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Abstract

Legged robots are exceedingly versatile and have the potential to navigate complex, confined

spaces due to their many degrees of freedom. As a result of the computational complex-

ity, there exist no online planners for perceptive whole body locomotion of robots in tight

spaces. In this paper, we present a new method for perceptive planning for multi-legged

robots, which generates body poses, footholds, and swing trajectories for collision avoid-

ance. Measurements from an onboard depth camera are used to create a 3D map of the

terrain around the robot. We randomly sample body poses then smooth the resulting tra-



jectory while satisfying several constraints such as robot kinematics and collision avoidance.

Footholds and swing trajectories are computed based on the terrain, and the robot body

pose is optimized to ensure stable locomotion while not colliding with the environment.

Our method is designed to run online on a real robot and generate trajectories several me-

ters long. We first tested our algorithm in several simulations with varied confined spaces

using the quadrupedal robot ANYmal. We also simulated experiments with the hexapod

robot Weaver to demonstrate applicability to different legged robot configurations. Then,

we demonstrated our whole body planner in several online experiments both indoors and in

realistic scenarios at an emergency rescue training facility. ANYmal, which has a nominal

standing height of 80 cm and width of 59 cm, navigated through several representative dis-

aster areas with openings as small as 60 cm. 3 m trajectories were re-planned with 500 ms

update times.

1 Introduction

There are many situations in which humans must enter confined spaces, such as industrial inspection or

in response to emergencies. These environments are dangerous however, and there is a need for new tech-

nologies to make working in them safer. Legged robots are uniquely well suited for these spaces as their

many degrees of freedom (DOF) enable locomotion over terrain that is hard or even impossible for wheeled

or tracked robots. However, there remain significant challenges in robotic legged locomotion in confined

spaces. Planning algorithms must compute both foot trajectories and body poses which ensure stability and

avoid collisions with the environment. A robot may need to plan steps over obstacles on the ground while

also lowering or rotating its body to pass under an overhanging obstacle such as in Figure 1. Since prior

information is not guaranteed, a robot also needs sensors to map the surrounding terrain.

The principal challenge in planning for legged robots comes from the complexity of the problem and often

motivates a trade-off between planning time, detail of the robot model, and planning horizon. Current whole

body planners for multi-legged robots have fast update rates but do not consider collisions of the robot’s

body with terrain (Fankhauser, Bjelonic, Bellicoso, Miki, & Hutter, 2018; Mastalli et al., 2017; Magaña et

al., 2019). Sampling-based planners that do consider these collisions take significant time for computation

and have not been demonstrated on real robots (Grey, Ames, & Liu, 2017; Kumagai, Morisawa, Nakaoka,

& Kanehiro, 2018; Short & Bandyopadhyay, 2018). Geisert, Yates, Orgen, Fernbach, and Havoutis (2019)



have shown that the acyclic planner from Tonneau et al. (2018) can be applied to multi-legged robots;

however, their method relies on inflating the collision model of the robot, which would prevent it from

working in confined spaces. Additionally, it takes several seconds to generate a trajectory and has not been

demonstrated on a real robot.

In this paper, we attempt to fill the gap in current methods and enable multi-legged robots to walk in

confined spaces. Our method generates several meter trajectories of the 6 DOF pose of the torso and plans

the 3D positions of the feet for each footstep. Our approach is hierarchical, first sampling a feasible trajectory

of body poses, which is then smoothed using a gradient descent method similar to Covariant Hamiltonian

Optimization for Motion Planning (CHOMP) (Zucker et al., 2013). Next, footsteps and swing trajectories

are adapted based on the terrain similar to Fankhauser, Bjelonic, et al. (2018). This way, a robot can crawl

under or step over obstacles. The final phase of our planner is the optimization of the body pose to maintain

the nominal rotation and height while also ensuring static stability while taking a step. Our method can

update fast enough for re-planning on a real robot. Our main contributions are highlighted below:

• We present a method for whole body planning for multi-legged robots which generalizes to different

platforms and can run on-board a real robot with less than half a second update time.

• Our method is particularly suited for confined spaces as we do not inflate the collision model of

the robot. By combining sampling with trajectory optimization, we also avoid many local minima

associated with confined spaces.

• Our method is one of the few to be demonstrated on a real robot and, to the best of our knowledge,

to first to be deployed in field experiments. We show our robot navigating confined spaces used for

training emergency rescuers.

Figure 1: ANYmal autonomously navigating confined spaces using onboard mapping and no prior knowledge
of the environment. The footholds, body poses and transitions were all planned on the robot.



2 Related Works

While many DOF enable legged robots to traverse challenging terrain, it also makes whole body planning

computationally demanding. Despite these challenges, there exist many examples of perceptive whole body

planning. In this section, we discuss the current state of the art and identify gaps in capabilities.

2.1 Trajectory Planning

There exists a significant body of work on trajectory planning in 3D. Typically approaches attempt to formu-

late an optimization problem that balances obstacle avoidance with reaching a goal state. TrajOpt (Schulman

et al., 2014) is one method which uses a Sequential Quadratic Programming (SQP) solver to compute tra-

jectories. To check for collisions, they decompose the robot geometry and objects in the environment into

meshes or convex 3D primitives and compute the closest points on each object to the other. CHOMP (Zucker

et al., 2013) is another optimization-based approach which instead uses an Signed Distance Field (SDF) for

collision checking. These fields are a discretization of 3D space where the value of each voxel is the distance

from that voxel to the nearest object. Figure 2 shows an example from simulated data. Once the SDF is

generated, it can be queried for collisions in constant time. In our previous work (Buchanan et al., 2019),

we used CHOMP and SDFs to plan a robot’s body height and leg span in confined spaces. We assumed,

however, flat terrain and did not plan for the footholds of the robot nor the robot’s 6 DOF pose. The

work described in this paper significantly extends the capability of our previous planner, and we show in

simulations how we enable a robot to walk through previously untraversable terrain.

