phases φs,1 and φs,2. According to Equation 5.25, the final state is ideally in a superposition
of the even-parity Bell state |B〉 = α |Φ+〉 + β |Φ−〉. Due to experimental imperfections,
the real state will not be |B〉, but can be represented by a density matrix ρ̂. We can then
extract the state fidelity as

F = 〈B| ρ̂ |B〉 . (5.27)

The most general method is to perform state tomography to reconstruct the full density
matrix; however, to extract the fidelity of |B〉, it is sufficient to measure only a subset of
the full density matrix [129, 84].

Considering a two-ion entangled state, it is enough to measure the diagonal elements
ρ↓↓, ρ↑↑ and the off-diagonal coherence elements ρ↑↓ = ρ∗↓↑. The diagonal terms can be easily
obtained by measuring the qubits at the end of the MS gate. To measure the off-diagonal
terms, we apply a rotation R(π/2, φ)5 after the MS gate to both ions, which maps the
off-diagonal elements to the diagonal ones [84]. We then measure the spin states. From
the discussion in Section 5.3.1, for a suitable φ, we map the even-parity Bell state to the
odd-parity state. As a result, the parity of the states oscillates as a function of φ. The
odd-parity oscillation can then be modeled as [61]

podd =
1

2
+
C

2
cos (2φ+ φoff) , (5.28)

where φoff is an offset phase that depends on the spin phases applied during the gate, and
C ∈ [0, 1] is the contrast of the oscillation that also provide a measure for |ρ↓,↑|.

The Bell state fidelity is calculated according to

F =
1

2
(ρ↓↓ + ρ↑↑ + 2 |ρ↓↑|) =

1

2
(ρ↓↓ + ρ↑↑ + C) . (5.29)

5In the rest of this thesis, this pulse is usually referred to as parity pulse.
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Figure 5.7: Mixed species MS gates and parity scans. The populations are labeled as pi,j where i
(j) denotes the number of beryllium (calcium) ions measured in |↓〉. In panel a and b we find the
population dynamics as a function of the MS gate pulse time, respectively for beryllium-calcium and
beryllium-calcium-beryllium gates. Solid lines are not a fit to the data, but MS gate simulations
with the optimal parameters found in the experiment. Simulations are performed by solving the
master equation, which neglects the off-resonant drive of other transitions. Panel c and d are the
parity scans. The fitted contrasts are 98.9(3)% and 90.4(6)% for c and d respectively. While for
beryllium-calcium gates, the parity is applied right after the MS gate, for the three-ion case an extra
π/2 rotation on all ions after the gate is required to create a GHZ state.

Similar methods are also applicable for a maximally entangled state with more than two
qubits [130, 129]. In the particular case of three entangled qubits, the odd parity oscillations
can be modeled as

podd =
1

2
+
C

2
cos (3φ+ φoff) . (5.30)

Note that in this case the period of the oscillation is 2π/3.

5.3.4 Mixed-species MS gate optimization

For both calcium and beryllium, the gate is implemented by applying two rf tones generated
by two DDS channels to a single pass AOM, as explained in [47]. The two rf voltages applied
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to the AOM are

Vbsb/rsb(t) = V0 cos {[ωrf ± (ωm + δ) + δc] t+ φs ± φm} (5.31)

where ωrf is the frequency required to drive the carrier transition, δ the differential detuning
defining the gate speed, and δc a common detuning needed to compensate the electric ac
Stark shift induced by the sidebands or by the drive of the other species. The optical field
amplitude is then written in terms of the amplitude modulation

E = E0 cos [(ω0 + δc) t+ φs] cos [2 (ωm + δm) t+ 2φm] (5.32)

For mixed-species operations we use two independent sets of AOMs (one per species), and
a total of four tones are required to drive the gate. As a result, the amplitudes, detunings
and phases can be individually controlled for each species.

When calibrating the mixed-species MS gate, the differential detuning δ and the motional
frequency ωm are set to be equal for both species. Before the fine-tuning of the gate,
the calcium and beryllium blue sideband Rabi frequencies are equalized by using the blue
sideband π time as the judgment parameter. Afterward, the amplitudes of the red sidebands
are set to be equal in power to the relative blue sideband amplitude. For this operation, we
independently switch on the blue and red sideband pulses and adjust the red sideband optical
power amplitude to match that of the blue sideband using a photodiode (one photodiode
per ion species). As a final step, both sidebands are turned on simultaneously to check that
the modulation depth is close to 100%. If the rf amplitude is too high the intermodulation
of sideband tones mediated by non-linearities inside the AOM (or in the rf amplifier needed
to drive the AOM)might create a tone at ω

rf
, which would reduce the overall fidelity of the

gate [131].

Once the amplitudes are roughly calibrated, the force phases of the beams acting on the
two species are calibrated to be in-phase on the oscilloscope. For this purpose, we make sure
that the model of the photodiodes, the gain settings and the cable length are the same for
both species. This procedure defines an initial value of the phases, which are then scanned
using the gate results as a proxy for the calibration. Nevertheless, we experimentally observe
that the initial phases are within 10% of the calibrated ones.

Once all the relevant parameters are coarsely set, we fine-tune them by optimizing the
qubit populations after driving the gate for multiple gate times. Depending on the ion
crystal, the procedure is slightly different and will be explained in the next subsections.

Beryllium-calcium MS gate

For a two-qubit MS gate, we usually optimize parameters close to the gate time, using
the qubit populations as a proxy. The large number of parameters to be calibrated often
require heuristics and experience for the correct calibration. Often, a miscalibration of
some parameters leads to a locally-optimal set of calibrated parameters. Experimentally
we noticed that changing the initial state of the ion before the MS gate, often helps the
calibration procedure. Different input states undergo different gate dynamics, and could
show different sensitivity to the various parameters. Experimentally we calibrate the gate
parameters with different input states, by applying a π pulse to one of the ions before the
MS; we notice that when the set of parameters is around the global optimum, the parameter
scans show the same optimal points with and without the π pulse applied.

The best beryllium-calcium MS gate observed so far is shown in Figure 5.7a and c.
The measured parity contrast is 98.9(3)% with an estimated fidelity of 98.4(9)%, which is
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Figure 5.8: Mixed-species MS gate oscillations up to 7 gate times. Panel a is for a beryllium-
calcium gate, while panel b is for a beryllium-calcium-beryllium MS gate. The populations are
labeled as pi,j where i (j) denotes the number of beryllium (calcium) ions measured in |↓〉. For
the three-ion case, the rich dynamics at odd multiples of the gate time complicates the calibration
process. For this reason, we mostly used the features at even multiples of the gate time, where only
p2,1 is non-zero.

in between the fidelity observed for two-beryllium and two-calcium Bell states [61]. Single-
species MS gate data can be found in the Ph.D. thesis of Vlad Negnevitsky, and the observed
fidelities are 97.8(4)% and 99.4(6)%, for beryllium and calcium respectively.

For the measurements in Figure 5.7, the cooling sequence is composed of EIT cooling
centered on the lowest radial mode, followed by beryllium sideband cooling on the out-of-
phase axial mode, and finally calcium sideband cooling on the axial in-phase mode (which
is the mode used for the gate). All axial modes are cooled below n̄ ≤ 0.1 quanta.

Beryllium-calcium-beryllium MS gate

In the case of beryllium-calcium-beryllium, the MS gate calibration sequence is slightly
simplified. The beryllium parameters can be independently calibrated following a procedure
used for single-species MS gate, which is very similar to the one described above, thus
calibrating a two-beryllium MS gate. As discussed in Section 5.1.3, the calcium 729 nm
laser does not induce an ac Stark shift on the beryllium ion; therefore, once the beryllium



90 CHAPTER 5. MIXED-SPECIES EXPERIMENTAL OPERATIONS

Error sources Infidelity
Beryllium readout 1.6%
Motional heating rate 0.4%
Motional coherence 0.2%
Raman scattering 0.2%
Calcium spin coherence 0.1%
Unequal illumination 0.05%
Debye-Waller fluctuation 0.02%
LD approximation 0.002%
Total ∼ 2.57%

Table 5.3: Error sources and estimated contributions to infidelity of three-qubit GHZ state gener-
ated with a beryllium-calcium-beryllium ion chain; miscalibration errors are not included.

parameters are optimized only the calcium ones need to be adjusted. Figure 5.7b, shows the
population dynamics at different times for the three-ion MS gate. Around the gate time, the
presence of multiple non-zero populations complicates the calibration of the parameters since
a large number of experiments are required to reduce the statistical errors. We obtained
significant improvements when calibrating at even multiples of the gate time, where only
on population is non-zero. A time scan up to seven gate times is shown in Figure 5.8b.

The best gate observed so far is shown in Figure 5.7. The parity contrast is 90.4(6)%,
and the estimated GHZ state fidelity is 93.8(5)%, which is significantly worse than the
two-ion Bell state.

For this scan, the initial cooling sequence is composed of EIT cooling optimized to pre-
dominantly cool the lowest radial mode, followed by beryllium interleaved sideband cooling
on the axial STR and EGY mode, and finally calcium sideband cooling on the COM mode.
Also in this the case all the modes are cooled below n̄ ≤ 0.1 and the sideband Rabi oscilla-
tions are shown in Figure 5.5.

5.3.5 MS gate errors

Within this section, I will present the analysis of the error sources contributing to the GHZ
and Bell state fidelities measured with beryllium-calcium-beryllium and beryllium-calcium
ion chains, respectively. Finally, I will conclude this chapter highlighting how some of these
errors could be experimentally reduced.

Beryllium-calcium-beryllium MS gate

Contributing error sources to the beryllium-calcium-beryllium MS gate are summarized in
Table 5.3.

The leading source of infidelity is the readout error of the two beryllium ions. Beryllium
qubit detection is realized by applying a resonant pulse (driving the

∣∣S1/2, F = 2,mF = 2
〉
↔∣∣P3/2, F = 3,mF = 3

〉
transition) for 200 µs as described in Chapter 3, in which the |↓〉 pop-

ulation is shelved in the |F = 1,mF = −1〉 state. The detection laser beam size is much
larger than the ion separation. As a result, the recorded histograms are drawn from a mix-
ture of three photon-count distributions corresponding to the states |↓↓〉, |↓↑〉 or |↑↓〉, and
|↑↑〉. We then infer the two-ion populations by fitting the aggregate histogram of the counts
for an experimental point with a model distribution that is the sum of three Poisson dis-



5.3. MULTI-QUBIT GATES 91

tributions (see Section 3.2), with fitted averages λ0 = 0.151(1), λ1 = 26.0(3), λ2 = 52.1(3).
The three Poisson distributions overlap due to the finite efficiency of our photon collection
system and optical pumping during detection. Optical pumping during detection results
in a photon-counting statistic that is not Poissonian (see Section 3.3). We can calculate
the readout infidelity caused by fitting pure Poisson distributions, assuming the single-ion
pumping rates given in Section 3.3 and extending them to the two-ion case Denoting as
eij (with i, j ∈ [0, 1, 2]) the probability of mistakenly identify i bright ions as j bright ions,
we calculate e01 = 0.02, e02 = 0.02, e10 = 9 × 10−4, e12 = 5 × 10−3, e20 = 9 × 10−5 and
e21 = 5× 10−3. These readout errors contribute 0.016 to our GHZ-state infidelity.

For the COM motional mode, the measured heating rate is approximately 100 quanta/s.
The heating process can be modeled by a Lindblad term L− =

√
γa, with γ the heating

rate. For the single-loop gates implemented here, this contributes an error εh = γtg/2 [131],
resulting in our estimate of 4× 10−3.

