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Abstract

The ecological interaction between bacteria and sinking particles, such as bacterial degradation of
marine snow particles, is regulated by their encounters. Current encounter models focus on the
diffusive regime, valid for particles larger than the bacterial run length, yet the majority of marine
snow particles are small, and the encounter process is then ballistic. Here, we analytically and
numerically quantify the encounter rate between sinking particles and non-motile or motile micro-
organisms in the ballistic regime, explicitly accounting for the hydrodynamic shear created by the
particle and its coupling with micro-organism shape. We complement results with selected
experiments on non-motile diatoms. The shape-shear coupling has a considerable effect on the
encounter rate and encounter location through the mechanisms of hydrodynamic focusing and
screening, whereby elongated micro-organisms preferentially orient normally to the particle surface
downstream of the particle (focusing) and tangentially to the surface upstream of the particle
(screening). Non-motile elongated micro-organisms are screened from sinking particles because
shear aligns them tangentially to the particle surface, which reduces the encounter rate by a factor
proportional to the square of the micro-organism aspect ratio. For motile elongated micro-organisms,
hydrodynamic focusing increases the encounter rate when particle sinking speed is similar to micro-
organism swimming speed, whereas for very quickly sinking particles hydrodynamic screening can
reduce the encounter rate below that of non-motile micro-organisms. For natural ocean conditions,
we connect the ballistic and diffusive limits and compute the encounter rate as a function of shape,
motility and particle characteristics. Our results indicate that shear should be taken into account to
predict the interactions between bacteria and sinking particles responsible for the large carbon flux in
the ocean’s biological pump.

1. Introduction

Encounters involving small particles suspended in a fluid underpin many industrial, physical and biological
processes. In papermaking, too high a collision rate between cellulose fibers leads to excessive fiber flocculation
and poor paper quality [1]. In the atmosphere, precipitation formation relies on encounters between water
droplets in clouds under the combined action of gravity and turbulence [2]. In the ocean, encounter rates
between microscopic phytoplankton following a phytoplankton bloom determine the formation of marine
snow responsible for the biological pump, the vertical flux of carbon from the upper ocean to its depths [3].
Living organisms extend the complexity of the encounter processes occurring in non-motile systems by
additional mechanisms. Micro-organisms and plankton dwelling in the oceans can navigate through water in
search of food and motility greatly enhances the encounter rates of these microscopic organisms with resource
patches [4]. Compared to non-motile micro-organisms, whose encounter rate is proportional to the low
diffusivity associated with Brownian motion, motile micro-organisms have a much higher (often, 100- to 1000-
fold) encounter rate, since their motility effectively enhances diffusivity [4]. Of particular importance for the
biogeochemical cycles of carbon in the ocean are the encounters between bacteria and sinking particles of
organic matter. Once attached to a particle, bacteria can grow on it and solubilize it, thus reducing the flux of
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carbon to the deep ocean [5, 6], a fundamental process in climate-relevant carbon dynamics. Accurate models of
the encounter rate between bacteria and particles valid across a wide range of particle sizes are thus important to
estimate the role of bacteria in the carbon pump. To date, however, encounter rate formulations have focused on
the diffusive regime suitable for large particles. Here, we study the encounter between micro-organisms and
sinking particles in the ballistic limit, relevant for the most abundant small particles, with focus on the impact of
fluid flow and the associated shear generated by the particle on the encounter rates.

Theoretical estimates of the encounter rates between micro-organisms and sinking particles have thus far
primarily built on modeling micro-organisms as spherical colloids and motility as a diffusive process [7, 8].
These simplifying assumptions map the microbial encounter with particles onto the classical problem of heat
and mass transfer [8, 9]. By construction, this approach assumes particles are larger than the runlength ofa
bacterium. Since the latter is of the order of tens to hundred of microns [8, 10], the diffusive approximation is
limited to particles larger than several hundred microns. Yet, due to the power-law nature of the marine particle
size spectrum, the most abundant particles in the ocean have sizes below hundred microns [11]. In this
increasingly ballistic regime, the coupling between the flow generated by the particle and the swimming of
bacteria may dominate the bacterial orientational dynamics, in contrast to the diffusive regime [12]. There is
substantial experimental and theoretical evidence that fluid velocity gradients (shear) can dramatically modify
the swimming trajectories of micro-organisms [13—15]. A primary mechanism is shear-induced reorientation,
whereby the torque associated with fluid velocity gradients reorients micro-organisms and thus impacts their
swimming direction and where they end up in the flow. For example, a simple parabolic flow can lead to shear-
trapping and bacterial accumulation near microchannel walls [ 14]. Shear-induced reorientation is a general
phenomenon, applicable to any elongated bacteria that swim in flow, yet its impacts on the fundamental
problem of the encounter rate between micro-organisms and sinking aggregates in the ballistic range has to date
not been considered.

Here, we combine analytical and numerical calculations with experiments to study encounters between
non-motile and motile micro-organisms and sinking particles in the ballistic regime, with focus on how the flow
created by the particle affects bacterial trajectories and ultimately the encounter rates. For the classical Stokes
flow around a sphere, we show analytically that the orientational dynamics of elongated bacteria—unlike
spherical particles—break the fore-aft symmetry of the flow streamlines, with major consequences on encounter
rates and attachment location. Non-motile elongated bacteria orient tangentially to the particle surface as they
pass by the particle, which reduces their encounter rate by a factor proportional to the square of the bacterial
aspect ratio. For motile elongated bacteria, the encounter rate is very sensitive to the particle sinking speed
relative to the bacterial swimming speed. When both speeds are comparable, shear increases the encounter rate
about twofold and leads to preferential attachment to the leeward side of the particle. For rapidly sinking
particles, shear screens motile bacteria from the sinking particle and surprisingly, the encounter rate drops far
below the limit corresponding to non-motile bacteria.

This work is organized as follows: we introduce the model of the encounter process and define the relevant
observables in section 2. To quantify the impact of shear on bacterial orientation, we classify the asymptotic
configurations that ellipsoids assume in general flows and then apply the results to the Stokes flow around a
sphere in section 3. The encounter of non-motile and motile micro-organisms with sinking particles is studied
in sections 4 and 5. We discuss the biophysical consequences of our mechanistic description of the encounter
process in section 6 and draw conclusions in section 7.

2. Model

We model a marine snow particle as a sphere sinking in a quiescent fluid and bacteria as elongated and self-
propelled ellipsoids (section 2.1). The encounter process is quantified through encounter rate, encounter
efficiency and distribution of interception locations (section 2.2).

2.1. Equations of motion

The most abundant marine snow particles in the ocean have sizes in the range up to several hundred microns
[11] and sinking speeds up to about a millimeter per second [16], which gives Reynolds number up to about 0.1.
In this viscosity-dominated regime, the gravitational and viscous forces on the particle balance, implying that a
spherical particle of radius R sinks at the constant terminal speed given by the Stokes law

_2pp/Pw L
9 v

U gR?, (eY)

where p, and p,, are the densities of the particle and water, respectively, v/is the kinematic viscosity of water and g
is the gravitational acceleration. In the reference frame fixed at particle and moving with it (figure 1(a)), the flow
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(a)

initial orientations:

« particle shadow

Figure 1. The ballistic model of the encounter between bacteria and sinking particles includes the impact of shear on bacterial
trajectories. (a) Spherical particle sinks under gravity with speed given by the Stokes law (1) and induces the Stokes flow (2) around it.
Bacteria are modeled as self-propelled ellipsoids of aspect ratio a with the center of mass x (¢) and the tail-to-head orientation p ()
obeying equation (3). (b) Representative trajectories for a bacterium starting at [x, y, z] = R[2, —2, —2] witharandom initial
orientation (U/U, = 3 and o = 10). Red (black) trajectories correspond to interceptions (misses). Interceptions are characterized by
the landing position on the particle as well as the initial orientation. All such initial orientations define the interception probability
starting at the given position (red points in the inset, equation (4)).

is described by the classic Stokes flow

3 3 ~
v = Ucos@(l—FR——ﬁ)f— Usinﬁ(l—i—ﬁ)e, )

2r3 2r 473 4r

where U is the sinking speed given by equation (1).

We model a bacterium as a small self-propelled elongated ellipsoid characterized by three parameters: length
Iy, aspect ratio o and swimming speed U,. The position and orientation of the bacterium at time ¢ are given by
x(t)and p (t), where the latter (unit) vector points from the bacterial tail to its head (figure 1(b)). The dynamics
of x and p are governed by

x = Upp + v, (3a)
p=U—ppH(YE + W)p. (3b)

Equation (3a) states that the total bacterial velocity x is a superposition of self-propulsion with speed Uy, in the
direction p and the flow v (2) around the particle. Equation (3b) is the classic Jeffery equation for the
orientational dynamics of ellipsoids in flow [17]. The tensors E and W are the symmetric and anti-symmetric
parts of the velocity gradient A;; = 0;v;. The bacterial aspect ratio enters the dynamics (3) through the shape
parameter v = (o> — 1)/(a? + 1); it vanishes for spheres, is positive for elongated organisms and negative for
oblate ones. By construction, our model accounts for the hydrodynamic impact of the particle on the bacterium,
but neglects the influence of the bacterium on the flow field.

2.2. Physical observables

Let p(x, p) be the probability of an encounter between the sinking particle and a bacterium starting at the initial
position x with head pointing in the direction p. For the interception criterion, we take the sinking particle to be
aperfect absorber and stop simulations if any part of the bacterium touches the particle. For the ballistic

model (3), pis either zero or one since the initial condition (x, p) determines a unique bacterial trajectory; when
equation (3) is supplemented with rotational diffusion, p can take a range of values between 0 and 1. Averaging
over random orientations yields the encounter probability P (x) for an initial position x

P(x) = [dpp(x, p). @

Intuitively, P (x) is the relative solid angle extended by initial bacterial orientations that lead to the

interception (red area in the inset of figure 1(b)). Let (z, p, ¢) be the cylindrical coordinate system with origin
fixed at the sinking particle. Due to rotational symmetry around the z-axis, we have P (x) = P(z, p). To define
the encounter rate and interception efficiency, suppose that the sinking particle enters a region of uniform
concentration n of randomly oriented bacteria. Let N (t, z) be the total number of encounters with bacteria that
attime tare located at a z-plane below the sinking particle (upstream of the particle, z < 0) and collide with the
particle at some later time. In a short interval (¢, ¢t + dt), the change in N due to the encounters with bacteria
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with initial positions in the thin sheet (z, z + Udt)is 2rnUdt fo ~ P(z, p) pdp. Therefore, for a constant

sinking speed, the encounter rate dN'/dt (z) is independent of time and is given by

dN o0
5@ = 2mnU fo P(z, p)pdp. )

For a z-plane far away from the sinking particle |z| >> R the fluid is practically undisturbed, making it
meaningful to define the z-independent encounter rate N = dN /dt

N = dN/dt(|z] — o). (6)
In simulations, we fix the starting plane at z = —6R, which amounts to making the approximation
N =~ dN/dt(z = —6R). To scale out the concentration 1, we often focus on N /n, the ‘encounter rate

kernel’ [8].

To further scale out factors intrinsic to the sinking particle, the radius R and velocity U, we follow the
notation used in filtration literature and define the dimensionless interception efficiency 7 as the ratio of volume
cleared and volume swept by the particle [9]

N/n 2 foc
= == P dp. 7
=0 T ' (p)pdp ()

Intuitively, = 1 means that the sinking particle collects bacteria from a volume of water equal to the volume of
the cylinder the particle sweeps. For small non-motile colloids, we expect < 1 because the colloids are
constrained to the flow streamlines, which limits the interception to a narrow region near the particle centerline,
the ‘stagnation line’ (figure 4(a) and section 4.1).

