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ARTICLE

Search and rescue at sea aided by hidden flow
structures
Mattia Serra 1✉, Pratik Sathe 2, Irina Rypina 3, Anthony Kirincich 3, Shane D. Ross 4,

Pierre Lermusiaux5, Arthur Allen6, Thomas Peacock 5 & George Haller 7✉

Every year, hundreds of people die at sea because of vessel and airplane accidents. A key

challenge in reducing the number of these fatalities is to make Search and Rescue (SAR)

algorithms more efficient. Here, we address this challenge by uncovering hidden TRansient

Attracting Profiles (TRAPs) in ocean-surface velocity data. Computable from a single

velocity-field snapshot, TRAPs act as short-term attractors for all floating objects. In three

different ocean field experiments, we show that TRAPs computed from measured as well as

modeled velocities attract deployed drifters and manikins emulating people fallen in the

water. TRAPs, which remain hidden to prior flow diagnostics, thus provide critical information

for hazard responses, such as SAR and oil spill containment, and hence have the potential to

save lives and limit environmental disasters.
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In 2016, the United Nation Migration Agency recorded over
5000 deaths among people trying to reach Europe by crossing
the Mediterranean Sea1,2. This calls for an enhancement of the

efficiency of SAR at sea3, which requires improved modeling of
drifting objects, as well as optimized search assets allocation
(reviewed previously4,5). Flow models used in SAR operations
combine sea dynamics, weather prediction, and in situ observa-
tions, such as self-locating datum marker buoys6 deployed from
air, which enhance model precision near the last seen location.
Even with the advent of high-resolution ocean models and
improved weather prediction, however, SAR planning is still
based on conventional practices that do not use more recent
advances in understanding transport in unsteady flows.

Current SAR procedures7 approach uncertainties through
Bayesian techniques, turning the modeling exercise into an
ensemble integration over all unknown parameters and incorpor-
ating unsuccessful searches into locating the next target. This
strategy produces probability-distribution maps for the lost object’s
location, which, based on a list of assigned search assets, returns
search plans, such as planes flying in a regular grid pattern7. The
vast uncertain parameter space together with the continuous
motion of floating objects driven by unsteady flows, however, leads
to error accumulation, “making SAR planning as much art as
science, where rescuers still often rely as much on their hunches as
on the output of sophisticated prediction tools”4. Furthermore, the
convergence of updated probability computations based on a
selected prior and unsuccessful searches is usually a slow process,
while timing is everything when lives are on the line.

In a SAR scenario, one would ideally have a simply inter-
pretable tool based on key features of the ocean surface dynamics.
Such a tool should narrow down the search area by promptly
providing the most attracting regions in the flow toward which
objects fallen in the water at uncertain locations likely converge.
This raises the question: How can one rigorously assess short-
term variabilities of material transport in fast-changing flows
characterized by high uncertainties? Here, we address this ques-
tion using the recently developed concept of Objective Eulerian
coherent structures (OECSs)8 from dynamical systems theory. In
our context, attracting OECSs uncover hidden TRansient
Attracting Profiles (TRAPs), revealing the currently strongest
regions of accumulation for objects floating on the sea surface.
TRAPs are quickly computable as smooth curves from a single
snapshot of available modeled or remotely sensed velocity fields,
providing highly specific information for optimal search-asset
allocation (Fig. 1). The inset in Fig. 1 shows a migrant boat that
capsized on 12 April 2015 in the Mediterranean Sea, along with a
schematic TRAP attracting people in the water (PIW).

We confirm the predictive power of TRAPs in three field
experiments emulating SAR situations south of Martha’s Vineyard
in Massachusetts USA. In the first experiment, we compute TRAPs
from a submesoscale ocean surface velocity field reconstructed
from remotely sensed high-frequency radar (HFR) data, and show
their decisive influence on surface drifters emulating people that
have fallen in water at uncertain locations. In actual SAR opera-
tions, however, HFR velocity data is generally not available in real
time. We address this challenge in our second and third experi-
ments by computing TRAPs from an ocean model velocity field
that assimilates in situ experimental information. We then verify
the TRAPs’ role in attracting and aligning drifters and manikins,
simulating PIW, released in their vicinity through targeted
deployments. Our analysis reveals a remarkable robustness under
uncertainty for TRAPs: even without accounting for wind-drag or
inertial effects due to water–object density difference—typically
uncertain in SAR scenarios—the TRAPs invariably attract floating
objects in water over two-to-three hours. Such short-time predic-
tions are critically important in SAR.