Other trajectory planners employ random sampling. In this case, rather than explicitly defining an optimiza-

tion problem, only the constraints and state costs are defined, and robot states are randomly sampled until

a valid path is found. The rapidly-exploring random trees (RRT) algorithm (Lavalle, 1998) has been used

extensively in this regard. Adapted algorithms can gain some of the useful features of optimization problems

such as asymptotic optimality (Karaman & Frazzoli, 2011). Directed methods such as RRT-Connect (Kuffner

& LaValle, 2000) can efficiently find paths between points, but these methods suffer from the curse of di-

mensionality, and thus, it can be challenging to plan for legged robots online. This has motivated several

different approaches and compromises to planning for legged robots.



Figure 2: We show a 3 m x 3 m x 1 m SDF, centered on the robot, with two cross sections at z = 0.5m and
y = 0m so that the robot model and obstacle are visible. The 5 cm voxels are colorized to indicate distance
from obstacles. Cyan voxels are closer to the obstacle while purple are further away.

2.2 Planning for Legged Robots

Many whole body planners for multi-legged robots are primarily focused on finding footholds in rough terrain

and optimizing body posture for stability. Mastalli et al. (2017) and Fankhauser, Bjelonic, et al. (2018) both

search in an elevation map for footholds on suitable terrain. Magaña et al. (2019) train a Convolutional

Neural Network (CNN) to adapt footholds based on the elevation map for quicker reactions to disturbances.

These methods have shown quadrupeds, climbing stairs, and walking in rough terrain. However, they do

not consider collisions of the body of the robot with the terrain and would not be able to walk in confined

spaces.

Sampling planners have been used successfully for legged robots (Grey et al., 2017; Kumagai et al., 2018;

Short & Bandyopadhyay, 2018), where the focus is typically on reducing computational complexity by

reducing the sampling space. Grey et al. (2017) do this by simplifying the model of the robot and reducing

the space of feasible motions. Short and Bandyopadhyay (2018) save on computation by sampling a road-map

of feasible configurations for their quadruped offline in the absence of any terrain. Then, when planning for a

given environment, the sampling space is significantly reduced, allowing planning in complex environments.

Along similar lines, Kumagai et al. (2018) pre-compute a global footstep path then perform the more time-

sensitive body motions online. All of these methods demonstrate complex planning through cluttered and

narrow environments but are still very computationally demanding, taking several seconds to generate a

plan. It is also notable that none of these methods have been demonstrated on a real robot.

The acyclic contact planner from Tonneau et al. (2018) uses a hierarchical approach and is the most similar



method to our own. Similar to our method, they initially sample a trajectory of feasible poses for the base

of the robot. Unlike our method, they use an inflated abstraction of the robot model to check for collisions.

While this speeds up planning considerably, it is notable that this would not be suitable for planning in

confined spaces. Similar to Short and Bandyopadhyay (2018), they sample from a selection of pre-computed

configurations, selecting configurations that avoid collisions and maximize manipulability. This step is by

far the most time-consuming part of their pipeline. In contrast, our method is much faster at selecting

footholds because we constrain the contact planning step to a 2D manifold. This simplification makes our

method less appropriate for humanoid robots but massively speeds up planning and is quite reasonable for a

multi-legged robot. Geisert et al. (2019) implemented the planner from Tonneau et al. (2018) in simulation

on a quadruped robot. They bias the contact sampling to encourage a suitable Support Polygon (SP), and

they use an inflated collision model to prevent the robot from lowering its torso. In contrast, we enforce

stability as an optimization constraint and use the exact collision model of the robot’s torso.

Like the majority of the methods above, we rely on static stability. If the robot’s Center of Mass (COM)

lies within the convex hull of foot contacts projected onto the horizontal plane, the robot is assumed stable.

As we use multi-legged robots with at least four legs, we can exploit this approximation, although the

robot must walk more slowly. Other methods incorporate the robot’s dynamics directly in the optimization

problem. Winkler, Bellicoso, Hutter, and Buchli (2018) solve the full robot posture, including transition

motions, by formulating a Nonlinear Programming (NLP) problem while Aceituno-Cabezas et al. (2018) use

Mixed Integer Programming. Both methods approximate the robot dynamics as a single mass with inertia

and contact points for feet. This modeling enables them to plan for dynamic gaits, which increases robot

speed and robustness against disturbances. They do not, however, consider collisions of the body with the

terrain and must sacrifice either planning time or planning horizon.

2.3 Mapping

For a robot to plan and walk through real confined spaces, it must be able to map the terrain and identify

free space. Octomap (Hornung, Wurm, Bennewitz, Stachniss, & Burgard, 2013) has been widely used in

robotics for occupancy mapping; however, it is not particularly efficient for collision checking as data look-

ups require tree traversal. Voxblox (Oleynikova, Taylor, Fehr, Siegwart, & Nieto, 2017) builds 3D maps

using voxel hashing, which allows it to grow the map only when there is new data. They also compute the

SDF directly from the depth measurements. However, they trade accuracy for real-time performance and use

large (10-20 cm) resolutions. While this is acceptable for flying robots, which must keep a significant distance



from obstacles, it is not suitable for ground robots in confined spaces. Another method often used for ground

robots is digital elevation mapping (Herbert, Caillas, Krotkov, Kweon, & Kanade, 1989). These are often

called 2.5D maps because a grid is aligned with the robot’s walking plane, where each cell records the terrain

height. This representation of the environment has been highly successful for legged robots (Belter,  Labecki,

Fankhauser, & Siegwart, 2016; Fankhauser, Bloesch, & Hutter, 2018) because it is very memory efficient and

provides a useful approximation of the ground for foot placement. We use multi-elevation maps (Buchanan

et al., 2019), which are a compromise between 2.5D and 3D mapping. We cluster depth measurements into

two elevations below and above the robot. An SDF can then be computed between these two 2.5D maps.

3 Posture Planning

In this section, we will go into the details of our planning method. As shown in Figure 3, we use a hierarchical

approach to planning, starting with a goal pose and current robot posture. We first randomly sample the

planning space to find a feasible trajectory of discrete body poses. Due to the randomness of this method,

this trajectory is highly irregular, therefore we perform smoothing in continuous time. This trajectory can

be reused for online planning. For each pose in the trajectory we seek to find four foot contacts which are

selected from the map based on terrain suitability. The body pose is optimized for stability to ensure the

footholds are possible to attain, and finally leg swing trajectories are computed to avoid collisions. Table 1

summarizes information for each planning step. In the second column we highlight which parts of the robot

model are considered, the third column details if, and how, collisions are checked and in last column indicates

the section in this paper describing the planning module.