As discussed in Section 5.2.2, the COM mode motional coherence contrast is well de-
scribed by a Gaussian profile. The measured motional coherence time is 2.8(2)ms (without
line triggering), which is approximately 40 times longer than the gate time. We estimate
the infidelity resulting from this slow motional frequency noise by numerical simulation of
the GHZ-state infidelity resulting from an error in gate detuning δ during each experimental
shot, sampled from a Gaussian probability density function. This results in an expectation
infidelity of 2× 10−3.

In our setup, calcium spin coherence is ∼1.7 ms, as discussed in the Ph.D. thesis of
Christa Flühmannn [66]. The main contribution to spin dephasing is slow frequency noise
arising from laser frequency fluctuations (estimated σL ≈ 2π×99 Hz) and slow magnetic
field noise, σm ≈81 µG (transition frequency sensitivity of 1.12 MHz/G). The GHZ state
infidelity is then estimated by numerical simulation of the MS gate infidelity resulting from
a shot-to-shot calcium carrier frequency offset, sampled from a Gaussian distribution with
σ =190 Hz. This results in expectation infidelity of 1× 10−3.

Spontaneous Raman scattering is an inelastic process that can produce leakage of the
population from the qubit manifold into other hyperfine states. The resulting states will
predominantly be detected as dark and will contribute to the GHZ state’s fidelity as a
systematic bias. Following the description found in [133, 48], one can calculate the rate of
the photon scattering event from the ground-state hyperfine level |i〉 to the ground-state
hyperfine level |f〉 (i 6= f for Raman scattering) using the Kramers-Heisenberg formula

Γi,f =
g2

4
γ
∑
q

∣∣∣∣∣∣a
(1/2)
i→f
∆

+
a

(3/2)
i→f

∆−∆F

∣∣∣∣∣∣
2

(5.33)

where g is the single-photon Rabi frequency, γ = 2π×19.6 MHz is the the natural linewidth
of the P1/2 states, and a

(J)
i→f is the transition amplitude from state |i〉 to |f〉 through an

intermediate state |q〉 in the PJ manifold [133, 48]. The sum runs over all the excited
states |q〉 that belong to the P1/2 and P3/2 manifolds. ∆ = −2π×230 GHz is the Raman
detuning from the P1/2 manifold, and the ∆F is the frequency difference of the P1/2 and
P3/2 manifolds. Assuming the Raman beams to have linear π and σ+ + σ− polarization,
respectively, it can be calculated that the the Raman scattering probability during a single-
loop MS gate (73.3 µs long, and η = 0.115 the beryllium Lamb-Dicke parameter for the axial
COM mode) performed on the beryllium FIQ transition is ≈ 3 × 10−3. This contributes
2× 10−3 to the GHZ state infidelity.
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Error sources Infidelity
Beryllium readout 0.3%
Motional heating rate not measured
Motional coherence 0.1%
Raman scattering 0.09%
Calcium spin coherence 0.04%
Total ∼ 0.5%

Table 5.4: Error sources and estimated contributions to infidelity of two-qubit Bell state generated
with a beryllium-calcium ion chain; miscalibration errors are not included.

One experimental challenge was the precise alignment of the Raman beams to ensure
equal illumination of the two beryllium ions (see Section 5.1.2). The top panel of Figure 5.5
shows the beryllium FDQ Rabi oscillations on the carrier transition driven with the motion-
sensitive Raman beams. The fitted Rabi frequency imbalance is 1.4(5)%. From simulations,
the estimated contribution of beam imbalance to the GHZ state infidelity is 5× 10−4.

The MS gate is generally robust against finite thermal excitation in the Lamb-Dicke
regime, η � 1. However, this condition is not rigorously satisfied due to the small mass of
the beryllium ion. The MS gate error associated with this is π2

4 η
4〈n〉(〈n〉 + 1) [25], where

〈n〉 is the mean of the vibrational quantum number. For an average thermal occupancy of
the COM mode of 〈n〉 = 0.05, the expected error is 2× 10−5.

Other minor contributions to the overall infidelities are the direct coupling to the spec-
tator vibrational modes, and the indirect fluctuation in the Debye-Waller factor as the
coupling strength of the COM mode is reduced due to the thermal oscillations in the spec-
tator modes [25]. Assuming 〈n〉 = 0.05, the thermal occupancy of both the STR and EGY
mode, we estimate the overall contribution to the infidelity to be 2× 10−4 [25, 132]

Other infidelity sources, such as the finite calcium qubit lifetime and the calcium spec-
tator mode coupling to the radials modes are almost negligible. We estimate a contribution
of 1× 10−5 infidelity due to spontaneous emission and 3× 10−6 due to the coupling to the
radial spectator modes.

The effects summarized above account for about 2.57% infidelity. Part of the remaining
infidelities can be related to miscalibrations. The daily procedure we followed to calibrate
MS gates is described in Section 5.3.4 and consists of a sequence of scans performed manu-
ally by the experimenter. During a typical working day, MS gates have been repetitively
calibrated due to parameter drifts. We observed that the variability of the GHZ state fidel-
ity obtained by successive independent calibrations could be as large as 2%, thus putting an
upper bound to the infidelity resulting from our calibrations process. This large variability
is probably associated with several scans’ need to reduce the statistical uncertainties due to
the rich dynamics around the gate time.

Beryllium-calcium MS gate

We also estimated the contribution to the infidelity of the two-qubit Bell state, generated
with a beryllium-calcium ion chain, following a similar approach to the one described above.
The results are summarized in Table 5.4.

For this particular ion chain, the measured motional coherence Ramsey contrast is well
described by a Gaussian profile, thus suggesting that the noise is slow compared to the
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Ramsey probe time (see Section 5.2.2). The fitted axial COM mode motional coherence is
4.5(4)ms. The Bell state infidelity can then be estimated by simulating an MS gate repet-
itively assuming an error in gate detuning δ for each repetition, sampled from a Gaussian
probability density function. This results in an expectation infidelity of 1× 10−3.

Unfortunately, the heating rate of the COM mode of motion (ωCOM = 2π×1.7 MHz) was
not experimentally measured. However, based on the heating rates of single-species chains
and the three-ion mixed-species chains, we expect the heating rate of the COM mode to be
approximately 50 quanta/s. As a result, we expect this to contribute 1 × 10−3 to the Bell
state infidelity.

Beryllium detection last 200 µs. For each data point, the beryllium qubit population
is obtained by fitting a linear combination of two Poisson distributions (with means λ0 =
0.135(1) and λ1 = 26.3(2) counts) to the data. However, the non-Poisson nature of the
beryllium photon-counting statistics (Section 3.3) causes readout infidelities if histograms
are fitted with pure Poisson distributions. Denoting as eij (with i, j ∈ [0, 1]) the probability
of mistakenly identify i bright ions as j bright ions, and assuming the single-ion pumping
rates given in Section 3.3, we calculated e01 = 4.2× 10−3 and e10 = 1.3× 10−3. As a result,
the expected contribution to the Bell state infidelity is 0.3%.

As discussed in the previous section, Raman scattering causes population leakage outside
the beryllium qubit subspace. After a scattering event, the beryllium ion will predomin-
antly be detected as dark, thus causing a systematic bias of the Bell state fidelity. From
simulations, assuming a single-loop gate, we estimate that Raman scattering contributes
0.09% infidelity.

The limited calcium coherence time (∼1.7 ms) also contributes to the overall infidelity.
Similarly to before, we estimate its infidelity contribution by simulating an MS gate with
a calcium carrier frequency offset, sampled from a Gaussian distribution with σ =190 Hz.
This results in an expectation infidelity of 0.04%.

Finally, we observed variations of final the Bell state fidelity after independent calibra-
tions of the MS gate of approximately 0.3% as an upper bound for infidelity caused by our
calibration method.

Conclusions

In the two cases analyzed above, beryllium readout error is the leading source of infidelity.
or single beryllium detections, better fidelities could be achieved using readout techniques
based on photons’ arrival time (see Section 3.4). Alternatively, it would be possible to
infer qubit populations using a maximum likelihood analysis that makes use of experimental
reference histograms, thus avoiding the need for a model of the count distributions [132]. For
the joint detection of two beryllium ions, readout errors could be reduced either by employing
splitting-based single-ion detection or extending the maximum likelihood technique to fitting
two-ion histograms. Improving the readout fidelity will also be beneficial for the MS gate
calibration, as it reduces systematic miscalibrations.

Another source of infidelity that could be easily reduced is Raman scattering. This could
be further suppressed by increasing the detuning at the cost of more optical power to attain
the same Rabi frequency value.

In general, calibration errors could be reduced by automating the calibration procedure.
While writing this thesis, we have successfully employed Bayesian calibration schemes in our
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experimental apparatus for the calibration of single-species two-qubit MS gates. Extending
these techniques to mixed-species MS gates could be beneficial to improve the calibration
time and accuracy.

This concludes the chapters dedicated to the introduction of the mixed-species tech-
niques necessary to understand the experimental results presented in the next two chapters.



6 Mixed-species stabilizer readout

The previous chapters introduced most of the building blocks necessary to operate a mixed-
species quantum processor. This chapter is devoted to the experimental demonstration
of general elements required for quantum error correction (QEC), that make use of all
mixed-species techniques and the power of the classical control system described before.
After a general introduction about the stabilizer formalism, I will discuss the experimental
sequence we used on a reduced system where a calcium ion serves as an ancillary qubit to
read out the parity of two beryllium qubits. We use the full capabilities of the classical
control system to feed back in real-time based on the calcium detection result to stabilize
a parity subspace. The same techniques are then used to prepare and stabilize Bell states
deterministically. These results are published in [42]. This work was performed together
with Vlad Negnevitsky, and some details can also be found in his Ph.D. thesis [61].

6.1 Introduction and context

A primary challenge in the development of a quantum computer is dealing with errors.
Errors arise from noise and imperfect gate operations and accumulate over the course of
an algorithm, scrambling the state of the qubits and limiting the algorithm depth [134].
To tackle these issues, we require quantum error correction where multiple physical qubits
encode one or more logical qubits. Individual errors can then be detected by repeated
measurements of multi-qubit correlations on a subset of the physical qubits [135, 45, 136,
93]. The direct measurement of the physical qubits would collapse their state and destroy the
stored information. Instead, they are entangled with an ancilla qubit outside the code space,
that, upon measurement, collapses the state of the data qubit in an "error" or "no-error"
state. The measurement outcome must then be processed in real-time to allow feedback
operations that correct eventual errors. With these techniques, the system can then be
stabilized for the entire computational period [93].

6.1.1 Stabilizer formalism

One general way used to describe most quantum-error correcting codes is the stabilizer
formalism. To gain an intuitive picture, consider the Bell state |Φ+〉. It is easy to verify
that (σ̂x ⊗ σ̂x) |Φ+〉 = |Φ+〉 and that (σ̂z ⊗ σ̂z) |Φ+〉 = |Φ+〉. Therefore, we say that the
state |Φ+〉 is stabilized by the operators (σ̂x ⊗ σ̂x) and (σ̂z ⊗ σ̂z). More general we can say
that the unitary operator U with eigenvalues ±1 stabilizes a state |ψ〉, if U |ψ〉 = |ψ〉, or in
other words if the state |ψ〉 is an eigenstate of U with eigenvalue +1.

At the core of the stabilizer formalism lies the Pauli group G1, which is the set of one-
qubit operators generated by the multiplication of Pauli matrices. It can be shown that
these operators have eigenvalues ±1 and that they either commute or anti-commute with
each other [6]. This group can be easily generalized to Gn, which consists of the n-fold
tensor product of Pauli operators.