In addition to computing the encounter rate and encounter efficiency, we will quantify the location on the
sinking particle where the bacteria land. Let £(6, ¢) be the distribution of the interception locations, where f and
¢ are the colatitude and the azimuth coordinates on the particle, respectively. We normalize £(6, ¢) as the
probability density function over the unit sphere, j(; ! fo o &0, )dQ = 1,where dQ2 = sin #dfd¢. Rotational

symmetry implies that £(0, ¢) = £(6). Finally, the mean interception colatitude is
m 2 T
0) = 0£(0, 9)d2 =2 0¢(0)sin 6d. 8
0= [ [ 056, 040 =2 [ ps(ésin ®)

For example, 0° < (0) < 90° (northern hemisphere, downstream) implies preferential leeward attachment,
while 90° < (0) < 180° (southern hemisphere, upstream) indicates attachment to the front.

3. Ellipsoids in flow

Shear preferentially reorients rods and disks, such as elongated bacteria or flat diatoms, along certain directions.
Depending on the flow being strain- or rotation-dominated, ellipsoids eventually point in the direction of the
largest deformation rate or rotate in a certain plane (section 3.1). Applying this classification to the Stokes flow
induced by the sinking particle reveals that ellipsoids—unlike spheres—break the fore-aft symmetry of the flow
streamlines (section 3.2). This quasi-static picture will be essential to rationalize the subsequent simulations of
the encounter problem as it underpins the phenomena of hydrodynamic focusing and screening.

3.1. Ellipsoids in general flows

The asymptotic orientation of a non-spherical micro-organism held fixed in flow but free to reorient under the
action of the velocity gradient A follows from the long-time limit of the Jeffery equation (30). Previous studies
focused on special cases with A derived from, for example, simple shear or rotational flows; in the former case
the dynamics collapse onto one of the many degenerate limit cycles, the well-known Jeffery orbits [17, 18]. Fora
random A, neglecting marginal cases of A having eigenvalues with multiplicity greater than one, two scenarios
are possible: either a rod asymptotically points towards the direction of the largest effective deformation rate or it
rotates in a certain plane. The first possibility has been known [18] and corresponds to the rate of strain E out-
competing the rate of rotation W. The second scenario complements the study in [19] and generalizes the Jeffery
orbits to generic rotational flows and arises when W dominates over E. Detailed derivations are given in the
appendices A.1 and A.2.

The symmetric part of the gradient A, the rate of strain E, describes the rate at which the fluid stretches and
compresses [20]. The antisymmetric part W represents the fluid rate of rotation and is determined by the
vorticity w = V X vas Wj; = f%qjk wy. Given A, it is the weighted sum A” = «E + W that enters the Jeffery
equation (3b), where ~yis the shape parameter v = (a? — 1)/(«? + 1) determined by the organism aspect ratio
. In this notation, the Jeffery equation (9) reads
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Reorientation speed ”P ”
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Figure 2. In flow, spherical bacteria rotate around the vorticity vector (a), whereas elongated or oblate ones eventually point in the
direction of the largest effective deformation rate (b) or rotate in a certain plane (c). (a)—(c) Phase portraits of the Jeffery equation (9)
for the bacterial tail-head vector p(¢) reorienting under the velocity gradient A for different A and aspect ratios «. (a) Spherical
bacteria always rotate around the vorticity w (z-axis). (b), (c) Depending on the flow being strain- or rotation-dominated, elongated
bacteria (or flat disks) eventually point along the direction of the largest effective deformation rate (z-axis in (b)) or rotate in the plane
perpendicular to the real eigenvector of (A7) (equator in (c)). (d) Time series of the components of p (¢) for the case shown in (c). The
rotation in the x—y plane is non-uniform: the rod accelerates when approaching the straining direction but slows down when near the
axis of compression; the rotation frequency is given by the imaginary part of the complex eigenvalue of A”. Parameters:
A=1[0,—1/2,0;1/2,0,0;0,0,0],« = 1(a), A = [—3/4, 0, 0; 0, —1/4, 0; 0, 0, 1], @ = oo (b)and

A=1[1/2,1,0; —1/4,1/2,0; 0,0, —1], & = 00 (c).

p=Ud—ppHAp. ©)

Equation (9) is a dynamical system on the unit sphere of orientations (figure 2). We first discuss the case of
spherical micro-organisms (o = 1,y = 0) and then describe in detail the response of elongated bacteria (o« > 1,
7 > 0); the case of oblate micro-organisms (o < 1,7 < 0)is dual to that of elongated ones.

For spherical micro-organisms, the shape parameter vanishes (7 = 0) and equation (9) simplifies to

pzéwxp (10)

where w is the vorticity. Thus, spherical micro-organisms respond to the fluid rotation but are unaffected by the
fluid straining motion. Equation (10) can be solved exactly in this case [18]: for a given initial orientation p(0),
the solutions of equation (10) correspond to p (¢) rotating around the vorticity vector w and in the same sense as
w (figure 2(a)). The angle between p (¢) and w is fixed by the initial orientation and the rotation rate is || w|| /2.

Elongated or oblate micro-organisms respond to both, the fluid rate of strain and rate of rotation. In this
case, it appears impossible to find analytical solutions to equation (9); instead, standard dynamical system theory
helps to identify the long-time response. Since the fixed points of equation (9) are given by the real eigenvectors
of A7 [18], itis the eigendecomposition of A” that determines the asymptotic response. For arandom A?, two
cases are possible: either A" has three real eigenvalues or one real eigenvalue and two complex conjugate
eigenvalues. In the first case, the eigenvector corresponding to the largest positive eigenvalue is an attractive fixed
point of (9) (figure 2(b)). In the second case, when the real eigenvalue is positive, the corresponding
eigendirection is still attractive, but once this eigenvalue is negative, the eigendirection becomes unstable and the
dynamics collapse onto a limit cycle (figure 2(c)). We next discuss these asymptotic scenarios in more detail.

Let A\;and A;, wherei = 1,2, 3, be the eigenvalues and eigenvectors of A”. The incompressibility of the flow
requires that A} + XA, + A3 = 0. Whenall \;’s are real, the Jeffery equation (9) has three pairs of fixed points
corresponding to p = £ ;. Assumingthat \; < A\, < ), the fixed points are respectively: a repulsive node
(A1), asaddle (), and an attractive node (A3). As a consequence, a random initial orientation eventually
collapses onto the stable direction p = £ A; (figure 2(b)). The timescale 7y, associated with this reorientation is
estimated as inverse of the average of the eigenvalues of the linearized version of equation (9) near the fixed point
A; and is given by 7;31 = %/\3. Since the system orients along £ A3, the case when all A;’s are real corresponds to
the rate of strain E outcompeting the rate of rotation W.
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Figure 3. Non-spherical micro-organisms break the fore-aft symmetry of the Stokes flow around a sinking particle as revealed by their
asymptotic orientation when held fixed in the flow. The velocity gradient A (equation (13)) determines the local long-time orientation
of the bacterial tail-to-head vector p(t) (figure 2). (a) Spherical bacteria respond symmetrically upstream and downstream of the
particle: p rotates around the vorticity w o< ¢ and in the same sense as w (arrow); the broken line indicates that there are many
possible orbits (figure 2(a)). (b) Perfect rods exhibit three regions of different asymptotic orientations. In regions I and I1I the rate of
strain outcompetes the vorticity (figure 2(b)), whereas the vorticity dominates in the region II (figure 2(c)). Specifically, in the
upstream region I, bacteria eventually point along the azimuth p = +¢. The two subregions inside the region I differ only by how the
asymptotic orientation is attained (attractive node versus spiral). Inregion I, p eventually rotates in the plane perpendicular to (2)
(figure 2(c)). The color code shows the rotation rate normalized by ||w/|| /2; the sense of rotation is the same as w (solid line and
arrow). In the downstream region III, p orients along the director field (white lines) defined by A; in equation (15). (¢) For perfect
disks, the response is a reflection of the case of perfect rods. (d) Ratio between the advective and reorientation timescales, 7, and ;.
For 7, /7 > 1, we expect non-motile micro-organisms advected by the flow to follow the quasi-static reorientation effects described
in (b), (c); these reorientation effects are strongest near the sinking particle.

When A” has a pair of complex eigenvalues ), and A, and a real eigenvalue )3, the eigenvectors
corresponding to { \;, \f} are complex, implying that there are only two fixed points given by p = + X3. When
As > 0 (stretching), the fixed point A; is an attractive spiral and represents the asymptotic direction. The
appearance of complex eigenvalues signals the rising importance of the rate of rotation W,but when A\; > 0,
straining still dominates the response. However, when \; < 0 (compression), the fixed point A; becomes a
repulsive spiral and a stable limit cycle emerges. The timescale 7y, of spiraling onto or away from As is
TX: = %|/\3|. The limit cycle corresponds to a great circle; the circle lies in the plane with normal direction given

by A}, the eigenvector of the transpose matrix A7T with eigenvalue ;. Thus, when \; < 0, the asymptotic state
of equation (9) corresponds to p rotating in the plane normal to A} (figure 2(c)). The angular frequency of the
rotation is given by the imaginary part of the complex eigenvalue ) (figure 2(d)).

The above analysis applies to a velocity gradient A” under the assumption that all its eigenvalues are
different; a separate analysis is required in the degenerate case. We next study A derived from the Stokes flow
around a sinking sphere.

3.2. Ellipsoids in the Stokes flow
The above classification of the orientational response of a micro-organism is now specified to the velocity
gradient derived from the Stokes flow in equation (2). Physically, we describe a bacterium rotating freely under
shear but with the center of mass fixed at some position. Self-propulsion and advection are still not included and
this simplification makes analytical progress possible. The long-time orientation depends on bacterial position:
spherical bacteria respond identically upstream and downstream of the sinking particle (figure 3(a)), whereas
non-spherical ones break the streamline fore-aft symmetry (figures 3(b), (¢)). This symmetry breaking leads to
hydrodynamic focusing and screening, crucial shear-induced mechanisms that impact the full encounter
problem.

Spherical bacteria respond solely to the fluid vorticity (section 3.1), which for the Stokes flow reads

w=—Syrdind s (11)
2 r?

It follows from equation (11) that bacteria rotate around the azimuth (}b, (figure 3(a)). The rotation rate decays
with the square of the distance from the particle; it is strongest to the side of the particle, near the equator

0 = 7/2 and vanishes near the stagnation lines # = 0 and § = . In particular, the response of spherical
bacteria preserves the fore-aft symmetry of the flow streamlines: at a fixed distance r, the bacterial rotation is
identical at colatitudes  and ™ — 6. As discussed next, this symmetry is broken for elongated or oblate micro-
organisms.
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We focus on perfect rods of infinite aspect ratio @ — 00, for which the shape factor v = 1in the Jeffery
equation (3b) (figure 3(b)). Note that moderate elongation gives -y close to unity: for an aspect ratio
a = 10, vy & 0.98. The analysis of the response of disks is dual to that of rods and we only state the
results (figure 3(c)). For perfect rods, the rates of strain and rotation, E and W, are weighted equally in the
Jeffery equation (9), which reduces to (A7=! = A)

p = — pp"HAp, (12)

where A is the velocity gradient derived from the Stokes flow (2). For brevity, wetake U = 1andR = 1.
In spherical coordinates {r, 0, ¢} and in the usual basis of unit vectors {7, 8, ¢}, the entries of A read
(appendix A.3, see also [21])

2 tanf 0
Aj = F(r, )| =pB(ntanf —1 0 |, (13)
0 0 —1

where F = 3cos0(r=2 — r™*) /4and 3 = (r* + 1) /(+r*> — 1). To classify the response of rods in the manner
outlined in section 3.1, we find the eigenvalues of A

Ao = 5(1 + /9 — 4G tan?0), A3 = —F, (14)

and the corresponding eigenvectors

—3 4+ J9 + 46 tan%6 A
Ao = 1, Fanth o = . (15)
2tanf

From the sing change under the square root in equation (14), it follows that the regions in the fluid in which A
has three real eigenvalues or a pair of complex eigenvalues plus a real eigenvalue are separated by two surfaces of
revolution defined by (broken red lines in figures 3(b), (c))

r2(0) = (9 + 4tan?0) /(9 — 4tan?0). (16)

Furthermore, in the region with complex eigenvalues, the real eigenvalue, \; = —F(r, ), changes sign from
negative to positive at the plane § = 7/2, which contains the sinking particle’s equator. Physically, the sign
change reflects the transition of A = ¢ from being the direction of fluid expansion to compression as the fluid
parcels travel from the southern to the northern hemisphere. The surfaces (16) and § = 7/2 divide the space
outside the particle into three regions I, [land I1I (figure 3(b)). Region I is the bottom-half of the entire domain,
below the equator plane § = 7/2 and upstream of the sinking particle. It is composed of two subregions, Ia and
Ib, separated by the surface (16) (lower broken red line in figure 3(b)). In Ia, all the eigenvalues are real, in Ib,
there is a pair of complex eigenvalues and a positive real eigenvalue A; > 0. In both subregions, the rate of strain
dominates over the rate of rotation and the asymptotic stable direction is given by the eigenvector As = ¢,
which always points along the azimuth. The two subregions differ only in the manner this asymptotic orientation
is approached: in Ia, the convergence is overdamped (as in figure 2(b)) since ¢ is an attractive node, in Ib, the
convergence is underdamped with the bacterium spiraling down onto ¢ since this fixed point is an attractive
spiral (as in figure 2(c) but with arrows reversed). This change in the nature of the convergence of p onto ¢
indicates the increasing role of vorticity near the particle equator, but @ remains the attractive fixed point in
region I because the fluid has to expand along the azimuth to accommodate the sinking sphere in that region.
The timescale 7 associated with convergence onto ¢ in region Iis 77 ' = %)\3 =— %F .

