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In Brief

Endothelial cells (ECs) critically control

muscle recovery from ischemia by

secreting lactate. Angiocrine lactate is

taken up and oxidized bymacrophages in

an MCT1-dependent fashion. Lactate-

mediated macrophage polarization

promotes revascularization and muscle

regeneration. Consequently, EC-specific

loss of pfkfb3 lowers muscle lactate

levels and impairs muscle recovery from

ischemia.
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SUMMARY
Endothelial cell (EC)-derived signals contribute to organ regeneration, but angiocrine metabolic communication
is not described. We found that EC-specific loss of the glycolytic regulator pfkfb3 reduced ischemic hindlimb
revascularization and impaired muscle regeneration. This was caused by the reduced ability of macrophages
toadoptaproangiogenicandproregenerativeM2-likephenotype.Mechanistically, lossofpfkfb3 reduced lactate
secretion by ECs and lowered lactate levels in the ischemic muscle. Addition of lactate to pfkfb3-deficient ECs
restored M2-like polarization in an MCT1-dependent fashion. Lactate shuttling by ECs enabled macrophages
topromoteproliferationand fusionofmuscleprogenitors.Moreover, VEGFproductionby lactate-polarizedmac-
rophages was increased, resulting in a positive feedback loop that further stimulated angiogenesis. Finally,
increasing lactate levels during ischemia rescued macrophage polarization and improved muscle reperfusion
and regeneration, whereas macrophage-specific mct1 deletion prevented M2-like polarization. In summary,
ECs exploit glycolysis for angiocrine lactate shuttling to steer muscle regeneration from ischemia.
Context and Significance

Skeletal muscle regeneration from ischemia is coordinated by strictly timed interactions between several cell types. These in-
teractions are poorly understood but can lead to the development of therapies for regenerative medicine or peripheral artery
disease. Zhang et al. show that endothelial cells (themain cell type of blood vessels) play a crucial role duringmuscle regener-
ation. Besides restoring oxygen and nutrient supply, endothelial cells directly control the function ofmacrophages (specialized
immune cells) by releasing lactate. Endothelial cell-derived lactate is taken up by macrophages via the MCT1-lactate trans-
porter. Upon lactate stimulation,macrophages actively support the formation of newmuscle fibers and further stimulate blood
vessel formation. Our findings imply that endothelial cells use lactate to actively control muscle regeneration.

1136 Cell Metabolism 31, 1136–1153, June 2, 2020 ª 2020 The Author(s). Published by Elsevier Inc.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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INTRODUCTION

Endothelial cells (ECs) cover the inner wall of blood vessels and

act as gatekeepers of metabolism by adapting oxygen and

nutrient delivery to themetabolic needs of tissues through angio-

genesis (Adams and Alitalo, 2007; Potente et al., 2011). Recent

studies have indicated that ECs possess specific metabolic

characteristics (Fitzgerald et al., 2018; Potente and Carmeliet,

2017). Even under quiescent conditions, ECs generate the ma-

jority of their energy via the glycolytic conversion of glucose to

lactate (Culic et al., 1997; De Bock et al., 2013; Kr€utzfeldt

et al., 1990). In addition, ECs further upregulate glycolysis to

fuel migration and proliferation during angiogenesis. The in-

crease in glycolysis upon EC activation is mediated by the glyco-

lytic regulator phosphofructokinase-2/fructose-2,6-bisphospha-

tase isoform 3 (PFKFB3) (De Bock et al., 2013; Schoors et al.,

2014). Deletion of pfkfb3 in ECs (pfkfb3DEC) prevents blood

vessel growth during development as well as in various models

of pathological angiogenesis (Cantelmo et al., 2016; De Bock

et al., 2013; Schoors et al., 2014; Xu et al., 2014). Although the

exact reasons for the dependence of ECs on glycolysis remain

to be fully elucidated, it has been hypothesized that high glycol-

ysis would support efficient oxygen transfer to surrounding tis-

sues or allow ECs to rapidly invade avascular and hypoxic areas

during vessel formation. However, whether ECs exploit glycol-

ysis to engage in metabolic crosstalk with other cells within their

microenvironment is unknown.

It has become increasingly recognized that ECs also regulate

tissue homeostasis in an angiogenesis-independent manner

through the production and release of angiocrine factors. Those

factors are actively involved in the maintenance as well in the

activation, specification, and guidance of organ regeneration,

often in an organotypic and context-dependent manner (Au-

gustin and Koh, 2017; Rafii et al., 2016). For instance, angio-

crine growth factors promote liver and lung regeneration by

orchestrating self-renewal and differentiation of tissue-specific

resident stem and progenitor cells into functional organs

(Ding et al., 2010; Ding et al., 2011; Hu et al., 2014; LeCouter

et al., 2003). Angiocrine signals also ensure neuronal stem

cell quiescence (Delgado et al., 2014; Ottone et al., 2014), while

during regenerative neurogenesis, they promote neuronal

stem cell proliferation, activation, and differentiation (Rafii

et al., 2016).

Skeletal muscle is a highly vascularized tissue and is charac-

terized by a remarkable capacity for regeneration (Almada and

Wagers, 2016; Itagaki et al., 1995). Muscle regeneration is

dependent on the activation and proliferation of resident mus-

cle stem cells that give rise to a population of proliferating

myogenic progenitor cells (MPCs) (Almada and Wagers,

2016). A subset of these MPCs self-renews to replenish the

muscle stem cell pool, whereas the other MPCs enter

myogenic differentiation and fuse with each other or with re-

maining myofibers to repair the damaged muscle (Yin et al.,

2013). This sequence of events is coordinated by strictly timed

cellular interactions between several cell types within the mus-

cle microenvironment, including macrophages (Bentzinger

et al., 2013). Macrophages initially exhibit a more pro-inflam-

matory M1-like phenotype but soon thereafter functionally

repolarize toward an M2-like phenotype to actively support
muscle regeneration (Arnold et al., 2007). Blood vessels also

undergo profound alterations during muscle regeneration (La-

troche et al., 2015a; Latroche et al., 2015b), and this is partic-

ularly true after ischemia-induced muscle damage, where mus-

cle regeneration coincides with the formation of new blood

vessels. Angiogenesis restores oxygen and nutrient delivery

to the regenerating muscle tissue (Adams and Alitalo, 2007; Po-

tente et al., 2011), and angiocrine growth factors promote the

proliferation of muscle progenitor cells (Arsic et al., 2004; Bor-

selli et al., 2010; Latroche et al., 2017). ECs also control macro-

phage differentiation and maturation via angiocrine Notch

signaling to promote arteriogenesis during hindlimb ischemia

(Krishnasamy et al., 2017). However, whether ECs engage

into metabolic angiocrine crosstalk to control ischemia-induced

muscle regeneration is unknown.

Here, we show that ECs exploit their glycolytic capacity to

steer muscle regeneration during ischemia. Upon EC activation,

the angiocrine release of lactate, the main metabolic product of

glycolytic glucose catabolism, initiates a lactate shuttle that pro-

motes an MCT1-dependent oxidative switch in macrophages

and instructs their polarization toward a pro-regenerative M2-

like phenotype. These macrophages promote muscle regenera-

tion by stimulating the proliferation and differentiation of MPCs.

Moreover, lactate-polarized macrophages also upregulate the

expression of vascular endothelial growth factor (VEGF), thereby

creating a positive feedback loop that further stimulates

angiogenesis.

RESULTS

PFKFB3 Controls Glycolysis in Muscle ECs
To study the metabolic angiocrine properties of ECs, we

generated pfkfb3LoxP/LoxP mice and intercrossed them with EC-

specific inducible pdgfb-CreERT2 mice (Claxton et al., 2008),

hereafter referred to as pfkfb3DEC mice (Figure 1A). Ten days af-

ter the last tamoxifen injection, we isolated ECs from calf muscle

(m. gastrocnemius and m. soleus) (mECs) and confirmed a

decrease in pfkfb3 mRNA levels in mECs from pfkfb3DEC mice

(hereafter termed mECsDpfkfb3) when compared to mECs iso-

lated from pfkfb3WT mice (hereafter termed mECsWT). This re-

sulted in an almost complete loss of PFKFB3 protein content

(Figures S1A and S1B). Loss of endothelial pfkfb3 did not affect

baseline muscle vascular density (Figures S1C and S1D) nor did

it affect the number of CD31+CD45�mECs (Figure S1E). Isolated

mECsDpfkfb3 showed lower extracellular acidification rate (ECAR)

(Figure S1F) and a reduction in glycolytic flux (Figure S1G),

consistent with previous data using short-hairpin-mediated

knockdown of pfkfb3 in human umbilical vein endothelial cells

(De Bock et al., 2013). Collectively, these data demonstrate

that PFKFB3 controls glycolysis in mECs.

Deletion of Endothelial pfkfb3 Impairs Hindlimb
Ischemia (HLI)-Induced Revascularization
To induce hindlimb ischemia (HLI), we ligated the femoral artery,

which leads to reduction of blood flow by >80%, causing pro-

found ischemia-induced muscle damage. This damage is fol-

lowed by robust revascularization and muscle regeneration,

leading to full recovery of muscle function after four weeks (Lim-

bourg et al., 2009; Zhang et al., 2017) (Figure 1A). Laser Doppler
Cell Metabolism 31, 1136–1153, June 2, 2020 1137
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imaging showed that blood flow upon HLI was similarly reduced

in both pfkfb3WT and pfkfb3DEC mice. However, although it grad-

ually recovered in pfkfb3WT mice during the 4-week follow up

period, blood flow remained severely impaired in pfkfb3DEC

mice (Figures 1B and 1C).Pfkfb3DECmice also displayed a higher

frequency of necrotic toes (Figure 1D). Reduced revasculariza-

tion was not caused by differences in EC apoptosis after HLI

(Figures S1H–S1J). Instead, mECsDpfkfb3 proliferated less, as

indicated by fewer Ki67+CD31+ cells (Figure 1E), which was

associated with reduced vascular density in pfkfb3DEC muscle

7 days after HLI (Figures 1F and S1K). Morphological analysis

on whole-mounted muscle bundles additionally showed that

lower vascular density coincided with reduced intercapillary

anastomosis (Figures 1G and S1L). Concomitantly, pfkfb3DEC

mice developed increased muscle necrosis that resolved slower

over time (Figures 1H and S1M–S1O). Importantly, muscle dam-

age 1 day after HLI was similar between pfkfb3DEC and pfkfb3WT

mice (Figures 1H, S1M and S1N), showing that impaired regen-

eration was not secondary to differences in initial muscle dam-

age. The regenerative area in wild-type (WT) animals reached a

maximum 7 days after HLI, and normal muscle morphology

was almost completely restored after 4 weeks, whereas

pfkfb3DEC mice still showed large areas of intense regeneration

(Figures 1H, 1I, S1M, and S1O). Consequently, the muscle fiber

cross-sectional area was lower in pfkfb3DEC mice (Figure 1J).

Thus, endothelial PFKFB3 is required for ischemia-inducedmus-

cle revascularization and regeneration.

We next performed pimonidazole injections 3 days after HLI

to detect hypoxic areas within the injured muscles. As ex-

pected, reduced revascularization in pfkfb3DEC mice coincided

with extensive and widespread hypoxia (Figures 1K and S1P).

Despite this, we surprisingly measured less VEGF in the

ischemic hindlimb of pfkfb3DEC mice (Figure 1L). Vegf is highly

expressed in MPCs (Verma et al., 2018), but we did not find dif-

ferences between genotypes (Figure S1Q). Macrophages also

produce and respond to VEGF (Casazza et al., 2013; Ganta

et al., 2019; He et al., 2012). Deletion of vegf in macrophages

by using the myeloid-specific LysM-Cre line (vegfDMac) (Stock-

mann et al., 2008) reduced muscle VEGF levels upon HLI (Fig-

ure 1M). We thus decided to investigate whether endothelial

pfkfb3 affects macrophage function in the muscle upon

ischemia.
Figure 1. Endothelial PFKFB3 Controls EC Glycolysis and Ischemia-In

(A) Scheme showing the generation of pdgfb-CreERT2 3 pfkfb3LoxP/LoxP (pfkfb3DE

(B and C) Representative images (B) and quantification (C) of hindlimb blood per

after HLI surgery (n = 7).

(D) Distribution of necrotic toes per paw 14 days after HLI (n = 7).

(E) Representative images of Ki67 (green), CD31 (red), and hoechst (blue) immun

scale bar, 50 mm).