95
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A stabilizer group S is then defined as a subset of Gn, with VS the set of n-qubit states
stabilized by all the stabilizer operators OS ∈ S. From this definition, it follows that all
operators OS must commute, and that VS is the intersection of the +1 eigenspaces of all OS .
One last condition is that −In /∈ S, since −In |ψ〉 = |ψ〉 only for the trivial state |ψ〉 = 0.

Within this formalism, correctable errors are simply described by operators that move
the state outside VS . For this to happen, the error operation must anti-commute with one
of the stabilizers1. By measuring the eigenvalues of the stabilizers, we can detect if an error
occurred and also what type of error (or the class of degenerate errors), thus extracting the
error syndrome. The correction is then simply an operation from the same class of errors
[6].

This covers the basics to better understand the experimental results described here.
Further details and examples can be found in [6].

6.1.2 Experiment on a reduced system

Limited QEC codes have been experimentally demonstrated in different systems [137, 138,
139]. However, due to incomplete set of controls, these algorithms often required to de-
code the encoded qubits to readout the error syndrome. For practical QEC, ideal stabilizer
measurements are required [140, 141]. Such operations have been demonstrated in several
platforms, including trapped-ions [142, 143, 144] and NV centers [145]. Other experiments
[146, 147] also realized up to three rounds of conditional feedback upon ancilla measure-
ments. Following the work described here, Bell state stabilization up to 12 rounds of parity
measurements was realized in superconducting qubits [148].

In general, useful implementation of stabilizer readouts and feedback operations requires
the following conditions:

1. The measurement time should be short compared to the relevant decoherence time of
the encoded qubits

2. The measurement process should not perturb the information stored in the encoded
qubits.

3. It should be possible to repeat the measurements several times. This includes the
ability of re-preparing the ancilla qubit for a new round of measurements.

4. Ancilla measurement and reset rely on dissipative processes. During these operations
there should be minimal crosstalk to the data qubits to prevent loss of information.

5. The classical control system should be powerful enough to apply feedback pulses upon
ancilla measurement.

All these conditions have been demonstrated on a single-species trapped-ion experiment,
which implements up to three consecutive measurements [149]. In this work, the informa-
tion stored in the data qubits was temporarily hidden in energy levels that do not interact
with the resonant light used for detection, thus minimizing crosstalk. However, such imple-
mentation in large-scale systems with high fidelity is challenging.

1There can also be errors that commute with all stabilizers. Such errors are correctable only if the error
operator is itself part of the stabilizer group.
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Our implementation makes use of mixed-species ion chains, where calcium is used for
the ancilla qubits and beryllium to store information. Beryllium is chosen as the data
qubit since it exhibits a long coherence time (∼4 s) when the qubit is encoded in the FIQ
transition (see Chapter 2.5.1), which is longer than the calcium coherence time (∼2 ms),
thus allowing for several stabilizer readouts (on average the time between two stabilizer
readouts is 1 ms). Moreover, the high degree of spectral separation (see Chapter 5.1.3)
enables us to satisfy the second, the third and fourth criteria, since calcium detection does
not destroy the information stored in the beryllium qubits. Sympathetic cooling of the ion
chain performed using laser cooling of calcium also mitigates errors coming from heating and
transport. Finally, the classical control system introduced in Chapter 4 allows branching of
the pulse sequence in the microseconds timescale, which is good enough to satisfy also the
fifth criterion.

In this work, we implement the readout of the two-qubit stabilizers SZ = σ̂z ⊗ σ̂z and
SX = σ̂x ⊗ σ̂x. The mixed-species ion chain used in the experiment is beryllium-calcium-
beryllium, and the sequence for the stabilizer readout is discussed in the next section.
The SZ (SX) measurement projects the two beryllium qubits in a parity subspace with
eigenvalues EZ = ±1 (EX = ±1). By continuously repeating one stabilizer measurement
and applying feedback corrections upon the ancilla result, we demonstrate the stabilization
of a parity subspace up to 50 cycles (see Section 6.3). As already mentioned in Section 5.3.1,
Bell states are simultaneous eigenstates of SZ and SX ; therefore, a SZ measurement followed
by a SX readout collapses any input state in a Bell state with particular {EZ , EX} values.
With feedback, we can create a particular Bell state and stabilize it over more than 50
stabilizer readouts (25 pairs of SZ and SX measurements).

6.2 Experimental sequence and calibration

The experimental sequence used to measure the stabilizer SZ consists of a unitary operation
USZ shown in Figure 6.1b, which together with the ancilla qubit readout forms the stabil-
izer measurement MSZ . For a calcium ion initially prepared in state |↓〉, the multi-qubit
operation USZ maps the parity of the beryllium qubits onto the calcium measurement basis.

At the core of this operation there is the multi-qubit operation

Ucore = exp

[
iπ

4
ZCa ⊗XBe1 ⊗XBe2

]
. (6.1)

Experimentally it can be realized with a pulse sequence shown in Figure 6.1a which consists
of two three-qubit MS gates and a single qubit rotation on a calcium ion. Such a sequence
is based on a circuit identity found in [150, 142]. Within the figures of this chapter, we
changed the pulse notation to help readability. In particular, the rotation R(θ, φ) (defined
in Equation 2.24) is written as Rθ(φ) and P (φ) ≡ R(π, φ).

As discussed in Section 2.5.1, the motion-sensitive configuration of the Raman beams
is not phase stable from shot-to-shot due to path difference fluctuations. This implies that
the beryllium gate basis will fluctuate relative to the calcium basis, over different shots. As
a result, at every execution of the sequence, the core operation has the form

Ucore(φb) = exp

[
iπ

4
ZCa ⊗ ΦBe1(φb)⊗ ΦBe2(φb)

]
(6.2)

where φb is the relative phase of the Raman beams that fluctuates, and Φ(φb) = X cosφb +
Y sinφb. This issue can be suppressed with extra π/2 rotations on the beryllium ions before
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and after Ucore (with π phase difference), which are performed with the same set of laser
beams. Those pulses render the operation diagonal in the computational basis, and thus
insensitive to phase fluctuations [128, 132]. For this to work, these beryllium π/2 carrier
rotations have to be applied with the motion-sensitive configuration, so that the phase φb
is the same for all pulses. The effect is clearly visible when we write the matrix elements
associated to the core operation with and without the basis rotation pulses:







1 ie−2iφb i
1 i 1
i 1 1

ie−2iφb 1 → i
1 ie−2iφb 1

1 i i
i 1 i

ie−2iφb 1 1

With the π/2 carrier pulses, the operation is diagonal and independent of φb. The core
operation than transforms into

Ucore,Z = exp

[
iπ

4
ZCa ⊗ ZBe1 ⊗ ZBe2

]
, (6.3)

that phase shifts the calcium qubit depending on the SZ parity of the beryllium ions.

To map the calcium phase shift onto the measurement basis, we perform a Ramsey-like
experiment, where the core operation Ucore,Z is embedded between π/2 calcium rotations,
whose phase difference is π/2. The compiled sequence that we apply in the experiments is
depicted in Figure 6.1b. Notice that we added a set of beryllium π rotations in between
the two MS gates to decouple the sequence from minor gate miscalibrations (similar idea
to a spin-echo sequence). The resulting unitary is USZ = RCa (π

2 ,
π
2

)
Ucore,ZR

Ca (π
2 , 0
)
. The

measurement of the calcium qubit then completes the stabilizer measurement MSZ . For an
ideal implementation of MSZ , the state of the beryllium qubits are projected into the +1
(−1) eigenspace of SZ correlated with the calcium ancilla qubit in state |↑〉 (|↓〉)2.

The MSX stabilizer measurements can then be performed by embedding the USZ opera-
tion between two π/2 basis rotation pulses applied to the beryllium ions, respectively with
phases π/2 and −π/2.

6.2.1 Phase reset

In the M-ACTION system, the linear advancing DDS phase offsets (Section 4.1.2) ensure
phase coherence by referencing the phase of each pulse of a sequence to a common "reference"
time. Neglecting Stark shifts, this scheme ensures that all carrier pulses driven with a
particular beam keep a fixed relative phase relationships. Problems arise when we run MS
gates. As discussed in Section 5.3.4, the red and blue sideband tones carry a common
frequency offset δc needed to compensate Stark shifts occurring during the gate. The effect
is that the phase difference between the carrier pulses and the MS gates grows with time as
(t − tref)δc. As a result, for a repeated USZ sequence, we would be implementing different
unitaries at each cycle. To mitigate this effect, the reference time is shifted to the first pulse

2It assumes that the calcium qubit is initially prepared in state |↓〉.
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Figure 6.1: Circuit construction. a The pulse sequence that realizes the Ucore(φb), where φb is the
relative phase of the Raman beams which fluctuates from shot to shot. b Circuit implementation of
USZ

. The extra beryllium π pulses are added to decouple the sequence from minor gate miscalibra-
tions. All the beryllium pulses are realized with the motion-sensitive Raman beam configuration to
ensure phase coherence. To help readability, the pulse notation is changed compared to that defined
in Equation 2.24. In particular, Rθ(φ) ≡ R(θ, φ) and P (φ) ≡ R(π, φ).

of the USZ sequence and then shifted back to the previous value at the end of the stabilizer
measurement. Because the SZ stabilizer readout operation is diagonal in the computational
basis, the phases of the pulses in this block do not need to be referenced to the rest of the
sequence [42].

The basis rotation pulses required for theMSX stabilizer measurement, are applied with
the motion-insensitive Raman beams. In this configuration, the phase relationship between
the beams is stable for a longer time than the motion-sensitive one, thus allowing consecutive
measurements of the same stabilizer. Experimentally we estimated that the phase coherence
of the motion-sensitive Raman beams is ≈10 ms. This value is obtained by fitting the decay
of the Ramsey contrast on the FIQ transition, using the motion-sensitive Raman beams to
drive the two π/2 rotations.

6.2.2 Calibration sequence

When we performed the experiment, we did not have the phase accumulators described in
Section 4.1.2 to account for ac Stark shifts. Therefore the phase of each pulse in the sequence
had to be calibrated by hand. As mentioned in Chapter 5.1.3, the Stark shift induced by
the 729 nm laser is negligible; however, the calcium qubit experiences a few kHz Stark shift
induced by the beryllium Raman lasers. The calibration sequence is then designed to first
calibrate all the beryllium phases, including the MS gates, with the calcium laser off, and
only at the end, we turn on the 729 nm laser and calibrate the calcium-related phases. The
sequence of steps we followed can be found in [61].

It is worth noticing that there is a strong correlation between different phase settings,
and it is easy to find a set of locally optimal values. For illustration purposes, we can
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measure these correlations evaluating the Hessian matrix for the process fidelity. For the
calculation, I will assume that each pulse in the sequence shown in Figure 6.1b realizes the
correct operation but with a phase offset from the ideal one. The implemented operation
is U({φoffi }), where {φoffi } is the set of phase offsets from the ideal implementation. The
process fidelity can then be written as F = Tr

(
U({φoffi })USZ

)
/10, that is 1 for zero phase

offsets {φoffi = 0}. The Hessian matrix Hi,j = ∂F 2

∂φi∂φj
|φ=0 is

φCa1 φBe1 φCaMS1
φBeMS1

φCa2 φBe2 φCaMS2
φBeMS2

φBe3 φCa3



φCa1 −0.4 0 0.2 0 0 0 0.2 0 0 −0.2
φBe1 0 −0.8 0 0.4 0 0 0 0 −0.4 0
φCaMS1

0.2 0 −0.4 0 0.4 0 −0.4 0 0 0.2

φBeMS1
0 0.4 0 −0.8 0 0.8 0 −0.4 0 0

φCa2 0 0 0.4 0 −0.8 0 0.4 0 0 0
φBe2 0 0 0 0.8 0 −1.6 0 0.8 0 0
φCaMS2

0.2 0 −0.4 0 0.4 0 −0.4 0 0 0.2

φBeMS2
0 0 0 −0.4 0 0.8 0 −1 0.4 0

φBe3 0 −0.4 0 0 0 0 −0.4 −0.8 −0.4 0
φCa3 −0.2 0 0.2 0 0 0 0.2 0 0 −0.4

where the indexes follow the pulse order. Assuming the phase offsets to be normally distrib-
uted, this Hessian matrix could be used to evaluate the covariance matrix, as the inverse
of the Hessian. Consequently, the correlation coefficient of two variables is evaluated as
the covariance of these variables divided by the product of the standard deviations of the
same values. The correlation matrix, measures both the strength and the direction of linear
relationship between two variables. This information could then be used during the calib-
ration of parameters (or the re-calibration of a given phase following a parameter drift) as
a guideline to know how the value of other phases need to be changed.

