
Diss. ETH No. 19907

Data Stream Processing in Complex
Applications

A dissertation submitted to the

ETH ZURICH

for the degree of

Doctor of Sciences

presented by

KYUMARS SHEYKH ESMAILI

Master of Science in Software Engineering, Sharif University of Technology

born 26 January 1981

citizen of Iran

accepted on the recommendation of

Prof. Dr. Donald Kossmann, examiner

Prof. Dr. Peter M. Fischer, co-examiner

Prof. Dr. Renée J. Miller, co-examiner

Prof. Dr. Bernhard Seeger, co-examiner

2011

ii

Abstract

With a massive increase of available data sources, their high data rates and requirements

for fast response, we have witnessed the emergence of data stream processing as a new

data management paradigm. Many Stream Processing Engines (SPEs) have been built in

recent years and several business applications have started to successfully use data stream

management systems.

However, as industry gears toward using data stream processing in increasingly complex

applications, existing approaches and systems are no longer sufficient. In this thesis, we

identify, generalize and solve the challenges arising from such complex applications, based

on a real-world use case, compliance monitoring in Service Oriented Architectures (SOA).

In particular, we make the following contributions toward making data stream processing

a viable solution for complex streaming applications:

1. Establishing Schema for Data Streams and Exploring its Applications. Static meta-

data (aka Schema) plays an important role in design and validation of data. We

identify the most relevant static metadata aspects for data streams, and formally

specify them in a model named Stream Schema. We also present a mechanism for

validation of data streams against Stream Schema and analyze its runtime and space

complexity. Experimental evaluations confirm the usefulness of semantic optimiza-

tion techniques based on Stream Schema. Additionally, we show that applicability of

Stream Schema extends beyond optimization gains. It broadens the static analysis

of stream queries and changes the way that stream applications are modeled.

2. Fine-grained Provenance Management on Data Streams. Precise evidence of origin

and processing of data (aka provenance) is a crucial part of many complex, data-

centric applications. We investigate the requirements of fine-grained provenance

on data streams using real-life use cases and determine the challenges, in partic-

ular caused by the volatility of data. To solve this problem, we analyze existing

provenance computation methods, establish the formal foundations using an alge-

bra, and show the details of the implementation. Numerous optimizations to reduce

iii

iv Abstract

the overhead of provenance computation and to enable on-demand computation of

provenance make it possible to use fine-grained provenance in environments with

high performance requirements. We show this by an extensive set of experiments.

3. A Framework to Model Continuous Query Lifecycle and Query Modification Model.

Precise descriptions of lifecycle operations of a data stream query are necessary to

provide exact semantics not only for “regular operations”, but also for “boundary

conditions”, in particular when modifying a query to fit the new requirements. We

establish a punctuation-based framework and a methodology that can formally ex-

press arbitrary lifecycle operations on continuous queries. It is based on input/output

mapping functions and a limited set of punctuations such as Start and Stop control

elements. Using this framework and methodology, we derive all possible variations

of query modification, each offering a distinct combination of correctness guarantees.

We also show how this framework and model can be integrated into state-of-the-art

SPEs with fairly minor effort.

In order to avoid SPE-specificity, all solutions proposed in this thesis have been built

upon abstractions and formalizations. Furthermore, all of them have been implemented

and experimentally validated, in some cases, using more than one stream processing plat-

forms

Zusammenfassung

Die massiv steigende Anzahl an Datenquellen, deren hohe Datenraten, sowie die An-

forderung an schnelle Reaktionszeiten haben zur Etablierung der Datenstromverarbeitung

(Stream Processing) als eigenständiges Datenverwaltungsparadigma geführt. Im Verlauf

der letzten Jahre wurden zahlreiche Systeme zur Datenstromverarbeitung (Stream Process-

ing Engine, SPE) entwickelt, welche bereits erfolgreich in vielen Bereichen der Industrie

eingesetzt werden.

Im Zuge immer komplexerer Anwendungen sind existierende Ansätze und Systeme je-

doch nicht länger adäquat. Diese Doktorarbeit identifiziert, generalisiert und löst die neu

entstandenen Herausforderungen anhand eines Beispiels aus der Praxis, der Überwachung

von Richtlinien (Compliance Monitoring) in service-orientierten Architekturen (SOA).

Dabei werden insbesondere die folgenden Beiträge zur besseren Anwendbarkeit von SPEs

in komplexen Anwendungen erbracht:

1. Schema für Datenströme und seine Anwendungen. Statische Metadaten (Schema)

spielen eine zentrale Rolle in der Modellierung und Validerung von Daten. Die vor-

liegende Arbeit identifiziert die relevanten Aspekte statischer Metadaten bezüglich

Datenströmen, und formalisiert diese in Form eines Modell namens Stream Schema.

Für dieses Modell wird ein Validierungsalgorithmus beschrieben und bezüglich Spei-

cher- und Zeitkomplexität untersucht, welcher die Korrektheit eines Datenstroms

hinsichtlich eines benutzerdefinierten Schemas überprüft. Eine analytische und ex-

perimentelle Evaluierung zeigt den Nutzen solcher Schema bei der semantischen

Optimierung von Datenstromanfragen. Weitere Anwendungsgebiete umfassen die

statische Korrektheitsanalyse von Datenstromanfragen sowie neue Entwurfsansätze

für Datenstromanwendungen.

2. Feingranulare Provenance(Abstammung/Herkunft) auf Datenströmen. Ein genauer

Nachweis der Herkunft und Verarbeitungskette von Daten (Provenance) ist wichtiger

Bestandteil vieler komplexer Anwendungen. Die vorliegende Arbeit untersucht die

Anforderungen feingranularer Provenance im Kontext von Datenstromanwendun-

v

vi Zusammenfassung

gen anhand konkreter Szenarien, und identifiziert die besonderen Herausforderun-

gen dabei, insbesondere die Flüchtigkeit von Daten. Es werden existierende Ansätze

zur Berechnung von Provenance betrachtet, die formalen Grundlagen von Stream

Provenance auf Basis einer speziellen Algebra gelegt, sowie eine Implementierung von

Stream Provenance inklusive zahlreicher Optimierungen beschrieben. Wie anhand

zahlreicher Experimente nachgewiesen wird, ermöglichen diese Optimierungen den

Einsatz feingranularer Provenance in Anwendungen mit hohen Leistungsanforderun-

gen.

3. Rahmenmodell zur Beschreibung von Lebenszyklus und Modifikation von Datenstrom-

anfragen. Präzise Modelle von Lebenszyklusoperationen einer Datenstromanfrage

sind notwendig um exakte Semantik nicht nur im “regulären Betrieb” sondern auch

in den “Übergangsbereichen” solcher Anfragen zu erhalten, insbesondere bei der

Modifikation einer laufenden Anfrage. Diese Arbeit präsentiert ein Rahmenmodell

auf Basis von Markierungen (Punctuations), mithilfe dessen beliebige Lebenszyk-

lusoperationen formal ausgedrückt werden können. Dieses Rahmenmodell beruht

auf Abbildungsfunktionen zwischen Eingaben und Ausgaben sowie einigen wenigen

grundlegenden Markierungen wie Start und Stop. Das Rahmenmodell wird in der

Folge für verschiedene Lebenszyklusoperationen angewendet, insbesondere für die

Modifikation von laufenden Anfragen. Dabei werden alle Varianten der Anfragen-

modifikation vollständig abgeleitet, welche jeweils bestimmte Korrektheitskriterien

hinsichtlich des Eingangs- und Ausgangsstroms garantieren beziehungsweise nicht

garantieren. Eine vollständige Implementierung zeigt, wie dieses Rahmenmodell mit

geringem Aufwand in existierende SPEs integriert werden kann.

Um die beschriebenen Verfahren weitestgehend anwendbar zu machen, wurde für die

gesamte Arbeit eine einheitliche Formalisierung entwickelt. Alle Verfahren bauen auf dieser

Formalisierung auf, und wurden für diverse existierende SPEs – fallweise für mehrere SPEs

– umgesetzt und evaluiert.

Acknowledgments

I would like to avail the opportunity to express my gratitude to several people who helped

me accomplish the work presented in this dissertation.

First and foremost, I am in deep gratitude to Prof. Peter Fischer for his continuous

support and guidance. His insightful comments and relentless dedication have deeply

influenced this dissertation. He has also been a constant source of moral support and

encouragement throughout my PhD studies. This dissertation would not have been the

same without him.

My profound admiration also extends to Prof. Donald Kossmann. He made it possible

for me to join Systems Group and provided me with invaluable advices and scientific

intuition whenever I needed. I am also grateful for the work and availability of Prof.

Nesime Tatbul. Her instructive comments on some of my works undoubtedly helped me

with my achievements.

I am also indebted to my colleagues at Systems Group, in particular: to Boris Glavic,

Tahmineh Sanamrad, Silvio Kohler, and Christian Tarnutzur for their conceptual and

technical contributions; to Philipp Unterbrunner for reading an earlier version of this dis-

sertation; and to Jens Teubner for his helpful comments on my PhD defense presentation.

Finally, I would like to thank my friends in Zurich: Akhi, Alex, Anne-Sophie, Araz,

Arya, Boris, Emre, Farhad, Farzaneh, Giorgos, Hanieh, Jana, Masoud, Maysam, Morteza,

Nemat, Nihal, Parivash, Peyman, Philipp, Pravin, Roozbeh, Sareh, Simon, Tahmineh,

Tudor, Yunting, and Ziad. They made the years of my PhD studies a fun experience and

an unforgettable time.

vii

To the loving memory of my late cousins

Xolamsên

and

Şoriş

ix

Contents

1 Introduction 1

1.1 Background and Motivation . 1

1.2 Contributions . 2

1.3 Thesis Structure . 4

2 SOA Monitoring 7

2.1 MASTER Project . 7

2.1.1 Big Picture . 8

2.1.2 Simplified Example . 9

2.1.3 Prototype Implementation . 10

2.2 The Conceptual Side of MASTER . 11

2.2.1 SOA Monitoring as a Streaming Application 11

2.2.2 Challenges . 12

3 Foundations of Data Stream Processing 15

3.1 Running Example . 15

3.2 Data Streams . 15

3.3 Stream Queries . 16

3.3.1 Query Mapping Functions . 17

3.3.2 Query as Composition of Operators 18

4 Stream Schema: Static Metadata for Data Streams 21

4.1 Introduction . 21

xi

4.1.1 Motivation . 21

4.1.2 Contributions . 22

4.1.3 Outline . 22

4.2 Stream Schema . 22

4.2.1 Design Space . 23

4.2.2 Running Example: Linear Road Benchmark 24

4.2.3 Individual Elements of Stream Schema 24

4.2.4 Combination Scheme . 29

4.3 Validation of Stream Schema . 31

4.3.1 Checking Correctness for Individual Schema Elements 31

4.3.2 Prefix Validation . 33

4.3.3 Validation Mechanism . 34

4.3.4 Validation Complexity . 35

4.3.5 Validation in Presence of Disorder 36

4.3.6 Practical Issues . 36

4.4 Integration into Processing Models . 37

4.5 Related Work . 39

4.6 Conclusions . 40

5 Applications of Stream Schema 43

5.1 Introduction . 43

5.1.1 Motivation . 43

5.1.2 Contributions . 43

5.1.3 Outline . 44

5.2 Stream Schema-enabled Optimizations . 44

5.2.1 Pipelined Execution . 45

5.2.2 Stream Data Partitioning . 45

5.2.3 Window/Pattern Optimizations . 46

5.2.4 State Reduction . 47

xii

5.2.5 Join Cardinality Reduction . 48

5.3 Impact On Stream Processing Semantics 49

5.3.1 Static Check for Non-Executable Expressions 49

5.3.2 Extended Set of Runnable Expressions 49

5.4 Decoupling Streaming Applications . 49

5.5 Case Study I: Linear Road Benchmark . 50

5.5.1 Optimizations . 51

5.5.2 Experiments and Results . 53

5.5.3 Schema-Driven Executability of XQuery Expressions 55

5.6 Case Study II: Supply Chain . 56

5.6.1 RFID-based Misrouted Item Detection 56

5.6.2 Query Rewrites for Early Detection of Misrouted Items 58

5.6.3 Experiments and Results . 58

5.7 Related Work . 59

5.8 Conclusions . 61

6 Provenance Management on Data Streams 63

6.1 Introduction . 63

6.1.1 Motivation and Use Cases . 63

6.1.2 Challenges . 65

6.1.3 Running Example . 66

6.1.4 Contributions . 67

6.1.5 Outline . 67

6.2 Provenance Design Space . 67

6.2.1 Provenance Computation . 67

6.2.2 Provenance Representation . 69

6.2.3 Summary of Tradeoffs . 70

6.3 Provenance Semantics . 71

6.3.1 Overview . 71

xiii

6.3.2 Data Model . 72

6.3.3 Stream Algebra . 73

6.3.4 Declarative Provenance Semantics 76

6.3.5 Provenance Generating Operators 78

6.4 Implementation . 81

6.4.1 Overview . 81

6.4.2 Representing and Propagating Provenance 83

6.4.3 Provenance Operator Modes . 83

6.4.4 The Expand Operator . 84

6.4.5 Input Tuple Storage and Retrieval 84

6.5 Optimizations . 85

6.5.1 Provenance Compression . 86

6.5.2 On-Demand Provenance Operations 87

6.6 Experiments . 89

6.6.1 Overview . 89

6.6.2 Impact of Selectivity . 92

6.6.3 Impact of Overlap . 93

6.6.4 Impact of Window Size . 94

6.6.5 Recording Cost for Lazy Computation 95

6.7 Related Work . 96

6.8 Conclusions . 97

7 A Framework To Model Query Lifecycle Operations 99

7.1 Introduction . 99

7.1.1 Motivation . 99

7.1.2 Contributions . 100

7.1.3 Outline . 100

7.2 Our Framework and Methodology . 100

7.2.1 Basic Control Elements . 101

xiv

7.2.2 Interaction of Basic Control Elements 104

7.2.3 Correctness Criteria . 106

7.2.4 A Methodology to Create Complex Control Elements 107

7.3 Example: Query Pause/Resume Model . 108

7.3.1 Formal Definition of Pause/Resume 109

7.3.2 Correctness of Pause/Resume . 109

7.3.3 Variations of the Pause/Resume Control Element 110

7.4 Concretization . 111

7.4.1 Control Elements on Composition 111

7.4.2 Our Framework on SPEs . 115

7.5 A General Architecture to Implement Our Framework 115

7.6 Related Work . 117

7.7 Conclusions . 117

8 A Model for Continuous Query Modification 119

8.1 Introduction . 119

8.1.1 Motivation and Use Cases . 119

8.1.2 Contributions . 121

8.1.3 Outline . 121

8.2 The Query Modification Model . 121

8.2.1 Definition of Query Modification 122

8.2.2 Correctness of Query Modification 122

8.2.3 Variations of the Change Control Element 125

8.2.4 Interaction of Control Elements Revisited 133

8.2.5 Guarantee Proofs . 134

8.2.6 Correctness Rules for Change . 139

8.3 Implementation . 140

8.3.1 General Architecture Revisited . 141

8.3.2 SPE-specific Implementation . 142

xv

8.4 Experiments . 143

8.4.1 Sensitivity Analysis for Stateful Operators 143

8.4.2 Complex Queries . 146

8.4.3 Tradeoffs and Guidelines . 149

8.5 Related Work . 150

8.6 Conclusions . 150

9 Conclusion 153

9.1 Summary . 153

9.2 Ongoing and Future Work . 155

A Queries in MXQuery Implementation of LR Benchmark 157

xvi

Chapter 1

Introduction

1.1 Background and Motivation

With the proliferation of dynamically generated data, we have witnessed the emergence

of data stream processing as a new data management paradigm. Stream processing has

proven to have a wide spectrum of practical applications with varying requirements such

as real-time financial analysis, network traffic monitoring, sensor-based tracking. As a

result, a significant number of academic (e.g., Borealis [15], STREAM [74], TelegraphCQ

[31]) and commercial (e.g., StreamBase [11], Truviso [13], IBM InfoSphere Streams [8],

MS StreamInsight [18]) stream processing engines (SPE1) have been built to meet these

needs.

However, these systems and proposals only address the fundamentals of data stream

processing. They fall short of meeting the requirements of complex streaming applications.

To be precise, while analyzing our real-world use case, compliance monitoring in Service

Oriented Architecture (SOA), we have identified three major shortcomings in the state-

the-of-art of data stream processing2:

Use of Static Metadata: Metadata specifying structural and semantic constraints are

invaluable in data management. They facilitate conceptual design and enable the checking

of data consistency. They also play an important role in semantic query optimization, that

is, optimization and processing strategies that are often highly effective, but only correct

for data conforming to a given schema. While the use of metadata is a well-established

technique in relational and XML databases, the same is not true for data streams. The ex-

1Throughout this thesis we use the terms SPE and DSMS (data stream management system) inter-

changeably.
2For usecase-specific problem statements, see Chapter 2.

1

2 Chapter 1. Introduction

isting work mostly focuses on the specification of dynamic information (e.g. constraints on

arrival rates) have long been exploited for optimization [85]. However, beyond a few lim-

ited proposals (including K-Constraints [25] and Gigascope [36]), structural and semantic

constraints on stream data have not been exploited in a systematic way.

Furthermore, due to the growing interest in developing declarative query languages

for data stream processing, the need for schema knowledge, as its crucial complementary

counterpart, arises.

Provenance Tracking: Tracking provenance, exploring which input data led to a given

query result, has proven to be an important functionality in many domains such as scientific

data management, workflow systems [39] and relational database systems [33]. Previous

techniques have traditionally been classified according to their granularity: Coarse-grained

provenance tracks dependencies between input and output data at a very abstract level

(e.g., streams), whereas fine-grained provenance does so for individual data items in the

input’s data collections (e.g., tuples or attribute values).

Surprisingly, in the area of data stream management systems, there has been little

work beyond coarse-grained provenance (e.g., tracking the sensor sources from which a

data item originates [86, 68]). Recently, Huq et al [58] have proposed to achieve fine-

grained stream provenance by augmenting coarse-grained provenance with timestamp-

based data versioning, focusing specifically on query result reproducibility at reduced

provenance metadata storage cost. Still there have not been attempts to identify the

challenges involved in providing stream provenance support, and address these challenges

in a scalable way.

Query Lifecyle Model: In contrast to one-time queries in relational databases, contin-

uous queries in SPEs can run for unpredictably long time periods over infinitely long data

streams. During their lifetime due to requirements of application semantics or resource

constraints of the system these queries may go through different lifecycle states. Examples

of such states are Stopped, Running, and Modification.

Previously, there have been few works on stopping and restarting of long-running queries

in data warehouses [65, 30, 32]. Due to the inherent differences between streams and

traditional warehouses and also their limited scope, these solutions are not sufficient to

use in SPEs.

1.2 Contributions

In this thesis we make the following contributions:

1.2. Contributions 3

• Establishing Schema for Data Streams: after reviewing various possibilities

of describing data stream properties and exploring the general design space, we

compile a relatively small but powerful list of stream description elements. At a

more coarse-grained level, we proposed Stream Schema, a formal framework which

not only provides precise definitions for individual constraints, but also offers a

well-defined composition scheme, which makes it possible to describe data streams

recursively and comprehensively. Furthermore, we have presented a mechanism for

validation of data streams against Stream Schema and analyzed its complexity. On

the practical side, we have shown how Stream Schema can be integrated into the

existing stream processing models and sketched two implementation alternatives for

Stream Schema Validator.

• Exploring Applications of Stream Schema: Once a schema for streams is es-

tablished, we explore its applications. On top of validation and type annotation, we

present three other areas that can benefit from Stream Schema:

– Optimizations: Stream Schema can be exploited to pipeline the query execution

and to partition the stream data. It also enables state reduction and query

rewrites.

– Static analysis of stream queries: using the Stream Schema knowledge, the set

of runnable as well as non-executable expressions can be extended.

– Modeling of streaming applications: since Stream Schema captures data consis-

tency and structural constraints, it can greatly simplify the queries in streaming

applications resulting in increased decoupling and reuse.

These applications are experimentally demonstrated using two case studies.

A paper reporting on the Stream Schema and its applications has been published [48]

in the Proceedings of the 13th International Conference on Extending Database

Technology (EDBT’10).

• Building a Stream Provenance Management System and Exploring the

Tradeoffs.: We first investigate the requirements of fine-grained provenance on

data streams using real-life use cases and determine the challenges, in particular

caused by the volatility of data. Then, we analyze existing provenance computation

methods, establish the formal foundations using an algebra, and show the details of

the implementation. Numerous optimizations to reduce the overhead of provenance

computation and to enable on-demand computation of provenance make it possible

to use fine-grained provenance in environments with high performance requirements.

We show this by an extensive set of experiments.

4 Chapter 1. Introduction

The general description of our solution has been published [52] in the Proceedings of

the Database Systems for Business, Technology, and Web (BTW’11) Workshops. A

detailed report including our algebra, experiments, and tradeoffs has been submitted

to the VLDB Journal.

• Establishing a Framework to Model the Lifecycle of Queries: We establish

a framework that can formally express arbitrary lifecycle operations on the basis

of input-output mappings and basic control elements (such as query start or query

stop) which are inserted into the input stream. We also devised a step-by-step

methodology to model complex lifecycle operations using basic control elements.

Finally, we propose a general architecture which allows integrating our framework

into existing SPEs with minimal changes.

• Modeling Query Modification: we leverage our modeling framework to first de-

fine correctness criteria for query modification and then derive all possible variations

of query modification. Each of these variations provides a different level of correct-

ness guarantees and performance. The results of two sets of experiments to identify

the key performance tradeoffs of the query modification variations are also reported.

A paper describing our modeling framework and query modification model has been

published [47] in the Proceedings of ACM SIGMOD Conference 2011.

1.3 Thesis Structure

The reminder of this thesis is organized as follows. We start by giving an overview of

MASTER, our SOA monitoring use case, in Chapter 2. Chapter 3 introduces abstractions

and formal definitions for the two fundamental concepts in data stream processing: data

streams and stream queries (or, interchangeably, continuous queries). These definitions

will be used in other chapters of this thesis.

In Chapter 4, we introduce Stream Schema, our proposal to capture and structure static

stream metadata. A suite of optimizations enabled by Stream Schema as well as other

applications of Stream Schema are presented in Chapter 5.

We explain our solution for the stream provenance management problem in Chapter 6.

There, we also present Ariadne, our provenance-aware stream processing engine.

Our general framework to model query lifecyle is discussed in Chapter 7 and a detailed

example of it is given in Chapter 8, where we leverage this framework to model query

modification.

1.3. Thesis Structure 5

In Chapter 9, after presenting our ideas in previous chapters, we summarize the thesis.

There, we also point out how our ideas have been integrated into the official deliverables

of MASTER. At the end of this thesis, we outline ongoing work and discuss possibilities

for future research.

Finally, Appednix A encompasses the complete query texts of the MXQuery implemen-

tation [29] of LR Benchmark [23]. These queries are (partly) referred to in Chapters 5

and 8.

Chapter 2

SOA Monitoring

In this chapter, we first (in Section 2.1) briefly introduce MASTER [9], an European Union

FP7-integrated project aiming at building a complex streaming application for compliance

monitoring. Then (in Section 2.2) we look at the conceptual side of MASTER in general

and three challenges which have been addressed in this thesis in particular.

2.1 MASTER Project

A Service Oriented Architecture (SOA) [19] provides a common platform that allows inte-

grating services and components across organizational domains, reusing them in different

business settings, and building applications through composing services. Because it en-

ables flexibility and agility, SOA has been quickly adopted by software vendors, service

providers, and businesses.

Businesses which adopt SOA platform, as for other architectures, still need to comply

with applicable laws and regulations (i.e. COBIT, ISO 27001). From this perspective,

SOA’s main characteristics such as abstract service interfaces, distributed ownership, and

cross-domain operations introduce new challenges for the implementation of compliance

controls and the assessment of their effectiveness.

Taking these aspects into the consideration, MASTER [9] (short for Managing Assur-

ance, Security, and Trust in sERvices) aimed at solving problem of compliance monitoring

in SOAs.

In following, we will give an overview of MASTER and its prototype implementation.

7

8 Chapter 2. SOA Monitoring

2.1.1 Big Picture

To solve the compliance problem in SOA, MASTER proposes [71] an architecture that

extends SOA. This architecture is depicted in Figure 2.1.

Monitoring infrastructure

collects data from signaling infrastructure aggregates, abstracts, concretizes, translates

Online Enforcement Infrastructure

Prevents, modifies, delays, react

Assessment Infrastructure

(Diagnoses, Assess, human-in-the-loop)

Observation Layer

Service Service Service Service

Signaling Infrastructure

renders service events visible to the outside

Figure 2.1: Compliance Architecture Proposed by MASTER [71]

MASTER distinguishes between an observation layer that hooks into the SOA and the

services to extract raw events and aggregates them to complex events, and an enforcement

layer that provides analysis and reporting facilities and decision support on the events

as well as automated enforcement where possible. The observation layer consists of two

parts. First a signaling component that deals with events caused by services. Second an

aggregation component that performs monitoring along with the generation of complex

events.

The assessment and enforcement components receive input from the observation layer

and feed back into the services. The difference between these two components is that

enforcement emphasizes on automation of reaction and the adaptation of controls, while

assessment focuses on reporting, knowledge management, and data warehousing with re-

spect to the events.

2.1. MASTER Project 9

Monitoring

COBIT Control 5.3

User identification exists

Authentification service

exists and running

COBIT Control 5.6

Raise an exception when there are more than three

attempts

If log failed > 3 during

last 5’

Raise Warning

Monitoring Policy

Service statusLogin failure counterWarning
Event

Signaling
Login failure Authentication Service

State

Figure 2.2: A MASTER Scenario: Credit Card Pin Code Validation

2.1.2 Simplified Example

To further explain the MASTER architecture, we use a simplified compliance example.

This example will be frequently referred to in the next section, where we point out a set

of challenges in SOA monitoring.

Imagine that in a given SOA setup, there are multiple instance of a running ATM

authentication service, which is realized through a certain number of message exchanges

on the Enterprise Service Bus (ESB). Moreover, assume that there is a security control

objective which states

if there are 3 failed login attempts within 5 minutes, block the card.

Figure 2.2 depicts this scenario. The signaling infrastructure collects the raw authenti-

cation events and forwards them to the monitoring layer. In turn, the monitoring layer

performs filtering and aggregation operations to generate complex events. Once there are

3 failed-login attempts in 5 minutes, a complex event is produced which triggers a reaction

in the enforcement layer that consequently blocks the ATM card.

10 Chapter 2. SOA Monitoring

2.1.3 Prototype Implementation

Our team in MASTER project was concerned with the observation layer (signaling and

monitoring) problems. In parallel to tackling the conceptual issues, we also contributed

to the prototype implementation of MASTER. We started by conducting a thorough

analysis [63] of available implementations of Enterprise Service Buses (ESB) which form

the backbone of any SOA. Based on this study, we chose Apache ServiceMix [1]. We then

enriched ServiceMix with signaling capability which allows exposing internal dynamics of

ServiceMix including messages exchanges and changes in the service registry. Details can

be found in Deliverable D4.1.2 [3] of MASTER.

Signaling

Policy

Handler

MASTER-aware ServiceMix

Enterprise Service BUS

Signaling

Component

Servers
Clients

Events

Database

Monitoring

Engine

(MXQuery)

Monitoring

Query

Handler

File

System

Receiver

Services

Output

Event

Dispatcher

External

Signal

Handler

Figure 2.3: Monitoring Infrastructure of MASTER

On the monitoring side, as explained in Deliverable D4.1.3 [4], we embedded MX-

Query [10] into ServiceMix to cater for complex event processing requirements.

Figure 2.3 depicts the overall view of our MASTER monitoring infrastructure. The

topmost level of this architecture illustrates the core functionality of ServiceMix which

is decoupling external clients and servers from each other bye exchanging messages on

its bus. By adding the Signaling Component and through the Signaling Policy Handler

2.2. The Conceptual Side of MASTER 11

interface, we have enabled SOA administrators to intercept and and extract messages on

the bus. These signaling events are pushed into the input queue of the Monitoring Engine.

The Monitoring Engine, MXQuery, is the central element in this architecture. It pro-

cesses multiple events with the objective of extracting complex, meaningful events. To this

end, it employs techniques such as patterns, event hierarchies, and other relationships be-

tween events such as causality, membership, and timing. The Monitoring Query Handler

interface allows interacting with the Monitoring Engine and managing the queries. This

engine works on the event queue fed by the signaling layer, and puts complex events into

an output queue. The Output Event Dispatcher interface allows dispatching these output

events to a variety of sinks (receiver endpoints, event databases, or the local file system).

2.2 The Conceptual Side of MASTER

2.2.1 SOA Monitoring as a Streaming Application

The conceptual part of MASTER [71] describes SOA monitoring as expressions over

streams of events and therefore an application of Stream Processing Engines (SPEs). Fur-

thermore, it advises to use the XQuery programming language (with focus on its streaming

feature [29]) to achieve this goal.

Returning to our ATM authentication example, an excerpt of the event stream reported

by the signaling infrastructure would look like Listing 2.1.�
1 <event type=”login−failure” uid=”511” time=”10:00”/>

2 <event type=”login−success” uid=”101” time=”10:01”/>

3 <event type=”login−failure” uid=”511” time=”10:03”/>

4 <event type=”login−failure” uid=”511” time=”10:04”/>
� �
Listing 2.1: A Stream of Login Events in XML Format

Additionally, the aforementioned monitoring policy would look like Listing 2.2.�
1 forseq $w in $eventseq sliding window

2 start curItem $x when $x/@type eq ”login−failure”

3 end curItem $y when $y/@time − $x/@time gt 5 min

4 where count ($w[@uid = $x/@uid]) > 2

5 return <alert type=”break−in attempt” account={$x/@uid}>
� �
Listing 2.2: Break-in Attempt Detection in XQuery

12 Chapter 2. SOA Monitoring

Once the monitoring system detects a break-in attempt, it issues an alert which through

enforcement mechanisms will result in blocking the card by the ATM machine.

2.2.2 Challenges

There are a number of conceptual challenges in tackling the SOA monitoring problem.

Based on their generality, three of these challenges were selected [46] to be addressed in this

thesis (for a list of other challenges, see Section 9.2). The first of these challenges is driven

by a non-functional requirement while the other two arise from functional requirements.

In the following, by the means of our ATM example, we will shortly explain each of these

three challenges.

Efficient Processing of Event Streams

Monitoring subsystems often have strict performance constraints. In particular, informa-

tion on compliance violations need to be reported within acceptable time frames, which

can range from seconds (for human observation) to milliseconds (for automatic enforce-

ment). These requirements need efficient processing of queries; not only to meet QoS

requirements and minimize resource usage, but also to offer scalability in terms of queries

and signaling sources. To cater for such performance-critical circumstances, optimization

techniques play a key role.

Such optimizations generally exploit the existing implicit or explicit metadata about

the data streams and the queries working on them. Although there has been a body

of work on using the dynamic metadata to optimize streaming queries, the same does

not hold for static metadata. The need to take advantage of static metadata becomes

more apparent once one takes into account the highly-structured nature of MASTER

data streams (interleaving sequences of relatively large XML messages with well-defined

schemas).

For instance, in our ATM example, one can observe the following properties of the main

input stream:

• the stream itself is a combination of some heterogeneous substreams (i.e authentica-

tion events stream, cash withdrawal events stream, reporting events stream, etc)

• the timestamp attribute of events generated by an ATM machine is strictly non-

decreasing

2.2. The Conceptual Side of MASTER 13

• most of event streams are combinations of homogeneous substreams (since there are

multiple instances of certain services running)

Hence, developing a framework for specifying stream constraints is perceived as a im-

portant step toward more efficient data stream processing. In Chapter 4, we define Stream

Schema to capture such static constraints and properties. Later, in Chapter 5, we show

the applicability of Stream Schema.

Tracing the Provenance of Complex Output Events

The provenance management feature in information systems allows tracing the data items

exchanged between steps, including the original source data and the operations that were

performed on the data. It provides the functionality to determine where data comes from

and how it is transformed. In case of MASTER, provenance information is necessary for

both in-depth analysis and evidence providing, which are required to prove compliance to

regulations. More concretely, for a particular monitoring event, provenance information

enables users to know:

• what signaling events have caused the event’s creation (i.e. the actual three failed

login attempts’ details)

• what signaling sources have been involved in event’s creation (the geographical lo-

cation of the corresponding ATM machine)

• what monitoring queries were involved in generating the event (i.e. the query in

Listing 2.2)

There is a sizable amount of work on data provenance management in relational databases,

but due to the fundamental differences between relational and streaming systems, those

techniques are not directly (if at all) applicable to data streams. Hence, provenance man-

agement on data streams remains, to a large extend, an unsolved issue. In Chapter 6, we

explain our solution to solve this problem.

Dynamic Modification of Monitoring Queries

Monitoring policies of MASTER are embodied in continuous queries. Queries can be in the

running state for possibly very long periods of time (in some cases, for years). However,

throughout these periods, it may become necessary to modify them, due to, for instance:

14 Chapter 2. SOA Monitoring

• changes in laws, standards, or internal regulations (in the ATM example, relaxing

the security control objective by increasing the maximum number of failed tries to

4)

• changes in high-level management interests (alerts should be accompanied by suffi-

cient evidence)

• changes in the schema of the signaling events and streams (newly installed ATMs

may provide richer metadata)

Here, the main challenge is how to perform the transition from an old version of the

query to a newer version which reflects the changes. Such transitions, need to have a clear

definition for semantics of query modification. After investigating this problem it becomes

clear that we first need to have well-defined semantics for finer-grained lifecycle operations

such as query stop and start. To this end, in Chapter 7, we have taken a bottom-up

approach and proposed a formal framework and a methodology, which allow defining clear

semantics for query lifecycle operations. Subsequently, in Chapter 8, we will leverage this

framework to model query modification.

Chapter 3

Foundations of Data Stream

Processing

Since no agreement on data models and processing models for data stream systems ex-

ists [60], in this thesis we have tried to assure generality of our solutions by basing them on

abstractions and formalizations which are not pendent on any streaming systems. At the

same time, we provide refinement and integration mechanisms to guarantee applicability

of our ideas in state-of-the-art processing models.

In this chapter, after introducing a simple stream processing example in Section 3.1,

we will provide clear definitions for data streams (in Section 3.2) and continuous queries

(in Section 3.3). In the next chapters of this thesis, we will use these simple example and

basic definitions and, if necessary, extend them accordingly.

3.1 Running Example

Our running example is Q1, which uses a tuple-based sliding window of size 3 and slide 2,

applying a sum operation on the window (Figure 3.1).

3.2 Data Streams

A stream S is an unbounded sequence of stream elements, where each stream element has a

tuple part and a position. The tuple part, similar to tuples or rows in relational databases,

is set of attribute values which complies with a predefined schema. The position assures

15

16 Chapter 3. Foundations of Data Stream Processing

Q1

w=3

s=2

f=SUM

… 2 3 4 7 1

X (xi)

… 9 12

Y (yj)

Figure 3.1: Running Example - Q1

the total order among the stream elements. In formal terms

E : N× T

in which T is the set of all (relational) tuples. As an example, the input stream in Figure 3.1

contains the following stream elements:

E1 = (1,1), E1 = (2,7), E1 = (3,4), E1 = (4,3), E1 = (5,2),...

Moreover, we define the following stream element utility functions and will use them

in future definitions and proofs.

indexOf(E) : S 7−→ N

elementAt(i) : N 7−→ S

For instance

indexOf(E3) = 3

elementAt(3) = E3

In this thesis, unless it’s necessary to have the full representation of stream elements,

we use the tuple part of stream element to denote it.

3.3 Stream Queries

Stream queries (also known as continuous queries), in contrast to one-time queries in

relation databases, are issued once but run (potentially) forever. A stream query takes a

stream X as input and produces a stream Y as output. At any time point t, the answer

to a continuous query Q is based on the elements of its input stream X seen up to t,

and this answer is updated as new stream elements continue to arrive on X, following the

monotonicity definition in [66]. In our abstraction, each continuous query Q is defined by

3.3. Stream Queries 17

a unique query identifier and a query expression. As a convention, we use the notation of

xi to indicate input stream elements and yj to indicate output stream elements, where x

and y correspond to the tuple parts, and i and j correspond to the positions (i, j ∈ N),

respectively.

In following we first present how we have abstracted away the logic of queries into a pair

of mapping functions. Then after describing operator-level mapping functions we show

how they can be composed to build mapping functions of complete queries.

3.3.1 Query Mapping Functions

We use the notion of mapping functions as an abstraction of the details of the query

expression. Mapping functions are defined on of a pair of streams (input and output

stream) and establish a relationship between a single element in one stream to a set

of elements in the other. We specify two mapping functions, which capture the data

dependencies established by the query expression of a given continuous query Q:

• depends(yj): E 7−→ {E}1 Given an output data element yj, returns the sequence of

all input data elements that yj depends on.

depends(yj) = {xi|xi ∈ X where Q(X) = yj}

Notice that the depends(yj)if fact defines the Why-Provenance (see Chapter 6).