Results
Lagrangian transport in fluids. Short-term variability in flow
features (or coherent structures) is substantial in unsteady flows.
These structures, such as fronts, jets, and vortices, continue to
receive significant attention in fluid mechanics due to their
decisive role in organizing overall transport of material in fluids.
Such transport is a fundamentally Lagrangian phenomenon, i.e.,
best studied by keeping track of the longer-term redistribution of
individual tracers released in the flow. In that setting, Lagrangian
coherent structures (LCSs) have been efficient predictors of tracer
behavior in approximately two-dimensional geophysical flows,
such as surface currents in the ocean9.

Larger-scale models and measurements of environmental
flows, however, generally produce Eulerian data, i.e., instanta-
neous information about the time-varying velocity field governing
the motion of tracers. These velocity fields can be integrated to
obtain tracer trajectories, but the result of this integration will
generally be sensitive to a number of factors. One such set of
factors is the exact release time, release location, and length of the
observation period9. Another major sensitivity factor is errors and
uncertainties in the velocity field, which either arise from
unavoidable simplifications and approximations in modeling, or
from inaccuracies in remote sensing. A third source of sensitivity
is the necessarily approximate nature of trajectories generated by
numerical integration, due to finite spatial and temporal
resolution of the velocity data, as well as to approximations in
the numerical integration process. All these factors are significant
in predictions for SAR purposes: in fast-changing coastal waters,
uncertainties both in the available velocities, and in the release
location and time are high. This has prompted the use of multiple
models, stochastic simulations, and probabilistic predictions, all
of which require substantial time to be done accurately, even
though time runs out quickly in these situations.

Hidden short-term attractors of floating objects. An alternative
to Lagrangian approaches is to find the instantaneous limits of LCSs
purely from Eulerian observations, thereby avoiding all the pitfalls
of trajectory integration. These limiting (i.e. infinitesimally small-
advection-time) LCSs, predict pathways and barriers to short-term
material transport until the next batch of updated velocity infor-
mation becomes available. While simple at first sight, this approach
comes with its own challenges, given that most classic instantaneous
Eulerian diagnostics (streamlines, velocity magnitude, velocity gra-
dient, energy, vorticity, helicity, etc.) are not objective10, i.e., depend
on the observer. As such, they cannot possibly be foolproof indi-
cators of material transport, which is a fundamentally frame-
independent concept. Indeed, different observers relying on data
collected from the coast, from an airplane, from a ship or from a
satellite should not come to different conclusions regarding the
likely location of materials or people in the water. Yet classic
Eulerian quantities would in fact give such different answers (see
e.g. Fig. 3a in ref. 9 and Fig. 1 in ref. 8). In a SAR situation, this
ambiguity is a serious limitation that represents high risk.

These considerations led to the development of OECSs8, which
are objective (observer-independent) short-term limits of LCSs.
Most relevant to our current setting are hyperbolic OECSs in two-
dimensional flows, which are the strongest short-term attractors
and repellers of material fluid elements. As such, OECSs are
extensions of the notions of unstable (and stable) manifolds of a
saddle point in a steady flow, which attract (and repel, respectively)
fluid elements and hence ultimately serve as the backbones of
deforming tracer patterns. In unsteady flows and over short times,
however, saddle stagnation points lose their connection with
material transport8. Instead, objective saddle points—the cores of
hyperbolic OECSs—emerge, with associated attracting and repelling
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OECSs (Fig. 2a). In our present context, we will refer to attracting
OECSs and objective saddle points as TRAPs and TRAP cores.

Unlike stagnation points in steady flows, OECSs cannot be
located by inspection of a (frame-dependent) streamline config-
uration, but from the objective rate of strain tensor (see Methods
section). As an illustration, Fig. 2b shows TRAPs in an unsteady
ocean velocity data set derived from AVISO satellite altimetry
(see ref. 8 for a detailed OECSs analysis of this flow). Thus, the s1
scalar field along with the TRAPs provides a skeleton of currently
active attracting regions in the flow along with their relative
strengths. This in turn gives specific and actionable input for SAR
asset allocation, such as high-priority flight paths for discovering
people in the water (Fig. 1). Remarkably, such pathways remain
generally hidden in streamline plots, can even be perpendicular to
streamlines (Fig. 2b and Supplementary Movie 1), and exist also
in divergence-free flows, as shown in Fig. 11 and the
corresponding movie in ref. 8. See ref. 8 for a detailed explanation.
Figure 2c shows that TRAPs evolve over time and attract floating
objects whose uncertain initial positions are represented by an
array of white dots.

