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Abstract
The ecological interaction between bacteria and sinking particles, such as bacterial degradation of
marine snowparticles, is regulated by their encounters. Current encountermodels focus on the
diffusive regime, valid for particles larger than the bacterial run length, yet themajority ofmarine
snowparticles are small, and the encounter process is then ballistic. Here, we analytically and
numerically quantify the encounter rate between sinking particles and non-motile ormotilemicro-
organisms in the ballistic regime, explicitly accounting for the hydrodynamic shear created by the
particle and its couplingwithmicro-organism shape.We complement results with selected
experiments on non-motile diatoms. The shape-shear coupling has a considerable effect on the
encounter rate and encounter location through themechanisms of hydrodynamic focusing and
screening, whereby elongatedmicro-organisms preferentially orient normally to the particle surface
downstreamof the particle (focusing) and tangentially to the surface upstreamof the particle
(screening). Non-motile elongatedmicro-organisms are screened from sinking particles because
shear aligns them tangentially to the particle surface, which reduces the encounter rate by a factor
proportional to the square of themicro-organism aspect ratio. Formotile elongatedmicro-organisms,
hydrodynamic focusing increases the encounter rate when particle sinking speed is similar tomicro-
organism swimming speed, whereas for very quickly sinking particles hydrodynamic screening can
reduce the encounter rate below that of non-motilemicro-organisms. For natural ocean conditions,
we connect the ballistic and diffusive limits and compute the encounter rate as a function of shape,
motility and particle characteristics. Our results indicate that shear should be taken into account to
predict the interactions between bacteria and sinking particles responsible for the large carbon flux in
the ocean’s biological pump.

1. Introduction

Encounters involving small particles suspended in afluid underpinmany industrial, physical and biological
processes. In papermaking, too high a collision rate between cellulose fibers leads to excessive fiberflocculation
and poor paper quality [1]. In the atmosphere, precipitation formation relies on encounters betweenwater
droplets in clouds under the combined action of gravity and turbulence [2]. In the ocean, encounter rates
betweenmicroscopic phytoplankton following a phytoplankton bloomdetermine the formation ofmarine
snow responsible for the biological pump, the vertical flux of carbon from the upper ocean to its depths [3].
Living organisms extend the complexity of the encounter processes occurring in non-motile systems by
additionalmechanisms.Micro-organisms and plankton dwelling in the oceans can navigate throughwater in
search of food andmotility greatly enhances the encounter rates of thesemicroscopic organismswith resource
patches [4]. Compared to non-motilemicro-organisms, whose encounter rate is proportional to the low
diffusivity associatedwith Brownianmotion,motilemicro-organisms have amuch higher (often, 100- to 1000-
fold) encounter rate, since theirmotility effectively enhances diffusivity [4]. Of particular importance for the
biogeochemical cycles of carbon in the ocean are the encounters between bacteria and sinking particles of
organicmatter. Once attached to a particle, bacteria can grow on it and solubilize it, thus reducing the flux of
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carbon to the deep ocean [5, 6], a fundamental process in climate-relevant carbon dynamics. Accuratemodels of
the encounter rate between bacteria and particles valid across awide range of particle sizes are thus important to
estimate the role of bacteria in the carbon pump. To date, however, encounter rate formulations have focused on
the diffusive regime suitable for large particles. Here, we study the encounter betweenmicro-organisms and
sinking particles in the ballistic limit, relevant for themost abundant small particles, with focus on the impact of
fluid flow and the associated shear generated by the particle on the encounter rates.

Theoretical estimates of the encounter rates betweenmicro-organisms and sinking particles have thus far
primarily built onmodelingmicro-organisms as spherical colloids andmotility as a diffusive process [7, 8].
These simplifying assumptionsmap themicrobial encounter with particles onto the classical problemof heat
andmass transfer [8, 9]. By construction, this approach assumes particles are larger than the run length of a
bacterium. Since the latter is of the order of tens to hundred ofmicrons [8, 10], the diffusive approximation is
limited to particles larger than several hundredmicrons. Yet, due to the power-law nature of themarine particle
size spectrum, themost abundant particles in the ocean have sizes belowhundredmicrons [11]. In this
increasingly ballistic regime, the coupling between theflowgenerated by the particle and the swimming of
bacteriamay dominate the bacterial orientational dynamics, in contrast to the diffusive regime [12]. There is
substantial experimental and theoretical evidence thatfluid velocity gradients (shear) can dramaticallymodify
the swimming trajectories ofmicro-organisms [13–15]. A primarymechanism is shear-induced reorientation,
whereby the torque associatedwith fluid velocity gradients reorientsmicro-organisms and thus impacts their
swimming direction andwhere they end up in the flow. For example, a simple parabolic flow can lead to shear-
trapping and bacterial accumulation nearmicrochannel walls [14]. Shear-induced reorientation is a general
phenomenon, applicable to any elongated bacteria that swim inflow, yet its impacts on the fundamental
problemof the encounter rate betweenmicro-organisms and sinking aggregates in the ballistic range has to date
not been considered.

Here, we combine analytical and numerical calculations with experiments to study encounters between
non-motile andmotilemicro-organisms and sinking particles in the ballistic regime, with focus on how theflow
created by the particle affects bacterial trajectories and ultimately the encounter rates. For the classical Stokes
flow around a sphere, we show analytically that the orientational dynamics of elongated bacteria—unlike
spherical particles—break the fore-aft symmetry of theflow streamlines, withmajor consequences on encounter
rates and attachment location.Non-motile elongated bacteria orient tangentially to the particle surface as they
pass by the particle, which reduces their encounter rate by a factor proportional to the square of the bacterial
aspect ratio. Formotile elongated bacteria, the encounter rate is very sensitive to the particle sinking speed
relative to the bacterial swimming speed.When both speeds are comparable, shear increases the encounter rate
about twofold and leads to preferential attachment to the leeward side of the particle. For rapidly sinking
particles, shear screensmotile bacteria from the sinking particle and surprisingly, the encounter rate drops far
below the limit corresponding to non-motile bacteria.

This work is organized as follows: we introduce themodel of the encounter process and define the relevant
observables in section 2. To quantify the impact of shear on bacterial orientation, we classify the asymptotic
configurations that ellipsoids assume in generalflows and then apply the results to the Stokes flow around a
sphere in section 3. The encounter of non-motile andmotilemicro-organismswith sinking particles is studied
in sections 4 and 5.We discuss the biophysical consequences of ourmechanistic description of the encounter
process in section 6 and draw conclusions in section 7.

2.Model

Wemodel amarine snowparticle as a sphere sinking in a quiescent fluid and bacteria as elongated and self-
propelled ellipsoids(section 2.1). The encounter process is quantified through encounter rate, encounter
efficiency and distribution of interception locations(section 2.2).

2.1. Equations ofmotion
Themost abundantmarine snowparticles in the ocean have sizes in the range up to several hundredmicrons
[11] and sinking speeds up to about amillimeter per second [16], which gives Reynolds number up to about 0.1.
In this viscosity-dominated regime, the gravitational and viscous forces on the particle balance, implying that a
spherical particle of radiusR sinks at the constant terminal speed given by the Stokes law

( )
r r

n
=

-
U gR

2

9

1
, 1

p w 2

where rp and rw are the densities of the particle andwater, respectively, ν is the kinematic viscosity of water and g
is the gravitational acceleration. In the reference frame fixed at particle andmovingwith it(figure 1(a)), theflow
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is described by the classic Stokesflow
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whereU is the sinking speed given by equation (1).
Wemodel a bacterium as a small self-propelled elongated ellipsoid characterized by three parameters: length

lb, aspect ratioα and swimming speedUb. The position and orientation of the bacterium at time t are given by
( )x t and ( )p t , where the latter (unit) vector points from the bacterial tail to its head(figure 1(b)). The dynamics

of x and p are governed by

( ) = +x p vU a, 3b

( )( ) ( ) g= - +p I pp E W p b. 3T

Equation (3a) states that the total bacterial velocity x is a superposition of self-propulsionwith speedUb in the
direction p and theflow v (2) around the particle. Equation (3b) is the classic Jeffery equation for the
orientational dynamics of ellipsoids inflow [17]. The tensors E and W are the symmetric and anti-symmetric
parts of the velocity gradient = ¶A vij j i. The bacterial aspect ratio enters the dynamics(3) through the shape
parameter ( ) ( )g a a= - +1 1 ;2 2 it vanishes for spheres, is positive for elongated organisms and negative for
oblate ones. By construction, ourmodel accounts for the hydrodynamic impact of the particle on the bacterium,
but neglects the influence of the bacteriumon theflowfield.

2.2. Physical observables
Let ( )x pp , be the probability of an encounter between the sinking particle and a bacterium starting at the initial
position x with head pointing in the direction p. For the interception criterion, we take the sinking particle to be
a perfect absorber and stop simulations if any part of the bacterium touches the particle. For the ballistic
model(3), p is either zero or one since the initial condition ( )x p, determines a unique bacterial trajectory; when
equation (3) is supplementedwith rotational diffusion, p can take a range of values between 0 and 1. Averaging
over randomorientations yields the encounter probability ( )xP for an initial position x

( ) ( ) ( )ò=x p x pP pd , . 4

Intuitively, ( )xP is the relative solid angle extended by initial bacterial orientations that lead to the
interception(red area in the inset of figure 1(b)). Let ( )r fz, , be the cylindrical coordinate systemwith origin
fixed at the sinking particle. Due to rotational symmetry around the z-axis, we have ( ) ( )r=xP P z, . To define
the encounter rate and interception efficiency, suppose that the sinking particle enters a region of uniform
concentration n of randomly oriented bacteria. Let ˆ ( )N t z, be the total number of encounters with bacteria that
at time t are located at a z-plane below the sinking particle (upstreamof the particle, <z 0) and collide with the
particle at some later time. In a short interval ( )+t t t, d , the change in N̂ due to the encounters with bacteria

Figure 1.The ballisticmodel of the encounter between bacteria and sinking particles includes the impact of shear on bacterial
trajectories. (a)Spherical particle sinks under gravity with speed given by the Stokes law(1) and induces the Stokes flow(2) around it.
Bacteria aremodeled as self-propelled ellipsoids of aspect ratioαwith the center ofmass ( )x t and the tail-to-head orientation ( )p t
obeying equation (3). (b)Representative trajectories for a bacterium starting at [ ] [ ]= - -x y z R, , 2, 2, 2 with a random initial
orientation ( =U U 3b andα=10). Red (black) trajectories correspond to interceptions (misses). Interceptions are characterized by
the landing position on the particle as well as the initial orientation. All such initial orientations define the interception probability
starting at the given position(red points in the inset, equation (4)).
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with initial positions in the thin sheet ( )+z z U t, d is ( )òp r r r
¥

nU t P z2 d , d
0

. Therefore, for a constant

sinking speed, the encounter rate ˆ ( )N t zd d is independent of time and is given by

ˆ
( ) ( ) ( )òp r r r=

¥N

t
z nU P z

d

d
2 , d . 5

0

For a z-plane far away from the sinking particle ∣ ∣ z R thefluid is practically undisturbed,making it
meaningful to define the z-independent encounter rate  =N N td d

ˆ (∣ ∣ ) ( ) =  ¥N N t zd d . 6

In simulations, wefix the starting plane at = -z R6 , which amounts tomaking the approximation
ˆ ( ) » = -N N t z Rd d 6 . To scale out the concentration n, we often focus on N n, the ‘encounter rate

kernel’ [8].
To further scale out factors intrinsic to the sinking particle, the radiusR and velocityU, we follow the

notation used infiltration literature and define the dimensionless interception efficiency η as the ratio of volume
cleared and volume swept by the particle [9]

( ) ( )


òh
p

r r r= =
¥N n

R U R
P

2
d . 7

2 2 0

Intuitively, h = 1means that the sinking particle collects bacteria from a volume ofwater equal to the volume of
the cylinder the particle sweeps. For small non-motile colloids, we expect η= 1 because the colloids are
constrained to theflow streamlines, which limits the interception to a narrow region near the particle centerline,
the ‘stagnation line’(figure 4(a) and section 4.1).

In addition to computing the encounter rate and encounter efficiency, wewill quantify the location on the
sinking particle where the bacteria land. Let ξ(θ,f) be the distribution of the interception locations, where θ and
f are the colatitude and the azimuth coordinates on the particle, respectively.We normalize ξ(θ,f) as the
probability density function over the unit sphere, ( )ò ò x q f W =

p p
, d 1

0 0

2
, where q q fW =d sin d d . Rotational

symmetry implies that ξ(θ,f)=ξ(θ). Finally, themean interception colatitude is

( ) ( ) ( )ò ò òq qx q f p qx q q qá ñ = W =
p p p

, d 2 sin d . 8
0 0

2

0

For example, q < á ñ < 0 90 (northern hemisphere, downstream) implies preferential leeward attachment,
while q < á ñ < 90 180 (southern hemisphere, upstream) indicates attachment to the front.