• contributes(xi), E 7−→ {E}: Given an input data element xi, returns the set of all

output data elements which xi has contributed to.

contributes(xi) = {yj|xi ∈ depends(yj)}

We illustrate the query mapping functions in Figure 3.2, on query Q1 of our running

example. Note that the mapping functions are not only driven by the query expression,

but also the starting position, which is their reference point in the streams. For example,

in Figure 3.1, a mapping starting at the second input element instead of the first one

would generate a different output stream (12 instead of {14,11}).

1To keep our definitions simple, we use the set notation to represent a sequence of elements. In these

“sets”, the positional information of stream elements defines the order.

18 Chapter 3. Foundations of Data Stream Processing

Q1

w=3

s=2

f=SUM

… 3 4 7 1 3

X(xi)

… 14 11

Y (yj)

depends

xi

3

1

7

4

3

yj

11

14

contributes

xi

3

1

7

4

3

yj

11

14

Figure 3.2: Mapping Functions of Q1

3.3.2 Query as Composition of Operators

Since operators provide the building blocks for complete queries, we now decrease our

abstraction level to that of operators, analyze each operator and then compose them in

order to achieve mapping functions for complete queries.

Conceptually, mapping functions apply to operators in the same way as they apply to

entire queries, defining on which input data item an output items depends and vice versa.

We can thus complement our definition of mapping for an operators OP .

dependsOP (yj) = {xi|xi ∈ X where OP (X) = yj}

contributesOP (xi) = {yj|xi ∈ dependsOP (yj)}

Mapping functions of individual operators can be derived from their formal definitions.

Moreover, operator mapping functions can express the distinction between stateless and

statefull operators:

• Stateless operators (e.g., selection, projection) perform their computation on one

tuple at a time. More formally, for a stateless operator each output stream element

yj depends on exactly one tuple:

∀yj ∈ Y, |depends(yj)| = 1

3.3. Stream Queries 19

• Stateful operators (e.g., window-based operators, pattern matching) perform their

computation possibly on multiple tuples at a time. More formally, for a stateful

operator some (if not all) output stream elements yj depend on more than one

tuple:

∃yj ∈ Y, |depends(yj)| > 1

As we will see further in this thesis, in contrast to the relative simplicity of stateless

operators, handling statefull operators requires special attention.

Queries are composed of these operators, forming a query plan. In this composition,

mapping functions are transitive, since the output items of one operator form the input

items for the next.

In other words, given a queryQ with dependsQ() and operatorsOPk with dependsOPk(),

if

Q = OP11||OP2||...OPK

then

dependsQ(yj) = dependsOP1(dependsOP2(...dependsOPK(yj))))

Using induction and exploiting the transitivity property of depends function this above

composition rule can be proved . A similar statement holds for composition of contributes

functions.

Given this method to derive the mapping functions from formal operator specification

and the composition rules for mapping functions, we now can determine the overall map-

ping functions of sequential query plans. More complex operators and query plans such

as trees or DAGs follow the same approach, but need extensions on the definition of the

mapping functions and the composition.

Chapter 4

Stream Schema: Static Metadata for

Data Streams

4.1 Introduction

4.1.1 Motivation

Metadata specifying structural and semantic constraints, is invaluable in data manage-

ment. It facilitates conceptual design, and enables checking of data consistency. Meta-

data also plays an important role in semantic query optimization; that is, optimization and

processing strategies that are often highly effective, but only correct for data conforming

to a given schema. While the use of metadata is well-established in relational and XML

databases, the same is not true for data streams. The existing work mostly focuses on the

specification of dynamic information. Constraints on arrival rates for instance, have long

been exploited for optimization [85]. However, beyond a few limited proposals (including

K-Constraints [25] and Gigascope [36]), structural and semantic constraints on stream

data have not been exploited in a systematic way.

The need for capturing and structuring static stream metadata extends beyond seman-

tic query optimization. In fact, since the schema knowledge is a crucial complementary

counterpart for declarative query languages, the growing interest in developing declarative

query languages for data stream processing [31, 12, 29, 43] has also highlighted the need

for developing schema for data streams.

In this chapter, we present Stream Schema, our proposal for modeling structural and

semantic constraints on data streams. The following chapter is then is dedicated to appli-

cations of Stream Schema.

21

22 Chapter 4. Stream Schema: Static Metadata for Data Streams

4.1.2 Contributions

The main contributions of this chapter are:

• exploring the possibilities of describing stream constraints and identifying an expres-

sive set of the common constraints;

• formalizing these constraints and their combination into a framework named Stream

Schema;

• presenting mechanisms for correctness checking and validation of Stream Schema

along with complexity analysis and a discussion on the practical aspects;

• explaining how Stream Schema can be integrated into a wide range of stream pro-

cessing models.

4.1.3 Outline

The rest of this chapter is structured as follows. In Section 4.2 we present Stream Schema.

This presentation is followed by an explanation of how data streams can be validated

against Stream Schema in Section 4.3. In Section 4.4, we show how Stream Schema can

be exploited in a number existing stream processing models. After an overview of related

work in Section 4.5, we conclude the chapter in Section 4.6.

4.2 Stream Schema

In this section, we propose an equivalent of database schema in the Relational Model

for data streams. This proposal is named Stream Schema. For generality reasons, in

designing Stream Schema we make very few assumptions. Our formal stream model uses

a totally ordered sequence of items and does not assume any specific value ordering (e.g.,

a timestamp attribute).

Stream Schema, at a very high-level, is consists of a small number of Stream Schema

elements, each capturing one type of stream semantic constraints, and a recursive combi-

nation scheme which states how the individual Stream Schema elements can be composed.

As explained in Section 4.2.1, the selection of the Stream Schema elements has been based

on an exploration of the design space for describing sequences of items. The actual Stream

Schema elements are presented in Section 4.2.3 using a running example introduced in Sec-

tion 4.2.2. Finally, the combination scheme is presented in Section 4.2.4.

4.2. Stream Schema 23

4.2.1 Design Space

A data stream is a sequence of items. Each of these two aspects can be a rich source of static

metadata and therefore need to be considered in designing schema for data streams. Since

item-level schema is a relatively well-established concept in data management systems, in

Stream Schema we adopt the state-of-the-art item schema (and make it our first Stream

Schema element) and instead focus on the more coarse-grained stream-level aspect of data

streams which has not be sufficiently investigated so far.

There are two main classes of formalism available to describe the stream-level aspect:

a) Inter-item relationships ; and b) Sequence decomposition. Below, we explain each class

in more details.

Inter-item relationships are captured in several ways:

1. value (order) relationships between items, such as a total order over the domain of

certain attributes [36];

2. temporal logic, such as LTL, to express that particular properties will hold always,

will hold at some point, or will hold until some point; this is often used in specification

and validation of complex systems [72]

3. grammars, that describe permitted sequences of items (e.g., the child nodes in an

XML document). To deal with infinite sequences, ω-grammars [82] have been de-

fined.

These three approaches share a certain amount of overlap (and in certain cases equiv-

alence, e.g., LTL and ω-regular grammars [82]).

Sequence decomposition, in turn, has not received a great deal of attention. Generally

speaking, a data stream can be decomposed along two dimensions:

1. item values, or in other words, logical partitioning;

2. item ranges, or in other words, reoccurring patterns.

It should be noted that in nearly all sequence or stream-oriented query processing lan-

guages, operators with the corresponding semantics are available, since item value decom-

position has a correspondence to group by, whereas item range decomposition corresponds

to window or pattern operators.

For the reasons of validation complexity, we excluded general integrity constraints:

uniqueness or functional dependencies among element values in a single stream may require

24 Chapter 4. Stream Schema: Static Metadata for Data Streams

possibly extremely large amounts of state, as all different occurrences may have to be

recorded. Foreign key relationships are only possible among multiple streams, which we

have postponed for future work, as it involves model-specific join algorithms.

In summary, Stream Schema includes the following elements (each corresponds to one

type of constraints on streams):

• Item-level schema

• Logical Partitioning

• Pattern specification

• Inter-item relationships

The detailed and formalized definition of these elements is summarized in Table 4.1

and explained in Section 4.2.3. We give examples of each element using the Linear Road

Benchmark just to keep the examples simple. However, we stress that our model is much

more general than Linear Road as illustrated in Sections 4.4, 5.5 and 5.6.

4.2.2 Running Example: Linear Road Benchmark

To illustrate our approach, consider Linear Road which is a popular benchmark for data

stream management systems [23]. Linear Road specifies a schema for its benchmark, albeit

in an informal way as no stream schema models were available when the benchmark was

created. Linear Road describes a traffic management scenario in which the toll for a road

system is computed based on the utilization of those roads and the presence of accidents.

Both toll and accident information are reported to cars; an accident is only reported to

cars which are potentially affected by the accident. Furthermore, the benchmark involves

a stream of historic queries on account balances and total expenditures per day. The input

data stream for Linear Road is constrained to contain only four types of tuples: position

reports and three different types of historical query requests. Moreover, position reports

are associated to a specific vehicle and the reports for each vehicle are constrained to follow

a specific pattern called vehicle trip.

4.2.3 Individual Elements of Stream Schema

There are four types of Stream Schema Elements. Below, we explain these elements one-

by-one. For each element we introduce it, present its formal definition, give an example

from the LR benchmark, and finally discuss its potential uses.

4.2. Stream Schema 25

Const. Formal Definition Example from LR

I
t
e
m

S
c
h
e
m
a IS : (N,A)

A : {Ai}
Ai(IS) = Vi

Ai(I) = v ∈ Vi ∪NULL

For Item Schema of position report stream (P):

N : PIS

A: {TIME,VID,SPD,XWay,LANE,DIR,SEG,POS}

P
a
r
t
i
t
i
o
n
i
n
g

B
y

S
t
r
.

S
A′−−→ S1, S2

∀I ∈ S
{

I ∈ S1 if ∀Ai ∈ A′, Ai(I) 6= NULL

I ∈ S2 otherwise

The input stream (S) along :

A′: {TIME,VID,SPD,XWay,LANE,DIR,SEG,POS}
S1: position report stream (better known as P)

S2: rest (mixture of three query streams)

B
y

V
a
l
.

S
Ap, n
−−−−→ S1, S2, ..., Sn

∀I ∈ S, I ∈ Si if Ap(I) = vi
where Vp={v1, ..., vn} is the finite domain of Ap

Position report stream (P) along:

Ap: VID and n =|VID|
Si: the position report stream of the vehicle with

VID(I) = vidi

P
a
t
t
e
r
n
/

R
e
p
e
t
i
t
i
o
n P ::= F | F ′∗∗′

F ::= FF | F ′|′F | F ′∗′ | F ′+′ | ′(′F ′)′ | E | ε

and element E is defined by restricting the Item Schema

E: IS(Vi←{vi})

Vehicle trip pattern for a particular vehicle (vid)

(L0(L1| L2|L3)*L4)**

Where Lj is defined by restricting PIS

PIS
(VID←{vid},LANE←{j})

N
e
x
t

C
o
n
s
t
.

c(An(current), An(next))

where current and next are any two adjacent items:

current = Ii � next = Ii+1

and comparison function c is defined over domain of An

On the main stream:

≤ (TIME(current), TIME(next))

D
i
s
o
r
d
. ∀i, j ∈ N :

< (i+ k, j)⇒ < (Ao(Ii), Ao(Ij))

where stream is in ascending order on accessor Ao

and k is the upper bound of disorderedness

On the main stream:

Ao: TIME

k = 0

C
o
m
b
i
n
a
t
i
o
n

The combination is modeled by a fixed-point combinator :

F (χ) = (C × P)∗ × (TNFA ∪ (P∗ × N× χ)∗)

It is tree-like recursive structure in which stream-level

next-constraints can be placed at any node,

pattern-level next-constraints at leaf nodes,

and disorder specification only at root node.

Combination of all important constraints on input

stream of LR is depicted in Figure 4.1.

Table 4.1: Formal Definition of Stream Schema Constraints

Item Schema

A data stream is composed of items (also called tuples or events). Items can be specified in

any data model, e.g., relational [16, 24, 22, 36, 40, 2] , XML [29], object-based models [7].

Given this heterogeneity, Stream Schema is designed to work with any item model that

supports access functions, denoted by A, (be they relational attributes, elements, XPath

expressions, methods, etc.) For the sake of simplicity, we use the term ‘attribute’ instead

of ’access function’ in rest of this chapter.

We will use IS to refer to an item schema which will have a name N and a set of

attributes A. Assuming that I refers to an item, we say that I |= IS if I conforms to the

schema IS. We will use V (or sometimes Vi) to refer to the domain of an attribute. The

26 Chapter 4. Stream Schema: Static Metadata for Data Streams

value NULL is a special value where

∀V, NULL /∈ V

Domains may be infinite or finite. Additionally, a set of comparison functions C is defined

over each domain. In formal terms

C : V × V → B ∪ {NULL}

in which B is the boolean domain.

As an example from Linear Road, the position reports have a relational item schema

which name it PIS. It has the following set of attributes: time (TIME), vehicle identifier

(VID), and speed (SPD), expressway (XWay), lane (LANE), direction (DIR), segment

(SEG), and position (POS). An instance of PIS, a position report item p, is shown below

p(123,23,50,1,3,0,23,4) |= PIS(TIME,VID,SPD,XWay,LANE,DIR,SEG,POS)

A simple application of item schemas is to ensure item structure and domain integrity,

e.g. checking that all attributes are present, and the observed values are in the required

domain. Item schemas also play an important role in optimizing the storage of items and

in optimizing predicate evaluation on item values. We refer the reader to the existing

literature on how to do this [34, 54, 49, 79].

Logical Partitioning

Two logical partitioning constraints are considered in Stream Schema: 1) partitioning by

item structure; and 2) partitioning by attribute value.

Formally, partitioning by item structure splits the original stream S into two substreams

S1 and S2, using a set of attributes A′. Items on which all attributes of A′ are defined

(i.e., non-NULL) go into S1, all other items go into S2.

As an example of partitioning by item structure, Linear Road’s input stream is a

combination of four different streams (one containing only position reports, and the other

three query streams). To support SPEs that can only handle streams with a single item

schema, Linear Road defines a schema with the union of all attributes of all the different

substream, 14 in total. Attributes not needed for a particular type are given the value

NULL. For example, for the position report stream the attributes Type, TIME, VID,

SPD, XWay, LANE, DIR, SEQ, POS are non-NULL. Each of these substreams has its

own item schema, and possibly also other constraints, e.g., pattern or next-constraints

4.2. Stream Schema 27

(see below). In contrast, In SPEs that support heterogeneous item schemas, this could

have been expressed explicitly using multiple item schemas.

Partitioning by attribute value is defined using an attribute Ap (with finite domain Vp)

and a partitioning bound n. This constraint creates at most n substreams with the same

schema, one for each value of the Ap attributes. In general case, instead of Ap, we can

have a set of attributes A = (A1, ..., Ak) with domain V1 × V2...× Vk.

As an example, the position reports stream can be partitioned based on the VID value

(Ap = VID). If there are at most |VID| different vehicles, then |VID| substreams are

created.

Multiple alternative partitionings of the same stream are often possible. For example,

one could split the position report not only by vehicle id, but also by highway (XWAY)

and direction (DIR).

Partitioning is useful for both optimization purposes (to partition data and query plans)

and for structuring. The overall stream might not be suitable to express additional con-

straints, but the partitioned stream might be.

Patterns

In many cases, a stream (or a logical partition of a stream) can be broken into item ranges

(also called subsequences), which in turn can be described as a well-defined sequence of

items, e.g., a web session log could be expressed as login browse∗ logout in common

regular expression language. The name pattern has been established in the literature

for such structures. For Stream Schema, patterns are of finite length. They can repeat

infinitely often, but the instances may not overlap. Each of these repetitions therefore

defines a subsequence, and their repetition defines a possibly infinite stream.

We use a regular language F for patterns, and designate the repetitions as P . The

regular language is defined over items that may satisfy an item schema or restrictions

(selection conditions) on an item schema. Compared to languages in pattern queries (e.g.,

SASE [17] or Cayuga [40]), this language has two simplifications that stem from our need

for a description language and not a query language: 1) Only contiguous patterns can be

specified, to ensure that the whole stream is described and no items can be ignored 2)

All language constructs related to matches (e.g., length, next start, result generation) are

not needed, since we do not allow overlapping matches, and want to describe the whole

stream.

The grammar of the our pattern specification language is given in Table 4.1. It should

28 Chapter 4. Stream Schema: Static Metadata for Data Streams

be noted that the ∗∗ repetition indicator represents the possible infinity of a stream. The

definition of the variables in patterns is done by placing predicates on types and/or values

of an item. As an example, in the Linear Road benchmark, there are some patterns in the

input streams, including the following taken from the specification [23].

A set of vehicles, each of which completes at least one vehicle trip: a journey

that begins at an entry ramp on some segment and finishes at an exit ramp on

some segment on the same expressway.

The vehicle trip pattern (of Linear Road) for a specific vehicle (with VID = vid) is

described as follows

(L0(L1| L2|L3)*L4)**

Where Lj is defined by restricting PIS (the position report item schema defined above)

PIS
(VID←{vid},LANE←{j})

The constraints in a pattern can be used to optimize pattern queries and semantic

windows. As one example, pattern specifications in the query can be simplified by using

knowledge of existing patterns in the data. In addition, pattern information can be used to

unblock operators, i.e., permitting a blocking operator on infinite data to produce results

(see Section 5.3).

Inter-Item Relationship

In many streams, attribute values in different items have a well-defined relationship. For

example, we may be able to define an ordering on attribute values. In certain streaming

models, an ordering is hard-coded for timestamps, but ordering constraints among other

attributes cannot be specified. In Stream Schema, we generalize these orderings between

attribute values and capture them using next-constraints. A next-constraint is defined

based on a comparison function c over an attribute An of two adjacent items called current

and next.

The scope of validity for such a constraint may be the whole stream, a logical substream,

or a single repetition of a pattern. For the sake of simplicity, we illustrate the pair of

adjacent items in latter with pnext and pcurrent.

4.2. Stream Schema 29

For example, the value of the TIME attribute in Linear Road’s input stream is always

non-decreasing, and this can be expressed with a next-constraint on the whole stream as

follows:

≤ (TIME(current), TIME(next))

In addition, in Linear Road, the position of a vehicle is non-decreasing or non-increasing

(depending) while it stays on the same highway and direction. Such a constraint can

again be specified by a next-constraint, but one whose scope is limited to a single pattern

repetition (the pattern of a single vehicle on a highway).

Such ordering constraints are useful for query optimization, for example, to unblock

operators (similar to punctuations [84]), rewrite semantic windows or patterns, and also

for semantic correctness checks to determine if semantic windows close.

Disorder

Even though data stream models assume a total (or at least partial) order in the data

stream, real-life data streams often do not conform to this assumption. For example, due

to the impact of network delays or the lack of strict time synchronization between different

sources, items may arrive out of order.

In Stream Schema, similar to Ordered-Arrival Constraint [25], we use a parameter K to

express bounded disorder. This static description is an upper bound, in practice dynamic

statistics may provide a more precise bound. In the Linear Road case there is no disorder

given, but it could be easily envisioned that car position reports from different segments

might be delayed, thus creating disorder in the stream.

Knowing a bound on the amount of disorder has been traditionally used to determine

the size of a buffer required to restore the order, but more recent work takes disorder more

into the account for specific operators and provides related optimizations [70, 67].

4.2.4 Combination Scheme

Having explained the individual elements of Stream Schema, we now need to determine

which combination provides a good balance between expressiveness and complexity.

We allow the nesting of logical partitioning (item value decomposition) without limi-

tation, since this is simple to validate even in the presence of other constraints. We also

permit inter-item relationships (i.e. next-constraints) at any level of nesting. For patterns

30 Chapter 4. Stream Schema: Static Metadata for Data Streams

S

Q1**

{TIME,VID,QID}

{TIME,VID,SPD,XWay,

LANE,DIR,SEG,POS}

{TIME,VID,XWay,

QID,Day} Q3**

{TIME,VID,XWay,QID,

Sinit,Send,DOW,TOD}

<= (TIME(current),TIME(next)) k=0

<= (TIME(current),TIME(next))
<= (TIME(current),TIME(next))

<= (TIME(current),TIME(next))<= (TIME(current),TIME(next))

P Q2**

P1**

{XWay,DIR},2L {VID},|VID|

= (TIME(current)+30,TIME(next))

(L0(L1|L2|L3)*L4)**

= (DIR(pcurrent),DIR(pnext))

= (XWay(pcurrent),XWay(pnext))

<= (TIME(current),TIME(next))

Figure 4.1: Linear Road Stream Schema

(item range decomposition), we are more restrictive: they may not overlap, and they are

only allowed as terminals in the nesting of the logical constraints. Finally, we allow a

single disorder constraint at the root node. This design avoids the complexity of having to

combine the substreams in validation, reducing the verification effort. As we will show in

Section 5.2, this restricted form, nonetheless, allows important optimizations for queries

containing patterns and semantic windows.

This combination scheme results in a tree-like structure which we formally model using

a fixed-point combinator 1 (see Table 4.1) . In this tree, every node represents a stream

(or a substream) and every edge represents a partitioning constraint. The parent node of

this edge is the stream which the partitioning constraint holds on and the child stream

is result of the partitioning. In case of partition by structure, this is the substream with

non-NULL values, and in case of partition by value, this substream is the representative

1A fixed-point combinator (http://en.wikipedia.org/wiki/Fixed point combinator) is a higher-order

function that computes a fixed point of other functions

4.3. Validation of Stream Schema 31

of the whole class of partitions.

It is noteworthy that since partitioning may place adjacent pairs of items into different

partitions, the next-constraints will not necessarily hold over the partitioning (in other

words, it is not inherited by substreams), thus new next-constraints may be needed to

express the relation after the partitioning.

As an example, Figure 4.1 visualizes the constraint tree on Linear Road data stream.

Reading the figure top-down, there is a next-constraint for non-decreasing time and a zero

disorder constraint on the complete stream S. This stream can be partitioned into four

different substreams (P ,Q1,Q2,Q3) one position reports stream and three query streams,

based on the existence of a set of attribute values. The position report stream P can further

be partitioned by either VID values, or by XWay and DIR. The root stream has a non-

decreasing TIME attribute which also holds for many of its substreams. After partitioning

along the VID attribute, the resulted stream has a more precise next-constraints (stating

the fact that a particular vehicle, emits its position report every 30 seconds)

After all these partitionings, the leaves of the tree contain item and pattern descriptions.

In the case of the vehicle trip pattern L, there is a next-constraint that only holds within an

instance of the pattern: during a trip, a vehicle will stay on the same highway and direction,

segments and positions will either be non-decreasing or non-increasing, depending on the

direction.

The Stream Schema specification provides a high level of expressiveness and flexibil-

ity, but also minimizes the potential for conflicting definition and the cost needed for

validating.

4.3 Validation of Stream Schema

In this section, we first explain how the correctness of individual Stream Schema elements

should be checked. Then validation is formally described using prefix validation. We

also give an analysis of the space and time complexity. An overview of practical aspects

concludes this section.

4.3.1 Checking Correctness for Individual Schema Elements

Item Schema

Given an item schema IS, an item I in a (sub)stream satisfies the item schema constraint

IS if for all attributes Ai of the item schema, Ai(I) ∈ Vi, in particular Ai(I) 6= NULL.

32 Chapter 4. Stream Schema: Static Metadata for Data Streams

Partitionability

A (sub)stream satisfies a partitioning constraint if the constraint assigns every item to a

partition (so there are no items omitted). Hence, a partitioning by structure constraint

is, by definition, valid since every item is assigned to either S1 or S2. A partitioning by

value constraint is valid if the size of the domain of Ap has a finite upper band and if for

all I in the (sub)stream on which the constraint is applied, Ap(I) 6= NULL.

Pattern and Repetitions

A stream satisfies a pattern constraint if an automaton representing the pattern accepts

the item stream (prefix). Such an automaton can be created from the pattern specification

by translating the finite part of the pattern (represented by F in Table 4.1) into a finite

state machine.

For the repetitions (F ∗∗), additional edges are added from accepting states to states

reachable from the starting state, marked with the pattern starting symbols.

It should be noted that the pattern validation formalism closely corresponds to Büchi-

automata [82], the default implementation of ω-grammars over infinite sequences: It han-

dles infinite iterations over all well-defined set of accepting states (i.e. the representation

of F). The difference is in the interpretation of correctness: we detect incorrectness also

over finite sequences, while a Büchi-automaton only works with infinite sequences.

Next-Constraints

A stream satisfies a next constraint if for every consecutive pair of items I1, I2, the com-

parison c(An(I1), An(I2)) is evaluated true. A next-constraint specified within a pattern

F only needs to hold for items within the same pattern instance, and a next-constraint

specified with a partition only needs to hold in that partition.

Disorderedness

Stream Schema does not require an ordering relation. However, one may be specified by a

next-constraint. In the presence of a total order specified over a particular attribute (e.g.,

a timestamp attribute), a disorder constraint of k may also be specified. A stream is valid

(satisfies the disorder constraint) if an ordered sequence can be generated by sorting the

items inside a sliding window of size k.

4.3. Validation of Stream Schema 33

Combination

Constraints can be combined recursively to form a tree of constraints as illustrated in

Figure 4.1. Constraint checking can be done recursively by checking constraints bottom-

up through the tree. In fact the combination is correct as long as all of its building blocks

are correct.

4.3.2 Prefix Validation

Since any newly arriving item could violate a given schema, complete validation of an infi-

nite stream is not possible. Therefore stream validation is based on validating the current

item using the prefix validation result and prefix validation state. Since disorder is orthog-

onal to all aspects of validation, we first define the validation algorithm for stream data

without a disorder constraint, and then extend the definition and analysis for disordered

streams.

In order not to store the complete prefix, we define a special data structure that captures

only the information necessary for validation. This data structure is also recursive, and

mirrors the structure of a stream closely.

• Partitioning: we define a recursive data structure containing the nested stream data;

in addition we need to store the information on the partition decision. The number

of substreams can be derived from the number of (nested) states.

• Pattern: the automaton state for a single repetition of a pattern, e.g., all active

states in an Nondeterministic Finite Automaton (NFA).

• Next-constraints: for all attributes of the constraint, we store the previous value. For

pattern-repeating next constraints, values are reset at the end of a pattern instance.

Using the prefix validation result, the prefix validation state and Stream Schema, the

arrival of a new item produces a new validation result and state. The validation is per-

formed by checking the item schema, the next constraints, and then either checking the

pattern (leaves) or the partition constraint and then recursively the nested substream

definition(s).

34 Chapter 4. Stream Schema: Static Metadata for Data Streams

4.3.3 Validation Mechanism

Recalling the formal definition from Table 4.1, a Stream Schema instance M has a name

and a definition:

M = N ×Def

In which Def is modeled using a fixed-point combinator:

F (χ) = (C × P)∗ × (TNFA ∪ (P∗ × N× χ)∗)

Here, F defines a set of next-constraints (C), and either a pattern definition (T) or a

partitioning and a nested stream definition ((P∗×N×χ)∗). For notational simplicity, we

use A∗ =
⋃
n∈N

An.

Using F , Def can now be defined as the smallest set so that

Def = F (Def)

in an explicit form

Def =
⋃
n∈N

F n(∅)

Moreover, to do the validation, we need to establish the contents and the structure of

the runtime state. It mirrors the schema definitions, since each definition has a particular

amount of state, and all partitions require nested state.

G(η) = V∗ × (SNFA ∪ (N∗ × η)∗)

and ST as the smallest set so that

ST = G(ST)

.

The validation function for a an item and previous state can now be defined as:

sval : B× I × ST × DEF → B× ST

sval(b, next, st, def) 7→ (b′, st′) :

In short, for type(Def) = pattern, all next-constraints need to hold, as well as the

pattern ti. For type(Def) = partition all next-constraints need to hold, as well as all

possible partitioning alternatives, and the recursive checks for each of the partitions.

4.3. Validation of Stream Schema 35

The prefix validation of a stream can now be defined by recursion:

b0, St0 = true, ((), init)

bi, Sti = sval(bi−1,Si, Sti−1, Def)

An empty stream is valid and has a pattern state with no next values and initial state

of pattern. The validation a stream with a new item is determined as the validity of the

prefix (with a computed state), and the validity of the new item given the state.

A finite stream is valid if the complete prefix is (stream-)valid and the all elements of

the pattern state are in an accepting state.

|S| = N ∧ sval(b, SN , Def, V) 7→ (true, V ′) ∧
⋃

t∈t(Def)

t(V ′) ∈ t.accept

4.3.4 Validation Complexity

Based on the formalization in the previous section, a number of properties on the com-

plexity of stream schema validation can be established

Theorem 4.3.1 The space needed for Schema validation is finite, if the set of recursively

nested schema definitions is finite, regardless if the validated stream is finite or infinite

Proof By definition of ST , ST without considering the recursive state contains a finite

number of values. If type(St)=′partition′, a finite number of nested states is contained,

otherwise there are no nested state. The number of nested schema definitions and thus

states is limited by requirement of the theorem and also in practice.

Theorem 4.3.2 cost of checking a new item without recursion is polynomial.

Proof If there is no recursion (no partitioning) then the cost of checking is O(|NC|) +

O(|activestates|), where |NC| and activestates denote the number of next-constraints and

active pattern states respectively.By definition of Def , there is a linear number of rules

for each type and the cost of checking a next-constraint as well as choosing the relevant

edges for a state in the pattern automaton can be considered a constant.

Theorem 4.3.3 The cost of checking a new item with recursion is O(nm), where m ≈
logn(|

⋃
Def |)) (nesting depth)

36 Chapter 4. Stream Schema: Static Metadata for Data Streams

Proof The cost of check one level of recursion is O(n) (previous theorem), and at each

partitioning a single partition is chosen. Thus for m levels of nesting, the cost will be∏
m

O(n) = O(nm)

4.3.5 Validation in Presence of Disorder

Checking a disorder constraint requires additional overhead in terms of space and com-

putational complexity. We define two variants on how this validation can be performed:

1) with a known ordering relation (as a parameter to validation, expressed as a next-

constraint); and 2) with no known ordering relation.

The first variant can be implemented by checking/restoring order according to the

ordering relation, then performing the ordered variant of validation. The additional space

required is linear to k, and the additional cost is the cost of sorting within sliding window

of k.

For the second variant, the arrival position of items in the stream needs to be kept to

work over partitions. To perform the validation, all permutations allowed by k need to be

generated in order to check if at least one matches all constraints specified in the schema,

and this enumeration needs to be performed for each newly arriving item. To check next

and partitioning constraints, it is sufficient to keep k values around, and the effort for

enumeration is k!. For pattern specifications, the situation is more complicated, since the

permutations might affect the whole pattern instance, thus requiring state to be kept for

the full instance of the pattern including all the k-permutations. This is similar to the

solution in [70].

4.3.6 Practical Issues

In many use cases, explicit validation of streams is not needed, since the stream constraints

are guaranteed to hold by the source producing the stream. Similarly, in a distributed

stream processing setting, only untrusted data needs to be validated, which may be only a

portion the streams used. Nonetheless, for situations in which validation is required (e.g.,

untrusted input), it should be possible to perform it without significant overhead. The

formal definition shows that this is possible.

When a validation failure is detected in a stream, we may terminate processing of the

stream. Such an approach might not always be desirable, as it limits the ability of a SPE

to deal with unexpected data. One possible alternative is to treat validation as a normal

stage in query processing (just as pattern matching), and allow the programmer to capture

4.4. Integration into Processing Models 37

failures and subsequently disable schema-based optimizations that are not valid anymore

in an on-the-fly manner. Alternatively, the SPE could relax the schema or trigger schema

evolution to a new version that reflects the changed properties.

In terms of development, clearly building a stream validator from scratch is always an

option. In following subsections, we propose two other alternatives.

Validation Using Existing Validation Framework

We implemented [83] a large part of Stream Schema based on the Xerces XML parser and

validator [14], since it already provides most of the operations and data structures needed

for the validation of Stream Schema. We extended XML schema with the new Stream

Schema constraints, and changed the XML parser so that it can consume a root sequence

instead of a root element. Each item in this sequence is first validated against the set of

item schemas using the standard XML schema validation mechanisms.

The existing operators in Xerces were then re-used to express the stream constraints.

The current implementation does not support checking nested schema definitions.

Validation Using Continuous Queries

As an alternative, Stream Schema can be translated into a continuous query, since the

operations required for stream schema validation match closely the set of commonly avail-

able expressions and operators in SPE and CEP systems. If a matching operator is not

available, such a system would not benefit from the optimizations in this area (e.g., Au-

rora does not have pattern matching, so checking and using pattern information does not

provide benefit). For such systems, a subset of Stream Schema, without patterns can still

be useful.

4.4 Integration into Processing Models

The next step after defining stream schema is to embed it into the specific data and

processing models of SPEs. Each of these systems uses a somewhat different model, but

for all of the systems we have evaluated, a straightforward integration is possible (with

one exception that we highlight at the end of the section).

To perform this embedding, the following steps are needed: 1) The abstractions of item,

item schema and attribute are mapped to their concrete counterpart in each SPE; 2) The

38 Chapter 4. Stream Schema: Static Metadata for Data Streams

stream data model needs to be checked for compatibility; 3) Implicit schema constraints

of a SPE need be expressed in Stream Schema; 4) Existing Schema-like capabilities of a

SPE need to be checked against the capabilities of Stream Schema.

Now we discuss details of each of these steps for a number of well-known processing

models.

1. In relational systems (Aurora/Streambase [16], CQL [24], the SQL pattern exten-

sion [22], Gigascope [36], Cayuga [40], CCL [2]), a stream of homogeneous items are

used, where items are flat relational tuples with attributes. For XQuery stream-

ing [29], a stream can be heterogeneous (individual items validate against different

XML schema definitions), where items are atomic values or XML nodes, accessi-

ble by XPath expressions. For such systems, we would need to define an accessor

function (or attribute) for each valid XPath expression.

SASE [17] and ESPER [7] also use heterogeneous streams, with flexible item-schema

models and access paths. All these item-oriented aspects cleanly map to our formal

model.

2. For the stream data model, most models assume a totally ordered sequence of items

as a basis (which can be defined by next-constraints in Stream Schema) with some

relaxations to this ordering: CQL uses a sequences of batches [24] as its stream

model, in which the stream has a partial ordering on a timestamp value and the

items with the same timestamp do not have any order among them. This can be

defined in Stream Schema using a next-constraint with the ≤ relation, instead of the

< relation used for defining a total order. Other approaches use k-constraints [25] or

Slack (Aurora) to give a bound to the degree of out-of-orderedness (with the same

semantics as our disorder constraint).

3. Many stream processing models define implicit timestamp attributes. In Stream

Schema, these implicit constraints can be expressed using an item schema and next

constraints capturing the appropriate order of values. Since some systems (SASE,

Esper, XQuery) do not require timestamps, we chose not to make timestamps a

required part of Stream Schema.

4. While most SPEs provide some schema-like definitions, the stream-oriented aspects

of these schemas are often restricted to some ordering properties and several dynamic

properties (e.g., arrival delays). A relatively closer match is the possibility to define

a stream using a query (Esper and Coral8). In this approach, the query specification

(filter, pattern) would imply similar schema constraints as our Stream Schema.

4.5. Related Work 39

StreamBase/Aurora provides a schema-like operator specification (On A, slack,

GroupBy B1, BN), expressing an order on an attribute A, limited disorder slack

and the possibility to group by the attributes specified in the Group By clause. All

of these constructs can be mapped to Stream Schema (next-value, disorder, partition

by value).

Gigascope uses ordered attributes (representing timestamps, sequence numbers, etc.)

of three different types: a) strictly/monotonically increasing/decreasing; b) mono-

tone non-repeating; and c) increasing in group. Ordering a and c are expressible

as next-constraint (with partitioning for c). The precise definition of b) cannot be

derived from the informal definition in the Gigascope paper. If the purpose is to

express non-repetition of values in an infinite sequence, this cannot be validated,

since all values need to be kept. Otherwise we could also express it as a smaller (<)

next constraint.

4.5 Related Work

Research on schema-based optimizations dates back into the early ’80s and such techniques

have been successfully exploited in relational [34] and object-oriented [54] query languages.

For XPath/XQuery, there has been work not only for persistent XML [49], but also for

streaming XML [79]. These approaches are a subset of what is expressible in Stream

Schema, since they focus on the contents a single item or document, not a possibly infinite

stream.

In developing Stream Schema, we have chosen to focus on common structural con-

straints that are useful in semantic checking of continuous queries. In following, we

overview a few other approaches to designing and using metadata in stream processing.

Our decision to focus on structural constraints was largely influenced by this related work.

K-Constraints [25] is the work most closely related to ours. K-Constraints tell a certain

behavior of the stream using constraints within a limited range, denoted by the adherence

parameter k. They introduce three types of constraints: 1) Referential Integrity Constraint

(for joining streams), 2) Ordered-Arrival Constraint (on single streams), and 3) Clustered-

Arrival Constraint (on single streams). Then, one can exploit the constraints to reduce

run-time state for a wide range of continuous queries.