Unfortunately, this calculation was performed only at a late stage of the experimental
campaign when almost all data were already acquired. As a consequence, we did not use it
during the daily calibration procedure.

6.2.3 Single-shot readout

To verify the results of a single round of stabilizer measurement, we prepare input states with
different parities and compare the calcium detection to the final beryllium measurement.

To prepare the input states we first create the Bell state 1/
√

2(|↓↓〉− i |↑↑〉) between the
two beryllium qubits. Like for the UsZ operation, the sequence is phase insensitive [128] and
makes use of an MS gate and carrier π/2 pulses as shown in Figure 6.2a (sequence labeled
as "state prep."). Next, a parity pulse (Section 5.3.3) with phase φp, performed with the
motion-insensitive configuration, create states with different parities. In the ideal case, a
parity pulse with phase φp = 3π/4 generates an input state with odd parity (EZ = −1)
(the triplet state |Ψ+〉), while for φp = π/4 the state has even parity EZ = +1. The violet
stars in Figure 6.2b show the parity3 of the input states measured with an independent
experiment.

Following the preparation of different input states, we perform a single round of the
stabilizer measurement MSZ . The results for the calcium and beryllium measurements are

3we plot (1 + 〈SZ〉)/2 to fit the plot axis.
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Figure 6.2: Single-round stabilizer readout. a Gate sequence used for beryllium state preparation
and the stabilizer measurements MSZ

and MSX
. For the beryllium pulses, the round (sharp)

rectangles indicate pulses performed with the motion-sensitive(insensitive) beam configuration. The
dashed pulses are only used for the MSX

readout. The parity pulse phase θ differes from the ideal
pahse φp (see text) due to an uncompensated Stark shift. b MSZ

readout. In red (blue) is the joint
probability of observing calcium in |↓〉 (|↑〉) and beryllium in EZ = −1 (EZ = +1). For comparison
we plot in violet the parity of the beryllium input state, plotted as (1+ 〈SZ〉)/2. c MSX

readout. In
green the joint probability of measuring beryllium in state |Ψ+〉 (EZ = +1) and calcium in |↑〉, while
in blue (orange) the probability of measuring beryllium in|Φ+〉 (|Φ−〉), with EX = +1 (EX = −1)
and calcium in state |↑〉 (|↓〉). d Fidelity estimates for MSZ

as discussed in the text. In panel c and
d the solid lines are fits to the expected probability distributions.

shown in Figure 6.2b. To evaluate the quality of the operations we make use of three
fidelities: measurement fidelity, non-demolition fidelity and state-preparation fidelity [142,
151] defined as:

FM = (
√
pin

+1p
m
|↑〉 +

√
pin
−1p

m
|↓〉)

2

FQND = (
√
pin

+1p
out
+1 +

√
pin
−1p

out
−1 )2

FQSP = p|↑〉p
out
+1‖|↑〉 + p|↓〉p

out
+1‖|↓〉

= pout+1&|↑〉 + pout
−1⊗|↓〉,

(6.4)

where pin
±1 (pout

±1 ) is the probability of measuring the beryllium parity in EZ = ±1 before
(after) the stabilizer measurement MSZ , p|↑〉 and p|↓〉 are the calcium measurement prob-
ability, and pout

+1‖|↑〉 (p
out
−1‖|↓〉) is the conditional probability of measuring beryllium in the

EZ = +1 (EZ = −1 ) having measured calcium in |↑〉 (|↓〉). For QEC, the state preparation
fidelity is the most critical value since it takes into account the joint probabilities of the
beryllium output parity and the calcium readout state.
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Figure 6.2d shows the measured fidelities for different input parity states. On average we
find that for the MSZ operation, the average fidelities over all the different states are F̄M =
99.6(4)%, F̄ND = 99.6(5)% and F̄SP = 94.6(2)% [42]. The F̄SP fidelity is broadly consistent
with the quality of the operations measured in our system, and in particular, with the three-
ion MS gate that is the primary source of infidelity. As discussed in Chapter 5.3.2, the GHZ
state preparation fidelity with the three-ion MS gate is 93.8(5)%, while the fidelity for
creating a Bell state between the two-beryllium qubits in the beryllium-calcium-beryllium
ion chain is 97.8(4).

In a similar way we also verified the stabilizer measurement MSX , as shown in Fig-
ure 6.2c. With the state preparation method described above, we can produce the triplet
state |Ψ+〉, which is an eigenstate of SX with eigenvalue EX = +1; however, we do not
create a pure EX = −1 state. An example of state with EX = −1 is the Bell state |Φ−〉,
which cannot be created for any φp. The green trace in Figure 6.2c correspond to beryllium
measured in state |Ψ+〉 with EX = +1 correlated with calcium being measured in |↑〉. The
blue (orange) points are instead for beryllium in |Φ+〉 (|Φ−〉) and EX = +1 (EX = −1)
correlated with calcium being measured in |↑〉 (|↓〉).

If we compare the contrast of the EX = +1 trace (green trace in Figure 6.2c) to that
of the EZ = ±1 ( blue and red traces in Figure 6.2b), we observe that it is lower (82(1)%
against 89(1)%). Similarly, one can also notice an asymmetry of the blue points in Fig-
ure 6.2c compared to the fitted curve (compare the region around θ = 90 and θ = 280).
Unfortunately, we are not able to fully explain those behaviors nor to reproduce them in
simulations. However we suspect that it is related to a higher susceptibility on the MS gate
infidelities. One possible explanation that only partially explains the observed behavior is
the following. Assume to perform an SZ measurement, in which the beryllium ions are
prepared in an even state (e.g. |↓↓〉). The effect of the first beryllium π/2 pulse in the
SZ sequence rotates the beryllium states in the eigenbasis of the following MS gate. As a
result, we do not expect an excursion in phase space during the MS gate. On the contrary,
if we perform a SX measurement, the π/2 pulse within the SZ block undo the rotation of
the motion-insensitive π/2 pulse. Before the MS gate, the state of the beryllium qubit is
still |↓↓〉 which is not an eigenstate of the MS operation. As a result this state will evolve
in phase space while applying an MS gate, and may suffer from MS gate miscalibrations.

6.3 Repeated measurements

Calcium fluorescence detection is a dissipative process, which induces significant heating on
the motional modes of motion. If not re-cooled, the performance of the subsequent three-
ion MS gates will be reduced. To mitigate this heating, we red-detuned from resonance the
397 nm detection beams by approximately 8 MHz. This produces a lower scattering rate
than at δ = 0, but maintains the ions at lower excitation. Next, we apply a calcium cooling
sequence that sympathetically cools the relevant modes of the ion chain. At first, an EIT
cooling pulse (150 µs long) is used, for which the settings are optimized to cool the EGY
mode and lowest radial frequency mode. The COM mode of motion is instead cooled with a
second EIT cooling pulse (200 µs long) followed by ten loops of pulsed sideband cooling with
the 729 nm beam. By addressing just calcium, it is not possible to cool the STR mode due
to the symmetry of the ion chain (see Chapter 2.8.1); however, for the same reason, we do
not expect any heating on this mode induced by photon scattering during detection. At the
end of the sequence, the COM sideband Rabi oscillations were comparable to those before
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Figure 6.3: Open-loop parity measurement. a Pulse sequence used for beryllium state preparation
and the SZ/X readout. b and c The calcium population as a funtion of SZ and SX measurement
cycles, respectively. In panel b the green (red) points are produced by initializing beryllium in
EZ = −1 (EZ = +1) parity state. In panel c the beryllium ions are initialized in the triplet state
|Ψ+〉. The solid line are produced from Monte Carlo density matrix simulations using only one free
parameter (see text).

the first measurement round. This implies that that the motional excitation is comparable
to the one we measure at the beginning the measurement sequence. Finally, calcium state
initialization in |↓〉 concludes the re-cooling sequence.

Following re-cooling and calcium state initialization, we repeat the stabilizer measure-
ment up to 50 times. Figure 6.3a, shows the pulse sequence for the consecutive measurement
of a stabilizer without feedback (open-loop sequence). For the repeated MSZ , we initialize
the beryllium either in the triplet state |Ψ+〉 (EZ = −1) or in a superposition of the even
Bell states|Φ+〉 and |Φ−〉 (EZ = +1). In Figure 6.3b, we plot the calcium population as a
function of the measurement round. The points in green are for the MSZ acting on |Ψ+〉;
the ones in red are for the measurements in which beryllium is prepared in an even parity
state. The contrast loss indicates that the purity of the initial Bell state decreases over
measurement rounds due to the parity readout corrupting the original state. The solid lines
are from a simple Monte Carlo density matrix simulation where only one parameter is free.
For more details about the model and the data analysis, refer to Section 6.4.

6.3.1 Stark shift calibration

The USX stabilizer operation is not diagonal in the measurement basis. As a result, it
is sensitive to the relative phase between |↓〉 and |↑〉 acquired during each pulse of the
sequence (remember that all carrier pulses are on-resonance with the bare qubit frequency).
To make sure that at each cycle we measure the same stabilizer operator, we shift the phase
of the initial and final co-carrier π/2 pulse by nΦX , where n is the number of times the SX
stabilizer has previously been measured and ΦX is the Stark shift induced by a single MSX

sequence. The phase ΦX is empirically calibrated by repeating the scan in Figure 6.2c for
several rounds while maximizing the measurement correlations for even-parity input states.
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Figure 6.4: Two beryllium FIQ carrier rotation time scan with the ions non-centered in the laser
beam. The orange data show the probability of only one ion being detected in the bright state, while
the green (blue) data show the probability of both ions being bright (dark). a Rabi oscillations b
Time scan around the optimal time for inverting only one of the two ions. At time t =39 µs, we
perform a θ = 2π rotation on one ion and θ = π rotation on the other. The fitted inversion
probability is 99.9(5)%. Fitted curves are for two ions undergoing independent Rabi oscillations
with different Rabi frequencies.

6.3.2 Feedback operations and subspace stabilization

The loss of contrast measured in Figure 6.3 is to be attributed to imperfections of the
stabilizer readout sequence rather than qubit decoherence (see Section 6.4). For future
trapped-ion experiments, it is also likely that operations fidelity will be the main limiting
factor [117], especially in the case where the qubits are encoded in a logical decoherence-free
subspace [152, 153]. Using real-time feedback, we can correct parity errors and demonstrate
an extra element required for more general QEC protocols. Real-time feedback is a funda-
mental feature of the M-ACTION system; extensive details about the software and hardware
implementation can be found in Vlad Negnevitsky Ph.D. thesis [61]. When we acquired the
data, the re-configuration of the pulse sequence required ≈50 µs. Since that data was ac-
quired, an upgrade in the system has reduced this time to approximately 3 µs.