(F and G) Representative CD31 immunofluorescent images on muscle cross sec

bundles (G) at 28 days (scale bar, 10 mm) in pfkfb3WT and pfkfb3DEC mice.

(H and I) Representative hematoxylin-eosin (H&E) staining images (H) at the indic

bar, 10 mm.

(J) Muscle fiber size distribution at 28 days (n = 4).

(K) Representative images of pimonidazole staining (yellow) and hoechst (blue) a

(L and M) Muscle VEGF protein content in pfkfb3WT and pfkfb3DEC mice (L) or in

Student’s t test (two-tailed, unpaired) in (I) (*p% 0.05). Two-way ANOVAwith Tuke

measures ANOVA with Sidak’s multiple comparisons test in (C) (*p < 0.05). Each

SEM. See also Figure S1.
Endothelial PFKFB3 Is Crucial forM2-like Polarization of
Macrophages in the Muscle
Macrophages play a crucial role during skeletal muscle regener-

ation after injury (Chazaud, 2014; Tidball, 2017). To study

whether loss of endothelial pfkfb3 affects immune cell recruit-

ment/infiltration and macrophage differentiation, we first

confirmed with a Rosa26mTmG fate-tracing mouse line and

mRNAmeasurements that pdgfb-CreERT2 activity was restricted

to ECs and was largely absent in macrophages and the total

CD45+ immune-cell compartment (Figures S2A and S2B).

Next, we performed a time course experiment where we evalu-

ated the dynamics of various myeloid cell populations within

the hindlimb upon HLI. Initially, muscle damage leads to the infil-

tration of neutrophils and CX3CR1+Ly-6Chigh monocytes, most

of which also expressed CCR2 (Figures 2A, 2B, S2C–S2E).

These monocytes gradually differentiate into macrophages indi-

cated by downregulation of Ly-6C and upregulation of F4/80 and

MERTK expression (Figures S2C–S2E) (Krishnasamy et al.,

2017). Although the number of monocytes, neutrophils, and

macrophages increased comparably in the ischemic muscle of

pfkfb3WT and pfkfb3DEC mice until day 2, it was more pro-

nounced in pfkfb3DEC mice at day 3 (Figures 2A–2C), reflecting

a general and maintained pro-inflammatory state. Notably, we

found no difference in monocyte proliferation (Figures 2D and

S2F) between pfkfb3WT and pfkfb3DEC mice, suggesting that

the enhanced number of monocytes in pfkfb3DEC mice is the

result of increased recruitment. The increased macrophage

number 3 days after HLI was confirmed by immunofluorescent

detection of F4/80+ cells in the ischemic area (Figures 2E and

2F). We also detected a small and transient delay in monocyte-

to-macrophage differentiation since the gradual decline of Ly-

6C versus the increase in F4/80, and MERTK expression was

slightly lower in pfkfb3DEC muscle at day 2 but recovered to

pfkfb3WT levels by day 3 (Figure 2G).

Further characterization of the macrophage population at

3 days after HLI showed a strong reduction in the relative

number of Relma+CD206+ as well as Relma�CD206+ M2-like

macrophage in pfkfb3DEC muscle (Figures 2H–2J) and lower

CD206 protein expression in the total macrophage population

(Figures 2K and 2L). CD206 staining on FACS-sorted

CD45+ cells (Figures 2M and 2N) or on tissue sections (Figures

2O and 2P) confirmed that, despite the increase in total
duced Revascularization
C) mice and experimental setup.

fusion in pfkfb3WT and pfkfb3DEC mice using laser Doppler imaging before and

ostainings and quantification of Ki67+CD31+ ECs in muscles at 3 days (n = 3;

tions (F) at the indicated times (scale bar, 50 mm) and whole mounted muscle

ated times and quantification of regenerating area 28 days after HLI (I). Scale

t 3 days (scale bar, 50 mm).

vegfWT and vegfDMac mice (M) 72 h after HLI.

y’s multiple comparisons test in (J), (L), and (M) (*p < 0.05). Two-way repeated-

dot represents a single mouse ([I], [L], and [M]). Bar graphs represents mean ±

Cell Metabolism 31, 1136–1153, June 2, 2020 1139



Figure 2. Endothelial PFKFB3 Is Crucial for M2-like Polarization of Macrophages in the Muscle

(A–C) Total number of neutrophils (A), monocytes (B), and macrophages (C) in muscle at the indicated times after HLI determined by flow cytometry.

(D) Quantification of EdU+ monocytes (% of total monocytes) at the indicated times after HLI.

(legend continued on next page)
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macrophage number, there were fewer CD206+ M2-like macro-

phages in pfkfb3DEC muscle 3 days after HLI. Proliferation of

macrophages in the muscle was very low, and even though

CD206+ macrophages proliferated more than the CD206� mac-

rophages, their proliferation rate was not affected in pfkfb3DEC

mice (Figures 2Q, S2G, and S2H), indicating that loss of endo-

thelial pfkfb3 impairs development rather than proliferation of

M2-like macrophages. To evaluate whether the difference in

expression of typical M2 markers coincided with a transcrip-

tional M2-like signature, we isolated macrophages from

pfkfb3WT and pfkfb3DEC muscle 3 days after HLI and performed

RNA-seq. Principal-component analysis showed that pfkfb3WT-

and pfkfb3DEC-derived macrophages clustered separately (Fig-

ure 2R). Moreover, 1,989 genes were differentially regulated

between genotypes (Figure 2S). There was a coordinated acti-

vation of M2 macrophage-related genes (Liu et al., 2017; Varga

et al., 2016) in pfkfb3WT-derived macrophages whereas

pfkfb3DEC-derived macrophages showed higher expression of

M1-related genes (Figure 2T). Gene Ontology pathway analysis

confirmed that pathways associated to an M2-like phenotype

were more activated in in pfkfb3WT-derived macrophages (Fig-

ures S3A and S3B). Taken together, these data indicate that

loss of endothelial pfkfb3 increases monocyte recruitment dur-

ing ischemia but impairs macrophage polarization toward a

M2-like phenotype.

Restoring M2 Macrophage Content in Muscle of
pfkfb3DEC Mice Improves Perfusion and Regeneration
To dissect the functional relevance of impaired M2-like polariza-

tion to impaired recovery from ischemia in pfkfb3DEC mice, we

performed adoptive transplantation experiments. We injected

either unpolarized (ctrl) bone-marrow-derived macrophages

(BMDMs) or IL-4-cultured BMDMs (classical M2, BMDMs(IL-4))

into the hindlimb of mice 3 days after HLI (Figure 3A). Hindlimb

perfusion measurements showed lower perfusion in pfkfb3DEC

mice upon transfer of unpolarized BMDMs in comparison to

pfkfb3WT mice. However, transfer of BMDMs(IL-4) improved hin-

dlimb reperfusion in pfkfb3DEC mice (Figures 3B and 3C) and

increased vascularization (Figures 3D and 3E). BMDM(IL-4) trans-

fer also sufficed to increase VEGF protein levels (Figure 3F),

consistent with increased VEGF secretion by BMDM(IL-4) (Fig-

ure S4A). In addition, BMDM(IL-4) transfer led to a striking accel-

eration of muscle regeneration (Figures 3G–3I and S4B). These

data show that loss of endothelial pfkfb3 controls muscle revas-
(E and F) Representative images of F4/80 immunostainings (red) and hoechst (b

(G) Mean fluorescent intensity (MFI) of Ly-6C, F4/80, and MERTK in muscle mac

(H) Representative flow cytometric analysis of CD206+ and Relma+ cells in musc

(I and J) Quantification of Relma+CD206+ (I) and Relma�CD206+ (J) F4/80+CD11

(K and L) Representative histograms (K) and quantification of CD206 MFI (L) in th

(M and N) Representative immunostainings for F4/80 (green) and CD206 (red) on

MFI (N).

(O and P) Representative images of CD206 immunostainings (red) and hoechst (bl

(Q) Quantification of EdU+CD206+ macrophages (% of CD206+ macrophages) a

(R and S). Principal-component analysis (R) and Volcano plot from RNA-seq an

pfkfb3WT and pfkfb3DEC muscles 3 days after HLI (n = 3).

(T) Expression pattern of pro-inflammatory and anti-inflammatory markers genes

Arrowheads point at CD206+ cells (O). Scale bar, 50 mm. Student’s t test (two-taile

Tukey’smultiple comparisons test in (A), (B), (C), (D), and (G) (*p < 0.05). Each dot re

graphs represent mean ± SEM. See also Figures S2 and S3.
cularization and regeneration at least partially via controlling

macrophage polarization.

Endothelial Lactate Controls Macrophage Polarization
upon Muscle Ischemia
To study whether mECs exploit angiocrine mechanisms to affect

macrophage polarization, we isolated mECsWT and mECsDpfkfb3

and co-cultured them with BMDMs (Figure S5A). Subsequently,

CD11b+F4/80+ BMDMs were sorted and analyzed. Co-culturing

BMDMs with mECsWT led to the upregulation of several M2-

marker genes including mgl1 (CD301a), mgl2 (CD301b), arg1,

and vegf, whereas co-culture of mECsDpfkfb3 with BMDMs only

modestly activated an M2-gene expression fingerprint (Fig-

ure S5B). The expression of genes associated with an M1-like

phenotype (tnf-a and il-1b) was not different between BMDMs

co-cultured with mECWT versus mECsDpfkfb3 (Figure S5B). This

was not dependent on physical contact between mECs and

BMDMs, because the utilization of conditioned medium (CM)

from mEC cultures led to similar results (Figures 4A and 4B),

demonstrating that endothelial PFKFB3 controls macrophage

polarization via a secreted factor. Interestingly, BMDM stimula-

tion with mECs-CM did not fully recapitulate classical IL-4-medi-

ated M2 polarization, because the activation of several

M2-related genes was significantly lower upon mECs-CM

administration when compared to IL-4 stimulation despite equal

CD206 membrane expression (Figures S5C–S5E).

Among other stimuli, macrophage polarization occurs in

response to cytokine stimulation. We therefore analyzed the

cytokine profile of CM from mECsWT and mECsDpfkfb3 isolated

from ischemic muscles but did not detect any differences (Fig-

ures S5F and S5G). Subsequently, we passed the CM from

mECsWT and mECsDpfkfb3 through a 3-kDa filter to concentrate

the protein fraction and remove metabolites. Strikingly, CM of

mECsWT containing only >3-kDa proteins (CM>3kDa) failed to

induce arg1 and mrc1 expression in BMDMs (Figures 4C and

4D). In fact, arg1 and mrc1 expression by BMDMs was equally

low after stimulation with CM>3kDa from either mECsWT or

mECsDpfkfb3. These data show that removal of metabolites

from CM of mECs blunts their capacity to induce M2-like polar-

ization. Moreover, the mEC-derived metabolite(s) that control

macrophage polarization is/are not (or to a lesser extent)

secreted by mECsDpfkfb3.

Because PFKFB3 is a main glycolytic regulator in ECs and

controls EC-derived lactate production, we hypothesized that
lue) (E) and quantification of F4/80+ area (F) on muscle at 3 days.

rophages at the indicated times after HLI determined by flow cytometry.

le 3 days after HLI.

b+ macrophages.

e total muscle macrophage population 3 days after HLI.

CD45+ cells (M) sorted from muscle 3 d after HLI and quantification of CD206

ue) (O) and quantification of CD206+ macrophages number (P) 3 days after HLI.

t 3 days after HLI determined by flow cytometry

alysis showing differential gene expression (S) of macrophages isolated from

in muscle macrophages 3 days after HLI (n = 3).

d, unpaired) in (F), (I), (J), (L), (N), (P), and (Q) (*p < 0.05). Two-way ANOVA with

presents a singlemouse ([A], [B], [C], [D], [F], [G], [I], [J], [L], [N], [P], and [Q]). Bar
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Figure 3. Restoring M2 Macrophage Content in Muscle of pfkfb3DEC Mice Improves Muscle Perfusion and Regeneration

(A) Scheme showing macrophage transfer experiments.

(B andC) Representative laser Doppler images (B) and quantification of hindlimb perfusion (C) in pfkfb3WT and pfkfb3DECmice upon BMDMs (ctrl) or BMDMs (IL-4)

transfer (n = 5).

(legend continued on next page)
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EC-derived lactate might drive macrophage polarization.