3. Ellipsoids inflow

Shear preferentially reorients rods and disks, such as elongated bacteria orflat diatoms, along certain directions.
Depending on theflowbeing strain- or rotation-dominated, ellipsoids eventually point in the direction of the
largest deformation rate or rotate in a certain plane(section 3.1). Applying this classification to the Stokes flow
induced by the sinking particle reveals that ellipsoids—unlike spheres—break the fore-aft symmetry of theflow
streamlines(section 3.2). This quasi-static picture will be essential to rationalize the subsequent simulations of
the encounter problem as it underpins the phenomena of hydrodynamic focusing and screening.

3.1. Ellipsoids in generalflows
The asymptotic orientation of a non-sphericalmicro-organismheldfixed inflowbut free to reorient under the
action of the velocity gradient A follows from the long-time limit of the Jeffery equation (3b). Previous studies
focused on special cases with A derived from, for example, simple shear or rotational flows; in the former case
the dynamics collapse onto one of themany degenerate limit cycles, thewell-known Jeffery orbits [17, 18]. For a
random A, neglectingmarginal cases of A having eigenvalues withmultiplicity greater than one, two scenarios
are possible: either a rod asymptotically points towards the direction of the largest effective deformation rate or it
rotates in a certain plane. Thefirst possibility has been known [18] and corresponds to the rate of strain E out-
competing the rate of rotation W . The second scenario complements the study in [19] and generalizes the Jeffery
orbits to generic rotational flows and arises when W dominates over E . Detailed derivations are given in the
appendices A.1 andA.2.

The symmetric part of the gradient A, the rate of strain E , describes the rate at which the fluid stretches and
compresses [20]. The antisymmetric partW represents the fluid rate of rotation and is determined by the
vorticity w =  ´ v as w= - Wij ijk k

1

2
. Given A, it is theweighted sum g= +gA E W that enters the Jeffery

equation (3b), where γ is the shape parameter ( ) ( )g a a= - +1 12 2 determined by the organism aspect ratio
α. In this notation, the Jeffery equation (9) reads
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( ) ( ) = - gp I pp A p. 9T

Equation (9) is a dynamical systemon the unit sphere of orientations(figure 2).Wefirst discuss the case of
sphericalmicro-organisms (α=1, γ=0) and then describe in detail the response of elongated bacteria (α>1,
γ>0); the case of oblatemicro-organisms(α<1, γ<0) is dual to that of elongated ones.

For sphericalmicro-organisms, the shape parameter vanishes (γ=0) and equation (9) simplifies to

( ) w= ´p p
1

2
, 10

where w is the vorticity. Thus, sphericalmicro-organisms respond to the fluid rotation but are unaffected by the
fluid strainingmotion. Equation (10) can be solved exactly in this case [18]: for a given initial orientation ( )p 0 ,
the solutions of equation (10) correspond to ( )p t rotating around the vorticity vector w and in the same sense as
w (figure 2(a)). The angle between ( )p t and w isfixed by the initial orientation and the rotation rate is w 2.

Elongated or oblatemicro-organisms respond to both, the fluid rate of strain and rate of rotation. In this
case, it appears impossible tofind analytical solutions to equation (9); instead, standard dynamical system theory
helps to identify the long-time response. Since the fixed points ofequation (9) are given by the real eigenvectors
of gA [18], it is the eigendecomposition of gA that determines the asymptotic response. For a random gA , two
cases are possible: either gA has three real eigenvalues or one real eigenvalue and two complex conjugate
eigenvalues. In the first case, the eigenvector corresponding to the largest positive eigenvalue is an attractive fixed
point of(9)(figure 2(b)). In the second case, when the real eigenvalue is positive, the corresponding
eigendirection is still attractive, but once this eigenvalue is negative, the eigendirection becomes unstable and the
dynamics collapse onto a limit cycle (figure 2(c)).We next discuss these asymptotic scenarios inmore detail.

Letλi andl i, where i=1, 2, 3, be the eigenvalues and eigenvectors of gA . The incompressibility of theflow
requires that l l l+ + = 01 2 3 .When all liʼs are real, the Jeffery equation (9) has three pairs offixed points
corresponding to l= p i. Assuming that l l l< <1 2 3, thefixed points are respectively: a repulsive node
(l1), a saddle (l2), and an attractive node (l3). As a consequence, a random initial orientation eventually
collapses onto the stable direction l= p 3 (figure 2(b)). The timescale tl3

associatedwith this reorientation is
estimated as inverse of the average of the eigenvalues of the linearized version of equation (9)near thefixed point
l3 and is given by t l=l

-1 3

2 33
. Since the systemorients along l 3, the casewhen all liʼs are real corresponds to

the rate of strain E outcompeting the rate of rotationW .

Figure 2. In flow, spherical bacteria rotate around the vorticity vector(a), whereas elongated or oblate ones eventually point in the
direction of the largest effective deformation rate(b) or rotate in a certain plane(c). (a)–(c)Phase portraits of the Jeffery equation (9)
for the bacterial tail-head vector ( )p t reorienting under the velocity gradient A for different A and aspect ratiosa. (a)Spherical
bacteria always rotate around the vorticity w (z-axis). (b), (c)Depending on theflowbeing strain- or rotation-dominated, elongated
bacteria (orflat disks) eventually point along the direction of the largest effective deformation rate(z-axis in (b)) or rotate in the plane
perpendicular to the real eigenvector of ( )gA T (equator in (c)). (d)Time series of the components of ( )p t for the case shown in (c). The
rotation in the x−y plane is non-uniform: the rod accelerates when approaching the straining direction but slows downwhen near the
axis of compression; the rotation frequency is given by the imaginary part of the complex eigenvalue of gA . Parameters:

[ ] a= - =A 0, 1 2, 0; 1 2, 0, 0; 0, 0, 0 , 1 (a), [ ] a= - - = ¥A 3 4, 0, 0; 0, 1 4, 0; 0, 0, 1 , (b) and
[ ] a= - - = ¥A 1 2, 1, 0; 1 4, 1 2, 0; 0, 0, 1 , (c).

5

New J. Phys. 22 (2020) 043016 J Słomka et al



When gA has a pair of complex eigenvalues l1 and l1*, and a real eigenvalue l3, the eigenvectors
corresponding to { }l l,1 1* are complex, implying that there are only twofixed points given by l= p 3.When
l > 03 (stretching), the fixed pointl3 is an attractive spiral and represents the asymptotic direction. The
appearance of complex eigenvalues signals the rising importance of the rate of rotation W , but when l > 03 ,
straining still dominates the response. However, when l < 03 (compression), thefixed pointl3 becomes a
repulsive spiral and a stable limit cycle emerges. The timescale tl3

of spiraling onto or away froml3 is

∣ ∣t l=l
-1 3

2 33
. The limit cycle corresponds to a great circle; the circle lies in the planewith normal direction given

byl¢3, the eigenvector of the transposematrix gA T with eigenvalue l3. Thus, when l < 03 , the asymptotic state
of equation (9) corresponds to p rotating in the plane normal tol¢3 (figure 2(c)). The angular frequency of the
rotation is given by the imaginary part of the complex eigenvalue l1 (figure 2(d)).

The above analysis applies to a velocity gradient gA under the assumption that all its eigenvalues are
different; a separate analysis is required in the degenerate case.We next study A derived from the Stokes flow
around a sinking sphere.

3.2. Ellipsoids in the Stokesflow
The above classification of the orientational response of amicro-organism is now specified to the velocity
gradient derived from the Stokes flow in equation (2). Physically, we describe a bacterium rotating freely under
shear butwith the center ofmass fixed at some position. Self-propulsion and advection are still not included and
this simplificationmakes analytical progress possible. The long-time orientation depends on bacterial position:
spherical bacteria respond identically upstream and downstreamof the sinking particle(figure 3(a)), whereas
non-spherical ones break the streamline fore-aft symmetry(figures 3(b), (c)). This symmetry breaking leads to
hydrodynamic focusing and screening, crucial shear-inducedmechanisms that impact the full encounter
problem.

Spherical bacteria respond solely to thefluid vorticity (section 3.1), which for the Stokes flow reads

ˆ ( )w fq= - UR
r

3

2

sin
. 11

2

It follows from equation (11) that bacteria rotate around the azimuth f̂,(figure 3(a)). The rotation rate decays
with the square of the distance from the particle; it is strongest to the side of the particle, near the equator
q p= 2 and vanishes near the stagnation lines q = 0 and q p= . In particular, the response of spherical
bacteria preserves the fore-aft symmetry of the flow streamlines: at afixed distance r, the bacterial rotation is
identical at colatitudes θ and p q- . As discussed next, this symmetry is broken for elongated or oblatemicro-
organisms.

Figure 3.Non-sphericalmicro-organisms break the fore-aft symmetry of the Stokes flow around a sinking particle as revealed by their
asymptotic orientationwhen held fixed in theflow. The velocity gradientA(equation (13)) determines the local long-time orientation
of the bacterial tail-to-head vector ( )p t (figure 2). (a)Spherical bacteria respond symmetrically upstream and downstreamof the
particle: p rotates around the vorticity ˆw fµ and in the same sense as w (arrow); the broken line indicates that there aremany
possible orbits(figure 2(a)). (b)Perfect rods exhibit three regions of different asymptotic orientations. In regions I and III the rate of
strain outcompetes the vorticity(figure 2(b)), whereas the vorticity dominates in the region II(figure 2(c)). Specifically, in the
upstream region I, bacteria eventually point along the azimuth f̂= p . The two subregions inside the region I differ only by how the
asymptotic orientation is attained(attractive node versus spiral). In region II, p eventually rotates in the plane perpendicular to f̂
(figure 2(c)). The color code shows the rotation rate normalized by w 2; the sense of rotation is the same as w (solid line and
arrow). In the downstream region III, p orients along the director field(white lines) defined by l1 in equation (15). (c)For perfect
disks, the response is a reflection of the case of perfect rods. (d)Ratio between the advective and reorientation timescales, ta and tr.
For t t 1a r , we expect non-motilemicro-organisms advected by the flow to follow the quasi-static reorientation effects described
in(b), (c); these reorientation effects are strongest near the sinking particle.

6
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We focus on perfect rods of infinite aspect ratio a  ¥, for which the shape factor g = 1 in the Jeffery
equation (3b)(figure 3(b)). Note thatmoderate elongation gives γ close to unity: for an aspect ratio
a g= »10, 0.98. The analysis of the response of disks is dual to that of rods andwe only state the
results(figure 3(c)). For perfect rods, the rates of strain and rotation, E andW , areweighted equally in the
Jeffery equation (9), which reduces to ( =g=A A1 )

( ) ( ) = -p I pp Ap, 12T

where A is the velocity gradient derived from the Stokes flow(2). For brevity, we takeU=1 andR=1.
In spherical coordinates {r, θ,f} and in the usual basis of unit vectors {ˆ ˆ ˆ }q fr , , , the entries of A read
(appendix A.3, see also [21])

( ) ( ) ( )
⎡

⎣
⎢⎢

⎤

⎦
⎥⎥q

q
b q= - -

-
A F r r,

2 tan 0
tan 1 0

0 0 1
, 13ij

where ( )q= -- -F r r3 cos 42 4 and ( ) ( )b = + -r r1 12 2 . To classify the response of rods in themanner
outlined in section 3.1, wefind the eigenvalues ofA

( ) ( )l b q l=  - = -
F

F
2

1 9 4 tan , , 141,2
2

3

and the corresponding eigenvectors

[ ] ˆ ( )l l f
b q

q
=

-  +
=1,

3 9 4 tan

2 tan
, 0 , . 151,2

2

3

From the sing change under the square root inequation (14), it follows that the regions in thefluid inwhich A
has three real eigenvalues or a pair of complex eigenvalues plus a real eigenvalue are separated by two surfaces of
revolution defined by(broken red lines infigures 3(b), (c))