As Eulerian objects, TRAPs are simply computable from a
single snapshot of the velocity field v(x, t). Moreover, velocity

fields used in traditional SAR planning are generally obtained
from models that assimilate environmental data in the proximity
to the last known position of a missing person4,7. This represents
a further challenge to Lagrangian prediction methods, as much of
their trajectory forecasts tend to leave the domain of reliable
velocities and hence have questionable accuracy. In the
Supplementary Fig. 4, we illustrate this effect, showing that
Lagrangian methods provide only partial coverage when velocities
are available over a finite-size domain. A TRAP-based analysis is,
therefore, not only faster but provides complete coverage by
exploiting the most accurate velocity data. In the Supplementary
Note 1, we provide a rough estimate of the computational time
gain of a TRAP-based SAR planning compared to the one
currently in use.

Finally, owing to the structural stability of their construction8,
TRAPs necessarily persist over short times and are robust to
perturbations of the underlying velocity field. In the Supplemen-
tary Methods, we show that the sensitivity of TRAPs to
uncertainties is typically lower compared to those of trajectory-
based methods (Supplementary Fig. 1). This makes TRAPs a
trustworthy now-casting tool for material transport, one that is
resilient under uncertainties in initial conditions and other
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Fig. 2 Transient attracting profiles (TRAPs). a Deformation of a fluid patch close to a saddle stagnation point in a steady flow (left), and to an objective
saddle point in an unsteady flow (right). Over short times, a fluid patch aligns with the repelling OECS, and squeezes along the attracting OECS, which both
evolve over time. Attracting (Repelling) OECSs are everywhere tangent to the eigenvector field e2 (e1) of the rate-of-strain tensor, with their cores located
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with their normal attraction rate s1 encoded in the colorbar. TRAPs are hidden to instantaneous streamlines (black). c Illustration of a TRAP evolving in time
and attracting within a few hours floating objects whose uncertain initial locations are represented by a square set of white dots.

TRAP core
TRAP

Fig. 1 Sketch of a TRAP-based SAR operation. TRAPs (red curves) emanate from an attracting core (red dot) where their normal attraction (black
arrows) is maximal. Different TRAPs provide continuously updated and highly specific search paths. The inset shows a migrant boat that capsized on 12
April 2015 in the Mediterranean Sea along with a schematic TRAP and persons in water. Photo credit: Opielok Offshore Carrier.
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unknown factors, such as the inertia of a drifting object or
windage effects.

Ocean field experiments. Here, we show how TRAPs accurately
predict short-term attracting regions to which objects fallen in
water at uncertain nearby locations converge in ocean field
experiments carried out south of Martha’s Vineyard. Figure 3
shows the location of the experiments and the tools we used. In our
first experiment, we compute TRAPs from ocean-surface sub-
mesoscale velocity derived from high-frequency-radar (HFR)
measurements available over a uniform 800m × 800m grid span-
ning [−70.7979°, −70.4354°] longitude and [41.0864°, 41.3386°]
latitude, and in time steps of 30min. The velocity field is recon-
structed from HFR measurements as described in ref. 11, and is
available on a uniform grid within the hatched polygon in Fig. 3a
(Supplementary Methods and Supplementary Fig. 3).

To mimic objects fallen in the water, we use 68 Coastal Ocean
Dynamics Experiment (CODE) drifters (Supplementary Methods
and Fig. 3) whose GPS-tracked locations (white dots) are
recorded once every 5 min. Drifters of the same design are
routinely used by the U.S. Coast Guard in SAR operations. The
starting time of our analysis is the 4th of August 2014 at 17:00
EDT when drifters are located close to the Muskeget channel
(Fig. 3a). Figure 4a shows a zoomed version of the black square
inset in Fig. 3a, along with drifter positions and the instantaneous

streamlines of the HFR velocity. We then compute TRAPs every
30 min with the updated velocity field. As expected, we find that
the emergence of strong TRAPs at 19:00 (Fig. 4b) promptly
organize the drifters into one-dimensional structures along
TRAPs within 2 h (Fig. 4a–c). The time evolution of drifter
positions along with TRAPs and velocity streamlines is available
as Supplementary Movie 1. As an aggregate measure of attraction
to TRAPs over time, we consider the averaged distance of each
drifter from the closest TRAP (Table 1). Within one hour, from
18:00 to 19:00, the average drifter-to-TRAP distance decreases by
about 30%; within 2 h, drops by about 60%. The standard
deviation of the distance to TRAPs also decreases progressively,
reflecting the change of an initially spread-out drifter distribution
into an organized one along the TRAPs.