Indeed, in tumor-associated macrophages, lactate derived

from highly glycolytic tumor cells promotes M2-like polarization

through stabilizing HIF-1a in normoxia or via activating

GPR132 (Chen et al., 2017; Colegio et al., 2014). However, a

role for endothelial-derived lactate in determining macrophage

functional polarization in vivo has not been described. In agree-

ment with reduced glycolysis, we found lactate levels to be lower

in CM derived from mECsDpfkfb3 than in that derived from

mECsWT (Figure 4E). We also performed metabolomic profiling

of CM from mECsDpfkfb3 and mECsWT focusing on metabolites

that are known to play a role in macrophage function (Van den

Bossche et al., 2017; Viola et al., 2019), but we did not find other

metabolites that were reduced in mECsDpfkfb3-CM (Table S1).

Importantly, addition of lactate (5 mM) to mECsWT CM>3kDa, as

well as to both CM and CM>3kDa frommECsDpfkfb3, restored their

capacity to induce arg1 andmrc1 (Figures 4C and 4D) as well as

CD206 cell surface expression in BMDMs (Figure 4F). Similar ob-

servations were made for mgl1 and mgl2, although to a lesser

extent in CM and CM>3kDa from mECsDpfkfb3 (Figures S5H and

S5I). Of note, adding lactate to mECswt-CM did not further in-

crease arg1 andmrc1 expression (Figures 4C and 4D). Reducing

endothelial lactate production via knocking down ldha or mct4

also reduced the activation of M2 marker genes (Figures S5J

and S5K). Importantly, the ability of lactate to promote M2-like

polarization required the presence of mECs-CM, because sup-

plementing lactate (5–10 mM) to BMDMs in the absence of

mECs-CM did not affect arg1 or CD206 expression (Figures

S5L and S5M).

Alternatively, activated M2 macrophages display enhanced

mitochondrial oxidative phosphorylation (OXPHOS) in compari-

son to M1 macrophages (Diskin and Pålsson-McDermott,

2018; O’Neill and Pearce, 2016). Because lactate, after conver-

sion to pyruvate, can enter the tricarboxylic acid (TCA) cycle

via pyruvate dehydrogenase, we also evaluated whether angio-

crine lactate would promote oxygen consumption rate (OCR) in

BMDMs. As expected, mECswt-CM-treated BMDMs showed

higher OCR than mECsDpfkfb3-CM-treated BMDMs. Addition of

lactate to mECsDpfkfb3-CM during the culture of the BMDMs

restored OCR to similar levels when compared to mECswt-CM-

treated BMDMs (Figures 4G and S5N). These data were

confirmed by our transcriptomic data in primary isolated macro-

phage from ischemic muscle which displayed lower expression

of OXPHOS-related genes in pfkfb3DEC (Figures 4H, S3A,

and S3B).

Angiocrine-Lactate-Induced Macrophage Polarization
Promotes Muscle Regeneration and VEGF Secretion
After muscle injury, macrophages that initially present with a pro-

inflammatory M1-like phenotype need to switch to a repair-pro-

moting M2-like state, and interference with this M1 to M2 fate
(D and E) Representative images of CD31 immunofluorescent staining (D) and q

(F) VEGF protein content in muscle 5 days after HLI.

(G and H) H&E staining of regenerating muscle (scale bar, 10 mm) (G) and quanti

(I) Muscle fiber size distribution at 12 days (n = 4).

Two-way ANOVA with Tukey’s multiple comparisons test in (E), (F), and (H) (*p

repeated-measures ANOVA with Sidak’s multiple comparisons test in (C) (*p < 0.0

mean ± SEM. See also Figure S4.
switch impairs muscle regeneration (Arnold et al., 2007; Deng

et al., 2012; Mounier et al., 2013). In fact, classically LPS/IFNg-

activated M1 macrophages promote MPC growth and prolifera-

tion but inhibit MPCdifferentiation and fusion (Arnold et al., 2007),

whereas IL-4-stimulated M2 macrophages promote MPC differ-

entiation and fusion (Saclier et al., 2013). To assess whether an-

giocrine-lactate-induced macrophage polarization also affects

the ability of MPCs to promote muscle regeneration, we again

incubated BMDMs with CM from mECsWT and mECsDpfkfb3

to promote polarization (mECswt-CM / BMDMs and

mECsDpfkfb3-CM / BMDMs). Subsequently, mEC-derived CM

was removed and BMDM-derived CM was generated

(mECswt-CM / BMDMs-CM and mECsDpfkfb3-CM /

BMDMs-CM) and added to MPCs (Figure 4A). When compared

to CM derived from unstimulated macrophages, mECswt-CM/

BMDMs-CM stimulated MPC proliferation (Figures 4I and 4J)

and improved MPCfusion into myotubes (Figures 4K and 4L).

Interestingly, mECsDpfkfb3-CM / BMDMs-CM failed to stimu-

late MPC proliferation and fusion. The addition of lactate to

mECsDpfkfb3-CM during polarization of BMDMs, however,

restored the capacity of mECsDpfkfb3+lac-CM / BMDMs-CM to

drive MPC proliferation and fusion (Figures 4I–4L). Importantly,

adding lactate toMPC culturemedium did not affect proliferation

or differentiation of MPCs (Figures S5O and S5P). Thus, angio-

crine lactate controls the ability of macrophage to promote

MPC proliferation and fusion.

Because we observed lower VEGF levels in pfkfb3DEC muscle,

we also wondered whether angiocrine lactate would promote

VEGF secretion from macrophages. Macrophages isolated

from the ischemic hindlimb of pfkfb3DEC mice expressed lower

vegf (Figure 4M), consistent with literature showing lower vegf

expression by M1-like macrophages (He et al., 2012). Incubation

of BMDMs with mECsDpfkfb3-CM also resulted in lower VEGF

secretion as compared to BMDMs stimulated with mECswt-

CM, and this was rescued by adding lactate to the CM (Fig-

ure 4N). These data show that angiocrine lactate promotes

M2-like macrophage functional polarization, which leads to

increased VEGF secretion and creates a positive feedback

loop to further stimulate angiogenesis.

Increasing Muscle Lactate Levels in pfkfb3DEC Mice
RestoresM2Macrophage Content and ImprovesMuscle
Reperfusion and Regeneration
We next asked whether angiocrine lactate could control macro-

phage polarization in the muscle during ischemia. To address

this, we harvested ischemic muscle and assessed muscle

lactate levels. Whereas induction of ischemia led to a pro-

nounced increase in local muscle lactate levels in WT animals,

this increase was almost completely abrogated in pfkfb3DEC

mice (Figure 5A). Accordingly, circulating blood lactate levels af-

ter HLI were lower in pfkfb3DEC mice (Figure 5B). In agreement
uantification of CD31+ area (E) in muscle 12 days after HLI (scale bar, 50 mm).

fication of regenerating area (H) at 12 days.

< 0.05) and in (I) (*p < 0.05 versus pfkfb3WT; #p < 0.05 versus ctrl). Two-way

5). Each dot represents a single mouse ([E], [F], and [H]). Bar graphs represents
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Figure 4. Endothelial Lactate Controls Macrophage Polarization and Function upon Muscle Ischemia

(A) Scheme illustrating experimental set-up.

(B) Gene profiling of unstimulated BMDMs (vehicle) or BMDMs stimulated with mECswt-CM, mECsDpfkfb3-CM.

(legend continued on next page)
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with these observations, lactate levels also rose more in muscle

with higher vascular density (and low glycolytic potential) such as

m. soleus when compared to muscles with low vascular density

(and high glycolytic potential) (Figure 5C). Finally, activation of

angiogenesis in the absence of muscle damage by injecting

vegf-expressing myoblasts increased muscle vascular density

(Figures S6A and S6B), and lactate levels were higher in pfkfb3WT

muscle (Figure 5D).

Next, we tested whether lactate supplementation in pfkfb3DEC

mice would restore M2-like polarization and muscle regenera-

tion. We implanted growth-factor-reduced Matrigel plugs

containing lactate in the subcutis of mice immediately after HLI

(Figure S6C)). As previously described (Porporato et al., 2012),

such plugs allow the slow release of lactate, leading to a small

but consistent increase in blood lactate levels (Figure S6D).

Three days after HLI, we found that lactate administration in

pfkfb3DEC mice restored total numbers of macrophages and

macrophage CD206 expression to similar levels in control mice

(Figures 5E–5G). This confirms that lactate is sufficient to drive

M2-like polarization in vivo. Moreover, lactate significantly

improved but did not completely restore perfusion in pfkfb3DEC

mice (Figures 5H and 5I). In agreement with the perfusion data,

vascular density remained slightly lower (Figure 5J). Lactate suf-

ficed to increase VEGF protein levels (Figure 5K). Harvesting

muscle tissue at 12 days after ischemia showed that lactate

led to a striking acceleration of muscle regeneration and higher

muscle fiber cross-sectional area (Figures 5L–5M, S6E, and

S6F). Thus, restoring lactate levels in muscle from pfkfb3DEC res-

cues macrophage polarization and muscle regeneration.

Lactate-Induced Macrophage Polarization Is MCT1
Dependent
To explore how angiocrine lactate affects macrophage polariza-

tion in muscle, we investigated whether EC-derived lactate is

taken up by macrophages. We found that 14C-lactate uptake in

freshly isolated primary muscle macrophages was higher in

pfkfb3WT versus pfkfb3DEC mice 3 days after HLI (Figure 6A).

This was confirmed in BMDMs, where mECswt-CM but not

mECsDpfkfb3-CM promoted lactate uptake (Figure 6B). MCT1

regulates lactate uptake in T cells, and inhibition of MCT1 during

T lymphocyte activation results in selective and profound inhibi-

tion of the extremely rapid phase of T cell division essential for an
(C and D) Gene expression analysis of arg1 (C) andmrc1 (D) in BMDMs stimulated

(5 mM) where indicated.

(E) Lactate concentration in mECswt-CM and mECsDpfkfb3-CM.

(F) Representative images of immunostainings of F4/80 (green), CD206 (red), and

without lactate supplementation and quantification of CD206 MFI (n = 3).

(G) OCR upon injection of oligomycin (oligo), FCCP, and rotenone plus antimycin A

stimulation (n = 4–5).

(H) RNaseq data showing OXPHOS gene expression in muscle macrophages 3

(I and J) Representative images (I) and quantification (J) of proliferating MPCs upo

nuclei (red, EdU+; blue, hoechst).

(K and L)MPC fusion analysis: representative images of immunofluorescent DESM

nuclei per DESMIN+ myotube (L).

(M) Vegf gene expression in CD45+ cells sorted from pfkfb3WT and pfkfb3DEC musc

mECsDpfkfb3-CM with or without lactate supplementation.

Scale bar, 50 mm. Student’s t test (two-tailed, unpaired) in (E) and (M). One-way

Tukey’smultiple comparisons test in (C), (D), (G), (J), (L), and (N) (*p < 0.05) aswell a

a single mouse (M) or the average of an independent experiment ([B], [C], [D], [E

Table S1.
effective immune response (Murray et al., 2005). We thus hy-

pothesized that MCT1 could control lactate uptake in macro-

phages. We first confirmed that the MCT1 inhibitor AZD3965

reduced lactate uptake in BMDMs stimulated with mECswt-CM

(Figure 6B). Based on higher OCR in lactate-stimulated macro-

phages, we next asked whether the incorporated lactate is actu-

ally used for oxidation. By using radioactive substrate tracing

experiments, we found that M2-like macrophages oxidize

lactate in an MCT1-dependent fashion, and lactate oxidation

was lower in mECsDpfkfb3-CM-treated BMDMs (Figure 6C). And

third, MCT1-mediated lactate uptake is required formacrophage

polarization because AZD3965 reduced the fraction of

CD206+F4/80+ macrophages induced by mECswt-CM to similar

levels compared to incubation with mECsDpfkfb3-CM (Figure 6D).

To confirm that MCT1-dependent lactate uptake also affected

functional properties of macrophages, we used CM from

BMDMs that were stimulated with mECswt-CM, mECsDpfkfb3-

CM either not supplemented with AZD3965 (mECswt+AZD-CM,

mECsDpfkfb3+AZD-CM), or ctrl (DMSO). mECswt+AZD-CM failed

to stimulate MPC proliferation (Figures 6E and 6F) and differen-

tiation (Figures 6G and 6H), as compared to stimulation with

mECsWT CM / BMDMs-CM. Moreover, BMDMs stimulated

with mECswt+AZD-CM secreted less VEGF (Figure 6I). Taken

together, lactate uptake through MCT1 does not only promote

M2-like polarization but also instructs M2-like macrophage-

dependent functions.