Figure 3: Information flow diagram. The planner receives a goal pose defined in (1) and begins to plan a
trajectory for the robot. An initial trajectory of poses is sampled from an SDF which is then smoothed.
This trajectory is re-smoothed for re-planning each foot step. Initial footholds are generated for the next
pose in the trajectory so that every pose corresponds to a posture as defined in (2). Footholds and body
pose are then optimized based on terrain costs, and solving an NLP problem respectively. Finally, the swing
trajectory is computed.



Table 1: Summary of each planning step.

Planning Step State Space Collision Model Environment Representation Section
Initial Sampler TIB Body SDF 3.2.1

Trajectory Smoother TIB Body SDF 3.2.2
Initial Footholds IP Body & Feet None 3.3

Foothold Adaptation ItIFi Feet Elevation Map 3.3
Posture Optimization IP Body & Feet None 3.4

Swing Trajectory Planner ItIFi Feet SDF 3.3

3.1 Preliminaries

We define frame I as our fixed inertial frame of reference. The body frame B is attached to the robot’s torso

and moves with the robot. A pose is described with a 4x4 transformation matrix belonging to the special

euclidean group SE(3). The robot’s body pose relative to the inertial frame is written as TIB which is given

by

TIB :=

RIB ItIB

01x3 1

 ∈ SE(3), (1)

where RIB ∈ SO(3) is the rotation matrix that projects the components of a vector from the body frame

B to the inertial frame I and ItIB ∈ R3 is a the position from frame I to B with respect to (w.r.t.) frame

I. The robot’s feet are modeled as point contacts with position ItIFi ∈ R3 and no rotation. We define the

robot’s posture w.r.t. I, IP , as a combination of the body pose and foothold positions in frame I such that

IP = {TIB ,I tIFi |TIB ∈ SE(3),I tIFi ∈ R3,∀i = 0, 1, 2...N}, (2)

where N is the number of legs of the robot. Our goal is to compute IP for a legged robot from it’s start to

a goal point while avoiding obstacles.

3.2 Constraints

To ensure that the final plan is feasible and safe for a robot to carry out we impose several constraints in

each phase of planning. In this section, we define and describe these constraints:

1. Contact Reachability : The robot must be able to attain every body pose while maintaining contact

with the ground. To ensure this, we set a maximum pose height parameter hmax which is the



Figure 4: Depiction the first three planning constraints. From left to right: 1. For contact reachability,
the body pose cannot be too high above the terrain. 2. To maintain sequential reachability, two consecutive
poses cannot be too far apart. 3. Body poses must not place the torso inside an obstacle. 4. The last robot
transition satisfies constraints 1-3.

maximum allowable height above the terrain elevation. 1

2. Sequential Reachability : It must be possible for the robot to transition between two sequential body

poses with a single step. We enforce this by limiting the euclidean distance between two sequential

body poses to be less than a maximum step distance parameter smax.

3. Collisions: Body poses must avoid collisions with the terrain. We use an SDF to check several points

on the robot’s torso for collisions. For the initial sampling, we check if the point is in collision or not.

For smoothing, the check point has a radius rc and a cost function fobstacle such that obstacles inside

the radius are a soft constraint for the smoothing process. Unlike Tonneau et al. (2018) and Grey

et al. (2017) we do not inflate the body of the robot which is undesirable for navigating confined

spaces. The collision modeling is described in more detail in Section 4.2.

4. Stability : Postures should be statically stable. To ensure this, we consider the SP, which is defined

by the convex hull of the feet positions projected onto a plane whose normal aligns with gravity.

If the COM of the robot, projected onto this plane, lies within the polygon, the posture can be

said to be stable. We check for this in the posture optimization step, and details can be found in

Section 3.4.

In Figure 4 we illustrate how the first three constraints can be violated. The initial pose sampler and

trajectory smoother consider constraints 1-3 from above while the stability constraint is handled by the final

pose optimization which takes place after foothold selection. Since the optimization occurs in the final step,

the robot’s body pose may have to change to ensure stability, and this could result in a collision with the

1This is similar to Tonneau et al. (2018) but only considers height rather than an approximation of the workspace of each
leg. Our constraint eliminates the need to generate a reachable workspace for every robot and we have found it to be sufficient
for multi-legged robots.



terrain. This limitation is a result of using a hierarchical planner: lower levels of planning may not be able

to consider all of the constraints. In practice, we have found the few body collisions to be minor and have

never interfered with the robot’s mission.

3.2.1 Initial Pose Sampling

We initially sample a trajectory of discrete body poses from the robot’s state to the goal. The sample space

is a 3D box which is large enough to contain the two endpoints of the trajectory with additional space in

the positive and negative X and Y directions so that paths can be found around obstacles. We use the

RRTConnect algorithm (Kuffner & LaValle, 2000) which generates two RRTs, one rooted at the start and

the other at the goal. Poses are randomly sampled and added to each tree using a greedy heuristic until the

trees connect. We reject poses that violate constraints 1-3 and use the SDF from the map to avoid collisions

as a hard constraint.

3.2.2 Trajectory Smoothing

Our method for smoothing the body pose trajectory is based on the local optimization method

CHOMP (Zucker et al., 2013). To use this planner, we re-formulate our trajectory in continuous time

as

ξ(t) = [x(t), y(t), z(t), φ(t), θ(t), ψ(t)], (3)

where x, y, z represent the position and φ(t), θ(t), ψ(t) the rotations in Euler angles of the robot body at

time t. The robot’s maximum absolute pitch and roll are limited to 45◦ which allows us to use Euler angle

rotations without danger of singularities. We use the functional gradient descent update rule given by

ξi+1 = ξi −
1

η
A−1∇̄U [ξi], (4)

where the norm A is formed by multiplication of differencing matrices and acts as a smoothing operator.