In the case of SZ , our choice for the correction operator is CZ = −I(1)⊗ σ̂(2)
x ; while it is

CX = −I(1)⊗σ̂(2)
z for the SX stabilizer. In both cases, we require a different rotation for each

of the two beryllium ions. In order to realize this, for CZ , we move the ions with respect to
the Raman beam by ≈10 µm, such that one beryllium experiences a Rabi frequency twice as
large as the other. At this position, we calibrate the pulse time to perform a σ̂x rotation on
one qubit and −I on the other. Figure 6.4 shows a typical time scan of the Rabi oscillations
used to calibrate the time of the CZ correction pulse. This operation is realized with the
co-propagating Raman beams.

For CX , we embed the CZ operation between two basis rotation π/2 pulses. In particular
CX = R(π/2, 0)CZR(π/2, π), where the rotation R(θ, φ) is common to both beryllium
qubits and realized with co-propagating Raman beams.

Similarly to MSZ and MSX , also the correction pulses induce Stark shifts that have to
be taken into account to realize the desired operations. The phase accumulators described
in the previous section are hard-coded in the experimental sequence; however, the Stark
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Figure 6.5: Repeated parity measurements and parity subspace stabilization. a On top the pulse
sequence used for the open-loop repeated parity measurements. Beryllium qubits are prepared in
an entangled state with a well-defined parity. Bottom: the pulse sequence used for the parity
subspace stabilization. An initial π/2 pulse prepares the beryllium qubits in an equal superposition
of eigenstates EZ/X = ±1. Depending on the choice of stabilization, USM

is USZ
or USX

and CM
is the appropriate feedback operation. b Calcium detection probabilities as a function of repeated
SZ measurements. The green (red) data are the results for the sequence where no feedback is
applied and for beryllium initialized in EZ = −1 (EZ = +1). The blue (orange) points are for the
closed-loop operation where the EZ = −1 (EZ = +1)parity subspace is stabilized. The solid line
are produced from Monte Carlo density matrix simulations using only one free parameter (see text).
c Same as b but the stabilizer being measured is SX .

shift phases coming from the correction pulses have to be dynamically applied depending
on the history of the pulse sequence. To give an example, consider the stabilization of the
SX parity subspace. Defining ΦX as the phase shift induced by USX , ΦCX is the phase
induced by the correction pulse. At the n + 1 SX measurement, the phase offset of the
initial and final co-carrier π/2 pulses of USX is φoff = nΦX + kΦCX , where k is the number
of feedback pulses applied earlier in the sequence. The calculation is done directly on the
ARM CPU of the control system before the execution of the next measurement round, and
the result is pushed to the DDS boards within 1− 3µs.

Having these techniques in place, we can then test the stabilization sequence up to
50 measurement rounds [42]. The experimental results are shown in Figure 6.5. As in
the previous sets of measurements, we plot the calcium population after each stabilizer
measurement. The beryllium qubits are initially prepared in an equal superposition of even
and odd parities with a single π/2 rotation applied to the qubits initialized in |↓↓〉; as a
result, we expect the calcium population at 0.5 after the first stabilizer measurement. In
the case of SZ parity stabilization (Figure 6.5b), we also plot the measured parity of the
beryllium ions at the end of the stabilization sequence. The plotted quantity is (1+〈SZ〉)/2;
therefore, for ideal operations, we expect to obtain a parity value of 1 (0) when the even
(odd) parity subspace is stabilized.

The figure of merit for the improvement obtained by the stabilization is the ratio between
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subspace γclosed γopen
EZ = +1 0.33(1) 8.0(2)
EZ = −1 0.10(1) 8.5(3)
EX = −1 0.23(1) 11.3(2)
EX = +1 0.22(1) -

Table 6.1: Parity subspace decay rates (in units of percent per measurement round) for open-loop
and closed loop sequences. For the open-loop, the populations are fitted to exponentials. Due to the
lack of information at the many-round limit, the populations for the closed-loop version are fitted
to linear decays.

the decay rates of the closed-loop data and the open-loop ones. We fit the open-loop
decays to exponential, while we use linear fits for the closed-loop populations due to lack of
information at the many-round limit. Table 6.1 reports the fitted decay values.

6.4 Modeling of the errors

The solid lines in Figure 6.3 and Figure 6.5 are obtained with a simple Monte Carlo simu-
lation of the density matrix where only one parameter is free. The Monte Carlo simulation
consists of thousand repetitions of the same sequence of operations. Each sequence sim-
ulates the repeated stabilizer measurement and is composed of the following steps. After
beryllium state initialization in a state described by a density matrix, we apply the first
stabilizer USZ/X to the three qubits. This operation is assumed to be ideal. We mimic
imperfect operations using a depolarizing channel [6] applied to the density matrix before
the calcium measurement, parameterized by a rate γdep and defined as

Λ(ρ) = (1− γdep)ρ+
γdep
2N

IN , (6.5)

where N is the number of qubits involved in the computation and the IN the identity matrix.
Following this step, we perform a probabilistic measurement of the calcium ion based on its
populations. After the measurement, the state of the calcium ion is re-initialized in |↓〉, and
for the closed-loop simulations, a feedback pulse conditional on the calcium measurement is
applied to the beryllium qubits. The stabilizer measurement is the concluded by applying a
leakage term that simulates the Raman off-resonant scattering outside the qubit space. This
term is implemented with a partial trace of one or both of the beryllium ions, happening
with a probability of γleak = 0.3%. This sequence is then repeated to simulate consecutive
measurement rounds.

The leakage term is fixed for all simulations and was experimentally determined with an
independent measurement of the population remaining in the qubit subspace after applying
the looped sequence with just one Raman beam on at a time [42]. For this measurement,
we prepared the beryllium qubit state in |↓〉. We then apply a sequence of stabilizer meas-
urement where the number of rounds is scanned. The sequence is run with just one Raman
beam on. Therefore, we would not expect any effect on the qubit population. However,
Raman off-resonant scattering potentially reduces the population of state |↓〉. At the end
of each sequence we measure the beryllium qubits population. We then fit the leaked pop-
ulation as a function of measurement rounds, with a simple linear fit (good approximation
since the leakage probability is small). We repeat the process for the other Raman beam
and also for the other qubit state. The total leakage probability per stabilizer readout is
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then the sum of all those fitted results. This value is also consistent with theoretical calcula-
tions, assuming a Raman detuning of 2π×230 GHz [48] and a sequence of two MS gates each
lasting for 70 µs. In the calculation we do not consider the effect of single qubit operations
since the length of the stabilizer sequence is dominated by the MS gate time.

In the simulations, we adjust the depolarizing rate to best fit the curves. For the open-
loop data, we adjust it to best reproduce the exponential decay of the calcium populations.
In particular, we use γdep = 0.06 (γdep = 0.07) for EZ = −1 (EZ = +1), and γdep = 0.11
for EX = +1. We attribute the higher value for EX = +1 measurement to the worse results
observed in a single measurement round (see previous section). For the closed-loop case, the
depolarizing rate is instead adjusted to fit the offset of the first few points. For EZ = −1
(EZ = +1) we use γdep = 0.10 (γdep = 0.10) and γdep = 0.15 (γdep = 0.16) for EX = +1
(EX = −1).

For the closed-loop simulations, the depolarizing rates are larger compared to those used
in the open-loop. These higher values are associated with imperfections in the correction
pulse. To better understand this point, consider the stabilization of the odd-parity subspace
of SZ . For an ideal implementation of measurement and feedback, the correction pulse CZ
is applied only when an additional source of noise induces a change of subspace. Because
single-shot non-demolition fidelity is F̄QND = 99.6(5)%, the effect of USZ on the parity of the
state is almost negligible. Therefore, it should be unlikely to require consecutive correction
pulses. However, when the dominant error source is imperfect readout, in the steady-state,
we expect a 50% probability of applying feedback in two consecutive shots because, in
half of the cases, we correct an uncorrupted state. This is relevant to our experiment,
because the state preparation fidelity in our case is F̄QSP = 94.6(2)%. Figure 6.6 shows the
experimental and simulated feedback correlations between successive shots. One can see
that the probability of applying two consecutive correction pulses is around 30− 40%, and
that the simulation matches reasonably well the experimental data. This result validates
the argument above, suggesting that our primary source of error is imperfect readout.

One way of mitigating imperfect readout is to repeat the stabilizer measurement multiple
times and apply the correction pulse based on a majority vote. We explored this scenario
in simulation, where we assumed that a single stabilizer measurement is a block of three
repeated MSZ operations 4. At the end of each block, a majority vote on the three calcium
measurements decides whether or not a correction pulse has to be applied. Because the
sequence mostly consists of repeated MSZ operations with no feedback, the depolarizing
amplitude γdep used in the simulation is that of the open-loop case (γdep = 0.06). Figure 6.7
shows a simulation comparison between the two different approaches discussed so far. If we
compare the calcium population as a function of measurement cycles, we see only marginal
improvements for the case where we perform a majority vote. However, if we compare
the feedback correlations between successive shots, we see that the probability of applying
two consecutive corrections is greatly reduced in the case of majority vote. In conclusion,
despite the small improvements, this technique is probably also limited by readout errors
at the current level of fidelity.

The depolarizing model described so far cannot capture all the error sources that can
occur in the complex experimental system. Nevertheless, it gives a simple single-parameter

4We chose to perform a majority vote on a block of three measurements as it is the simplest way to
compare the data and do correlation measurements. In the experiment one could replace this operation by
doing two consecutive measurements and if the result does not agree do a third one to decide if an error
occurred or not.
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Figure 6.6: Comparison between experimental and simulated feedback correlations between suc-
cessive shots. Defining P (0i) the probability of applying a correction pulse in the i-th measurement
round, P (0i+1|0i) is the conditional probability of two feedback operations in consecutive shots.
This probability is shown in blue for the measured data and in green for the simulations. This con-
ditional probability is compared to the one where feedback operations happen just once (P (0i+1|1i)).
Uncertainties for P (0i+1|0i) are larger than that of P (0i+1|1i) due to the rarity of these events (an
average of 100 events over 10,000 simulated points).

adjustment that accounts for decoherence. From Figure 6.5, we can see that especially for
long sequences, the dynamics are not well described. The reason is not fully understood;
however, we think that it is likely to be a systematic effect such as thermal AOM drifts due
to duty cycle issues. For instance, we observed an increase of the calcium PMT counts as
a function of the stabilizer readout cycle, which resulted in a drift of the optimal threshold
for state discrimination from 9 counts to ≈ 11 counts. The effect was only noted after we
collected the data, and caused a detection bias in the closed-loop experimental sequence.
Similarly, we observed gradual changes in pulse amplitudes over the sequence length, which
we were not able to compensate. In simulations, we modeled these effects as a gradual drift
in the readout fidelity of the parity measurement up to 3− 5%. Qualitatively, we are then
able to match better all closed-loop datasets, with the exception of the EX = −1 closed
loop data. Unfortunately we are not able to explain the reason. More investigation is then
required.

6.5 Bell state stabilization

Bell states are simultaneous eigenstates of SZ and SX . In our experiment we prepare one
of these states by measuring MSZ followed by MSX

5 resulting in one of the four possible
outcomes {EZ = ±1, EX = ±1}. Conditional to the calcium outcomes, we can determinist-
ically create a particular Bell state by applying the suitable correction pulses CZ and CX .
The sequence can then be repeated multiple times to stabilize the target state, as shown in
Figure 6.8.