Finally, we investigated whether lactate also controls macro-

phage polarization and muscle recovery from ischemia in an

MCT1-dependent fashion in vivo. To this end, we generated

mice lacking Mct1 in macrophages (mct1DMac mice; Figures 7A

and 7B) (and neutrophils) by intercrossing mct1-floxed mice

with myeloid-cell-specific LysM-Cre mice. Consistent with our

observations in pfkfb3DEC mice, we found that 3 days after HLI,

mct1DMac muscles contained more neutrophils, monocytes,

and macrophages (Figure 7C). Moreover,mct1-deficient macro-

phages expressed less CD206 and Relma (Figures 7D–7F). This

shows that MCT1-dependent lactate uptake is required for M2-

like functional polarization of macrophages upon muscle

ischemia. In addition, hindlimb perfusion of mct1DMac mice

recovered slower (Figures 7G and 7H), and CD31 stainings

confirmed thatmct1DMac reduced revascularization 28 days after

HLI (Figure 7I). In agreement with our in vitro and in vivo data
with fractionatedmECswt-CM andmECsDpfkfb3-CM, supplementedwith lactate

hoechst (blue) in BMDMs stimulated with mECswt-CM, mECsDpfkfb3-CMwith or

after mECswt-CM, mECsDpfkfb3-CM, mECswt+lac-CM, and mECsDpfkfb3+lac-CM

days after HLI (n = 3).

n incubation with macrophage-derived CM, measured as percentage of EdU+

IN staining (K) (red, DESMIN; blue, hoechst) and quantification of the number of

le at 3 d. (N) VEGF secretion by BMDMs after stimulation with mECswt-CM and

ANOVA with Tukey’s multiple comparisons test in (B). Two-way ANOVA with

s in (F) (*p < 0.05 versusmECswt-CM; #p < 0.05 versus ctrl). Each dot represents

], [J], [L], and [N]). Bar graphs represent mean ± SEM. See also Figure S5 and

Cell Metabolism 31, 1136–1153, June 2, 2020 1145



Figure 5. Increasing Muscle Lactate Levels in pfkfb3DEC Mice Restores M2 Macrophage Content and Improves Muscle Reperfusion and

Regeneration

(A–C) Lactate levels in calf muscle (A), blood serum (B), and in m. extensor digitorum longus (EDL) and m. soleus (C) before and 12 h after HLI.

(legend continued on next page)
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confirming the lack of M2-like functional repolarization upon

MCT1 inhibition, mct1DMac muscle displayed reduced muscle

regeneration. Indeed, mct1DMac mice had higher muscle necro-

sis 3 days after HLI (Figures 7J–7K and S67A), and even though

the number of regenerating fibers was similar to their WT litter-

mates, muscle fiber cross-sectional area was lower inmct1DMac

mice (Figures 7J, 7L, S7A, and S7B). Also,mct1DMac muscle had

lower VEGF levels (Figure 7M). Together, these results show that

lactate uptake throughMCT1 does not only promote M2-like po-

larization but also instructs M2-like macrophage-dependent

revascularization upon HLI.

DISCUSSION

ECs contribute to tissue homeostasis and regeneration via an-

giocrine signaling (Augustin and Koh, 2017; Rafii et al., 2016).

Known organotypic angiocrine signals include secreted growth

factors as well as ligand/receptor interactions at the cell mem-

brane. For instance, the release of HGF and TGF-b1 from liver

sinusoidal ECs ensures spatiotemporal control of liver regenera-

tion after partial hepatectomy (Ding et al., 2010; Hu et al., 2014;

LeCouter et al., 2003). In the brain, neurotrophin-3 derived from

brain ECs sustains neural stem cell quiescence in addition to

membrane-bound Jagged-1 and Ephrin-B2 (Delgado et al.,

2014; Ottone et al., 2014). Here, we show that ECs also exploit

their unique metabolic features to engage in angiocrine commu-

nication. Within the muscle microenvironment, they shuttle

lactate as a metabolic substrate to promote macrophage polar-

ization. By doing so, ECs actively steer muscle regeneration after

hindlimb ischemia.

ECs are highly glycolytic and generate the majority of their en-

ergy via the glycolytic breakdown of glucose to lactate (Culic

et al., 1997; De Bock et al., 2013; Kr€utzfeldt et al., 1990; Schoors

et al., 2014; Xu et al., 2014; Yu et al., 2017). We found that mECs

use lactate as a ‘‘ready-to-sprout’’ signal to increase VEGF

secretion and promote muscle regeneration by instructing the

polarization of macrophages toward an M2-like phenotype in a

MCT1-dependent manner. Thus, through the release of lactate,

ECs themselves shape a pro-angiogenic environment to allow

optimal revascularization. Macrophage-derived VEGF subse-

quently consolidates a positive feedback loop, which leads to

a further angiogenic activation of mECs. Interestingly, restoring

VEGF levels in the muscle of pfkfb3DEC mice by promoting M2-

like macrophage polarization (through M2 macrophage transfer

or by increasing lactate levels) increased vascular density,

although the latter failed to reach pfkfb3WT levels upon lactate

administration. This indicates that the observed angiogenic
(D) Lactate concentration in tibialis anterior muscle 5 days after injection of vegf

(E) Total number of macrophages determined by flow cytometry in muscle samp

(F and G) Representative histograms (F) and CD206 mean fluorescence intensity

(H and I) Representative laser Doppler perfusion images (H) and quantification of

lactate (lac) at the indicated times.

(J) Representative images of CD31 immunofluorescent staining and quantificatio

(K) VEGF protein content in muscle at 12 days.

(L) H&E staining of regenerating muscle (scale bar, 10 mm).

(M) Muscle fiber size distribution 12 days after HLI (n = 4).

Student’s t test (two-tailed, unpaired) in (D). Two-way ANOVAwith Tukey’s multip

(M) (*p < 0.05 versus pfkfb3WT; #p < 0.05 versus PBS). Two-way repeated-meas

represents a single mouse ([A], [B], [C], [D], [E], [G], [K], and [M]). Bar graphs rep
deficit (at least in the ischemic muscle) is a combination of a

direct inhibitory effect of PFKFB3 on endothelial migration/prolif-

eration as well as reduced angiogenic stimulation by the muscle

microenvironment.

It is possible that the delivery of lactate also had a direct pro-

angiogenic effect in WT as well as pfkfb3DEC mice. In vitro,

lactate renders ECs more responsive to VEGF by increasing

VEGFR2 content due to enhanced HIF-1a stabilization (Son-

veaux et al., 2008; Végran et al., 2011). Moreover, delivery of

lactate promoted, and inhibition of lactate uptake by blocking

MCTs reduced ischemia revascularization (Porporato et al.,

2012). Similar observations have been made in tumors (Son-

veaux et al., 2008). A potential contribution of macrophages to

this pro-angiogenic effect in vivo has, to our knowledge, not

been addressed. Although previous observations showed that

lactate delivery resulted in higher muscle fiber area after

ischemia (Porporato et al., 2012), our data revealed that lactate

by itself does not promoteMPCs proliferation or fusion, and it un-

derscores the ability of lactate to reshape macrophages (and

possibly other cells) in the muscle microenvironment to control

optimal regeneration.

We made the striking observation that loss of endothelial

pfkfb3 lowers muscle as well as plasma lactate levels upon hin-

dlimb ischemia. If anything, we expected that the presence of

highly glycolytic M1-like macrophages in combination with

higher hypoxia would lead to higher lactate levels in pfkfb3DEC

muscle. This suggests that mECs significantly contribute tomus-

cle lactate levels, which is surprising given the modest volume of

the endothelial population versus myofibers in muscle. In sup-

port of these observations, activation of angiogenesis in the

absence of muscle damage (via increasing VEGF) also resulted

into higher muscle lactate levels in pfkfb3WT when compared

to pfkfb3DEC mice. Lactate is a main carbon source for energy

production and can be shuttled between different cells or even

organs (Brooks, 2018; Hui et al., 2017). In the muscle, the pres-

ence of a lactate shuttle from glycolytic to oxidative muscle fi-

bers has been described for decades, predominantly in the

context of exercise (Bergman et al., 1999; Brooks, 1986; Stanley

et al., 1986). However, contribution of other cell types to lactate

metabolism in muscle has not been studied. Here, we demon-

strate the presence of a second lactate shuttling mechanism

within the muscle, i.e., from the endothelium to macrophages.

Endothelial-derived lactate promoted the functional polariza-

tion of macrophages, and this was dependent on lactate

uptake because its inhibition by using MCT1 inhibitors in vitro

or deletion of mct1 from macrophages in vivo prevented M2-

like polarization. Loss of MCT1 in macrophages decreased
overexpressing myoblasts.

les at 3 days.

(MFI) (G) in total macrophages isolated from calf muscle 3 days after HLI.

blood perfusion ratio (I) (n = 7) in pfkfb3WT and pfkfb3DEC mice with or without

n of CD31-positive area in muscle at 12 days (n = 5–7; scale bar, 50 mm).

le comparisons test in (A), (B), (C), (E), (G), and (K) (*p < 0.05) as well as in (J) and

ures ANOVA with Sidak’s multiple comparisons test in (I) (*p < 0.05). Each dot

resents mean ± SEM. See also Figure S6.
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Figure 6. Lactate-Induced Macrophage Polarization Is MCT1 Dependent

(A) Lactate uptake in macrophages isolated from muscle 3 days after HLI.

(B) Lactate uptake in BMDMs after stimulation with mECs-CM. mECs-CM was supplemented with vehicle (ctrl), lactate, or MCT1 inhibitor AZD3965 (AZD)

(mECswt+AZD-CM, mECsDpfkfb3+AZD-CM).

(C) Lactate oxidation in BMDMs upon stimulation with mECswt-CM, mECsDpfkfb3-CM, mECswt+lac-CM, mECsDpfkfb3+lac-CM, mECswt+AZD-CM, and

mECsDpfkfb3+AZD-CM.

(D) Representative images of immunostainings for F4/80 (green), CD206 (red), and hoechst (blue) in BMDMs stimulated withmECswt+AZD-CMormECsDpfkfb3+AZD-

CM and flow cytometry quantification of CD206 MFI.

(E and F) Representative images (red, EdU+; blue, hoechst) (E) and quantification (F) of EdU+ MPCs.

(G and H) Representative DESMIN staining (red, DESMIN; blue, hoechst) (G) and fusion analysis (H) upon stimulation with mECs-CM / BMDMs-CM.

(I) VEGF levels in mECs-CM / BMDMs-CM.

Scale bar, 50 mm. Student’s t test (two-tailed, unpaired) in (A) (*p < 0.05). Two-way ANOVA with Tukey’s multiple comparisons test in (B), (C), (F), (H), and (I) (*p <

0.05) test and in (D) (*p < 0.05 versus mECswt-CM; #p < 0.05 versus ctrl). Each dot represents a single mouse (A) or the average of an independent experiment ([B],

[C], [F], [H], and [I]). Bar graphs represent mean ± SEM.
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Figure 7. Loss of MCT1 in Macrophages Impairs M2-like Macrophage Polarization and Muscle Recovery from Ischemia

(A) Scheme showing the generation of LysM-Cre 3 mct1 Loxp/Loxp (mct1DMac) mice and HLI experiment.

(B) Mct1 mRNA expression in macrophages 3 days after HLI.

(legend continued on next page)
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muscle VEGF content and reduced revascularization as well as

muscle regeneration. Interestingly, angiocrine lactate sufficed

to increase macrophage oxygen consumption, a typical feature

of M2 macrophages (Pearce and Pearce, 2013). Also, M2-like

macrophages oxidized lactate, and lactate oxidation rate was

higher when compared to macrophages which were stimulated

with mECsDpfkfb3-CM. Gene profiling of macrophages isolated

from ischemic hindlimb of pfkfb3WT mice confirmed that genes

involved in OXPHOS were enriched, whereas this was not the

case in pfkfb3DEC mice. This shows that endothelial glycolysis

can contribute to metabolic reprogramming in macrophages

by providing additional substrates for oxidative phosphorylation.

We did not detect differences in baseline lactate levels inmuscle.

However, because lactate is continuously produced and

consumed by different cells, even under fully aerobic conditions

(Brooks, 1986; Hui et al., 2017), future research will be needed to

unravel the exact contribution of endothelial lactate to muscle

physiology.