( ) ( ) ( ) ( )q q q= + -r 9 4 tan 9 4 tan . 162 2 2

Furthermore, in the regionwith complex eigenvalues, the real eigenvalue, ( )l q= -F r,3 , changes sign from
negative to positive at the plane θ=π/2, which contains the sinking particle’s equator. Physically, the sign
change reflects the transition of ˆl f=3 frombeing the direction offluid expansion to compression as the fluid
parcels travel from the southern to the northern hemisphere. The surfaces(16) and θ=π/2 divide the space
outside the particle into three regions I, II and III(figure 3(b)). Region I is the bottom-half of the entire domain,
below the equator plane θ=π/2 and upstreamof the sinking particle. It is composed of two subregions, Ia and
Ib, separated by the surface(16) (lower broken red line infigure 3(b)). In Ia, all the eigenvalues are real, in Ib,
there is a pair of complex eigenvalues and a positive real eigenvalueλ3>0. In both subregions, the rate of strain
dominates over the rate of rotation and the asymptotic stable direction is given by the eigenvector ˆl f=3 ,
which always points along the azimuth. The two subregions differ only in themanner this asymptotic orientation
is approached: in Ia, the convergence is overdamped(as infigure 2(b)) since f̂ is an attractive node, in Ib, the
convergence is underdampedwith the bacterium spiraling down onto f̂ since this fixed point is an attractive
spiral(as infigure 2(c) butwith arrows reversed). This change in the nature of the convergence of p onto f̂
indicates the increasing role of vorticity near the particle equator, but f̂ remains the attractivefixed point in
region I because thefluid has to expand along the azimuth to accommodate the sinking sphere in that region.
The timescale tI associatedwith convergence onto f̂ in region I is t l= = -- F.I

1 3

2 3
3

2
Region II lies to the side of the particle, in between the equator plane and the surface(16) and is the only

region inwhich the rotation rate out-competes the rate of strain. In this region, l1,2 are complex andλ3<0;
physically, the fluid is being compressed along the azimuth as it is rolling over the particle surface due to the no-
slip boundary conditions. The analysis in section 3.1 implies that the rods eventually rotate in the plane

orthogonal to the azimuthwith frequency b q -F 2 4 tan 92 . Thus, rods orient orthogonal to the vorticity w
and rotate in the same sense as w, but the rotation period is longer from the rotation rate of thefluid(color code
in region II infigure 3(b)). The timescale tII associatedwith the reorientation frompointing along f̂ to rotating

in the plane perpendicular tof is given by ∣ ∣t l= =- FII
1 3

2 3
3

2
.

Region III lies downstreamof the particle, above the surface(16). Here, the strain once again dominates over
rotation, but this time the asymptotic direction of rods inflow is given by the eigenvectorl1 (thewhite director
field lines in figure 3(b)). Importantly, just behind the particle, for small colatitudes θ, equation (15) clearly
predicts that the stable orientation is approximately the radial direction [ ]l » 1, 0, 01 . The timescale tIII

associatedwith the reorientation from rotating in the plane perpendicular tof in region II to pointing alongl1

is ( )t l b q= = + -- F 1 9 4 tanIII
1 3

2 1
3

4
2 .

The response of perfect disks (a g= = -0, 1) is dual to the case of perfect rods since = - +g=-A E1

= -W AT. For brevity, we only summarize the results, which are essentially an upside-down version of the
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responds of rods(figure 3(c)). Upstreamof the sinking particle, disks tend to be oriented almost tangentially to
the particle, with their symmetry axis pointing in the nearly radial direction (region I, white director lines
in figure 3(c)). To the side of the particle, disks rotate, with their axis of symmetry spinning in the –qr -planes
(region II). Downstreamof the particle (region III), disks preferentially alignwith the –qr planeswith their axis
of symmetry pointing along the azimuth. As for rods, the region III is divided into two subregions: in IIIa, f̂ is an
attractive spiral, in IIIb it is an attractive node.

The splitting of thefluidflow into the regions shown infigures 3(b), (c) is a quasi-static characterization of
the dynamical system(3), withmicro-organisms heldfixed at a given position in the flow.However, a non-
motilemicro-organism that is advected by the flowmay be significantly displaced during the time it takes to
achieve a given asymptotic orientation. To get further insight into equation (3), we compare the two timescales
characterizing the advection and shear-induced reorientation. For simplicity, we combine the three timescales
tI,II,III associatedwith convergence onto the asymptotic solutions toequation (3b) into a single reorientation
timescale  t ~ ~- AFr

1
2.We estimate the advective timescale  t ~ vRa at a given position as the time

needed to travel the distanceR at the local speed v . Figure 3(d) shows the ratio t ta r as a function of the
position. In particular, in the bright oval near the particle t t>a r, indicating that, in that region, non-motile
bacteria advected by the flowhave enough time to orient under the fluid forces in themanner outlined
infigures 3(b), (c) for immobilized bacteria.

Finally, we note that the eigenvalues of the velocity gradient A (13) on the stagnation line (q p= 0, ) and the
particle surface (r=1)havemultiplicity greater than one. In this case, the analysis of section 3.1 does not
directly apply, yet these special locations are important for the encounter process of non-motilemicro-
organisms, which can only approach the sinking particle near the stagnation line q p= . In appendix A.4, we
show that on the upstream stagnation line (q p= ) rods align tangentially to the sinking particle, while on the
downstream stagnation line (q = 0), rods align vertically. This picture can be inferred from figure 3(b) by taking
the limit r  0. Similarly, disks align tangentially to the particle surface for q p= (with axis of symmetry in the
vertical direction), while they lie in the q-r plane for q = 0. Therefore, non-motile rods or disks approaching
the sinking particle along the q p= stagnation line orient with their longer dimension tangential to the particle
surface. Furthermore, on the particle surface, shearmaintains to zeroth order the tangential orientation of rods
and disks as they are advected around the sinking particle(appendix A.4). This suggests that it is the shorter
dimension of rods and disks that determines their collisionwith the particle. However, for anyfinite sizemicro-
organism, onemust step away from the stagnation line and the particle surface. In the vicinity of these
degenerate sets, the response is captured infigures 3(b), (c). The asymptotic orientations rods and disks assume
in their respective regions I suggest that the tangential orientation prevails. However, in regions II and III shear
reorients rods and disks away from the tangential orientation. Given the size of the regions II and III for rods and
disks, this reorientation should be stronger for disks, since disks experience it over a larger part of the particle
surface. In the next section, we use numerical simulations to confirm this intuition: the collision radius of rods is
determined by their width, not length, whereas for disks the collision radius is determined by the longest
dimension.

4.Non-motile bacteria and diatoms

Understanding the interception of non-motile elongated and oblatemicro-organisms by a sinking particle is
important for two reasons. First, in its own right, becausemanymarinemicro-organisms includingmany
bacteria and phytoplankton species are non-motile and come in a variety of shapes, with bacteria often being
spherical or elongated and phytoplankton being either elongated (e.g. chains), spherical or disk-lake (e.g.
diatoms). Second, the non-motile case corresponds to the high sinking speed limit  ¥U Ub formotile
bacteria.We predict drastically different encounter rates for rods and disks: rods are particularly inefficient at
intercepting the sinking particle due shear, which aligns them in the direction tangential to the particle
surface(section 4.1). Conversely, disks eventually tumble under shear and explore their long axis to reach the
collector. Experiments on elongated diatoms support this picture(section 4.2).

4.1. Interception of non-motile bacteria
The ballistic interception of non-motilemicro-organisms by a sinking particle is conceptually identical to the
classical problemoffiltration, inwhich a colloid is captured by a large collector [9]. Previousworks focused on
spherical colloids; through numerical simulations, we extend these results to non-spherical colloids. Rods and
disks, such as certain species of bacteria or diatoms, have drastically different effective collision radii. Due to
shear-induced reorientation, the collision radius for a rod is determined by its width rather than length, while
disks explore their full size to intercept the collector.
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First, we briefly review the classical interception of small non-motile spherical beads by a large spherical
collector. The reorientation of beads under the flowdoes not affect the interception problem,which reduces
to identifying the streamline of closest approach(figure 4(a)). For the Stokesflow(2), the stream-function is
given by

( ) ( ) ( )⎜ ⎟⎛
⎝

⎞
⎠y q q= - +r Ur R r R r,

1

2
1

3

2

1

2
sin . 172 3 2

The streamlines determined by equation (17) have the fore-aft symmetry, which implies that the critical
streamline separating captures frommisses is defined by the point = +r R l 2b and q p= 2. Tracing the
streamline upstream from this point to = -z R6 , wherewe start the simulations, defines the effective collision
radius rc. For a spherical bacteriumwith =l R 1 10b , the collision radius is ( )»r l1.4 2 ;c b the additional 40%
arise due to the squeezing of the streamlines near the collector. Hadwe traced the streamline all theway to
 -¥z , the prefactor would change from1.4 to 1.2 [9]. In general, rc depends veryweakly on the size of

spherical bacteria l Rb and the formula ( )»r l1.4 2c b works verywell for the bacterial sizes in the range
< <l R0 1 10b . Finally, for spherical colloids, the effective collision radius and the encounter efficiency(e-

quation (7)) are related as

( ) ( )h = r R . 18spheres c
2

Wenow turn to non-spherical organisms, for which the orientational dynamics can no longer be neglected.

Figure 4.Generalizing the classical ballistic interception problem to non-spherical colloids reveals that shear orients non-motile
elongatedmicro-organisms tangentially to the sinking particle surface, while oblate organisms tumble near the particle. (a)For
spherical organisms, the effective collision radius rc is defined by the critical streamline beyondwhich no interception occurs (white
line). (b)Encounter probability ( )rP as a function of distance ρ from the origin in the initial plane = -z R6 for different aspect
ratiosα. For spheres and disks, ( )rP drops from1 to 0 near rc, whereas for rods the drop occurs near arc . (c)The probability ( )rP
for rods (a = 10) for two different sizes =R l 10, 100b shows that the probability tail between arc and rc vanishes as the sinking
particle size grows (or the rodbecomes smaller). The tail arises to due rare tumbling events to the leeward side of the particle(Movie 2),
as can be seen from the distribution of the interception colatitudes ( )x q (inset). (d)Conversely, ( )rP for a = 0.1 for =R l 10, 100b

demonstrates that disks tumble very often—as the particle grows, ( )rP approaches a step function at rc.
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As non-sphericalmicro-organisms follow the streamlines, they can intercept the sinking particle using either
their shorter or longer dimension. Two extreme scenarios are possible: an organism always aligns its longer side
tangentially or perpendicular to the particle, whichmodifies its collision efficiency by a factor ofa2. Assuming
negligible rotational diffusion, shear impacts the orientation of non-spherical organisms only through the aspect
ratio a. This follows fromnon-dimensionalizing equations (3)withUb= 0 in terms of the particle radiusR and
timescaleR/U. However, while the organism size lb does not directly affect the dynamics, it determines the
interception criterion: we take the sinking particle to be a perfect absorber and stop simulations if any part of the
rod or disk touches the particle(appendix A.5).We now systematically vary a and l Rb andmeasure the
encounter probability and typical interception location.

The impact of themicro-organism aspect ratio a and its relative size l Rb on the encounter problem is
summarized infigures 4(b)–(d); lb denotes the longer dimension—length for elongated organisms, width for
oblate ones. Varying a (figure 4(b)) atfixed =R l 10b , shows that the collision radius of elongatedmicro-
organisms is determined by their width, not length(Movie 1). This is evident from the variation of ( )rP , the
interception probability for an initial position at distance ρ from the centerline: P(ρ) decreases sharply fromone
once r a> rc . The probability tail between a r< <r rc c indicates that rods occasionally reorient and use
their length to intercept the particle(Movie 2). However, shear largely suppresses this effect, see the light blue
broken line infigure 4(b), which represents trajectories without the shear-induced reorientation (parallel
transport). In contrast to elongatedmicro-organisms, oblate organisms (disks) utilize their full size to intercept
the particle—P(ρ) drops sharply fromone to zero near rc. To see the impact of varying the relative size R lb, we
fixed two aspect ratios, a = 10 (figure 4(c)) and a = 0.1 (figure 4(d)) and computed ( )rP as well as the
distribution ξ(θ) for =R l 10, 100b .We observe that, as the colloid gets smaller (or the sinking particle gets
larger), the effects described above becomemore pronounced, in the sense that for rods the probability tail
between a r< <r rc c shrinks, whereas for disks ( )rP approaches a step functionwith jump at rc. Therefore,
the formula(18) for the encounter efficiency by spherical colloids is replaced by

[ ( )] ( )h a h a h h= = =r R , 19rods c
2

spheres
2

disks spheres

in the case of (small R l 10b )non-spherical colloids, where rodsmeans a 1and disks a 1.
Different interception efficiency for rods but not disks as compared to spherical colloids is consistent with

the analytical arguments presented in section 3.2. Initially, shear aligns rods and disks tangentially to the sinking
particle surface as they approach it along the stagnation line(regions I infigures 3(b), (c)). As they slide near the
particle, both rods and disks experience shear that tries to reorient them away from the tangential configuration,
potentially increasing their chance to intercept the particle(region II infigure 3(b) for rods and regions II and
IIIa infigure 3(c) for disks). However, disks are exposed to this reorienting effect over a larger region than rods,
suggesting that disks complete this reorientationwhile near the particle, whereas rods orient radially only when
they are too far behind the particle (Movie 1). Occasional interception by rods caused by the reorientation in
region II is responsible for the small probability tail inP(ρ) infigures 4(b), (c)(Movie 2). In summary,
simulations confirm the intuition based on analytical arguments: the collision cross-section for rods is
determined by their shorter dimensionwhereas the opposite is true for disks.