To ensure the same operations at every measurement cycle, the four Stark shift phases
ΦZ , ΦX , ΦCZ , ΦCX are used to update the phases of the motion-insensitive rotations before
every measurement round depending on the number of measurements and feedback opera-

5Note that the order of the measurement is not important since SZ commutes with SX .
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Figure 6.7: Comparison between closed-loop MSZ
simulations. One simulation is the standard

simulation used to describe the experimental data, where feedback pulses are conditionally applied
after each calcium detection. In the second, a measurement cycle is defined as three repeated
stabilizer measurements, and feedback is applied conditionally to the majority vote of the three
calcium detections. In this simulation, the parameter γdep is that of the open-loop, because the
sequence mostly consists of repeated MSZ

operations. While the parameter γleak = 0.3% is the
same for both simulations. a Calcium population as a function of the measurement round. We can
see that in the case of the majority vote, the improvement is marginal. b Two-point correlations
between successive shots. The blue and orange points are for the standard simulation, while the
green and red are for the majority vote simulation. In the case of majority vote we see that the
probability of applying two correction pulses in consecutive shots is greatly reduced.

tions. The Stark shift phases are pre-calibrated with the same technique as in Section 6.3.1,
and optimized within the sequence to maximize the expected population of each Bell state.

At fixed points in the sequence, we also extract the Bell state fidelity, and the results are
shown in Figure 6.8 with green points. To better understand the sequence, assume that we
want to measure the state preparation fidelity of |Φ+〉. At first, we measure the population
in the measurement basis to obtain 〈SZ〉. To measure the off-diagonal terms of the density
matrix, we apply a motion-insensitive R(π/2, φ) to both beryllium ions before measuring
them. The phase φ is chosen to prepare either |Ψ+〉 or |Φ−〉 (see Section 5.3.1). We follow
this operation by a measurement of the beryllium ions in the computational basis. Note that
the effect of of the π/2 pulse is equivalent to the preparation of the two states that are at the
two extrema of a parity scan (see Section 5.3.3). Effectively, we measure the contrast of an
equivalent parity scan by just measuring the two extrema. The same operation is also done
when |Φ−〉 is the target state. However, in the case of |Ψ±〉, we first apply CZ = −I ⊗ σ̂x
to obtain |Φ±〉, from which we extract the state fidelity with the same method described
above. Although the use of the CZ operation is not strictly necessary, this scheme reduces
the number of calibrations, making the experiment easier to manage and debug. Note that
also for the analysis pulse, the phase is dynamically updated according to the exact pulse
sequence.

The mean Bell state fidelity after the first measurement block is 73.1(4)%, and it drops
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we plot the calcium results after the SZ stabilizer measurement, while in orange after MSX
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the state Ψ+ (panel c), we also plot the open-loop evolution of the calcium population. In red, the
calcium results after the SZ stabilizer measurement, while in violet after MSX

.

to 61.3(4)% after 25 rounds.

6.5.1 Correlations

Similarly to what we did for the parity stabilization, we can analyze the results looking
at the correlations between different measurement rounds. Figure 6.9 shows the two-point
correlations between consecutive parity measurements in the same basis, selected depending
on the feedback operation that occurred in between them. A full correlation corresponds to
a value of 1, while for perfect anti-correlation, it should be 0.

To understand the plots, consider only the curves for the stabilization of |Ψ−〉 (Fig-
ure 6.9a). The blue (orange) triangles represent the two-point correlation of successiveMSZ

(MSX ) measurements in the absence of any feedback. Considering the MSZ correlations, it
corresponds to the sequence MSZ −MSX −MSZ . The violet (red) points are the correlation
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Figure 6.9: Panels a-d show the two-point correlations between consecutive parity measurements
in the same basis, categorized by the feedback operation that occurred in between them, for different
Bell states. A value of 1 (0) represent full correlation (anti-correlation). Blue (orange) points show
the correlations between successive SZ (SX)where no feedback occurred. The violet (red) points
show the correlation between consecutive MSZ

(MSX
) with a commuting CX (CZ) correction that

happened in between, for which we expect full correlation. The green (brown) points show the
correlation for successiveMSZ

(MSX
) measurements where a non-commuting CZ (CX) correction is

applied in between them. Finally the violet (grey) points are the correlations between consecutive
MSZ

(MSX
) results where both corrections CZ and CX are applied.

between consecutive MSZ (MSX ) measurements where a CX (CZ) correction happened in
between. Ideally, the SZ (SX) and CX (CZ) should commute; therefore, we would expect to
measure the same correlation as in the absence of the feedback pulse, i.e., the blue (orange)
points. However, the violet and red curves are approximately 10% lower than the blue and
orange point. This indicates that the commutation error is ≈ 10%. The source of this error
is still unknown, and the error is higher than what we would expect from calibration on
shorter sequences (≈ 1%). Such sequences, up to three Bell state measurement cycles, are
used to calibrate the phase offset induced by the ac Stark shifts on the beryllium co-carrier
pulses that define the basis rotations for the SX measurement. During the calibration, we
are able to monitor the correlation between consecutive MSZ (MSX ) measurements where
a CX (CZ) correction is either applied or not. We notice that the discrepancy between the
two cases (i.e. the case in which no correction pulse is applied and when a correction pulse
happens in between two measurements) is below 1%. This results disagrees with the 10%
discrepancy discussed above. We suspect that on a longer sequence, we have systematic er-
rors, such as AOM duty cycle, that alter the optimal settings over the time taken to acquire
data (which is significantly longer than in the calibration experiments). We could confirm
this by monitoring the correlations in real-time as the experiment is performed.

The green (brown) points are instead the two-point correlation for successiveMSZ (MSX )
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measurements where a non-commuting CZ (CX) correction is applied in between. Ideally,
we would expect complete anti-correlation. The idea is that the first MSZ (MSX ) flags that
a parity error has occurred, and that is corrected by CZ (CX). The second MSZ (MSX )
should then give an opposite result compared to the first. Instead of measuring perfect
anti-correlation, we note that the traces are at about 0.3− 0.5. Similarly to what discussed
in Section 6.4, we think that this is a sign of imperfect readout. If imperfect readout is
the dominant error source, in the steady-state, we expect a 50% probability of applying
a correction pulse in two consecutive shots because, in half of the cases, we "correct" an
uncorrupted state.

6.6 Conclusions and outlook

With this experiment, we demonstrated some general elements of stabilizer readout and
large-scale quantum error correction, namely the ability of measuring an ancilla ion with
a small perturbation of the information stored in the data qubits, the ability to re-cycle
the ancilla qubit and re-prepare the system for multiple measurement rounds, and the
ability of applying correction pulses upon ancilla readout. Currently, the major limitation
is gate infidelities that cause errors in the stabilizer readout. At least for systematic phase
miscalibrations, better results could be obtained by using the phase accumulators described
in Chapter 5, where phase offsets arising from ac Stark shift can be automatically calculated.
Developing and debugging this feature has been a primary task towards the realization of
the experiment described in the next chapter.

Currently, the error introduced by the stabilizer readout is larger than the qubit coher-
ence, which for beryllium is significantly longer than the 60−80 ms necessary to complete
50 measurement rounds. However, this sequence could still be beneficial if we would let
the system evolve for a duration of order of the coherence time and then stabilize it. Such
experiment would be very long, but could be shortened adding artificial noise (for example
off-resonant 729 nm light that causes random Stark shifts) and recover from that perturb-
ation. One challenge would be the ability of sympathetically cool all modes using calcium
during the entire sequence. For this purpose, the STR mode could be cooled by deforming
the ion crystal, for example by adiabatically squeezing the ion chain into a zig-zag config-
uration, such that the calcium ion has some non negligible Lamb-Dicke parameter for all
modes.

The techniques shown here could be extended to lattice surgery codes [154] to demon-
strate a universal set of fault-tolerant quantum operations with color-codes [155]. In this
framework, the fault-tolerant implementation of a logical two-qubit CNOT gate 6 can be
performed using an ancillary logical qubit initialized in |↓〉. At the core of this operation is
the following set of operations

control
MSZ

feedback|↓〉
MSXtarget

where MX/Z is the stabilizer measurement SX/Z . The sequence is then completed with
feedback operations on all qubits based on the measurement outcomes. A proof of principle

6The CNOT gate has two input qubits: the control and target qubits. It flips the state of the target
qubit if the control is in state |↑〉.
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demonstration of such a gate could be realized by replacing the three logical qubits with
three beryllium ions. We could then use an additional calcium qubit as an ancillary qubit
for the MSX/Z readout.



7 Measurement-based Quantum Computing

In this chapter, I will present preliminary results of the realization of general single-qubit
unitary operations in the measurement-based quantum computation (MBQC) formalism.
After a theoretical introduction, I will show how to construct arbitrary single-qubit gates
and how these sequences can be compiled for a trapped-ion processor composed of a mixed-
species ion chain. Finally, I will present preliminary results and provide an outlook for
future experiments.

7.1 Theory Introduction

The circuit model for quantum computation [6] is a direct quantum generalization of the
classical construct. In the ideal implementation of this framework, in the absence of quantum
error correction, unitary operations are the primary mechanism for quantum information
processing, and only at the end, measurements are used to convert quantum information
into classical answers [156].

Measurement-based quantum computing (MBQC) is conceptually and practically a dif-
ferent paradigm for quantum computation. Although it has been demonstrated that it
has equivalent computational power to the circuit model [157], it does not have a classical
analog. Rather than a sequence of quantum gates, information is manipulated by a series
of adaptive measurements on an entangled state of qubits. There exist two prominent ex-
amples of MBQC: the one-way quantum computer [158, 157] and the teleportation-based
model [159, 160]. The latter follows an approach similar to the qubit teleportation protocol
[161], where Bell state measurements are adaptively applied in a rotated Bell basis [156]; in
the one-way model, universal computation is instead achieved only with single-qubit meas-
urements. The one-way computing model is the most studied approach both theoretically
and experimentally, and it became a synonym of MBQC. Within this model, the system
is first prepared in an entangled quantum state, called cluster state or graph state (see
later) [157]. The sequence of single-qubit measurements performed on different bases on
the entangled resource state then specifies the algorithm, and gives the results [162]. To
obtain the correct result, the basis for the next measurement is chosen conditionally on the
previous measurement outcome. The term "one-way", reflects the fact that the graph state
can only be used once, and that the computation can only be driven forward, in contrast
to the reversibility of the gates in the ideal implementation of the circuit model.

Mathematically a graph state is simply a pair {V,E} of vertices V , and their connections
E. For an intuitive picture, we can imagine a vertex as a point in space, while an edge is as
an arc connecting two vertices1. In MBQC, every vertex is associated with a qubit in state

|+〉 =
1√
2

(|↓〉+ |↑〉) (7.1)

1In general vertices can be self-connected. However this case is not taken into account for applications
in MBQC
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and an edge is created by applying a controlled-phase gate (CZ) between two vertices
initialized in |+〉.

CZ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 , |+〉 CZ |+〉
• •

In mathematical terms, given an ensemble of edges E connecting the qubit pair {i, j}, the
graph state can be written as

|G〉 =
∏
{i,j}∈E

C
(i,j)
Z |+〉⊗V (7.2)

where V is the total number of vertices.

Cluster states are a particular subset of graph states, where edges are limited to nearest
neighbors. As a result, we can picture them as a d-dimensional square lattice, where each
point (vertex) is connected only to its nearest neighbors (edges). In MBQC, cluster states
are particularly important because it has been proven that an arbitrary quantum state can
be generated on a sufficiently large 2D-cluster state, and therefore, any quantum operation
[158, 163]. Finally, 3D-cluster states have been theoretically proposed for fault-tolerant
quantum computation [164]. More recently, MBQC has been used to quantitatively com-
pare the outputs of quantum circuits with different size and structure, performed on dif-
ferent quantum computing architectures, like NMR, superconducting devices, trapped-ion
processors and photonic cluster states [165].