The ability of lactate to control macrophage polarization

required conditioned medium, indicating that the presence

of other cytokines or metabolites was required for functional

repolarization. Raising lactate concentration to 5–10 mM suf-

ficed to induce M2-like skewing in the presence of condi-

tioned medium but failed to do so in the absence thereof.

This is in apparent contrast with previous observations in tu-

mor settings, where lactate itself sufficed to induce macro-

phage skewing via MCT-dependent uptake (Colegio et al.,

2014) or via acting as a signaling molecule through initiating

GPR132 signaling (Chen et al., 2017). It is worthwhile noting

that the lactate concentrations used in the present study

(5 mM) are within physiological ranges: exercising at high in-

tensity, even in mice (Ayachi et al., 2016), raises blood lactate

levels above 5–10 mM. We found an approximately 3-fold in-

crease in muscle lactate concentration 12 h after ischemia. In

addition, although adding lactate to the conditioned medium

restored the expression of CD206, not all M2 linked genes

were completely rescued. Also, expression levels of many

M2 genes were induced to a lower extent by lactate

compared to IL-4 despite similar CD206 membrane expres-

sion. This is not surprising, as in vivo transcriptional profiling

of macrophages upon cardiotoxin injury only showed partial

overlap with canonical M1/M2 profiles (Varga et al., 2016).

Nonetheless, lactate polarized macrophages recapitulated

many functional properties of IL-4-stimulated macrophages,

such as their pro-angiogenic properties (Jetten et al., 2014)

as well as their ability to promote muscle regeneration (Sac-

lier et al., 2013). Our current data therefore indicate that the

metabolic and transcriptional alterations induced by lactate
(C) Total number of neutrophils, monocytes, and macrophages determined by flo

(D and E) Representative histograms showing CD206 (D) and Relma (E) express

(F) Quantification of CD206 and Relma MFI.

(G and H) Representative laser Doppler images (G) and quantification of hindlimb

(I) Representative images of CD31 immunostaining and quantification of CD31+

(J and K) H&E staining of regenerating muscle (scale bar, 10 mm) at the indicated

(L) Muscle fiber size distribution at 28 days (n = 4).

(M) VEGF protein content at 3 days.

Student’s t test (two-tailed, unpaired) in (B), (C), (F), (K), and (M) (*p < 0.05). Two

mct1WT). Two-way repeated-measures ANOVA with Sidak’s multiple comparison

[M]). Bar graphs represent mean ± SEM. See also Figure S7.
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are sufficient to acquire pro-regenerative and pro-angiogenic

properties.

Macrophages are key regulators of muscle regeneration

(Dort et al., 2019). Initially, they have a pro-inflammatory M1-

like phenotype, which is associated with the expression of

several cytokines that further promote inflammation (Mosser

and Edwards, 2008). Rapidly thereafter, those M1-like macro-

phages repolarize and change their phenotype toward a more

anti-inflammatory, pro-angiogenic, and pro-regenerative M2-

like phenotype (Arnold et al., 2007; Mosser and Edwards,

2008; Raes et al., 2002). This M1 to M2 repolarization is

required for optimal muscle regeneration (Arnold et al.,

2007; Deng et al., 2012; Tidball and Wehling-Henricks,

2007). The contribution of ECs to macrophage differentiation

and maturation is poorly understood. ECs can promote

macrophage polarization in a contact-dependent manner (He

et al., 2012; Krishnasamy et al., 2017), but only limited evi-

dence exists which supports metabolic crosstalk between

macrophages and ECs. In the tumor microenvironment, low

glucose availability forces macrophages and ECs to compete

for glucose (Wenes et al., 2016). During hypoxia, tumor-asso-

ciated macrophages shift toward a more oxidative meta-

bolism and reduce glucose uptake. This increases glucose

availability for ECs, thereby promoting excessive angiogen-

esis (Wenes et al., 2016). Although we cannot exclude a

similar scenario being active in the ischemic hindlimb, our

data suggest that ECs and macrophages metabolically collab-

orate to promote muscle regeneration. They efficiently share

the available energetic substrate glucose via the glycolytic

breakdown to lactate by ECs followed by lactate oxidation

in macrophages.

In conclusion, we provide evidence that ECs exploit their

unique metabolic characteristics to steer muscle regeneration

during ischemia in an angiocrine fashion that is dependent on

lactate shuttling tomacrophages. Metabolic angiocrine signaling

provides a novel mechanism through which ECs can contribute

to tissue homeostasis and regeneration.

LIMITATIONS OF STUDY

Although our study shows that angiocrine lactate controls M2-

like macrophage polarization in an MCT1-dependent manner,

the exact molecular mechanism through which lactate drives

M2-like polarization remains to be unveiled. To further dissect

the kinetics of angiocrine metabolic crosstalk, it would be

insightful to have genetic mouse models to selectively uncou-

ple endothelial lactate secretion from angiogenesis. Further-

more, arteriogenic collateral formation also contributes to
w cytometry in muscle 3 days after HLI.

ion.

perfusion (H) in mct1WT and mct1DMac (n = 7).

area 12 days after HLI (n = 6; scale bar, 50 mm).

time (J) and quantification of necrotic area (K) 3 days after HLI.

-way ANOVA with Tukey’s multiple comparisons test in (L) (*p < 0.05 versus

s test in (H) (*p < 0.05). Each dot represents a single mouse ([B], [C], [F], [K], and
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muscle reperfusion upon hindlimb ischemia, but arteriogenesis

was not evaluated in this study.
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J., Prenen, H., Ghesquière, B., Carmeliet, P., and Mazzone, M. (2016).

Macrophage Metabolism Controls Tumor Blood Vessel Morphogenesis and

Metastasis. Cell Metab. 24, 701–715.

Xu, Y., An, X., Guo, X., Habtetsion, T.G.,Wang, Y., Xu, X., Kandala, S., Li, Q., Li,

H., Zhang, C., et al. (2014). Endothelial PFKFB3 plays a critical role in angio-

genesis. Arterioscler. Thromb. Vasc. Biol. 34, 1231–1239.

Yin, H., Price, F., and Rudnicki, M.A. (2013). Satellite cells and themuscle stem

cell niche. Physiol. Rev. 93, 23–67.

Yu, P., Wilhelm, K., Dubrac, A., Tung, J.K., Alves, T.C., Fang, J.S., Xie, Y., Zhu,

J., Chen, Z., De Smet, F., et al. (2017). FGF-dependent metabolic control of

vascular development. Nature 545, 224–228.

Zhang, J., Kasim, V., Xie, Y.D., Huang, C., Sisjayawan, J., Dwi Ariyanti, A., Yan,

X.S., Wu, X.Y., Liu, C.P., Yang, L., et al. (2017). Inhibition of PHD3 by salidro-

side promotes neovascularization through cell-cell communications mediated

by muscle-secreted angiogenic factors. Sci. Rep. 7, 43935.
Cell Metabolism 31, 1136–1153, June 2, 2020 1153

http://refhub.elsevier.com/S1550-4131(20)30243-6/sref52
http://refhub.elsevier.com/S1550-4131(20)30243-6/sref52
http://refhub.elsevier.com/S1550-4131(20)30243-6/sref53
http://refhub.elsevier.com/S1550-4131(20)30243-6/sref53
http://refhub.elsevier.com/S1550-4131(20)30243-6/sref53
http://refhub.elsevier.com/S1550-4131(20)30243-6/sref53
http://refhub.elsevier.com/S1550-4131(20)30243-6/sref54
http://refhub.elsevier.com/S1550-4131(20)30243-6/sref54
http://refhub.elsevier.com/S1550-4131(20)30243-6/sref54
http://refhub.elsevier.com/S1550-4131(20)30243-6/sref54
http://refhub.elsevier.com/S1550-4131(20)30243-6/sref55
http://refhub.elsevier.com/S1550-4131(20)30243-6/sref55
http://refhub.elsevier.com/S1550-4131(20)30243-6/sref56
http://refhub.elsevier.com/S1550-4131(20)30243-6/sref56
http://refhub.elsevier.com/S1550-4131(20)30243-6/sref56
http://refhub.elsevier.com/S1550-4131(20)30243-6/sref56
http://refhub.elsevier.com/S1550-4131(20)30243-6/sref57
http://refhub.elsevier.com/S1550-4131(20)30243-6/sref57
http://refhub.elsevier.com/S1550-4131(20)30243-6/sref57
http://refhub.elsevier.com/S1550-4131(20)30243-6/sref57
http://refhub.elsevier.com/S1550-4131(20)30243-6/sref58
http://refhub.elsevier.com/S1550-4131(20)30243-6/sref58
http://refhub.elsevier.com/S1550-4131(20)30243-6/sref59
http://refhub.elsevier.com/S1550-4131(20)30243-6/sref59
http://refhub.elsevier.com/S1550-4131(20)30243-6/sref60
http://refhub.elsevier.com/S1550-4131(20)30243-6/sref60
http://refhub.elsevier.com/S1550-4131(20)30243-6/sref60
http://refhub.elsevier.com/S1550-4131(20)30243-6/sref60
http://refhub.elsevier.com/S1550-4131(20)30243-6/sref60
http://refhub.elsevier.com/S1550-4131(20)30243-6/sref61
http://refhub.elsevier.com/S1550-4131(20)30243-6/sref61
http://refhub.elsevier.com/S1550-4131(20)30243-6/sref62
http://refhub.elsevier.com/S1550-4131(20)30243-6/sref62
http://refhub.elsevier.com/S1550-4131(20)30243-6/sref62
http://refhub.elsevier.com/S1550-4131(20)30243-6/sref62
http://refhub.elsevier.com/S1550-4131(20)30243-6/sref63
http://refhub.elsevier.com/S1550-4131(20)30243-6/sref63
http://refhub.elsevier.com/S1550-4131(20)30243-6/sref63
http://refhub.elsevier.com/S1550-4131(20)30243-6/sref63
http://refhub.elsevier.com/S1550-4131(20)30243-6/sref64
http://refhub.elsevier.com/S1550-4131(20)30243-6/sref64
http://refhub.elsevier.com/S1550-4131(20)30243-6/sref64
http://refhub.elsevier.com/S1550-4131(20)30243-6/sref64
http://refhub.elsevier.com/S1550-4131(20)30243-6/sref65
http://refhub.elsevier.com/S1550-4131(20)30243-6/sref65
http://refhub.elsevier.com/S1550-4131(20)30243-6/sref65
http://refhub.elsevier.com/S1550-4131(20)30243-6/sref65
http://refhub.elsevier.com/S1550-4131(20)30243-6/sref66
http://refhub.elsevier.com/S1550-4131(20)30243-6/sref66
http://refhub.elsevier.com/S1550-4131(20)30243-6/sref66
http://refhub.elsevier.com/S1550-4131(20)30243-6/sref67
http://refhub.elsevier.com/S1550-4131(20)30243-6/sref67
http://refhub.elsevier.com/S1550-4131(20)30243-6/sref67
http://refhub.elsevier.com/S1550-4131(20)30243-6/sref67
http://refhub.elsevier.com/S1550-4131(20)30243-6/sref68
http://refhub.elsevier.com/S1550-4131(20)30243-6/sref68
http://refhub.elsevier.com/S1550-4131(20)30243-6/sref69
http://refhub.elsevier.com/S1550-4131(20)30243-6/sref69
http://refhub.elsevier.com/S1550-4131(20)30243-6/sref69
http://refhub.elsevier.com/S1550-4131(20)30243-6/sref70
http://refhub.elsevier.com/S1550-4131(20)30243-6/sref70
http://refhub.elsevier.com/S1550-4131(20)30243-6/sref71
http://refhub.elsevier.com/S1550-4131(20)30243-6/sref71
http://refhub.elsevier.com/S1550-4131(20)30243-6/sref71
http://refhub.elsevier.com/S1550-4131(20)30243-6/sref71
http://refhub.elsevier.com/S1550-4131(20)30243-6/sref72
http://refhub.elsevier.com/S1550-4131(20)30243-6/sref72
http://refhub.elsevier.com/S1550-4131(20)30243-6/sref72
http://refhub.elsevier.com/S1550-4131(20)30243-6/sref72
http://refhub.elsevier.com/S1550-4131(20)30243-6/sref73
http://refhub.elsevier.com/S1550-4131(20)30243-6/sref73
http://refhub.elsevier.com/S1550-4131(20)30243-6/sref73
http://refhub.elsevier.com/S1550-4131(20)30243-6/sref73
http://refhub.elsevier.com/S1550-4131(20)30243-6/sref74
http://refhub.elsevier.com/S1550-4131(20)30243-6/sref74
http://refhub.elsevier.com/S1550-4131(20)30243-6/sref74
http://refhub.elsevier.com/S1550-4131(20)30243-6/sref75
http://refhub.elsevier.com/S1550-4131(20)30243-6/sref75
http://refhub.elsevier.com/S1550-4131(20)30243-6/sref75
http://refhub.elsevier.com/S1550-4131(20)30243-6/sref76
http://refhub.elsevier.com/S1550-4131(20)30243-6/sref76
http://refhub.elsevier.com/S1550-4131(20)30243-6/sref76
http://refhub.elsevier.com/S1550-4131(20)30243-6/sref76
http://refhub.elsevier.com/S1550-4131(20)30243-6/sref77
http://refhub.elsevier.com/S1550-4131(20)30243-6/sref77
http://refhub.elsevier.com/S1550-4131(20)30243-6/sref77
http://refhub.elsevier.com/S1550-4131(20)30243-6/sref78
http://refhub.elsevier.com/S1550-4131(20)30243-6/sref78
http://refhub.elsevier.com/S1550-4131(20)30243-6/sref79
http://refhub.elsevier.com/S1550-4131(20)30243-6/sref79
http://refhub.elsevier.com/S1550-4131(20)30243-6/sref79
http://refhub.elsevier.com/S1550-4131(20)30243-6/sref80
http://refhub.elsevier.com/S1550-4131(20)30243-6/sref80
http://refhub.elsevier.com/S1550-4131(20)30243-6/sref80
http://refhub.elsevier.com/S1550-4131(20)30243-6/sref80