4.2. Experimentswith elongated diatom cells
Selected experiments with non-motile diatom cells confirmed the predictions of themodel(3) discussed in
sections 4.1, A.4 in the case of the non-motile rods(figure 5 andMovie 3).We ran a suspension of the non-
motile, elongated diatom cells Phaeodactylum tricornutum(strain CCMP2561) in seawater at amean flow
velocity of m -168 m s 1 through amicrofluidic channel with a calcium-alginate spherical particle heldfixed in
themiddle by the channel walls(figure 5(a)); see appendix A.6 formore details on the experimental protocol.
The particle sizewas m=R 566 m, the average diatom length m=l 21.2 mb and their average aspect ratio
a = 6.8. Rather than directly estimating the encounter rate, which proved difficult due to the challenge of
imaging in the immediate vicinity of the particle, we used image analysis to quantify the orientation that the
diatoms assume in the vicinity of the particle in the channelmid-plane. Using this approach, we extracted from
50 consecutive frames an ensemble of diatompositions and orientations(figure 5(b)). Since the shear-induced
reorientation effects are strongest near the particle(figure 3(d)), we focused on diatoms that are at distance
< <R r R2 away from the particle center. Importantly, sincewe only imaged the focal plane, this ensemblewas

skewed towards diatomsmoving in the focal plane and also oriented in that plane. For this reason, to compare
the experimentally determined orientations with those predicted by themodel(3), we ran additional numerical
simulations tomimic the same information loss as in the experiments. Specifically, we simulated a front of
uniformly distributed and randomly oriented elongated non-motile rods (with =R l 21.2b and a = 6.8), as in
the previous section.We focused on trajectories lying in the particlemid-plane(as in the imaged region) and
extracted the rod orientations at positions along the streamlines corresponding to equal time intervals.We
rejected orientations that have the out-of-plane component larger than ( ) =sin 30 0.5, tomimic the
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information loss of diatoms that point out of the focal plane in experiments; the results were robust against
variation in this threshold(figure A1).

The experimentally determined orientations of diatoms agreed verywell with the numerical results for
elongated ellipsoids with the same geometrical characteristics (figures 5(b), (c)). In particular, as predicted in
appendix A.4, diatoms approaching the particle near the upstream stagnation line oriented tangentially to the
particle surface, while diatoms departing from the particle near the downstream stagnation line pointed nearly
radially (yellow versus blue regions in figures 5(b), (c)). Close to the particle surface, diatoms tended tomaintain
tangential orientation but can also occasionally tumbled. Tumbling happenedmost oftenwhen diatomswere to
the leeward side of the particle, which is consistent with the action of shear depicted in region II infigure 3(b),
where vorticity dominates over straining and tries to spin rods in the plane of the picture. In summary, these
experiments validate detailed aspects of ourmodel for non-motilemicro-organisms and demonstrate that the
effect of shear—shape coupling can be substantial for realisticmarinemicro-organisms.

5.Motile bacteria

The encounter rate betweenmotile elongated bacteria and sinking particles in the ballistic regime depends
strongly on the particle sinking speed relative to the bacterial swimming speed(section 5.1). For slow sinking
particles, shear increases the encounter ratemore than twofold and leads to preferential attachment of bacteria
to the leeward side of the particle. However, as the sinking speed increases, shear decreases the encounter rate,
orders ofmagnitude below the rate of non-motile organisms. Thesemechanisms of hydrodynamic focusing and
screening are rationalized at the level of individual bacterial trajectories(section 5.2) in terms of the quasi static
picture derived in section 3. Finally, to connect with the diffusive description of the encounter process, we
introduce rotational diffusion to quantify how various stochasticmechanisms, such as Brownianmotion or run-
and-tumble reorientation, influence the above ballistic description(section 5.3).

5.1. Encounter rates formotile bacteria
Nondimensionalization of the ballisticmodel(3) in terms of the particle radiusR and the time scaleR/U derived
from the sinking speedU shows that the only two dynamically relevant variables are the ratio of the sinking to
swimming speedsU/Ub and the bacterial aspect ratio a. The bacterial size lb and particle sizeR enter the
problem through the interception condition but otherwise they do not affect the bacterial trajectories, except for
the time it takes to execute them.We assume the particle is a perfect absorber and stop the simulations either if
any part of the bacterium touches the particle (interception) or the bacterium ends up far behind the particle. In
this section, wefix =R l 10b , scan velocities in the range >U U 1b (sinking speed greater than swimming
speed) and consider several aspect ratiosα(figure 6).

For hypothetical spherical or oblatemotile bacteria [22], the encounter rate kernel N n depends weakly on
the sinking velocityU/Ub and the encounter efficiency η decaysmonotonically withU U ;b for spherical
swimmers, η is close to the values obtainedwith the reorientation by shear switched off(dark blue and green

Figure 5.Experiments with non-motile elongated diatom cells (Phaeodactylum tricornutum) are consistentwith the predictions of the
model(equation (3)) that rodsmaintain tangential orientation as they are advected around a sinking particle(section 4.1).
(a)Minimum intensity projection obtained by phase contrastmicroscopy shows the streamlines of the suspended diatoms around the
alginate particle(Movie 3). (b)The experimental ensemble of diatompositions (dots) and the sine of the angle the diatomsmakewith
the flowdirection(see colorbar). (c)The corresponding ensemble obtained from simulations, inwhichwemimic the same
information loss as in the experiment: the plot represents rods lying in the focal plane andwe dismiss rods with a significant out-of
plane component, see text formore details. As predicted in section A.4, we observe that rods approaching the particle near the
upstream stagnation line orient tangentially to the particle(yellow region below the particle in (b), (c)), while rods that leave the
particle near the downstream stagnation line point nearly radially(blue region above the particle). As they travel near the particle
surface, rods tend tomaintain tangential orientation but also occasionally tumble.
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lines infigures 6(a), (b)). However, for elongated swimmers, η varies strongly withU/Ub (figures 6(a), (b)). For
slowly sinking particles ( < <U U1 2b ), h ~ -2 3, implying that the particle collects bacteria from the volume
ofwater two-three times bigger than the geometric cylinder the particle swipes as it sinks. Furthermore,
elongated bacteria intercept the particle to the leeward side(figure 6(c)). Interestingly, as the sinking speed
increases, the encounter rates drop very rapidly: in the velocity window < <U U10 100b , the encounter rate
of elongated swimmers (a  5) can be orders ofmagnitude below the value set by the non-motile rods.We next
rationalize these encounter rate enhancement and decrease using the concepts of hydrodynamic focusing and
screening.

5.2.Hydrodynamic focusing and screening
The strongdependenceof the encounter efficiency on theparticle sinking speed for elongatedbacteria(figure 6(b))
is a consequenceofhydrodynamic focusing and screening.These phenomenaare illustrated infigure 7,wherewe
compare three swimmerswithdifferent aspect ratios; the sinking speed isfixed at =U U 3b . Figures 7(a)–(c) show
the encounter probabilities ( )xP for a bacteriumstarting at x anywhere inside the indicateddomain (not just the
plane = -z R6 )withheadpointing in a randomdirection(equation (4)). Since >U U 1b , in all three cases there is
a cone-like surface of revolution that separates the accessible [ ( ) ]r >P 0 and inaccessible initial positions—if the

Figure 6.The shear-shape coupling significantly impacts the encounter rate betweenmotile bacteria and sinking particles and the
typical interception location on the particle. Encounter rate kernel N n (a), encounter efficiencyη (b) andmean interception
colatitude qá ñ (c) as a function of the sinking speed relative to the bacterial swimming speedU Ub for different bacterial aspect
ratiosa. The continuous lines represent the ballisticmodel(3)while the broken lines denote the quasi-ballisticmodel with rotational
diffusion(20). In the ballistic case,motility, elongation and shear enhance the encounter rate about twofold for slowly sinking
particles as compared to the casewith shear-induced reorientation switched off(purple and green lines). However, for intermediate to
fast sinking particles, the encounter rate falls orders ofmagnitude below the value set by the interception of non-motile rods. On the
particle, elongatedmotile bacteria attach preferentially to its leeward side.

Figure 7.Motile elongated bacteria preferentially attach to the leeward side of a sinking particle due to hydrodynamic screening and
focusing upstream and downstreamof the particle. Encounter probabilities ( )xP as a function of the position x (equation (4)) for
perfect spheres (a), moderately elongated swimmers (b) and perfect rods (c). The sinking to swimming speed ratio isfixed at

=U U 3b . (d)–(f)Histograms of the interception colatitudes θ for initial positions in thewhole domain shown in (a)–(c) show a
transition from a nearly uniform coverage of the particle by spherical swimmers (d) to preferential leeward attachment formotile rods
(f). (g)–(i)Representative swimming trajectories (left) and successful initial orientations(right) for rod-like bacteria starting from the
initial positions indicated in (c) illustrate the hydrodynamic screening(g) and focusing(h), (i).
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bacteria start too far away, they cannot reach theparticle. Thedistributionof ( )xP inside the accessibility region vary
stronglywithα. For spheres, ( )xP is concentratedbelow theparticle, near the r = 0 stagnation line anddecays
monotonically to zerowithρ reaching the accessibility horizon(figure 7(a)). For somewhat elongated swimmers
α=1.75, the initial positions below theparticle become less likely to result in an interception and ( )xP starts to
concentratenear the edgeof the accessible region,which also reaches further out(figure 7(b)). For perfect swimmers
a = ¥, the regionρ≈0 is nowalmost entirely shielded,with ( )xP exhibiting a clearhigh-probability belt at the
edgeof the accessible region(figure 7(c)). Far below theparticle, the belt slope approaches~U Ub. Considering the
distributionof the interception locations ( )x q for initial positions anywhere in thedomains shown infigures 7(a)–(c),
elongated swimmers showpreferential leeward attachment,with the vicinity of the ‘northpole’being themost likely
location(figures 7(d)–(f)).Wenowrationalize the shapeof thedistributions ( )xP and ( )x q at the level of individual
swimming trajectories by evoking thequasi-static picturediscussed in section3.2 and shown infigure 3.

At the level of individual swimming trajectories, the probability ( )xP for spherical swimmers(figure 7(a)) is
realized by trajectories that correspond to swimmers initially located below the particle and pointing upwards.
However, this intuitive strategy is not available for elongated swimmers because of hydrodynamic
screening(figures 7(b), (c)). Recall that, below the particle, shear tends to align rods along the azimuth(region I
infigure 3(b)). This shear-induced reorientation coupledwith forwardmotility implies that rod-like swimmers
get reoriented and swim away as they approach the sinking particle frombelow(figure 7(g),Movie 4). For the
same reason, it is very unlikely that elongated swimmers attach to the front of the particle, which explains the
small values of ( )x q for colatitudes q > 90 (figure 7(f)). Instead, successful interceptions for elongated bacteria
must follow a different strategy(figures 7(h), (i)). To avoid the screening, elongated swimmersmust start on the
belt far away from the centerline of the sinking particle, on the edge of the accessibility horizon. Furthermore,
their initial orientations have to be roughly horizontal, pointing towards the centerline(figures 7(h)). Such
initial conditions allow the bacteria to avoid the screening region I offigure 3(b) and explore the shear-induced
radial reorientation in region III. This hydrodynamic focusing then leads to preferential leeward
attachment(Movie 5).