Yet again, this is orthogonal to our work, since k-Constraint address relationships

between streams, unorderedness within streams and can be seen as dynamic constraints.

We do not give an absolute range in terms of tuple count where our constraints are

40 Chapter 4. Stream Schema: Static Metadata for Data Streams

valid. Our constraints describe different connections, like dependencies between items

by next rules or keys. What our solution does not do compared to k-Constraints, is

that we describe the individual streams in an aggregated stream, whereas k-Constraints

can describe dependencies between different streams. On the other side, we can describe

streams more fine grained by telling exact dependencies between consecutive items, instead

of just telling that the item being sought will appear in the range of the next k elements,

if it appears. Additionally we have introduced number of new constructs (i.e. patterns,

stream keys, stream combination, etc) which can describe different aspects of data streams.

Some previous work have looked at capturing constraints for sensor data and other

applications where the data may be error-ridden or have a highly dynamic structure.

Such data may not conform to any strict constraints. To handle such applications, the use

of soft constraints has been proposed [64].

Finally, we have chosen to focus on structural constraints within a single stream since

this is already a very rich (and under-studied) area. Constraints between streams have

been studied by others [38, 25, 53, and others] although these solutions also tend to depend

on specific processing models, join algorithms and dynamic properties. For example, Golab

et al. [53] extended the SQL DDL to define three stream integrity constraints (Stream Key,

Foreign Stream Key, and Co-occurrence), which are defined across streams for particular

time windows. The main goal of these constraints is to reduce the cost of joins between

streams using join elimination and anti-join elimination.

4.6 Conclusions

It is well-known in data management that static metadata, if they are explicitly specified,

can be used to check data consistency, improve application modeling, and permit new

forms of semantic query optimization.

In this chapter we introduced Stream Schema, our formal framework to capture static

stream metadata. It contains a small set of schema elements and a recursive methodology

to combine them together. As we will show in next chapter (Section 5.2), Stream Schema

has considerable power and can be exploited for a wide range of optimizations, static

analysis and constraint separation in modeling streaming applications.

As with any schema formalism, there is a clear trade-off between the expressive power of

the schema and the cost of validation (checking whether a stream conforms to a schema).

In this chapter, we also presented prefix-validation, a mechanisms to validate data streams

against Stream Schema. Through complexity analysis we proved that if the set of nested

4.6. Conclusions 41

schema definitions is finite, the space needed for validation is finite and cost of checking a

new item is exponential to nesting depth.

Finally, by taking a close look at a representative set of existing SPEs, we explained

how Stream Schema can be embedded to a wide range of stream processing models.

As avenues for future work, we foresee two natural extensions: first, integrating rela-

tionships between streams [53]. To investigate if and how foreign key relationships can

be suitably expressed. Second, completing our validation implementation and further

investigating alternative ways to react to violations of constraints within a stream.

Another challenge is exploring ways to build Stream Schema. Stream Schema may be

designed manually, or potentially discovered using stream mining [50] or pattern mining.

Alternatively, they could be derived from business process or workflow descriptions. Both

of these areas deserve further investigation as they will improve the sophistication and

usability of stream systems.

Chapter 5

Applications of Stream Schema

5.1 Introduction

5.1.1 Motivation

It is well-known in data management, that semantic constraints, if they are explicitly

specified, can be used to check data consistency, improve application modeling, and permit

new forms of semantic query optimization, specifically the application of optimizations that

are correct (and potentially highly efficient) over data satisfying a given set of constraints.

While the use of metadata is well-established in relational and XML databases, the

same is not true for data streams. The existing work mostly focuses on the specification

of dynamic information such as constraints on arrival rates, have long been exploited for

optimization [85]. However, beyond a few limited proposals (including K-Constraints [25]

and Gigascope [36]), structural and semantic constraints on stream data have not been

exploited in a systematic way.

In this chapter, based on Stream Schema knowledge, we present a set of semantic query

optimization strategies that both permit compile-time checking of queries (for example,

to detect empty queries) and new runtime processing options. Furthermore, we show how

Stream Schema can greatly enhance programmability of stream processing systems.

5.1.2 Contributions

The main contributions of this chapter are:

• a suite of runtime optimizations enabled by Stream schema

43

44 Chapter 5. Applications of Stream Schema

• an analysis of how Stream Schema can be used in the static analysis of queries to

simplify (or minimize) the queries

• a proposal to improve the programmability of data streams by encoding parts of the

constraints in Stream Schema.

• two case studies (one centered on Linear Road Benchmark and the other on an RFID-

based supply chain application) implemented in two different SPEs demonstrating

the above uses of Stream Schema.

It should be noted that stream validation (and type annotation) is another important

application of Stream Schema, but since we have already discussed this topic in previous

chapter, we do not repeat it here.

5.1.3 Outline

The rest of this chapter is structured as follows. Since the most well-known application

of schema knowledge is enabling optimizations, we start out with Stream Schema-enabled

optimizations for data stream processing in Section 5.2. Next, we explain how Stream

Schema can be used in in static analysis of streaming queries, as well as in modeling

streaming applications in Sections 5.3 and 5.4 respectively.

Two cases studies (Sections 5.5, 5.6) and their relevant experiments show the applica-

bility and benefits of Stream Schema on different models, workloads and implementations.

Finally, after giving an overview of related work in Section 5.7, we conclude this chapter

in Section 5.8.

5.2 Stream Schema-enabled Optimizations

The constraints provided by Stream Schema are applicable to a large range of operators

and expressions. In this thesis, we focus on optimizations based on the stream aspects of

Stream Schema; optimizations based on item schema specifications are similar to existing

schema-based optimizations [34, 54, 49, 79] and will not be discussed here.

Stream Schema provides the metadata to perform optimizations, so an important class

of optimizations enabled by stream schema is not new in a strict sense, but in fact well-

understood in terms of their mechanism and benefit. For example, rewriting a window’s

type from sliding to tumbling in order to use a simpler evaluation mechanism with less CPU

5.2. Stream Schema-enabled Optimizations 45

and memory cost [29]. The important contribution of stream schema is to formally capture

whether an optimization is applicable. It also opens up the possibility of automatically

applying these optimizations and systematically considering (and comparing) different

possible optimizations within a stream optimizer.

In the following, we present an overview of the classes of optimizations for which Stream

Schema is beneficial. While explaining each class, if applicable, we will point to existing

works in the database and data stream communities, which have used similar techniques.

Later, in Sections 5.5 and 5.6, we will discuss selected optimizations in more detail and

show the benefits experimentally.

5.2.1 Pipelined Execution

When strictly following the definition of semantic windows1, e.g., forseq [29], such a window

could be a pipeline breaker: the items bound by such a window can only be processed

when the end condition has been successfully evaluated. For many streaming applications,

this behavior is undesirable, since all following operations (such as aggregation) can only

be started after the window has been closed, and thus an additional amount of latency and

memory consumption is incurred. In addition to other preconditions purely decidable at

the language level, two important conditions need to be fulfilled to allow this optimization:

1) every open window will be closed eventually, 2) no window fully subsumes another one,

in other words, windows will be closed in the same order they were opened. A detailed

analysis on this optimization is given in the LR case study in Section 5.5.

5.2.2 Stream Data Partitioning

The volume of data that needs to be processed in a real-time SPE can easily exceed the

resources available on a centralized server. A well-known approach to tackle this problem

that has been used in Distributed SPEs is data stream partitioning. This approach requires

the splitting of resource-intensive query nodes, into multiple nodes each working on a

subset of the data feed [35].

Johnson et al. [61] propose a solution to partitioning a stream query workload based on

a set of queries. Their approach includes two steps: 1) finding a partitioning scheme which

is compatible2 with the queries; 2) using this scheme to transform an unoptimized query

1Also known as predicate-based windows.
2Partitioning set P is compatible with a query Q if for every time window, the output of the query is

equal to a stream union of the output of the Q running on all partitions produced by P.

46 Chapter 5. Applications of Stream Schema

plan into a semantically equivalent query plan that takes advantage of existing partitions.

The unspoken assumption of the Johnson et al. work is that the data (not just the

queries) are actually partitionable by the schemes produced in their first step. The par-

titioning constraints of Stream Schema can be used to determine which (if any) of these

schemes can actually be used, thus making this approach fully automatable. In the first

case study (Section 5.5), we will show how this optimization technique can improve per-

formance of the LR implementation.

5.2.3 Window/Pattern Optimizations

Here we present two types of optimizations for window and pattern queries:

• The pattern description feature of Stream Schema can be used to simplify the overlap

in the specification of window or pattern instances. Specifically, if one can determine

that a new window (or pattern) can only start after the previous one has been

completed, then one may be able to optimize the processing of windows (or patterns).

To be more concrete, here are two examples from different frameworks:

– Sliding and landmark windows are more expensive compared to tumbling win-

dows, since the number of open windows is potentially much higher, and more

checking may be needed3. Using the information specified in Stream Schema, a

query written using landmark or sliding windows can be rewritten into a tum-

bling window. An example of this rewriting is given in the LR case study later

on.

– One of the constructs in the SQL’s Pattern Matching extension [22] is the

SKIP TO clause which determines where we should start looking for the next

match once the current one has been completed. Two common options are

NEXT ROW and PAST LAST ROW meaning we should start from the row after the

next row or from the last row of the current pattern respectively. Using a

pattern constraint over the stream, one can rewrite the query to have more

efficient SKIP TO options. For example, if the Stream Schema defines a stream

as repetition of the pattern AB∗C and the query matches the pattern AC, we can

safely replace the value of the SKIP TO option with PAST LAST ROW. The new

query is semantically equivalent with the original one, but cheaper because it

avoids performing hopeless matches.

3In terms of number of overlapping windows: landmark > sliding > tumbling.

5.2. Stream Schema-enabled Optimizations 47

• Removing existing structure from window/pattern specifications to only check what

a schema does not already provide. The following is an example for pattern match-

ing systems: Complex Event Processing (CEP) systems usually use Finite State

Machines (FSMs) for pattern matching [40, 17, 43]. Using the information of the

patterns already present in the stream, it is possible to simplify the query FSM by

fully or partly decomposing it, a technique commonly used in other areas [42]. Such

decompositions can improve the performance of the CEP systems by reducing the

number of states or relaxing the transition rules. For example, if we know that in-

coming items already comply with some patterns in the stream’s schema, rechecking

these sub-patterns is unnecessary. Figure 5.1 depicts this optimization for the query

ABABA over the stream (AB)∗.

A

S1

B A A

A

Stream

Schema:

(AB)* Query FSM:

ABABA

S0
S2

S3 S4 S5

S’
0 S’

1

B

B

εεεε

Optimizer

New Query FSM:

A-A-A

S’
0 S’

1

S1

A A

A
S0 S2

S3 S4 S5

εεεε

Figure 5.1: Pattern FSM Decomposition

5.2.4 State Reduction

Many stream operators (e.g., join, group-by, and sort), maintain state in order to generate

the correct results [27]. Most of the optimization techniques for stream processing aim

at reducing the number of maintained states to minimize the memory/disk cost. These

techniques in general fall into one of two categories: 1) avoid keeping items at all: that is,

avoid materialization; and 2) purge states after certain evaluation steps. In the following,

we present some guidelines on how Stream Schema provides hints to make these techniques

applicable.

48 Chapter 5. Applications of Stream Schema

Avoiding materialization

In SPEs, newly arrived items are fed into the open windows to determine if they will

contribute to the output results. If there is a way in which we can make sure that an

incoming item will not contribute to the output result, we can safely drop that item,

avoiding unnecessary resource allocation.

Stream Schema can help in different ways to ease making such decisions. The following

are some examples for a stream join operator:

• differences in partition by value bounds: if two streams involved in the join have

a partitioning constraint on the join attributes, and the n (the maximum number

of partitions) is not the same, one can drop the items with the missing values from

the respective stream (since they will never match match any tuple from the other

stream)

• only items which comply with the next-constraints of both streams have a chance to

successfully participate in a join.

• if any of the streams involved in the join is heterogeneous and some of its item

schemas do not include the join attribute, they can be eliminated

State purging

In some cases, Stream Schema constraints allow an operator to purge parts of its state.

For example, the join operator needs to keep track of a number of items, as there might

be matches for them in the future. If based on, for example, a monotonic next-constraint

in the stream schema, one can make sure that certain items will never appear again, the

join processor can purge the state it has been keeping for those items [44].

5.2.5 Join Cardinality Reduction

Different cardinalities in the join operator impose different levels of complexity and cost.

Providing more precise information on the cardinality of the join allows the query optimizer

to choose the right algorithm and implementation [56]. Stream schema can be considered

as source of such information. For example, if the join attribute is monotonic over one

(both) of the streams, uniqueness of the attribute can be deduced, resulting in one-to-many

(one-to-one) join type instead of many-to-many join type.

5.3. Impact On Stream Processing Semantics 49

5.3 Impact On Stream Processing Semantics

The presence of stream schema can have a profound effect on the semantics of operations

as we show on several examples here.

5.3.1 Static Check for Non-Executable Expressions

The system can use Stream Schema to either output a warning or to abort execution in

the following situations.

• Non-executable predicate-based windows : for example, imagine Web Server log where

log entries for individual users comply with the pattern login browse∗ logoff.

Now if a query defines a window to be closed on the occurrence of a browse item,

this window might not close, since occurrence of the browse item is optional in the

pattern specification. The system can therefore issue a warning.

• Execution of blocking operators : for example, if a blocking operator (e.g., a sort) is

applied on a stream and from an analysis of the schema a system can determine that

the execution may be infinite, a system can abort the operation (or issue a warning).

• Empty results : for example, if the pattern query AC+B is applied over a stream with

the schema of (AB)∗, a no-result warning can be issued.

5.3.2 Extended Set of Runnable Expressions

If the input stream of stream engine satisfies certain schema constraints, the engine might

be able to change a blocking operator into a non-blocking one (and in doing so, make the

operator runnable). As a simple example, a blocking sort operator may be removed from a

query plan, if the stream is known to comply to a schema that guarantees the same order.

A more detailed example is given in the Linear Road case study (Section 5.5).

5.4 Decoupling Streaming Applications

Stream Schema can be used to simplify modeling and developing streaming query applica-

tions. Looking at the state of the art, one can conclude that streaming queries are written

in a very explicit manner: all possibly relevant predicates and expressions are directly ex-

pressed in the query (to ensure correctness), and also often manually arranged (to achieve

50 Chapter 5. Applications of Stream Schema

high performance). By doing so, predicates from two domains are mixed: 1) predicates to

describe the desired behavior; and 2) predicates to capture semantic constraints.

The use of Stream Schema enables a different approach. Queries can be written to ex-

tract the desired results only. There is no longer any need to provide constraints regarding

data consistency and/or structure as part of the query itself.

This separation of query and structural constraints allows for significant improvements

in how streaming applications can be developed:

• Simpler queries : queries express only the data to be retrieved and can thus be more

easily reused over different streams

• Simpler domain or semantic constraints : constraints need to be declared once and

can be re-used for multiple queries

• Decoupling development of query and schema: so that both can be designed and

evolved separately

In our second case study (Section 5.6), we will give an example of this modeling ap-

proach.

5.5 Case Study I: Linear Road Benchmark

To check the expressiveness of our schema proposal and determine the usefulness of its

applications in stream processing, we used the Linear Road Benchmark [23] implementa-

tion in Streaming XQuery [29]. We introduced LR benchmark in Section 4.2.2. It specifies

different scale factors L, corresponding to the number of expressways in the road network.

The smallest L is 0.5. The load increases linearly with the scale factor.

It should be noted that XQuery is an interesting target for Stream Schema, since its data

model does not have any stream-oriented implicit constraints, it uses semantic windows,

and allows arbitrary nesting of expressions. The schema for Linear Road has already been

given in Figure 4.1, so we will omit it here. Currently, no optimization framework for a

data stream system is known to exist, hence the optimizations are discussed at a formal

level and implemented by manually adapting the queries.

The MXQuery [29] implementation of Linear Road benchmark uses a combination

of continuous XQuery expressions and dedicated stream stores to express the streaming

queries, as shown in Figure 5.2. In total, 7 threads were used, 4 driving the output stream,

3 for intermediate results. The full queries are given in Appendix A.

5.5. Case Study I: Linear Road Benchmark 51

Car

positions
Car positions

to Respond

Accident

Segments

Accident

Events

Toll

Events

Accidents

Segment

TollsToll

Car

Position Car pos

to resp

Car pos

Result

Output

Result

Output

I

N

P

Speed0

Cars

Segment

Statistics for

every minute
Balance

Tolls

Balance

Query

Toll

Calculation

Historical

Tolls Daily

Expenditure

Query

Result

Output

Result

Output

P

U

T

Figure 5.2: MXQuery Linear Road Implementation [29]

5.5.1 Optimizations

Query Rewrites for Pipelining Execution

As described in the optimization section, pipelined window execution is an important

factor to reduce latency and memory consumption. For semantic windows, an important

precondition is that windows will be closed in the same order that they were opened, since

otherwise the execution would be blocked until the complete window is ready. In case of

sliding and landmark windows additional information is required which can be derived

from the stream schema. For example, assume the window expression of the Accident

Detection Query, shown in Listing 5.1.�
1 forseq $w in $ReportedCarPos sliding window

2 start curItem $s curr, prevItem $s prev

3 when $s curr/@minute ne $s prev/@minute

4 end curItem $e curr, nextItem $e next

5 when ($s curr/@minute +2) eq ($e next/@minute)
� �
Listing 5.1: An Excerpt from the Accident Detection Query

With two propositions, we show that windows are ordered and hence we can pipeline the

results.

Proposition 5.5.1 In Accident Detection Query (Listing 5.1), windows will be opened in

52 Chapter 5. Applications of Stream Schema

a strictly increasing time order.

Proof By definition of sliding windows in XQuery, for each incoming item, at most one

window will be opened. Now we show that these windows are strictly ordered with respect

to time attribute of their first element. The start condition of the window specifies that a

window should be opened if the time attribute is different between two adjacent elements

in the stream (inequality denoted by ne operator). In addition, the Stream Schema de-

scription states a ≤ relationship between the time attributes in the stream, meaning that

the only difference of time attribute values can be an increase. As a result of both query

and schema constraints, the desired order is guaranteed to hold.

Proposition 5.5.2 In Accident Detection Query (Listing 5.1), windows will be closed in

the same order they were opened.

Proof We prove by contradiction. Consider two arbitrary windows w and w
′

in which w

was opened before w
′
. According to the window start condition in the query this means

$s currw/@minute < $s currw′/@minute

now assume that w is closed after w
′
, meaning

$e nextw/@minute > $e nextw′/@minute

but from the LR Stream Schema (Figure 4.1) we know that the values of minute attribute

is non-decreasing, hence

$s currw/@minute + 2 = $e nextw/@minute

$s currw′/@minute + 2 = $e nextw′/@minute

this is a contradiction.

Along these lines, we can draw similar conclusions for other queries and therefore guar-

antee the safety of pipelining.

Data Partitioning

As we described before, the position report stream of the LR benchmark can be considered

as a combination of multiple position report sequences from different expressways and

5.5. Case Study I: Linear Road Benchmark 53

different directions. Depending on the nature of the continuous queries over the LR input

stream, it might be possible to partition this stream along the XWay and DIR dimensions,

and to process the queries independently and in parallel.

Among the LR continuous queries, the Account Balance Query is the only one which

performs computation over more than one expressway or direction. Therefore, we can

easily parallelize the execution of the other queries. In below, we show this for two repre-

sentative queries4:

• The Accident Detection Query : it uses a group-by and stream keys as part of the

grouping predicates, so this is trivially parallelizable. Toll Calculation is analogous.

• The Accident Notification Query : for each incoming position report that has fulfilled

the notification preconditions, it retrieves the accidents for the same expressway

and the same direction and then notifies the vehicle about accidents in its neighbor

segments (if any). Therefore, this query can also be executed for each stream key

value independently.

Moreover, the Car Positions To Respond Query is just a simple filtering module to select

those reports which need to be responded to (reporting a non-leaving segment crossings)

and it can be also parallelized along expressways and directions. Consequently, as high-

lighted in Figure 5.3, a significant part of the query plan can be parallelized.

5.5.2 Experiments and Results

In order to validate the optimizations spelled out in this case study, we re-created the ex-

perimental setup of Botan et al. [29]: All experiments were run on a dual-CPU AMD sys-

tem with single-core (pipelining experiment) and dual-core (partition experiment) Opteron

2.2 GHz processors and 6 GB RAM. A Sun 1.6 10 64-bit JVM with a heap size of 3 GB

respectively 5 GB was used.

The type system of MXQuery was extended to handle Stream Schema stream definitions

in a similar manner as regular XML Schema user-defined datatypes. The compile-time

checks for blocking queries were extended to incorporate the ideas outlined in Section 5.3.

On the optimizer, we added the rules for the schema-driven rewrites. Since the queries used

were carefully tuned and chosen to take advantage of the implicit schema knowledge, we

created a baseline using semantically equivalent queries that do not use schema knowledge.

4The actual XQuery expressions of these queries can be found in Appendix A.

54 Chapter 5. Applications of Stream Schema

Car

positions
Car positions

to Respond

Accident

Segments

Accident

Events

Toll

Events

Accidents

Segment

TollsToll

Car

Position Car pos

to resp

Car pos

Result

Output

Result

Output

I

N

P

Replicated Plan/

Partitioned Data

Speed0

Cars

Segment

Statistics for

every minute
Balance

Tolls

Balance

Query

Toll

Calculation

Historical

Tolls Daily

Expenditure

Query

Result

Output

Result

Output

P

U

T

Figure 5.3: MXQuery Linear Road Implementation, Extended with Data Partitioning

Information

The experiments were aimed at highlighting aspects of Stream Schema that are not well-

covered by related approaches, therefore we always kept accurate item schema information

even for the baseline measurements.

Pipelining Experiment

For Linear Road, most window constraints are on the attribute ’minute’, and the resulting

computations on the window contents to calculate statistics, accidents and tolls all need

to be performed when the value of the minute attribute changes. Consequently, without

pipelining, the response time requirement of 5 seconds is violated at the minute change

moments (due to the sudden computation spike), even though unused processing capacity

is available during the minutes. Schema information can be used to enable pipelining in

window processing (see Section 5.5.1), and thus alleviate the issue. In the experiments,

this effect was clearly visible: While running the queries without the schema information

(and thus without pipelining) the highest scaling factor we reached was L = 2.5, using

Stream Schema we were able to scale to L = 3.5.

5.5. Case Study I: Linear Road Benchmark 55

Stream Partitioning Experiment

A second experiment was geared toward partitioning the stream in order to parallelize the

processing. When the results of a query or a set of queries can be computed independently

for each value of a partitioning attribute, the workload can be distributed over multiple

cores or machines. As explained in Section 5.5.1, the workload of linear road can be

partitioned along the XWay and Direction attributes. Since the level of parallelism present

in the original setup was only enough to saturate 2 cores on the experimental platform

(and 4 cores being available), the stream was split into two substreams with the equivalent

query plans, sharing only the balance store. On this 4-core machines, L = 5.0 was reached

with partitioning, while L = 6.0 was missed, since the maximum observed response time

was 8 seconds.

These experiments give a first set of indications that utilizing stream schema knowl-

edge -whether implicitly in low-level or hand-tuned code, or explicitly by using schema

descriptions and a query optimizer for declarative queries- can have a significant impact

on performance.

5.5.3 Schema-Driven Executability of XQuery Expressions

Since continuous XQuery uses predicate-based windows, it is, in many cases, non-trivial to

statically determine whether an open window will ever be closed or not. This is important,

since the output of the window may be consumed by blocking operators, e.g., aggregations.

Using LR’s stream schema , this can be guaranteed. For example, let us focus on the

window expression in the Stopped Cars Query (Listing 5.2). This query finds vehicles

with speed equal to zero.�
1 forseq $w in $ReportedCarPos sliding window

2 start curItem $s curr, prevItem $s prev

3 when $s curr/@minute ne $s prev/@minute

4 end curItem $e curr, nextItem $e next

5 when $e curr/@minute ne $e next/@minute
� �
Listing 5.2: An Excerpt from the Stopped Cars Query

Each window produced by this expression will stay open as long as the incoming reports

have the same value for the minute attribute, thus one needs to make sure that the value

of the minute attribute cannot remain unchanged forever.

Proposition 5.5.3 Every open window in Stopped Cars Query (Listing 5.2) will be even-

tually closed.

56 Chapter 5. Applications of Stream Schema

Proof The maximum number of reports in a particular minute is 2 ∗ |V ID|, since every

vehicle emits two reports per minute. The next report emission (regardless of the source

vehicle) belongs to the next minute, consequently closing the window.

The argument for other windowing queries is analogous.

5.6 Case Study II: Supply Chain

The second case study focuses on application of pattern specification feature of Stream

Schema for query optimization and application design.

5.6.1 RFID-based Misrouted Item Detection

Assume a supply chain system (e.g., a car manufacturing factory) which attaches RFID

tags to manufacturing items (e.g., car parts) to keep track of these items while they

are being distributed among different routes. For example, all gearboxes should go to

destination number 14. Each item takes a specific route, and each route is equipped with

a number of RFID readers. These RFID readers form a tree, as depicted in Figure 5.4.

Typically, continuous queries are used to detect misrouted items. For instance, if a

gearbox has ended up at destination 8, this must be detected and reported. Such queries

commonly use patterns to describe valid destinations. As an example, the pattern AB∗C

where A is the entrance reader, B is any intermediary reader, and C is the correct desti-

nation reader for a given car part.

With the help of metadata, the performance of such queries can be improved. In fact, in

many cases, detecting a misrouted item is possible before it reaches its final destination.

Consider readers tree in Figure 5.4. Instead of checking the type of the items at leaf

nodes R6, R8, R10, R14, the check can be done right after branches R4, R7, R9, and R11,

respectively, or at even higher-level branches. For example, as soon as a part that should

be going to R14 reaches R3, the system can report the error. To this end, the structure of

the tree can be provided to SPEs or CEPs through Stream Schema, making it a structure-

aware item tracking.

RFID Readings Schema

The item schema for the RFID readings stream (R) is defined as

5.6. Case Study II: Supply Chain 57

R
1

R
0

R
6

R
3

R
2

R
4

R
5

R
7

R
9

R
11

R
12

R
13

R
10

R
14

R
8

Figure 5.4: Supply Chain with RFID Readers

N : RIS

A: {ReaderID,TagID,ItemType,TIME}

and combination of constraints on the main stream of RFID readings is depicted in

Figure 5.5. Items in this stream are homogeneous and the TIME values of the readings

are non-decreasing (without any disorder). Notice that several readings may arrive at the

same TIME (in a batch). The stream can be partitioned along the TagID attribute. Each

Figure 5.5: RFID Readings Stream Schema

partition corresponds to a particular TagID (tagid) and has a finite number of readings5.

Each of these partitions conform to a simple pattern constraint, shown at the only leaf

of the constraint tree. In this pattern, Ti is defined as below

Ti: RIS(TagID←{tagid},ReaderID←{Ri})

5At most the depth of the reader tree.

58 Chapter 5. Applications of Stream Schema

For each partition, TIME values are strictly increasing since a particular item is sensed

by only one reader at any point in time.

5.6.2 Query Rewrites for Early Detection of Misrouted Items

Assume that the rightmost leaf of the reader tree in Figure 5.4 (ending in R14) is the

destination for gearbox. A pattern query for detecting misrouted items to this reader is

shown in Listing 5.3 which is written using the MATCH RECOGNIZE [22] extension of

SQL.�
1 SELECT InitialS, EngineS, RoutingTime, MatchNo

2 FROM Readings

3 MATCH RECOGNIZE (

4 PARTITION BY TagID

5 MEASURES A.ReaderID AS InitialS,

6 C.ReaderID AS EngineS,

7 C.Timestamp − A.Timestamp AS RoutingTime,

8 MATCH NUMBER AS MatchNo

9 AFTER MATCH SKIP PAST LAST ROW

10 ALL MATCH

11 PATTERN(A B∗ C)

12 DEFINE A AS (A.ReaderID = ”R0”)

13 B AS (B.ReaderID != ”R14”)

14 C AS (C.ReaderID = ”R14” AND

15 C.ItemType != ”gearbox”)

16);
� �
Listing 5.3: A Dejavu Query to Detect Misrouted Items

As depicted in Figure 5.5, the Stream Schema specification encodes the possible paths

as a pattern with one repetition. Having this knowledge of the reader tree structure, it is

straightforward to find the right replacement for readers in route-checking queries. In fact,

for each leaf reader, one can replace the reader with its farthest non-branching ancestor.

In case of the above query, R14 will be replaced by R11 (and analogously, R10 by R9, R8

by R7, R6 by R4).

5.6.3 Experiments and Results

In our experiments, we used the query described in the previous section. The length of

a path was fixed at 30. We have generated readings for 1000 Tags which end up in the

5.7. Related Work 59

gearbox leaf. Misrouting probability was set to 0.02. In our experiments, we have varied

the branching position (position where the ancestor of the gearbox leaf has sibling).

We have used DejaVu [43] to implement this case study. DejaVu is a declarative Pattern

Matching System over live and archived streams. It is built on MySQL, an open-source

database system, and implements the MATCH RECOGNIZE clause [22] to define patterns

with semantic windows. The DejaVu implementation uses finite state machines for the

execution and internal representation of pattern queries. The open source memory mea-

surement tool Valgrind was used to monitor the memory usage.

In this set of experiments, we measured the memory consumed by the windows, which

mostly maintain partial matches. Early decision making allows the system to close the

windows earlier, which means less memory consumption. As the results in the Table 5.1

show, the nearer to the root the branches are, the more memory one saves. In this table,

the baseline is the case in which the query did not exploit the schema knowledge.

Branching Pos. Memory (KB) Saving (%)

2 8 99.4

5 189 87.3

15 711 52.4

25 1234 17.4

30 (Baseline) 1494 KB 0

Table 5.1: Memory consumption in the Early Detection experiment

The experiment clearly shows that rewriting the query using Stream Schema reduces

the memory usage by keeping less number of pattern states.

Finally, it should be noted that in all variations of this experiment, the detection query

remained unchanged and only the schema information was altered. Moreover, in case of

changes in the topology of RFID readers, as as long as the entry and the destination

readers stay the same, there is no need to change the query. This, if fact, demonstrates

the decoupling benefit of using Stream Schema.

5.7 Related Work

There is a body of work on schema-based optimization in relational (i.e. [34]) and object-

oriented (i.e. [54]) data management systems. They typically focus on goals like predicate

60 Chapter 5. Applications of Stream Schema

addition and removal, join removal, and empty result detections. For XPath/XQuery,

there has been work not only for persistent XML [49], but also for streaming XML [79].

As argued in Chapter 4, the item-level schema information exploited in these works is

orthogonal to what is expressible in Stream Schema, therefore these optimizations are

complementary to the techniques we outlined in this chapter.

Several approaches [85, and others] have considered how to specify and exploit dynamic

behavior (such as arrival rates or dynamic delays) in stream optimization. These solutions

are strongly dependent on the processing model. A well-known example is the work

of Tucker et al. [84] on the use of punctuation semantics to optimize stream operators.

A punctuation can be used to unblock operators or output partial results. There are

also many proposals for stream constraints that are based on a specific processing model

or the language of a specific system, the most common of which are types of window

specifications [53, 38]. Such constraints are orthogonal to properties of the data stream

itself, properties we call static to distinguish them from dynamic or processing-model

dependent properties. In Stream Schema, we focus on the specification of static data

behavior.

Constraints between streams have been studied by others [38, 25, 53, to name few].

These solutions tend to depend on specific processing models, join algorithms and dynamic

properties. For example, Golab et al. [53] extended the SQL DDL to define three stream

integrity constraints (Stream Key, Foreign Stream Key, and Co-occurrence), which are

defined across streams for particular time windows. The main goal of these constraints is

to reduce the cost of joins between streams using join elimination and anti-join elimination.

A query-aware stream data partitioning scheme has been proposed in [61]. The authors

present methods for analyzing given query sets and choose the optimal partitioning scheme,

and also show how to reconcile potentially conflicting requirements that different queries

might place on partitioning. The tacit assumption of this approach is that the data (not

just the queries) are in fact partitionable by the schemes produced in the first step. The

partitioning constraints of Stream Schema can be used to determine which (if any) of these

schemes can actually be used, thus making this approach fully automatable.

K-Constraints [25] capture three characteristics of the stream through specifying a

limited range, denoted by the parameter K : 1) Referential Integrity Constraint (for joining

streams), 2) Ordered-Arrival Constraint (on single streams), and 3) Clustered-Arrival

Constraint (on single streams). Given these constraints, one can exploit the constraints

to reduce run-time state for a wide range of continuous queries.

5.8. Conclusions 61

5.8 Conclusions

Schema information is invaluable in data management. It facilitates conceptual design

and enables checking of data consistency. It also plays an important role in query opti-

mization. In this chapter, we presented a set of different applications for Stream Schema

and demonstrated a selected set of them in our two case studies.

We showed that Stream Schema can be used to query optimization. For example, to

safely pipeline the execution and partition the data. It can also enable state reduction and

query rewrite. Furthermore, we presented an analysis of how Stream Schema can be used

in the static analysis of queries to extend the set of runnable as well as non-executable

expressions. Finally, we exploited data consistency and structure constraints specified in

Stream Schema to simplify the queries in streaming applications resulting in increased

decoupling and reuse.

Investigating additional optimizations based on Stream Schema is part of ongoing and

future work. This can possibly lead to considering additional stream constraints. Future

work also includes combining the use of static metadata (Stream Schema) and a recent

proposal [45] which utilizes dynamic substream metadata for runtime optimizations.

Chapter 6

Provenance Management on Data

Streams

6.1 Introduction

6.1.1 Motivation and Use Cases

Tracking provenance, exploring which input data led to a given query result, has proven

to be an important functionality in many domains such as scientific data management,

workflow systems [39] and relational database systems [33]. Previous techniques have been

traditionally classified according to their granularity: Coarse-grained provenance tracks

dependencies between input and output data at a very abstract level (e.g., streams),

whereas fine-grained provenance does so for individual data items in the input’s data

collections (e.g., tuples or attribute values).

Surprisingly, in the area of data stream management systems (DSMS), there has been

little work beyond coarse-grained provenance (e.g., tracking the sensor sources from which

a data item originates [86, 68]) despite the wide spectrum of use cases as we show below.

Ad-hoc human inspection: In monitoring and control of manufacturing systems, sen-

sors are attached to machines and to key points along a supply chain as well as on the

support infrastructure. Sensor readings are processed by a DSMS in order to detect crit-

ical situations such as machine overheating or low inventory. These detected events are

then used for automatic corrections and also to notify the human supervisors who need to

assess the relevance of these events. To do so, the human operators need to understand

from which inputs these events where derived (i.e., the individual temperature readings).

This requires fine-grained provenance for events. Because of the interactive nature of hu-

63

64 Chapter 6. Provenance Management on Data Streams

Use case Provenance genera-

tion

Provenance retrieval

Relevant events &

queries

Lifetime Retrieval Response

times

Ad-hoc human in-

spection

all events (events of

interest not known

beforehand)

time-bound (min-

utes to hours)

iterative drill-down

& point queries

(milli)seconds

Stream query de-

bugging

selected queries &

events

debugging session lookup & replay

& interactive

drill-down

(milli)seconds

Indicator-based

assurance

selected queries, all

events

retention period

for indicators

Point & Analytic

queries

offline

Event warehousing selected queries, all

events

application-

dependent

Analytic queries offline

Table 6.1: Provenance Use Cases and Requirements

man inspection, the original events and their provenance become relevant only for short

periods of time, but should be provided efficiently to enable interactive drill-down.

If the DSMS outputs a machine overheating alarm event, the user would want to un-

derstand which sensors measured high temperature values.

Stream query debugging & diagnosis: The high complexity of streaming queries re-

quires support for diagnosing system behavior, up to the scope of events or even attributes.

Provenance helps in exploring the computational steps and the data that led to an ob-

served result and in understanding how errors have propagated. The scope of inspection

can be limited to particular queries or events of interest.

Indicator-based assurance: Monitoring and control systems often adhere to strict ac-

countability requirements and need to provide proof for correct operations, which are

expressed as indicators. Provenance helps to establish the validity of these indicators by

providing the input events and computations they are based on.

Event warehousing: Event warehousing is used to collect raw and derived event streams

for mining and analysis. Provenance exposes how events became part of the warehouse.

Full provenance needs to be captured to allow complex analysis over such data.

The above use cases, summarized in Table 6.1, clearly show that fine-grained stream

provenance is a critical requirement in several important application domains, each of

which pose a diverse set of requirements in terms of the generation, storage, and retrieval

of provenance.

6.1. Introduction 65

6.1.2 Challenges

In many stream-based use cases including the one above, data is essentially transient, rapid,

time-ordered, and possibly unbounded, while queries can behave non-deterministically

due to approximate processing or uncertain inputs These characteristics lead not only

to stream-oriented data representations and processing models, but also more strict con-

straints on performance, both of which greatly affect how provenance should be managed.