Initial demonstrations of MBQC have been realized in photonic systems [166] also with
adaptive measurements [167]. However, the cluster states’ creation is non-deterministic;
scaling up these methods is then very challenging since the success probability reduces
exponentially with the photon-qubit number required for the cluster state. Deterministic
creation of large cluster states has been demonstrated with neutral atoms [168] and with
continuous variable optical fields [169]. Experiments with trapped ions [170] demonstrated
deterministic creation of cluster states and the principles of MBQC, but making use of post-
processing instead of adaptive measurements. The implementation of MBQC proposed
and demonstrated in this thesis makes use of the feedforward capabilities of the control
system to perform adaptive measurements, as well as the ability of deterministically generate
entanglement on a mixed-species ion-chain. As opposed to standard MBQC, we do not start
from a large cluster state, but we create "edge" entanglement on demand when needed. In
particular, we show preliminary results on the deterministic realization of arbitrary single-
qubit unitaries within the MBQC formalism and provide a scheme for realizing arbitrary two-
qubit gates in the near future. The approach goes in the direction of a hybrid architecture
that combines the modular structure of the circuit model and the MBQC paradigm, as
discussed in [171]. There, the authors propose schemes for quantum error correction and
logical operations on encoded qubits, using graph states of minimal size as building blocks
for quantum computation.

One other reason for doing this experiment is that it requires technical advancements
in our setup, such as automatic calibrations of gates, mixed-species transport and split-
ting/recombination, and the ability to work with ion trapped in multiple zones. Having all
those elements under control would require successful implementation of all these technical
features in the current experimental setup, and demonstrate an advanced toolbox for QIP.
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7.1.1 Notation

Before deriving unitary operations in the MBQC formalism, I will introduce some standard
gate sequences for one and two-qubits as well as the notation I will use in the next sections.

One of the most useful single-qubit gate is the Hadamard gate H, whose effect is to turn
the state |↓〉 → |+〉 = (|↓〉 + |↑〉)/

√
2 and |↑〉 → |−〉 = (|↓〉 − |↑〉)/

√
2 [6]. Its matrix and

circuit representation is

H =

(
1 1
1 −1

)
, H

The prototypical entangling operation acting on two qubits is the CNOT gate. It has
two input qubits, the control and target qubit. In terms of the computational basis, the
CNOT gate flips the state of the target qubit if the control qubit is in state |↑〉. Its matrix
and circuit representations are

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 , |control〉 •
|target〉

Other single-qubit operations which will be used extensively in this chapter are the
rotation operators about the x̂, ŷ, ẑ axes, defined by the Pauli matrices. In particular we
can write:

RX(θ) = exp

(
−iθ

2
σ̂x

)
=

(
cos(θ/2) −i sin(θ/2)
−i sin(θ/2) cos(θ/2)

)
= R(θ, 0)

RY (θ) = exp

(
−iθ

2
σ̂y

)
=

(
cos(θ/2) − sin(θ/2)
sin(θ/2) cos(θ/2)

)
= R

(
θ,−π

2

)
RZ(θ) = exp

(
−iθ

2
σ̂z

)
=

(
exp(−iθ/2) 0

0 exp(iθ/2)

) (7.3)

where R(θ, φ) is defined in Equation 2.24.

7.1.2 Single-qubit unitary operations

To better understand the role of measurement and entanglement in the one-way computing
paradigm, I will derive the construction of a single-qubit unitary gate step by step. In this
process, I will first derive it in the circuit model representation, and then I will show how
this is usually represented in the MBQC paradigm.

Let’s begin by considering the simple circuit for the one-qubit teleportation [172], in
which we desire to teleport the state |ψ〉 = α |↓〉 + β |↑〉 of one qubit to a second qubit
initialized in |↓〉.

|ψ〉 • H

|↓〉

Before the measurement in the computational basis, the state of the two qubits is |↓〉 (α |↓〉+
β |↑〉) + |↑〉 (α |↓〉−β |↑〉). The measurement will then collapse the state of the second qubit
into (α |↓〉+ β |↑〉) or (α |↓〉 − β |↑〉) with equal probability. To retrieve the initial state |ψ〉,
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we would then need to apply a Z = σ̂z Pauli rotation on the second qubit, conditional on
the measurement outcome. To set the notation, we can write this operation as

|ψ〉 • H i = 0, 1

|↓〉 Zi |ψ〉

where i = 0 (i = 1) corresponds to projecting the measured qubit in |↓〉(|↑〉).
In the MBQC formalism, the preferred gate operation is the controlled-phase gate (CZ).

With the following circuit identity,

• •
=

H • H

we can rewrite the one-qubit teleportation scheme as

|ψ〉 • MX i = 0, 1

|+〉 • ZiH |ψ〉

where we absorbed the Hadamard operations in the state preparation of the ancilla qubit
and in the measurement basis of the first one. In the circuit above, MX is the measurement
along the X basis and for conciseness

ZiH = H Zi

Imagine now the case in which a qubit rotation RZ(α) is applied to the first qubit. This
will transform the output state as

|ψ〉 RZ(α) • MX

|+〉 • ZiH RZ(α) |ψ〉

Note that the RZ rotation can be pushed after the CZ operation since they commute,
[RZ(α), CZ] = 0. The rotation RZ(α) can be then absorbed in the measurement basis. The
new rotated measurement basis is Mα = cos(α)X + sin(α)Y . The circuit can be rewritten
as:

|ψ〉 • Mα i = 0, 1

|+〉 • ZiH RZ(α) |ψ〉

The last circuit gives a way to teleport a single qubit gate. In particular, we see that
measuring the first qubit in the {|α〉 , |−α〉} basis effectively results in applying a RZ(α)
operation to the teleported state.

There are two main differences between this circuit and the one used in the MBQC
formalism. The first is that the initial state is not |ψ〉 but |+〉. The second is that the final
Hadamard gate in the second qubit line is not directly applied but absorbed in the final
state. In particular we can write

|+〉 • Mα i = 0, 1

|+〉 • Xi HRZ(α) |ψ〉
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This scheme can then be generalized to the realization of an arbitrary single-qubit unit-
ary operation, which can be written as U = RZ(γ)RX(β)RZ(α). The following circuit
provides a way to realize such gate

|+〉 • Mα i = 0, 1

|+〉 • Xi • Mβ j = 0, 1

|+〉 • Xj • Mγ k = 0, 1

|+〉 • Xk |ψfinal〉

The final state |ψfinal〉 can then be written as

|ψfinal〉 = XkHRZ(γ)XjHRZ(β)XiHRZ(α) |+〉 , (7.4)

where we have explicitly included the conditional operations.

To show that |ψfinal〉 is indeed the state that we want, we need to apply some permuta-
tions. In particular, we would like to shift all the Rz rotations to the right, and all other
operations to the left. For this, we need a set of equations that are easy to verify:

HZi = XiH

XZ = −ZX
RZ(β)X = XRZ(−β)

HRZ(β)H = RX(β).

(7.5)

One can now show that

|ψfinal〉 = XkZjXiHRZ
(
(−1)jγ

)
RX

(
(−1)iβ

)
RZ (α) |+〉 (7.6)

This means that with adaptive measurements, one can realize the general single qubit
operation U = RZ(γ)RX(β)RZ(α). This final statement could be written in the MBQC
formalism in the following way

α → ±β → ±γ
• = U

Here a cluster state of 4 qubits is measured sequentially from left to right. The angle of the
measurement basis is adaptively changed depending on the previous outcome (the arrows
symbolize the conditionality). On the right side of the equivalence it is given the unitary
operation in the circuit model.

7.1.3 Two-qubit gates

For universal quantum computation, we require entangling two-qubit gates on top of arbit-
rary single-qubit unitaries. One of those gates is the CZ gate. In the MBQC framework,
this gate is trivial because it is a native gate required for the creation of graph-state edges.
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An example pattern in the MBQC formalism, with the equivalent circuit, is given by

Mα Mβ Mγ

• U •

=

• U ′ •
Mα′ Mβ′ Mγ′

Notice that the input and output states of the CZ gate are the same (i.e. there is no
measurement involved)

7.2 Experiment design

To experimentally realize a general single-qubit unitary operation, we would like to minim-
ize the number of resources required. From the circuit representations described above, we
notice two things: first, once a qubit is measured, it is not involved anymore in the com-
putation; second, that it is not strictly necessary to start with a four-qubit cluster state.
Indeed, it is possible to work on a two-qubit cluster state and build entanglement only when
required. It follows that the circuits above can be written as

|+〉Ca • Mα |+〉 • Xj • Mγ

|+〉Be • Xi • Mβ |+〉 • Xk

where we only use two qubits, and after a qubit has been measured, its state is re-initialized
for the next measurement round.

In our setup, this circuit could be easily implemented with a calcium-beryllium crystal,
where calcium is the top qubit and beryllium the lower one. The short coherence time of
the calcium ion (Section 2.5), make it preferable to always keep beryllium as the data qubit
and calcium as the ancilla, that is repetitively measured. This can be achieved by adding a
SWAP operation at the beginning of the second measurement block. This particular circuit
block could be rewritten as

|↓〉Ca H • × • Mβ

=

|ψ〉Be • Mβ × H •

where we explicitly decomposed the calcium state preparation into state |+〉Ca as |+〉Ca =
H |↓〉Ca. Using the following circuit identity for the SWAP gate

× • •
=

× •

one can show that the final circuit reads

|+〉Ca • Mα |+〉 • H Mβ |+〉 • Mγ

|+〉Be • Xi • H Xj • Xk
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7.2.1 Compiling the protocol

The circuit found in the previous section can then be compiled to the native set of gate for
trapped ions using the following circuit identities:

• R−Y (π2 )

MSXX

RY (π2 ) RZ(−π
2 )

=

• R−Y (π2 ) RY (π2 ) RZ(−π
2 )

and

H = RZ(π) RY (π2 ) or R−Y (π2 ) RZ(π)

For the gate compilation, It is important to remember that the beryllium qubit, when
initialized in the FIQ manifold, is in state |↑〉. This assumption ensures that the definition
of the rotation matrices given in Section 2.3 is the same for both calcium and beryllium
qubits.

The first step of the MBQC sequence then reads

|↓〉
MSXX

RY
(
π
2

)
R
(
π
2 ,−α

)
|↑〉 R−X

(
π
2

)
R−Y

(
π
2

)
RY

(
π
2

)
RX(π)

Similarly to the experiments performed in Chapter 6, the dashed box represent a block
of pulses whose DDS phase accumulator is referenced to the starting time of first pulse
within the box. The beryllium pulses that lie within the box are then driven with the
motion-sensitive Raman configuration, while the ones outside are driven using the motion-
insensitive Raman beams.

With a similar approach, we can write the second MBQC step as

|↓〉Ca
MSXX

RX
(
π
2

)
R
(
π
2 ,

π
2 − β

)
|ψ1〉Be R−Y

(
π
2

)
RY

(
π
2

)
RX

(
π
2

)
R−Y (π)

and the third as

|↓〉Ca
MSXX

RX
(
π
2

)
R
(
π
2 ,

π
2 − γ

)
|ψ2〉Be R−Y

(
π
2

)
RY

(
π
2

)
R−Y

(
π
2

)
R−X(π) RZ(π)

By applying the proper commutation relations, the single-qubit Rz rotations have been
either shifted at the very beginning of the sequence or at the very end. The final state is:

|ψF 〉 = RZ(π)HRZ(γ)RX(β)RZ(α) |+〉 = RZ(π)HU |+〉 (7.7)
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Figure 7.1: Calcium red sideband Rabi oscillations after a carrier π pulse realized in a beryllium-
calcium ion chain. The plots on the left (panels a and b) are for the oscillations taken on the axial Z1
and Z2 modes (Section 2.8.1) right after initial cooling (see Section 2.8.2), those on the right (panels
c and d) are taken after a calcium detection followed by one cycle of sympathetic recooling with
calcium lasers. The recooling sequence consists of two consecutive bursts of EIT cooling (600 µs and
400 µs), respectively optimized for cooling the lowest frequency radial mode and the out-of-phase
axial mode. The sequence is concluded with calcium sideband cooling on the in-phase axial mode
and calcium state preparation. The populations are fitted according to Equation 2.38, to extract
the motional occupancy of each mode. Right after the initial cooling we fit n̄Z1 = 0.015(4) and
n̄Z2 = 0.055(9) for the in-phase and out-of-phase axial modes. After sympathetic recooling, we
measure n̄Z1 = 0.008(4) and n̄Z2 = 0.13(1).