Themechanisms of hydrodynamic focusing and screening described above rationalize the strong
dependence of the encounter efficiency η on the particle sinking speedU Ub presented in(figure 6(b)). For
slowly sinking speeds, bothmechanisms are present.However, the high probability belt at the edge of the
accessibility horizon for elongated swimmers extends a large volume and hencemany swimmers can utilize the
focusing effect, which explains why h > 1 in thatflow range.However, asU Ub increases, the high probability
beltmoves closer to the center line since its diameter scales asU Ub . This reduces the accessible volume ofwater
at the rate at least∼U−2. Furthermore, as the belt shrinks in diameter, it enters the region of hydrodynamic
screening and eventually disappears(figure A4(a)). Thus, in the range < <U U10 100b , only screening
persists, which explains the very small values of η in that range.Only for swimming speeds h>U U 100,b rises
again, until it starts to recover the limit set by the interception rate of non-motile rods.

5.3. Impact of rotational diffusion
In the purely ballistic picture of the encounter process outlined in the two previous sections, shear is the only
factor responsible formicro-organism reorientation. In reality, bacteria experience Brownian rotational
diffusion aswell as perform run-and-tumble or run-and-reverse dynamics. The combination of these stochastic
mechanisms likely interferes with the shear-induced reorientation in a complexmanner. As a first step to
systematically study the impact of these additionalmechanisms, we introduce a single rotational diffusion term
to equation (3)

( ) = +x p vU a, 20b

˙ ( )[( ) ] ( )xg= - + +p I pp E W p D b2 , 20T
r

where Dr is the cell’s effective rotational diffusivity and x is a delta-correlated 3Dwhite noise with zeromean.
We express the diffusive timescale t = -Dd r

1 in terms of the time t = l Ub b b needed for a bacterium to travel
the distance equal to its bodylength.

To study the impact of rotational diffusion on the encounter rates and attachment location, we fixed the
diffusive timescale at t t = 100d b , which corresponds to the typical time-scale set by the run-and-tumble
motility [8].We then repeated the scans according to the same protocol as in section 5.1, with =R l 10b and

>U U 1b (the broken lines infigure 6).Wefind that diffusion has little effect on the encounter rates and
attachment location for spherical swimmers. However, for elongated swimmers, diffusion decreases the impact
of hydrodynamics focusing at low sinking speeds but also decreases the hydrodynamic screening at higher
sinking speeds(see appendix A.7).
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6.Discussion

In this work, we have studied the ballistic limit of the encounter process betweenmicro-organisms and sinking
particles, with focus on the reorienting effect of shear induced by the sinking particle. Analytical and numerical
calculations aswell as selected experiments show that the shear—shape coupling acting on amicro-organism
impacts population-level observables, such as the encounter rate with sinking particles or the typical attachment
location on the particle. For the Stokesflow around a spherical sinking particle, rods and disks break the fore-aft
symmetry of theflow streamlines, in stark contrast to the behavior of spherical colloids(figure 3). This shape-
induced symmetry breaking affects the encounter rates(figures 4 and 6) throughmechanismswe have
characterized as hydrodynamic focusing and screening(figure 7). Below,we first rephrase these results as
solutions to the optimization problem: should amicro-organism be elongated orflat, tomaximize orminimize
the encounter ratewith a largemoving sphere? Subsequently, we discuss the biophysical consequences of our
mechanistic description of the encounter process in themarine environment.

From the perspective of evolution, there aremany contexts inwhichmicro-organismsmay seek tomaximize
orminimize their encounters withmoving objects, including encountering sinking resources [8] or symbiotic
partners [23], and avoiding predators [24]. At the same time these,micro-organisms are likely to have other
constraints on their volume, such as growthmaximization and genome size. For non-motilemicro-organisms
with negligible rotational diffusion(section 4.1), we have seen that shear tends to orient rods tangentially to the
sinking particle surface as thesemove around the particle, whereas disk-shapedmicro-organisms tumble, which
makes their longer dimension available for interception(section 4.1 andfigure 4). As a consequence, rods have
their encounter efficiencies decreased by a factor equal to the square of their aspect ratio compared to spherical
colloids with diameter equal to the rod length. Conversely, disks have the same efficiency as spheres with
diameter equal to the disk diameter(equations (19)).

For non-motile bacteria, over a broad range of ratios of cell volume relative to particle volume (V Vb ), disks
are themost efficient shape to intercept a sinking particle, while rods are the least efficient (figure 8). The
contribution of the occasional tumbling of rods growswithV Vb , decreasing the difference between the
efficiencies of rods and disks as cell volume gets larger; rods remain less efficient than disks but catch upwith
spheres. Note that we cannot increase the volumetric ratio furtherwithout violating the approximations used in
the Jeffery equation, since themicro-organism size becomes comparable with the sinking particle. Conversely,

Figure 8.Given a fixed volume Vb of a non-motilemicro-organism,what shapeminimizes ormaximizes the encounter efficiency η
with a sinking spherical particle of volumeV? Plotting η versus the volumetric ratio V Vb reveals that elongation reduces the
encounter rate with large particles ( V V 0b ), making rods the optimal shape for avoiding sinking particles, at least as long as
rotational diffusion is negligible. Conversely, flatteningmakes a non-motilemicro-organism particularly efficient at intersecting the
particle. This different behavior of rods and disks is a consequence offluid shear, which aligns rods tangentially to the sinking particle
surface with rare tumbling events, but induces frequent tumbling in the orientation of disks. As the sinking particle becomes large,

V V 0b , the efficiencies for rods and disks approach the exact expression [ ( )]h a= V V1.42
b

2 3, which follows from
equations (19) after assuming rods and disks can be represented as prolate and oblate ellipsoids with aspect ratio a. As the volume
ratio V Vb grows, the difference between rods and disks decreases due to increasing tumbling of rods.
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as the sinking particle grows, V V 0b , the encounter efficiencies approach [ ( )]aV V1.42
b

2 3 (broken lines in
figure 8), which follows directly from equations (19) and reflects the fact that, as the sinking particle grows, rods
cease to tumblewhile disks always tumble(figures 4(c), (d)). In this limiting regime, the efficiency ratio between
disks and rods is ( )a arod disk

2 3. For example, for rodswith a = 10rod and disks with a = 0.1disk , disks will be
about 20 timesmore efficient than rods at intercepting large sinking particles.

Formotilemicro-organisms, encounter rates are controlled by hydrodynamic focusing and screening,
which develop from the influence of shear on the direction of swimming.Herewe still consider the ballistic
regime, with negligible rotational diffusion. In addition, the shear—shape coupling formotile cells leads to the
sensitive dependence of the encounter rate on the particle sinking speed relative to the bacterial swimming
speed(section 5.1 andfigure 6). Hydrodynamic screening and focusing describe the effect on elongatedmotile
micro-organisms of the shear upstream and downstreamof the particle, respectively. In hydrodynamic
screening, the shear upstreamof the particle aligns rods tangentially to the particle surface (as with non-motile
cells), resulting in cells swimming away from the particle. For hydrodynamic focusing, rotation from shear in the
downstreamhalf of the particle turns the swimming rods towards the particle. For slowly sinking particles,
focusing dominates and enhances the encounter rate(figure 7), while at sinking speed significantly higher than
the cell swimming speed, screening dominates and the encounter rate drops far below that of non-motile rods.
In contrast to elongated organisms, hypothetical spherical and disk-shaped swimmers respondmonotonically
to changes in the sinking speed(figure 6), a consequence of disk-shaped swimmers experiencing hydrodynamic
focusing upstream, not downstream, of the particle. For sinking speedsmore than twice the swimming speed,
this results in disk-shapedmicro-organisms encountering particles at a higher rate than elongatedmicro-
organisms.

From an evolutionary perspective, this analysis suggests that adopting a disk shapewould be optimal for
micro-organisms (whether non-motile ormotile) in order tomaximize particle encounter rates at a broad range
of sizes and sinking speeds. Of course, this neglects other evolutionary pressures onmorphology. However, for
particles sinking at speeds close to the organism swimming speeds (i.e. relatively slowly), elongation increases
the encounter rates up to twice that ofmotile disks. Coupledwith the large reduction in encounter rates formore
rapidly sinking particles, elongation can be viewed as biasing ballistically swimming organisms strongly towards
slowly sinking particles. This could be subject to selective pressures formicro-organisms in situations where
optimal growth occurs near the surface, and therefore rapidly sinking particles are better avoided.

For the specific case ofmarine bacteria encountering sinkingmarine particles, it is necessary to connect the
ballistic description of the encounter process with the classical approach based on approximating bacterial
motility as a diffusive process [7, 8, 25].Marine bacteria are subject to various sources of random reorientation,
fromBrownian rotational diffusion to self-generated run-and-tumble or run-and-reversemotility, where
segments of straight swimming are interrupted by randomization of the swimming direction. As a consequence,
on scales larger than the bacterial run length and timescales longer than the reorientation time, bacterialmotility
can be effectively characterized as a diffusive process [7, 8, 25]—this is a general feature of superimposing a large
number of uncorrelated random segments [26]. In this limit, relevant to large sinking particles, the encounter
rate is proportional to the bacterial effective diffusion coefficient and the Sherwood number, aflow-induced
enhancement factor [25]. Additionally, while the shear-induced reorientation in the diffusive limit can be
neglected in certain regimes [12], precise quantification of its impact on the encounter rate and attachment
locations across a wide range of particle speeds and sizesmight require kinetic theory approach [26–28].
However, as the particle becomes smaller or the sinking speed increases, the systembecomes ballistic and the
diffusive approximation overestimates the encounter rate. The reason for this overestimation comes from the
fact that the encounter probability for a bacterium at distance r from the particle decays as -r 1 in the diffusive
regime, and as -r 2 in the ballistic regime [29], at least for stationary particles andwithout shear. Since
hydrodynamic interactions can significantly bend bacterial trajectories [14, 30, 31], the need to go beyond
arguments based on straight-line swimmingmotivated the above study of the pure ballistic limit. For themarine
application, we consider ballisticmotile bacteria supplemented by rotational diffusion(section 5.3), whichwe
have shown reduces the strength of hydrodynamic screening on rod-shaped swimming cells.

We consider twomajor classes [8]: motile elongated bacteria and non-motile spherical bacteria. Formotile
elongated bacteria, we evaluate the predictions of ourmodel for cells of length m=l 2 mb , swimming speed

m= -U 50 m sb
1 and aspect ratio a = 3.3. For non-motile spherical bacteria, we choose a diameter m=l 1 mb .

These represent typical characteristics ofmotile copiotrophic bacteria that actively seek and engagemarine
particles, andmore oligotrophic non-motile bacteria whichmay nevertheless encounter and stick to particles.
For these representativemarine bacteria, as well as the equivalentmotile bacteria without the influence of shear,
the corresponding encounter efficiency η (figures 9(a)–(c)) andmean interception colatitude qá ñ (figure 9(d)–
(f))have been computed as a function of the sinking particle speedU and particle radiusR. The range of sinking
speedswe consider is –m - -60 m s 5 mm s1 1. The range of particles sizes, –m3 m 1 mm, covers themost abundant
marine sinking particles [11]. For elongated bacteria, randomization of orientation is effectively represented by a
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single rotational diffusion coefficient = -D 0.25 s ;r
1 the diffusive timescale (~4 s) gives the run length of about

m200 m, typical ofmarine bacteria [8]. For such a run length, the range of particle sizes spans the ballistic and
diffusive regimes aswell as the intermediate transition range. Finally, the translational diffusion of the non-
motile spherical bacteria was set to m= -D 0.43 m st

2 1, which represents Brownianmotion of amicron-sized
sphere at room temperature [32]. Under these conditions, accounting for the shear reorientation ofmotile
marine bacteria substantially reduces the encounter efficiency for small fast-sinking particles and alters the
location of encounters for slow-sinking particles below 100 μm in radius. In contrast, the diffusive spherical
swimmers showweak dependence of encounter efficiency on sinking speed, butmuch greater sensitivity to
particle size.

Since the range of particle sizes considered infigure 9 captures the ballistic-diffusive transition, the standard
computation based on a diffusive analogy onlymatches the encounter rates ofmarine bacteria (neglecting shear)
for the largest particles with radii approaching 1 mm(figure A2). For bacteria with higher rotational diffusivity,
this occurs for smaller particle sizes. As the particles get smaller, the diffusion-based calculation starts to
overestimate the encounter rate—in the ballistic limit, with particle sizes reaching tens ofmicrons, the two
descriptions can differ bymore than two orders ofmagnitude(figure A2).We nowdescribe in detail the
encounter process in the intermediate quasi-ballistic regime, highlighting the role of bacterialmotility and fluid
shear.