This involves a long list of issues from stream provenance semantics and representation

to its computation, storage, and retrieval. A major challenge is to find a solution that

balances the amount of data needed for correctly representing provenance with its ef-

ficient generation and scalable retrieval. More specifically, provenance management on

data streams must deal with the following list of challenges:

• Online and Infinite Data Arrival: Data streams can potentially be infinite.

This means that we do not necessarily have a full view on all items of a stream (i.e.,

some items may have not appeared yet). Moreover, it may be impractical or even

impossible, to preserve all seen items for later processing. This property of data

streams imposes severe constraints on provenance storage and retrieval in DSMSs.

• Ordered Data Model: In contrast to the set or bag model of relational databases,

data streams are typically modeled as ordered sequences, requiring a provenance

model that incorporates order. This ordering, however, can be exploited in providing

optimized representations of provenance.

• Window-based Processing: Commonly used streaming operators like aggregation

and join are typically processed in DSMSs by grouping tuples from a stream into

windows and computing the result over the content of each window, essentially

requiring to maintain stateful operators in the query plan. Stream provenance must

deal with such windowing behavior in order to trace the outputs of such stateful

operators back to their sources correctly and efficiently.

• Low-latency Results: Streaming applications have strict performance require-

ments where low latency should be maintained, even under very high data arrival

rates. For example, in ad-hoc human inspection queries, the events of interest are

relevant only for short periods of time and supporting interactivity in the system by

providing low-latency results is important.

• Non-determinism: Some mechanisms applied by DSMSs to cope with issues like

high input rates (e.g., load shedding or approximations [80]), unpredictable behavior

66 Chapter 6. Provenance Management on Data Streams

Figure 6.1: The Continuous Query in our Running Example

of input sources (e.g., delays or disorder [77]), and certain operator definitions (e.g.,

windowing on system time or operators with slack or timeout parameters [16]), may

lead to non-deterministic behavior. The non-deterministic nature of some DSMSs

severely restricts the use of some of the standard techniques developed for database

provenance for these systems. For instance, query rewrite techniques used in tradi-

tional databases for computing provenance is not applicable in DSMSs, since most

of these techniques requires reproducibility of query results to deal with operations

like aggregation [51, 37].

In this chapter, we address all of the above challenges, by providing a novel, fine-grained,

propagation-based stream provenance management approach which exerts minimal over-

head in the system through a number of optimizations.

6.1.3 Running Example

Throughout this chapter we will be using a running example. This example is inspired by

the Ad-hoc Human Inspection use case explained above.

Example 1 Consider an assembly line (AL) in a factory which is equipped with mul-

tiple temperature sensors and a continuous query (q1, depicted in Figure 6.1) to detect

overheating in the assembly line. Temperature is measured by sensors at each second and

an overheating is reported if the average temperature over a fixed time interval is above

a threshold ‘thr’. In q1, the projection operator transforms the output stream of the ag-

gregation operator into a stream of boolean values (‘true’ indicates that a part of AL is

overheated).

In the scope of this example, provenance can be retrieved for two purposes: 1) identify-

ing the malfunctioning sensors (if an occurred overheating has not been reported), and 2)

providing evidence of overheating (the individual temperature measurements) to human

inspector.

6.2. Provenance Design Space 67

6.1.4 Contributions

The main contributions of this work are:

• Modeling provenance for DSMSs considering the unique requirements including infin-

ity, order, window-based processing and (in some DSMS) non-deterministic behavior.

• Exploring the different possibilities for computing provenance in a DSMS: Operator

Instrumentation, Inversion, and Query Rewrite.

• Providing efficient techniques for compressed representation, computation, and re-

trieval of provenance in DSMSs.

• Implementation and experimental evaluation of the above techniques on Ariadne.

6.1.5 Outline

The rest of this chapter is organized as follows. First, we discuss the provenance design

space in Section 6.2. Next, we present an algebra in Section 6.3 to formally define the

semantics of stream provenance. The implementation of Ariadne, our provenance-aware

stream processing engine is explained in Section 6.4. Optimizations and experiments are

presented in Sections 6.5, 6.6 respectively. Finally, after reviewing the related work in

Section 6.7, we conclude the chapter in Section 6.8.

6.2 Provenance Design Space

In this section we discuss (in Sections 6.2.1 and 6.2.2) alternative ways of how to extend

a DSMS to support provenance. the requirements of use cases like the one presented

above. In addition to enumerate approaches for generating and representing provenance

in a DSMS, we also investigate the trade-offs implied by these approaches with regard to

the properties of the query network and frequency of provenance retrieval in Section 6.2.3.

6.2.1 Provenance Computation

We consider three approaches for provenance computation. (1) Instrumenting the oper-

ators of the query network to propagate provenance information, (2) rewrite the query

68 Chapter 6. Provenance Management on Data Streams

network to propagate provenance using the existing operators of the DSMS, and (3) com-

puting inverses. Provenance computation can either be done eagerly by generating prove-

nance while the query network is running or lazily be computing provenance when it is

requested. Eager computation usually results in a constant overhead in runtime. Lazy

computation incurs in higher storage requirements and is only applicable to deterministic

networks.

Propagation by Operator Instrumentation

The key idea behind the operator instrumentation approach is to extend each operator

implementation so that: (1) The operator is able to output provenance information in

addition to outputting the normal operator results. For instance, after outputting one

result tuple the operator could output additional tuples that store the provenance of this

result tuple. (2) The operator is able to read and interpret provenance attached input

tuples. (3) The operator knows how to generate provenance for an output tuple based

on provenance attached to an input tuple. By extending all operators of the DSMS in

this way, provenance can be computed for query networks that are DAGs of operators,

because each operator “knows” how to interpret the provenance produced by the operators

that generate its input streams. This approach does not change the structure of the query

network for provenance computation if applied eagerly. Lazy provenance computation with

this method requires temporary storage of input tuples and replay techniques to process

the past inputs by an instrumented query network. Since the execution of the original

query network is traced, most issues with non-determinism are dealt with in a natural way.

For example, windows based on system time or any external factor (as studied in [28]) are

recorded effortlessly, while the Inversion or Rewrite approaches cannot be used for such

networks.

Operator instrumentation does not impose any restrictions on how provenance is rep-

resented. For example, provenance could be represented as complete input tuples, using

one of existing graph models for provenance, or as sets of tuple identifiers (TID). Oper-

ator instrumentation supports provenance computation for parts of a query network by

instrumenting a subset of the operators.

Propagation by Query Rewrite

Similar to relational provenance system such as Perm [51], DBNotes [26], or Orchestra [55],

we can compute stream provenance by rewriting a query network q into a network that

generates the provenance of q in addition to the original network outputs. However,

6.2. Provenance Design Space 69

for this approach to be applicable the query language of the DSMS has to be powerful

enough to express the provenance computation for an arbitrary network expressed in this

language. Query rewrite can be problematic if applied to non-deterministic networks with

windowing operators. For instance, we can not propagate provenance information though

operators like aggregation directly without changing the results of this operator (see [51]

for a discussion on the topic). To compute the provenance of such operators, a modified

copy of the sub-network that generates the input of the operator has to be created and

the results of the original sub-networks and its provenance producing duplicate are joined

together. If the sub-network uses a non-deterministic function or operator (e.g., a random

number generator) in the two copies of the sub-network the function respective operator

may produce different results. Thus, the join will fail to attach the correct provenance to

each original result. Furthermore, under rewrite the size of the rewritten network grows

exponentially in the number of aggregations. Unless the DSMS is extended with additional

data types and functions that operate on these new data types, provenance representation

is limited to what can be modeled using the natively supported data types of the DSMS.

Inversion

Inversion computes provenance by applying the inverse (in the mathematical sense) of

an operator to an output of interest. Examples of invertible operators are join (without

projection) and selection, because for these operators the input can be constructed from

an output tuples. For non-trivial operations, no true inverse in the mathematical sense

exist. Additional information such as the input data of the operator is needed to compute

the provenance of an output tuple. For example, value-based windowing requires the

reprocessing of (part of) the input stream and propagation techniques to determine which

tuples have been grouped together into a window. For such operations, inversion effectively

becomes lazy propagation. This approach has the same disadvantage as rewrite for non-

deterministic query networks with non-invertible operator, because the replay may produce

results different from the original execution. In principle inversion can be applied eagerly

or lazily. However, since eager computation also requires replay in most cases, it has no

real advantage over lazy for inversion.

6.2.2 Provenance Representation

We now discuss how to represent provenance information internally in a system and ex-

ternally to a user.

70 Chapter 6. Provenance Management on Data Streams

External Representation for Retrieval

External representations should be informative enough to be interpretable by user. For

instance, presenting a set of tuple identifiers as the provenance to the user is not very useful.

Complete input tuples seem to be a better way to represent provenance information to

the user. An output usually depends on many input tuples. The main problem to solve

is to find a representation that enables us to query this information. Two options have

been established in the related work: (1) Extend the data model and query language to

support provenance [26]. For instance, Karvounarakis et. al. [62] present provenance as a

graph and develop a query language tailored for these graphs. (2) Represent provenance

alongside with the normal query results using the original data model. For instance,

this approach was implemented in the Perm [51]. Using the original data model has the

advantage that provenance can be queries using the existing query language of the system,

but usually results in a denormalized representation that duplicates original results to “fit

in” the provenance.

Internal Representation

Representing provenance as collections of complete tuples would result in a huge overhead

for, e.g., queries that generate their outputs from large windows. To reduce the load on the

DSMS, we can use a more compact internal representation during provenance computation.

For instance, use tuple identifiers as placeholders for complete tuples. Using an internal

representation that is different from the external representation, we face the problem that

we need to transform provenance between these representations before exposing it to the

user. This results in additional processing and may require temporary storage of additional

information (e.g., preservation of input tuples).

6.2.3 Summary of Tradeoffs

Using a more compact provenance representation for internal purposes can reduce runtime

and storage overhead of provenance generation, but induces additional storage and runtime

cost to create the external representation exposed to the user. This approach requires the

storage of input stream tuples to be able to access the complete tuples represented by

TID collections in provenance retrieval. Given that computational overhead is critical in

a DSMS and provenance retrieval is expected to be limited to only a subset of the output

tuples, the overhead of temporarily preserving input tuples can be expected to be less than

the overhead of propagating complete input tuples for non-trivial query networks.

6.3. Provenance Semantics 71

Given the design space and application requirements outline above, a decision for a

particular computation approach can be made along those lines: Non-deterministic queries

mandate operator instrumentation and eager computation, because this is the only way

to ensure correctness.

For deterministic queries, the most important factor is the provenance retrieval fre-

quency. If provenance is requested often, eager computation is beneficial, as it has the

lower overall cost and usually lower response times. In turn, if retrieval happens more

rarely, lazy computation becomes more appealing. Determining on which original tuples

to compute the provenance carries additional overhead.

Among the computation methods, Operator Instrumentation and Rewrite are applica-

ble for both lazy and eager, Inversion by its very definition only for lazy, since an output

tuple already needs to exist before it can be inverted. For all but the simplest queries,

Operator instrumentation carries much lower runtime overhead than Rewrite, but requires

changes to operators and possibly also to the optimizer of the system and its cost model.

Pure Inversion is only applicable for a restricted set of operators and queries, otherwise

requiring re-computation. Such re-computations effectively turns Inversion into a variant

of Operator Instrumentation. As a conclusion, we can determine that Operator Instru-

mentation with a compact internal representation is the best general approach. The other

approaches are useful as optimizations under certain conditions or if no changes to the

query processor are possible.

6.3 Provenance Semantics

6.3.1 Overview

• We develop a sound, declarative notion of provenance stating which conditions the

provenance should fulfill. These conditions are based assumption that one would

intuitively expect to hold for provenance (Sec. 6.3.4).

• We represent provenance explicitly by extending the stream data model to contain

tuples with attached provenance. These streams, called provenance enhanced output

streams (PEO), are the basis of provenance representation in Ariadne (Def. 3).

• We introduce extended stream operators that generate PEOs instead of normal out-

put streams. These operators serve as an algorithmic specification and have a natural

implementation as we will see in Sec. 6.3.5.

72 Chapter 6. Provenance Management on Data Streams

Our formalization tackles the challenges of Order and Windowing by using a sequence-

based formalism. Infinity is expressed explicitly in the data model and is handled in

the query model by defining operators recursively over finite subsequences of an infinite

stream. Provenance is defined over finite prefixes of a data stream. We have chosen not to

handle Nondeterminism at the level of the formal model, since it would greatly complicate

the semantics, if it is expressible at all. This problem is addressed by our implementation

(Section 6.4). A formal provenance model requires a formal underpinning in terms of a

data model and query language, e.g., like the relational algebra in databases. Since there

is no generally accepted formal model for data streams, we first establish the necessary

definitions for the data model (Section 6.3.2) and operator semantics (Section 6.3.3), using

a recursive prefix-based model. We have tried to keep this model as generic and minimal

as possible, so that it will apply to many existing DSMS. Even if not all operations of a

DSMS map directly to the formalism, the provenance model itself can be easily adapted

(e.g. to deal with different ways on how to determine window boundaries [28]).

6.3.2 Data Model

We model streams as (possible infinite) sequences of so-called stream items. Each stream

stores items of a specific type. In our model we use three item types: tuples, windows,

and join-windows. Tuples are lists of attribute values that conform to a given schema

(attribute name and domain pairs). Windows are ordered sequences of tuples and are

used to define stream operators that compute output items based on subsequences of their

input stream. Similar, join-windows, storing two windows from different streams, are used

in the definition of the join operator.

Definition 1 (Stream Item and Stream) A stream item i is of a type Type ∈ {T,W, JW}
that defines its structure: A stream item of type T (a tuple) is an element t = [tid, a1, . . . , an]

from T ×D1 × . . .×Dn for a list of domains D1, . . . , Dn and a set T of tuple identifiers.

Let T (t) denote the identifier of tuple t which is required to be unique. We reserve the

attribute name TID for the attribute that stores the T (t) value of t. A stream item of type

W (a window) is a finite sequence of tuples denoted as w =� t1, . . . , tn �. A stream

item of type JW (a join-window) is a tuple jw = [w1, w2] where w1 and w2 are windows.

A stream S of type Type is a, (possibly infinite) sequence of stream items of type Type

denoted by � i1, . . . �Type (Type is omitted if clear from the context). We use S[i] to

denote the ith element of stream S, and SType to denote that stream S is of type Type.

For example, S =�� t1, t2 �,� t2, t3 ��W with t1 = [T1, 5], t2 = [T2, 7], and

t3 = [T3, 12] is a stream of type W containing two windows; each of them containing two

6.3. Provenance Semantics 73

tuples. Fig. 6.2 summarizes the notations we use in the stream algebra and provenance

definitions (some will be introduced later).

6.3.3 Stream Algebra

We now present an algebraic formalization of stream operators. A stream operator pro-

duces one or more tuple output streams from one or more tuple input streams. In the

definitions we use some auxiliary functions presented in the following. Applying the head

function H to a stream S returns the first item in the stream (H(S) = S[1]). The result of

applying the tail function T to a stream SType is the original stream with the first element

removed (T (S) =� S[2], S[3], . . . �Type). Both head and tail are also defined to return

resp. remove m stream items (e.g., H(S,m) =� S[1], . . . , S[m] �Type). The concatena-

tion of a stream item i and a sequence S or of two sequences S1 and S2 is defined as:

i || S =� i, S[1], . . . �Type and S1 |→ S2 =� S1[1], . . . , S1[l(S1)], S2[1], . . . �Type where

l(S) denotes the number of items in sequence S. For a tuple t, t.N is the tuple without

its identifier.

We first present the definitions for selection and projection that directly operate on

input tuples without grouping them into windows. Afterwards, we present two auxiliary

classes of operators, called windowing and join windowing, that are used in the definition

of aggregation and join presented in the following. In the operator definitions we use new

to denote a function that generates new TID values for the output of an operator. To not

loose generality we only require that new is deterministic (it generates the same values for

the same input).

Selection: A selection σc(I) on condition c filters out tuples from a stream that do not

fulfill the condition c.

σc(I) =

[new,H(I).N] || σc(T (I)) if H(I) |= c

σc(T (I)) else

Projection: A projection πA(I) on a list of projection expressions A (attributes and

application of functions) projects each input tuple on the expressions from A. In the

definition t.A denotes the projection of a tuple t on A.

πA(I) = [new,H(I).A] || πA(T (I))

Windowing: A window operator is a function ω : IT → OW . I.e., groups tuples from a

tuple stream into windows. As examples for a window operators we present count-based

74 Chapter 6. Provenance Management on Data Streams

SType Stream S is of type Type ∈ {T,W, JW}
[tid, a1, . . . , an] Item of type T (tuple)

� t1, . . . , tn � Item of type W (window) with ti ∈ T
[w1, w2] Item of type JW with w1, w2 ∈W
H(S) First stream item of sequence S

H(S, n) Sequence containing the first n items of se-

quence S

T (S) Sequence S with first element removed

T (S, n) Sequence S with first n elements removed

i || S Sequence S with item i added at the beginning

S1 |→ S2 Concatenation of sequences S1 and S2

TID Name of the attribute for tuple identifiers

new Function that generates new tuple identifiers

for the output of an operator

t.A Project tuple t on expressions A

t.N Project tuple t on its data (remove TID

and/or provenance attribute)

t.P Project tuple t on the provenance set

q[O] Output stream O from query network q

S ∩M Remove elements from stream S that are not

in M

S ↑ M Remove elements from stream S that follow

the last element from M

qO Sub-network of network q that contains only

nodes that influence output stream O

Figure 6.2: Notations

windowing and value-based windowing. The count-based window operator C(c, s) groups

c (called count) tuples from the input into a window and skips s (called the slide) tuples

before opening a new window:

C(c, s)(I) =� H(I, c)�|| C(c, s)(T (I, s))

The value-based window operator V(x, r, s) groups all tuples into a window that have an

x attribute value that is smaller than the x attribute value of the first item in the window

plus the parameter r (called range). Windows are advanced by s:

V(x, r, s)(I) = σx≤H(I).x+r(I) || V(x, r, s)(σx≥H(I).x+s(I))

Join Windowing: A join-windowing operator is a function jω : IT × I ′T → Ojw that

groups inputs from two tuple streams into join-windows. For a join-window jw = [w1, w2]

we denote the access to window wi by jw.wi. For example, value-based join-windowing

(jv(x1, x2, r)) groups each tuple t from the left stream with all tuples from the right stream

that have an x2 attribute value between t.x1 and t.x1 + r.

jv(x1, x2, r)(I, I
′) =[� H(I)�, σC(I ′)]

|| jv(x1, x2, r)(T (I), I ′)

C =x2 ≥ H(I).x1 ∧ x2 ≤ H(I).x1 + r

6.3. Provenance Semantics 75

Aggregation: An aggregation αagg,ω(I) partitions its input into windows using the win-

dow function ω and computes the aggregation functions from agg = (agg1(a1), . . . , aggn(an))

over each window generated by ω. Each aggregation function aggi(ai) computes a single

attribute value from all values of attribute ai in a window w. We denote the application

of an aggreation function agg(ai) to a window w as agg(ai, w).

αagg,ω(I) = a(ω(I))

a(I) = agg(H(I)) || a(T (I))

agg(w) = [new, agg1(a1, w), . . . , aggn(an, w)]

Join: The join operator ./c,jω (IT , I
′
T) joins two input tuple streams I and I ′ by applying

the join windowing operator jω to I and I ′, and for each generated join-window jw outputs

each combination of a single tuple from jw.w1 with a tuple from jw.w2 that fulfills the

join condition C.

./C,jω (I, I ′) =join(H(jω(I, I ′))) |→ join(T (jω(I, I ′)))

join(jw) =joinl([� H(jw.w1)�, jw.w2])

|→ joinl([T (jw.w1), jw.w2])

joinl(jw) =

X || Y if [H(jw.w1), H(jw.w2)] |= C

Y else

X =[new,H(jw.w1).N , H(jw.w2).N]

Y =joinl([jw.w1, T (jw.w2)])

Query Network: A query network Q is a DAG representation of a stream algebra

expression q. Each node in Q represents one operator of algebra expression q. In the

network Q, there is a directed edge between node x and y labeled with a if operator x

uses the output stream of operator y as its ath input. For networks with multiple output

streams, we use q[O] to denote output stream O of the network.

Example 2 In this example we generalize our running example query (q1) from Sec-

tion 6.1.1 to demonstrate the query operator composition. We assume that there are three

temperature sensors (t1− t3) that output their measurements once a second as a stream Ti
with a schema [time : N, temp : N]. A part of the assembly line is considered overheated,

if the temperature averaged over two seconds is above a threshold of 150. Overheating is

required to be measured once a second. Query qex presented below is used to output tuples

that store the current overheating status of all three temperature sensors. We use attribute

76 Chapter 6. Provenance Management on Data Streams

renaming (denoted by →) to simplify the presentation.

qex =πt1,oh1,oh2,oh3,(./true,jv(t1,t2,1)

(q1, ./true,jv(t1,t2,1) (q2, q3)))

qi =πavgtemp>thr→ohi,time→ti(

αavg(temp)→avgtemp,min(time)→time,V(time,2,1)(Ti))

Assume the sensors generated the input streams as shown below, then qex outputs the

stream O presented below.

T1 =� [1, 70], [2, 166], [3, 143], [4, 161], [5, 170]�
T2 =� [1, 30], [2, 40], [3, 37], [4, 60], [5, 23]�
T3 =� [1, 130], [2, 152], [3, 153], [4, 151], [5, 145]�
O =� [1, f, f, f], [2, t, f, t], [3, t, f, t], [4, t, f, f]�

6.3.4 Declarative Provenance Semantics

We now present the contribution semantics (definition of provenance) applied by Ariadne

that models the provenance of an output tuple t of a query q as a provenance set, the

set of tuples from the input stream(s) of q that were used to derive t. The declarative

definition of our contribution semantics captures assumptions about provenance that one

would intuitively expect to hold. (i) The provenance of a tuple should produce this tuple

and nothing else. (ii) Provenance should not include tuples that did not contribute to the

output. These intuitions are captured by stating conditions over the result of evaluating

a query network over subsets of its input streams. E.g., by removing all tuples from the

input that do not belong to the provenance set of an output tuple.

To be able to state such conditions we define two types of reduced input streams:

Intersection of a stream I with a set M is denoted by I ∩M and defined as:

I ∩M =

H(I) || T (I) ∩M if H(I) ∈M
T (I) ∩M else

The prefix I ↑ M of a stream I according to a set M contains all tuples from the stream

until the last (in order of the stream) tuple from M:

I ↑M =

H(I) || T (I) ↑M if ∃t ∈M : pI(H(I)) ≤ pI(t)

T (I) ↑M else

6.3. Provenance Semantics 77

Prefix and intersection of a list of streams I = (I1, . . . , In) with a set are defined as the

list generated by applying prefix respective intersection to each stream in the list:

I ∩M = (I1 ∩M, . . . , In ∩M)

I ↑ M = (I1 ↑ M, . . . , In ↑ M)

For an output stream O of a query network q we define qO as the query network that

contains all nodes that are reachable from O if we reverse the edges in q. I.e. the sub-

network that contains only streams and operators that may influence the evaluation of O.

Furthermore, I ⊆ I ′ denotes that all items from I are contained in I ′. Having defined

prefix, intersection, and qO we now present our declarative provenance definition.

Definition 2 (Provenance Sets) The Provenance set P(q, I, t) of a result tuple t from

an output stream O of a stream algebra expression q over a list of input streams I =

(I1, . . . , In) is the minimal subset of all tuples from I (Set(I)) that fulfills the following

conditions:

q(I ∩ P(q, I, t))[O] =� x� with t.N = x.N (1)

q(I ↑ P (q, I, t))[O] =� . . . , t� (2)

∀ω ∈ qO : ω(I ∩ P (q, I, t)) ⊆ ω(I) (3)

The conditions of Def. 2 capture the intuitive assumptions presented beforehand. Con-

dition 1 guarantees that the provenance of t is sufficient for producing t and only produces

t. This is done by evaluating q over the provenance, checking that only a single tuple x

with the same attribute values as t is returned (the TID of x may be different from the

one of t, because the operators use new). The second assumption of P to be minimal is

expressed by Conditions 2 and 3. Conditions 2 checks that P(q, I, t) is the provenance of

tuple t and not of some other output tuple with the same attribute values at a different

position in the stream. This is achieved by applying the query to input streams prefixes

up to the last tuple in the provenance, and checking that the last output tuple in the

output stream O is t (With the same T value, since TID assignment is same for replays).

Condition 3 plays the same role for operators with windowing. It requires that replaying

the provenance does only produce windows that are produced by the original evaluation of

q. The interested reader can verify that conditions 2 and 3 are necessary on the following

example:

αsum(a),C(2,1)(� [T1, 5], [T2, 5], [T3, 5], [T4, 5]�)

=� [T5, 10], [T6, 10], [T7, 10]�

78 Chapter 6. Provenance Management on Data Streams

Based on Def. 2 we define the PEO of q, a stream that contains original output tuples

of q and their provenance.

Definition 3 (Provenance Enhanced Output Stream (PEO)) For a query q over

inputs I and an output stream O of q, the PEO P (q, I, O) is a stream with schema [O,P :

Set(I)] defined as:

P (q, I, O) = [H(O),P(op, I, H(O))] || P (q, I, T (O))

Example 3 As an example for the provenance of a query network, reconsider the network

qex from Example 2. Applying Def. 3 we generate the PEO for qex as presented below. To

shorten the representation, we use the notation ti:j to refer of the jth tuple of input stream

i.

P (q) = {[1, f, f, f, {t1:1, t1:2, t2:1, t2:2, t3:1, t3:2}],
[1, f, f, t, {t1:2, t1:3, t2:2, t2:3, t3:2, t3:3}],
[1, f, f, t, {t1:3, t1:4, t2:3, t2:4, t3:3, t3:4}],
[1, t, f, f, {t1:4, t1:5, t2:4, t2:5, t3:4, t3:5}]}

For instance, the provenance set of the first output tuple o1 = [1, f, f, f] of the network

contains the first two tuples from all temperature readers. Feeding these tuples into the

query network causes the windowing operators to generate the first windows as in the

original query network. Thus, the result of the aggregation over these windows are the

original first aggregation results. In consequence, the projections and joins generate the

first original tuple o1 and condition 1 of Def. 2 is fulfilled. Condition 2 holds too, because

the tuples in provenance set of o1 are the first tuples of the input streams, and, therefore

replaying the input stream until these tuples generates the same result. The windows

generated over the provenance are a subset of the windows generated by the complete input

streams. In summary, all conditions of Def. 2 are fulfilled.

6.3.5 Provenance Generating Operators

The naive approach to compute a PEO would be to generate the provenance set for each

tuple t after Def. 2 by enumerating all subsets of Set(I) and for each one test if the

conditions of the definition hold. This method is clearly not efficient enough to be applied

in a DSMS. Hence, we developed new algebra operators that generate PEOs in a much

more efficient manner, further optimizations are shown in Sec. 6.4.

6.3. Provenance Semantics 79

Provenance Generators

σPG
c (I) =

{
[new,H(I).N ,{H(I)}] || σPG

c (T (I)) if H(I) |= c

σPG
c (T (I)) else

πPG
A (I) = [new,H(I).A,{H(I)}] || πPG

A (T (I))

αPG
agg,ω(I) = pa(ω(I))

pa(I) = [new, agg1(a1, H(I)), . . . , aggn(an, H(I)),Set(H(I))] || pa(T (I)

./PG
c,jω (I, I ′) = pj(H(jω(I, I ′))) |→ pj(T (jω(I, I ′)))

pj(jw) = pjl([� H(jw.w1)�, jw.w2]) |→ pj([T (jw.w1), jw.w2])

pjl(jw) =


[new,H(jw.w1).N , H(jw.w2).N ,
{H(jw.w1),H(jw.w2)}] || pjl([jw.w1, T (jw.w2)]) if [H(jw.w1), H(jw.w2)] |= c

pjl([jw.w1, T (jw.w2)]) else

Figure 6.3: Provenance Generator Operator Types

For each operator of our stream algebra we introduce two new versions that generate

PEOs. (1) A Provenance Generator (PG) is an operator that generates the PEO for a

single algebra operator op from the input stream of op. This class of operators is used

to generate PEO for operators in a query network that access solely input stream of the

network. (2) A Provenance Propagator (PP) propagates from a PEO of the input(s)

of an operator op to generate the PEO of the output of op. PP class operators are

used to generate the PEO for an intermediate node in a query network by passing on

provenance information from the input PEOs of an operator that have been generated by

PG or another PP operator. This means, PG and PP operators are used in combination

to derive the PEO for a query network output by transforming q into what we call a

provenance generating network PGN(q):

1. Replace each operator op that accesses only input streams of q by its PG version.

2. For joins that access both an input and an intermediate stream, wrap the input

stream by adding a PG projections on all attributes of the input stream’s schema.

3. Replace all remaining operators in q by their PP version

80 Chapter 6. Provenance Management on Data Streams

Provenance Propagators

σPP
c (P) =

{
[new,H(P).N ,H(P).P] || σPP

c (T (P)) if H(P).N |= c

σPP
c (T (P)) else

πPP
A (I) = [new,H(I).A,H(I).P] || πPP

A (T (I))

αPP
agg,ω(I) = pa(ω(I))

pa(I) = [new, agg1(a1, H(I)), . . . , aggn(an, H(I)),
⋃

i∈H(I) i.P] || pa(T (I))

./PP
c,jω (I, I ′) = pj(H(jω(I, I ′))) |→ pj(T (jω(I, I ′)))

pj(jw) = pjl([� H(jw.w1)�, jw.w2]) |→ pj([T (jw.w1), jw.w2])

pjl(jw) =


[new,H(jw.w1).N , H(jw.w2).N ,
H(jw.w1).P ∪ H(jw.w2).P] || pjl([jw.w1, T (jw.w2)]) if [H(jw.w1), H(jw.w2)] |= c

pjl([jw.w1, T (jw.w2)]) else

Figure 6.4: Provenance Propagator Operator Types

In the definition of the PG and PP operators we use N to refer to all attributes of a

tuple except for TID and P .

Definition 4 (PG and PP) The PG and PP stream algebra operators are defined as

presented in Figure6.3 and Figure6.4 respectively.

We briefly explain two operators and their PG and PP semantics here: For selection,

the PG provenance of a tuple t is the tuple itself, shown as {H(I)}, in PP mode the

provenance of the selected tuple,H(P).P . For aggregation, the provenance of t is the

set of all tuples in the window that generated t (in PG), respectively the union of their

provenance (in PP).

Example 4 Reconsider the query network qex from example 3. Applying the approach

presented above to transform a network into its corresponding PGN the aggregations in qi
are replaced by PG operators, because they are the only operators in qex that directly access

input streams. Consequently all other operators in qex are replaced by their PP version. As

an example of how PEOs are generated by these operators we discuss the PEO generation

in sub network q1 in more detail. Note that we omit the tid values of tuples for simplicity.

6.4. Implementation 81

The PG aggregation qagg = αPGavg(temp)→avgtemp,min(time)→time,V(time,2,1)(T1) in q1 computes

the original aggregation results by using the windowing operator to compute the average

temperature over two consequent tuple from T1. The tuples from each window w are then

attached to the result of the aggregation over this window. All tuples from a window belong

to the provenance set of the tuples from an aggregation result t, because they generate t

(condition 1), they are necessary to generate w (condition 3), and using the contents of

a different combination of input tuples that generate the same aggregation result would

violate condition (2). Below we present the result of evaluating qagg.

T1 =� [1, 70], [2, 166], [3, 143], [4, 161], [5, 170]�
qagg =� [1, 118, {t1:1, t1:2}], [2, 154.5, {t1:2, t1:3}], . . .�

The projection in PNG(q1) that processes the output of the aggregation is a PP operator.

It projects the PEO input tuples on the expressions from A and simply passes on the

provenance sets of its input PEO. For an output o of a projection, the provenance set of

tuple i that was projected on o clearly fulfills condition 1. It is also minimal and fulfills

conditions 2 and 3, because it is attached to i in the PEO of the input stream of the

projection.

πPPavgtemp>150→ohi,time→ti(qagg)

=� [f, 1, {t1:1, t1:2}], [t, 2, {t1:2, t1:3}], . . .�

Note that, by modelling provenance generation as two operator types, one for initial

provenance generation and one for provenance propagation, we have the necessary means

to compute provenance for only parts of a query network by deciding which operator is

the first in a path to be replaced by its PG version (we refer to this operator as being

a p-hook). Furthermore, the output of each PP operator op is the provenance of the

sub-network between all p-hooks and op. We call operators that generate the PEO for a

part of a network p-sinks.

6.4 Implementation

6.4.1 Overview

We now present the implementation of the formalism developed in the last section in our

prototype system Ariadne. While the formal description gives us the means to correctly

describe the provenance for a given query network and data stream, several problems had

82 Chapter 6. Provenance Management on Data Streams

to be overcome in the implementation to achieve efficient computation and retrieval of

provenance.

Based on the analysis we presented in Section 6.2, we have made the following deci-

sions in the implementation of Ariadne: 1) internally, represent provenance as a set of

tuple identifiers (TID-Set), 2) use operator instrumentation for provenance computation,

and 3) use the original data model for external provenance representation. This combina-

tion provides both flexibility and efficiency in provenance operations. Using TIDs avoids

the cost of propagating full tuples and enable further optimizations which we present in

Section 6.5.Operator instrumentation extends the implementation of each operator by in-

troducing two new operational modes in addition to the normal operation of the operator

(called NO): the PG and PP modes as presented in Section 6.3.5. A query network q

is set-up for provenance computation by setting the operational modes according to the

PNG(q), thus providing the flexibility to (re-)configure provenance computation at a fine-

grained level. Since we propagate TID-Sets from a p-hooks until the end of the query

network, we can easily represent source provenance. If incremental provenance between

operators is needed (e.g. for debugging as in [75]), we can also accommodate this by

placing p-hooks and PG operators at each stage.

Representing provenance to users by duplicating the data tuples is simpler and more

general than an extended data model, and does not prohibit us from adding specialized

provenance query operators in the future. In order to generate this external format from

the internal TID-Set representation, we added a new operator (called expand) which pro-

duces several duplicates from each output tuple t and its attached TID-Set. To restore

the complete input tuples for provenance retrieval, this TID information can joined with

the original input tuples stored at the p-hooks.

Ariadne is an extension of the Borealis data stream management system [15], a dis-

tributed stream processing engine that is based on Aurora [16]. In Borealis, a query

network is represented as a DAG. The nodes in this DAG represent the operators (a.k.a.

boxes) and a directed edge from box x to box y indicates that the output of x is used

as the input of y. Boxes operate on constant-size tuples with a fixed schema. The input

streams of a box are buffered in so-called tuple queues. A box x dequeues tuples from its

input queues and enqueues its output tuples to the queue(s) of its downstream boxes. We

use the connection points functionality [15] of Borealis to store original tuples at p-hooks.

6.4. Implementation 83

6.4.2 Representing and Propagating Provenance

Borealis uses queues to pass fixed-length tuples as uninterpreted chunks of memory be-

tween operators in the query network. We considered three alternatives to pass the

variable-size TID-Sets between operators: (i) Modify the queuing mechanism to deal with

variable-length tuples, (ii) Propagate TID-Sets through channels other than normal tuple

queues, or (iii) Split large TID-Sets into fixed-length chunks which are then streamed over

normal queues. We chose the third approach, because it is less intrusive than changing all

code that depends on fixed-length or introducing a new information passing mechanism.

Furthermore, we benefit from several optimizations in the engine that rely on tuples of

fixed-size.

We serialize a TID-Set of a tuple t into a list of tuples, each storing multiple TIDs

from the set, that are emitted directly after t. The very first tuple in this list has a small

header that stores the number of TIDs in the set. This header is used by down-stream

operators to determine how many provenance tuples have to be dequeued. Given that a

TID in Borealis is 8 bytes and the tuple header is almost 90 bytes, we save around an

order of magnitude of space (and number of tuples propagated) compared to using full

tuples even if tuples have very small payloads. The actual savings depend on number and

type of payload data fields in the regular tuples: If TS is the size of the tuples in a queue

and TIDS is the size of a TID value, then we store TS/TIDS TIDs in each provenance

tuple except for the first one, which stores (TS−PHeader)/TIDS TIDs, where PHeader

is the size of the provenance header (explained later). Despite these savings, the TID-Set

representation can still cause significant overhead due to the large amount of provenance

that operations such as aggregation can create. We investigate compression methods to

further reduce this overhead in Section 6.5.

6.4.3 Provenance Operator Modes

As outlined in the beginning of this sections, we extend the existing Borealis operators

with modes to consume and propagate provenance. This extensions reflects the formal

semantics, adding the following modes:

• Initially produce provenance (PG)

• Consume data with existing provenance, combine with newly generator provenance

(PP).