a b c

Google 100% Data SIO, NOAA, U.S. Navy, NGA, GEBCO landsat / Copernicus

Drifter

Focus area
2014 experiment

HFR domain

Martha’s Vineyard

Muskeget
channel

WHOI vessel

Manikin

Fig. 3 Field experiments tools and area of interest. a The domain of the ocean field experiments is located south of Martha's Vineyard, where the ocean
surface sub-mesoscale velocity, remotely sensed from high-frequency-radar (HFR) measurements as described in ref. 11, is available within the hatched
black polygon. The black rectangle represents the area of interest of the 2014 field experiment. b Tioga WHOI vessel, CODE surface drifter, whose GPS-
tracked position will be marked with a white dot, and OSCAR Water Rescue Training manikins whose GPS-tracked position will be marked with a magenta
triangle. c Photo illustrating a drifter and a manikin in water during the 2018 experiment. A drone-based video of the 2018 field experiment is available
here17.
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colorbars unit is day−1.

Table 1 2014 field experiment.

Time 18:00 19:00 20:00

〈d〉 [km] 1.7 0.86 0.55
sd [km] 1.5 0.4 0.2

Average distance (〈d〉) and standard deviation (sd) of drifters from the closest TRAP for the
2014 experiment (Fig. 4).
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Over longer time scales (approximately a week), drifter
accumulation on the ocean surface has been identified with
regions of negative horizontal divergence12,13. The horizontal
divergence diagnostic, however, can lead to both false positives
and negatives: examples of particle accumulation in regions of
zero or positive divergence are given in the Supplementary
Methods and Supplementary Fig. 2. This is precisely the case with
TRAP A in Fig. 4d, which attracts drifters strongly, even though it
is located in a region of positive horizontal divergence. The
negative s1 values along TRAP A (Fig. 4c), by contrast, correctly
predict its attraction property. Furthermore, regions of negative
horizontal divergence, irrespective of their validity, tend to be
large open sets (Fig. 4d), as opposed to specific, one-dimensional
curves over which we observe drifters clustering. These results
show that TRAPs may be completely hidden in instantaneous
streamline and horizontal divergence plots, yet predict the short-
term fate of passive tracers, as well as inertial objects influenced
by windage, such as drifters. Although incorporating inertial,
windage, and leeway effects could, in principle, provide a better
prediction, in a SAR operation the inertia of the target objects is
generally unknown14 and wind information is unavailable.

Although using HFR velocity would significantly enhance the
success of SAR operations15, traditional SAR planning is generally
based on model velocity data. To account for this, we conducted
two more experiments to identify TRAPs from the ocean surface
velocity derived from the MIT multidisciplinary simulation,
estimation, and assimilation systems (MIT-MSEAS)16, summar-
ized in the Supplementary Methods, which assimilates local
measurements, similarly to the models used in actual SAR.

For the experiment performed on the 17 August 2017, we
compute TRAPs from the 24h forecast model velocity provided
on the 16 August at 7 pm. We focus on a region south-east of
Martha’s Vineyard and identify TRAPs from 11 am on 17 August
2017 (Fig. 5a). The strongest TRAPs are located along a trench of
the s1(x, t) field demarcating a one-dimensional structure