Factoring in shear interactions,motile bacteria encounter sinking particles at a rate one or two orders of
magnitude(figure 10(a)) greater than non-motile bacteria. Thismotility-based enhancement factor is smaller
by one or two orders ofmagnitude (depending on particle size) as compared towhatwould be predicted by the
fully diffusivemodel. The exceptionwhenmotility decreases the chances of interception
( ‐h h < 1shear ON

motile non motile ) corresponds to small and very quicklymoving objects. This upper-left part of the
panel, close to the full ballistic regime, is dominated by hydrodynamic screening and is probably not relevant for
marine particles, even for fast sinking-fecal pellets, since their density differs from that of seawater only by about
10%–20% [33, 34], see the red and yellow lines infigure 10, which represent the Stokes law(1). However, this
hydrodynamic screening regimemay be relevant for interception by air bubbles, whose vertical speed is high in
view of their large density difference with seawater [35](purple line infigure 10). Furthermore, comparing the
shear on–off cases formotile elongated bacteria(figure 10(b)), wefind that themajor impact of shear is to
reduce the encounter rates with small particles sinking at intermediate or rapid rates by up to a factor of10. This
reduction is a consequence of the competition between the hydrodynamic screening of rods upstreamof the

Figure 9.To quantify the impact of shear and elongation on the encounter rates and interception locations between bacteria and
sinking particles in the ocean, we focus on realisticmodel parameters and compare three cases:motile elongated bacteria of length

m=l 2 mb , swimming speed m= -U 50 m sb
1 and aspect ratio a = 3.3 (a), (d); the same bacteria, butwith the shear-induced

reorientation switched off(b), (e); and non-motile spherical bacteria of diameter m=l 1 mb (c), (f). In these three cases, we compute
the encounter efficiency η (a)–(c) andmean interception colatitude qá ñ (d)–(f) as a function of the sinking particle speedU and radius
R.We consider a range of sinking particle sizes ( –m~R 3 m 1 mm) that covers themost abundantmarine particles [11]. In the
simulations, the rotational diffusion coefficient formotile swimmers was set to = -D 0.25 sr

1, while the translational diffusion
coefficient of the non-motile spheres was set to m= -D 0.43 m st

2 1. For such parameters, the panels capture the ballistic and diffusive
regimes, as well as the in-between quasi-ballistic regime.
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sinking particle and rotational diffusion. It suggests that elongation-induced screeningmay be a passive
mechanism that allowsmotile elongatedmarinemicro-organisms to prioritize slowly sinking aggregates, at least
in the quasi-ballistic particle size range.

For slowly sinking particles in the quasi-ballistic regime(lower parts of the panels infigure 10), the observed
encounter efficiencies ofmotilemarine bacteria are close to the case without shear, consistent with earlier
studies [12]. However, at the level of individual trajectories, this encounter rate is realized by hydrodynamic
focusing, which results inmost bacteria attaching to the leeward side (q < 90 ) of the sinking particle(compare
figures 9(d) and(e); see alsofigure A3). For small and slowly sinking particles ( m m< < -R U50 m, 500 m s 1),
for which shear dominates over rotational diffusion,more than 75%of the interceptions occur on the leeward
side of the particle. Furthermore, about 25%of the interceptions are concentrated inside the ‘Arctic
circle’ (q < 23 ), which represents amore thanfive-fold increase as compared to a uniform coverage of the
particle. This leaves the southern hemisphere depleted of bacteria, with almost no interceptions below
the‘tropic of Capricorn’ (q > 113 ). Thus, the leeward stagnation point is aflow-induced hotspot where
motile and elongated bacteria concentrate due to shear. Since non-motile bacteria intercept the particles on the
upstream side(figure 9(f)), in the southern hemisphere, we conclude that flow and shear lead to a bipolar
segregation ofmotile and non-motilemarine bacteria on the two sides of a sinking particle.

Although this work has assumed particles to be spherical despite the variety of observed shapes exhibited by
marine snow aggregates [11], we expect the phenomena of hydrodynamic focusing and screening of elongated
bacteria to be robust to variation in shape. The focusing and screening effects rely on different orientational
responses of small rods upstream and downstreamof the particle—the key property of theflow that is required
for this fore-aft symmetry breaking is the expansion of the streamlines to the front of the particle and their
recombination to the back, as well as the no-slip boundary conditions on the particle surface. As long as such
general streamline organization is preserved, the effects here described should be robust: while fluid parcels roll
on the particle surface(no slip), they stretch upstreamof the particle(streamline expansion) but compress
downstreamof the particle(streamline recombination). This basic process will hold for objects at lowReynolds
numbers with no-slip surfaces, and onewould therefore expect hydrodynamic focusing and screening ofmotile
elongated bacteria to occur formarine particles in general.

7. Conclusions

In this work, we combined analytical and numerical calculations to estimate the encounter rates between non-
motile andmotilemicro-organisms of differentmorphologies and sinking particles in the ballistic regime
relevant for themost abundant small sinking particles. Previous estimates have primarily focused on the
diffusive regime, effectively assuming that particles aremuch larger than the bacterial run length. In the ballistic
range, bacterial reorientation becomes a significant factor influencing the encounter process, while it is absent by

Figure 10.Comparison of the encounter efficiencies betweenmotile elongated and non-motile sphericalmicro-organisms(a) and
betweenmotile elongatedmicro-organismswith andwithout shear(b) computed from the panels (a)–(c) offigure 9. For reference,
we plot the absolute values of the sinking/raising speeds as determined by the Stokes law(1) for sinking particles with densitiesrp

higher than the density of waterrw by 5%–15% (in black font), such as the fast sinking fecal pellets, as well as raising bubbles with
r r » 0p w (inwhite font). Thewhite dashed line denotes the ratio equal to unity.
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necessity fromdiffusivemodels.We have focused on the coupling betweenmicro-organism shape and fluid
shear induced by the particle, since shear is the dominant external factor responsible for bacterial reorientation.
We have shown that the shape—shear coupling can significantly affect the encounter rate and attachment
location on a particle for both non-motile andmotilemicro-organisms.

For non-motile organisms, shear from a sinking particle can significantly alter the encounter rates of
organismswith differentmorphologies. For elongated organisms, this influence occurs by aligning the cells’
long axis tangentially to the particle surface, andwas experimentally validated.When the timescale of rotational
diffusion is longwith respect to particle interactions, shear from sinking particles interacts with the aspect ratio
of non-motile organisms to potentially reduce encounter rates by a factor proportional to the square of the
aspect ratio. As a result, encounters could exert evolutionary pressure on non-motile cellmorphology [36],
favoring elongated or disk-like shapes depending onwhether encounters are unfavorable or favorable,
respectively.

Formotilemicro-organisms, interactionswith the shear from a sinking particle give rise to two phenomena,
hydrodynamic screening and focusing, that alter both the rates and locations of encounters. Elongation helps
organisms intercept slowly sinking particles but dramatically reduces the encounter ratewith rapidly sinking
particles. In contrast to rods,motile disks experience upstream focusing, leading to high efficiency at
intercepting rapidly sinking particles. From the perspective of the particle,motile elongatedmicro-organisms
typically attach to the leeward side of the particle, whilemotile disks cover itmore uniformly. Under realistic
parameters relevant tomarine bacteria and sinking particles, which include the effect of randomization of
swimming direction from rotational diffusion, hydrodynamic screening leads to a ten-fold decrease in the
interception rate of rapidly sinking aggregates, as compared tomotility without the shear-induced reorientation.
This reduction in encounter rate suggests that elongation-induced screeningmay be a passivemechanism that
allowsmotile elongatedmarinemicro-organisms to avoid rapidlymoving particles. Last but not least,motile
elongated bacteria attach to the leeward side of the particle, whereas non-motile bacteria attach to the front.
Thus, hydrodynamic focusing is a physical source of heterogeneity in particle colonization characterized by
bipolar segregation ofmotile and non-motilemicro-organisms, whichmay influence the degradation rate of
marine snow aggregates.Whether in terms of encounter rates or encounter locations, these results indicate that
the impact of shear reorientation cannot be neglectedwhen evaluating interactions betweenmotile organisms
and sinking particles.

The dynamics of shear-driven reorientation are directly relevant to the colonization ofmarine particles by
bacteria. It is well established thatmotility can greatly enhance the encounter rate of bacteria with sinking
particles [8, 24]. This enhancement is often estimated via the ratio of the effective diffusivity due tomotility and
the diffusivity due to Brownianmotion, which can be as large as 1000 for highlymotilemarine bacteria
[8, 37, 38]. Themore accurate theory developed here, which accounts explicitly for the interaction between flow
andmotility in elongated bacteria, refines this estimation in amanner that depends on the particle size and
sinking speed relative to the bacterialmotility. For particles substantially larger than the bacterial run length, the
enhancement in attachment due tomotility estimated by the ratio of effective diffusivities and neglecting the
impact of shear is increasinglymore accurate. For themarine bacteriamodeled here, this corresponds to
particles with radius greater than approximately 1 mm. For smaller particles, which form the bulk of particles in
the ocean [39], this work reveals that the enhancement in encounters resulting frommotility ismoremoderate
and is further reduced as the particle sinking speed increases. In extreme cases, potentially applicable to some
bubbles,motilitymay confer no benefit in encounter rates. However, in the context ofmarine particles,motility
still enhances encounters by one to two orders ofmagnitude. Since the enhancement in encounter rate due to
motility is greater for slowly-sinking particles, this also highlights the potential significance of neutrally buoyant
particles [40] tomotile bacteria. This fundamental knowledge of encounter rates will be a valuable asset in future
efforts to rationalize the community composition onmarine particles, and ultimately the role of different groups
of bacteria in particle degradation and the ocean’s biological pump.

In a different domain, themechanisms of hydrodynamic focusing and screening of rods and disks here
described are relevant to the classical filtration problem [9], because our results suggest that shear renders
elongated non-motile colloidsmore difficult to collect than oblate ones. Furthermore, fabrication of Janus-type
artificial swimmersmakes it possible to buildmicroscalemotile objects with different shapes and swimming
speed [32], and these parameters could be tailored to enhance or suppress the focusing and screening effects. For
example, the efficiency in capturingmoving spheresmay be important in applications such as targeted drug
delivery [41] andmicromachine-enabled decontamination [42].

In summary, we have demonstrated that hydrodynamic interactions between a small ellipsoid and a large
moving sphere break the fore-aft symmetry of the flow streamlines, leading to practical consequences formicro-
organisms. This symmetry breaking is a consequence offluid expansion and recombination upstream and
downstreamof the sphere, but is only revealedwhen the full tensorial character of the velocity gradient is
accounted for, including its straining and rotational components. Such asymmetric two-body couplings are
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ubiquitous, since they arise when a small non-spherical particle travels near a larger obstacle in afluid; we have
experimentally verified their impact in the case of non-motile elongated diatoms advected around an alginate
bead. In the context of swimming bacteria intercepting a sinking particle, hydrodynamic focusing and screening
have practical ecological impacts, but applications to other natural orman-made systems are yet to be explored.
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Appendix

The appendix is organized as follows:weprovide linear stability analysis of thefixedpoints of the Jeffery equation in
sectionA.1 andderive the limit cycle solutions and their period in sectionA.2; these resultswere discussed in
section3.1 of theMainText.The velocity gradient for the Stokesflow is derived in sectionA.3; itsmatrix formwas
used in equation (13) in section3.2of theMainText. In sectionA.4,we complement thediscussion in section 3.2 of
theMain text by analyzing the structure of the velocity gradient on the stagnation lines and the sinkingparticle
surface.The subsequent sections give details on thenumerical simulations(sectionA.5) and experimental
methods(sectionA.6). Finally, the three additionalfigures supplement theMainText as follows:figureA1 shows that
the results presented infigure 5of theMainText are robust to variation in the cut-off threshold for rejecting the out-
of-plane components of rods in the simulations,figureA2quantifies the overestimate in the encounter efficiencies as
predictedby the classical diffusive arguments in the rangeof parameters discussed infigures 9 and10of theMain
Text, andfigureA3provides an additional characterizationof the landingdistributions for the simulations presented
infigure 9of theMainText.