The learning rate η regulates the speed of convergence to a solution for each iteration i. ∇̄U is a functional

gradient that operates on the trajectory configuration function ξ(t) defined in (3). This functional gradient

is the sum of two gradients ∇̄Fsmooth and ∇̄Fobstacle.

The smoothness gradient ∇̄Fsmooth is calculated as the negative second order derivative of ξ(t) and ensures

that generated trajectories are kept smooth. The obstacle gradient ∇̄Fobstacle is the sum of costs c(x) for



each collision check point. The cost for a single point is calculated by

c(x) =


−x+ 1

2rc, for x ≤ 0

1
2rc

(x− rc)2, for 0 < x ≤ rc

0, for rc ≤ x

(5)

where x is the collision distance queried from the SDF and rc is the collision check radius. The obstacle

gradient is projected along the gradient of the SDF so that the trajectory is pushed away from all obstacles.

We perform the gradient update step (4) until no collision checkpoint centers are inside obstacles (although

collisions may exist inside rc). To enforce Contact Reachability, we use a series of limits on ξ(t). If the

trajectory violates these limits, we calculate the violation trajectory ξv, i.e., the set of vectors representing

the amount of violation for each pose in the trajectory. We then calculate a new trajectory without violations

ξ̂ = ξ + A−1ξv. This is explained in detail in Zucker et al. (2013).

3.3 Foothold Planning

In the previous sections, we were concerned with planning a trajectory of body poses, here we discuss how

for each pose in the trajectory, the foothold ItIF is computed. In contrast to body poses, we only plan for

the next desired foothold rather than the full trajectory from start to goal pose. As the robot moves, more

of the terrain will become visible and mapped. By planning a trajectory of body poses, we can look ahead

and re-plan paths around obstacles. Since the robot moves relatively slowly, it would be unnecessary to plan

more than a few footsteps, so we save on processing by planning only one step in advance.

The robot has pre-defined nominal feet positions, t̂Fi . We use a fixed, statically stable gait: right-hind

(RH), right-fore (RF), left-hind (LH), left-fore (LF). With these parameters and a given body pose in the

trajectory, we can compute the next ideal foothold geometrically. We then search in the elevation map

around this nominal foothold and evaluate foothold scores based on the terrain. The nominal foothold is

updated with the foothold with the best score that is also kinematically feasible. The swing trajectory is

initialized with knot points that are then adapted to avoid collisions. More about this process can be read

in Fankhauser, Bjelonic, et al. (2018) as we use the same method.



3.4 Pose Optimization

The nominal next body pose T̂IB comes from the trajectory of body poses computed in Section 3.2.2.

From this pose, the terrain-aware next footholds ItIFi were selected from the elevation map, and now a

final optimization step is done to adjust the body pose to ensure the Stability constraint is not violated.

We formulate this as an NLP problem, which we solve with an SQP solver. This method is sensitive to

initialization, so to avoid falling into a local minimum, we first make a guess based on geometric calculations.

We initialize the nominal body rotation R̂IB and height component of nominal position I t̂IB . The footholds

ItIFi are fixed. We compute the planar projection of the centroid of the SP t̄SP in the XY plane and set

this as the XY components of the base pose.

Next, we seek to minimize the following optimization objective while considering the constraints:

minimize
ItIB ,RIB

f(x) = R(ItIB ,RIB) Reachability

+ C(ItIB ,RIB) Center of Mass

+H(ItIB) Height,

(6)

such that ASP tCOM (ItIB ,RIB) ≤ bSP ,

hmin ≤ hi(ItIB ,RIB) ≤ hmax,i∀i ∈ N.
(7)

where tIB and RIB are the final body position and rotation respectively. Table 2 gives the equations and

a description for each term in (6). The first component R(ItIB ,RIB) is a reachability cost which penalizes

body poses (ItIB ,RIB) that result in footholds tIFi which are far from the nominal footholds t̂IFi . The next

term, C(ItIB ,RIB), places a cost on instability by penalizing the difference between the SP centroid planar

projection t̄SP and the projection of the robot’s COM onto the XY plane t̄COM . wCOM is a weight on the

cost and acts as a safety margin. H(ItIB) penalizes a difference between optimized height and desired height.

Sz is selection matrix [0 0 1] so that only the height component of the position difference is considered.

The constraint (7) enforces static stability where ASP and bSP are the linear constraints which limit the

COM to lie inside the SP. We also encode the reachability constraint by constraining the body height from

a given pose hi(tIB ,RIB) to lie between minimum and maximum values hmin and hmax.



Table 2: Optimization Objective Costs

Cost Equation Description

Reachability R
∑N
n=1‖I t̂Fi − ItFi(ItIB ,RIB)‖22 Cost on difference between default foot

positions I t̂Fi and foot positions resulting
from the optimized posed.

Center of Mass C wCOM‖I t̄SP − I t̄COM (ItIB ,RIB)‖22 Cost on difference between SP centroid and
COM planar projections.

Height H ‖STz (I t̂IB − ItIB)‖22 Cost on difference between desired height and
optimized pose height.

4 Mapping and Collision Checking

Our goal is to employ the posture planner online with a robot that is also mapping its surroundings. Not

only do we need a method for modeling the environment and robot, but also a method to check for collisions.

This section covers these concepts briefly as many of the methods we use here are similar to Buchanan et

al. (2019) and Fankhauser, Bloesch, and Hutter (2018).