7.3 Preliminary results

This experiment has been the test bench for the new programming interface that makes
use of the crystal classes and the phase accumulators discussed in Chapter 4 . Unlike the
stabilizer experiments of Chapter 6, the frequency of the carrier pulses is calibrated to be on
resonance with the Stark-shifted qubit frequency to achieve the highest gate fidelity. The
exact value of carrier Stark shifts are measured using the technique discussed in Section 5.1.2,
and with the phase accumulators, we pre-calculate the phase offset that should be applied
to all pulses. For the preliminary results presented here, we only take into account the
carrier Stark shift induced by the resonant beams that drive the transition. In other words,
we do not account for the Stark shift of the calcium carrier frequency induced by the
beryllium carrier pulses. However, for the pulse sequence described above, we do not expect
a significant effect on the result, especially if we apply all calcium carrier rotations right
after the MS gate and before the beryllium ones.

The Stark shifts induced by bichromatic beams during MS gates are manually calibrated
when performing parity scans. In particular, we measure the phase offset between the parity
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evolution in the ideal case compared to the one we experimentally measure. This method
takes into account the Stark effect felt by the calcium ion due to the beryllium bichromatic
beams.

After each calcium measurement, we sympathetically recool the crystal using just the
calcium cooling beams, to not worsen the performance of the mixed-species gate. The
calcium 397 nm detection beams are red detuned by ≈ 2π×3 MHz from resonance to provide
some Doppler-cooling during detection. The lowest frequency radial mode of motion is then
recooled with a burst of EIT cooling lasting for 600 µs, followed by another EIT pulse of
400 µs optimized to cool the axial out-of-phase mode. Finally, 20 loops of calcium sideband
cooling on the axial in-phase mode conclude the re-cooling sequence. Compared to the
experiments presented in Chapter 6, the re-cooling operation takes longer. We think that the
main cause is the detuning of the calcium 397 nm detection beam, which, for the experiments
in Chapter 6 was ≈ 2π×8 MHz red detuned from resonance. With this detuning we expect
that Doppler cooling during detection is more effective. For the final experiments we will
further detune the calcium 397 nm detection beam and reduce the re-cooling times.

We check the quality of the re-cooling by comparing the blue sideband Rabi oscillations
on the axial in-phase (Z1) and out-of-phase (Z2) modes right after the initial cooling (see
Section 2.8.2) and after a calcium detection followed by a single re-cooling round, as shown
in Figure 7.1. A fit of Equation 2.38 to the data points, assuming a thermal distribution,
allows extracting the average motional occupancy of each mode. Right after the initial
cooling the measured n̄ are n̄IP = 0.015(4) and n̄OOP = 0.055(9) for the in-phase and
out-of-phase modes respectively. After a calcium detection and one round of sympathetic
re-cooling, we measure n̄IP = 0.008(4) and n̄OOP = 0.13(1), which are good enough to not
worsen the MS gate fidelity. It would anyway be possible to better cool the axial out-of-
phase mode by running a few cycles of calcium sideband cooling on this mode before the
final sideband cooling of the axial in-phase mode.

We then test the correctness of the circuit construction by realizing an arbitrary unitary
operation U(α, β, γ) = RZ(γ)RX(β)RZ(α). Figure 7.2a shows the experimental realization
of U(α, 0, 0). The trace is compared with the theoretical prediction using Equation 7.7
(Figure 7.2b). The measured contrast is 89(1)% and is consistent with the mixed-species MS
gate fidelity of ≈ 97% that was measured when these results were taken. More interestingly,
we notice a phase offset of 16.2(8) degrees from what we would expect from simulations.
This is consistent with a 1 − 2% miscalibration of the co-carrier Stark shift frequency in
beryllium.

7.4 Outlook

The experimental results shown in the previous section are just preliminary and require
improvements of the MS gate fidelities to the levels reported in Chapter 5. It would also
be interesting to perform a full process tomography of the single-qubit unitary operation to
characterize the sequence better.

For future experiments, it would be exciting to realize an arbitrary two-qubit gate. For
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Figure 7.2: Comparison between experimental data (panel a.) and ideal theoretical expectation
(panel b) for the realization fo the single-qubit unitary operation U(α, β, γ) = U(α, 0, 0) applied
on |+〉. In panel a, the solid lines are fits to the experimental data.The fitted contrast of the
oscillations is 89(1)%, which is consistent with the measured MS gate fidelity of ∼ 97%. The phase
offset (16.2(8) degrees) is compatible with a 1−2% miscalibration of the co-carrier frequency. These
data are just preliminary.

the realization of the sequence2

Mα Mβ Mγ

• U •

=

• U ′ •
Mα′ Mβ′ Mγ′

a minimum number of four ions are required (two beryllium and two calcium ions). A po-
tential implementation would start with the four ions in a single potential well for cooling
and state preparation in the calcium-beryllium-calcium-beryllium configuration. A split-
ting operation would then separate the chain into two smaller chains of calcium-beryllium.
Following the protocol described in Section 7.2.1, we could then realize the gates U and
U ′. Having two pairs in the same configuration ensures that the motional frequency and
beam alignment are the same, thus reducing the number of parameters that need to be cal-
ibrated. This motivates the choice of the initial four-ion chain configuration. For the final
CZ operation, one possibility would be to create a beryllium-calcium-beryllium chain and
apply a CZ gate on the two beryllium ions, using calcium for recooling. For this to work,
the splitting/recombination operation should not heat the axial STR mode of the three ion
chain. As briefly mentioned in Section 6.6, one possibility of cooling the STR mode would
be to deform the ion crystal into a triangular shape by compressing the crystal axially.
In this configuration, the Coulomb forces of the two outside ions stretching do not cancel
out anymore, because the radial component adds up. As a result, it should be possible to
sympathetically cool all the modes with a calcium ion.

2A general two-qubit gate requires a minimum of three CZ gates and three single-qubit operations as
discussed in [173].



124 CHAPTER 7. MEASUREMENT-BASED QUANTUM COMPUTING

One other potential implementation of a general two-qubit gate would be to work with
a symmetric beryllium-calcium-calcium-beryllium ion chain. The ordering procedure of the
ions in this configuration is similar to what described in Section 4.3.1. The single qubit
unitary gates could be implemented in the beryllium-calcium and calcium-beryllium sub-
chains. The ions would then be recombined in the initial configuration to perform the
two-qubit beryllium CZ gate. The difficulty of this implementation is in the number of
parameters. Carrier Stark shifts and motional frequencies will likely be different for the
two sub-chains due to the different position of the ions with respect to the laser beams
and due to anharmonicities and pseudo-potential gradient (see Section 5.2.1). However, it
would be possible to use scripting to automatically calibrate all parameters as discussed in
Section 4.1.3.

In both cases, the experiment requires controlled splitting and recombination of arbitrary
mixed-species chains and the control of multiple wells. It would also require a detailed
characterization of the magnetic field homogeneity along the trap. This sequence would then
exploit even more features of the segtrap experiment. It would also enable the realization
of more complicated experiments, such as the simulation of physical phenomena [174, 175].



8 Conclusions and outlooks

The long term vision behind the work described in this thesis is the QCCD architecture [27]
as a pathway for a scalable quantum processor based on trapped-ion technology. Within
this thesis, I summarized the main features of the experimental setup and introduced the
concepts for the control of mixed-species ion chains. I hope to have convinced the reader
that mixed-species ion chains could be beneficial for scalable QIP experiments with trapped
ions.

We used the high degree of spectral separation of calcium and beryllium ions to ex-
perimentally demonstrate quantum protocols that use mixed-species and feedback as key
elements. The two main examples described are the repeated stabilizer measurements and
the realization of general single-qubit unitaries in the measurement-based quantum com-
puting paradigm. In the first experiment (Chapter 6), we demonstrated a protocol for the
repeated measurement (up to 50 measurement rounds) of the parity of two beryllium ions by
detection of a co-trapped calcium ion. We used the calcium readout information contained
to feed back on the system and stabilize parity subspaces. With similar techniques we also
deterministically prepared and stabilized Bell states. The methods used to perform this ex-
periment could be used for stabilizer readouts in quantum error correction and metrology.
The other experiment discussed in Chapter 7, used a calcium-beryllium ion chain to realize
a general single qubit operation in the MBQC formalism. In this framework, operations
are realized by sequential adaptive measurements on an entangled state. As opposed to
standard MBQC, we create entanglement when needed to reduce the number of resources.
We make use of the feedforward ability of our control system to show the deterministic
implementation of an arbitrary single-qubit gate using adaptive measurements.

Future experiments will involve the manipulation of multiple crystals of different types
whose structure is continuously reconfigured through transport and splitting/recombination.
For this reason, in this thesis we also described a flexible interface that simplifies the writing
and the calibration of such experiments. The main idea is to mimic the physical setup giv-
ing a C++ code representation of an ion crystal. Each crystal object contains information
about the ion chain composition and all possible experimental sequences to manipulate that
particular configuration of ions. An experiment then simply becomes a sequence of function
calls on specific instances of crystal objects, interleaved by transport and splitting/recom-
bination operations. The main features of this new interface have been tested and exploited
in the experiments described in Chapter 7. Future developments of the experiment inter-
face should go in the direction of further automation. This includes improvements of the
automatic calibration of experimental parameters (for example using Bayesian schemes [61,
90]), but also a high-level interface capable of compiling QIP algorithms in experimental
code that could be run by our control system.

In the spirit of the QCCD architecture we also explored the ability to transport and
split/recombine mixed-species ion chains. We discussed experimental results of the splitting
of chains composed of two ions of the same species. We showed average axial excitations
after splitting below 1.6 quanta of motion for calcium and below 0.7 quanta for beryllium.
At the time of writing, mixed-species splitting is not reliable. A careful characterization of
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the trap electrode moments will likely give insight into the mixed-species separations issues.

Once we will be able to transport and split/recombine arbitrary mixed-species crystals,
this would add to the toolbox that we have available, and allow more complex experiments
to be realized using the current experimental setup. Examples of those experiments can be
found in the outlook section of Chapter 6 and Chapter 7.

Finally, this thesis also provided a detailed analysis of ion readout in the presence of
leakage mechanisms that alter the qubit population during detection. In this regard, we in-
troduced readout techniques based on the arrival time of photons and provided experimental
results . Those methods make use of the unique abilities of our classical control system to
perform floating-point calculations in real time and consequently alter the pulse sequence.
We showed how to reduce the detection time by approximately a factor of 3 without redu-
cing the readout fidelity, and we also introduced a new technique, based on entropy gain,
that could further reduce the detection time. These techniques could be beneficial for a
large scale quantum computer based on trapped-ions.

This concludes my thesis; I hope that the reader has found it useful and informative. I
also hope that the techniques developed withing this thesis will contribute to reach the goal
of a hybrid universal quantum computer based on trapped ions.
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