ll
OPEN ACCESS Article
STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-mouse CD45, BV785, clone 30-F11 Biolegend Cat#103149; RRID: AB_2564590

Anti-mouse CD11b, PerCP-Cy5.5, clone M1/70 Biolegend Cat#101228; RRID: AB_893232

Anti-mouse F4/80, Alexa Fluor 488, clone BM8 Biolegend Cat#123120; RRID: AB_893479

Anti-mouse F4/80, Biotin, clone BM8 Biolegend Cat#123105; RRID: AB_893499

Anti-mouse CD16/32, clone 2.4G2 This paper N/A

Anti-mouse CD11b, PerCP-Cy5.5, clone M1/70 Biolegend Cat#101228; RRID: AB_893232

Anti-mouse CD11c, BV605, clone N418 Biolegend Cat#117334; RRID: AB_2562415

Anti-mouse Ly-6G, BV421, clone 1A8 Biolegend Cat#127628; RRID: AB_2562567

Anti-mouse CD45, APC/FireTM 750, clone 30_F11 Biolegend Cat#103154; RRID: AB_2572115

Anti-mouse CD31, Alexa Fluor 488, clone 390 Biolegend Cat#102414; RRID: AB_493408

Anti-mouse CD31, PE, Clone 390 Thermo Fisher Scientific Cat#12-0311-82; RRID: AB_465632

Anti-mouse Ly-6C, PE-Cy7, clone HK1.4 Biolegend Cat#128018; RRID: AB_1732082

Anti-mouse CD206, PerCP-Cy5.5, clone C068C2 Biolegend Cat#141716; RRID: AB_2561992

Anti-mouse CD206, Alexa Fluor 647, clone MR5D3 BD Biosciences Cat#565250; RRID: AB_2739133

Goat Anti-Rabbit IgG(H+L), Mouse/Human ads-FITC SouthernBiotech Cat#4050-02; RRID: AB_2795952

Anti-mouse CCR2, PE, Clone # 475301 R&D Systems Cat#FAB5538P-100; RRID: AB_10718414

Anti-mouse MHC class II, BV510, clone M5/114.15.2 Biolegend Cat#107635; RRID: AB_2561397

Anti-mouse CD64, APC, clone X54-5/7.1 Biolegend Cat#139306; RRID: AB_11219391

Anti-mouse MERTK, FITC, clone 2B10C42 Biolegend Cat#151504; RRID: AB_2617035

Anti-mouse CX3CR1, APC, clone SA011F11 Biolegend Cat#149008; RRID: AB_2564492

Anti-Murine RELMa Peprotech Cat#500-P214; RRID: AB_1268332

Ki-67 Cell Signaling Technology Cat#9129S; RRID: AB_2687446

Cleaved Caspase-3 (Asp175) Cell Signaling Technology Cat#9661; RRID: AB_2341118

CD31 R&D Systems Cat#3628; RRID: AB_2161028

Anti-F4/80, clone A3-1 Abcam Cat#ab6640; RRID: AB_10770512

Laminin Thermo Fisher Scientific Cat#PA1-16730; RRID: AB_2133633

Anti-Mannose Receptor Abcam Cat#ab64693; RRID: AB_1523910

Anti-PFKFB3 Abcam Cat#ab181861; RRID: N/A

b-actin Cell Signaling Technology Cat#ab181861; RRID: AB_2566811

Desmin Cell Signaling Technology Cat#5332; RRID: AB_1903947

Donkey anti-Goat IgG (H+L) AF 488 Thermo Fisher Scientific Cat#A-11055; RRID: AB_2534102

Donkey anti-rabbit IgG (H+L) AF 568 Thermo Fisher Scientific Cat#A10042; RRID: AB_2534017

Donkey anti-rabbit IgG (H+L) AF plus 647 Thermo Fisher Scientific Cat#A32795; RRID: AB_2762835

Donkey anti-rat IgG (H+L) AF 488 Thermo Fisher Scientific Cat#A-21208; RRID: AB_2535794

Donkey anti-rat IgG (H+L) DyLight 650 Thermo Fisher Scientific Cat#SA5-10029; RRID: AB_2556609

rabbit IgG, HRP-linked Antibody Cell Signaling Technology Cat#7074S; RRID: AB_2099233

Chemicals, Peptides, and Recombinant Proteins

Streptavidin-BV421 Biolegend Cat#405225

Streptavidin-BV711 BD Biosciences Cat#563262

eFluor� 780 Thermo Fisher Scientific Cat#65-0865-14

EdU Thermo Fisher Scientific Cat#C10632

AZD3965 Cayman Chemical Cat#1448671-31-5

Tamoxifen Sigma-Aldrich Cat#T5648

Collagenase IV Thermo Fisher Scientific Cat#17104019

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Dispase II Sigma-Aldrich Cat#D4693

M-CSF PeproTech Cat#315-02

Sodium L-lactate Sigma-Aldrich Cat#L7022

Endothelial cell growth supplement Sigma-Aldrich Cat#E2759

Hoechst Thermo Fisher Scientific Cat#62249

SYTOX� Blue Thermo Fisher Scientific Cat#S34857

SYTOXTM Red Thermo Fisher Scientific Cat#S34859

Normal Donkey Serum Jackson Immuoresearch Cat#017-000-121

FGF-Basic (AA 1-155) Recombinant Human Protein Thermo Fisher Scientific Cat#PHG0266

Puromycin Sigma-Aldrich Cat#P8833

Deoxyribonuclease I Sigma-Aldrich Cat#D4527

Critical Commercial Assays

Mouse VEGF Quantikine ELISA Kit R&D Systems Cat#MMV00

Proteome Profiler Mouse XL Cytokine Array R&D Systems Cat#ARY028

HypoxyprobeTM Plus Kit Hypoxyprobe, Inc Cat# HP2-100Kit

Seahorse XF Cell Mito Stress Test Kit Agilent Cat#103015-100

DCTM Protein Assay Kit I Bio-Rad Cat#5000111

Clarity Western ECL Substrate Bio-Rad Cat#1705061

Lactate-GloTM assay Promega Cat#J5021

Click-iT� Cell Reaction Buffer Kit Thermo Fisher Scientific Cat#C10269

Experimental Models: Organisms/Strains

Mouse: mct1fl/fl Cyagen Bioscience N/A

Mouse: Rosa26mTmG Muzumdar et al., 2007 https://www.jax.org/strain/007676

Mouse: LysMCre Clausen BE et al.,1999 N/A

Mouse: LysMCre-vegffl/fl Stockmann et al.,2008 N/A

Mouse: pfkfb3Loxp/Loxp This paper N/A

Mouse: pdgfb-CreERT2 Claxton et al., 2008 N/A

Metabolites

See Table S1 for LC-MS/MS mediated

determination of metabolites.

This paper N/A

Deposited Data

RNA-sequencing data This paper GSE148584

Oligonucleotides

See Table S2 for oligonucleotide sequences

used for real-time quantitative PCR.

This paper N/A

Software and Algorithms

FlowJo Software (version 10.4.2) Three Star https://www.flowjo.com/

ImageJ (for image analysis) NIH https://imagej.nih.gov/ij/

Prism 8 (version 8.0.0) GraphPad Software https://www.graphpad.com/

scientific-software/prism/

Adobe Illustrator CS6 (version 16.0.4) Adobe https://www.adobe.com/
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RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to andwill be fulfilled by the LeadContact, Katrien De

Bock (katrien-debock@ethz.ch).

Materials Availability
This study did not generate new unique reagents.
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Data and Code Availability
Themouse RNA-seq data reported in this study are available at the Gene Expression Omnibus (GEO) repository under the accession

number (GSE148584). All other data are available from the Lead Contact on request.

EXPERIMENTAL MODELS

Mice
Pfkfb3LoxP/LoxP mice were generated using homologous recombination in embryonic stem (ES) cells. The targeting vector was built in

the pComTrue plasmid (Reich et al., 2011) (kindly provided by M. Baes, KU Leuven) with Frt sites flanking a neomycine resistance

(neor) cassette, and containing from 50 to 30: a 1.78-kb NotI fragment comprising exon 2, a floxed 4.4-kb AscI fragment comprising

exon 3, 4, 5 and 6 as 50 homology arm, a 1.2-kb Frt flanked neor cassette, and a 2.38-kb BamHI fragment comprising exon 7 as 30

homology arm. The construct was linearized with PmeI and electroporated into G4 ES cells of 129SvEv/C57BL6 origin (kind gift from

A. Nagy, Toronto) as described (Aragonés et al., 2008). After positive-negative drug selection with 200 mg/mLG418 (Invitrogen), resis-

tant clones were analyzed for correct homologous recombination by appropriate Southern blotting and PCR. Correctly targeted ES

cells were then transiently electroporated with the Flp recombinase expressing plasmid pCAGGS-Flpe (Pieters et al., 2017) to excise

the neor cassette, and used formorula aggregation to generate chimeric and germline pfkfb3+/LoxP offspring. Genotyping on genomic

DNA from Flp-recombined ES cells and frommouse tails was done by PCR, using the forward primer 50-cac ctg agc aac att gta act-30

and reverse primer 50-cag gcc cag acc aag gac agc�30, revealing a 185-bp and 300-bp amplicon for the wild type and floxed pfkfb3

allele, respectively.

To obtain inducible EC-specific pfkfb3-knockout (pfkfb3DEC) mice, pfkfb3LoxP/LoxP mice were intercrossed with pdgfb-CreERT2

mice, an EC-selective inducible Cre-driver line (Claxton et al., 2008). To evaluate recombination specificity, pdgfb-CreERT2 mice

were intercrossedwith Rosa26mTmGmice (Muzumdar et al., 2007). Recombination was induced in 8-14weeks oldmice by daily intra-

peritoneal administration of 1mg tamoxifen (T5648, Sigma-Aldrich) dissolved in 1:10 ethanol: corn oil solution for 5 consecutive days.

A wash out period of at least 7 days was allowed before starting the experiments. Tamoxifen-treated Cre-negative littermates were

used as control for all experiments.

To obtain myeloid cell specific deletion ofmct1 (Slc16a1), mice carrying floxed alleles formct1 (exon 5,mct1 LoxP/LoxP) were gener-

ated by Cyagen, Santa Clara CA, USA in collaboration with L. Pellerin, and intercrossed with LysM-Cre mice (Clausen et al., 1999).

LysM-Cre x Vegf LoxP/LoxP mice (Gerber et al., 1999; Stockmann et al., 2008) were obtained in collaboration with C. Stockmann.