84 Chapter 6. Provenance Management on Data Streams

Normal Query Network

1:1
5

70
1:2

5
166

1:3
5
143

1:4
4
161

1:5
5
170

1:1
1

118
1:2

2
154.5

1:3
3

152
1:4

4
165

1:1
1

f
1:2

2
t

1:3
3

t
1:4

4
t

Provenance-Enabled Query Network

1:1
5

70
1:2

5
166

1:3
5
143

1:4
4
161

1:5
5
170

1:1
1

118

1:2
2

154.5

1:3
3

152

1:4
4

165

P
1:1

1:2

P
1:2

1:3

P
1:3

1:4

P
1:4

1:5

1:1
1

f
P

1:1
1:2

P
1:2

1:3

P
1:3

1:4

P
1:4

1:5

1:2
2

t

1:3
3

t

1:4
4

t

PG PP

Figure 6.5: Example for Provenance Computation

An operator in PG-mode generates the TID-Set for each output tuple t and serializes it

into additional tuples that are emitted directly after t. An operator in PP-mode processes

each input tuple t by dequeuing t and all of the provenance tuples following t. Input

tuple provenance is buffered until an output tuple is generated. All operators require

similar functionality in terms of provenance handling. Therefore, we factored out common

functionality such as dequeuing, enqueuing, and merging of TID-Sets to limit the changes

to the original operator implementations.

6.4.4 The Expand Operator

As mentioned before, we enable provenance retrieval by providing an expand operator that

transforms an output tuple t with an attached TID-Set into duplicates of t with a single

TID attached to each duplicate. The expand operator simply reads all provenance tuples

for an input tuple and repeatedly outputs copies of this tuple with an attached TID from

the provenance TID-Set.

6.4.5 Input Tuple Storage and Retrieval

Borealis supports the storage of tuples from a queue in so-called connection points (CPs).

CPs can be configured to preserve tuples for a given time interval. We use CPs to realize

both preservation of input tuples and of output tuples with provenance (if required).

6.5. Optimizations 85

Example 5 Fig. 6.5 presents the partial query network q1 from our running example.

The basic processing applied by this network is illustrated on the top of the figure: circles

represent operators and the stacked squares represent queues (each tuple is one square).

For convenience, each queue is shown with all the tuples that have flown through it. The

same network is instrumented for provenance computation is shown at the bottom of the

figure. The aggregation operates in PG-mode and the projection operates in PP-mode.

The white tuples are the provenance tuples generated by the instrumented network. The

red P , represents the provenance header. For example, the second tuple in the output of

the aggregation stores the TID-Set {1 : 1, 1 : 2} of the first output tuple of the aggregation.

Note that in this example we assumed that both TIDs barely fitting into one provenance

tuple. In reality, we can store many more TIDs in a single tuple. Note that a CP (the

cylinder) is used to preserve the T1 tuples for provenance retrieval.

6.5 Optimizations

By its very definition, fine-grained provenance is potentially significantly larger than the

result generated by normal query processing. This additional data can cause significant

cost in computation and storage, as observed in many database [51] or workflow provenance

systems. Providing provenance for data streams systems further aggregates this problem,

mainly for two reasons:

1. Typical DSMS workloads rely heavily on aggregation to reduce downstream work-

load, reducing many input tuples to few output tuples. When requesting provenance

for such aggregation queries, these saving are negated, as all input tuples are part

of the provenance.

2. DSMSs treat data as transient, computing result on the fly and discarding data

as soon as possible as to keep up with high data arrival rates. Consequently, the

computation of provenance has to also be performed on the fly, possibly wasting

significant resources if this provenance is never requested.

Given these challenges, we focus our optimizations on compressing provenance (as to

reduce the overhead of computation) as well enabling on-demand provenance operations

(as to avoid unnecessary provenance operations).

86 Chapter 6. Provenance Management on Data Streams

6.5.1 Provenance Compression

TID-Sets are already a quite compact representation of provenance information. They are

efficiently serialized and propagated by our operator implementations. However, many

workloads, in particular those involving large window-based aggregates lead to large TID-

Sets, putting a lot of additional computation, storage overhead and queue operations to

downstream operators. We study a number of methods for efficient TID-Set compression,

ranging from generic data compression to methods which exploit data model and operator

characteristics. An important consideration is the balance between the cost needed to

perform compression/decompression operations and the savings achieved. In particular,

choosing compression methods that do not require decompression for most operators will

be important.

As we will see, these compressions work best under certain workload characteristics, ne-

cessitating an adaptive combination of them to provide effective processing for an arbitrary

and changing workload.

Interval Encoding

Interval Encoding exploits the fact that windows produce contiguous sub-sequences of its

ordered input sequences. Instead of storing each element of a TID-Set individually, it

represent them as a list of intervals spanning the uninterrupted sequences of TIDs in the

set. Under interval encoding, operators in PG-mode group contiguous TIDs into a single

interval; operators in PP-mode try to merge intervals they read from their input. The

merging can be efficiently done using existing well-known interval merging techniques [57].)

Interval encoding is most advantageous for queries involving aggregations over a long

sequence of contiguous TIDs that are represented as a single interval. The worst-case takes

place when each interval represents only a single TID (i.e., no aggregation operator). In

practice, complex query networks which mix aggregations and other operators limit the

applicability of this simple form interval encoding. As a result, combinations of inter-

val encoding with other methods become more promising. Yet, interval encoding is an

important foundation for lazy provenance computation, as we will show in Section 6.5.2.

Delta-Compression

Delta compression exploits the fact that windows with small slide sizes overlap to a large

extent. Therefore, the TID-Set of a tuple may be encoded more efficiently by representing

it as some delta to the TID-Set of its predecessor (by encoding which TIDs at the start of

6.5. Optimizations 87

the previous set are left out and which TIDs are appended to the end). More precisely,

we represent a delta tuples as difference to the last full tuple, not the previous delta tuple.

While this approach has a potentially higher space overhead, it simplifies operations like

filter and also prevents errors.

Delta compression requires additional buffering to keep the TID-Sets of past tuples to

be able to reconstruct the TID-Set of the current one. Moreover, since it can create unnec-

essary overhead, there are a handful of tunable parameters to ensure its efficiency. Delta

compression is most effective with significantly overlapping windows, almost regardless of

the presence of other operators. With correct settings of the parameters, the overhead of

using on unsuitable workload (e.g. no overlap) will not be significant.

Dictionary Compression

Given their potential size, TID-Sets and also collections of intervals can be compressed

using standard compression techniques. We used LZ77 as it deals with flexible input

sizes (not a block-based compression) and provides a good tradeoff between speed and

effectiveness, but other methods are certainly possible as well.

Compression is only activated if the size of a TID-Set or interval collection exceeds a

fixed threshold to avoid paying the price of compression for a small number of values. If

dictionary compressed applied, this is indicated in the provenance header send in the first

tuple of the set. This type of compression can reduce the load on the queues significantly

for large TID-Set at the cost of additional processing to compress and decompress the

TID-Sets.

Since generic compression methods do not take advantage of the specifics of the data

model and operator semantics, its benefit/cost potential is significantly worse than using

methods like interval or delta encoding. As experiments show, significant space savings

are possible, but the computational overhead is typically offsetting these savings.

6.5.2 On-Demand Provenance Operations

As outlined above, working on transient data streams leads to an eager way of dealing with

provenance, as each computation needs to be performed while the data is still available.

Since provenance computations are expensive and not all provenance is always needed,

this is wasteful and limits the application areas of stream provenance significantly. As a

result, we propose three orthogonal approaches with an increasing amount of complexity

in order to delay provenance operations until they are really needed:

88 Chapter 6. Provenance Management on Data Streams

1. Partial Instrumentation of the Query Network

2. Lazy Retrieval

3. Lazy Computation

Partial Instrumentation of the Query Network

In particular for complex networks, always having full provenance on everything is not

necessary. In particular, there is often no need to compute provenance

• end-to-end, as only a suffix of the plan is of interest

• for irrelevant subgraphs, as only certain paths are of interest

• all of the time, as only certain periods are relevant.

Our PGN approach outlined in Section 6.4 already provides all the means to perform

partial instrumentation: Controllable Modes (PG, PP) of provenance-enabled operators

provide the flexibility to enable/disable provenance computation when needed, and -as

experiments show- the overhead of keeping the provenance infrastructure inactive is neg-

ligible. The main limiting factor at the moment are the connection points to store the

original tuples, as they cannot be controlled in a similarly fine-grained manner. We there-

fore need to make some advance decision where to place.

Lazy Retrieval

The second approach to enable lazy operations is to delay provenance retrieval. In our

PGN-based approach we separate the computation of the relevant TID from operations

on the actual tuples. This is in contrast to rewrite-based approaches (see Section 6.2.1),

which eagerly joins full tuples not only at the end of a query network, but at many stages.

We therefore need to pay this cost of retrieval once, but also have the opportunity to

not pay it if the provenance results are not needed. By doing so, the cost of the expand

operation, the tuple lookup and the join can be saved.

Lazy Computation

The third and most complex approach is actually avoid computing provenance until it is

really needed, as to bring down the overhead imposed on normal query processing.

6.6. Experiments 89

Actually doing this brings us into a quandary: in order to compute something on a set

of results after it had been produced requires provenance, which is what we try compute

lazily. Since Inversion is not generally applicable (see Section 6.2.1, we instead opted for

an approach that records minimal provenance eagerly. More precisely, we record a superset

of the actual provenance and use it to determine which tuples to store and use for the

actual provenance computation. This provenance computation is performed using a copy

of the actual network dedicated solely for provenance computation. While this approach

may seem wasteful, its separation of normal query processing (with minimal provenance)

and full provenance computation allows us to scale out with multiple machines and keeping

the performance impact on normal processing at a minimum.

As a representation of superset provenance that is easy to compute and does not include

too many spurious provenance candidates, we settled for Covering Intervals. Covering

Intervals are an extension of the Interval Encoding compression technique presented in

Section 6.5.1. As shown there (and confirmed by the experiments), interval compression

is very efficient when there are contiguous sequences of TIDs. In practice, intermittent

operators like filters tend to destroy such contiguous sequences, thereby limiting the appli-

cability when computing exact provenance. However, the compactness of representation

and low computation cost are maintained if we ignore “holes” being “punched” in these

sequences and represent the complete sequence, a.k.a. Covering Interval. The runtime

overhead of such an approach is low for almost all workloads, since we only need to prop-

agate intervals. Given that these intervals have constant sizes (only 2 TIDs), we do not

need to use separate tuples for provenance, but can piggyback the intervals on regular

tuples, thereby significantly reducing the number of tuples to be propagated.

Covering Intervals are also an effective way to create minimal supersets, since the

ordered nature of the data model and the monotonic nature of operators prevent a massive

growth beyond the actually needed data.

6.6 Experiments

The goal of our experimental evaluation is to investigate the overhead of provenance

computation with Ariadne and analyze the impact of the TID-Set compression methods

on the performance and memory consumption.

6.6.1 Overview

In the following we explain the noteworthy aspects of our experimental study.

90 Chapter 6. Provenance Management on Data Streams

Figure 6.6: Query Used in the Experiments

Query

Our experiments are centered around the overhead of provenance generation when running

a stream query depicted in Figure 6.6. This query is in essence q1, our running example’s

query (from Section 6.1.3), preceded by a filter operator. In terms of functionality, this

filter can be seen as an outlier remover. However, it serves a more crucial purpose in our

experiments: to control the contiguity of TIDs flowing through the query network.

Performance Measures

As measures of overhead, we settled for the followings:

• Completion Time. It is defined as the difference between the arrival timestamp of

the first input tuple and the leaving timestamp of the last output tuple. We measure

completion time by utilizing the Borealis run-time statistics system: tuples receive a

timestamp at arrival on the server, and a second timestamp when leaving the server,

yielding a well-defined result for non-blocking operators. For aggregations and joins,

we use timestamp of the last contributing tuple in the window, which is the default

of Borealis.

• Memory Consumption. Another important resource to measure in provenance

computation is the amount memory consumed by the system. There are two types

of memory consumption in Ariadne:

– Tuple Queues : each operator in Ariadne has a tuple queue per input stream.

The active length of queues in runtime depends on the load, query, complexity,

and amount of provenance data flowing through the query network. Conse-

quently, measuring the average size of queues is an important indicator for

memory overhead.

– Provenance Structure: every provenance representation technique uses a differ-

ent structure (internal to individual operators) to generate/propagate prove-

nance. The amount of memory occupied by such provenance structures is the

the second part of our memory consumption measurements.

6.6. Experiments 91

To collect memory numbers, we designated an extra thread to sum up the sizes of all

queues and provenance structures (in term of number of bytes) every 100 milliseconds

and output the average at the end of execution.

Compared Methods

In all experiments, besides the normal (baseline, no provenance) and Covering Interval

methods, denoted by ‘noProvenance’ and‘coverInterval’ respectively in the graphs, we

consider various combinations of the following optimization techniques:

• the naive TID propagation method (denoted by ‘single’)

• the interval representation of TIDs (denoted by ‘interval’)

• the adaptive representation which decides between ‘single’ and ‘interval’ on the fly

(denoted by ‘adaptive’)

• the shared buffers technique (denoted by ‘buffer’)

• the delta compression technique (denoted by ‘delta’)

• the dictionary compression technique (denoted by ‘compress’)

Setup

All experiments were run on a system with four Intel Xeon L5520 2.26 Ghz quad-core

CPUs, 24GB RAM, running Ubuntu Linux 10.04 64 bit. Both the client (load generator)

and the server are placed on the same machine and the client sends its input in very large

batch sizes (100K tuples). We used this setup, because preliminary experiments indicated

that the code that is responsible for retrieving inputs from the client and enqueuing them

into the query network is a major performance bottleneck. In fact, the maximum load that

can be handled by the retriever part is too low to place significant stress on actual query

execution and, thus, covered up the overhead introduced by provenance computation.

Sending a single large batch guarantees that query execution runs at maximum through-

put which is needed to measure the “worst-case” overhead of provenance computation.

Additionally, we ran separate experiments to tune the parameters of Ariadne/Borealis

and our compression techniques.

Since the overhead of unused provenance code turned out to be negligible, we used

Ariadne for both baseline (no provenance) and provenance experiments. Each experiment

was repeated 10 times to minimize the impact of random effects.

92 Chapter 6. Provenance Management on Data Streams

 0

 5000

 10000

 15000

 20000

 25000

5 10 25 50 75 90 95 100

C
om

pl
et

io
n

Ti
m

e
(m

s)

Selectivity (%)

noProvenance
single

interval
adaptiveBuffer

adaptiveBufferDeltaCompress
coverInterval

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

5 10 25 50 75 90 95 100

S
um

 o
f Q

ue
ue

 S
iz

es
 (K

B
)

Selectivity (%)

noProvenance
single

interval
adaptiveBuffer

adaptiveBufferDeltaCompress
coverInterval

 0

 20

 40

 60

 80

 100

 120

5 10 25 50 75 90 95 100

P
ro

ve
na

nc
e

S
tru

ct
ur

e
M

em
or

y
(K

B
)

Selectivity (%)

noProvenance
single

interval
adaptiveBuffer

adaptiveBufferDeltaCompress
coverInterval

Figure 6.7: Impact of Selectivity (Window Size = 100, Slide Size = 1)

Experiments Plan

We investigated the important factors in driving the cost: selectivity, overlap, and window

size. Below, we present and discuss the results.

6.6.2 Impact of Selectivity

The workload distribution directly affects the cost of TID-Set propagation. For example,

in the extreme case of transparent filters (100% selectivity), all tuples in a window are

6.6. Experiments 93

contiguous and therefore only a pair of values (an interval) in sufficient to keep track of a

TID-Set. In the first set of experiments, we varied the filter selectivity between 5% and

100%. Figure 6.7 shows the results.

For the baseline and naive propagation approach (single TIDs), the completion time

consistently increases with the higher selectivity values because the load (i.e., number of

generated output tuples) in the system grows constantly. For low selectivity filters, the

gain of interval encoding is not much; in fact for the very low selectivity values it performs

worse than single, because there are not enough contiguous TID-Sets to compensate for

the extra TIDs that interval encoding needs (compared to single).

In terms of queue sizes, the naive approach (single TIDs) results in bigger queues for

higher selectivity values while other methods reach their maximums at medium selectivity

values (between 50% and 75%), where the load level is relatively high but TID contiguities

are not yet sufficiently big.

Finally, the amount of memory occupied by the provenance structure is zero for nor-

mal (obvious) and covering interval (it piggybacks the required two values into the tuple

header). Single and interval have constant and large values, due to the fixed number of

TIDs they always maintain. Other methods have far lower memory consumption.

6.6.3 Impact of Overlap

When increasing the window slide size from 1 to 100 at a window size of 100, we observe

that the completion time and the queue sizes consistently decrease (see Figure 6.8). The

overall drop in all methods is due to the sharp decrease in the load level of the system

(for instance, compared to slide size 1, slide size 2 produces 50% less number of output

tuples). The logarithmic fashion of these two graphs can be explained by the fact that after

slide size 10, the system is not stressed anymore and therefore the impact of provenance

computation is not noticeable anymore.

The amount of memory consumed by provenance structures in the single and interval

representation modes drop linearly as the number of open windows decreases for big-

ger slide sizes. Lastly, since big slide sizes result in very limited overlaps between open

windows, they demonstrate the worst-case scenario for the buffer and delta techniques.

In other words, maintaining those complex data structures does not pay back and they

perform worse than the naive approach (single).

94 Chapter 6. Provenance Management on Data Streams

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

1 2 5 10 20 50 70 90 100

C
om

pl
et

io
n

Ti
m

e
(m

s)

Window Slide

noProvenance
single

interval
adaptiveBuffer

adaptiveBufferDeltaCompress
coverInterval

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

1 2 5 10 20 50 70 90 100

S
um

 o
f Q

ue
ue

 S
iz

es
 (K

B
)

Window Slide

noProvenance
single

interval
adaptiveBuffer

adaptiveBufferDelta
adaptiveBufferDeltaCompress

 0

 10

 20

 30

 40

 50

 60

 70

 80

1 2 5 10 20 50 70 90 100

P
ro

ve
na

nc
e

S
tru

ct
ur

e
M

em
or

y
(K

B
)

Window Slide

noProvenance
single

interval
adaptiveBuffer

adaptiveBufferDelta
adaptiveBufferDeltaCompress

Figure 6.8: Impact of Overlap (Selectivity = 25%, Window Size = 100)

6.6.4 Impact of Window Size

We expect an increase of provenance cost when increasing the window size on the TID-Set

implementation. Figure 6.9, varying window size from 50 to 2000 while keeping slide at

1, clearly shows this effect. Although for all methods the cost grows with the increased

window sizes, but it is more pronounced in the big window sizes (i.e. larger than 200).

With regard to the queue sizes, the impact of the dictionary compression technique

is quite visible in this set of experiments (in contrast to the previous two). In fact, the

amount of provenance data produced by large windows exceeds the compression threshold

6.6. Experiments 95

 0

 20000

 40000

 60000

 80000

 100000

 120000

50 100 200 500 1000 2000

C
om

pl
et

io
n

Ti
m

e
(m

s)

Window Size

noProvenance
single

interval
adaptiveBuffer

adaptiveBufferDeltaCompress
coverInterval

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

50 100 200 500 1000 2000

S
um

 o
f Q

ue
ue

 S
iz

es
 (K

B
)

Window Size

noProvenance
single

interval
adaptiveBuffer

adaptiveBufferDeltaCompress
coverInterval

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

50 100 200 500 1000 2000

P
ro

ve
na

nc
e

S
tru

ct
ur

e
M

em
or

y
(K

B
)

Window Size

noProvenance
single

interval
adaptiveBuffer

adaptiveBufferDeltaCompress
coverInterval

Figure 6.9: Impact of Window Size (Selectivity = 25%, Slide = 1)

and triggers the dictionary compression, resulting in considerably smaller queues.

6.6.5 Recording Cost for Lazy Computation

In all of the experiments presented so far, the cost of recording a minimum amount infor-

mation for lazy provenance computation (through replay) is promisingly small. In fact,

it increases the completion time by less than 50% in the worst case (within the scope of

our experimental study) and has no memory overhead at all. As pointed out earlier in the

96 Chapter 6. Provenance Management on Data Streams

chapter, this makes lazy provenance computation a favorable option in the environments

that frequency of retrieving provenance information is low.

6.7 Related Work

Most of the research on provenance has been conducted by the workflow and database

communities. [33] presents a survey of definitions of provenance (contribution semantics)

for relational databases. Examples for provenance-enabled database systems are Trio [89],

Perm [51], and DBNotes [26]. Most of the approaches for workflow provenance (with the

exception of some recent work, e.g., [21])) handle tasks in the workflow as black-boxes,

and, therefore consider all outputs of a task to depend on all inputs (see [39] for an survey

of workflow provenance). Such provenance is not very helpful for the kind of use cases we

are considering.

Huq et al [58] have proposed to achieve fine-grained stream provenance by augmenting

coarse-grained provenance with timestamp-based data versioning, focusing specifically on

query result reproducibility at reduced provenance metadata storage cost. Furthermore,

a couple of recent workshop articles have discussed the need for low-overhead stream

provenance modeling and collection for scientific stream processing [87][86]. In contrast to

Ariadne these publications focus on coarse-grained provenance which not well suited for

the use cases from section 6.1.1.

Wang et al. has proposed a model-based data provenance framework (namely, “Time-

Value-Centric” (TVC) provenance) for medical sensor streams [88][73]. TVC describes

provenance the provenance of an output tuple t as a set of rules that define which input

tuples should included in the provenance as time intervals over input streams based on

the timestamp of t. Each rule has a condition over the values of t or over the state of

the operator that generates t. The provenance of t includes all time intervals from rules

for which the condition is fulfilled on t. These rules have to be defined manually. Thus,

the main difference to our work is that we focus on a set of operators with well-defined

semantics and provide automated provenance generation for these operators without the

need to define the contribution semantics of each operator manually for each query. Fur-

thermore, it is unclear if TVC rules are powerful enough to deal with complex windowing

functions efficiently. E.g., the number of rules necessary to describe the provenance of an

output may grow to large to be a compact representation of provenance.

Stream provenances management shares some of its challenges and solutions with re-

vision processing on streams as introduced by Cherniack et al. as part of the Borealis

project [15][76]. In order to be able to process corrections to previously processed stream

6.8. Conclusions 97

tuples, Borealis keeps archives of recent input data and replays portions of them. Prove-

nance management, however, is more general, and can form a base mechanism for many

applications including revision processing.

6.8 Conclusions

In this chapter, we have studied the problem of data provenance management in DSMSs.

Based on a wide spectrum of use cases, we have identified that managing fine-grained, data

item-level provenance information, is a fundamental requirement in DSMS and developed

a contribution semantics for stream provenance. With Ariadne we have shown how stream

provenance can be efficiently implemented and managed in a typical DSMS such as Bo-

realis. Our experimental evaluation demonstrates that fine-grained provenance can be

computed efficiently using operator instrumentation and optimized TID-Set representa-

tion It should be noted that although Borealis was used as a proof-of-concept platform,

our techniques are general enough to be easily applied in other DSMSs as well.

In the following, we outline two interesting topics of ongoing and future work. First, we

would like to enrich our experimental study by using more complex query networks e.g.,

queries with nested aggregations for which the size of provenance grow exponentially.

Second, we plan to empirically compare the performance of operator instrumentation

and query rewrite methods. To this end, we can exploit the connection points of Borealis

to store input tuples at the beginning of the query network. The stored tuples will be

later retrieved and joined with the outputs of expand operator to produce the provenance-

carrying output streams. Designing intelligent purging mechanisms for such storage points

is an interesting research problem to solve.

Chapter 7

A Framework To Model Query

Lifecycle Operations

7.1 Introduction

7.1.1 Motivation

In contrast to one-time queries in relational databases, continuous queries in SPEs can run

for unpredictably long time periods over infinitely long data streams. During their lifetime,

due to requirements of application semantics or resource constraints of the system, these

queries may go through different stages in their lifetime. We call these stages, query lifecy-

cle states. Transition between these states are triggered by lifecycle operations. Examples

of such operations are query stop, start, pause/resume, migration, and modification.

Although there exists a general and informal understanding of these lifecycle operations,

there is no formally-grounded and established agreement on their precise semantics, even

for the most basic operations. As a matter of fact, there have been only few proposals on

stopping and restarting of long-running queries in data warehouses [65, 30, 32], but these

proposals, due to the fundamental differences between streams and traditional warehouses

are not applicable to SPEs.

Furthermore, in case of complex lifecycle operations such as query modification, there

can be multiple interpretations of what the desirable outcome should be. Exploring these

variations and providing mechanisms to evaluate and rate them is another aspect of this

problem.

In this chapter, we establish a framework that can formally express arbitrary lifecycle

operations on the basis of input-output mappings and basic control elements (such as

99

100 Chapter 7. A Framework To Model Query Lifecycle Operations

query start or query stop). In the next chapter, we will use this framework to present a

query modification model.

7.1.2 Contributions

In this chapter, we have made the following contributions:

• propose a query lifecycle operation modeling framework. It has three main aspects:

1) uses input-output mapping functions to abstract away the query details; 2) for-

mally define control elements and punctuate data streams with them to influence the

behavior of queries; 3) introduces correctness criteria, a mechanism to evaluate the

outcomes of different control elements and shows how they can be specified formally.

• propose a methodology that allows one to leverage our framework to model complex

lifecycle operations.

• model query pause/resume using our framework and methodology.

• propose a general architecture to implement our framework.

7.1.3 Outline

The rest of this chapter is organized as follows. Section 7.2 introduces our framework and

methodology. In Section 7.3 we model query pause/resume operation using this framework

and methodology. In Section 7.4, we decrease the abstraction level and describe how our

model can be refined from query-level to operator-level. There, we also investigate how

real-life SPEs can be adapted to support our framework. This is followed by a general

architecture for query lifecycle management in Section 7.5. After giving a summary of

related work in Section 7.6, we conclude this chapter in Section 7.7.

7.2 Our Framework and Methodology

Our goal in this chapter is to create a framework which allows modeling query lifecy-

cle operations. In order to achieve generality, precision, and deterministic behavior, this

framework should not rely on semantics of specific operators, timing, or state, which are

all notoriously hard to reason about (e.g., see [15] for an approach that encounters timing

issues). To this end, our proposal abstracts away semantics and execution of queries into

7.2. Our Framework and Methodology 101

their data dependencies (using mapping functions introduced in Chapter 3) and annotate

them with punctuations [84] which we call Control Elements. Control Elements are a

special type of Stream Element (introduced in Chapter 3) that carries control metadata

instead of regular data values. Control Elements do not directly take part in query pro-

cessing, however, they convey important information to our framework regarding how the

query should behave if encountering them.

Control Elements are punctuated into the input stream either by the user or by the

system itself, depending on the use case. The order among data elements can be relaxed to

a partial order (for models that process elements in groups, such as STREAM [74]), only

control elements need to have a total order among themselves and with respect to data

elements. For clarity of presentation, we assume total order among all stream elements.

Moreover, within the scope of this chapter (and also next chapter) we primarily focus on

queries with a single input and output stream, a restriction which we plan to remove in

future work.

In the rest of this section, we describe the basic control elements, their interaction,

correctness criteria, and finally our methodology to model complex control elements in a

generic manner. Later, in Section 7.3, we use this framework and methodology to model

query pause/resume operation. Chapter 8 will describe the complete execution of this

methodology for query modification, another complex lifecycle operation.

7.2.1 Basic Control Elements

We establish a minimal set of basic control elements, which define basic lifecycle behavior

and serve as building blocks for complex control elements. This set consists of control

elements which take into the consideration the boundary conditions (namely, start and

stop) of continuous queries. Understanding such conditions is crucial to understand many

complex lifecycle operations such as query pause/resume, migration, modification1.

In the following, we define the Start and the Stop Control Elements. We re-use our

running example from Section 3.1 to give concrete examples. As depicted in Figure 7.1,

Q1 uses a tuple-based sliding window of size 3 and slide 2, applying a sum operation

on the window (Figure 7.1). Without limiting generality, we are using windows as a

representative of stateful operators whose semantics exhibit non-trivial behavior on query

lifecycle operations.

1It should be noted that this minimal set is not complete (meaning not all complex operations can

be modeled using only this set). However, the extensibility of the framework allows adding more basic

control elements to this set.

102 Chapter 7. A Framework To Model Query Lifecycle Operations

Q1

w=3

s=2

f=SUM

… 2 3 4 7 1

X (xi)

… 9 12

Y (yj)

Figure 7.1: Running example - Q1

Q1

w=3

s=2

f=SUM

… 2 3 4 7 1 FStart 3

X (xi)

… 9 12

Y (yj)

Figure 7.2: Fresh Start on Q1

Start

Upon encountering a start control element, a query Q will start producing output, other-

wise the arriving inputs will be ignored. We draw distinction between three variations of

Start elements:

• Fresh Start (FStart): Assuming that X and Y represent the input and the output

streams respectively, we denote this control element by xfstart (and short F in fig-

ures), where fstart is its position in the stream. Upon receiving an xfstart, query Q

will be started; i.e., the input data elements at positions after fstart will contribute

to the output. In formal terms, Yfstart (the output stream for an input stream which

contains xfstart) is a substream of Y and defined as below:

Yfstart = {yj ∈ Y | ∀xi ∈ depends(yj), i > fstart }

Figure 7.2 illustrates Fresh Start applied on Q1. It is important to note that a

Fresh Start element restarts the starting position of the underlying query mapping

functions (depends(yj) and contributes(xi)). As an example, applying Fresh Start

after 1 instead of 3 in Figure 7.2 would shift the input sets of all windows by one

position. This property makes Fresh Start unique among Basic Control Elements,

because all other Basic Control Elements only use the mapping functions and do

not modify them.

• Cold Start (CStart): depicted as xcstart, where cstart (short, C) denotes its index.

Upon receiving xcstart the query will start producing outputs which exclusively de-

7.2. Our Framework and Methodology 103

Q1

w=3

s=2

f=SUM

… 2 3 4 7 1 CStart 3

X (xi)

… 14

Y (yj)

Q1

w=3

s=2

f=SUM

… 2 3 4 7 1 WStart 3

X (xi)

… 14 11

Y (yj)

Figure 7.3: Cold Start versus Warm Start

pend on the input items arriving after xcstart. In formal terms:

Ycstart = {yj ∈ Y | ∀xi ∈ depends(yj), i > cstart }

• Warm Start (WStart): depicted as xwstart, where wstart (short, W) denotes its

index. Upon receiving xwstart the query will start producing outputs with full or

partial dependency on the input items arriving after xwstart
2. In formal terms:

Ywstart = {yj ∈ Y | ∃xi ∈ depends(yj), i > wstart }

Figure 7.3 illustrates the difference between the impacts of Cold Start and Warm

Start Control Elements. Notice that both Cold Start and Warm Start Control

Elements use the existing mapping functions and, in contrast to Fresh Start, do not

create new ones.

Stop

Upon encountering a stop control element, a query Q will eventually stop producing out-

put. We define two kinds of Stop elements:

• Immediate Stop (IStop): We denote this control element with xistop (short, I), where

istop is its position in the stream. Upon receiving an xistop, a query Q will be

immediately stopped; this means that the input data elements having a position

greater than istop will not contribute to the output. More formally:

2One can quickly deduce the fact that for a given query, if xcstart and xwstart are applied at the same

position then Ywstart always subsumes Ycstart.

104 Chapter 7. A Framework To Model Query Lifecycle Operations

Q1

w=3

s=2

f=SUM

… 3 IStop 4 7 1 3

X (xi)

11

Y(yj)

Q1

w=3

s=2

f=SUM

… 3 DStop 4 7 1 3

X (xi)

14 11

Y (yj)

Figure 7.4: Immediate Stop vs. Drain Stop on Q1

Yistop = {yj ∈ Y | ∀xi ∈ depends(yj), i < istop }

• Drain Stop (DStop): We denote this control element with xdstop (short, D), where

dstop is its position in the stream. Upon receiving an xdstop, a query Q will be grad-

ually stopped; meaning Q will continue to produce outputs which have dependencies

on input data elements appearing before dstop and completing its partially produced

output elements. More formally:

Ydstop = {yj ∈ Y | ∃xi ∈ depends(yj), i < dstop }

Figure 7.4 illustrates Immediate Stop and Drain Stop applied on Q1, showing that

IStop discards the uncompleted window, whereas DStop finishes uncompleted windows,

but does not open new ones and stops when there is no open window left. As we will show

later in this chapter, both stop elements not only provide relevant semantics, but are also

efficiently implementable on existing data stream systems.

7.2.2 Interaction of Basic Control Elements

A crucial part in defining the semantics of the query lifecycle operations is to understand

the interaction of multiple control elements, both for the single query cases as well as for

the interaction of multiple queries, which can be derived from the single query case. The

interaction should maintain two design decisions established so far: (1) Control elements

should become effective at the position they are specified, as defined in Section 7.2.1. (2)

The order of control elements determines which control element is effective, superseding

older ones.

7.2. Our Framework and Methodology 105

I
Stopped Running

Preparation
C,Wɛ

F
D

F

Stopped Running

Draining

ɛ

Figure 7.5: Interaction of Basic Control Elements

Figure 7.5 gives the states and the transitions, which correspond to the basic control

elements. Initially, a query is in Stopped state, in which the starting position of the

mapping function has not been set up. Using FStart (F), the mapping function is set

up and the query transitions into the Running state, in which output is produced. An

IStop (I) directly changes the state to the Stopped state, while an additional Draining

state is needed for DStop (D) in which the pending output is produced. The transition

from Draining to Stopped is not driven by any control element, but depends on data

elements (denoted by λ). Conceptually, the λ-transition is similar to the notion of Timed

Automata [20], yet not based on time, but on the progress of the underlying mapping

function.

The Preparation state represents the cases in which the query keeps track of its mapping

functions although it may not emit new outputs. This is needed to cater for control

elements which need to “recall” the query history. Both CStart and WStart elements fall

into this category. The ε-transitions in Figure 7.5 demonstrate the fact that as soon as

the query goes into Stopped or Draining states it simultaneously goes to the Preparation

state without consuming any data or control elements.

Finally, applying FStart in any state will re-initialize the mapping function and lead to

the Running state, while applying IStop when Draining immediately stops the query.

106 Chapter 7. A Framework To Model Query Lifecycle Operations

7.2.3 Correctness Criteria

Having introduced the interaction diagram in the previous section, we saw that there

can be more than one possibility to model basic lifecycle operators, let alone the more

complex ones. Hence, we need to have an evaluation mechanism to compare and rate

these variations. In our framework, this can be done by defining the required/desirable

behavior of the target operation, through what we call Correctness Criteria.

Inspired by the approaches in system design and verification [65], we defined two general

classes of Correctness criteria for lifecycle operations: Safety and Liveness.

Safety Criteria

A safety property expresses that “something bad will not happen” during a given execu-

tion [65]. We identified Loss, Disorder, and Duplicates as possible safety problems.

1. Loss: A common undesirable consequence of query lifecycle operations is losing some

of the output elements. We formalize this concept as the set difference between tuples

of the reference output stream (Yref) and those of the observed output stream (Yobs),

where Yref is the ideal output stream and Yobs is the output stream that Q actually

generates.

We can formally express Loss as follows:

Loss = [Yref]− [Yobs]

Here we use the [] operator, which turns a stream of elements into a bag of tu-

ples, thus creating an unordered collection of the data parts. Note that in Loss,

only the existence of tuples is considered. Their positions, which contain the order

information, are captured by a separate safety criterion below.

2. Disorder: Order is a core property of data streams and consequently, disorder

is another critical threat to safety in continuous query execution. An operation

produces disordered output if at least one tuple in the observed stream does not

have the exact same positional index as its corresponding tuple in the reference

stream. In formal terms:

Disorder = |{yj ∈ Yobs : j − indexOfref (yj) 6= 0}|

However, as we will see later in Chapter 8, for some operations we can further

distinguish between different types of disorder.

7.2. Our Framework and Methodology 107

3. Duplicates: An output stream produced by an operation contains duplicates, if

there is at least a pair of output elements in the observed stream which have the

exact same set of contributing input elements. More precisely

Duplicates = |{(yj ∈ Yobs, yj′ ∈ Yobs) : depends(yj) = depends(yj′)}|

Liveness Criteria

A Liveness property expresses that “something good must eventually happen” during a

given execution [65]. We identified two complementary Liveness criteria for Query Modi-

fication:

1. Termination: A query Q is said to terminate if after receiving a Stop control ele-

ment, the query eventually visits the Stopped state (in the interaction diagram 7.5).

As an example, DStop without any restrictions on the semantics of the query expres-

sion may not terminate (e.g., closing condition of a semantic window never being

satisfied).

2. Progress: A query Q is said to make progress if after receiving a Start control ele-

ment, the query eventually visits the Running state (in the interaction diagram 7.5).

Note that Progress is not necessarily a property that is observable in terms of the

query output, since certain query semantics may prohibit the generation of output

(e.g., a selection query whose condition is never satisfied).

This should be noted that these classes of correctness criteria are relevant for all complex

lifecycle operations that use the Start and Stop control elements. Defining new basic

control elements may require defining additional criteria.