Region Il lies to the side of the particle, in between the equator plane and the surface (16) and is the only
region in which the rotation rate out-competes the rate of strain. In this region, ) , are complexand A; < 0;
physically, the fluid is being compressed along the azimuth as it is rolling over the particle surface due to the no-
slip boundary conditions. The analysis in section 3.1 implies that the rods eventually rotate in the plane
orthogonal to the azimuth with frequency F / 2,/48 tan? — 9. Thus, rods orient orthogonal to the vorticity w
and rotate in the same sense as w, but the rotation period is longer from the rotation rate of the fluid (color code
in region I in figure 3(b)). The timescale 7; associated with the reorientation from pointing along ¢ to rotating
in the plane perpendicular to ¢ is given by 7' = %|)\3| = %F .

Region III lies downstream of the particle, above the surface (16). Here, the strain once again dominates over
rotation, but this time the asymptotic direction of rods in flow is given by the eigenvector A (the white director
field lines in figure 3(b)). Importantly, just behind the particle, for small colatitudes 6, equation (15) clearly
predicts that the stable orientation is approximately the radial direction A; = [1, 0, 0]. The timescale 7y
associated with the reorientation from rotating in the plane perpendicular to ¢ in region II to pointing along X
is Ty = %)\1 = %F(l + 49 — 43tan’0).

The response of perfect disks (o« = 0, v = —1) is dual to the case of perfect rods since A7=~! = —E +
W = —AT. For brevity, we only summarize the results, which are essentially an upside-down version of the
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responds of rods (figure 3(c)). Upstream of the sinking particle, disks tend to be oriented almost tangentially to
the particle, with their symmetry axis pointing in the nearly radial direction (region I, white director lines

in figure 3(c)). To the side of the particle, disks rotate, with their axis of symmetry spinning in the r—0-planes
(region II). Downstream of the particle (region I1I), disks preferentially align with the r—6 planes with their axis
of symmetry pointing along the azimuth. As for rods, the region IIl is divided into two subregions: in IIIa, @isan
attractive spiral, in IIIb it is an attractive node.

The splitting of the fluid flow into the regions shown in figures 3(b), (c) is a quasi-static characterization of
the dynamical system (3), with micro-organisms held fixed at a given position in the flow. However, a non-
motile micro-organism that is advected by the flow may be significantly displaced during the time it takes to
achieve a given asymptotic orientation. To get further insight into equation (3), we compare the two timescales
characterizing the advection and shear-induced reorientation. For simplicity, we combine the three timescales
7,1, associated with convergence onto the asymptotic solutions to equation (3b) into a single reorientation
timescale 7, ' ~ F ~ ||A||,. We estimate the advective timescale 7, ~ R/||v| ata given position as the time
needed to travel the distance R at the local speed ||v||. Figure 3(d) shows the ratio 7, /7; as a function of the
position. In particular, in the bright oval near the particle 7, > 7, indicating that, in that region, non-motile
bacteria advected by the flow have enough time to orient under the fluid forces in the manner outlined
in figures 3(b), (c) for immobilized bacteria.

Finally, we note that the eigenvalues of the velocity gradient A (13) on the stagnation line (¢ = 0, 7) and the
particle surface (r = 1) have multiplicity greater than one. In this case, the analysis of section 3.1 does not
directly apply, yet these special locations are important for the encounter process of non-motile micro-
organisms, which can only approach the sinking particle near the stagnation line § = . In appendix A.4, we
show that on the upstream stagnation line (¢ = 7) rods align tangentially to the sinking particle, while on the
downstream stagnation line (¢ = 0), rods align vertically. This picture can be inferred from figure 3(b) by taking
the limit p — 0. Similarly, disks align tangentially to the particle surface for § = 7 (with axis of symmetry in the
vertical direction), while theylie in the r — 6 plane for § = 0. Therefore, non-motile rods or disks approaching
the sinking particle along the § = 7 stagnation line orient with their longer dimension tangential to the particle
surface. Furthermore, on the particle surface, shear maintains to zeroth order the tangential orientation of rods
and disks as they are advected around the sinking particle (appendix A.4). This suggests that it is the shorter
dimension of rods and disks that determines their collision with the particle. However, for any finite size micro-
organism, one must step away from the stagnation line and the particle surface. In the vicinity of these
degenerate sets, the response is captured in figures 3(b), (c). The asymptotic orientations rods and disks assume
in their respective regions I suggest that the tangential orientation prevails. However, in regions IT and III shear
reorients rods and disks away from the tangential orientation. Given the size of the regions IT and III for rods and
disks, this reorientation should be stronger for disks, since disks experience it over a larger part of the particle
surface. In the next section, we use numerical simulations to confirm this intuition: the collision radius of rods is
determined by their width, not length, whereas for disks the collision radius is determined by the longest
dimension.

4. Non-motile bacteria and diatoms

Understanding the interception of non-motile elongated and oblate micro-organisms by a sinking particle is
important for two reasons. First, in its own right, because many marine micro-organisms including many
bacteria and phytoplankton species are non-motile and come in a variety of shapes, with bacteria often being
spherical or elongated and phytoplankton being either elongated (e.g. chains), spherical or disk-lake (e.g.
diatoms). Second, the non-motile case corresponds to the high sinking speed limit U / U}, — oo for motile
bacteria. We predict drastically different encounter rates for rods and disks: rods are particularly inefficient at
intercepting the sinking particle due shear, which aligns them in the direction tangential to the particle
surface (section 4.1). Conversely, disks eventually tumble under shear and explore their long axis to reach the
collector. Experiments on elongated diatoms support this picture (section 4.2).

4.1. Interception of non-motile bacteria

The ballistic interception of non-motile micro-organisms by a sinking particle is conceptually identical to the
classical problem of filtration, in which a colloid is captured by a large collector [9]. Previous works focused on
spherical colloids; through numerical simulations, we extend these results to non-spherical colloids. Rods and
disks, such as certain species of bacteria or diatoms, have drastically different effective collision radii. Due to
shear-induced reorientation, the collision radius for a rod is determined by its width rather than length, while
disks explore their full size to intercept the collector.
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Figure 4. Generalizing the classical ballistic interception problem to non-spherical colloids reveals that shear orients non-motile
elongated micro-organisms tangentially to the sinking particle surface, while oblate organisms tumble near the particle. (a) For
spherical organisms, the effective collision radius 7. is defined by the critical streamline beyond which no interception occurs (white
line). (b) Encounter probability P (p) as a function of distance p from the origin in the initial plane z = —6R for different aspect
ratios «. For spheres and disks, P(p) drops from 1 to 0 near 7, whereas for rods the drop occurs near . /«. (¢) The probability P (p)
forrods (o = 10) for two different sizes R/I;, = 10, 100 shows that the probability tail between r. /« and 7, vanishes as the sinking
particle size grows (or the rod becomes smaller). The tail arises to due rare tumbling events to the leeward side of the particle (Movie 2),
as can be seen from the distribution of the interception colatitudes £ (6) (inset). (d) Conversely, P (p) for @ = 0.1for R/l, = 10, 100
demonstrates that disks tumble very often—as the particle grows, P(p) approaches a step function at r..

First, we briefly review the classical interception of small non-motile spherical beads by a large spherical
collector. The reorientation of beads under the flow does not affect the interception problem, which reduces
to identifying the streamline of closest approach (figure 4(a)). For the Stokes flow (2), the stream-function is
given by

W(r, 0) = %Urz(l — %R/r + %(R/r)3)sin2 0. (17)

The streamlines determined by equation (17) have the fore-aft symmetry, which implies that the critical
streamline separating captures from misses is defined by the point r = R + I, /2 and # = 7 /2. Tracing the
streamline upstream from this pointto z = —6R, where we start the simulations, defines the effective collision
radius .. For a spherical bacterium with [, /R = 1/10, the collision radius is 7. ~ 1.4(};, /2); the additional 40%
arise due to the squeezing of the streamlines near the collector. Had we traced the streamline all the way to

z — —00, the prefactor would change from 1.4 to 1.2 [9]. In general, 7. depends very weakly on the size of
spherical bacteria I, /R and the formula 7. ~ 1.4(l,, /2) works very well for the bacterial sizes in the range

0 < I, /R < 1/10. Finally, for spherical colloids, the effective collision radius and the encounter efficiency (e-
quation (7)) are related as

nspheres = (r /R)2 (18)

We now turn to non-spherical organisms, for which the orientational dynamics can no longer be neglected.
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As non-spherical micro-organisms follow the streamlines, they can intercept the sinking particle using either
their shorter or longer dimension. Two extreme scenarios are possible: an organism always aligns its longer side
tangentially or perpendicular to the particle, which modifies its collision efficiency by a factor of . Assuming
negligible rotational diffusion, shear impacts the orientation of non-spherical organisms only through the aspect
ratio o This follows from non-dimensionalizing equations (3) with U, = 0 in terms of the particle radius R and
timescale R/U. However, while the organism size I, does not directly affect the dynamics, it determines the
interception criterion: we take the sinking particle to be a perfect absorber and stop simulations if any part of the
rod or disk touches the particle (appendix A.5). We now systematically vary & and ,, /R and measure the
encounter probability and typical interception location.

The impact of the micro-organism aspect ratio & and its relative size J,, /R on the encounter problem is
summarized in figures 4(b)—(d); Iy, denotes the longer dimension—length for elongated organisms, width for
oblate ones. Varying « (figure 4(b)) at fixed R/I;, = 10, shows that the collision radius of elongated micro-
organisms is determined by their width, notlength (Movie 1). This is evident from the variation of P (p), the
interception probability for an initial position at distance p from the centerline: P(p) decreases sharply from one
once p > 1. /. The probability tail between 7. /o < p < 1. indicates that rods occasionally reorient and use
their length to intercept the particle (Movie 2). However, shear largely suppresses this effect, see the light blue
broken line in figure 4(b), which represents trajectories without the shear-induced reorientation (parallel
transport). In contrast to elongated micro-organisms, oblate organisms (disks) utilize their full size to intercept
the particle—P(p) drops sharply from one to zero near 1. To see the impact of varying the relative size R/1,,, we
fixed two aspect ratios, & = 10 (figure 4(c)) and o = 0.1 (figure 4(d)) and computed P (p) as well as the
distribution £(f) for R/I, = 10, 100. We observe that, as the colloid gets smaller (or the sinking particle gets
larger), the effects described above become more pronounced, in the sense that for rods the probability tail
between 1. /a < p < 1, shrinks, whereas for disks P (p) approaches a step function with jump at r.. Therefore,
the formula (18) for the encounter efficiency by spherical colloids is replaced by

Nrods = [rC/(aR)]z = nSPhereS/az’ Tldisks = "lspheres (19)

in the case of (small R/, > 10) non-spherical colloids, where rods means o > 1and disks o < 1.