4.1 Multi-Level Elevation Mapping

The robot’s map consists of a 2D grid defined centered on the robot’s body which follows it as it moves. On

this grid two elevation levels are defined, one which represents the terrain below the robot and is denoted floor

and another for obstacles above denoted ceiling. The elevations are computed with distance measurements

from the robot’s onboard sensor to nearby obstacles and terrain. For point measurement, the mean and

variance [ĥ, σ̂2
h] of the height measurement is updated in each cell by means of the Kalman filter

ĥ+ =
σ2
pĥ

−+σ̂2−
p hp

σ2
p+σ̂

2−
h

, σ̂2+
h =

ˆ
σ2−
h σ2

p

σ2
p+σ̂

2−
h

, (8)

where − and + superscripts indicate the filter states before and after a measurement respectively. The

subscript p indicates the unfiltered sensor measurement variance which comes from empirical models such

as Fankhauser et al. (2015). Before fusion into the Kalman filter, points are separated into an elevation

E ∈ {floor , ceiling} with means and variances [ĥf , σ̂
2
f ] and [ĥc, σ̂

2
c ]. This clustering is done by calculating

the probability P of a new point observation ĥ belonging to an elevation. The probability distribution of

points around an elevation is modelled as N (µE , σE) so that the likelihood function is given by:

P (ĥp|E) =
1√

2πσ2
E

e
− (ĥp−µE)2

2σ2
E . (9)



Figure 5: The left image shows ANYmal inspecting a narrow space and the right image is a rendering of
the resulting elevation map. The red mesh represents the floor elevation and the blue mesh represents the
ceiling.

In Figure 5 we show how this mapping method works in practice in narrow spaces.

4.2 Collision Checking in Signed Distance Fields

To plan collision-free trajectories in 3D space, we convert our elevation maps to SDFs. Each voxel in an SDF

contains the signed distance from that voxel to the nearest obstacle boundary where free space has positive

values and space inside obstacles are negative (see Figure 2). Elevation mapping is done with cell sizes 2 cm

across and the SDF is generated with 2 cm voxel size of at 1 Hz which is is faster than Voxblox (Oleynikova

et al., 2017) for the same voxel size.

We query the SDF at various check points which are fixed on the robot. We select check point locations

depending on the robot’s model composed of geometric primitives and specific placement strategies for boxes

and cylinders. For example, in Figure 6, we show a box with points placed along each of the edges. There

are gaps on the faces of the box where it is possible that an obstacle is not detected. Because our mapping

representation includes all obstacles in either a floor or ceiling elevation, any obstacle which might pass in

the face of the box would also collide with the top or bottom edge. This way, we can spend less computation

checking the entire surface of the robot while still having reasonable assurance of detecting all collisions. We

compute these check points in the robot’s body frame at start-up to save on processing during run time.

5 Implementation

To perform experiments, we implemented our planner on the quadrupedal robot ANYmal (Hutter et al.,

2016). We use an Intel Realsense D435 camera at a roll angle of 90◦to perceive terrain above and below the



Figure 6: Diagram of geometric primitives and allocation of collision check points. For boxes we place check
points along every edge (left), while for cylinders we also place points around edges as well as along columns
at 90◦intervals. The check points are placed close enough such that their radii overlap.

robot. Pointclouds from the Realsense are processed on a dedicated PC with Intel i7-7600U processor at

3.5 GHz. The elevation maps are encoded using the GridMap (Fankhauser & Hutter, 2016) data structure

and are passed to the second PC (which has similar specs) at 2 Hz over a wired LAN connection. Once a

map is received, the SDF is computed in a separate thread using the approach presented in Felzenszwalb

and Huttenlocher (2012) and saved in memory where it can be queried as needed.

Our planner starts when a new goal is received. In our experiments, the goal was always 3 m ahead of the

robot. For the initial pose sampling, we use the RRT-Connect implementation in the Open Motion Planning

Library (Şucan, Moll, & Kavraki, 2012). Searching is limited to 1 s, but in practice, it take around 100 ms

find an exact solution. Table 6 in Section 7 shows the best, average and worst case times for each step in

the planner. Once a successful pose trajectory has been found, we proceed to the smoothing step. In later

planning iterations, we reuse the smoothed trajectory instead of sampling again, although we repeat the

smoothing step. Re-smoothing the previous trajectory instead of sampling each time speeds up re-planning

in case a dynamic obstacle enters the path, or a previously occluded obstacle enters view. If the smoothing

fails, we re-initialize from new random samples. Once the footsteps have been selected and the final pose

optimized, the motion is passed to the robot’s controller as a Free Gait (Fankhauser et al., 2016) motion.

ANYmal’s whole body controller then converts this motion into actuator commands, and the robot can carry

out the motion.

6 Experiments

We performed three sets of experiments. The first was a series of simulated environments which explored

the versatility of the planner. The next two sets of experiments were deployed on a real robot to verify our



method’s applicability. Online experiments were first performed in the lab using an adjustable door and

then later in the field at a training facility for emergency responders. In lab experiments, we tested some of

the same environments as in simulation. The purpose of the field experiments was to test the robustness of

our method to realistic conditions.

6.1 Simulated Experiments

We created five different environments in simulation: 1. Low Gap, 2. Rotated Gap, Low Gap with Step,

Thin Gap and Random Obstacles. In each case we tested 10 trials with different dimensions or number of

obstacles. Figure 7 shows the robot traversing three of these environments. It is worth noting that the

Occupational Safety and Health Administration (OSHA) in the United States defines entry portals less than

24 inches (61 cm) in the smallest dimension as “Restricted” since any smaller would be impossible for a

rescuer to enter with breathing equipment (OSHA, 2011).

1. Low Gap: In this experiment we progressively lowered the door in increments of 5 cm, each time

having ANYmal pass through to the other side. We did this repeatedly until we reached a gap only

60 cm high, and 1 m wide. We found the robot could pass under gaps of 70 cm and above with 100%

success, 65 cm with 70% success, and 60 cm with 40%.

2. Rotated Gap: In the next environment, we created an opening in the shape of a 1 m high, and 1 m

wide isosceles right triangle. The purpose of this was to test navigating in differently shaped confined

spaces. When initially tested in simulation, we did not randomly sample the initial trajectory and

used a straight-line initialization instead. We found it was rare for CHOMP to solve a trajectory

even when employing the Hamiltonian Monte Carlo method as in (Zucker et al., 2013). Once we

introduced an entirely randomly sampled trajectory as initialization, CHOMP converged much faster

to better trajectories. In the simulations, the robot could pass through this gap with 100% success

in 10 trials.

3. Low Gap with Step: This environment was created by lowering an overhanging obstacle to 70 cm,

and raising a step in increments of 5 cm. In simulation the robot could step over 5 cm with 90%

success and 60% for 10 cm.