7.2.4 A Methodology to Create Complex Control Elements

While the basic control elements can already support many use cases, the real benefit

of this approach is that it provides a solid foundation to establish complex control and

models. In order to do so, we propose the following methodology:

1. Formally define the new operation (e.g., Pause/Resume) on top of our mapping

functions. This leads to new complex control element(s) (e.g., in case of query

pause/resume, we name it PR), and extensions to our basic foundations if needed.

108 Chapter 7. A Framework To Model Query Lifecycle Operations

2. Define Correctness Criteria for the new operation (e.g., Safety, Liveness)

3. Derive the possible options for this complex control element by first combining the

interaction diagrams of the individual queries -yielding a new interaction diagram

with the power set of the states- and then transform the combined interaction dia-

gram into a Finite State Machine (FSM). To this end, two steps need to be taken:

(a) specifying the Start state and the Accept state

(b) excluding the transitions which are not relevant for the target lifecycle operation

Once the FSM is built, the language that it accepts, meaning all sequences of transi-

tions that starts in the Start state and ends in the Accept state, contains all variations

of the new control element. Parameters influencing the number of options are

(a) the types of basic control elements considered,

(b) the number of control elements (and state transitions) allowed,

(c) their order, and

(d) the distance between two basic control elements. this parameter considers the

number of data elements between the Basic Control Elements. Although the-

oretically, distances of any arbitrary length are possible, in practice a small

subset of these length are meaningful:

i. zero length: Basic Control Elements follow each other directly (no data

element in between)

ii. in accordance to the preceding Basic Control Element (the drain distance

for DStop, and the first output for FStart)

4. Evaluate the behavior of variants against the Correctness Criteria.

Using this methodology, we can make sure that all possible variations within the control

element framework are covered. The next section will show how we apply the above

methodology to model query pause/resume operation.

7.3 Example: Query Pause/Resume Model

Query Pause/Resume is a common lifecycle operation. Resource shortage is one of the

most common reasons that forces the system to temporarily pause (suspend) execution of

7.3. Example: Query Pause/Resume Model 109

one or more of its running continuous queries. In such cases, as soon as the shortage is

resolved, the paused queries should be resumed.

Here, following our methodology, we first precisely define what a pause/resume opera-

tion is, then after introducing the correctness criteria for this operation, we enumerate the

possible variations of its execution and compare them in terms of guarantees they provide.

7.3.1 Formal Definition of Pause/Resume

Assuming that there is a query Q which is applied to a single input stream X and pro-

duces an output stream Y , the same input stream annotated by a Pause/Resume control

element would produce another output stream which we refer to as Y pr (pr is short for

Pause/Resume). Intuitively, a Pause/Resume control element can be translated into a

combination of Stop control element directly followed by a Start control element. Notice

that although there is no positional difference between Start and Stop elements, the actual

time difference between applying them can be arbitrarily long.

7.3.2 Correctness of Pause/Resume

In the following, we refine the correctness criteria definitions for pause/resume operation.

Safety Criteria

For safety criteria we only need to formally specify the Pause/Resume Reference Output

Stream. It’s the output stream produced by the query on the original unannotated input

stream. In other words

Y ref = Y

Having defined the Y ref , all definitions given in Section 7.2.3 can be applied without

further adaptation.

Liveness Criteria

Similarly, the Termination criterion implies that the paused query will eventually stop

producing outputs and the Progress criterion implies the the query will eventually return

to the running state.

110 Chapter 7. A Framework To Model Query Lifecycle Operations

I
Stopped Running

Preparation
C,Wɛ

D

Stopped Running

Draining

ɛ

Figure 7.6: Basic Control Elements FSM for Query Pause/Resume Operation

7.3.3 Variations of the Pause/Resume Control Element

To explore the possible variations of the Pause/Resume control element, we first need to

transform the interaction diagram in Figure 7.5 into a Finite State Machine (FSM). As

shown in Figure 7.6, the Start and the Accept states are identical in this FSM. Moreover,

in this FSM there is no transition with FStart control element (explained later).

Below, we point out the meaningful variations:

• Pause/Resume of type I-W: in which an Immediate Stop is directly followed by a

Warm Start. In formal terms

Y i−wpr = Y istop||Y wstart

in which || denoted the append operator. This variation provides all of the desirable

guarantee (no-Loss, no-Disorder, no-Duplicate, Termination, and progress); however,

since it uses Warm Start, its actual implementation incurs persisting the unfinished

output items’ states.

• Pause/Resume of type I-C: in which an Immediate Stop is directly followed by a

Cold Start. In formal terms

Y i−cpr = Y istop||Y cstart

this variation can be lossy.

7.4. Concretization 111

• Pause/Resume of type D-W: in which a Drain Stop is directly followed by a Warm

Start. In formal terms

Y d−wpr = Y dstop||Y wstart

this variation can generate duplicates. Moreover, it does not guarantee termination

of the pause step.

• Pause/Resume of type D-C: in which an Immediate Stop is directly followed by a

Cold Start. In formal terms

Y d−cpr = Y dstop||Y cstart

this variation is similar to the I-W variation in terms of guarantees, except for

Termination which it does not provide. However, in terms of in terms of persistence

overhead, it is less expensive than the I-W variation.

As we noted earlier, in this Pause/Resume Model we excluded the Fresh Start control

element since it changes the query mapping functions and violates the natural seman-

tics of pause/resume3. Using FStart to resume a paused query always causes loss and

non-identical output streams. However, using this variant can be considered under cir-

cumstances in which loss is tolerated.

7.4 Concretization

So far, we have investigated our model for lifecycle and change using a black-box mapping

function that covers a single query with a single input and a single output. To make our

model applicable in practice, we need to perform several steps: (1) Refine the mapping

functions and control elements to the level of operators, and determine how control el-

ements need to be implemented on operators and their compositions. In turn, this also

allows us to work with the compositions of queries. (2) Investigate how existing SPEs can

be adapted to support the lifecycle model established in this chapter.

7.4.1 Control Elements on Composition

In Chapter 3, we have shown how query mapping functions can be composed out of

operator mapping functions, thus defining how output is computed. To complete this

composition, we need to determine the semantics in the presence of control elements.

3Using FStart, in fact, models the Query Restart operation!

112 Chapter 7. A Framework To Model Query Lifecycle Operations

More specifically, the following needs to be investigated: how is each control element

handled in a composition of operators? To answer this question we assume the following

query network Q which produces the output stream Y from the input stream X. It is a

linear composition of two operators, namely OP1 and OP :

Y = Q(X)

Q :: OP1||OP2

assuming that Z is the intermediate results stream, we have

Z = OP1(X)

Y = OP2(Z)

→ Y = OP2(OP1(X))

the following statements hold for this query network (and linear compositions of any

length in general):

Y
IS

= Q(X
IS

)

Y
IS

= OP2(OP1(X
IS

))

Y
DS

= Q(X
DS

)

Y
DS
6=OP2(OP1(X

DS
))

Y
FS

= Q(X
FS

)

Y
FS

= OP2(OP1(X
FS

))

Y
CS

= Q(X
CS

)

Y
CS
6=OP2(OP1(X

CS
))

Y
WS

= Q(X
WS

)

Y
WS
6=OP2(OP1(X

WS
))

In which X
IS

denotes an input stream which contains an Immediate Stop Control

Element. Proofs for two representative cases, namely IStop and DStop, are given later in

this section.

In short, what these statements tell is that the straightforward propagation of the FStart

and IStop between operators is sufficient to achieve the desired semantics (generating

identical output to that of query-level mapping functions), since (1) the control element

7.4. Concretization 113

is defined on the input stream, (2) the first operator determines the contributions to the

following operators and (3) FStart and IStop affect the output immediately.

However, for DStop (and CStart and WStart as well), this useful property does not

generally hold, since the output elements which are drained cannot be determined by

considering the first operator alone, unless all operators but the first are stateless. As an

example for such a problematic drain consider nested windows, in which draining on the

first (inner) window operator will not permit the second (outer) to produce meaningful

results any more.

In such cases, we need more complex coordination among operators, since the first

and intermediate operators do not have enough knowledge to handle the control elements,

and therefore need to delegate this task to their following operators. This delegation ends

when a dominant operator is reached, which will determine the drain output elements. On

linear plans, the last stateful operator dominates the query output, and previous stateful

operators (we call them subordinate) must keep producing output until the dominant

operator has determined all input for draining.

If there is a dominant function, the precise mapping functions of the subordinate op-

erators are not needed any more. Therefore, we can also support user-defined functions

without knowing the detailed mapping function, as long as it is monotonic. For more

general query plans, a dominant operator can be constructed using techniques similar to

those proposed in the literature for load-shedding on multiple aggregates [81].

Proposition 7.4.1 Operator Composition Behavior on Immediate Stop

Y
IS

= Q(X
IS

)

Y
IS

= OP2(OP1(X
IS

))

Proof

Y
SS

= {yj| ∀xi ∈ depQ
(yj) i < istop}

= {yj| ∀xi ∈ depOP1
(dep

OP2
(yj)) i < istop}

assuming dep
OP2

(yj) = {zk1 , ..., zkn}

= {yj| ∀xi ∈ depOP1
({zk1 , ..., zkn}) i < istop}

= {yj| ∀xi ∈ depOP1
(zk1) ∪ ... ∪ depOP1

(zkn) i < istop}

= {yj| (∀xi ∈ depOP1
(zk1)) ∧ ... ∧ (∀xi ∈ depOP1

(zkn)) i < istop}

= {OP2({zk1 , ..., zkn})| (∀xi ∈ depOP1
(zk1)) ∧ ... ∧ (∀xi ∈ depOP1

(zkn))

114 Chapter 7. A Framework To Model Query Lifecycle Operations

i < istop}

= {OP2({zk1 , ..., zkn})| zk1 ∈ ZIS
∧ ... ∧ zkn ∈ ZIS

i < istop}

= OP2(Z
IS

)

Notice that in the proof above we take advantage of the following equivalence:

dep({yj, yj′}) = dep(yj) ∪ dep(yj′)

Proposition 7.4.2 Operator Composition Behavior on Drain Stop

Y
DS

= Q(X
DS

)

Y
DS
6=OP2(OP1(X

DS
))

Proof

Y
DS

= {yj| ∃xi ∈ depQ
(yj) i < dstop}

= {yj| ∃xi ∈ depOP1
(dep

OP2
(yj)) i < dstop}

assuming dep
OP2

(yj) = {zk1 , ..., zkn}

= {yj| ∃xi ∈ depOP1
({zk1 , ..., zkn}) i < dstop}

= {yj| ∃xi ∈ depOP1
(zk1) ∪ ... ∪ depOP1

(zkn) i < dstop}

= {yj| (∃xi ∈ depOP1
(zk1)) ∨ ... ∨ (∃xi ∈ depOP1

(zkn)) i < dstop}

= {OP2({zk1 , ..., zkn})| (∃xi ∈ depOP1
(zk1)) ∨ ... ∨ (∃xi ∈ depOP1

(zkn))

i < dstop}

Notice that here there can be zkm for which, ∀xi ∈ depOP1
(zkm) i > dstop

= {OP2({zk1 , ..., zkn})| zk1 ∈ (Z
IS
∪∆) ∧ ... ∧ zkn ∈ (Z

IS
∪∆) i < dstop}

= OP2(Z
IS
∪∆)

Special Case If OP2 is stateless (meaning |dep
OP2

(yj)| = 1) then

Y
DS

= Q(X
DS

)

Y
DS

=OP2(OP1(X
DS

))

This is generalizable to arbitrary stateless operators following the last statefull operator

in the query network.

7.5. A General Architecture to Implement Our Framework 115

7.4.2 Our Framework on SPEs

The framework that we have introduced in this chapter has been designed to be general,

abstract, and conservative in terms of its assumptions, thus making it applicable in the

context of a broad range of SPEs and their query models. In practice, individual SPEs

often provide more restricted models, and therefore, our framework can be specialized

for the SPE at hand. By doing so, stronger correctness guarantees and more efficient

implementations can be achieved.

For example, systems providing only count- and time-based windows (e.g., Borealis [15])

do, by definition, always fulfill Termination and Progress criteria. Similarly, for certain

SPEs, the query mapping functions stay fixed over a Stop/Start cycle, since time-based

windows are opened based on a predefined time domain, and are not influenced by the

position of the Start control element. Thus no issues deriving from initializing a mapping

functions come up.

Our approach reaches its limitations when (1) non-monotonic operators such as sort

are present, and (2) the output data elements are computed in a non-deterministic way

(e.g. affected by system time). It can still be implemented, but the guarantees it can

provide are inherently weaker.

As proof of concept, in Section 8.3, we will show how our framework can be specialized

for two very different SPEs: MXQuery [10] as a pull-based, language-oriented implemen-

tation, and Borealis [15] as a push-based query network.

7.5 A General Architecture to Implement Our Frame-

work

So far, we have discussed query lifecycle, at the level of formal models. Since our goal

has been to provide a complete picture of the query lifecycle, we have studied ways to

implement the proposed semantics.

Previously, many approaches have been studied for efficient implementation of specific

lifecycle operations in databases and SPEs. These approaches typically solve a specific

problem and make several assumptions in order to achieve good performance. We instead

chose to develop generic architectural extensions that require only minimal changes to the

SPE’s data and query models.This wrapper-like extension allows the implementation of

the necessary control and change logic on top of its already existing architectures.

Our proposed architectural extensions is shown in Figure 7.7.Below, we describe com-

116 Chapter 7. A Framework To Model Query Lifecycle Operations

…

Coordinator

G
a

te
k

e
e

p
e

r

Query

…

Control

Manager

Figure 7.7: Basic Query Lifecycle Architecture

ponents in this figure.

Gatekeeper: An important aspect of our framework is the implementation of the basic

control elements (i.e., FStart, IStop, DStop), since complex control elements can then

be built on top of these. As shown in the previous section, FStart and IStop can be

implemented by just affecting the first operator in the plan. Instead of modifying each

operator to support these semantics, we place a special operator with an identity mapping

function and the control logic in front of the plan, which we call Gatekeeper. Therefore,

we do not need to change any operator, greatly simplifying the integration. Since we need

to control each Query Version independently, there is a Gatekeeper for each.

Drainable Operators: DStop (and similarly, CStart and WStart), on the other hand,

requires a slightly more invasive approach for stateful operators: Stateful operators in the

query plan (e.g., windowing, pattern matching, joins) need to be extended with the ability

to perform draining (i.e., completing the processing of the already started windows, but

not initiating new ones) and persisting (i.e. persisting the incomplete outputs), yet this

facility needs only to be enabled on the dominant operator. For a given windowing oper-

ator implementation, only minimal extensions are necessary, since it is already computing

the contributing elements when building the windows. For example, for our MXQuery

implementation, the draining extension required only about 30 lines of code to be added

to the windowing operator.

Coordinator: Instead of extending all operators to propagate the information necessary

for a DStop, CStart, and WStart to the dominant operator, we externalize this logic into

a separate component, called Coordinator. It interacts with the dominant operator and

the gatekeeper, passing on the relevant information and controlling the execution flow.

7.6. Related Work 117

Control Manager: The Control Manager is responsible for interpreting the control el-

ements. If the queries are known in advance, optimizations can be performed by this

component.

As we will explain in the next chapter, we have implemented and integrated this archi-

tectural extension into MXQuery[10], an XQuery language SPE.

7.6 Related Work

The use of control elements has been inspired by the punctuation-based stream processing

work of Tucker et al. [84], yet with different semantics. In that work, data streams are

annotated with punctuations to mark the end of a subset of data in the stream, which are

then exploited for optimizations.

Finally, our work also relates to stopping and restarting of long-running in data ware-

houses [65, 30, 32]. In this case, some queries are intentionally terminated and later

restarted to deal with resource contention. The restart should reuse some of the old state

for efficiency reasons. Stopping and restarting the same query constitutes a special case in

our more general framework. Furthermore, streaming has different semantic requirements

than traditional warehouses, e.g., ordered data delivery.

7.7 Conclusions

In this chapter, we presented a punctuation-based framework to model query lifecycle

operations. By representing query semantics with dependency functions and by introduc-

ing a small set of basic operations, we were able to establish a general framework where

complex lifecycle operations can be created out of the basic operations. The set of basic

operation currently contains query start and query stop, but it can be extended by adding

other basic operations such as load-shedding.

This framework provides a mechanism to evaluate different variations of a control ele-

ment. For this purpose, it defines both safety and liveness criteria. Safety criteria capture

loss, duplication, and disorder, whereas liveness criteria capture termination of a stopped

query and progress of a started one.

Moreover, our work builds up a powerful methodology that allows us to easily extend

our framework even further to implement other query lifecycle operations. We executed

this methodology to model query pause/resume operation.

118 Chapter 7. A Framework To Model Query Lifecycle Operations

We also presented a general architecture to implement this framework on typical SPEs,

without requiring much effort or fundamental changes on the existing implementation.

As part of ongoing and future work, we plan to extending our abstraction and general

framework to support multiple-input stream queries (i.e., join and union). As another

direction for future work, we plan to utilize our methodology to model other query lifecycle

operations such as recovery and query migration.

Chapter 8

A Model for Continuous Query

Modification

8.1 Introduction

8.1.1 Motivation and Use Cases

As we pointed out at the beginning of the previous chapter, continuous queries, in their

lifetime, may be subject to lifecycle operations. One of the most challenging and the least

explored lifecycle operation is query modification. In fact, in contrast to other operations

such as query migration, query pause/resume, or query re-optimization, the semantics of

the query changes during the transition phase. Moreover, as we will show below, despite

the widespread use of query modification in streaming applications, it has not received the

necessary attention in previous work.

Continuous queries may need to be modified either due to changes in application se-

mantics, or due to changes in system behavior as illustrated by following examples.

• Security Monitoring: Consider a bank that applies the following security policy

for its ATM machines (adapted from real-world policies in MASTER Project [9], as

explained in Chapter 2): Block a customer card upon 3 failed logins at the same

ATM location within a time window of 10 minutes. This policy can be implemented

as a continuous count query on a 10-minute window over a stream of failed login

events. Now suppose that, due to a change in regulations, the bank would like to

change the window in this query to 15 minutes. If this change happens while a user

has already tried 2 failed logins within 5 minutes, it is not obvious how the system

should behave. A naive approach would be to replace the query with the new one

119

120 Chapter 8. A Model for Continuous Query Modification

immediately, discarding any existing state. In this case, the user would be able to

try up to 3 more logins in the next 15 minutes in addition to the 2 failed ones in

the past 5 minutes (leading to a total of 5 tries over 20 minutes, not matching any

policy!). A more cautious approach would be to defer the query replacement until a

time there is no incomplete query state left, but in more complex use cases such as

stock trading, such periods may not exist. (Sections 8.2.3 and 8.2.3 show solutions).

• Sensor Networking: Consider a network of temperature and smoke sensors de-

ployed over a forest in order to detect and monitor wildfires. Again, continuous

queries can be defined over these sensor readings in order to signal unusual increases

in sensor values. Whenever such activity is reported for a certain region of the forest,

the firefighters want to replace the currently running query with a more specific query

so that the possible fire can be located with a higher degree of certainty. However, in

sensor-based applications, there is already an inherent level of uncertainty and loss,

and it is also critical for the new query to take effect as fast as possible. Therefore,

for this application a lossy, but more responsive approach is better (leading to the

solution in Section 8.2.3).

In the above two use cases, the application semantics necessitates query modification,

albeit with different requirements. There are also cases where the modification is

triggered by the system itself.

• Adaptive Load Management: SPEs need to deal with resource overload; e.g.,

caused by fluctuating arrival rates. A common technique is load shedding; e.g., by

inserting/removing load-reducing drop operators into/from selected parts of a run-

ning query plan [80]. This yields a “cheaper” version of the query, while the quality

of the results becomes lower. In an alternative strategy, several versions of the same

query are defined by the application in advance, each tailored for a different load

level (see the military use case in [15]). As the system load changes due to fluctu-

ations in input rates, the system is expected to switch adaptively between different

query versions. It is crucial that the switch across different query versions happens

seamlessly and efficiently, with as little additional system overhead as possible.

The above examples show the importance and diversity of query modification capability

in SPEs. Each requires a different tradeoff between correctness parameters and perfor-

mance, and provides different information to exploit. What is needed is a general-purpose,

reliable, and efficiently implementable model for modifying continuous queries at run-time.

8.2. The Query Modification Model 121

8.1.2 Contributions

In this chapter, we have made the following contributions:

• Defining correctness guarantees for query modification.

• Leveraging our framework and methodology from Chapter 7 to model continuous

query modification.

• Exploring the full guarantee space (in terms of safety and liveness criteria) for query

modification and based on that, extracting a set of general rules.

• Extending our proposed general architecture from Chapter 7 to support query mod-

ification.

• A prototype implementation of this query modification model and benchmarking it to

explore the practical aspects and tradeoffs among our query modification variations.

8.1.3 Outline

The rest of this chapter is organized as follows. The description of our query modification

model is presented in Section 8.2. In Section 8.3, we describe how our model can be

refined for real-life SPEs and provide an architecture and implementation on a state-of-

the-art SPE. Section 8.4 reports on results of our performance study and gives guidelines

about when to use which method. Finally, after giving a summary of related work in

Section 8.5, we conclude this chapter in Section 8.6.

8.2 The Query Modification Model

Having introduced our modeling framework and methodology in previous chapter, we now

show how query modification can be modeled. In the query modification model we propose,

there are two versions of a query Q; namely Qold and Qnew. The goal is to switch from

the former to the latter. Following the first step in our methodology (Section 7.2), we will

first express the query modification operation by a new complex control element, called

Change (Section 8.2.1). Second, we will define correctness criteria for query modification

(Section 8.2.2).

Change can be translated into a combination of a Stop control element, which targets

Qold, and a Start control element, which targets Qnew. However, as we will explain, there

122 Chapter 8. A Model for Continuous Query Modification

can be different variations of this combination, derived by interaction diagram composi-

tion, and analyzed in Section 8.2.3. This is complemented by an analysis of interaction

of complex and basic control elements in Section 8.2.4. Finally, we will conclude the

discussion in Section 8.2.6 by presenting a set of correctness rules for query modification.

8.2.1 Definition of Query Modification

In query modification, there are two versions of a query Q, old (Qold) and new (Qnew).

Both versions applied to a single input stream. The change control element is formalized

by extending the query definition to include query versions (old and new). Accordingly,

we will have two pairs of query mapping functions: dependsold(y
old
j) and contributesold(xi);

as well as dependsnew (ynewj) and contributesnew(xi) .

In case of Change there are three output streams: Output stream of Qold, output stream

of Qnew, and Change output stream, denoted by Y old, Y new, Y chg respectively. A change

control element defines how the Y chg is built from Y old and Y new.

Our running example throughout the rest of this section is depicted in Figure 8.1.

We want to modify Q1old into Q1new, which is another continuous aggregation with a

tuple-based sliding window of size 2 and slide 2, applying a sum over each window.

Q1new

w=2

s=2

f=SUM

… 2 3 4 7 1

X (xi)

… 7 8

Y (yj)

Q1old

w=3

s=2

f=SUM

… 2 3 4 7 1

X (xi)

… 9 12

Y (yj)

Figure 8.1: The Old and The New Versions of Q1

8.2.2 Correctness of Query Modification

In the following, we refine the correctness criteria definitions for query modification.

8.2. The Query Modification Model 123

Safety Guarantees

For safety guarantees we only need to formally specify the Query Modification Reference

Output Stream. Intuitively, an ideal or lossless Change for a query Q should not lose

incomplete contributions fromQold, and at the same time it should include all contributions

from Qnew1. In formal terms

Yref = Y old
ref || Y new

ref

where

Y old
ref =

{
y|yj ∈ Y old ∧ ∃ xi ∈ dependsold(y

old
j) ∧ i < chg

}
Y new
ref =

{
y|yj ∈ Y new ∧ ∀ xi ∈ dependsnew(ynewj) ∧ i > chg

}
and chg denotes the position of the change element.

1. Loss: As an example, assume that we want to switch from Q1old to Q1new by

enforcing an IStop on Q1old and an FStart on Q1new (i.e., Change = IStop + FStart).

As shown in Figure 8.2, this leads to a lossy Change since it produces one fewer

output item (11) than then the reference stream.

Q1old

w=3

s=2

f=SUM

… 3 4 7 1 DStop 3

X(xi)

11

Yref (yj)

Q1new

w=2

s=2

f=SUM

… 7 8

Yref (yj)

… 3 4 7 1 FStart 3

X (xi)

Q1
… 3 4 7 1 Change 3

X (xi)
Yobs(yj)

… 7 8

Loss = [11] ∪ [7,8] – [7,8] = [11]

new

old

Figure 8.2: A Lossy Change on Q1

1 In other words, the reference stream would be modeled by using DStop + FStart.

124 Chapter 8. A Model for Continuous Query Modification

2. Disorder: We define two levels of order violation for query modification:

(a) Query-Level Disorder: At least one output element from Qold appears after

an output element from Qnew. Formally, this is defined as follows:

∃ychgj , ychgj′ ∈ Y chg :

org(ychgj) ∈ Y new ∧ org(ychgj′) ∈ Y old

∧ j < j′

where

org(ychgj) =

{
yoldl if ychgj is taken from Y old ;

ynewk else.

(b) Stream-Level Disorder: The order imposed by the query semantics and the

structure of the input streams is not preserved. Formally2,

∃ychgj , ychgj′ ∈ Y chg :

org(ychgj) ∈ Y new ∧ org(ychgj′) ∈ Y old

∧ j > j′∧
max

(
indexOf

(
dependsnew(org(ychgj))

))
<

max
(
indexOf

(
dependsold(org(ychgj′))

))
where

indexOf(X) = {i|xi ∈ X}

Figure 8.3 depicts the two types of disorder. To illustrate the difference we here used

the window size 4 for Q1old instead of 3. The figure shows that for SDChange, the

output appears in the same order as the windows are closed, while for QDChange

the output of Qold wholly precedes the output of the Qnew.

In short, as we will prove later in this section, no loss-free change can preserve both

of these orders.

3. Duplicates: Two output elements from Qold and Qnew are considered duplicates if

they share the exact same contributing input elements. Formally,

2The max function here can be considered as generalization of the ordering windows by their last

items. In definition of Stream-Level Disorder, other types of statistical representatives can also be applied

as well. Another common example can be min (order by first item of the windows).

8.2. The Query Modification Model 125

Q1
… 3 4 7 1 SDChange 3

X(xi) Y(yj)

… 7 15 8

Q1
… 3 4 7 1 QDChange 3

X(xi) Y(yj)

… 7 8 15

Figure 8.3: Query- vs. Stream-level Disorder on Q1

ychgj′ is a duplicate of ychgj iff:

dependsnew(org(ychgj)) = dependsold(y
chg
j′))

Note that ychgj and ychgj′ can be duplicates even if they carry different values, as long

as they depend on the same input stream elements X.

Liveness Criteria

Here are the refined definitions of Liveness Criteria for query modification.

1. Termination of the Old Query: Qold eventually goes into the Stopped state in

its lifecycle interaction diagram (defined in Section 7.2).

2. Progress of the New Query: Qnew eventually goes into the Running sate in its

lifecycle interaction diagram.

It is noteworthy that termination of the old query version does not necessarily imply

the progress of the new query version and vice versa.

8.2.3 Variations of the Change Control Element

We will now derive the Change options by combining our basic control elements (Start

and Stop) in different ways (i.e., Step 3 in our methodology). The key idea is to build

a common interaction diagram for both query versions from the (simplified) interaction

diagram of a single query shown in Figure 8.4. We have decided to exclude Cold Start and

Warm Start Control Elements (and consequently the Preparation state) from the original

126 Chapter 8. A Model for Continuous Query Modification

interaction diagram in Figure 7.5; primarily because such start methods are not necessary

to describe query modification, since a modification will establish a new mapping function.

In addition, it simplifies the interaction diagram.

F

I

D

F

Stopped Running

Draining

Figure 8.4: The Projected Interaction Diagram for Single Query

The resulting interaction diagram is shown in Figure 8.5, on which each of the states is

labeled with the state for each of the queries (e.g., RS means Qold is Running and Qnew is

Stopped), and transitions are the combination of the individual query version’s transitions

(e.g., IStop for Qold on RS will lead to SS). As outlined before, Change in translated into

stopping Qold and starting Qnew. In other words, in the corresponding FSM the Initial

state is RS and the Accept state is SR.

Once the initial state and the final state have been identified, there are four parameters

which influence the number of paths between them (notice that each distinct path defines

a variation of Change control element):

1. Types of the basic control elements: here we have one option for Start (FStart), and

two options for Stop (IStop and DStop).

2. Number of intermediary states: in the case of Change, we restrict this to be at most

two.

3. Order of basic control elements: which dictates how basic control elements fol-

low/precede each other.

4. Distance (in terms of data elements) between the basic control elements: depending

on the case, we use direct, drain distance (applicable to DStop), and first output

(applicable to FStart).

8.2. The Query Modification Model 127

SR

RR

RD

RS
DS

SS

DR

SD

DD

In

Fn

Dn

Fn

Dn

Fn

In

Fn

Do

Fo

Fn

Dn

Io,ε

In,ε

Fo

Io

Io,ε
Io,ε

Fn

In

Io,ε

Fo

Io

Fo

Do

In,ε

Do

Fo

Fo

Io

Figure 8.5: Lifecycle Interaction Diagram - Two Queries

Stop Type Order Distance Change Option

IStop I F direct IChange

IStop I F waiting n/a

IStop F I direct IChange

IStop F I at first result GIChange

DStop D F direct DChange

DStop D F drain completion DDChange

DStop F D direct DChange

DStop F D at first result GDChange

Table 8.1: Change Variation Derivation

As shown in the tree in Figure 8.6, and Table 8.1, there are 8 options in total, of which one

can be discarded (IStop-FStart with waiting), since it does not provide any meaningful

guarantees. Some of these options are equivalent, since (1) they are executed next to each

other with no data operations in between, (2) changing the order of two control elements

does lead to the same target state, e.g., for both cases of IChange.

All in all, there are 5 variants of Change, which we will now discuss in terms of their

correctness, performance, and use cases.

128 Chapter 8. A Model for Continuous Query Modification

Io

Io,Fn

Fn,Io

IoFn

Io…Fn

FnIo

Fn...Io

Stop Type

Order

Distance

Distance

Immediate Change

Immediate Change

n/a

Graceful Immediate Change

Do

Do,Fn

Fn,Do

DoFn

Do…Fn

FnDo

Fn…Do

Stop Type

Order

Distance

Distance

Drain Change

Delayed Drain Change

Drain Change

Graceful Drain Change

Figure 8.6: All Possible Variations of Change Control Element Using Two Basic Control

Elements

Immediate Change (IChange)

In some applications, a Change should be performed as early as possible, disregarding any

partial results of Qold. This is expressed with an IChange control element, depicted as

xichange, composed of an IStop for Qold, followed directly by an FStart for Qnew, or vice

versa. Thus, the output stream is defined as:

Y ichg = Y new
fstart || Y old

istop

=
{
ynewj ∈ Y new| ∀xi ∈ dependsnew(ynewj), i > ichange

}
||
{
yoldj ∈ Y old| ∀xi ∈ dependsold(y

old
j), i < ichange

}

8.2. The Query Modification Model 129

Q1
… 3 4 7 1 FStart IStop 3

X(xi) Y(yj)

… 7 8

IChange

Figure 8.7: Immediate Change on Q1

Recall that || is the append operator which concatenates two streams.Figure 8.7 shows an

example of using IChange control element.

In terms of safety, IChange can cause loss, since the partial results of Qold are discarded.

It produces the outputs in the correct order (both stream- and query-level), and does not

generate any duplicate output elements (see Figure 8.2). Moreover, in terms of liveness,

IChange guarantees both the termination of Qold as well as the progress of Qnew (see Figure

8.3). Proofs for these claims can be found in Section 8.2.5.

PPPPPPPPPPPChange

Safety
No Loss

No

Query-

Level

Disorder

No

Stream-

Level

Disorder

No Duplicates

IChange 7 3 3 3

DDChange 7 3 3 3

QDChange 3 3 7 3

SDChange 3 7 3 3

GIChange 7 3 3 3

GDChange 3 7 3 7

Table 8.2: Safety Guarantees of Change variants

With respect to the use cases introduced in Section 8.1, Sensor Networking is a can-

didate for IChange, since loss is tolerable while the immediate progress of the new query

(in case of an emergency) and preserving the energy-saving requirements of the sensors

need to be guaranteed. Given that IChange does not require DStop nor any other kind of

complex change coordination, its behavior corresponds to what a typical SPE would do.

Delayed Drain Change (DDChange)

An alternative approach for Change is to ensure that Qold is drained, and only then Qnew

is started. We call the corresponding control element DDChange, denoted as xddchange.

130 Chapter 8. A Model for Continuous Query Modification

XXXXXXXXXXXXXX
Change

Liveness
Progress Termination

IChange 3 3

DDChange 7 7

QDChange 3 7

SDChange 3 7

GIChange 3 7

GDChange 3 7

Table 8.3: Liveness Guarantees of Change variants

Q1
… 3 4 FStart 7 1 DStop 3

X(xi) Y(yj)

… 7 11

DDChange

Figure 8.8: Delayed Drain Change on Q1

Formally, it is composed of a DStop for Qold, followed by an FStart for Qnew in a

statically-incomputable distance . Thus, the output stream is defined as:

Y ddchg = Y new
fstart|| Y old

dstop

=
{
ynewj ∈ Y new| ∀xi ∈ dependsnew(ynewj), i > ?

}
||
{
yoldj ∈ Y old| ∃xi ∈ dependsold(y

old
j), i < ddchange

}
where ′?′ denotes the fact that the real position of the FStart element which will be

inserted, is not known in advance (drain distance) . Therefore the starting position of

the mapping function for Qnew is different to that of all the other change cases (which

are all initialized at the position of change), so that output after the change may also be

different.Figure 8.8 shows an example of using DDChange control element.

It should be noted that in contrast to all other Change variations, Delayed Drain Change

uses a different pair of mapping functions. This is due to the fact that in this case, the

effective position of FStart id determined by old query’s mapping functions.

In terms of safety, DDChange exhibits a behavior similar to that of IChange. However,

DDchange offers neither termination nor progress guarantees.

8.2. The Query Modification Model 131

Q1
… 3 4 7 1 FStart DStop 3

X (xi) Y(yj)

… 7 8 11

DChange

Figure 8.9: Drain Change on Q1 (QDChange)

Drain Change (DChange)

Both Change variants presented above can cause loss, which is not desirable in many

streaming scenarios. This Loss is caused by the input elements that are no longer picked

up by Qold and are not yet considered by Qnew, since Qnew is only started when Qold has

been completed. Next, we introduce Drain Change, which is composed of a DStop for Qold

followed directly by an FStart for Qnew, or vice versa. Figure 8.9 shows an example of

using a DChange control element.

In contrast to previous Change variations, merging the output streams of the old and

the new queries is not straightforward in Drain Change, due to the fact that we have

overlapping output elements. Hence, we distinguish between two variants of DChange:

QDChange, a query-level order preserving Drain Change and SDChange, a stream-level

order preserving Drain Change. In QDChange the output stream is defined as:

Y qdchg = Y new
fstart|| Y old

dstop

=
{
ynewj ∈ Y new| ∀xi ∈ dependsnew(ynewj), i > dchange

}
||
{
yoldj ∈ Y old| ∃xi ∈ dependsold(y

old
j), i < dchange

}
while in SDChange is defined as:

Y ddchg = Y new
fstart 9 Y old

dstop

=
{
ynewj ∈ Y new| ∀xi ∈ dependsnew(ynewj), i > dchange

}
9
{
yoldj ∈ Y old| ∃xi ∈ dependsold(y

old
j), i < dchange

}
in which 9 is the interleave operator. It interleaves the output elements from the new and

132 Chapter 8. A Model for Continuous Query Modification

the old queries based on their relative dependencies on the input elements. Therefore, it

may result in query-level disorder. Going back to Figure 8.2, it demonstrates the difference

between SDChange and QDChange control elements.

In terms of safety, both DChange variants are lossless and free of duplicates, but neither

of them can provide both order guarantees at the same time. As will be discussed further

in Section 8.2.6, this is not caused by the design of our query modification model, but

is rather an inherent problem of query modification. In terms of liveness, both DChange

variants guarantee the progress of Qnew, but not the termination of Qold. The DChange

variants provide a good match to the requirements of the Security Monitoring use case,

since they avoid loss and end the execution of Qnew by draining.

Graceful Change (GChange)

The approaches discussed so far did not cater for responsiveness, defined as the time

elapsed between the last output of Qold to the first output of Qnew. By keeping Qold

running (instead of draining or stopping it) until the first output of Qnew is produced,

the responsiveness can be significantly improved. We call this change method Graceful

Change (GChange).

We further distinguish between two variants of GChange: Graceful Immediate Change

(GIChange) and Graceful Drain Change (GDChange3).

In GIChange the output stream is defined as:

Y gichg = Y new
fstart|| Y old

istop

=
{
ynewj ∈ Y new| ∀xi ∈ dependsnew(ynewj), i > gichange

}
||
{
yoldj ∈ Y old| ∃xi ∈ dependsold(y

old
j), i < ?