Different interception efficiency for rods but not disks as compared to spherical colloids is consistent with
the analytical arguments presented in section 3.2. Initially, shear aligns rods and disks tangentially to the sinking
particle surface as they approach it along the stagnation line (regions I in figures 3(b), (c)). As they slide near the
particle, both rods and disks experience shear that tries to reorient them away from the tangential configuration,
potentially increasing their chance to intercept the particle (region I in figure 3(b) for rods and regions Il and
IITa in figure 3(c) for disks). However, disks are exposed to this reorienting effect over a larger region than rods,
suggesting that disks complete this reorientation while near the particle, whereas rods orient radially only when
they are too far behind the particle (Movie 1). Occasional interception by rods caused by the reorientation in
region IT is responsible for the small probability tail in P(p) in figures 4(b), (c) (Movie 2). In summary,
simulations confirm the intuition based on analytical arguments: the collision cross-section for rods is
determined by their shorter dimension whereas the opposite is true for disks.

4.2. Experiments with elongated diatom cells

Selected experiments with non-motile diatom cells confirmed the predictions of the model (3) discussed in
sections 4.1, A.4 in the case of the non-motile rods (figure 5 and Movie 3). We ran a suspension of the non-
motile, elongated diatom cells Phaeodactylum tricornutum (strain CCMP2561) in sea water ata mean flow
velocity of 168 pm s~! through a microfluidic channel with a calcium-alginate spherical particle held fixed in
the middle by the channel walls (figure 5(a)); see appendix A.6 for more details on the experimental protocol.
The particle sizewas R = 566 pm, the average diatom length I, = 21.2 pum and their average aspect ratio

a = 6.8. Rather than directly estimating the encounter rate, which proved difficult due to the challenge of
imaging in the immediate vicinity of the particle, we used image analysis to quantify the orientation that the
diatoms assume in the vicinity of the particle in the channel mid-plane. Using this approach, we extracted from
50 consecutive frames an ensemble of diatom positions and orientations (figure 5(b)). Since the shear-induced
reorientation effects are strongest near the particle (figure 3(d)), we focused on diatoms that are at distance

R < r < 2R away from the particle center. Importantly, since we only imaged the focal plane, this ensemble was
skewed towards diatoms moving in the focal plane and also oriented in that plane. For this reason, to compare
the experimentally determined orientations with those predicted by the model (3), we ran additional numerical
simulations to mimic the same information loss as in the experiments. Specifically, we simulated a front of
uniformly distributed and randomly oriented elongated non-motile rods (with R/, = 21.2 and o = 6.8), asin
the previous section. We focused on trajectories lying in the particle mid-plane (as in the imaged region) and
extracted the rod orientations at positions along the streamlines corresponding to equal time intervals. We
rejected orientations that have the out-of-plane component larger than sin(30°) = 0.5, to mimic the
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Figure 5. Experiments with non-motile elongated diatom cells (Phaeodactylum tricornutum) are consistent with the predictions of the
model (equation (3)) that rods maintain tangential orientation as they are advected around a sinking particle (section4.1).

(a) Minimum intensity projection obtained by phase contrast microscopy shows the streamlines of the suspended diatoms around the
alginate particle (Movie 3). (b) The experimental ensemble of diatom positions (dots) and the sine of the angle the diatoms make with
the flow direction (see colorbar). (c) The corresponding ensemble obtained from simulations, in which we mimic the same
information loss as in the experiment: the plot represents rods lying in the focal plane and we dismiss rods with a significant out-of
plane component, see text for more details. As predicted in section A.4, we observe that rods approaching the particle near the
upstream stagnation line orient tangentially to the particle (yellow region below the particle in (b), (c)), while rods that leave the
particle near the downstream stagnation line point nearly radially (blue region above the particle). As they travel near the particle
surface, rods tend to maintain tangential orientation but also occasionally tumble.

information loss of diatoms that point out of the focal plane in experiments; the results were robust against
variation in this threshold (figure A1).

The experimentally determined orientations of diatoms agreed very well with the numerical results for
elongated ellipsoids with the same geometrical characteristics (figures 5(b), (¢)). In particular, as predicted in
appendix A.4, diatoms approaching the particle near the upstream stagnation line oriented tangentially to the
particle surface, while diatoms departing from the particle near the downstream stagnation line pointed nearly
radially (yellow versus blue regions in figures 5(b), (c)). Close to the particle surface, diatoms tended to maintain
tangential orientation but can also occasionally tumbled. Tumbling happened most often when diatoms were to
the leeward side of the particle, which is consistent with the action of shear depicted in region Il in figure 3(b),
where vorticity dominates over straining and tries to spin rods in the plane of the picture. In summary, these
experiments validate detailed aspects of our model for non-motile micro-organisms and demonstrate that the
effect of shear—shape coupling can be substantial for realistic marine micro-organisms.

5. Motile bacteria

The encounter rate between motile elongated bacteria and sinking particles in the ballistic regime depends
strongly on the particle sinking speed relative to the bacterial swimming speed (section 5.1). For slow sinking
particles, shear increases the encounter rate more than twofold and leads to preferential attachment of bacteria
to the leeward side of the particle. However, as the sinking speed increases, shear decreases the encounter rate,
orders of magnitude below the rate of non-motile organisms. These mechanisms of hydrodynamic focusing and
screening are rationalized at the level of individual bacterial trajectories (section 5.2) in terms of the quasi static
picture derived in section 3. Finally, to connect with the diffusive description of the encounter process, we
introduce rotational diffusion to quantify how various stochastic mechanisms, such as Brownian motion or run-
and-tumble reorientation, influence the above ballistic description (section 5.3).

5.1. Encounter rates for motile bacteria
Nondimensionalization of the ballistic model (3) in terms of the particle radius R and the time scale R/ U derived
from the sinking speed U shows that the only two dynamically relevant variables are the ratio of the sinking to
swimming speeds U/ U, and the bacterial aspect ratio c. The bacterial size , and particle size R enter the
problem through the interception condition but otherwise they do not affect the bacterial trajectories, except for
the time it takes to execute them. We assume the particle is a perfect absorber and stop the simulations either if
any part of the bacterium touches the particle (interception) or the bacterium ends up far behind the particle. In
this section, we fix R/I,, = 10, scan velocities in the range U /U,, > 1 (sinking speed greater than swimming
speed) and consider several aspect ratios v (figure 6).

For hypothetical spherical or oblate motile bacteria [22], the encounter rate kernel N /1 depends weakly on
the sinking velocity U/ Uy, and the encounter efficiency 1 decays monotonically with U / Uy; for spherical
swimmers, ) is close to the values obtained with the reorientation by shear switched off (dark blue and green
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Figure 6. The shear-shape coupling significantly impacts the encounter rate between motile bacteria and sinking particles and the
typical interception location on the particle. Encounter rate kernel N /7 (a), encounter efficiency 7 (b) and mean interception
colatitude () (c) as a function of the sinking speed relative to the bacterial swimming speed U /Uy, for different bacterial aspect

ratios «. The continuous lines represent the ballistic model (3) while the broken lines denote the quasi-ballistic model with rotational
diffusion (20). In the ballistic case, motility, elongation and shear enhance the encounter rate about twofold for slowly sinking
particles as compared to the case with shear-induced reorientation switched off (purple and green lines). However, for intermediate to
fast sinking particles, the encounter rate falls orders of magnitude below the value set by the interception of non-motile rods. On the
particle, elongated motile bacteria attach preferentially to its leeward side.
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Figure 7. Motile elongated bacteria preferentially attach to the leeward side of a sinking particle due to hydrodynamic screening and
focusing upstream and downstream of the particle. Encounter probabilities P (x) as a function of the position x (equation (4)) for
perfect spheres (a), moderately elongated swimmers (b) and perfect rods (c). The sinking to swimming speed ratio is fixed at

U/ U, = 3.(d)—(f) Histograms of the interception colatitudes 6 for initial positions in the whole domain shown in (a)-(c) show a
transition from a nearly uniform coverage of the particle by spherical swimmers (d) to preferential leeward attachment for motile rods
(f). (g)-(i) Representative swimming trajectories (left) and successful initial orientations (right) for rod-like bacteria starting from the
initial positions indicated in (c) illustrate the hydrodynamic screening (g) and focusing (h), (i).

lines in figures 6(a), (b)). However, for elongated swimmers, ) varies strongly with U/ U, (figures 6(a), (b)). For
slowly sinking particles 1 < U /U, < 2), n ~ 2—3,implying that the particle collects bacteria from the volume
of water two-three times bigger than the geometric cylinder the particle swipes as it sinks. Furthermore,
elongated bacteria intercept the particle to the leeward side (figure 6(c)). Interestingly, as the sinking speed
increases, the encounter rates drop very rapidly: in the velocity window 10 < U /U, < 100, the encounter rate
of elongated swimmers (o > 5) can be orders of magnitude below the value set by the non-motile rods. We next
rationalize these encounter rate enhancement and decrease using the concepts of hydrodynamic focusing and
screening.

5.2. Hydrodynamic focusing and screening

The strong dependence of the encounter efficiency on the particle sinking speed for elongated bacteria (figure 6(b))

is a consequence of hydrodynamic focusing and screening. These phenomena are illustrated in figure 7, where we
compare three swimmers with different aspect ratios; the sinking speed is fixed at U /U, = 3. Figures 7(a)—(c) show
the encounter probabilities P (x) for a bacterium starting at x anywhere inside the indicated domain (not just the
plane z = —6R) with head pointing in a random direction (equation (4)). Since U /U, > 1,inall three cases there is
a cone-like surface of revolution that separates the accessible [P (p) > 0] and inaccessible initial positions—if the
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bacteria start too far away, they cannot reach the particle. The distribution of P (x) inside the accessibility region vary
strongly with «v. For spheres, P (x) is concentrated below the particle, near the p = 0 stagnation line and decays
monotonically to zero with p reaching the accessibility horizon (figure 7(a)). For somewhat elongated swimmers

a = 1.75, the initial positions below the particle become less likely to result in an interception and P (x) starts to
concentrate near the edge of the accessible region, which also reaches further out (figure 7(b)). For perfect swimmers
a = 00, theregion p /2 0is now almost entirely shielded, with P (x) exhibiting a clear high-probability belt at the
edge of the accessible region (figure 7(c)). Far below the particle, the belt slope approaches ~ U / Uy,. Considering the
distribution of the interception locations & (8) for initial positions anywhere in the domains shown in figures 7(a)—(c),
elongated swimmers show preferential leeward attachment, with the vicinity of the ‘north pole’” being the most likely
location (figures 7(d)—(f)). We now rationalize the shape of the distributions P (x) and £ () at the level of individual
swimming trajectories by evoking the quasi-static picture discussed in section 3.2 and shown in figure 3.

At the level of individual swimming trajectories, the probability P (x) for spherical swimmers (figure 7(a)) is
realized by trajectories that correspond to swimmers initially located below the particle and pointing upwards.
However, this intuitive strategy is not available for elongated swimmers because of hydrodynamic
screening (figures 7(b), (c)). Recall that, below the particle, shear tends to align rods along the azimuth (region I
in figure 3(b)). This shear-induced reorientation coupled with forward motility implies that rod-like swimmers
get reoriented and swim away as they approach the sinking particle from below (figure 7(g), Movie 4). For the
same reason, it is very unlikely that elongated swimmers attach to the front of the particle, which explains the
small values of £ (0) for colatitudes 6 > 90° (figure 7(f)). Instead, successful interceptions for elongated bacteria
must follow a different strategy (figures 7(h), (i)). To avoid the screening, elongated swimmers must start on the
belt far away from the centerline of the sinking particle, on the edge of the accessibility horizon. Furthermore,
their initial orientations have to be roughly horizontal, pointing towards the centerline (figures 7(h)). Such
initial conditions allow the bacteria to avoid the screening region I of figure 3(b) and explore the shear-induced
radial reorientation in region III. This hydrodynamic focusing then leads to preferential leeward
attachment (Movie 5).