A.1. Stability analysis of thefixed points of the Jeffery equation
In this section, we analyze the linear stability of the fixed points of the Jeffery equation (9)

( ) ( ) = - gp I pp A p. A1T

This analysis will also yield the characteristic timescales of the convergence onto the asymptotically stable
solutions. As discussed in section 3.1 and in [18], thefixed points of equation (A1) are given by the real
eigenvectors of gA . Letl be a normalized real eigenvector of gA with eigenvalueλ. Linearizing equation (A1)
aroundl bywriting l= + Dp p, where the perturbationDp lies in the tangent space to the sphere atl , gives

( )( ) ( ) lllD = - D + - Dgp p I A p . A2T

Equation (A2) is a two-dimensional linear dynamical systemwhose stability can be classified using the standard
trace-determinant characterization. To bemore explicit, we introduce the basis vectors { }e e,1 2 for the tangent
space to the sphere atl

( )l l= ´ = ´e n e e, , A31 2 1

where n is an arbitrary non-zero vector, non-colinear withl . In that basis, the perturbation reads
( ) ( )a bD = +p e et t1 2 and the linearized system(A2) reduces to

Figure A1.Additional comparison between experiments with non-motile elongated diatoms(a) and simulations(b)–(d) shown in
figure 5 of theMain Text. In simulations, we reject rods with out-of-plane components larger than: 15°(b), 30°(c) and 45°(d). Panels
(a) and (c) are the same as panels (b), (c) infigure 5 of theMainText.
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To evaluate the trace and determinant of lM , wefirst note that { }le e, ,1 2 is an orthogonal basis for gA . In that
basis, gA takes the form
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Let { }l l l, ,a b be the three eigenvalues of gA . The following identities follow from the abovematrix
representation
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wherewe usedfluid incompressibility in thefirst equation. From the above, we derive the following formulae
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which imply the following expressions for the trace and determinant of M

( )l= -lM aTr 3 , A11

( )l l l= +lM bdet 2 . A11a b
2

From these expression, the eigenvalues of lM read
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Since l l l= - -a b this further simplifies to

( ( ) ) ( )l l l l= -  -
l
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3 . A13M
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2

Figure A2.Ratios of the encounter efficiencies with andwithout the impact of shear, hshear ON
motile (a) and hshear OFF

motile (b), and the encounter
efficiency based on the classical diffusive calculation h ;diffusive

motile all parameters are the same as infigures 9 and 10 of theMain Text.

In the presence of flow, the diffusive encounter efficiency is given by /h = Sh Pe4diffusive
motile , where Sh andPe are the Sherwood and Péclet

number, respectively [25]. For the Sherwoodnumber, we used the following formula valid for lowReynolds number =Sh
[ ( ) ]+ + Pe0.5 1 1 2 1 3 . For the Péclet number, we took =Pe UR Db, with the bacterial diffusivity t=D U0.5b b

2
d, where t = -D ;d r

1

for the parameters used, = ´ - -D 5 10 cm sb
5 2 1. As discussed in section 6, the diffusive encounter efficiency overestimates the

ballistic one and only for the largest sinking particles considered here the two descriptions start to become comparable.
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Wenowuse the eigenvalues(A13) to analyze the linear stability of thefixed points of the Jeffery
equation (A1). Let usfirst consider the casewhen gA has all real eigenvalues l l l< <1 2 3 with eigenvectors
{ }l l l, ,1 2 3 , which are also thefixed points of equation (A1). In this case, the eigenvalues of the linearized
system(A4) are also real and equation (A13) simplifies to

( ∣ ∣) ( )l l l l= -  -
l

1

2
3 . A14M

a b

Furthermore, since l l l+ + = 01 2 3 by the incompressibility, wemust have ∣ ∣l l l= - < >0, 01 1 3 and
∣ ∣ (∣ ∣ )l l l< min ,2 1 3 . For thefixed pointl1, the eigenvalues are are always positive

( ∣ ∣) [ ( )] [ ( )] ( )l l l l l l l l l l= -  - = -  - = -  - - >
l 1

2
3

1

2
3

1

2
3 2 0, A15M

1 3 2 1 3 2 1 1 2
1

implying thatl1 is a repulsive node. For the fixed pointl2, the eigenvalues are

( ∣ ∣) ( ∣ ∣) [ ( )] ( )l l l l l l l l l l= -  - = -  + = -  +
l 1

2
3

1

2
3 2

1

2
3 2 . A16M

2 1 3 2 2 3 2 2 3
2

Explicitly

( )l l l= - >+
l a0, A17M

3 2
2

( )l l l l l= - - = - <-
l b2 0. A17M

2 3 1 22

Thus,l2 is a saddle point. Finally, forl3, the eigenvalues are always negative

( ∣ ∣) [ ( )] ( )l l l l l l l= -  - = -  + <
l 1

2
3

1

2
3 2 0, A18M

3 1 2 3 3 2
3

Figure A3.Additional characterization of the landing distribution function ( )x q for the simulations presented infigure 9 of theMain
Text. Here, we look at the colatitude qf such that the fraction f of the interception positions lies in between q q < <0 f . Formally, qf

is defined as the integral ( )òp x q q q =
q

f2 sin d
0

f .We display the results for three fractions, f=0.25 (top row), f=0.5 (middle row)
and f=0.75 (bottom row). For reference, we note that a uniform coverage of the sphere corresponds to q q=  = 60 , 900.25 0.5 and
q = 1200.75 .
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implying thatl3 is an attracting node.We conclude that the asymptotically stable orientations of equation (A1)
for the casewhen gA has three real eigenvalues are given by l 3, since these are the only attracting fixed points
on the sphere of orientations.We can estimate the characteristic time tl3

needed to converge onto the stable

orientationl3 as the inverse of the average of the eigenvalues l
lM 3

( ) ( )t l l l= - + =l
-

+ -
l l 2

3

2
. A19M M1

33
3 3

Wenow consider the casewhen gA has a pair of complex conjugate eigenvalues and one real eigenvalue
{ }l l l, ,1 1 3* .Wewrite the complex eigenvalue as l l l= + i1 1

r
1
i . In this case, the onlyfixed point of the Jeffery

equation (A1) is given by the real eigenvectorl3.We estimate the linear stability of thisfixed point. The
eigenvalues of the linearized system(A4) become

[ ( ) ] ∣ ∣ ( )l l l l l l= -  - = - 
l 1

2
3

3

2
i . A20M

3 1 1
2

3 1
i3 *

We see that, if the only real eigenvalue l3 is positive, thenl3 is an attractive spiral. Otherwise, it is a repulsive
spiral and the asymptotic state of equation (A1) is given by a stable limit cycle, to be discussed in the next section
inmore detail. The timescale associatedwith the convergence on or divergence away froml3 is given by the
absolute value of the real part of l

lM 3

∣ ∣ ( )t l=l
- 3

2
. A211

33

A.2. Limit cycle case
In the case when gA has complex eigenvalues l1,2 and the real eigenvalue is negative l < 0, the asymptotic
solution to the Jeffery equation (A1) is given by a limit cycle. The limit cycle is the great circle perpendicular to
the real eigenvector p*of gA . To show this, we introduce the orthonormal basis

( ) = ´ ´ = ´n w p w p n n p, , A221 2 1* * *

where w is a randomnon-zero vector. Note that the two orthogonal vectors n1 and n2 span the plane of the great
circle perpendicular to the real eigenvector p*.We look for solutions of the form

( ) ( ) ( ) ( )q q= +p n nt t tsin cos . A231 2

Plugging the above ansatz into the Jeffery equation (A1) yields

[ ( )( )]( ) ( ) q q q q q q q q q q- = - + + +g gn n n n n n A n A nIcos sin sin cos sin cos sin cos . A241 2 1 2 1
T

2
T

1 2

To simplify the above expression, we introduce the following notation for the submatrix of gA

( )
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥=M

n An n An

n An n An
, A251

T
1 1

T
2

2
T

1 2
T

2

and projectequation (A24) onto n1 and n2

( ) ( ) ( )q q q q q q q q q q q= + - + + +t M M M M M Mcos sin cos sin sin sin cos cos sin cos , A2611 12
2

11 12 21
2

22

( ) ( )
( )

q q q q q q q q q q q= - - + + + +t M M M M M Msin sin cos cos sin sin cos cos sin cos .
A27

21 22
2

11 12 21
2

22

Wecombine the two equations into a single one by taking a linear combinationwithweights qcos and qsin

( ) ( ) ( )  q q q q q q q q q q q+ = = + - -t t M M M Mcos sin cos sin cos sin sin cos , A282 2
11

2
12

2
21 22

which further simplifies to

( )q q q=
-

+
+

+
-M M M M M M

2
sin 2

2
cos 2

2
. A2911 22 12 21 12 21

Introducing = - = +A M M B M M,11 22 12 21 and = -C M M12 21, we obtain

( )q q q= + +A B C2 sin 2 cos 2 . A30

This is a first-order nonlinear differential equation. Since the nonlinear term is smooth, the unique (up to the
2πperiod) solution exists, which validates the ansatz(A23) and proves the existence of a limit cycle.

We now explicitly calculate the periodT of the limit cycle. To this end, integrate equation (A30) overT

( ) ( )òp q q= + +CT A B t4 sin 2 cos 2 d A31
T

0
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( ) ( )ò q q
q

q= + +
p

CT A Bsin 2 cos 2
1

d A32
0

2

( )
⎛
⎝⎜

⎞
⎠⎟ò q q

q= + -
+ +

p
CT

C

A B C
2 1

sin 2 cos 2
d . A33

0

2

Weget the following equation forT

( )ò q q
q=

+ +

p
T

A B C

2

sin 2 cos 2
d . A34

0

2

This expression can be expressed as

ˆ
ˆ ( )ò òq q

q
q

q=
¢ + ¢ +

¢ =
+ +

p p
T

A B C A B C
2

1

sin cos
d 2

1

sin
d , A35

0

2

0

2

2 2

wherewe changed variables twice using q q¢ = 2 and q̂ q a= ¢ + , where a = +B A Bsin 2 2 andwe used the
periodicity of the integrand to keep the integration limit as [ )p0, 2 . Thefinal integral can be evaluated using
contour integration.Wefirst change the variables = + qz A B e2 2 i , which yields

∮ ( )
( )=

+ - +
T

z

z Cz A B
4

d

2i
. A36

2 2 2

Wenote that > +C A B2 2 2 corresponds to A having complex eigenvalues, which is the case of interest. In this
case, the integrand has one simple pole inside the integration contour (circle of radius +A B2 2 centered at the
origin) given by one of the roots of the integrand denominator. Applying the residue theorem, yields

( )p
=

- -
T

C A B

4
. A37

2 2 2

This can be related to the originalmatrix A and its negative real eigenvalueλ as

( )
( )p

l l
=

+ -A A
T

4

2 det tr
. A38

2 2

Assuming the complex eigenvalues take the form l a b=  i1,2 , this further simplifies to

( )p
b

=T
2

. A39

Therefore, the angular frequency of the limit cycle is given by the imaginary part of the complex eigenvalue.
These results agree with the analysis in [19] obtained using a differentmethod.

A.3. Velocity gradient of the Stokesflow around a sphere
In this section, we compute the velocity gradient in equation (13) due to the Stokes flow around a sinking
particle.Wefirst carry out the calculation in the curvilinear orthogonal coordinate basis { }¶ ¶ ¶q f, ,r with the

metric tensor ( )q=g r rdiag 1, , sinij
2 2 2 and then transform to the usual orthonormal system {ˆ ˆ ˆ }q fr , , . The

transformation between the two systems is encoded in the Jacobian

( ) ( )q=J r rdiag 1, , sin . A40

In the curvilinear system { }¶ ¶ ¶q f, ,r , the Stokesflow (2) reads

( )
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟q q= ¶ + ¶ = + - ¶ + - + + ¶q

q qv v v U
R

r

R

r
U

r

R

r

R

r
cos 1

2

3

2
sin

1

4

3

4
. A41r

r r

3

3

3

4 2

To compute the velocity gradient (1, 1)-tensor = A vij j
i, we note that the only non-zero Christoffel symbols

are

( )qG = - G = -qq ffr r, sin , A42r r 2

( )q qG = G = G = -q
q

q
q

ff
qr1 , sin cos , A43r r

( )qG = G = G = G =f
f

f
f

qf
f

fq
fr1 , cot . A44r r

Using covariant differentiation, we find the velocity gradient tensor components (in the { }¶ ¶ ¶q f, ,r basis)

( ) = ¶  = ¶ +  =q q q fv v v v v r v a, , 0, A45r
r

r
r

r r r

( ) = ¶ -  = ¶ +  =q q
q

q
q

q
q

q
fv v rv v v v r v b, , 0, A45r r r

( )q =  =  = +f f
q

f
f qv v v v r v c0, 0, cot . A45r r
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Explicit calculation gives the following expressions for the tensor entries