}
while in GDChange is defined as:

Y gdchg = Y new
fstart 9 Y old

dstop

=
{
ynewj ∈ Y new| ∀xi ∈ dependsnew(ynewj), i > gdchange

}
3We use the Stream-ordered variation of it.

8.2. The Query Modification Model 133

9
{
yoldj ∈ Y old| ∃xi ∈ dependsold(y

old
j), i < ?

}
where in both cases, ′?′ denotes the fact that the real position of the Stop element which

will be inserted, is not known in advance (first output distance).

In GIChange, loss can occur, but no duplicates and disorder; whereas in GDChange,

duplicates and query-level disorder can occur, but no loss. Qnew will make progress, since

it starts immediately, but the termination Qold is not guaranteed, since it depends on the

existence of output of Qnew, which is not guaranteed.

A typical good use of GChange is when Qnew has a low output rate (e.g., very large

window size and very small window slide, very low selectivity, etc.). As shown in Section

8.4, GChange can indeed outperform other Change approaches in terms of responsiveness.

Graceful Immediate Change is also a candidate for the Security Monitoring use case,

because it avoids loss of the Qold until Qnew produces its first output and provides better

responsiveness.

8.2.4 Interaction of Control Elements Revisited

So far we have defined the semantics of a single complex control element by mapping

it to basic control elements and their interaction. In the next step, we need to cater

for the interaction of multiple complex control elements or of a complex control element

with a basic control element on the whole query. In particular, since changes (apart

from IChange) do not complete immediately, such overlapping actions need to be properly

defined. An examples of such a case would be an IStop on a query that currently performs

a DDChange, as the user decides that results are no longer needed. In this scenario, one

would expect no more output after an IStop, but the naive application of the DDChange

translation means to perform a FStart after draining, which would start the query again.

Similar to the interaction of basic control elements, we therefore want to ensure that (1)

control elements become effective at their specified position, and (2) the order of control

elements determines that the latest control element is effective. The interaction diagram

for two queries (Figure 8.5) does not provide a direct answer, since it only specifies the

behavior of two query versions, no global operations. Yet it already contains the necessary

foundations to define our extended semantics:

For a basic control element appearing during a change, we can translate IStop and

DStop by applying them on both versions, thus achieving stop semantics. In turn, FStart

can be translated into an IStop for Qold and an FStart for Qnew. This ensures a start of

Qnew with correct starting index, albeit with possible Loss on Qold, since the change is

134 Chapter 8. A Model for Continuous Query Modification

turned into an IChange. A change applied after a basic control element will in any case

lead to a running query, since our definition of change requires liveness. If the query is

already started or stopped, the implementation is obvious, for a draining query we can

again rely on the interaction rules of basic control elements, since the stop of Qold will not

extend the drain period of the stop on the whole query.

For complex control elements following other complex control elements, we can build

an interaction diagram for three (or more) query versions using the same rules as we built

one for two query versions in Section 8.2.3. In the case of 3 query versions, Qnew of the

first change is Qold of the second. We then translate the actions that are applied to Qold

(on the two-version case) onto the first two queries. The correctness analysis for multiple

overlapping changes is analogous.

As a result, we are getting a weak transactional model for change: ensuring that we

always complete a change is only possible for IChange, while other change models do

not provide this guarantee. In our opinion, this is actually a desirable behavior, as it

allows more flexibility. In addition, stronger transactional models require giving up strict

definitions of position impact and sequential order of Control Elements.

8.2.5 Guarantee Proofs

Proposition 8.2.1 Immediate Change can be lossy.

Proof According to the definition of Immediate Change, the output stream is as follows

Y ichg = Y new
fstart || Y old

istop

Since we have

[Y old
istop] ⊆ [Y old

dstop]⇒ [Yichg] ⊆ [Yref]

which means Immediate Change can cause loss.

For Disorder, we prove a general proposition and will use it other proofs.

Proposition 8.2.2 The append operator (||) always enforces the No Query-Level Disorder

Guarantee.

Proof The property of output of the || operator:

8.2. The Query Modification Model 135

∀ychgj , ychgj′ ∈ Y chg :

org(ychgj) ∈ Y new ∧ org(ychgj′) ∈ Y old

→ j > j′

inherently contrasts with possibility of Query-Level Disorder:

∃ychgj , ychgj′ ∈ Y chg :

org(ychgj) ∈ Y new ∧ org(ychgj′) ∈ Y old

∧ j < j′

For Duplicates, we first define a property which will later be used in the proofs.

Disjointness: An output stream of change policy has the Disjointness property, if its

elements are exclusively dependent on input elements before xchange or elements after it.

Thus, following statement holds:

@ ychgj ∈ Y chg :

∃xi, xi′ ∈ X :

(xi, xi′ ∈ dependsnew(org(ychgj))

∨ xi, xi′ ∈ dependsold(org(ychgj)))

∧ i < change < i′

Proposition 8.2.3 Immediate Change guarantees No-Duplicate.

Proof Since it implies the Disjointness property on the output stream and it is guarantees

no-duplicate behavior.

Proposition 8.2.4 Delayed Drain Change cannot avoid Loss.

Proof definition of output stream of Delayed Drain Change is as follows:

Y ddchg = Y new
fstart|| Y old

dstop

=
{
ynewj ∈ Y new| ∀xi ∈ dependsnew(ynewj), i > ?

}
||
{
yoldj ∈ Y old| ∃xi ∈ dependsold(y

old
j), i < ddchange

}

136 Chapter 8. A Model for Continuous Query Modification

where ′?′ denotes the fact that the real position of the FStart element which will be inserted

is not known in advance.

The fact that applying the FStart element is delayed can cause Loss. More concretely,

all those output items from the new query which would been produced by input tuples

between the initial position of the DDChange and the effective position of FStart are lost.

For Duplicates, we first define a property which will later be used in the proofs.

Exclusive Contribution: An input stream has this property, if it has an particular

element -say xe- for which all of its elements arriving before xe only contribute to output

elements taken from the old query’s output and also those arriving after xe only contribute

to output elements taken from the new query’s output.

@ xi ∈ X :

∃ychgj , ychgj′ ∈ Y chg :

org(ychgj) ∈ Y old ∧ org(ychgj′) ∈ Y new

∧ org(ychgj) ∈ contributesold(xi)
∧ org(ychgj′) ∈ contributesnew(xi)

Proposition 8.2.5 Delayed Drain Change guarantees No-Duplicate.

Proof Since it assures the Exclusive Contribution usage of input stream, hence it is free

of duplicates. Notice that in Delayed Drain change, the values of e (in xe) is same as the

index of xfstart.

Proposition 8.2.6 Drain Change is lossless.

Proof It is easily noticeable that reference stream is defined in the same way that we

define output stream for Drain Change. Hence Drain Change (both variation, SDChange

and QDChange) is always lossless. It should be noted that although the Interleaving

operator (9) differs from the Append operator (||) it terms of ordering the output items,

but they are identical with regard to the number of output tuples.

Proof of disorder subsumed by LDD Rule’s proof.

Proposition 8.2.7 Drain Change guarantees No-Duplicate.

8.2. The Query Modification Model 137

Proof We show that the difference between dependency set of any arbitrary element of

Y dchg taken from the new query’s output and any other arbitrary element of Y dchg taken

from the old query’s output is alway non-empty.

∀ ydchgj , ydchgj′ ∈ Y dchg

org(ydchgj) ∈ Y old ∧ org(ydchgj′) ∈ Y new :

∃xi ∈ dependesold(org(ydchgj)) : i < dchg

∧
∀xi ∈ dependsnew(org(ydchgj′)) : i > dchg

⇒ dependesold(org(ydchgj))− dependsnew(org(ydchgj′)) 6= ∅

This clearly shows that there are no two items in the output of Drain Change with the

exact same dependency set. Hence, there would be no duplicate introduced by the Drain

Change in the in the output stream.

Proposition 8.2.8 Graceful Immediate Change can be lossy.

Proof GIChange is ideal for cases in which the new query, compared to the old one, has

very large dependency sets (i.e. big window sizes). However, if this Change variation

is applied in the opposite situation, due to the fact it uses IStop, it discards incomplete

outputs from the old query and results in loss.

Proposition 8.2.9 Graceful Immediate Change preserves the stream-level order.

Proof This claim holds because in GIChange, the IStop control element discards those

unfinished output elements from the old that can potentially violate the stream-level order.

In other words, in case of GIChange Append operator (||) behaves like a lossy Interleave

operator (9).

Proposition 8.2.10 Graceful Immediate Change guarantees preserves the query-level or-

der.

Proof This proof is trivial if we recall that in GIChange the old query keeps on generating

outputs until the first output of the new query is produced. Once the this happens, all

unfinished outputs of the old query are discarded. Thereby, the query-level order is always

preserved.

138 Chapter 8. A Model for Continuous Query Modification

Proposition 8.2.11 Graceful Immediate Change is duplicate-free.

Proof According to the definition of the output stream in GIChange, all output elements

originated from the new query have at least one contributing input element which is

positioned after the IStop control element. Since all contributing input elements of all

output elements originated from the old query happen before the IStop control element,

there can be possibly no duplicates.

Proposition 8.2.12 Graceful Drain Change is lossless.

Proof This is always true because the output stream of GDChange subsumes that of

DChange (which is the reference stream). More precisely, both share the exact same

number of output elements from the new query but GDChange applies the DStop control

element a later position than DChange.

Proposition 8.2.13 Graceful Drain Change guarantee preserves the stream-level order.

Proof As pointed out before, using the Interleave operator (9) inherently preserves the

stream-level order.

Proposition 8.2.14 Graceful Drain Change may cause query-level disorder.

Proof Given the fact that GDChange guarantees both loss and stream-order guarantees,

the above claim can directly deduced from the LDD rule.

Proposition 8.2.15 Graceful Drain Change does not guarantee no-duplicates.

Proof We prove this by giving an example. Imagine a case that the old query has an

output element with the exact same dependency set as the first output element of the new

query. Since GDChange uses DStop to stop the old query, both of these elements will be

included in the output stream of GDChange and thereby it will have duplicates.

Termination Requirements

Termination of the old query is driven by two parameters: 1) the type of stop control

element used to implement change, and 2) whether the start position of the new query

is statically determined or not. Immediate Stop terminates a query immediately whereas

8.2. The Query Modification Model 139

Drain Stop lingers the termination while waiting for the “right data”(e.g. closing condition

for a window operator) to arrive, and thus it is data dependent and statically incomputable.

Consequently, DDChange, SDChange, QDChange, GDChange (since they all use DStop),

and GIChange (because the position of IStop element is dependent on the behavior of the

new query) cannot guarantee termination.

Progress Requirements

Progress of the new query depends on whether the start position of the new query is

statically determined or not. Since in all IChange, SDChange, QDChange, GIChange,

and GDChange the position of the FStart element is statically determined (the position

of the change control element itself), the all guaranteed to make progress. Delayed Drain

Change does not provide this guarantee since the position of the FStart control element

is dependent on the old query’s termination, which is not guaranteed itself.

8.2.6 Correctness Rules for Change

In addition to covering the design space for change implementation, we investigated the

correctness guarantee space. We have observed some common patterns and compiled them

into a set of rules. These rules help us determine that we indeed provide the strongest

possible guarantees.

LDD Rule

Proposition 8.2.16 The LDD rule states that in the general case, a Change policy can

ensure at most two out of three of the following guarantees: No Loss, No Stream-level

Disorder, No Query-level Disorder.

Proof In order to prove this rule, we split it into three separate cases; however, without

limiting the generality, throughout this set of proofs, we focus on the following example

(formal depiction of Figure 8.3; it basically means the last window of the old query fully

encompasses one of the new query’s windows):

∃ychgj , ychgj′ ∈ Y chg :

org(ychgj) ∈ Y new, org(ychgj′) ∈ Y old

∧
min(indexOf(dependsnew(org(ychgj)))) <

140 Chapter 8. A Model for Continuous Query Modification

min(indexOf(dependsold(org(ychgj′))))

∧
max(indexOf(dependsnew(org(ychgj)))) >

max(indexOf(dependsold(org(ychgj′))))

• Loss and Query-Level Disorder are guaranteed: by doing so, ychgj appears prior to

ychgj′ and that means, Stream Level Disorder is violated

• Loss and Stream-Level Disorder are guaranteed: analogous to the previous one

• Query and Stream-Level Disorder are guaranteed: this means either ychgj or ychgj′
should be excluded from the output stream, resulting in Loss in both ways.

LT Rule

Proposition 8.2.17 The LT rule indicates that No Lossless Change policy can guarantee

Termination.

Proof The proof is straightforward. In order for a Change policy to be Lossless, it has

to use the Drain Stop control element, and this type of Stop element does not guarantee

the termination by its very definition.

These rules show us that we have indeed covered all possible options for change when

considering strong guarantees (at least two out of LDD and no duplicates, as well as

termination where possible). This can be seen by comparing Table 8.2 and Table 8.3 with

the set of all possible combinations of correctness guarantees. Other, new options will only

reduce guarantees, and these reductions are typically not useful (e.g., having no order at

all, or one kind of disorder with loss). Thus we have shown that our methods to express

change cover the relevant problem space and cannot be improved further for the general

case.

8.3 Implementation

Here, we first extend the general architecture that we proposed in previous chapter (Sec-

tion 7.5). Then we show how to incorporate this architecture into existing stream process-

ing engines.

8.3. Implementation 141

…
Coordinator

G
at
ek
ee
pe

r

QueryVersion
Query

…
Deployed

QueryVersions

Control
Manager

M
er
ge
r

Input stream
Output stream

QueryVersion

Coordinator

G
at
ek
ee
pe

r

Figure 8.10: Query Modification architecture

8.3.1 General Architecture Revisited

For an SPE architecture to support query modification, it must be ensured that the system

keeps track of multiple versions of a given query, and executes them in a coordinated way

during the change period, taking the chosen change policy and its correctness guarantees

into account. To this end, we enrich our proposed architectural extension from Chap-

ter 7. The new extension is shown in Figure 8.10.In the following, we describe the new

components (others are previously explained in Section 7.5).

Query Versions: An SPE will keep track of each individual Query, which in turn consists

of a set of Query Versions. Query Versions are stored in a Query Version Repository,

possibly in an already validated/compiled/optimized form, so as to avoid potential errors

and minimize overhead during the actual query modification period. These versions can be

added or removed from the repository when not required. Each Query Version uses its own

Gatekeeper and Coordinator, and the whole repository shares a common ControlManager

and a Merger.

Merger: It combines the output of both query versions into a single stream. The key

task of the Merger is to establish the correct delivery order over the two streams. For

IChange, DDChange, and QDChange, this is straight-forward, since all output of Qold

will be produced before that of Qnew. For SDChange and GChange, additional order-

related metadata (e.g., starting index) needs to be known for each stream element. This

component can be seen as the implementation of the Append (||), and Interleave (9)

142 Chapter 8. A Model for Continuous Query Modification

operators.

8.3.2 SPE-specific Implementation

We implemented our architecture on MXQuery [29] and also studied how an implemen-

tation on top of Borealis [15] could be done. Given the differences in the data model,

operator semantics and execution strategies, this should provide a good coverage of the

SPEs space.

MXQuery is an implementation of XQuery 3.0, which has few implicit assumptions on

the data model (sequences of semi-structured items), expressive predicate-based windows

and a set of fully composable, Turing-complete expressions. It uses a classical DBMS-style

pull model, which requires explicit threading for parallel query execution, yet simplifies

output control and merging, since the output is always explicitly requested, and the end

of available output is explicitly indicated.

Determining the relative depends set for two items out of different versions (as needed

by the 9 (Interleave) operation, and thus the Merger) is conceptually difficult, given the

flexible data model, the data creation operations and the large number of operators. Due

to the lazy execution strategy of MXQuery (which ensures that only required data is read

from the input), observing the Gatekeeper before requesting the next element gives this

information in a very lightweight way, thus not requiring to change the data model and

instrument the operators.

Borealis, on the other hand, uses relational tuples in combination with a small num-

ber of streaming operators, and count- and time-based windows. Push-based operators

are connected by queues and manually composed to form a query network. A scheduler

can decide how to prioritize certain operators. This form of coupling simplifies parallel

execution, but makes it harder to determine when all output for a given input has been

produced, so that a switch can be performed. This limitation can be overcome by in-

structing the scheduler to prefer operators which are connected to a closed or draining

Gatekeeper.

Computing the depends set which is required by the Merger to impose the right order

between outgoing tuples is simple since aggregates on windows will assign the maximum

contributing timestamp to the produced tuple.

8.4. Experiments 143

8.4 Experiments

We ran two sets of experiments on top of MXQuery [29]: (1) A synthetic data/query set

to perform a sensitivity analysis for stateful operators. (2) A Linear Road Benchmark [23]

query to study the impact of change on complex queries.

All of our experiments were performed on a system with an Intel Core2 Duo, 2.66 Ghz,

4 GB RAM, running Windows 7, Java 6 (both 32 bit).

8.4.1 Sensitivity Analysis for Stateful Operators

Our sensitivity analysis focuses on the behavior of stateful operators, since stateless oper-

ators will have a negligible effect on change performance. We study the impact of window

size, and window slide on response time, correctness criteria, and CPU overhead.

The query in this set of experiments is shown in Listing 8.1. It computes a sum over

count-based windows. The value of WindowSize is the parameter that we vary in this

experiments. The input data consists of a sequence of 2000 XML elements containing an

integer payload, which are fed to the system as fast as it could consume it. The change

control element is inserted after 1000 data items, ensuring that the system has reached a

steady state in terms of open windows and also has enough input to complete the change.�
1 declare variable $input external ;

2

3 for sliding window $w in $input//seq

4 start $first at $s when fn:true()

5 only end $last at $e when $e − $s = WindowSize

6 return <sum>{sum($w)}</sum>
� �
Listing 8.1: The Template Query Used in the Sensitivity Analysis Experiments

All measurements were repeated 100 times. For performance we took the averages, for

correctness we checked across all these runs that we always saw the same results. Since

standard deviation on all results was small, we do not report it explicitly.

Response Time

In the first experiment, we vary the window size of Qnew between 10 and 100 elements,

while keeping that of the Qold at 50. Both queries are using a slide of 1, providing a

significant overlap amount the windows.

144 Chapter 8. A Model for Continuous Query Modification

-40

-30

-20

-10

 0

 10

 20

 30

 10 20 30 40 50 60 70 80 90 100

R
e
p
o
n
s
iv

e
n
e
s
s
 (

m
s
e
c
)

New Query Window Size (elements)

IChange

DDChange

QDChange

SDChange

GIChange

GDChange

Figure 8.11: Responsiveness on Window Size, Slide=1

As Figure 8.11 shows, the different impact of window size on the response times (time

between the last element of Qold and the first element of Qnew) is apparent for the various

methods: For IChange and DChange, the response time is linear to the size of the new

window (from 1.7 msec at WS=10 to 22.6 msec at WS=100), as processing of Qnew only

starts when Qold has ended, and the processing time is proportional to the number of input

items in a window.

For QDChange, the response time is 0.2msec for window sizes of Qnew that are smaller

than or equal to 50, since the output of Qnew would have been produced earlier, and needs

to be held up until Qold finishes. Once Qnew has window sizes bigger than that of Qold, the

same trend as for IChange is visible, because now the size of the new window dominates.

The additional cost of synchronization between Qold and Qnew causes response times to

increase at a relatively faster pace. For SDChange, smaller windows of Qnew mean that

the output of Qnew needs to be produced before the output of Qold, yielding a negative

response time for the smaller values, e.g. -7 msec for WS=10. As the window size of

Qnew increases, the response time increases, showing values similar to QDChange for WS

greater than 50.

GIChange shows nearly-ideal response times (3 microseconds), since Qold is kept pro-

ducing until Qnew can produce output, then it is terminated immediately. GDChange uses

the same approach, but drains Qold, thus showing a “negative” response time of around

10 msec, slightly more than cost of producing windows of Qold, as the two queries run in

parallel and need to be coordinated.

8.4. Experiments 145

Correctness

We measure the violation of correctness properties by creating the reference streams ac-

cording to the definition in Section 8.2.2 and compare the outputs against it. Figure 8.12

(a) shows that there is constant amount of loss (49 expected elements) for IChange and

DDChange, corresponding to the loss of a complete Qold window until Qnew picks up. QD-

Change, SDChange, and GDChange do not show any loss, since the draining of Qold and

the starting of Qnew are balanced to avoid this. GIChange has loss proportional to the

size difference of the new window and old window, since Qold receives an IStop as soon as

the first output of Qnew is available, discarding the last window of Qold.

For disorder (Figures 8.12 (c) and (d)) we also see the expected results: IChange,

DDChange, and GIChange never cause any disorder, since no overlapping results are

produced. QDChange produces results out of stream order if the window size of Qnew is

smaller. The size of disorderedness is proportional to the difference in window size (e.g., 39

at WS=10), since as many “smaller” windows are produced (due to the slide of 1) before

the completion of Qold and need to be delayed to maintain query order. In turn, SDChange

shows the same behavior in respect to items out of query order, while GDChange has has

a number proportional to the window size of Qold, as it drains it after the start of Qnew.

As shown in Figure 8.12 (b), we see duplicates only in the case where the window of

size of Qnew is the same as that of Qold and the change method is GDChange. Nonetheless,

it should be noted that both GIChange and GDChange produce additional results (with

different inputs), both by the overlap of mapping functions and the output produced by

Qold while “waiting” for output from Qnew (which is not part of the reference stream).

CPU Overhead

The different change methods also have a different runtime overhead. In our measurements,

we focused on the CPU cost, since the actual memory overhead heavily depends on how

an SPE supports the sharing of items, queues, etc.

For all methods, we measured the CPU time of the main thread over the whole ex-

periment execution as well as the use of any helper threads required to perform parallel

query execution. The cost of the main thread is almost the same for all methods. Thus,

we just show the results for the helper thread in Figure 8.13 (measured in milliseconds of

CPU time). Since IChange and DDChange do not execute both versions in parallel, there

is obviously no cost for them. SDChange and QDChange always produce the reference

output, so the relative cost stays the same. For GIChange and GDChange, additional

output of Qold is produced while waiting for output of Qnew, therefore we see a higher

146 Chapter 8. A Model for Continuous Query Modification

 0

 10

 20

 30

 40

 50

 10 20 30 40 50 60 70 80 90 100

N
u
m

b
e
r

o
f
L
o
s
t
R

e
s
u
lt
s

New Query Window Size (elements)

IChange

DDChange

QDChange

SDChange

GIChange

GDChange

 0

 10

 20

 30

 40

 50

 10 20 30 40 50 60 70 80 90 100

N
u
m

b
e
r

o
f
D

u
p
lic

a
te

s

New Query Window Size (elements)

IChange

DDChange

QDChange

SDChange

GIChange

GDChange

(a) Loss (b) Duplicates

 0

 20

 40

 60

 80

 100

 10 20 30 40 50 60 70 80 90 100

R
e
s
u
lt
s
 o

u
t
o
f
Q

u
e
ry

 O
rd

e
r

(e
le

m
e
n
ts

)

New Query Window Size (elements)

IChange

DDChange

QDChange

SDChange

GIChange

GDChange

 0

 10

 20

 30

 40

 10 20 30 40 50 60 70 80 90 100

R
e
s
u
lt
s
 o

u
t
o
f
S

tr
e
a
m

 O
rd

e
r

(e
le

m
e
n
ts

)

New Query Window Size (elements)

IChange

DDChange

QDChange

SDChange

GIChange

GDChange

(c) Query-Level Disorder (d) Stream-Level Disorder

Figure 8.12: Correctness Results for Different Changes

cost in general and an increase with the window size of Qnew. In our implementation,

GIChange is slightly more expensive, since it computes output that might be discarded,

while GDChange avoids that.

We also performed tests with different window slide sizes and different relative positions

of the change elements. The results showed the expected results. The bigger the slide and

thus the smaller the overlap, the fewer correctness problems occur. If there are only

tumbling windows, placing the change at the window change resulted in error-free results

for all methods.

8.4.2 Complex Queries

We also tested the different change methods on the Linear Road Benchmark [23] workload,

namely the Accident Segment Query (The prologue of this query is shown in Listing 8.2.

The full query is included in Appendix A). There are several differences compared to the

8.4. Experiments 147

-10

 0

 10

 20

 30

 40

 50

 10 20 30 40 50 60 70 80 90 100

H
e
lp

e
r

T
h
re

a
d
 C

P
U

 C
o
s
t
(m

s
e
c
)

New Query Window Size (elements)

IChange

DDChange

QDChange

SDChange

GIChange

GDChange

Figure 8.13: CPU Cost on Window Size, Slide=1

synthetic workload: 1) The query is significantly more complex, using multiple nested

windows with predicates, grouping inside windows and parallel aggregation. 2) Data

arrives using a specific timing 3) Results are expected within 5 seconds. Yet the observed

results closely mirrored what we had seen on the synthetic data, with a slightly bigger

impact on the arrival timing and window slide on the delays.�
1 declare variable $ReportedCarPositionsSeq external;

2

3 forseq $w in $ReportedCarPositionsSeq early sliding window

4 start curItem $s curr, prevItem $s prev when $s curr/@minute ne

5 $s prev/@minute

6 end curItem $e curr, nextItem $e next when ($s curr/@minute + DIFF) eq

7 ($e next/@minute)

8 let $currMin := fn:ceiling ($e curr/@minute)

9 let $stopedCars :=

10 for $rep in $w

11 group $rep as $r−group by $rep/@VID as $vid s, $rep/@XWay as

12 $xway s, $rep/@Seg as $seg s, $rep/@Dir as $dir s, $rep/@Lane

13 as $lane s , $rep/@Pos as $pos s

14 where count($r−group) ge DIFF∗2
15 ...
� �

Listing 8.2: The Accident Segments Query from the LR Benchmark [23]

Qold of the accident query defines a sliding window with a size of 120s and a slide of

30s, producing output every 30 seconds, shown as grey bars in Figure 8.14. For Qnew, the

window size was varied from 60 seconds to 360 seconds (by changing the value of DIFF in

148 Chapter 8. A Model for Continuous Query Modification

-100

0

100

200

300

400

60 120 180 240 300 360

R
es

po
ns

iv
en

es
s(

s)

Qnew Window Size(s)

ichange

ddchange

sdchange

qdchange

gichange

gdchange

Q Window Size(s)old

Q

 R
es

po
ns

iv
en

es
s(

s)
ol

d

IChange

DDChange

SDChange

QDChange

GIChange

GDChange

new

Figure 8.14: Linear Road Change Responsiveness

Listing 8.2). There is an increasing response time for all methods not using the graceful

approach, since the waiting time for result of Qnew increases with increasing window size,

while Qold terminates after a fixed time.

The graceful approaches (GIChange, GDChange) overcome this problem by allowing

Qold producing until there is result for Qnew, thus yielding a stable response time. In

particular, IChange and DDChange show the highest response time: WS(Qnew) + 30

seconds (e.g. Qnew 150 seconds at WS 120), since Qnew is only started when Qold has

terminated. The additional 30 seconds are required to find the next start condition for a

window.

QDChange and SDChange improve the responsiveness by starting Qnew already at the

change, thus yielding a response time of WS(Qnew) - WS(Qold) + 30 sec (as to open the

new window). Once this difference becomes smaller than 0, the two methods differ, since

a particular order needs to be established: QOChange needs to delay the output of Qnew

until the last output of Qold has been produced, therefore emitting (almost) at the same

time, and out of order to their window specifications. SDChange produces the first output

of Qnew 30s before the last output of Qold, thus creating query-level disorder.

GIChange stops Qold once output for Qnew is available (as to avoid duplicates), so

there is a constant 30s difference. GDChange drains Qold when the first output of Qnew is

available, as to avoid loss, leading to an additional output with WS(Qold).

8.4. Experiments 149

Important Irrelevant Method

Runtime Resources, Im-

plementation Overhead

Loss, Response Time IChange

Loss, Query Order Response Time QDChange

Loss, Stream Order Response Time SDChange

Response Time, Dupli-

cates

Runtime Resources, Im-

plementation Overhead,

Loss

GIChange

Response Time, Loss Runtime Resources, Im-

plementation Overhead,

Duplicates, Order

GDChange

Table 8.4: Change Method Decision Matrix

8.4.3 Tradeoffs and Guidelines

The results of the conceptual as well as the experimental analysis give a fairly clear answer

to when to use which change method, given that there cannot be a single winner which

guarantees all desirable properties. We have summarized the tradeoffs in Table 8.4.

Generally speaking, achieving zero loss and low response time incur additional imple-

mentation complexity and runtime overhead. So if neither of them is required, using

IChange is a reasonable choice. Example use cases include sensor networks (due to lim-

ited resources) or complex query processors (due to the implementation effort). When loss

must be avoided, but response time is less critical, QDChange and SDChange are the most

suitable change variations. The order that is expected during the change then determines

which of these two change methods to use.

Finally, Graceful Changes address Response Time, trading it off with higher resource

usage. Among them, GIChange should be chosen if loss is tolerable, while GDChange

should be preferred if it is not tolerable. DDChange is suitable only in very rare circum-

stances, since it does not provide stronger guarantees than IChange and requires drain

support, In addition, it does not always guarantee the same results as the other change

methods on Qnew, since the start position of the new mapping function is set at the end

of the drain area, and not at the change element position as in all other approaches.

150 Chapter 8. A Model for Continuous Query Modification

8.5 Related Work

The basic vision for dynamic modification of continuous queries (CQ) was first put forth

by the Borealis project [15]. The Borealis approach, however, is much more restricted: It

focuses on specific operators (such as windows) with specific changes (slide or size) instead

of allowing arbitrary changes on queries. No formal semantics of change are given, and

the architecture ties its strategies to system time and execution speed. To our knowledge,

this approach has never been implemented.

Query modification shares a lot of challenges and solutions with other lifecycle problems

in CQ, namely failure handling [59] and plan migration [91, 90]. A fundamental difference

is that all of these approaches try to maintain a semantically unchanged query over changes

of the infrastructure or execution plan, and change is driven by the system. In our context,

change can also be triggered by the application, and therefore, we do not make assumptions

about the timing and semantics of the new query.

In a similar spirit, the extensive work on adaptive query processing [41] targets a subset

of the problem we are solving: No matter how the actual query execution is modified, the

semantics of the query stay the same, and all correctness guarantees must be supported.

Our formal framework can describe the behavior of such a system quite well, e.g. using

stop and start to mark the boundaries of an adaptation.

Application-driven CQ changes are proposed by Lindeberg et al. [69], who investigate

changing window sizes in order to improve results of a health monitoring use case. In

contrast to our model, this model is very restricted in terms of the allowed query modi-

fications (size change for tumbling windows) and use cases (heart attack prediction), and

provides no formal correctness guarantees.

Finally, our work also relates to stopping and restarting of long-running queries in data

warehouses [65, 30, 32]. In this case, some queries are intentionally terminated and later

restarted to deal with resource contention. The restart should reuse some of the old state

for efficiency reasons. Stopping and restarting the same query constitutes a special case in

our more general framework. Furthermore, streaming has different semantic requirements

than traditional warehouses, e.g., ordered data delivery.

8.6 Conclusions

In this chapter, we exploited our modeling framework and methodology from the previous

chapter and modeled continuous query modification. In the first step, we defined the

8.6. Conclusions 151

Reference Output Stream for query modification. Based on this definition, we formally

specified correctness criteria. We then introduced the Change control element which is, in

essence, the combination of a Stop control element (for the old version of the query) and

a Start control element (for the new version).

As our last step in the modeling phase, we not only identified the guarantee sets pro-

vided by variation of Change control element, but also explored the full guarantee space

for query modification which resulted in a set of general rules. An important implication

of these rules is that in general case there are inherent incompatibilities between different

guarantees and there needs to make tradeoffs.

On the practical side, we extended our proposed general architecture from Chapter 7

to support query modification. We also showed that an implementation of this framework

is possible on typical SPEs, without requiring much effort or fundamental changes on the

existing implementation.

Benchmark results on our prototype implementation on top of MXQuery [10] clearly

highlight the practical aspects and performance/correctness tradeoffs among our query

modification techniques.

As an avenue for future work, we plan to optimize modification performance by exploit-

ing query knowledge. For example, by identifying common subexpressions across versions

in order to minimize change cost. Additionally, since the guarantee rules that we presented

in this work make no assumptions, another direction for future work is to take into the

consideration the constraints of different stream processing models and refine these rules

for each case.

Chapter 9

Conclusion

With the proliferation of dynamically generated data, we have witnessed the emergence

of data stream processing as a new data management paradigm. Many Stream Processing

Engine (SPE) prototypes have been built and several business applications have started

to use data stream management systems.

However, as industry gears toward using data stream processing in complex applica-

tions, there are challenges which still need to be addressed. In the following (in Sec-

tion 9.1), we summarize the main contributions this thesis has made towards making data

stream processing a viable and full-blown solution for those complex applications. We

then conclude this thesis by discussing ongoing and future work in Section 9.2.

9.1 Summary

In this thesis, motivated by our real-world usecase, MASTER project which aims at solving

the compliance monitoring problem in Service Oriented Architecture (SOA), we have made

three main contributions to extend the capabilities of data stream processing paradigm.

Below, we give a brief summary for each of these contributions and also point out how

they have been integrated into the MASTER deliverables.

1. Stream Schema. Metadata specifying structural and semantic constraints, are in-

valuable in data management. In order to capture and exploit this type of metadata for

data stream processing, we have presented Stream Schema, a framework which provides

not only precise definitions for individual constraints, but also a well-defined scheme to

compose them. This allows recursive and comprehensive description of data streams . Fur-

thermore, we have presented a mechanism for validation of data streams against Stream

Schema and analyzed its complexity.

153

154 Chapter 9. Conclusion

Having established Stream Schema, we have explored its applications, starting with

query optimization. Stream Schema can be used to safely pipeline the query execution

and partition the data. It can also enable state reduction and query rewrites. Static

analysis of stream queries is another area that can benefit from Stream Schema. There

it can extend the set of runnable as well as non-executable expressions. Finally, due to

the fact that Stream Schema captures data consistency and structure constraints, it can

greatly simplify the queries in streaming applications resulting in increased decoupling

and reuse.

In the MASTER prototype implementation, queries (for instance in performance study

reported in Deliverable D4.2.3 [6]) were manually tuned to take advantage of schema

knowledge.

2. Stream Provenance Management. Tracking provenance, exploring which input

data led to a given query result, has proven to be an important functionality in many

domains. To track provenance on data streams, we have first presented an algebra to

define fine-grained stream provenance. Then, we have investigated different possibilities

to generate, store, and retrieve the provenance information, highlighting advantages and

shortcomings of each of them . We have built Ariadne, a provenance-aware SPE, that

instruments operators to generated and propagate provenance. Several optimizations to

reduce the computational and storage overhead of provenance management have been

identified and implemented. Through our comprehensive experimental study, we have

shown the feasibility of fine-grained provenance support and also explored the tradeoffs.

In terms of provenance support in the MASTER prototype, we have provided a lightweight

implementation of our proposal [78].

3. Continuous Query Lifecycle Model. Modeling lifecycle operations (such as start,

stop, and modification) on continuous query is an essential part of defining precise se-

mantics for data stream processing systems. We have established a framework that can

formally express arbitrary lifecycle operations on the basis of input-output mappings and

basic control elements (such as query start or query stop) which are inserted into the in-

put stream. Moreover, our framework allows precise specification of correctness criteria, a

mechanism to evaluate outcomes of lifecycle operations. We have also devised a bottom-up

methodology to model complex lifecycle operations using basic control elements.

We then leveraged this framework and methodology to model query modification, an

important complex lifecyle operation which had not been modeled before. We derived

all possible variations of query modification, each providing different levels of correctness

guarantees and performance. Experiments identify the key performance tradeoffs of the

query modification variations.

9.2. Ongoing and Future Work 155

Deliverable D4.2.2 [5] explains how this model has been integrated into MASTER.

9.2 Ongoing and Future Work

Below, we outline several interesting topics of ongoing work and discuss possibilities for

future research.

Stream Provenance Computation using Query Rewrite. As pointed out in Chap-

ter 6, provenance computation through query rewrite has some limitations and it is not

applicable to all use cases. However, understanding the cost of such rewrites under the

circumstances which they are applicable, is worth investigating. To this end, we plan to

adapt the query rewrite techniques from PERM [51] for stream queries and then empir-

ically compare its performance to the operator instrumentation method implemented in

Ariadne.

Lifecycle Model for non-Linear Queries. Our continuous query modeling framework

focused on linear query networks (compositions of single-input single-out operators). We

plan to extend our abstraction and general framework to support multiple-input stream

queries (i.e., join and union). Our general approach is to assume total order among stream

element on all streams and use only one of the input streams to carry control elements.

Furthermore, our mapping functions need to be extended to abstract away the logic of

non-linear operators.

As mentioned in Chapter 2, there are other research challenges within the context of

MASTER which have not been addressed in this thesis. In following, we point out two of

such problems. It is worth noting that these problems exist in other domains and are not

MASTER-specific.