The mechanisms of hydrodynamic focusing and screening described above rationalize the strong
dependence of the encounter efficiency 7 on the particle sinking speed U /Uy, presented in (figure 6(b)). For
slowly sinking speeds, both mechanisms are present. However, the high probability belt at the edge of the
accessibility horizon for elongated swimmers extends a large volume and hence many swimmers can utilize the
focusing effect, which explains why 1 > 1in that flow range. However, as U /Uy, increases, the high probability
belt moves closer to the center line since its diameter scales as Uy, /U . This reduces the accessible volume of water
at the rate at least ~U ™ %, Furthermore, as the belt shrinks in diameter, it enters the region of hydrodynamic
screening and eventually disappears (figure A4(a)). Thus, in the range 10 < U /Uy, < 100, only screening
persists, which explains the very small values of in that range. Only for swimming speeds U /U, > 100, 7 rises
again, until it starts to recover the limit set by the interception rate of non-motile rods.

5.3. Impact of rotational diffusion

In the purely ballistic picture of the encounter process outlined in the two previous sections, shear is the only
factor responsible for micro-organism reorientation. In reality, bacteria experience Brownian rotational
diffusion as well as perform run-and-tumble or run-and-reverse dynamics. The combination of these stochastic
mechanisms likely interferes with the shear-induced reorientation in a complex manner. As a first step to
systematically study the impact of these additional mechanisms, we introduce a single rotational diffusion term
to equation (3)

x=Upp + v, (20a)

p=UI—pp")I(E + W)p + J2D, €], (20b)

where D, is the cell’s effective rotational diffusivity and £ is a delta-correlated 3D white noise with zero mean.
We express the diffusive timescale 7y = D, ' in terms of the time 7, = I, / U}, needed for a bacterium to travel
the distance equal to its bodylength.

To study the impact of rotational diffusion on the encounter rates and attachment location, we fixed the
diffusive timescale at 7y /7, = 100, which corresponds to the typical time-scale set by the run-and-tumble
motility [8]. We then repeated the scans according to the same protocol as in section 5.1, with R/, = 10 and
U/Up > 1(thebroken lines in figure 6). We find that diffusion has little effect on the encounter rates and
attachment location for spherical swimmers. However, for elongated swimmers, diffusion decreases the impact
of hydrodynamics focusing at low sinking speeds but also decreases the hydrodynamic screening at higher
sinking speeds (see appendix A.7).
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Figure 8. Given a fixed volume V;, of a non-motile micro-organism, what shape minimizes or maximizes the encounter efficiency n
with a sinking spherical particle of volume V? Plotting 1 versus the volumetric ratio V4, /V reveals that elongation reduces the
encounter rate with large particles (V;, /V — 0), making rods the optimal shape for avoiding sinking particles, at least as long as
rotational diffusion is negligible. Conversely, flattening makes a non-motile micro-organism particularly efficient at intersecting the
particle. This different behavior of rods and disks is a consequence of fluid shear, which aligns rods tangentially to the sinking particle
surface with rare tumbling events, but induces frequent tumbling in the orientation of disks. As the sinking particle becomes large,
W,/V — 0, the efficiencies for rods and disks approach the exact expression 1 = 1.42[V;, /(V)]2/3, which follows from

equations (19) after assuming rods and disks can be represented as prolate and oblate ellipsoids with aspect ratio c. As the volume
ratio Vi, /V grows, the difference between rods and disks decreases due to increasing tumbling of rods.

6. Discussion

In this work, we have studied the ballistic limit of the encounter process between micro-organisms and sinking
particles, with focus on the reorienting effect of shear induced by the sinking particle. Analytical and numerical
calculations as well as selected experiments show that the shear—shape coupling acting on a micro-organism
impacts population-level observables, such as the encounter rate with sinking particles or the typical attachment
location on the particle. For the Stokes flow around a spherical sinking particle, rods and disks break the fore-aft
symmetry of the flow streamlines, in stark contrast to the behavior of spherical colloids (figure 3). This shape-
induced symmetry breaking affects the encounter rates (figures 4 and 6) through mechanisms we have
characterized as hydrodynamic focusing and screening (figure 7). Below, we first rephrase these results as
solutions to the optimization problem: should a micro-organism be elongated or flat, to maximize or minimize
the encounter rate with a large moving sphere? Subsequently, we discuss the biophysical consequences of our
mechanistic description of the encounter process in the marine environment.

From the perspective of evolution, there are many contexts in which micro-organisms may seek to maximize
or minimize their encounters with moving objects, including encountering sinking resources [8] or symbiotic
partners [23], and avoiding predators [24]. At the same time these, micro-organisms are likely to have other
constraints on their volume, such as growth maximization and genome size. For non-motile micro-organisms
with negligible rotational diffusion (section 4.1), we have seen that shear tends to orient rods tangentially to the
sinking particle surface as these move around the particle, whereas disk-shaped micro-organisms tumble, which
makes their longer dimension available for interception (section 4.1 and figure 4). As a consequence, rods have
their encounter efficiencies decreased by a factor equal to the square of their aspect ratio compared to spherical
colloids with diameter equal to the rod length. Conversely, disks have the same efficiency as spheres with
diameter equal to the disk diameter (equations (19)).

For non-motile bacteria, over a broad range of ratios of cell volume relative to particle volume (V;, / V'), disks
are the most efficient shape to intercept a sinking particle, while rods are the least efficient (figure 8). The
contribution of the occasional tumbling of rods grows with V;, /V, decreasing the difference between the
efficiencies of rods and disks as cell volume gets larger; rods remain less efficient than disks but catch up with
spheres. Note that we cannot increase the volumetric ratio further without violating the approximations used in
the Jeffery equation, since the micro-organism size becomes comparable with the sinking particle. Conversely,
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as the sinking particle grows, Vi, /V — 0, the encounter efficiencies approach 1.42[V;, /(Va)]*/3 (broken lines in
figure 8), which follows directly from equations (19) and reflects the fact that, as the sinking particle grows, rods
cease to tumble while disks always tumble (figures 4(c), (d)). In this limiting regime, the efficiency ratio between
disks and rods is (0ryoq / Ctgisk)>>. For example, for rods with a,oq = 10 and disks with argigc = 0.1, disks will be
about 20 times more efficient than rods at intercepting large sinking particles.

For motile micro-organisms, encounter rates are controlled by hydrodynamic focusing and screening,
which develop from the influence of shear on the direction of swimming. Here we still consider the ballistic
regime, with negligible rotational diffusion. In addition, the shear—shape coupling for motile cells leads to the
sensitive dependence of the encounter rate on the particle sinking speed relative to the bacterial swimming
speed (section 5.1 and figure 6). Hydrodynamic screening and focusing describe the effect on elongated motile
micro-organisms of the shear upstream and downstream of the particle, respectively. In hydrodynamic
screening, the shear upstream of the particle aligns rods tangentially to the particle surface (as with non-motile
cells), resulting in cells swimming away from the particle. For hydrodynamic focusing, rotation from shear in the
downstream half of the particle turns the swimming rods towards the particle. For slowly sinking particles,
focusing dominates and enhances the encounter rate (figure 7), while at sinking speed significantly higher than
the cell swimming speed, screening dominates and the encounter rate drops far below that of non-motile rods.
In contrast to elongated organisms, hypothetical spherical and disk-shaped swimmers respond monotonically
to changes in the sinking speed (figure 6), a consequence of disk-shaped swimmers experiencing hydrodynamic
focusing upstream, not downstream, of the particle. For sinking speeds more than twice the swimming speed,
this results in disk-shaped micro-organisms encountering particles at a higher rate than elongated micro-
organisms.

From an evolutionary perspective, this analysis suggests that adopting a disk shape would be optimal for
micro-organisms (whether non-motile or motile) in order to maximize particle encounter rates at abroad range
of sizes and sinking speeds. Of course, this neglects other evolutionary pressures on morphology. However, for
particles sinking at speeds close to the organism swimming speeds (i.e. relatively slowly), elongation increases
the encounter rates up to twice that of motile disks. Coupled with the large reduction in encounter rates for more
rapidly sinking particles, elongation can be viewed as biasing ballistically swimming organisms strongly towards
slowly sinking particles. This could be subject to selective pressures for micro-organisms in situations where
optimal growth occurs near the surface, and therefore rapidly sinking particles are better avoided.

For the specific case of marine bacteria encountering sinking marine particles, it is necessary to connect the
ballistic description of the encounter process with the classical approach based on approximating bacterial
motility as a diffusive process [7, 8, 25]. Marine bacteria are subject to various sources of random reorientation,
from Brownian rotational diffusion to self-generated run-and-tumble or run-and-reverse motility, where
segments of straight swimming are interrupted by randomization of the swimming direction. As a consequence,
on scales larger than the bacterial run length and timescales longer than the reorientation time, bacterial motility
can be effectively characterized as a diffusive process [7, 8, 25]—this is a general feature of superimposing a large
number of uncorrelated random segments [26]. In this limit, relevant to large sinking particles, the encounter
rate is proportional to the bacterial effective diffusion coefficient and the Sherwood number, a flow-induced
enhancement factor [25]. Additionally, while the shear-induced reorientation in the diffusive limit can be
neglected in certain regimes [12], precise quantification of its impact on the encounter rate and attachment
locations across a wide range of particle speeds and sizes might require kinetic theory approach [26-28].
However, as the particle becomes smaller or the sinking speed increases, the system becomes ballistic and the
diffusive approximation overestimates the encounter rate. The reason for this overestimation comes from the
fact that the encounter probability for a bacterium at distance r from the particle decays as r—! in the diffusive
regime, and as 2 in the ballistic regime [29], at least for stationary particles and without shear. Since
hydrodynamic interactions can significantly bend bacterial trajectories [14, 30, 31], the need to go beyond
arguments based on straight-line swimming motivated the above study of the pure ballistic limit. For the marine
application, we consider ballistic motile bacteria supplemented by rotational diffusion (section 5.3), which we
have shown reduces the strength of hydrodynamic screening on rod-shaped swimming cells.

We consider two major classes [8]: motile elongated bacteria and non-motile spherical bacteria. For motile
elongated bacteria, we evaluate the predictions of our model for cells of length [, = 2 m, swimming speed
U, = 50 um s~ !and aspect ratio o = 3.3. For non-motile spherical bacteria, we choose a diameter [, = 1 pm.
These represent typical characteristics of motile copiotrophic bacteria that actively seek and engage marine
particles, and more oligotrophic non-motile bacteria which may nevertheless encounter and stick to particles.
For these representative marine bacteria, as well as the equivalent motile bacteria without the influence of shear,
the corresponding encounter efficiency 7 (figures 9(a)—(c)) and mean interception colatitude (#) (figure 9(d)—
(D)) have been computed as a function of the sinking particle speed U and particle radius R. The range of sinking
speeds we consider is 60 ym s~'-5 mm s~ . The range of particles sizes, 3 zm—1 mm, covers the most abundant
marine sinking particles [11]. For elongated bacteria, randomization of orientation is effectively represented by a
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Figure 9. To quantify the impact of shear and elongation on the encounter rates and interception locations between bacteria and
sinking particles in the ocean, we focus on realistic model parameters and compare three cases: motile elongated bacteria of length
I, = 2 pum, swimming speed U, = 50 pm s~ and aspect ratio v = 3.3 (a), (d); the same bacteria, but with the shear-induced
reorientation switched off (b), (e); and non-motile spherical bacteria of diameter I, = 1 pum (c), (f). In these three cases, we compute
the encounter efficiency 1) (a)—(c) and mean interception colatitude (0) (d)—(f) as a function of the sinking particle speed Uand radius
R. We consider a range of sinking particle sizes (R ~ 3 pm-1 mm) that covers the most abundant marine particles [11]. In the
simulations, the rotational diffusion coefficient for motile swimmers was setto D, = 0.25 s~ !, while the translational diffusion
coefficient of the non-motile spheres was set to Dy = 0.43 um? s~ L. For such parameters, the panels capture the ballistic and diffusive
regimes, as well as the in-between quasi-ballistic regime.

single rotational diffusion coefficient D, = 0.25 s™; the diffusive timescale (~4 s) gives the run length of about
200 pm, typical of marine bacteria [8]. For such a run length, the range of particle sizes spans the ballistic and
diffusive regimes as well as the intermediate transition range. Finally, the translational diffusion of the non-
motile spherical bacteria was set to D; = 0.43 pm? s~!, which represents Brownian motion of a micron-sized
sphere at room temperature [32]. Under these conditions, accounting for the shear reorientation of motile
marine bacteria substantially reduces the encounter efficiency for small fast-sinking particles and alters the
location of encounters for slow-sinking particles below 100 gm in radius. In contrast, the diffusive spherical
swimmers show weak dependence of encounter efficiency on sinking speed, but much greater sensitivity to
particle size.