Mice were randomly allocated to different treatment groups, and the investigator was blinded to the group allocation during

the experiment as well as during the analysis. Mice were housed in individually ventilated cages at standard housing conditions

(22�C, 12 h light/dark cycle, dark phase starting at 7pm), with ad libitum access to chow diet (18% proteins, 4.5% fibers, 4.5%

fat, 6.3% ashes, Provimi Kliba SA) and water. Health status of all mouse lines was regularly monitored according to FELASA

guidelines. All animal experiments were approved by the local animal ethics committee (Kantonales Veterin€arsamt Z€urich,

licenses ZH123/17, and ZH014/16), and performed according to local guidelines (TschV, Zurich) and the Swiss animal protection

law (TschG).

Cell Culture
Isolated primary mouse skeletal muscle endothelial cells (mECs) were cultured in Endothelial Cell Growth Medium-2 (EGM2) (CC-

3162, Lonza, Basel, Switzerland) or in a 1:1 ratio of M199 ((11150059, ThermoFisher Scientific) supplemented with 20% fetal bovine

serum (FBS) (10270-106, ThermoFisher Scientific), 2mM L-glutamine (25030081, ThermoFisher Scientific) and 30 mg/L endothelial

cell growth factor supplements (EGCS) (E2759, Sigma-Aldrich)) and Endopan 3 (P04-0010K, PAN BIOTECH) (denoted as M/E).

Freshly isolated MPCs were cultured in a 1:1 ratio of DMEM (ThermoFisher Scientific, 12320032) and Ham’s F-10 (1X) nutrient

mix (22390058, ThermoFisher Scientific) supplemented with 10% horse serum (HS, 16050-122, ThermoFisher Scientific), 20%

FBS and 10 ng/mL basic-FGF (PHG0266, ThermoFisher Scientific) on dishes coated with Matrigel Basement Membrane Matrix

(#356237, Corning, 1:25 dilution). To inducemyogenic differentiation MPCswere seeded at 70,000 cells/well in 12-well plates coated

withMatrigel and cultured in differentiationmedium (low-glucose DMEM (22320022, ThermoFisher Scientific) supplementedwith 2%

HS) for 2 days. Bone-marrow precursor cells were differentiated into BMDMs in RPMI-1640 medium (31870025, ThermoFisher Sci-

entific) supplemented with 20 ng/mL recombinant M-CSF (315-02, PeproTech), 2mM L-glutamine (25030081, ThermoFisher Scien-

tific), 10mMHEPES (15630056, ThermoFisher Scientific), 50 mm 2-Mercaptoethanol (31350010, ThermoFisher Scientific), 10% FBS.

Medium was changed on day 3 and day 6. On day 7, adherent BMDMs were detached by washing the plates with cold DPBS

(14190250, ThermoFisher Scientific) with 2mM EDTA (E8008, Sigma) and used in experiments. All media was supplemented with

100 units/mL penicillin and 100 mg/mL streptomycin (15140122, ThermoFisher Scientific). Cells were routinely cultured at 37�C in

21% O2 and 5% CO2. Cells were regularly tested for the presence of mycoplasma.

METHOD DETAILS

Isolation of Endothelial Cells
Primary ECs from skeletal muscle (mECs) were isolated from adult pfkfb3DEC and pfkfb3WT littermates. Mice were euthanized, all

hind-limb muscles were immediately dissected, and muscles were minced in a Petri dish on ice using a surgical blade. Next, the
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minced muscle tissue was enzymatically digested in digestion buffer containing 2 mg/mL Dispase II (D4693, Sigma-Aldrich,

Steinheim, Germany), 2 mg/mL Collagenase IV (17104019, ThermoFisher Scientific, Massachusetts, USA) and 2 mM CaCl2 in

PBS at 37�C for 40 min, with gentle shaking every 10 min. The reaction was stopped by adding an equal volume of 20% FBS in

HBSS and the suspension was passed through a series of 100-mm cell strainers (#352360, Corning, New York, USA) and 70-mm

cell strainers (#352350, Corning, New York, USA) to remove tissue debris. After a series of centrifugation and washing steps, the het-

erogeneous cell population was purified by FACS or by puromycin selection. For FACS, ECs were sorted based on positive CD31

staining and the absence of CD45 staining. For puromycin selection, the pellet was resuspended in EC culture medium and seeded

in collagen type I (125-50, Sigma)-coated plates. Due to the higher expression of P-glycoprotein in ECs compared to other skeletal

muscle cells, mECs were selected by adding 4 mg/mL puromycin (P8833, Sigma-Aldrich, St. Louis, USA) to the medium overnight.

After 7 days in culture, the purity of mECswas determined by CD31 fluorescence staining and only cultures containing at least 85%of

the cells positive for CD31 were used for further experiments.

Isolation Primary Myogenic Progenitor Cells (MPCs)
MPCs were extracted as described before (D’Hulst et al., 2020). In brief, muscle tissue was digested in HBSS supplemented with

1.5% bovine serum albumin (BSA) (9048-46-8, Pan Reac AppliChem) and 2 mg/mL collagenase type II (ThermoFisher Scientific,

17101015) for 1 h at 37�C. After centrifugation, the cell pellet was then filtered using 100 and 40 mmcell strainers and a heterogeneous

cell population was purified by FACS. For FACS, MPCs were sorted based on positive alpha 7-integrin staining and the absence of

Sca1, CD31, and CD45 staining.

Isolation of Bone Marrow-Derived Macrophages (BMDMs)
Bone-marrow-derived macrophages (BMDMs) were obtained from bone-marrow precursor cells by flushing the femur and tibiae of

sex-matched 6 to 12-week old mice (Freigang et al., 2013).

Conditioned Medium (CM)
mEC-derived CM: mECs isolated from adult pfkfb3DEC and pfkfb3WT were cultured in 12-well plate and cultured until they reached

confluency (7 days). Medium was then refreshed with M/E medium and mECs were cultured in this media for 48 h. After 48 h the

culture medium was collected and filtered through a 0.2 mm filter (431219, brunschwig) to obtain conditioned medium (mECswt-

CM and mECsDpfkfb3-CM). Fractionation of the mECs-CM was achieved using Amicon Ultra centrifugal filters (3KUltracel, Millipore)

following centrifugation at 4,000 rpm for 1 h. The > 3kDa fraction was resuspended in unsupplemented M/E to equal the pre-filtration

volume of the CM. Macrophage-derived CM: BMDMs were seeded at 400,000 cells/well. When the cells were adherent (approxi-

mately 2 h later) medium was replaced with mEC-derived CM (see paragraph above) mixed in a 1:1 ratio with RPMI-1640 medium.

In some experiments, mEC-derived CM was supplemented with 5mM Sodium L-lactate (L7022, Sigma) and/or 250nM AZD3965

(1448671-31-5, Cayman Chemical) or DMSO as a control. After 48 h, the polarized BMDMs were briefly washed, and MPC growth

medium or differentiation medium was added for 24 h to generate the BMDM-derived CM. Thereafter, the culture medium (mECswt-

CM/BMDMs-CM, mECsDpfkfb3-CM/BMDMs-CM, mECswt+lac-CM/BMDMs-CM, mECsDpfkfb3+lac-CM/BMDMs-CM,

mECswt+AZD-CM/BMDMs-CM, mECsDpfkfb3+AZD-CM /BMDMs-CM) was collected as described above.

MPCs Proliferation
MPCswere seeded at 100,000 cells/well per well in a 12-well plate inMPC growthmedia. As ameasure of proliferation, incorporation

of 5-ethynyl-2’-deoxyuridine (EdU) was assessed using the Click-iT Cell Reaction Buffer Kit (C10269, ThermoFisher Scientific, Mas-

sachusetts, USA) according to themanufacturer’s instructions. Briefly, MPCswere incubated under standard growth conditions with

10 mMEdU for 2 h. Thereafter, cells were fixed with 4% PFA for 10 min at room temperature and washed twice with 3% BSA in PBS.

Cells were permeabilized for 20min at room temperature in 0.5% Triton X-100 with 3%BSA in PBS, then washed twice with 3%BSA

in PBS and incubated with the Click-iT reaction cocktail for 45 min in the dark at room temperature. Thereafter, cells were briefly

washed and counterstained with Hoechst (#62249, ThermoFisher Scientific). MPCs were imaged using an AxioObserver.Z1 fluores-

cence microscope (Carl Zeiss, Oberkochen, Germany). The percentage of EdU-positive MPCs was calculated in at least 15

random fields.

Fusion Determination
MPCs were seeded at 70,000 cells/well per well in a 12-well plate and cultured in differentiation media for 48 h (see cell culture sec-

tion). Myotubes were fixed with 2% PFA for 5 min at room temperature and washed twice with PBS. Cells were blocked for 30 min at

room temperature in blocking buffer (PBS supplemented with 0.5% Triton X-100 and 2% BSA) and subsequently incubated with an-

tibodies against DESMIN (5332, Cell Signaling, 1:100) diluted in blocking buffer for 1 h at room temperature. After washing, cells were

incubated with secondary antibody (goat anti-rabbit conjugated to Alexa Fluor 568, A11011, ThermoFisher Scientific, 1:400) diluted

in blocking buffer for 1 h. Thereafter, cells were counterstainedwith Hoechst. The number of nuclei permyotubewas then determined

by counting the number of Hoechst+ nuclei per DESMIN-positive myotube (only DEMSIN+myotubes with 3 or more nuclei cells were

considered).
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Hindlimb Ischemia Model
Hind-limb ischemia experiments were performed as described before with minor modifications (Limbourg et al., 2009; Zhang et al.,

2017). Briefly, mice were anesthetized with isoflurane, the hind limb was shaved, and, following a small incision in the skin, both the

proximal end of the femoral artery and the distal portion of the saphenous artery were ligated. The artery and all side-branches were

dissected free; after this, the femoral artery and attached side-branches were excised. Immediately after surgery, perfusion was

measured by Laser Doppler Imaging of plantar regions of interest (Moor Instruments Ltd, Axminster, Devon, England) and calculated

as ratio of left (ligated) versus right (unligated) values. For lactate rescue experiments in vivo, a 100 mL plug of growth factor-reduced

Matrigel (BD Biosciences) supplemented with 150 mM rotenone (Sigma) containing 150 mM sodium L-lactate (Sigma) (Lactate) or an

equal volume of PBS (control) was directly implanted adjacent to the lesion during the ligation surgery, as described (Porporato et al.,

2012). For macrophage transfer experiments, BMDMs were freshly isolated (see isolation and culture of BMDM section) and stim-

ulated with IL-4 (20ng/mL; PeproTech) or vehicle (0.1% BSA) for 2 days. Then, 5 3 105 cells diluted in 50mL DPBS were injected

into recipient calf muscles 3 days after HLI. For EdU labeling, mice were i.p. injected with 1.25mg EdU (LifeTechnologies) 20 h before

tissue collection.

For myoblast transfer experiments, VEGF or LacZ/control overexpressing myoblasts (Ozawa et al., 2004) were dissociated in

trypsin and resuspended at a concentration of 108 cells/mL in sterile PBS with 0.5% BSA, and 106 myoblasts were injected into

Tibialis anterior (TA) muscles of pfkfb3WT and pfkfb3DEC mice, respectively.

Immunohistochemistry and Histology
Calf muscle samples were harvested and embedded in Tissue-Tek and frozen in liquid N2-cooled isopentane. Skeletal muscle cry-

osections (10 mm) were fixed in ice-cold acetone for 5 min, washed twice with PBS and subsequently incubated for 1 h in blocking

buffer (PBSwith 1%BSA) at room temperature. Thereafter, samples were incubated overnight at 4�Cwith primary antibodies diluted

in blocking buffer with or without addition of 0.1%Triton X-100. The following primary antibodies were used: anti-CD31 (AF3628, R&D

Systems, 1:250), anti-F4/80 (ab6640, Abcam, 1:200), anti-laminin (PA1-16730, Thermo Fisher, 1:250), anti-MRC1/CD206 (ab64693,

Abcam, 1:50), cleaved caspase-3 (#9661, Cell Signaling, 1:100), anti-Ki67 (#9129S, Cell Signaling, 1:200). Slides were subsequently

washed in PBS and incubated for 1 h in blocking buffer with the appropriate secondary antibodies at 1:250 dilution. Nuclei were

stained with Hoechst. Muscle hypoxia was detected with HypoxyprobeTM Plus Kit (Hypoxyprobe, Inc, HP2-100Kit) according to

the manufacturer’s protocol. Briefly, mice received an intraperitoneal injection of 100 mg/kg pimonidazole HCl (20 mg/mL in 0.9%

NaCl). One h after injection, muscles were collected and frozen as described above. Hypoxyprobe was detected by incubating

the samples with anti-pimonidazole FITC-conjugated mouse IgG1 monoclonal antibody (FITC-Mab1) and rabbit anti-FITC conju-

gated with horseradish peroxidase. H&E staining was used to quantify the necrotic and regenerating muscle fibers. Tissue necrosis

was identified by morphological alterations of myofibers or loss of sarcolemmal integrity and by the presence of cellular debris and

many mononuclear cell infiltrates in the surrounding interstitial space. Regenerating areas were identified by the dominant presence

of fibers with centrally located nuclei and/or some remaining mononuclear cell infiltrates. For immunostaining of whole-mounted

muscle bundles, gastrocnemius muscle was fixed in 2% PFA for 1 h at 4�C, and washed with PBST (0.2% Triton X-100 in PBS).