( )
⎛
⎝⎜

⎞
⎠⎟q = - +v U

R

r

R

r
acos

3

2

3

2
, A46r

r
3

4 2

( )
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟q q q = - - + - + + = - -qv U

r

R

r

R

r
U

r

R

r

R

r
U

R

r

R

r
bsin

1 3

2
sin

1

4

3

4
sin

3

4

3

4
, A46r 2

3

5 3 2

3

5 3

3

5 3

( ) =fv c0, A46r

( )
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟q q q = - + - + - - = - +qv U

R

r

R

r
U

R

r

R

r
U

R

r

R

r
dsin 1

2

3

2
sin 1

4

3

4
sin

3

4

3

4
, A46r

3

3

3

3

3

3

( )
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟q q q = - + + + + - = -q

qv U
r

R

r

R

r
U

r

R

r

R

r
U

R

r

R

r
ecos

1

4

3

4
cos

1

2

3

2
cos

3

4

3

4
, A46

3

4 2

3

4 2

3

4 2

( ) =q
fv f0, A46

( ) =fv g0, A46r

( ) =f
qv h0, A46

( )
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟q q q = + - + - + + = -f

fv U
r

R

r

R

r
U

r

R

r

R

r
U

R

r

R

r
icos

1

2

3

2
cos

1

4

3

4
cos

3

4

3

4
. A46

3

4 2

3

4 2

3

4 2

As a sanity check, we compute theflowdivergence

( ) +  +  =q
q

f
fv v v 0, A47r

r

which vanishes, as expected. In thematrix form, the above tensor reads (U=1 andR=1)

( ) ( )
( ) ( )

( )
( )

⎡

⎣

⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥

q q

q q

q

=  =

- + - +

- - -

-

A v

cos sin 0

sin cos 0

0 0 cos

. A48ij j
i

r r r r

r r r r

r r

3

2

3

2

3

4

3

4

3

4

3

4

3

4

3

4

3

4

3

4

4 2 3

5 3 4 2

4 2

Finally, we use the Jacobian J (equation (A40)) to expressA in the orthonormal basis {ˆ ˆ ˆ }q fr , ,

( ) ( )
⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

q
q

q= - - -

-

- +
-

JAJ
r r

3

4

1 1
cos

2 tan 0

tan 1 0

0 0 1

, A49r

r
1

2 4
1

1

2

2

which yields equation (13), in agreementwith the calculation in [21]where the velocity gradient was computed
using a differentmethod.

A.4. Ellipsoids in the Stokesflow: stagnation lines andparticle surface
The eigenvalues of the velocity gradient A (equation (13)) on the stagnation line (q p= 0, ) and the particle
surface (r=1)havemultiplicity greater than one. In this case, the analysis of section 3.1 does not directly apply,
yet these special locationswill be important for the encounter process of non-motilemicro-organisms, which
can only approach the sinking particle near the stagnation line q p= . On the stagnation lines θ=0,π,
equation (13) reduces to

( ) ( )⎜ ⎟⎛
⎝

⎞
⎠

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥q p f= =  - -

-
A r

r r
, 0, ,

3

4

1 1 2 0 0
0 1 0
0 0 1

, A50ij 2 4

where± corresponds to θ=0 and θ=π, respectively. This simple diagonal structure implies that on the
upstream stagnation line (θ=π) rods align tangentially to the sinking particle, while on the downstream
stagnation line (θ=0), rods align vertically. This picture can be inferred from figure 3(b) by taking the limit
r  0. Since = -g=-A A1 T, we immediately obtain the response of disks. Disks align tangentially to the particle
surface for θ=π (with axis of symmetry in the vertical direction), while they lie in the q-r plane for θ=0.
Therefore, non-motile rods or disks approaching the sinking particle along the θ=π stagnation line orient with
their longer dimension tangential to the particle surface.We now compute A on the particle surface to see if
shear tends tomaintain such a tangential orientation. At r=1, the only non-zero component of the velocity
gradient is ( )q f q= = -qA r 1, , sinr

3

2
. This structure implies that the tangential orientations of rods

(symmetry axis along q f- ) and disks (symmetry axis along r) are the null vectors. Thus, to zeroth order, shear
maintains the tangential orientation of rods and disks as they are advected around the sinking particle.
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A.5.Methods: numerical simulations
A.5.1. Time stepping. To numerically integrate the ballisticmodel(equation (3)), we discretized the equations
ofmotion using the classical Runge–Kuttamethod (RK4). Depending on the sinking speed, the time-stepwas
chosen between tD =t 0.075 b for ~U Ub and tD =t 0.005 b for ~U U100 b, where t = l Ub b b is the time
needed for the bacterium to travel distance equal to its bodylength. To integrate the quasi-ballisticmodel with
rotational diffusion(equation (20)), we used the stochastic version of the Eulermethod; at each time step, the
diffusive term is discretized by sampling a 3×1 vector with normally distributed entries with zeromean and
variance DD t2 r .With the rotational diffusion coefficient = -D 0.25 sr

1, the time step varied between 0.04 and
0.2 ms. At each time step, the bacterial orientational vector was normalized to unit length.

A.5.2. Estimation of the encounter efficiency. For a given sinking particle sizeR and sinking speedU, we
estimated the encounter efficiency by discretizing equation (7).We typically sampled the encounter probability

( )rP on a non-uniform grid to resolve the accumulation of ( )rP near the accessibility region for slowly sinking
particles or near the centerline for fast sinking particles(see figures 7 andA4); the number of points on the ρ-
gridwas always at least 50 formotile bacteria and 10 for non-motile bacteria. Once the estimate of ( )rP had been
obtained, the integral in equation (7)was evaluated using the trapezoidal rule.

To estimate the encounter probability ( )rP starting in the initial plane = -z R6 at distance ρ away from the
centerline for random initial orientations, we considered an ensemble of initial orientations by sampling along a
spherical spiral. Such a sampling gives an approximately uniformdistribution of points on a unit sphere of
orientations. By using spherical spiral to sample initial orientations rather than choosing them randomly(that
is, choosing 3× 1 vectors with normal entries with zeromean andnormalizing them to unit length), we obtained
faster convergence by avoiding random clustering of points on the unit sphere. The number of initial
orientations was chosen high enough to guarantee that the solid angle the sinking particle extended at the initial
bacterial location contained at least five initial orientations(the number of blue dots in the inset infigure 1was
always at least five). For such an angular resolution, the number of initial orientations varied between ( )O 102 for
fast sinking particles up to ( )O 104 for slowly sinking particles, for which the accessibility regionwith ( )r >P 0
was largest. In general, to estimate the encounter efficiency η for a given (R,U) pair, we simulated about ( )O 104

trajectories for fast sinking particles and up to ( )O 106 trajectories for slowly sinking particles. In total, due to
scanning the (R,U) parameter space in different shearON/OFF configurations, the this work summarizes the
results of simulating about ( )O 108 bacterial trajectories.

A.5.3. Interception criterion. The sinking particle was assumed to be a perfect absorber: geometric overlap
between any part of a bacterium and the particle was counted as an encounter. In simulations, for simplicity, we
computed this geometric overlap by approximating elongated bacteria (a > 1) of length lb by a cylinder with
spherical caps. The cylinder length, including caps, is lb and its width is alb .With this simplification,
determining the interception is equivalent to determining the distance between the cylinder centerline and the
particle center. Similarly, the geometry of oblate particles (a < 1)was approximated by considering four

Figure A4.Encounter probability ( )rP (a), (b) and distribution of interception colatitudes ( )x q (c), (d) for bacteria starting at the
plane = -z R6 with a random initial orientation for different relative sinking speedsU Ub and aspect ratios a; (a), (c) shows the
results of numerical simulations of the ballisticmodel(3) and (b), (d) the stochasticmodel(20). In the parameter range considered,
rotational diffusionmainly affects elongated swimmers(bottompanels), for which it decreases the impact of the hydrodynamics
focusing at low sinking speeds but also ameliorate the hydrodynamic screening at higher sinking speeds.
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cylinders(with spherical caps) of length lb andwidth alb . The centerlines of the cylinders lie in a plane, the
centerlinemidpoints coincide and the centerlines are rotated at angle 45 —the four cylinders form two crosses
rotated by 45 .With this simplification, determining the interception is equivalent to determining the distance
between the four cylinder centerlines and the particle center.

A.5.4. Estimation of the distribution of interception locations. To estimate ( )x q for a given (R,U) pair, we
considered the ensemble of the endpoints of trajectories that resulted in the interception. As described above,
this ensemble resulted from scanning the ρ-range, the initial position at distance ρ away from the particle
centerline in the initial = -z R6 -plane, as well as uniform initial orientations. This ensemble yielded a
histogramof the interception colatitudes θ. During construction of this histogram, the counts for each scanned
position ρwere further weighted by ρ and the ρ-grid spacing, to account for the number of initial positions at
distance ρ being proportional to ρ(circles of radius ρ) aswell as the non-uniformity of the ρ-grid. Such prepared
histogramof θ-counts(30 bins, binwidth 6°), normalized to a probability density function over a unit sphere,
was used as the estimate of ( )x q .

A.6.Methods: experiments
A.6.1. Cell cultured. Phaeodactylum tricornutum cells (strain CCMP2561)were cultured in f/2medium
(Guillard andRyther 1962)mixedwith artificial seawater. Artificial seawater was prepared by dissolving 35 g of
artificial sea salt (InstantOcean, SpectrumBrands) in 1 l double distilledwater (DDW),filtered through a

m0.2 m filter and autoclaved. Cultures were propagated in 18 °C inAlgaeTronAG230PSI (Photon Systems
Instruments)with 14 h/10 h light/dark cycle. For the experiments, cells in the exponential growing phasewere
used. Cell length andwidthwere m21.2 2.4 m (n=14) and m3.12 0.57 m (n=14), respectively, as
measured by phasemicroscopy.

A.6.2. Experimental procedure. Alginate beadswere prepared using amix of sodium alginate salt frombrown
algae (1.5%w/v,mediumviscosity; Sigma)with 50mMethylenediamine tetra acetic acid (EDTA) inDDW.
Beadswere prepared by dripping the alginate solution from a 1ml syringe at rate of m -60 l min 1 from a height
of 20cm to beaker containing 0.5M CaCl2 inDDW.The CaCl2 solutionwas stirred at 300rpm, using a
magnetic stir-bar. Flowdynamics were studied inmicrofluidic chip (Sticky-Slide 0.4—IBIDI). For the
experiment, single beadwas trapped at the center of the channel using a glass cover slide. A syringe pump
(Harvard PHD2000)was then used to feed the channels with artificial sea water at the desired flow speed
( m -160 m s 1). Channel was visualized using aNikon (eclipse TI-2)microscope atmagnification of
´ ´4 1.5 10 ( ´60 ) and 20fps usingOrca flash 4.0 (Hamamatsu) camera.

A.6.3. Image analysis. Image analysis was performed on 50 consecutive images using ImageJ (Rueden et al
2017). In general 1098±50 cells/imageweremeasured. To extract the orientation from each cell,median
image intensity was calculated using ‘Stacks/ZProjection’function and subtract from all images. ‘FFT/Bang
pass’filter was usedwith small cutoff of 1pxl and big cutoff of 10pxl. ‘Minimum’filter was usedwith 1pxl
cutoff. Datawas transformed to binary using ‘Make binary’functionwith default parameters. Finally, ‘Analyze
particle’function (Particle 30–1000 pxl)was used to collect the orientation data.

A.7.More details on the impact of rotational diffusion.
The uniformizing impact of diffusion is studied inmore detail in figure A4, wherewe consider the interception
probability P(ρ) for a bacterium starting at the plane = -z R6 with randomorientation(figures A4(a), (b)) as
well as the corresponding distribution of the interception locations ( )x q (figures A4(c), (d)).We compare side to
side the cases without(figures A4(a), (c)) andwith diffusion(figures A4(b), (d)) for oblate, spherical and
elongated swimmers (top,middle and bottom rows, respectively). The accessibility region (defined as ( ) ]r >P 0
shrinks under diffusion, because the now erraticmotion of bacteria takes longer to reach the particle. and
therefore, the bacteriamust start closer to the particle to be able to catch it.Within the accessibility region, the
distribution P(ρ) for oblate and spherical swimmers is nearly unaffected by diffusion(figures A4(a), (b), top and
middle rows) and so is ξ(θ) (figures A4(c), (d), top andmiddle rows). However, for elongated swimmers,
diffusion decreases the size of the high probability belt near the edge of the accessibility region but also raises the
probability of interception for initial conditions directly below the sinking particle(figures A4(a), (b), bottom
row). As a consequence, diffusive elongated swimmers have non-negligible probability of attaching to the front
of the sinking particle(figures A4(c), (d), bottom rows).
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