Since the range of particle sizes considered in figure 9 captures the ballistic-diffusive transition, the standard
computation based on a diffusive analogy only matches the encounter rates of marine bacteria (neglecting shear)
for the largest particles with radii approaching 1 mm (figure A2). For bacteria with higher rotational diffusivity,
this occurs for smaller particle sizes. As the particles get smaller, the diffusion-based calculation starts to
overestimate the encounter rate—in the ballistic limit, with particle sizes reaching tens of microns, the two
descriptions can differ by more than two orders of magnitude (figure A2). We now describe in detail the
encounter process in the intermediate quasi-ballistic regime, highlighting the role of bacterial motility and fluid
shear.

Factoring in shear interactions, motile bacteria encounter sinking particles at a rate one or two orders of
magnitude (figure 10(a)) greater than non-motile bacteria. This motility-based enhancement factor is smaller
by one or two orders of magnitude (depending on particle size) as compared to what would be predicted by the
tully diffusive model. The exception when motility decreases the chances of interception
(n;‘ﬁg;irleoN / pron-motile 1) corresponds to small and very quickly moving objects. This upper-left part of the
panel, close to the full ballistic regime, is dominated by hydrodynamic screening and is probably not relevant for
marine particles, even for fast sinking-fecal pellets, since their density differs from that of seawater only by about
10%-20% [33, 34], see the red and yellow lines in figure 10, which represent the Stokes law (1). However, this
hydrodynamic screening regime may be relevant for interception by air bubbles, whose vertical speed is high in
view of their large density difference with seawater [35] (purple line in figure 10). Furthermore, comparing the
shear on—off cases for motile elongated bacteria (figure 10(b)), we find that the major impact of shear is to
reduce the encounter rates with small particles sinking at intermediate or rapid rates by up to a factor of 10. This
reduction is a consequence of the competition between the hydrodynamic screening of rods upstream of the
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Figure 10. Comparison of the encounter efficiencies between motile elongated and non-motile spherical micro-organisms (a) and
between motile elongated micro-organisms with and without shear (b) computed from the panels (a)—(c) of figure 9. For reference,
we plot the absolute values of the sinking/raising speeds as determined by the Stokes law (1) for sinking particles with densities p
higher than the density of water p,, by 5%—15% (in black font), such as the fast sinking fecal pellets, as well as raising bubbles with
Pp/Py = 0 (in white font). The white dashed line denotes the ratio equal to unity.

sinking particle and rotational diffusion. It suggests that elongation-induced screening may be a passive
mechanism that allows motile elongated marine micro-organisms to prioritize slowly sinking aggregates, at least
in the quasi-ballistic particle size range.

For slowly sinking particles in the quasi-ballistic regime (lower parts of the panels in figure 10), the observed
encounter efficiencies of motile marine bacteria are close to the case without shear, consistent with earlier
studies [12]. However, at the level of individual trajectories, this encounter rate is realized by hydrodynamic
focusing, which results in most bacteria attaching to the leeward side (f < 90°) of the sinking particle (compare
figures 9(d) and(e); see also figure A3). For small and slowly sinking particles (R < 50 um, U < 500 gm s~ 1),
for which shear dominates over rotational diffusion, more than 75% of the interceptions occur on the leeward
side of the particle. Furthermore, about 25% of the interceptions are concentrated inside the ‘Arctic
circle’ (6 < 23°), which represents a more than five-fold increase as compared to a uniform coverage of the
particle. This leaves the southern hemisphere depleted of bacteria, with almost no interceptions below
the ‘tropic of Capricorn’ (f > 113°). Thus, the leeward stagnation point is a flow-induced hotspot where
motile and elongated bacteria concentrate due to shear. Since non-motile bacteria intercept the particles on the
upstream side (figure 9(f)), in the southern hemisphere, we conclude that flow and shear lead to a bipolar
segregation of motile and non-motile marine bacteria on the two sides of a sinking particle.

Although this work has assumed particles to be spherical despite the variety of observed shapes exhibited by
marine snow aggregates [11], we expect the phenomena of hydrodynamic focusing and screening of elongated
bacteria to be robust to variation in shape. The focusing and screening effects rely on different orientational
responses of small rods upstream and downstream of the particle—the key property of the flow that is required
for this fore-aft symmetry breaking is the expansion of the streamlines to the front of the particle and their
recombination to the back, as well as the no-slip boundary conditions on the particle surface. Aslongas such
general streamline organization is preserved, the effects here described should be robust: while fluid parcels roll
on the particle surface (no slip), they stretch upstream of the particle (streamline expansion) but compress
downstream of the particle (streamline recombination). This basic process will hold for objects at low Reynolds
numbers with no-slip surfaces, and one would therefore expect hydrodynamic focusing and screening of motile
elongated bacteria to occur for marine particles in general.

7. Conclusions

In this work, we combined analytical and numerical calculations to estimate the encounter rates between non-
motile and motile micro-organisms of different morphologies and sinking particles in the ballistic regime
relevant for the most abundant small sinking particles. Previous estimates have primarily focused on the
diffusive regime, effectively assuming that particles are much larger than the bacterial run length. In the ballistic
range, bacterial reorientation becomes a significant factor influencing the encounter process, while it is absent by
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necessity from diffusive models. We have focused on the coupling between micro-organism shape and fluid
shear induced by the particle, since shear is the dominant external factor responsible for bacterial reorientation.
We have shown that the shape—shear coupling can significantly affect the encounter rate and attachment
location on a particle for both non-motile and motile micro-organisms.

For non-motile organisms, shear from a sinking particle can significantly alter the encounter rates of
organisms with different morphologies. For elongated organisms, this influence occurs by aligning the cells’
long axis tangentially to the particle surface, and was experimentally validated. When the timescale of rotational
diffusion is long with respect to particle interactions, shear from sinking particles interacts with the aspect ratio
of non-motile organisms to potentially reduce encounter rates by a factor proportional to the square of the
aspect ratio. As a result, encounters could exert evolutionary pressure on non-motile cell morphology [36],
favoring elongated or disk-like shapes depending on whether encounters are unfavorable or favorable,
respectively.

For motile micro-organisms, interactions with the shear from a sinking particle give rise to two phenomena,
hydrodynamic screening and focusing, that alter both the rates and locations of encounters. Elongation helps
organisms intercept slowly sinking particles but dramatically reduces the encounter rate with rapidly sinking
particles. In contrast to rods, motile disks experience upstream focusing, leading to high efficiency at
intercepting rapidly sinking particles. From the perspective of the particle, motile elongated micro-organisms
typically attach to the leeward side of the particle, while motile disks cover it more uniformly. Under realistic
parameters relevant to marine bacteria and sinking particles, which include the effect of randomization of
swimming direction from rotational diffusion, hydrodynamic screening leads to a ten-fold decrease in the
interception rate of rapidly sinking aggregates, as compared to motility without the shear-induced reorientation.
This reduction in encounter rate suggests that elongation-induced screening may be a passive mechanism that
allows motile elongated marine micro-organisms to avoid rapidly moving particles. Last but not least, motile
elongated bacteria attach to the leeward side of the particle, whereas non-motile bacteria attach to the front.
Thus, hydrodynamic focusing is a physical source of heterogeneity in particle colonization characterized by
bipolar segregation of motile and non-motile micro-organisms, which may influence the degradation rate of
marine snow aggregates. Whether in terms of encounter rates or encounter locations, these results indicate that
the impact of shear reorientation cannot be neglected when evaluating interactions between motile organisms
and sinking particles.

The dynamics of shear-driven reorientation are directly relevant to the colonization of marine particles by
bacteria. It is well established that motility can greatly enhance the encounter rate of bacteria with sinking
particles [8, 24]. This enhancement is often estimated via the ratio of the effective diffusivity due to motility and
the diffusivity due to Brownian motion, which can be as large as 1000 for highly motile marine bacteria
[8,37, 38]. The more accurate theory developed here, which accounts explicitly for the interaction between flow
and motility in elongated bacteria, refines this estimation in a manner that depends on the particle size and
sinking speed relative to the bacterial motility. For particles substantially larger than the bacterial run length, the
enhancement in attachment due to motility estimated by the ratio of effective diffusivities and neglecting the
impact of shear is increasingly more accurate. For the marine bacteria modeled here, this corresponds to
particles with radius greater than approximately 1 mm. For smaller particles, which form the bulk of particles in
the ocean [39], this work reveals that the enhancement in encounters resulting from motility is more moderate
and is further reduced as the particle sinking speed increases. In extreme cases, potentially applicable to some
bubbles, motility may confer no benefit in encounter rates. However, in the context of marine particles, motility
still enhances encounters by one to two orders of magnitude. Since the enhancement in encounter rate due to
motility is greater for slowly-sinking particles, this also highlights the potential significance of neutrally buoyant
particles [40] to motile bacteria. This fundamental knowledge of encounter rates will be a valuable asset in future
efforts to rationalize the community composition on marine particles, and ultimately the role of different groups
of bacteria in particle degradation and the ocean’s biological pump.

In a different domain, the mechanisms of hydrodynamic focusing and screening of rods and disks here
described are relevant to the classical filtration problem [9], because our results suggest that shear renders
elongated non-motile colloids more difficult to collect than oblate ones. Furthermore, fabrication of Janus-type
artificial swimmers makes it possible to build microscale motile objects with different shapes and swimming
speed [32], and these parameters could be tailored to enhance or suppress the focusing and screening effects. For
example, the efficiency in capturing moving spheres may be important in applications such as targeted drug
delivery [41] and micromachine-enabled decontamination [42].

In summary, we have demonstrated that hydrodynamic interactions between a small ellipsoid and a large
moving sphere break the fore-aft symmetry of the flow streamlines, leading to practical consequences for micro-
organisms. This symmetry breaking is a consequence of fluid expansion and recombination upstream and
downstream of the sphere, but is only revealed when the full tensorial character of the velocity gradient is
accounted for, including its straining and rotational components. Such asymmetric two-body couplings are
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ubiquitous, since they arise when a small non-spherical particle travels near a larger obstacle in a fluid; we have
experimentally verified their impact in the case of non-motile elongated diatoms advected around an alginate
bead. In the context of swimming bacteria intercepting a sinking particle, hydrodynamic focusing and screening
have practical ecological impacts, but applications to other natural or man-made systems are yet to be explored.
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Appendix

The appendix is organized as follows: we provide linear stability analysis of the fixed points of the Jeffery equation in
section A.1 and derive the limit cycle solutions and their period in section A.2; these results were discussed in

section 3.1 of the Main Text. The velocity gradient for the Stokes flow is derived in section A.3; its matrix form was
used in equation (13) in section 3.2 of the Main Text. In section A.4, we complement the discussion in section 3.2 of
the Main text by analyzing the structure of the velocity gradient on the stagnation lines and the sinking particle
surface. The subsequent sections give details on the numerical simulations (section A.5) and experimental

methods (section A.6). Finally, the three additional figures supplement the Main Text as follows: figure A1 shows that
the results presented in figure 5 of the Main Text are robust to variation in the cut-off threshold for rejecting the out-
of-plane components of rods in the simulations, figure A2 quantifies the overestimate in the encounter efficiencies as
predicted by the classical diffusive arguments in the range of parameters discussed in figures 9 and 10 of the Main
Text, and figure A3 provides an additional characterization of the landing distributions for the simulations presented
in figure 9 of the Main Text.