A small bundle of muscle was carefully dissected by fine forceps from the center portion of the calf muscle. The muscle tissues

were then blocked with 1% BSA in PBST for 1 h at room temperature. The tissues were incubated rocking at 4�C for 48 h with

anti-CD31 (1:100) antibody. Subsequently, tissues were washed overnight in PBS at 4�C, followed by incubation with secondary an-

tibodies (1:250) overnight at 4�C. Imageswere capturedwith a Zeiss Axio observer Z.1 or anOlympus confocal microscope (FV1200).

Fiber cross-sectional area was automatically determined on laminin stained sections with the Muscle J plugin for ImageJ software

(Mayeuf-Louchart et al., 2018). In themyoblast injection experiment, vascular density (%CD31+ area) was quantified within the areas

of myoblast implantation with ImageJ software after threshold processing on 20x images acquired with a Nikon Eclipse Ti2 micro-

scope (Nikon, Egg/Z€urich, Switzerland).

RNA Extraction and Quantitative RT-PCR
RNA of mECs and BMDMs was extracted using a RNeasy Plus Micro Kit according to the manufacturer’s instructions (QIAGEN,

74034). RNA purity and concentration were assed via a spectrophotometer (Tecan, Spark). RNA was reverse-transcribed to

cDNA by High Capacity cDNA Reverse Transcription Kit (Thermo Fisher, 43-688-13). A SYBR Green-based master mix

(ThermoFisher Scientific, A25778) was used for real-time qPCR analysis with primers listed in Table S2. To compensate for variations

in RNA input and efficiency of reverse-transcription, 18S was used as a housekeeping gene. The delta-delta CT method was used to

normalize the data.

RNA Sequencing and Differential Gene Expression Analysis
RNA sequencing was performed by Funcional Genomics Center Zurich (FGCZ). The quality and quantity of isolated RNA and final

libraries were determined using Qubit� (1.0) Fluorometer and the Tapestation (Agilent, Waldbronn, Germany). Sequencing libraries

were prepared following SMARTer� Universal Low Input RNA Kit for Sequencing. Briefly, total RNA samples (0.25–10 ng) were

reverse-transcribed using random priming into double-stranded cDNA in the presence of a template switch oligo (TSO). Ribosomal

cDNAwas cleaved by ZapR in the presence of themammalian-specific R-Probes. Remaining fragments were enrichedwith a second

round of PCR amplification using primers designed tomatch Illumina adapters. The product is a smear with an average fragment size

of approximately 360 bp. The libraries were normalized to 10nM in Tris-Cl 10 mM, pH8.5 with 0.1% Tween 20. For mapping and
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trimming of FASTQ format sequences was performed using TrimGalore, and sequence quality control was assessed using FastQC.

Alignment to the Ensembl reference genome GRCm38 was performed using the Hisat2 aligner. Gene expression values

were computed with the function featureCounts from the R package Rsubread. Aminimum expression of each gene (mean of counts

> 1) was applied as a cut off before analysis. Differential gene expression was computed usingNegative Binomial model implemented

in the Bioconductor package DESeq. Significantly differentially expressed genes was defined as a pvalue < 0.01 with a false discov-

ery ratio (FDR) < 0.1. FDR values were calculated using the Benjamini–Hochberg method. Pathway analysis was performed using the

clusterProfiler R package.

Immunoblot Analysis
Cells were collected and lysed with [50 mM Tris–HCl pH 7.0, 270 mM sucrose, 5 mM EGTA, 1 mM EDTA, 1 mM sodium orthovana-

date, 50mMglycerophosphate, 5mMsodiumpyrophosphate, 50mMsodium fluoride, 1mMDTT, 0.1%Triton X-100 and a complete

protease inhibitor tablet (Roche Applied Science)]. Lysates were centrifuged at 10000 g for 10min at 4�C. Supernatant was collected,

and protein concentration was measured using the DC protein assay kit (5000116, Bio-rad). 5-10 mg of total protein was loaded in a

10-well pre-casted gradient gel (456-8086, Bio-Rad). After electrophoresis, a picture of the gel was taken under UV-light to determine

protein loading using stain-free technology. Proteins were transferred onto a PVDF membrane (Bio-rad, 170-4156) with a semi-

dry system and subsequently blocked for 1 h at room temperature with 5% milk in 0.1% TBS-Tween. Membranes were incubated

overnight at 4�C with primary antibodies listed in Key Resources Table. The appropriate HRP-linked secondary antibodies (see

Key Resources Table) were used for chemiluminescent detection of proteins. Membranes were scanned with a Chemidoc imaging

system (Bio-rad) and quantified using Image Lab 6 software (Bio-rad).

Enzyme-Linked Immunosorbent Assay (ELISA)
Skeletal muscle tissue samples (10-15 mg) were homogenized with a tissue homogenizer (Omni THq) in ice-cold lysis buffer

(1:15 w/v) as described above. Homogenates were centrifuged at 10000 g for 10 min at 4�C, and VEGF was measured in the super-

natants using the Mouse VEGF Quantikine ELISA Kit (R&D System, MMV00) according to the manufacturer’s protocol. The same kit

was used to measure VEGF levels in BMDMs-derived CM.

In Vitro Chemokine Measurement
Chemokine expression levels in the culture supernatants weremeasured using the Proteome Profiler Mouse XL Cytokine Array (R&D,

ARY028). 400 mL of culture supernatants were applied to each membrane. The results were further normalized to the protein

concentrations of the endothelial cell lysates. Staining and exposure were performed according to the manufacturer’s instructions.

Membranes were scanned with a Chemidoc imaging system (Bio-rad) and quantified using Image Lab 6 software (Bio-rad).

Metabolism Assays
Lactate levels: Lactate concentration in the medium, tissue or blood was determined using the Lactate-Glo Assay (Promega) or L-

Lactate Assay kit (Abcam) according to the manufacturer’s protocol. Glycolytic flux: Glycolytic flux measurements were performed

as previously described (Veys et al., 2019). Briefly, cells were incubated for 2 h in culture medium containing D-[5-3H(N)]-glucose

(NET53100, PerkinElmer, Zaventem, Belgium) at a final concentration of 0.4 mCi/mL medium. The supernatant was then transferred

into glass vials sealed with rubber stoppers, and 3H2Owas captured in hanging wells using a H2O-soakedWhatman paper for 48 h at

37�C to reach saturation. Radioactivity in 3H-labeled paper was determined by liquid scintillation counting (LSC) and the glycolytic

flux was measured by the rate of 3H2O production. 14C-Lactate uptake: Cells were incubated for 6 h in RPMI containing 1 mCi/mL

L-[14C(U)] - Lactic Acid, Sodium Salt (NEC599050UC, PerkinElmer, Zaventem, Belgium) and 5 mM sodium lactate. Cells were

washed and lysed with 1 N NaOH at room temperature for 30 min and the radioactivity in the homogenate was determined by

LSC. 14C-Lactate oxidation: Cells were incubated for 6 h in RPMI containing 1 mCi/mL L-[14C(U)] - Lactic Acid, Sodium Salt

(NEC599050UC, PerkinElmer, Zaventem, Belgium) and 5 mM sodium lactate. Thereafter, 2 M perchloric acid was added to each

well to stop cellular metabolism, andwells were immediately covered with a 1 x hyamine hydroxide-saturatedWhatman paper. Over-

night absorption of 14CO2 released during the oxidation of lactate into the paper was performed at room temperature, and radioac-

tivity in the paper was determined by LSC. Extracellular acidification rate (ECAR) and oxygen consumption (OCR) were determined

using a Seahorse XF-96 Extracellular Flux Analyzer (Seahorse Bioscience). BMDMs were seeded at 100,000 cells/well in 96-well

plates and treated with mEC-derived CM supplemented with lactate or AZD3965 overnight. The assay medium was unbuffered

RPMI-1640 supplemented with 10 mM glucose, 1 mM pyruvate, and 2 mM L-glutamine, pH 7.4. The measurements were performed

at 4.5-min intervals (30 s mixing, 1 min recovery, 3 min measuring) for 1.5 h. Baseline ECAR and OCR and their response to the indi-

cated compounds were determined. Inhibitors were used at the following concentrations: 2.5 mMoligomycin, 1.5 mMFCCP, 500 nM

rotenone, and 500 nM antimycin A (all from Seahorse Bioscience). Pathway analysis was performed using the clusterProfiler R

package.

Mass Spectrometry Analysis
Metabolite abundances were analyzed by liquid chromatography–mass spectrometry as previously described (Elia et al., 2019). In

brief, metabolites were resuspended in 60% acetonitrile. Metabolites were measured using a 1290 Infinity II HPLC (Agilent) coupled

to a 6470 triple quadrupole mass spectrometer (Agilent). Samples were injected onto an iHILIC-Fusion(P) column with the
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above-mentioned solvents. The solvent, composed of acetonitrile and ammonium acetate (pH 9.3, 10mM), was used at a flow rate of

0.100 mL min�1. Data analysis was performed with MSD Chemstation Data Analysis (v.E.02.0.2.1431) or Agilent MassHunter

(v.B.0802 Build 8.2.8260.0) followed by an in-house-developed MATLAB script. Data is available in Table S1.

Flow Cytometry
Cells were incubated in PBS with the fixable viability dye eFluor� 780 (65-0865-14, eBioscience) before antibody staining. Prior to

surface staining with antibodies, Fc gamma receptors were blocked by incubating cells with anti-CD16/CD32 antibodies (2.4G2,

homemade). Thereafter, cells were incubated with the appropriate primary antibodies (CD45, CD11b, Ly-6G, Ly-6C, F4/80, MERTK,

CCR2, CD64, MHCII, CD11c, and CX3CR1) diluted in FACS buffer (DPBS + 2% FCS) for 15 min. For CD206 and Relma intracellular

stainings, cells were fixed with 4% formalin, permeabilized in permeabilization buffer (DPBS + 2% FCS + 0.5% saponin), and sub-

sequently incubated with antibodies for 30 min on ice. The anti-Relma antibody was detected with an anti-rabbit secondary antibody

labeled with FITC (Southern Biotech). For EdU proliferation experiments, cells from EdU-injected mice were first stained with anti-

bodies for cell surface markers and subsequently labeled with the click-iT plus EdU Alexa Fluor� 488 Flow Cytometry Assay Kit

(Life Technologies) according to the manufacturer’s instructions. Cells were analyzed with a LSRFortessa (BD Bioscience) flow cy-

tometer or sorted using a FACS Aria III (BD Bioscience) sorter. Data were analyzed using FlowJo 10 software (Tree Star). A complete

list of all antibodies and staining reagents used can be found in Key Resources Table. The gating strategies used for flow cytometry

plots are shown in Figure S2.

QUANTIFICATION AND STATISTICAL ANALYSIS

The images presented in the manuscript are representative of the data (quantification of image is approximately the group average)

and the image/staining quality. All data represent mean ± SEM. GraphPhad Prism software (version 8.0.0) was used for statistical

analyses. Investigators were always blinded to group allocation. When comparing two group means, Student’s t test was used in

an unpaired two-tailed fashion. For more than two groups, one-way ANOVA with Tukey’s multiple comparisons test was used

and for experimental set-ups with a second variable, two-way ANOVA with Tukey’s multiple comparisons test was used. The statis-

tical method used for each experiment is indicated in each figure legend. Asterisks in figure legends denote statistical significance.

For Laser Doppler imaging experiments, mice were compared using a two-way repeated-measures ANOVA with Sidak’s multiple

comparisons test. No experiment-wide multiple test correction was applied. p > 0.05 is considered non-significant (ns). p < 0.05

is considered significant (*).
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