containing several TRAPs with strong attraction rates. We
note the presence of two parallel trenches from the model.
Assuming that the real trench is somewhere in between these two
because of modeling uncertainties, we released four drifters north
of the lower trench (magenta squares). Figure 5b and c show
later positions of fluid particles obtained by integrating the model
velocity field from the target drifter release location, along with
the corresponding TRAPs. The figure confirms their attracting
property with respect to model data before the float deployment.
Based on the release locations in Fig. 5a, Fig. 5d shows the
deployed GPS-tracked drifters position (white dots) at 11:10 am
within the area of interest bounded by the black rectangle in
Fig. 5a, along with the streamlines computed from the
HFR velocity at the same time. Panels Fig. 5e–g show later
drifter positions along with the TRAPs and the streamlines
computed from the HFR velocity field. Although our deployment
strategy was purely based on model velocities, the comparison
with actual drifter trajectories and TRAPs computed from HFR
velocity shows that the model provided reliable estimates of the
actual TRAPs. While these TRAPs remained hidden in streamline
plots, they nevertheless attracted drifters within 3 h. Table 2
shows the average drifter-to-TRAP distance corresponding
to Fig. 5e–g. Statistics at earlier times are inaccessible because
drifters are in a region where the HFR-based velocity is
unavailable.
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Table 2 2017 field experiment.

Time 13:50 14:20 14:50

〈d〉 [km] 1.25 0.4 0.13
sd [km] 1.1 0.2 0.1

Average drifter-to-TRAP distance (〈d〉) and standard deviation (sd) for the 2017 experiment
(Fig. 5d–g).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-16281-x ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:2525 | https://doi.org/10.1038/s41467-020-16281-x | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


In our last experiment, to mimic an even more realistic SAR
scenario, we considered a larger set of initially spread-out floating
objects consisting of 8 CODE drifters and 4 OSCAR Water
Rescue Training manikins manufactured by Emerald Marine
Products (Supplementary Methods and Fig. 3b and c). Using a
strategy similar to the 2017 experiment, we designed a
deployment for the 9th of August 2018, based on the center
forecast model velocity field provided on the 8th of August at 8
pm. Figure 6a shows the target model-based TRAPs at 10:15 am
on the 9th of August 2018, along with all released drifter (white
dots) and manikin (cyan triangles) positions. We show only the
strongest targeted TRAPs ranked by s1. Dashed curves represent
the GPS-tracked trajectories of the deployed objects from their
release until 10:15 am. In this experiment, we used two WHOI
vessels for deployment: one for the release of drifters and
manikins at the locations demarcated by A–D in Fig. 6a, and a
second vessel for the remaining drifters. Figure 6b and c show the
later positions of drifters and manikins along with their
trajectories and the recomputed model-based TRAPs. Because
of a relocation of HFR towers in 2018, HFR velocity was not
available in the domain shown in Fig. 6. Similar to the previous
experiments, both drifters and manikins show a striking
alignment with the strongest nearby TRAPs computed from the
fluid model velocity within 2 h. Table 3 shows the average drifter/
manikin-to-TRAP distance corresponding to Fig. 6.

A closer inspection of the deployed drifter and manikin
trajectories shows that these two different objects may follow
different paths even after short times (<2 h). This is clearly the case
for objects released from locations A, D, C shown in Fig. 6. In the
inset of Fig. 6b, we show a zoomed version of the drifter and
manikin trajectories deployed in A, together with the trajectory of a
fluid particle (magenta square) obtained by integrating the model
velocity from A. Even though fluid particles, drifters and manikins
all follow different trajectories due to inertia, windage and other
effects, they invariably converge to the same TRAP, which provides
a highly robust attracting skeleton of the underlying flow. In the
Supplementary Note 1, we compare TRAP predictions with
trajectory-based ones typically used in SAR. We use nine ensemble
velocity field forecasts arising from parametric uncertainty sources,
and compute the corresponding trajectories using the experimental
deployment locations as initial conditions. We find that even
though drifter, manikins, and ensemble trajectories all differ from
each other, they all converge to nearby TRAPs computed from the
center-forecast velocity. Using simple mathematical arguments, we
also show that TRAPs are intrinsically robust under uncertainties

over short times, as opposed to trajectory-based methods, whose
sensitivity to uncertainties grow with the largest Lyapunov
exponent of the underlying velocity field. Admittedly, TRAPs lose
their predictive power over longer time scales because of their
instantaneous nature. Shorter time scales (<6 h in this context),
however, are precisely the relevant ones for SAR and hazard
response scenarios.