4. Thin Gap: For this environment we created a wall with a gap of variable width to the robot’s



Figure 7: Images of robot navigating simulated environments. Left: Low Gap environment (60 cm). Middle:
The Thin Gap environment (70 cm). Right: The Random environment (seven blocks). Here the randomly
placed blocks are circled in green. One of the seven blocks is obscured by the robot.

left. We set a goal on the other side of the wall with the same orientation as the starting pose. To

succeed, the robot needed to rotate counter clockwise 90◦, pass straight through the gap then rotate

back to the starting yaw rotation. Attempts to run our planner without the initial sampling would

always fail as CHOMP could not converge to such a large rotation. We did this with increasingly

narrow width and found the robot, which is 59 cm wide from knee to knee when standing, could

pass through a gap 80 cm width with 100%, 75-65 cm 80% of the time and 60 cm 20%.

5. Random Obstacles: Here we created a 1 m x1 m gap in a wall in front of the robot. We then

randomly spawned 2 cm x5 cm x5 cm blocks in the gap which were fixed in the air. This created

randomized narrow spaces which could include obstacles above or below the robot. Sometimes the

robot had to crawl under, step over or rotate its torso around obstacles. We performed ten trials

with 3 blocks, 5, 7 and 9 and found success rates of 70%, 50%, 40%, and 10% respectively.

6.2 Indoor Experiments

We performed indoor experiments using a custom adjustable doorway. The space can be made narrower by

sliding the plywood door downwards along aluminum profiles. The door can also be rotated, creating an

angled gap and a metal bar can be raised to create a step. Figure 8 shows ANYmal navigating the door in

each of the indoor experiments we performed.

To provide additional quantitative analysis, we recorded the physical dimensions of each door and examined

the normalized deformation. This metric is useful for comparing different robots, which may have different

physical constraints on minimum size. For example, in our first experiment, we progressively lowered the

door, forcing ANYmal to crawl lower and lower. The lowest possible space that could be navigated was

60 cm, which corresponds to a non-normalized percent deformation of 25% as ANYmal has a nominal height



Figure 8: Top: Low Gap (60 cm). Middle: Rotated Gap. Bottom: Low Gap with Step (10 cm). On the left
are images of ANYmal completing each experiment, and on the right are corresponding plots of odometry.
In the plots on the right, position is represented with solid, filled regions while rotation is represented with
dashed lines. Within each plot, the top subplot shows roll, the middle subplot shows Y position and Yaw,
and the bottom subplot shows Z position and Pitch. Shaded, colored regions represent the collision region
of the widest part of ANYmal’s torso. The dark gray regions are indicative of obstacles. Their heights are
based on physical dimensions while their widths represents the time between the front of the robot entering
the confined space and the rear leaving.



of 80 cm. In Buchanan et al. (2019) we used the following equation to normalize deformation percentages

between different robots:

deformation = 100% ∗ (1− measured− limit
nominal − limit

). (10)

which gives a normalized deformation of 43% as ANYmal has a minimum possible height of 34 cm, which

is the height of the torso. This is near the 35% minimum deformation shown in Buchanan et al. with the

hexapod robot Weaver. The disparity is likely due to different nominal configurations of the legs. The

hexapod’s legs spread up and outwards from the body in an insectoid fashion. ANYmal’s legs were kept in

a mammalian configuration during these experiments such that the feet were close under its body. While

ANYmal can walk with an insectoid configuration, there is no automatic way in the controller to switch.

With these metrics, we replicated, indoors, three of the simulated experiments: Low Gap, Rotated Gap, and

Low Gap with Step. In each case, we arranged the door to create the desired gap, then placed the robot in

front and commanded a goal on the other side. All planning and perception were done on the robot without

any prior knowledge. We recorded the robot kinematics to observe how it executed the plans.

6.2.1 Low Gap

On the real robot, we found similar success rates as in simulation. Failures were always either caused by

collision with the door or singularities in computing the inverse kinematics. As the robot lowers its torso

significantly, the hip joints become very close to the feet. This reduces the manipulability of the legs and can

lead to failure computing the inverse kinematics during a leg swing. Collisions with the door are likely due

to the hierarchical nature of the planner. In the final optimization step, it is possible that the robot pose

changes slightly. This can lead to a body pose which is in collision with the terrain. Additional collisions

are due to parts of the robot we do not model, such as the leg below the hip joint.

The top plot of Figure 8 shows the plotted position and rotation over time as the robot crawled through the

doorway. The torso of ANYmal is not a single rectangle; there are handles at the front and back, making

it thinner in the middle. Thus, the planner initially had ANYmal roll it’s body and pitch forward to fit the

front handle under the door. Then the rotations leveled out as the center of ANYmal’s body passed through

the doorway before pitching up to get the back handle through. This demonstrates the 6DOF planning we

do for the body and allows the robot to minimize the amount of time spent crouched down.



Figure 9: Left: The hexapod robot Weaver. Middle: Rotated Gap experiment using our previous work.
Right: The same environment using the methods in this paper. We did not plan footsteps for Weaver as
the controller did not support this feature. In white, we show the skeleton of the robot’s model and in green
we show the collision model. The red mesh represents the floor elevation and the blue mesh represents the
ceiling.

6.2.2 Rotated Gap

In experiments with the real robot, the planner succeeded in 5 out of 7 trials, and we show the results from

one of these trials in the middle plot of Figure 8. The planner optimized a combination of roll, pitch, and

yaw to orient the body through the free space. This demonstrates how the optimization keeps the COM

inside the SP as a more substantial roll would be less stable. Because we include this in our objective, (6),

the planner instead finds an optimal combination of rotations so that none are too extreme.

The planner guided ANYmal’s position to the right to avoid the narrower part of the triangle on the left.