A.1. Stability analysis of the fixed points of the Jeffery equation
In this section, we analyze the linear stability of the fixed points of the Jeffery equation (9)

p=UI—ppHAp. (A1)

This analysis will also yield the characteristic timescales of the convergence onto the asymptotically stable
solutions. As discussed in section 3.1 and in [18], the fixed points of equation (A1) are given by the real
eigenvectors of A7. Let A be anormalized real eigenvector of A” with eigenvalue \. Linearizing equation (A1)
around A by writing p = A + Ap, where the perturbation Ap lies in the tangent space to the sphere at A, gives

Ap = —AAp + (I — AXD(ATAp). (A2)

Equation (A2) is a two-dimensional linear dynamical system whose stability can be classified using the standard
trace-determinant characterization. To be more explicit, we introduce the basis vectors {e;, e,} for the tangent
space to the sphere at A

elanA, 22:€1X)\, (A3)

where 7 is an arbitrary non-zero vector, non-colinear with A. In that basis, the perturbation reads
Ap = a(t)e; + ((t)e; and thelinearized system (A2) reduces to
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Figure Al. Additional comparison between experiments with non-motile elongated diatoms (a) and simulations (b)—-(d) shown in
figure 5 of the Main Text. In simulations, we reject rods with out-of-plane components larger than: 15° (b), 30° (c) and 45° (d). Panels
(a) and (c) are the same as panels (b), (¢) in figure 5 of the Main Text.
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efficiency based on the classical diffusive calculation 7g = ; all parameters are the same as in figures 9 and 10 of the Main Text.

In the presence of flow, the diffusive encounter efficiency is given by ™% = 4Sh /Pe, where Shand Pe are the Sherwood and Péclet
number, respectively [25]. For the Sherwood number, we used the following formula valid for low Reynolds number Sh =

0.5[1 + (1 + 2Pe)!/?]. For the Péclet number, we took Pe = UR/ Dy, with the bacterial diffusivity Dy, = 0.5UZ7y, where 7 = Dy L
. As discussed in section 6, the diffusive encounter efficiency overestimates the
ballistic one and only for the largest sinking particles considered here the two descriptions start to become comparable.
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where

My =

(A4)

(A5)

To evaluate the trace and determinant of My, we first note that {e;, e;, A} is an orthogonal basis for A”. In that

basis, A” takes the form
el Ave, efAve, 0
A" =|efAve; efAVe, O
NAYe, XNAve, A

Let { A4 Ap, A} bethethree eigenvalues of A”. The following identities follow from the above matrix

representation
TrA = e/ Ave; + e Ae; + A= X, + Ny + A =0,
detA” = A M\ = Al(e] Aler)(e) Ales) — (e ATes) (e) Ale)],

(A6)

(A7)
(A8)

where we used fluid incompressibility in the first equation. From the above, we derive the following formulae

efAe + efAe, = — )\,
(ef Ae(e, Aey) — (e Aer)(e; Aler) = Aoy,
which imply the following expressions for the trace and determinant of M
TrMy = =3\,
detMy = 20 + A\ \p.

From these expression, the eigenvalues of M, read

A %(TrMA + JTeM? — 4detMy) = %(—3/\ + X ).

Since A = — )\, — A, this further simplifies to
M — %(—3>\ + O = ).

(A9)
(A10)

(Alla)
(A11b)

(A12)

(A13)
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Figure A3. Additional characterization of the landing distribution function & (6) for the simulations presented in figure 9 of the Main
Text. Here, we look at the colatitude 6y such that the fraction fof the interception positions lies in between 0° < < 6y. Formally, 6,

is defined as the integral 27 J:) U £(0)sin 0dO = f.Wedisplay the results for three fractions, f = 0.25 (top row), f = 0.5 (middle row)
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We now use the eigenvalues (A13) to analyze the linear stability of the fixed points of the Jeffery
equation (A1). Let us first consider the case when A" has all real eigenvalues \; < A\, < A3 with eigenvectors
{ AL A2, A3}, which are also the fixed points of equation (A1). In this case, the eigenvalues of the linearized

system (A4) are also real and equation (A13) simplifies to

A — %(—3>\ + 1 — Ao, (Al4)
Furthermore, since ; + A, + A3 = 0 by the incompressibility, we musthave A = —|\| < 0, A3 > Oand
[ Azl < min(]Ay], A3). For the fixed point Ay, the eigenvalues are are always positive
1 1 1
AP = 23N E D = ) = JE30E s = W1 = 130 £ (A =201 >0, (A1)
implying that A, is a repulsive node. For the fixed point A,, the eigenvalues are
1 1 1
)‘Ifh = 5(—3)\2 £ N =N = E(_3)\2 £+ 2)) = E[—3)\2 + (A + 2M)] (A16)
Explicitly
A= a = A >0, (A17a)
MMy = 20 — =N — X <O (A17D)
Thus, A, is asaddle point. Finally, for A;, the eigenvalues are always negative
1 1
AMx E(_3)\3 N = N = E[—3/\3 + (A +2))] <0, (A18)
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implying that A; is an attracting node. We conclude that the asymptotically stable orientations of equation (A1)
for the case when A” has three real eigenvalues are given by + X, since these are the only attracting fixed points
on the sphere of orientations. We can estimate the characteristic time 7, needed to converge onto the stable

orientation JA; as the inverse of the average of the eigenvalues )\fA3
3
T = = 4 AM) /2 = . (A19)

We now consider the case when A” has a pair of complex conjugate eigenvalues and one real eigenvalue

{ A AF, As}. We write the complex eigenvalue as \; = AT + i\l In this case, the only fixed point of the Jeffery
equation (A1) is given by the real eigenvector A;. We estimate the linear stability of this fixed point. The
eigenvalues of the linearized system (A4)become

1 3 TN
AMs = E[_3)\3 + J — AH?] = —EA:; + i\l (A20)

We see that, if the only real eigenvalue ); is positive, then A; is an attractive spiral. Otherwise, it is a repulsive
spiral and the asymptotic state of equation (A1) is given by a stable limit cycle, to be discussed in the next section
in more detail. The timescale associated with the convergence on or divergence away from A; is given by the

M),
absolute value of the real partof A *

3
Ta = Sl (A21)

A.2.Limit cycle case

In the case when A” has complex eigenvalues ), , and the real eigenvalue is negative A < 0, the asymptotic
solution to the Jeffery equation (A1) is given by a limit cycle. The limit cycle is the great circle perpendicular to
the real eigenvector p* of A7. To show this, we introduce the orthonormal basis

m=wxp*/[lwxp¥, mnm=mn xp* (A22)

where w is arandom non-zero vector. Note that the two orthogonal vectors n; and 1, span the plane of the great
circle perpendicular to the real eigenvector p*. Welook for solutions of the form

p(t) = sinf(t)n + cosb(t)n,. (A23)
Plugging the above ansatz into the Jeffery equation (A1) yields

0 cosOn — Osinbfn, = [I — (sinbn, + cosOn,)(sin Gan + cos HnZT)](sin 0A'n + cos 0A n,). (A24)

To simplify the above expression, we introduce the following notation for the submatrix of A”
T T
n, An; n; An
M= | A m A (A25)
n, Any n, An,
and project equation (A24) onto n; and n,
0 cos 0(t) = sin OM;; + cos OM;, — sin 0 (sin® OM;; + sin @ cos OMi, + cos 0 sin OMs; + cos? OMsy),  (A26)

Osin0(t) = —sin OMs; — cos My, + cos 0(sin? My, + sin @ cos OM,, + cos 0 sin OM,; + cos? OMyy).
(A27)
We combine the two equations into a single one by taking a linear combination with weights cos # and sin 6
0 cos?0(t) + 0sin?0(t) = 0 = cos b sinOM;; + cos?OM;, — sin? OMs; — sin 0 cos OMay, (A28)
which further simplifies to
M, — My, si

My, + My, c M, — My,

0= in260 + 0s20 + (A29)
Introducing A = Mj; — Myy, B = My + My and C = My, — M,;, we obtain
20 = Asin20 + Bcos26 + C. (A30)

This is a first-order nonlinear differential equation. Since the nonlinear term is smooth, the unique (up to the
2mperiod) solution exists, which validates the ansatz (A23) and proves the existence of a limit cycle.
We now explicitly calculate the period T of the limit cycle. To this end, integrate equation (A30) over T'

T
47 = CT + f (Asin20 + B cos 20)dt (A31)
0
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2T
= cr+ [ (Asin20 + B os ze%ae (A32)
0
2 C
—CT + 2f (1 S )de. (A33)
0 Asin20 + Bcos20 + C
We get the following equation for T'
2 2
T= f : do. (A34)
o Asin20 + Bcos20 + C

This expression can be expressed as
2 1 27 1
r=2 a0’ =2 [ .
0 Asinf’ + Bcosf' + C 0 JA*+ B%*sinf+ C

where we changed variables twice using # = 20and = 6’ + «, where sin = B//A2 + B? and we used the
periodicity of the integrand to keep the integration limit as [0, 27). The final integral can be evaluated using
contour integration. We first change the variables z = A 4+ B2e"’, which yields

T=4¢ & . (A36)

z? 4 2iCz — (A* + B?)

We note that C* > A? 4+ B? corresponds to A having complex eigenvalues, which is the case of interest. In this
case, the integrand has one simple pole inside the integration contour (circle of radius y/A> + B? centered at the
origin) given by one of the roots of the integrand denominator. Applying the residue theorem, yields

T4 (A37)

/szAszz’

This can be related to the original matrix A and its negative real eigenvalue A as
4T

do, (A35)

T= . (A38)
J2detA/ X\ + N — tr(A%)
Assuming the complex eigenvalues take the form \; , = « =+ ig, this further simplifies to
=2 (A39)
g

Therefore, the angular frequency of the limit cycle is given by the imaginary part of the complex eigenvalue.
These results agree with the analysis in [19] obtained using a different method.