Discussion
We have predicted and experimentally verified the existence of
TRAPs, which govern short-term trajectory behavior in chaotic
ocean currents characterized by high uncertainties. We expect
TRAPs to provide critical information in emergency response
situations, such as SAR and oil spill containment, in which
operational decisions need to be made quickly about optimal
resource allocation. Existing SAR techniques handle uncertain
parameters in models of floating objects by averaging several Monte
Carlo Simulations and providing probability maps for the objects’
location. These maps, however, are not readily interpretable for
practical use and can converge slowly due to the underlying chaotic
processes. TRAPs and their attraction rates, by contrast, are easily
interpretable and highly localized curves which can be computed
and updated instantaneously from snapshots of the ocean surface
velocity. This eliminates the need for costly trajectory calculations
and yields fast input for search-asset allocation.

We have emulated different SAR scenarios in three ocean field
experiments carried out south of Martha’s Vineyard. We com-
puted TRAPS both from HFR submesoscale ocean surface velo-
city and from model velocities similar to those available in SAR
operations. Our results indicate that TRAPs have significant
predictive power in assessing the most likely current positions of
objects and people fallen in water at uncertain locations. We have
specifically found that TRAPs invariably attract nearby floating
objects within two-to-three hours, even though they remain
hidden to instantaneous streamlines and horizontal divergence
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Fig. 6 2018 experiment. a Deployed drifters and manikins on the 9th of August 2018 based on TRAPs computed from the 24h forecast model velocity
provided on the 8th at 8 pm. White dots and cyan triangles show the GPS-tracked location of CODE drifters and manikins (Fig. 3) at 10:15 am of the 9th
August 2018. Dashed lines show object trajectories released at locations A–D from their deployment to the current time. b and c Drifter and manikin
positions at later times, along with the corresponding model-based TRAPs. The inset in b shows a zoomed version of the manikin and drifter trajectories
released in A, along with the trajectory of a fluid particle (magenta square) obtained by integrating the model velocity from the same initial condition of the
drifter and manikin. The unit of s1 is day−1.

Table 3 2018 field experiment.

Time 10:15 11:15 12:30

〈d〉 [km] 1.9 0.8 0.4
sd [km] 1 0.8 0.5

Average drifter/manikin-to-TRAP distance (〈d〉) and standard deviation (sd) for the 2018
experiment shown in Fig. 6.
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fields, which also rely on the same Eulerian velocity input. Such a
short timing is critical in SAR, as after 6 h, the likelihood of
rescuing people alive drops significantly. We therefore envision
that sea TRAPs will enhance existing SAR techniques, providing
critical information to save lives and limit the fall-out from
environmental disasters during hazard responses.

Methods

Algorithm 1.
Compute TRAPs in two-dimensional flows8

Input: A two-dimensional velocity field v(x, t)
1. Compute the Jacobian of the velocity field ∇v by numerically

differentiating v with respect to x, and the rate-of-strain tensor Sðx; tÞ ¼
1
2 ∇vðx; tÞ þ ∇vðx; tÞ½ ��ð Þ at the current time t on a grid over the x
= (x1, x2) coordinates, where * denotes matrix transposition.

2. Compute the smallest eigenvalue field s1(x, t) ≤ s2(x, t) and the unit
eigenvector field e2(x, t) of S(x, t) associated to s2(x, t).

3. Compute the set SmðtÞ of negative local minima of s1(x, t).
4. Compute TRAPs as solutions of the ODE

r0ðτÞ ¼ sign e2ðrðτÞÞ; r0ðτ � ΔÞh ie2ðrðτÞÞ
rð0Þ 2 Sm;

�

where τ denotes the arclength parameter, 0 differentiation with respect to
τ, and Δ the arclength increment between two nearby points on the
TRAP. Stop integration when s1(r(τ)) > 0.3s1(r(0)) or s1(r(s)) ≥ 0.

Output: TRAPs at time t along with their normal attraction rate field s1(x, t).

The sign term in step 4 guarantees the local smoothness of the direction field e2,
and the termination conditions ensure that the attraction rate of subsets of TRAPs
is at least 30% of the core attraction rate, hence exerting a distinguished attraction
compared to nearby structures.

In the Supplementary Methods, we show the robustness of TRAPs under
uncertainties, as well as why TRAPs remain hidden to the widely used horizontal
divergence field. In the Supplementary Methods, we also describe in detail our HFR
velocity and model velocity datasets, as well as drifter and manikin datasets.

Data availability
All data are available to individual researchers upon request from the corresponding
authors.

Code availability
All codes are available to individual researchers upon request from the corresponding
authors.
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