This way, once the front of ANYmal passes through the gap, large rotations are no longer needed, and the

body straightens out. We also tried to reduce the angle of the doorway to make the space even more narrow,

but this quickly led to higher rates of failure. The main reason for failure was the top of the robot colliding

with the door. It was found that our mapping method does not work well with angled walls. There are

inherently gaps in the map where floor changes to ceiling, and on an angled wall, these unmapped spaces

can be significant and are located directly in the center of the door. This gap was much more pronounced

in the real experiments as opposed to simulation due to higher sensor noise. The result was the planner

guiding the robot very close to the door and sometimes directly into collision.

6.2.3 Low Gap with Step

The final indoor experiment we performed was the Low Gap with Step. ANYmal could step over 5 cm with

100% success which dropped to 50% at 10 cm. From the resulting plot at the bottom of Figure 8, we can see

how the robot lowers its body to be below 70 cm. To overcome the higher step, the robot pitches upwards

before the gap, which is the opposite behavior to the Low Gap experiment. This is because we maximize

reachability allowing the front legs to swing up and over the step. Once the body has passed through the



gap, the robot slowly pitches forward and raises its body. The two spikes in pitch and roll after the doorway

correspond to the two back legs stepping over the obstacle.

This lab experiment was the most challenging. The robot typically failed due to singularities, which is similar

to the Low Gap experiment at 60 cm. In such a confined space, the manipulability of the legs is very low.

We increased the default foot positions in X and Y directions to increase the distance between the feet and

hips, but it could not eliminate the problem.

6.3 Weaver Experiment: Rotated Gap

The robot would not have been able to walk through any of these confined spaces without the contributions

outlined in this paper. To demonstrate this, we repeated the Rotated Gap experiment in simulation on the

robot Weaver (Bjelonic et al., 2018). With our previous planner (Buchanan et al., 2019), the robot could not

find a path and continuously collided with the obstacles. This is because it did not use an initially sampled

trajectory to guide the torso, which resulted in the smoothing process diverging or becoming stuck in a local

minimum. Additionally, without planning for the torso’s roll and with the large collision abstraction of the

whole body, it made it more difficult to find a path. We show an image from these simulations in Figure 9.

It would have also been impossible for Weaver to complete the Low Gap with Step experiment as previously

we did not plan footsteps. This shows the versatility of our method as we have demonstrated the out planner

on two types of multi-legged robots.

6.4 Field Experiments: Wangen an der Aare Training Village

The Swiss Federal Office for Defence Procurement armasuisse organizes the Advanced Robotic Capabilities

for Hazardous Environments (ARCHE) event. The event takes place at the Übungsdorf (Training Village)

in the town of Wangen an der Aare in Switzerland. This facility is a training site for the rescue and ordnance

disposal units of the Swiss military.

We visited the Training Village in July 2019, and over the course of a week, found several confined spaces

to test our planner. We show here our results from ANYmal navigating three different confined spaces that

firefighters could be expected to crawl through as part of their training. In each case, we placed ANYmal in

front of the opening and only commanded the robot to go forwards. All perception and planning were done

onboard the robot, which explored completely autonomously and untethered.



Figure 10: Top: Rectangular Gap. Middle: Crumbling Wall. Bottom: Collapsed Building. On the left
are images of ANYmal completing each experiment, and on the right are corresponding plots of odometry.
In the plots on the right, position is represented with solid, filled regions while rotation is represented with
dashed lines. Within each plot, the top subplot shows roll, the middle subplot shows Y position and Yaw,
and the bottom subplot shows Z position and Pitch. Shaded, colored regions represent the collision region
of the widest part of ANYmal’s torso. The dark gray regions are indicative of obstacles. Their heights are
based on physical dimensions while their widths represents the time between the front of the robot entering
the confined space and the rear leaving.



Table 3: Min and max posture adaptations achieved by robot in each real experiment.

Height (cm) Roll (degrees) Pitch (degrees) Yaw (degrees)
min max min max min max min max

Low Gap (60 cm) 50.9 78.3 -8.12 9.05 -13.57 7.87 -9.8 7.24
Rotated Gap 56.4 74.6 -2.54 20.52 -5.63 13.34 -6.70 6.33
Gap with Step (10 cm) 55.2 77.4 -4.94 12.12 -9.14 5.91 -12.97 10.24
Rectangular Gap 68.0 88.3 -5.28 2.80 -5.40 2.87 -0.46 1.40
Crumbling Wall 59.2 74.8 -10.47 10.56 -3.80 18.35 12.26 5.66
Collapsed Building 46.8 76.9 -40.01 6.30 -16.43 19.02 -2.77 27.25

6.4.1 Rectangular Gap

The first confined space we tested in the Training Village was a rectangular opening 80 cm high and 70 cm

wide, which leads into the side of a burned concrete building. It also included a 10 cm step, which required

ANYmal to climb up into the small space. The top of Figure 10 shows ANYmal climbing in this space.

To allow ANYmal to enter, we opened a small metal door and cleared some vegetation. As ANYmal is

nominally 80 cm high, it would typically barely fit inside this space. However, our planner had the robot

lower its torso so that it could enter the house and map the interior.

Also in Figure 10, we show the position and rotation of the robot’s base. ANYmal did not collide with the

walls and was able to enter this space twice. In each case, however, the mapping failed for a part of the

ceiling inside the building. The result was that the planner raised the body slightly too early and came very

close to the wall. This problem is likely due to a difference in lighting between outside (bright sunlight) and

inside (unlit darkness) the building. We have found that a significant contrast in lighting can negatively

affect the Realsense camera.

6.4.2 Crumbling Wall

The next task we attempted was to have ANYmal walk along a crumbling wall. As shown in the middle of

Figure 10, there are several large slabs of concrete that lean against the wall creating triangular holes. The

ground was flat, and the area was less confined than the Rectangular Gap; however, large pieces of concrete

blocked the robot’s path, which forced it to walk around the obstacles. The first obstacle on ANYmal’s left

was barely in the field of view of the camera, and so was not mapped very effectively, which led to the robot

walking very close. The overhanging obstacle is quite high and close to the wall, so it was not a significant

issue for ANYmal to fit inside.



Table 4: Successful trials for simulated only experiments.