A.3.Velocity gradient of the Stokes flow around a sphere

In this section, we compute the velocity gradient in equation (13) due to the Stokes flow around a sinking
particle. We first carry out the calculation in the curvilinear orthogonal coordinate basis {9, 9y, 0,} with the
metric tensor 8= diag(1, 7%, r?sin’ ) and then transform to the usual orthonormal system {7, 9, (25}. The
transformation between the two systems is encoded in the Jacobian

J = diag(1, r, rsin0). (A40)
In the curvilinear system {0,, Oy, Oy}, the Stokes flow (2) reads
3 3
v=1"0, + v/0) = Ucosf|1 + Rr_3R O + Usin6 1 + R + 3R 0. (A41)
2r3 2r ro 4rt 472

To compute the velocity gradient (1, 1)-tensor A;; = V;v, we note that the only non-zero Christoffel symbols
are

o= —1 Lj, = —rsin’b, (A42)
% =r4 = l/r, Ffw = —sinf cos ¥, (A43)
Iy =T9 =1/r, Tj, =T7 = coto. (Ad4)
Using covariant differentiation, we find the velocity gradient tensor components (in the {9;, 0y, Oy} basis)
Vv =0, Vv =04 +v/r, Vv?=0, (A45a)
Vov' = Ogv" — v, V! = 9pv? + v /v, Ypv? =0, (A45b)
Vov'=0, Vp'=0, Vv =v"/r+ coto’. (A45¢)
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Explicit calculation gives the following expressions for the tensor entries

3
V,v" = U cosf _3R + 3R , (A46a)
2rt 2r?
(1 3 . 1 : : ’
Ol = usino[ L - B Z3RY L pane[—L £ B L 3RY Z pane[ 3R 3R) (asen)
r? 2 2 4r> 413 4r> 473
Vv? =0, (A46¢)
3 3 3
Vyv" = —Usinf 1+R_,ﬁ + Usin# 17R—7ﬁ = Usinf *£+ﬁ, (Ad6d)
23 2r 4r*  4r ar* - 4r
1R 1 R ’
VQVHZUCOSQ __+R_+£ +UCOSG—+R——§ :UCOSQ£—2> (A46e)
ro 4rt 472 rooo2rt 2r? 4r*  4r?
Vyv? =0, (A46f)
%Vr =0, (A46g)
V¢V9 =0, (A46h)

3 3 3
Vyv? = U cos 6 l—i—R——ﬁ + Ucost —l—i-R——i—ﬁ = Ucosf 3—2 (A461)
‘ roo2rt 2r? ro Art o 4r? 4

As a sanity check, we compute the flow divergence

Vo' 4+ Vvl 4+ Vyv? =0, (A47)
which vanishes, as expected. In the matrix form, the above tensor reads (U = 1andR = 1)
3 3 3 3\ .
<_F +?)cos¢9 (_F +;)sm9 0
i 3 3\ . 3 3
Ay = Vv = (*ﬁ — F)sm& (F — m)cos@ 0 . (A48)
3 3
0 0 (F — ?) cos
Finally, we use the Jacobian J (equation (A40)) to express A in the orthonormal basis {7, 0, (Ab}
2 tand 0
JA] ! = i(i — i)c059 2iliand 1 0 (A49)
=13 o — 5 tan — )
0 0 -1

which yields equation (13), in agreement with the calculation in [21] where the velocity gradient was computed
using a different method.

A.4. Ellipsoids in the Stokes flow: stagnation lines and particle surface

The eigenvalues of the velocity gradient A (equation (13)) on the stagnation line (f = 0, 7) and the particle
surface (r = 1) have multiplicity greater than one. In this case, the analysis of section 3.1 does not directly apply,
yet these special locations will be important for the encounter process of non-motile micro-organisms, which
can only approach the sinking particle near the stagnation line # = 7. On the stagnation lines § = 0, 7,
equation (13) reduces to

3(1 1 2 0 0
Ay(r, 0= 0,7, ¢) i—(— _ —) o -1 0l (A50)
4\ r2 rt 0 0 —1

where &+ corresponds to # = 0and § = m, respectively. This simple diagonal structure implies that on the
upstream stagnation line (§ = 7) rods align tangentially to the sinking particle, while on the downstream
stagnation line (6 = 0), rods align vertically. This picture can be inferred from figure 3(b) by taking the limit

p — 0.Since A7=~! = — AT, we immediately obtain the response of disks. Disks align tangentially to the particle
surface for § = 7 (with axis of symmetry in the vertical direction), while they lie in the r — @ plane for § = 0.
Therefore, non-motile rods or disks approaching the sinking particle along the # = 7 stagnation line orient with
their longer dimension tangential to the particle surface. We now compute A on the particle surface to see if
shear tends to maintain such a tangential orientation. At r = 1, the only non-zero component of the velocity
gradientis Ay, (r = 1, 0, ¢) = —% sin 6. This structure implies that the tangential orientations of rods
(symmetry axis along § — ¢) and disks (symmetry axis along r) are the null vectors. Thus, to zeroth order, shear
maintains the tangential orientation of rods and disks as they are advected around the sinking particle.
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Figure A4. Encounter probability P(p) (a), (b) and distribution of interception colatitudes & () (c), (d) for bacteria starting at the
plane z = —6R with a random initial orientation for different relative sinking speeds U / U}, and aspect ratios «; (a), (c) shows the
results of numerical simulations of the ballistic model (3) and (b), (d) the stochastic model (20). In the parameter range considered,
rotational diffusion mainly affects elongated swimmers (bottom panels), for which it decreases the impact of the hydrodynamics
focusing at low sinking speeds but also ameliorate the hydrodynamic screening at higher sinking speeds.

A.5. Methods: numerical simulations

A.5.1. Timestepping. Tonumerically integrate the ballistic model (equation (3)), we discretized the equations
of motion using the classical Runge—Kutta method (RK4). Depending on the sinking speed, the time-step was
chosen between At = 0.0757, for U ~ Uy and At = 0.0057, for U ~ 100Uy, where 7, = I, / U, is the time
needed for the bacterium to travel distance equal to its bodylength. To integrate the quasi-ballistic model with
rotational diffusion (equation (20)), we used the stochastic version of the Euler method; at each time step, the
diffusive term is discretized by samplinga3 x 1 vector with normally distributed entries with zero mean and
variance 2D, At. With the rotational diffusion coefficient D, = 0.25 s~!, the time step varied between 0.04 and
0.2 ms. At each time step, the bacterial orientational vector was normalized to unit length.

A.5.2. Estimation of the encounter efficiency. ~ For a given sinking particle size R and sinking speed U, we
estimated the encounter efficiency by discretizing equation (7). We typically sampled the encounter probability
P(p) onanon-uniform grid to resolve the accumulation of P (p) near the accessibility region for slowly sinking
particles or near the centerline for fast sinking particles (see figures 7 and A4); the number of points on the p-
grid was always at least 50 for motile bacteria and 10 for non-motile bacteria. Once the estimate of P (p) had been
obtained, the integral in equation (7) was evaluated using the trapezoidal rule.

To estimate the encounter probability P (p) starting in the initial plane z = —6R at distance p away from the
centerline for random initial orientations, we considered an ensemble of initial orientations by sampling along a
spherical spiral. Such a sampling gives an approximately uniform distribution of points on a unit sphere of
orientations. By using spherical spiral to sample initial orientations rather than choosing them randomly (that
is, choosing 3 x 1 vectors with normal entries with zero mean and normalizing them to unit length), we obtained
faster convergence by avoiding random clustering of points on the unit sphere. The number of initial
orientations was chosen high enough to guarantee that the solid angle the sinking particle extended at the initial
bacterial location contained at least five initial orientations (the number of blue dots in the inset in figure 1 was
always at least five). For such an angular resolution, the number of initial orientations varied between O (102) for
fast sinking particles up to O (10*) for slowly sinking particles, for which the accessibility region with P(p) > 0
was largest. In general, to estimate the encounter efficiency 7 for a given (R, U) pair, we simulated about O (10%)
trajectories for fast sinking particles and up to O (10°) trajectories for slowly sinking particles. In total, due to
scanning the (R,U) parameter space in different shear ON/OFF configurations, the this work summarizes the
results of simulating about O (10%) bacterial trajectories.

A.5.3. Interception criterion. The sinking particle was assumed to be a perfect absorber: geometric overlap
between any part of a bacterium and the particle was counted as an encounter. In simulations, for simplicity, we
computed this geometric overlap by approximating elongated bacteria (o > 1) oflength I, by a cylinder with
spherical caps. The cylinder length, including caps, is I, and its width is I, /. With this simplification,
determining the interception is equivalent to determining the distance between the cylinder centerline and the
particle center. Similarly, the geometry of oblate particles (o < 1) was approximated by considering four
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cylinders (with spherical caps) of length 1, and width I, . The centerlines of the cylinders lie in a plane, the
centerline midpoints coincide and the centerlines are rotated at angle 45°—the four cylinders form two crosses
rotated by 45°. With this simplification, determining the interception is equivalent to determining the distance
between the four cylinder centerlines and the particle center.

A.5.4. Estimation of the distribution of interception locations. To estimate & (0) for a given (R, U) pair, we
considered the ensemble of the endpoints of trajectories that resulted in the interception. As described above,
this ensemble resulted from scanning the p-range, the initial position at distance p away from the particle
centerline in the initial z = —6R-plane, as well as uniform initial orientations. This ensemble yielded a
histogram of the interception colatitudes . During construction of this histogram, the counts for each scanned
position p were further weighted by p and the p-grid spacing, to account for the number of initial positions at
distance p being proportional to p (circles of radius p) as well as the non-uniformity of the p-grid. Such prepared
histogram of #-counts (30 bins, bin width 6°), normalized to a probability density function over a unit sphere,
was used as the estimate of £ (6).

A.6. Methods: experiments

A.6.1. Cell cultured.  Phaeodactylum tricornutum cells (strain CCMP2561) were cultured in f/2 medium
(Guillard and Ryther 1962) mixed with artificial seawater. Artificial seawater was prepared by dissolving 35 g of
artificial sea salt (Instant Ocean, Spectrum Brands) in 1 1 double distilled water (DDW)), filtered through a

0.2 pm filter and autoclaved. Cultures were propagated in 18 °C in AlgaeTron AG 230 PSI (Photon Systems
Instruments) with 14 h/10 h light/dark cycle. For the experiments, cells in the exponential growing phase were
used. Cell length and width were 21.2 4+ 2.4 ym (n = 14)and 3.12 4+ 0.57 pum (n = 14), respectively, as
measured by phase microscopy.

A.6.2. Experimental procedure.  Alginate beads were prepared using a mix of sodium alginate salt from brown
algae (1.5% w/v, medium viscosity; Sigma) with 50 mM ethylenediamine tetra acetic acid (EDTA) in DDW.
Beads were prepared by dripping the alginate solution from a 1 ml syringe at rate of 60 1 min~! from a height
0f20 cm to beaker containing 0.5 M CaCl, in DDW. The CaCl, solution was stirred at 300 rpm, usinga
magnetic stir-bar. Flow dynamics were studied in microfluidic chip (Sticky-Slide 0.4—IBIDI). For the
experiment, single bead was trapped at the center of the channel using a glass cover slide. A syringe pump
(Harvard PHD2000) was then used to feed the channels with artificial sea water at the desired flow speed

(160 pm s1). Channel was visualized using a Nikon (eclipse TI-2) microscope at magnification of

4 x 1.5 x 10 (60x)and 20 fps using Orca flash 4.0 (Hamamatsu) camera.

A.6.3. Image analysis. Image analysis was performed on 50 consecutive images using ImageJ (Rueden et al
2017). In general 1098 £ 50 cells/image were measured. To extract the orientation from each cell, median
image intensity was calculated using ‘Stacks/Z Projection’ function and subtract from all images. ‘FFT /Bang
pass’ filter was used with small cutoffof 1 pxl and big cutoff of 10 pxl. ‘Minimum’ filter was used with 1 pxl
cutoff. Data was transformed to binary using ‘Make binary’ function with default parameters. Finally, ‘Analyze
particle’ function (Particle 30-1000 pxl) was used to collect the orientation data.

A.7. More details on the impact of rotational diffusion.

The uniformizing impact of diffusion is studied in more detail in figure A4, where we consider the interception
probability P(p) for a bacterium starting at the plane z = —6R with random orientation (figures A4(a), (b)) as
well as the corresponding distribution of the interception locations & () (figures A4(c), (d)). We compare side to
side the cases without (figures A4(a), (c)) and with diffusion (figures A4(b), (d)) for oblate, spherical and
elongated swimmers (top, middle and bottom rows, respectively). The accessibility region (defined as P(p) > 0]
shrinks under diffusion, because the now erratic motion of bacteria takes longer to reach the particle. and
therefore, the bacteria must start closer to the particle to be able to catch it. Within the accessibility region, the
distribution P(p) for oblate and spherical swimmers is nearly unaffected by diffusion (figures A4(a), (b), top and
middle rows) and so is £(0) (figures A4(c), (d), top and middle rows). However, for elongated swimmers,
diffusion decreases the size of the high probability belt near the edge of the accessibility region but also raises the
probability of interception for initial conditions directly below the sinking particle (figures A4(a), (b), bottom
row). As a consequence, diffusive elongated swimmers have non-negligible probability of attaching to the front
of the sinking particle (figures A4(c), (d), bottom rows).
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