Extremely Long-running Queries. Control objectives specify goals that must hold

over years, sometimes even decades. For instance to achieve an objective like:

Files containing financial data need to be kept for 10 years

there needs to be a monitoring query on file operations which either ends after ten years

or indicates deletion attempts. Any solution to this problem needs to deal with issues like

recoverability, efficient state management/reduction, and responsiveness after sleeping for

years.

Model and Language Transformation. Monitoring queries primarily stem from higher-

level, formal description of goals in form of temporal logic or process descriptions. The gap

156 Chapter 9. Conclusion

between these descriptions and the monitoring language should be filled by well-defined

transformations. Such transformations allow verification of the queries against higher-level

models and also automatic/guided compilation of high-level goals into queries. There can

be also potential optimizations by matching expressiveness of monitoring query language

with required constructs.

Appendix A

Queries in MXQuery Implementation

of LR Benchmark

As shown in Figure5.2, nine continuous queries have been used to realize the LR Bench-

mark queries.

Q1: Car Position Report Filtering�
1 declare variable $InputSeq external;

2

3 for $w in $InputSeq

4 where $w/@Type eq 0 return $w
� �
Listing A.1: Q1: Car Positions

Q2: Accident Segments�
1 declare variable $ReportedCarPositionsSeq external;

2

3 forseq $w in $ReportedCarPositionsSeq early sliding window

4 start curItem $s curr, prevItem $s prev when $s curr/@minute ne

5 $s prev/@minute

6 end curItem $e curr, nextItem $e next when ($s curr/@minute +2) eq

7 ($e next/@minute)

8 let $currMin := fn:ceiling ($e curr/@minute)

9 let $stopedCars :=

10 for $rep in $w

11 group $rep as $r−group by $rep/@VID as $vid s, $rep/@XWay as

157

158 Appendix A. Queries in MXQuery Implementation of LR Benchmark

12 $xway s, $rep/@Seg as $seg s, $rep/@Dir as $dir s, $rep/@Lane

13 as $lane s , $rep/@Pos as $pos s

14 where count($r−group) ge 4

15 return <stopped car VID=”{$vid s}” XWay=”{$xway s}” Seg=”{$seg s}”
16 Dir=”{$dir s}” Lane=”{$lane s}” Pos=”{$pos s}”></stopped car>

17 let $accidents :=

18 for $car in $stopedCars

19 group $car as $c−group by $car/@XWay as $xway a, $car/@Seg as

20 $seg a, $car/@Dir as $dir a, $car/@Lane as $lane a, $car/@Pos as $pos a

21 where count($c−group) ge 2

22 return <accident minute=”{$currMin}” XWay=”{$xway a}” Seg=”{$seg a}”
23 Dir=”{$dir a}”></accident> (: Pos=”{$pos a}” :)

24 let $accidentsRes := if (count($accidents) gt 0) then <accidents>

25 {$accidents} </accidents>

26 else <accidents><accident minute=”{$currMin}” XWay=”−1”

27 Seg=”−1” Dir=”−1”></accident></accidents>

28 return $accidentsRes
� �
Listing A.2: Q2: Accident Segments

Q3: Car Positions to Respond�
1 declare variable $ReportedCarPositionsSeq external;

2 declare variable $CAR POS STORAGE external;

3

4 for $item in $ReportedCarPositionsSeq

5

6 let $prevCarRep := lr:store(”CAR POS STORAGE”, (@VID eq $item/@VID))

7

8 return

9 (if (count($prevCarRep) eq 0 or ($prevCarRep/@Seg ne $item/@Seg and

10 $item/@Lane ne 4)) then $item

11 else (),

12 lr : store−update(”CAR POS STORAGE”, $item, (@VID eq $item/@VID))

13)
� �
Listing A.3: Q3: Car Positions to Respond

Q4: Segment Statistics for Every Minute�
1 declare variable $ReportedCarPositionsSeq external;

2

159

3 forseq $w in $ReportedCarPositionsSeq early tumbling window

4 start curItem $s curr, prevItem $s prev when (fn: ceiling ($s curr/@minute)

5 ne fn: ceiling ($s prev/@minute))

6 end nextItem $e next when ($s curr/@minute +1) eq $e next/@minute

7 let $currMin := fn:ceiling ($s curr/@minute)

8 let $avgCarSpeed :=

9 for $rep in $w

10 group $rep as $r−group by $rep/@VID as $vid a, $rep/@XWay as $xway

11 a, $rep/@Seg as $seg a, $rep/@Dir as $dir a

12 return

13 <res XWay=”{$xway a}” Seg=”{$seg a}” Dir=”{$dir a}” VID=”{$vid a}”
14 vAvgSpeed=”{avg($r−group/@Speed)}” ></res>

15 let $segStatistics := (<res endMark=”1” minute=”{$currMin}”></res>,

16 for $car in $avgCarSpeed

17 group $car as $c−group by $car/@XWay as $xway, $car/@Seg as $seg,

18 $car/@Dir as $dir

19 return

20 <res endMark=”0” minute=”{$currMin}” XWay=”{$xway}” Seg=”{$seg}”
21 Dir=”{$dir}” avgSpeed=”{avg($c−group/@vAvgSpeed)}” carCount=

22 ”{count($c−group)}”></res>, <res endMark=”3” minute=”{$currMin}”>
23 </res>,<res endMark=”3” minute=”{$currMin}”></res>)

24 return $segStatistics
� �
Listing A.4: Q4: Segment Statistics for Every Minute

Q5: Toll Calculation�
1 declare variable $SegmentStatSeq external;

2 declare variable $ACCIDENT STORAGE external;

3

4 forseq $w in $SegmentStatSeq sliding window

5 start prevItem $s prev when $s prev/@endMark eq 1

6 force end nextItem $e next when ($e next/@endMark eq 3) and

7 (($s prev/@minute + 4) eq $e next/@minute)

8 let $resMin := $e next/@minute

9 let $allAccSeg := lr : store(”ACCIDENT STORAGE”, (@minute eq $resMin))

10 let $segData :=

11 for $s in $w

12 where $s/@endMark eq 0

13 group $s as $s−group by $s/@XWay as $xway, $s/@Seg as $seg,

14 $s/@Dir as $dir

15 return

16 <res XWay=”{$xway}” Seg=”{$seg}” Dir=”{$dir}” avgSpeed=

160 Appendix A. Queries in MXQuery Implementation of LR Benchmark

17 ”{avg($s−group/@avgSpeed)}” carCount=”{mxq:empty−to−zero(

18 $s−group[@minute eq $resMin]/@carCount)}”></res>

19 let $allAffectedSeg :=

20 for $segmCurr in $allAccSeg

21 let $segm := $segmCurr/@Seg

22 return

23 if ($segmCurr/@Dir eq 0)

24 (: eastbound direction :)

25 then <res> <XWay>{data($segmCurr/@XWay)}</XWay><Dir>

26 {data($segmCurr/@Dir)}</Dir><startSeg>{data($segm) − 4}
27 </startSeg><endSeg>{data($segm)}</endSeg> </res>

28 (: westbound direction :)

29 else <res> <XWay>{data($segmCurr/@XWay)}</XWay><Dir>

30 {data($segmCurr/@Dir)}</Dir><startSeg>{data($segm)}</startSeg>

31 <endSeg>{data($segm) + 4}</endSeg> </res>

32 let $tollResults :=

33 for $sData in $segData

34 let $affSeg :=

35 for $sCurr in $allAffectedSeg

36 where $sCurr/XWay eq $sData/@XWay and $sCurr/Dir eq $sData/@Dir

37 and $sCurr/startSeg le $sData/@Seg and $sCurr/endSeg ge

38 $sData/@Seg

39 return $sCurr

40 let $notInAccidentZone := count($affSeg) eq 0

41

42 let $lastMinCarCount := $sData/@carCount − 50

43 let $t := if ($notInAccidentZone and $sData/@avgSpeed < 40 and

44 $lastMinCarCount > 0)

45 then $lastMinCarCount ∗ $lastMinCarCount ∗ 2

46 else 0

47 return <res minute=”{$resMin + 1}” XWay=”{data($sData/@XWay)}”
48 Seg=”{data($sData/@Seg)}” Dir=”{data($sData/@Dir)}” avgSpeed=

49 ”{data($sData/@avgSpeed)}” ccount=”{data($sData/@carCount)}”
50 toll =”{$t}”> </res>

51 return <tolls>{$tollResults}</tolls>
� �
Listing A.5: Q5: Toll Calculation

Q6: Accident Events�
1 declare variable $ACCIDENT STORAGE external;

2 declare variable $CAR POSITIONS TO RESPOND external;

3

161

4 for $s curr in $CAR POSITIONS TO RESPOND

5 let $prevMin := $s curr/@Time idiv 60

6 let $allAccSegOnWay := lr:store(”ACCIDENT STORAGE”, (@XWay eq

7 $s curr/@XWay and @Dir eq $s curr/@Dir and @minute eq $prevMin))

8 let $checkAcc :=

9 for $s in $allAccSegOnWay/@Seg

10 let $accOnWay := if ($s curr/@Dir eq 0)

11 (: eastbound direction :)

12 then if (($s −5) lt $s curr/@Seg and $s curr/@Seg le $s)

13 then data($s) else ()

14 (: westbound direction :)

15 else if ($s +5 gt $s curr/@Seg and $s curr/@Seg ge $s)

16 then data($s) else ()

17 return $accOnWay

18 let $accidentAlert := if (count($checkAcc) gt 0)

19 then <alert Type=”1” Time=”{$s curr/@Time}”
20 Emit=”” VID=”{$s curr/@VID}” Seg=

21 ”{$checkAcc[1]}”></alert>

22 else ()

23 return $accidentAlert
� �
Listing A.6: Q6: Accident Events

Q7: Toll Events�
1 declare variable $TOLL STORAGE external;

2 declare variable $BALANCE STORAGE external;

3 declare variable $CAR POSITIONS TO RESPOND external;

4

5 for $s curr in $CAR POSITIONS TO RESPOND

6 let $prevMin := ($s curr/@Time idiv 60) + 1

7 let $segToll := lr : store(”TOLL STORAGE”, (@Seg eq $s curr/@Seg

8 and @XWay eq $s curr/@XWay and @Dir eq $s curr/@Dir and @minute

9 eq $prevMin))

10 let $newBal := <res VID=”{$s curr/@VID}” Time=”{$s curr/@Time}”
11 Bal=”0” Toll=”{ mxq:empty−to−zero($segToll/@toll) }”></res>

12 return

13 (

14 lr : store−update(”BALANCE STORAGE”, $newBal, (@VID eq $s curr/@VID)),

15 <res Type=”0” VID=”{$s curr/@VID}” Time=”{$s curr/@Time}” Emit=””

16 Speed=”{ mxq:empty−to−zero($segToll/@avgSpeed) }” Toll=”

17 { mxq:empty−to−zero($segToll/@toll) }”></res>

18)

162 Appendix A. Queries in MXQuery Implementation of LR Benchmark

� �
Listing A.7: Q7: Toll Events

Q8: Balance Query�
1 declare variable $InputSeq external;

2 declare variable $BALANCE STORAGE external;

3

4 for $w in $InputSeq

5 where $w/@Type eq 2

6 return

7 let $carBal := lr : store(”BALANCE STORAGE”, (@VID eq $w/@VID))

8 return

9 <res Type=”2” Time=”{$w/@Time}” Emit=”” ResultTime=”

10 {data($carBal/@Time)}” QID=”{$w/@Qid}” Bal=”{$carBal/@Bal}”>
11 </res>
� �

Listing A.8: Q8: Balance Query

Q9: Daily Expenditure Query�
1 declare variable $InputSeq external;

2

3 for $w in $InputSeq

4 where ($w/@Type eq 3) return $w
� �
Listing A.9: Q9: Daily Expenditure Query

List of Tables

4.1 Formal Definition of Stream Schema Constraints 25

5.1 Memory consumption in the Early Detection experiment 59

6.1 Provenance Use Cases and Requirements 64

8.1 Change Variation Derivation . 127

8.2 Safety Guarantees of Change variants . 129

8.3 Liveness Guarantees of Change variants . 130

8.4 Change Method Decision Matrix . 149

163

List of Figures

2.1 Compliance Architecture Proposed by MASTER [71] 8

2.2 A MASTER Scenario: Credit Card Pin Code Validation 9

2.3 Monitoring Infrastructure of MASTER . 10

3.1 Running Example - Q1 . 16

3.2 Mapping Functions of Q1 . 18

4.1 Linear Road Stream Schema . 30

5.1 Pattern FSM Decomposition . 47

5.2 MXQuery Linear Road Implementation [29] 51

5.3 MXQuery Linear Road Implementation, Extended with Data Partitioning

Information . 54

5.4 Supply Chain with RFID Readers . 57

5.5 RFID Readings Stream Schema . 57

6.1 The Continuous Query in our Running Example 66

6.2 Notations . 74

6.3 Provenance Generator Operator Types . 79

6.4 Provenance Propagator Operator Types 80

6.5 Example for Provenance Computation . 84

6.6 Query Used in the Experiments . 90

6.7 Impact of Selectivity (Window Size = 100, Slide Size = 1) 92

6.8 Impact of Overlap (Selectivity = 25%, Window Size = 100) 94

165

166 List of Figures

6.9 Impact of Window Size (Selectivity = 25%, Slide = 1) 95

7.1 Running example - Q1 . 102

7.2 Fresh Start on Q1 . 102

7.3 Cold Start versus Warm Start . 103

7.4 Immediate Stop vs. Drain Stop on Q1 . 104

7.5 Interaction of Basic Control Elements . 105

7.6 Basic Control Elements FSM for Query Pause/Resume Operation 110

7.7 Basic Query Lifecycle Architecture . 116

8.1 The Old and The New Versions of Q1 . 122

8.2 A Lossy Change on Q1 . 123

8.3 Query- vs. Stream-level Disorder on Q1 . 125

8.4 The Projected Interaction Diagram for Single Query 126

8.5 Lifecycle Interaction Diagram - Two Queries 127

8.6 All Possible Variations of Change Control Element Using Two Basic Control

Elements . 128

8.7 Immediate Change on Q1 . 129

8.8 Delayed Drain Change on Q1 . 130

8.9 Drain Change on Q1 (QDChange) . 131

8.10 Query Modification architecture . 141

8.11 Responsiveness on Window Size, Slide=1 144

8.12 Correctness Results for Different Changes 146

8.13 CPU Cost on Window Size, Slide=1 . 147

8.14 Linear Road Change Responsiveness . 148

Listings

2.1 A Stream of Login Events in XML Format 11

2.2 Break-in Attempt Detection in XQuery . 11

5.1 An Excerpt from the Accident Detection Query 51

5.2 An Excerpt from the Stopped Cars Query 55

5.3 A Dejavu Query to Detect Misrouted Items 58

8.1 The Template Query Used in the Sensitivity Analysis Experiments 143

8.2 The Accident Segments Query from the LR Benchmark [23] 147

A.1 Q1: Car Positions . 157

A.2 Q2: Accident Segments . 157

A.3 Q3: Car Positions to Respond . 158

A.4 Q4: Segment Statistics for Every Minute 158

A.5 Q5: Toll Calculation . 159

A.6 Q6: Accident Events . 160

A.7 Q7: Toll Events . 161

A.8 Q8: Balance Query . 162

A.9 Q9: Daily Expenditure Query . 162

167

Bibliography

[1] Apache ServiceMix. At http://servicemix.apache.org/.

[2] Coral8 CCL Reference. At http://www.coral8.com/.

[3] D4.1.2: Signaling Framework Prototype Single Domain. At http://www.master-

fp7.eu/.

[4] D4.1.3: Monitoring Framework Prototype Single Domain. At http://www.master-

fp7.eu/.

[5] D4.2.2: Monitoring Policy Lifecycle Extension Definition and Implementation. At

http://www.master-fp7.eu/.

[6] D4.2.3: MASTER Monitoring Framework Prototype Multi Domain. At

http://www.master-fp7.eu/.

[7] Esper Reference Documentation. At http://esper.codehaus.org/esper/documentation/.

[8] IBM InfoSphere Streams. At http://www-01.ibm.com/software/data/infosphere/streams/.

[9] MASTER Project. At http://www.master-fp7.eu/.

[10] MXQuery XQuery Engine. At http://www.mxquery.org/.

[11] StreamSQL Guide of the Implementation in Streambase. At http://streambase.com/.

[12] StreamSQL Homepage. At http://streamsql.org.

[13] Truviso, Inc. At http://www.truviso.com/.

[14] Xerces2 Java Parser Project Homepage. At http://xerces.apache.org/xerces2-j/.

169

170 Bibliography

[15] Daniel J. Abadi, Yanif Ahmad, Magdalena Balazinska, Ugur Cetintemel, Mitch Cher-

niack, Jeong-Hyon Hwang, Wolfgang Lindner, Anurag S. Maskey, Alexander Rasin,

Esther Ryvkina, Nesime Tatbul, Ying Xing, and Stan Zdonik. The Design of the Bo-

realis Stream Processing Engine. In CIDR Conference on Innovative Data Systems

Research, 2005.

[16] Daniel J. Abadi, Donald Carney, Ugur Çetintemel, Mitch Cherniack, Christian Con-

vey, C. Erwin, Eduardo F. Galvez, M. Hatoun, Anurag Maskey, Alex Rasin, A. Singer,

Michael Stonebraker, Nesime Tatbul, Ying Xing, R. Yan, and Stanley B. Zdonik. Au-

rora: A Data Stream Management System. page 666, 2003.

[17] Jagrati Agrawal, Yanlei Diao, Daniel Gyllstrom, and Neil Immerman. Efficient Pat-

tern Matching over Event Streams. In SIGMOD, 2008.

[18] Mohamed H. Ali, Ciprian Gerea, Balan Sethu Raman, Beysim Sezgin, Tiho Tarnavski,

Tomer Verona, Ping Wang, Peter Zabback, Anton Kirilov, Asvin Ananthanarayan,

Ming Lu, Alex Raizman, Ramkumar Krishnan, Roman Schindlauer, Torsten Grabs,

Sharon Bjeletich, Badrish Chandramouli, Jonathan Goldstein, Sudin Bhat, Ying Li,

Vincenzo Di Nicola, Xianfang Wang, David Maier, Ivo Santos, Olivier Nano, and

Stephan Grell. Microsoft CEP Server and Online Behavioral Targeting. volume 2,

pages 1558–1561, 2009.

[19] Gustavo Alonso, Fabio Casati, Harumi Kuno, and Vijay Machiraju. Web Services -

Concepts, Architectures and Applications. Springer, November 2003.

[20] Rajeev Alur and David L. Dill. A Theory of Timed Automata. Theoretical Computer

Science, 126(2), 1994.

[21] Manish Kumar Anand, Shawn Bowers, Timothy M. McPhillips, and Bertram

Ludäscher. Efficient Provenance Storage over Nested Data Collections. In EDBT,

pages 958–969, 2009.

[22] Anonymous. Pattern Matching in Sequences of Rows. SQL Standard Change Pro-

posal, 2007.

[23] A. Arasu, M. Cherniack, E. F. Galvez, D. Maier, A. Maskey, E. Ryvkina, M. Stone-

braker, and R. Tibbetts. Linear Road: A Stream Data Management Benchmark. In

VLDB Conference, Toronto, Canada, September 2004.

[24] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Jennifer Widom.

Models and Issues in Data Stream Systems. In PODS, pages 1–16, 2002.

Bibliography 171

[25] Shivnath Babu, Utkarsh Srivastava, and Jennifer Widom. Exploiting k-Constraints

to Reduce Memory Overhead in Continuous Queries Over Data Streams. TODS,

29(3), 2004.

[26] Deepavali Bhagwat, Laura Chiticariu, Wang Chiew Tan, and Gaurav Vijayvargiya.

An Annotation Management System for Relational Databases. In VLDB, pages 900–

911, 2004.

[27] Irina Botan, Gustavo Alonso, Peter M. Fischer, Donald Kossmann, and Nesime Tat-

bul. Flexible and Scalable Storage Management for Data-intensive Stream Processing.

In EDBT, pages 934–945, 2009.

[28] Irina Botan, Roozbeh Derakhshan, Nihal Dindar, Laura M. Haas, Renée J. Miller,

and Nesime Tatbul. SECRET: A Model for Analysis of the Execution Semantics of

Stream Processing Systems. volume 3, pages 232–243, 2010.

[29] Irina Botan, Donald Kossmann, Peter M. Fischer, Tim Kraska, Dana Florescu, and

Rokas Tamosevicius. Extending XQuery With Window Functions. In VLDB ’07,

pages 75–86, 2007.

[30] Badrish Chandramouli, Christopher N. Bond, Shivnath Babu, and Jun Yang. Query

Suspend and Resume. In ACM SIGMOD Conference, Beijing, China, June 2007.

[31] S. Chandrasekaran, A. Deshpande, M. Franklin, J. Hellerstein, W. Hong, S. Krish-

namurthy, S. Madden, V. Raman, F. Reiss, and M. Shah. TelegraphCQ: Continuous

Dataflow Processing for an Uncertain World. In CIDR Conference, Asilomar, CA,

January 2003.

[32] Surajit Chaudhuri, Raghav Kaushik, Abhijit Pol, and Ravi Ramamurthy. Stop-and-

Restart Style Execution for Long Running Decision Support Queries. In VLDB ’07,

pages 735–745, 2007.

[33] James Cheney, Laura Chiticariu, and Wang Chiew Tan. Provenance in Databases:

Why, How, and Where. Foundations and Trends in Databases, 1(4):379–474, 2009.

[34] Qi Cheng, Jarek Gryz, Fred Koo, T. Y. Cliff Leung, Linqi Liu, Xiaoyan Qian, and

K. Bernhard Schiefer. Implementation of Two Semantic Query Optimization Tech-

niques in DB2 Universal Database. In VLDB, pages 687–698, 1999.

[35] Mitch Cherniack, Hari Balakrishnan, Magdalena Balazinska, Donald Carney, Ugur

Çetintemel, Ying Xing, and Stanley B. Zdonik. Scalable Distributed Stream Process-

ing, 2003.

172 Bibliography

[36] Chuck Cranor, Theodore Johnson, Oliver Spataschek, and Vladislav Shkapenyuk.

Gigascope: a Stream Database for Network Applications. In SIGMOD, 2003.

[37] Yingwei Cui, Jennifer Widom, and Janet L. Wiener. Tracing the Lineage of View Data

in a Warehousing Environment. ACM Transactions on Database Systems (TODS),

25(2):179–227, 2000.

[38] Abhinandan Das, Johannes Gehrke, and Mirek Riedewald. Approximate Join Pro-

cessing over Data Streams. In SIGMOD, 2003.

[39] Susan B. Davidson, Sarah Cohen Boulakia, Anat Eyal, Bertram Ludäscher, Timo-

thy M. McPhillips, Shawn Bowers, Manish Kumar Anand, and Juliana Freire. Prove-

nance in Scientific Workflow Systems. IEEE Data Eng. Bull., 30(4):44–50, 2007.

[40] Alan J. Demers, Johannes Gehrke, Mingsheng Hong, Mirek Riedewald, and Walker M.

White. Towards Expressive Publish/Subscribe Systems. In EDBT, 2006.

[41] Amol Deshpande, Zachary Ives, and Vijayshankar Raman. Adaptive Query Process-

ing. Found. Trends databases, 1:1–140, January 2007.

[42] S Devadas and A. R. Newton. Decomposition and Factorization of Sequential Finite

State Machines. IEEE Trans. Computer-Aided Design, 8(11), 1989.

[43] Nihal Dindar, Baris Güç, Patrick Lau, Asli Ozal, Merve Soner, and Nesime Tatbul.

DejaVu: Declarative Pattern Matching over Live and Archived Streams of Events. In

SIGMOD Conference, pages 1023–1026, 2009.

[44] Luping Ding, Elke A. Rundensteiner, and George T. Heineman. MJoin: A Metadata-

Aware Stream Join Operator. In DEBS, 2003.

[45] Luping Ding, Karen Works, and Elke A. Rundensteiner. Semantic Stream Query

Optimization Exploiting Dynamic Metadata. In ICDE, pages 111–122, 2011.

[46] Kyumars Sheykh Esmaili. Data Stream Processing in Complex Applications, 2009.

[47] Kyumars Sheykh Esmaili, Tahmineh Sanamrad, Peter M. Fischer, and Nesime Tatbul.

Changing Flights in Mid-air: A Model for Safely Modifying Continuous Queries. In

ACM SIGMOD International Conference on Management of Data (SIGMOD’11),

Athens, Greece, June 2011.

[48] Peter M. Fischer, Kyumars Sheykh Esmaili, and Renée J. Miller. Stream Schema:

Providing and Exploiting Static Metadata for Data Stream Processing. In EDBT,

pages 207–218, 2010.

Bibliography 173

[49] Daniela Florescu, Chris Hillery, Donald Kossmann, Paul Lucas, Fabio Riccardi, Till

Westmann, Michael J. Carey, and Arvind Sundararajan. The BEA Streaming XQuery

Processor. VLDB Journal, 13(3):294–315, 2004.

[50] Mohamed Medhat Gaber, Arkady Zaslavsky, and Shonali Krishnaswamy. Mining

Data Streams: A Review. SIGMOD Record, 34(2), 2005.

[51] Boris Glavic and Gustavo Alonso. Perm: Processing Provenance and Data on the

Same Data Model through Query Rewriting. In ICDE, pages 174–185, 2009.

[52] Boris Glavic, Kyumars Sheykh Esmaili, Peter M. Fischer, and Nesime Tatbul. The

Case for Fine-Grained Stream Provenance. In BTW Workshop on Data Streams and

Event Processing (DSEP’11), Kaiserslautern, Germany, February 2011.

[53] Lukasz Golab, Theodore Johnson, Nick Koudas, Divesh Srivastava, and David Toman.

Optimizing Away Joins on Data Streams. In SSPS ’08, 2008.

[54] J. Grant, J. Gryz, J. Minker, and L. Raschid. Semantic Query Optimization for

Object Databases. ICDE, 1997.

[55] Todd J. Green, Grigoris Karvounarakis, Zachary G. Ives, and Val Tannen. Provenance

in ORCHESTRA. IEEE Data Eng. Bull., 33(3):9–16, 2010.

[56] Michael Henderson, Bryce Cutt, and Ramon Lawrence. Exploiting Join Cardinality

for Faster Hash Joins. In SAC, 2009.

[57] Sun-Yuan Hsieh. The Interval-Merging Problem. Inf. Sci., 177(2):519–524, 2007.

[58] Mohammad Rezwanul Huq, Andreas Wombacher, and Peter M. G. Apers. Facilitating

Fine Grained Data Provenance Using Temporal Data Model. In DMSN, pages 8–13,

2010.

[59] Jeong-Hyon Hwang, Magdalena Balazinska, Alexander Rasin, Ugur Cetintemel,

Michael Stonebraker, and Stan Zdonik. High-Availability Algorithms for Distributed

Stream Processing. In ICDE ’05, pages 779–790, 2005.

[60] Namit Jain, Shailendra Mishra, Anand Srinivasan, Johannes Gehrke, Jennifer Widom,

Hari Balakrishnan, Ugur Çetintemel, Mitch Cherniack, Richard Tibbetts, and Stan-

ley B. Zdonik. Towards a Streaming SQL Standard. PVLDB, 1(2):1379–1390, 2008.

[61] Theodore Johnson, S. Muthukrishnan, Vladislav Shkapenyuk, and Oliver Spatscheck.

Query-Aware Partitioning for Monitoring Massive Network Data Streams. In ICDE,

pages 1528–1530, 2008.

174 Bibliography

[62] Grigoris Karvounarakis, Zachary G. Ives, and Val Tannen. Querying Data Prove-

nance. In SIGMOD Conference, pages 951–962, 2010.

[63] Silvio Kohler. Complex Event Detection on an Enterprise Service Bus. Master’s

thesis, ETH Zurich, Switzerland, 2009.

[64] F. Korn, S. Muthukrishnan, and Y. Zhu. Checks and Balances: Monitoring Data

Quality Problems in Network Traffic Databases. In VLDB, pages 536–547, 2003.

[65] Wilburt Juan Labio, Janet L. Wiener, Hector Garcia-Molina, and Vlad Gorelik. Ef-

ficient Resumption of Interrupted Warehouse Loads. In ACM SIGMOD Conference,

Dallas, TX, USA, 2000.

[66] Y. Law, Haixun Wang, and Carlo Zaniolo. Query Languages and Data Models for

Database Sequences and Data Streams. In VLDB, 2004.

[67] Jin Li, Kristin Tufte, Vladislav Shkapenyuk, Vassilis Papadimos, Theodore Johnson,

and David Maier. Out-of-order processing: a new architecture for high-performance

stream systems. volume 1, pages 274–288, 2008.

[68] Hyo-Sang Lim, Yang-Sae Moon, and Elisa Bertino. Provenance-based Trustworthi-

ness Assessment in Sensor Networks. In DMSN, pages 2–7, 2010.

[69] Morten Lindeberg, Vera Goebel, and Thomas Plagemann. Adaptive-sized Windows

to Improve Real-time Health Monitoring: A Case Study on Heart Attack Prediction.

In ACM MIR Conference, Philadelphia, PA, USA, March 2010.

[70] Mo Liu, Ming Li, Denis Golovnya, Elke A. Rundensteiner, and Kajal T. Claypool.

Sequence Pattern Query Processing over Out-of-Order Event Streams. In ICDE,

pages 784–795, 2009.

[71] Volkmar Lotz, Emmanuel Pigout, Peter M. Fischer, Donald Kossmann, Fabio Mas-

sacci, and Alexander Pretschner. Towards Systematic Achievement of Compliance

in Service-Oriented Architectures: The MASTER Approach. Wirtschaftsinformatik,

50(5):383–391, 2008.

[72] Z. Manna and Amir Pnueli. The Temporal Logic of Reactive and Concurrent Systems:

Specification. Springer-Verlag, New York, 1991.

[73] Archan Misra, Marion Blount, Anastasios Kementsietsidis, Daby M. Sow, and Min

Wang. Advances and Challenges for Scalable Provenance in Stream Processing Sys-

tems. In IPAW, pages 253–265, 2008.

Bibliography 175

[74] R. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu, M. Datar, G. Manku, C. Ol-

ston, J. Rosenstein, and R. Varma. Query Processing, Approximation, and Resource

Management in a Data Stream Management System. In CIDR Conference, Asilomar,

CA, January 2003.

[75] Wim De Pauw, Mihai Letia, Bugra Gedik, Henrique Andrade, Andy Frenkiel, Michael

Pfeifer, and Daby Sow. Visual Debugging for Stream Processing Applications. In RV,

pages 18–35, 2010.

[76] Esther Ryvkina, Anurag Maskey, Mitch Cherniack, and Stanley B. Zdonik. Revision

Processing in a Stream Processing Engine: A High-Level Design. In ICDE, page 141,

2006.

[77] Utkarsh Srivastava and Jennifer Widom. Flexible Time Management in Data Stream

Systems. In PODS, pages 263–274, 2004.

[78] Beat Steiger. Data Lineage/provenance in XQuery. Master’s thesis, ETH Zurich,

Switzerland, 2010.

[79] Hong Su, Elke A. Rundensteiner, and Murali Mani. Semantic Query Optimization

for XQuery over XML streams. In VLDB, 2005.

[80] N. Tatbul, U. Çetintemel, S. Zdonik, M. Cherniack, and M. Stonebraker. Load Shed-

ding in a Data Stream Manager. In VLDB Conference, Berlin, Germany, September

2003.

[81] N. Tatbul and S. Zdonik. Window-aware Load Shedding for Aggregation Queries over

Data Streams. In VLDB Conference, Seoul, Korea, September 2006.

[82] Wolfgang Thomas. Automata on Infinite Objects. In Handbook of Theoretical Com-

puter Science (vol. B): Formal Models and Semantics, pages 133–191. MIT Press,

1990.

[83] Kostis Tsoulos. XML schema support in MXQuery. Master’s thesis, ETH Zurich,

Switzerland, 2008.

[84] Peter A. Tucker, David Maier, Tim Sheard, and Leonidas Fegaras. Exploiting Punc-

tuation Semantics in Continuous Data Streams. TKDE, 15(3), 2003.

[85] Stratis D. Viglas and Jeffrey F. Naughton. Rate-Based Query Optimization for

Streaming Information Sources. In SIGMOD, 2002.

176 Bibliography

[86] N. N. Vijayakumar and Beth Plale. Tracking Stream Provenance in Complex Event

Processing Systems for Workflow-Driven Computing. In EDA-PS Workshop, 2007.

[87] Nithya N. Vijayakumar and Beth Plale. Towards Low Overhead Provenance Tracking

in Near Real-Time Stream Filtering. In IPAW, pages 46–54, 2006.

[88] Min Wang, Marion Blount, John Davis, Archan Misra, and Daby M. Sow. A Time-

and-Value Centric Provenance Model and Architecture for Medical Event Streams.

In HealthNet, pages 95–100, 2007.

[89] Jennifer Widom. Trio: A System for Managing Data, Uncertainty, and Lineage.

Managing and Mining Uncertain Data, 2008.

[90] Yin Yang, Jürgen Krämer, Dimitris Papadias, and Bernhard Seeger. Hybmig: A

Hybrid Approach to Dynamic Plan Migration for Continuous Queries. IEEE Trans.

Knowl. Data Eng., 19(3):398–411, 2007.

[91] Yali Zhu, Elke A. Rundensteiner, and George T. Heineman. Dynamic Plan Migration

for Continuous Queries over Data Streams. In ACM SIGMOD Conference, Paris,

France, June 2004.

	Introduction
	Background and Motivation
	Contributions
	Thesis Structure

	SOA Monitoring
	MASTER Project
	Big Picture
	Simplified Example
	Prototype Implementation

	The Conceptual Side of MASTER
	SOA Monitoring as a Streaming Application
	Challenges

	Foundations of Data Stream Processing
	Running Example
	Data Streams
	Stream Queries
	Query Mapping Functions
	Query as Composition of Operators

	Stream Schema: Static Metadata for Data Streams
	Introduction
	Motivation
	Contributions
	Outline

	Stream Schema
	Design Space
	Running Example: Linear Road Benchmark
	Individual Elements of Stream Schema
	Combination Scheme

	Validation of Stream Schema
	Checking Correctness for Individual Schema Elements
	Prefix Validation
	Validation Mechanism
	Validation Complexity
	Validation in Presence of Disorder
	Practical Issues

	Integration into Processing Models
	Related Work
	Conclusions

	Applications of Stream Schema
	Introduction
	Motivation
	Contributions
	Outline

	Stream Schema-enabled Optimizations
	Pipelined Execution
	Stream Data Partitioning
	Window/Pattern Optimizations
	State Reduction
	Join Cardinality Reduction

	Impact On Stream Processing Semantics
	Static Check for Non-Executable Expressions
	Extended Set of Runnable Expressions

	Decoupling Streaming Applications
	Case Study I: Linear Road Benchmark
	Optimizations
	Experiments and Results
	Schema-Driven Executability of XQuery Expressions

	Case Study II: Supply Chain
	RFID-based Misrouted Item Detection
	Query Rewrites for Early Detection of Misrouted Items
	Experiments and Results

	Related Work
	Conclusions

	Provenance Management on Data Streams
	Introduction
	Motivation and Use Cases
	Challenges
	Running Example
	Contributions
	Outline

	Provenance Design Space
	Provenance Computation
	Provenance Representation
	Summary of Tradeoffs

	Provenance Semantics
	Overview
	Data Model
	Stream Algebra
	Declarative Provenance Semantics
	Provenance Generating Operators

	Implementation
	Overview
	Representing and Propagating Provenance
	Provenance Operator Modes
	The Expand Operator
	Input Tuple Storage and Retrieval

	Optimizations
	Provenance Compression
	On-Demand Provenance Operations

	Experiments
	Overview
	Impact of Selectivity
	Impact of Overlap
	Impact of Window Size
	Recording Cost for Lazy Computation

	Related Work
	Conclusions

	A Framework To Model Query Lifecycle Operations
	Introduction
	Motivation
	Contributions
	Outline

	Our Framework and Methodology
	Basic Control Elements
	Interaction of Basic Control Elements
	Correctness Criteria
	A Methodology to Create Complex Control Elements

	Example: Query Pause/Resume Model
	Formal Definition of Pause/Resume
	Correctness of Pause/Resume
	Variations of the Pause/Resume Control Element

	Concretization
	Control Elements on Composition
	Our Framework on SPEs

	A General Architecture to Implement Our Framework
	Related Work
	Conclusions

	A Model for Continuous Query Modification
	Introduction
	Motivation and Use Cases
	Contributions
	Outline

	The Query Modification Model
	Definition of Query Modification
	Correctness of Query Modification
	Variations of the Change Control Element
	Interaction of Control Elements Revisited
	Guarantee Proofs
	Correctness Rules for Change

	Implementation
	General Architecture Revisited
	SPE-specific Implementation

	Experiments
	Sensitivity Analysis for Stateful Operators
	Complex Queries
	Tradeoffs and Guidelines

	Related Work
	Conclusions

	Conclusion
	Summary
	Ongoing and Future Work

	Queries in MXQuery Implementation of LR Benchmark