Thin Gap Thin Gap Thin Gap Random Random Random Random
(80 cm) (75-65 cm) (60 cm) (3 blocks) (5 blocks) (7 blocks) (9 blocks)

Simulation 10/10 8/10 2/10 7/10 5/10 4/10 1/10

6.4.3 Collapsed Building

The final experiment we attempted was to enter a pile of rubble created by a building collapse, as shown

at the bottom of Figure 10. This space was highly constrained due to the ledge on the robot’s left and the

large curved piece of concrete on the right. There was also a 5 cm depression in the floor. As shown from

the odometry in Figure 10, when it reached the depression, it rotated significantly to reach the feet down. It

rotated again to reach the feet back up while crawling under the curved concrete. Inside, it came very near

to the ceiling, scraping against it several times.

Because of the very confined space, our planner initially failed to find a body trajectory until we reduced

the collision radius rc from 5 cm to 2 cm. This change made it possible to plan trajectories, but this likely

resulted in the robot scraping against the concrete. The robot was able to continue walking but, because of

the statically stable gait, if the contact had been worse, the robot would have fallen over.

7 Results and Analysis

Our experiments represent a wide variety of narrow spaces a robot could be expected to walk through.

We tested our method in 5 different simulated environments including with randomized obstacles. We

then replicated three of these experiments in trials on the real robot. A summary of the simulation only

experiments is given in Table 4 while experiments performed both in simulation and in the lab are summarized

in Table 5. Success rates on the real robot matched the simulated results very closely, although the Rotated

Gap had more failures on the real robot due to problems with mapping. In Table 3 we show the minimum

and maximum values of the robot torso height and rotation. For height, we give the measurement of the

Table 5: Successful trials for simulated and lab experiments.

Low Gap Low Gap Low Gap Rotated Step Step
(>70 cm) (65 cm) (60 cm) Gap (5 cm) (10 cm)

Simulation 10/10 7/10 4/10 10/10 9/10 6/10
Real Robot 3/3 5/7 2/4 5/7 4/4 2/4



very top of the robot’s torso. Finally, we also performed three different field experiments2 in which ANYmal

was successfully able to crawl inside confined spaces at a training facility for firefighters.

We additionally recorded the timing of each step in our planner during the lab experiments. Table 6 shows

the best, average, and worst time that it took for each of the planning steps to be executed. These times

were recorded on ANYmal directly as it walked through each confined space. Initial sampling and smoothing

are by far the most time-consuming steps in the planning pipeline; however, timing typically improves as

the robot walks since we reuse the trajectory and repeat the smoothing. Total planner time excludes SDF

generation, which is computed in a separate thread. The average planning time for all experiments was less

than 500 ms.

8 Conclusion

Confined spaces are extremely hazardous for humans, while legged robots have the capabilities to be deployed

instead. For legged robots to enter these spaces, they need the ability to perceive and adapt their posture

in complex 3D environments. This is especially true for confined spaces in which a robot must crawl under

obstacles or rotate its body in a narrow space. The objective of this work was to create a fast and reliable

planner that allows legged robots to navigate confined spaces. We do this with a hierarchical planner that first

samples a random trajectory of body poses, which is then smoothed using the local optimization algorithm

CHOMP. Nominal foot positions are updated based on terrain scores obtained from elevation mapping.

Finally, a joint posture optimization is done to ensure the robot can safely carry out the planned trajectory.

We performed various experiments in the lab to test the limits of our planner. First, in simulation, we

compared our method with our previous work and demonstrated how Weaver, a hexapod could traverse

new spaces more complex spaces. We then deployed our planner on a real quadrupedal robot. ANYmal,

which is ordinarily 80 cm tall, was able to crawl through a gap only 60 cm high, which is defined by OSHA as

“Restricted” and would be considered too dangerous for humans. We also demonstrated how the robot rotates

its body in irregularly shaped gaps and can step over obstacles. We conducted several field experiments at

a training facility for search and rescuers. Our planner enabled the robot to crawl inside of realistic small

spaces where firefighters train. Our method is one of the few capable of planning for the whole body of the

robot online while avoiding body collisions with the environment and is the only one to be demonstrated in

realistic field tests. Our work is a valuable step towards enabling robots to operate in all kinds of environments

2A video showing ANYmal performing all of the online experiments discussed in this paper is available at
https://youtu.be/C2e0JTdwid0 and is included in the online version of this article. See the Appendix.



Table 6: Times for each lab experiment as run on ANYmal’s hardware. All times given in milliseconds and
organized as: Best - Average - Worst.

Low Gap Rotated Gap Gap with Step
(65 cm) (10 cm)

SDF Generation 410 - 600 - 970 380 - 578 - 1335 419 - 524 - 761
Initial Sampling 6E-04 - 1 - 78 7E-04 - 132 - 1095 8E-04 - 83 - 1060
Smoothing 2 - 24 - 298 2 - 168 - 3163 4 - 84 - 1503
Foothold and Posture Optimization 0.1 - 0.5 - 1 0.1 - 0.5 - 4 0.1 - 0.4 - 1
Swing Trajectory 0.03 0.3 - 1 0.02 - 0.4 - 2 0.2 - 0.4 - 1
Total Planner 4 - 125 - 885 4 - 411 - 4773 5 - 261 - 1641

outside the lab.

9 Future Work

Some important lessons were learned from the deployment of our planner on a real robot. While our method

provides a useful solution to whole body planning for multi-legged robots, it relies significantly on a statically

stable gait. If there are errors in mapping or planning, the robot can collide with the terrain as it did in the

Collapsed Building. However, if we were to incorporate dynamics into our optimization, our planner would

be more robust to these disturbances. This would, of course, lead to more computational requirements and

require planning times fast enough to react.

A truly 3D mapping approach that does not cluster into floor and ceiling could reduce map artifacts and,

therefore, lower failure rates. This would lead to improvements in walking around sharp objects or through

angled gaps such as the Rotated Gap. Future work in this area should focus on finding the right trade-off

between map detail and computation complexity.

Appendix: Index to Multimedia Extensions

Table 7 describes the video included in the online version of this article.

Table 7: Multimedia Extensions

Extension Media Type Description

1 Video Video summary of paper and demonstrations of field experiments.
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