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Abstract:
The interaction of macroeconomic variables may change as nominal short-term interest rates approach zero. In
this paper, we propose to capture these changing dynamics with a state-switching parameter model which ex-
plicitly takes into account that the interest rate might be constrained near the zero lower bound by using a Tobit
model. The probability of state transitions is affected by the lagged level of the interest rate. The endogenous
specification of the state indicator permits dynamic conditional forecasts of the state and the system variables.
We use Bayesian methods to estimate the model and to derive the forecast densities. In an application to Swiss
data, we evaluate state-dependent impulse-responses to a risk premium shock identified with sign-restrictions.
We provide an estimate of the latent rate, i.e. the rate lower than the constraint on the interest rate level which
would be state- and model-consistent. Additionally, we discuss scenario-based forecasts and evaluate the prob-
ability of exiting the ZLB region. In terms of log predictive scores and the Bayesian information criterion, the
model outperforms a model substituting switching with stochastic volatility and another including intercept
switching only combined with stochastic volatility.
Keywords: constrained variable, regime switching, stochastic volatility, time-varying probability, Tobit model
JEL classification: C3, E3
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1 Introduction

The monetary policy instrument of leading central banks is a nominal short-term interest rate. Until recently,
the use of this instrument was perceived to face one problem, however. Because moderate amounts of money
can be stored at relatively low cost, the effective nominal interest rate cannot fall below or not far below zero.
Some discussion on the zero lower bound (ZLB) took place in the beginning of the century (Auerbach and
Obstfeld, 2005; Benhabib, Schmitt-Grohe and Uribe, 2002; Eggertsson and Woodford, 2003; Eggertsson et al.,
2004; Woodford, 2003) and it was recognized that the ZLB might fundamentally change the functioning of an
economy. Nevertheless, at the time the ZLB was not perceived to constitute a major problem Reifschneider
and Williams (2000). However, since the outbreak of the financial crisis and the following euro area sovereign
debt crisis, the policy rate has remained for a considerably long period of time at the ZLB, particularly in the
US but also in Switzerland. To circumvent the constraint of the ZLB on the policy rate, the US resorted to
unconventional monetary policy measures to accommodate the negative effects of the financial crash on the
real economy. In Switzerland, the Swiss National Bank (SNB) responded to deflationary appreciation pressures
by intervening in the foreign exchange market, by buying corporate bonds in 2009/2010 and by introducing a
minimum exchange rate against the euro in September 2011. In December 2014, the SNB announced that it was
lowering the range for its operational target, i.e. for the three-month libor, into negative territory to between
−0.75% and −0.25%. In January 2015, it discontinued the euro-Swiss franc exchange rate floor and moved the
target range further into negative territory to between −1.25% and −0.25%.

While negative policy rates are now being implemented, under the current monetary arrangements there is
still an effective lower bound at which they are constrained. As long as cash currency is available, there will be
a lower bound at which it will pay agents to incur the storage costs and substitute a deposit account with cash.
Moreover, if economic dynamics are changing near this effective ZLB, it is also an open issue whether shocks
or interest rate changes have the same effect on, for example, prices, exchange rates and GDP, as when interest
rates are out of the ZLB region. One reason for this is that usually, and obviously, the ZLB region is reached
Sylvia Kaufmann is the corresponding author. 
© 2020 Walter de Gruyter GmbH, Berlin/Boston.
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because of strongly deteriorating economic and financial conditions. In these periods, uncertainty rises which
may change the interest rate sensitivity of economic agents. Moreover, adverse shocks may have different effects
if agents expect that the central bank has limited ability to counteract those shocks with further interest rate
cuts.

In this paper, we base the analysis on a vector autoregression (VAR) with parameters that are allowed to
change when the ZLB becomes binding. A latent state indicator determines the state-specific parameters and
the error covariances of the VAR system. The probability distribution of the state indicator depends itself on
a covariate which is perceived to be informative on the prevailing state. A natural candidate is the interest
rate. Furthermore, we take into account that the interest rate might be constrained by working with a Tobit
approach. We are able to provide an estimate of the latent interest rate, i.e. the rate below the constrained one
which would be state- and model-consistent. Our model therefore provides an intuitive measure of whether the
ZLB is a binding constraint. The method can be adapted to situations in which several variables are constrained
permanently or temporarily. This becomes important in situations in which unconventional monetary policy
targets directly prices in specific asset markets, e.g. government bonds, mortgage or currency markets.

Our research relates to a growing empirical literature that studies macroeconomic dynamics at the ZLB
using structural VARs.1 Studies relying on a constant parameter VAR include Miyao (2002) and Schenkelberg
and Watzka (2013). Closer to our approach is Iwata and Wu (2006), who look at the Japanese experience with a
constant-parameter structural VAR, but take into account that the interest rate is a constrained variable. A few
papers allow for changing parameters at the ZLB. Baumeister and Benati (2013) explore how a compression in
the bond spreads impact the economy during the Great Recession using a time-varying parameter VAR esti-
mated for the US, the Euro area, Japan and the UK. Debortoli, Galí, and Gambetti (2018) use a time-varying
parameter VAR to examine whether nonconventional policy actions are effective substitutes for traditional in-
terest rate cuts. Nakajima (2011) extends the time-varying parameter VAR by modelling the interest rate as a
censored variable and estimates the model with Japanese data. Kimura and Nakajima (2016) analyze Japan’s
monetary policy using a time-varying parameter VAR with a specific focus on the identification of, and switch-
ing between, unconventional and conventional monetary policy shocks. Wu and Xia (2016) assess how param-
eters of a VAR changed when the interest rate reached the ZLB in the US relying on a latent interest rate derived
from a term-structure model. Similarly, Bäurle and Kaufmann (2018) study how the response of Swiss macroe-
conomic aggregates to risk premium shocks is affected by the ZLB. None of these contributions models the
endogenous change of parameters when the interest rates approaches the ZLB. This is, however, an essential
feature especially if the focus is on forecasting. Furthermore, an endogenous change in parameters can be mo-
tivated on the basis of non-linear dynamic stochastic general equilibrium models in which the ZLB is treated
as an occasionally binding constraint as in Gust et al. (2017) or Plante, Richter, and Throckmorton (2018).

We apply our method to analyze the dynamics of Swiss data, namely GDP, the consumer price index (CPI),
the effective exchange rate in relation to the nominal interest rate. Taking up the idea of Bäurle and Kaufmann
(2018), we analyze how risk premium shocks affecting the exchange rate transmit to prices. We find that risk
premium shocks have more persistent effects on prices if the policy rate is constrained, but have only tempo-
rary effects if rates can accommodate. The endogenous specification of the state indicator allows us to compute
dynamic state and variable forecasts. We provide scenario-based forecasts over the period 2014, third quarter,
to 2020, third quarter. We find that the system is unlikely to exit the ZLB region as long as appreciation pres-
sures are present. In terms of log predictive score and the Bayesian information criterion, the model performs
better than an alternative model substituting switching volatility with stochastic volatility and another which
combines switching intercepts, time-invariant autoregressive parameters and stochastic volatility.

The next section presents the econometric model and discusses various aspects of the endogenous state
probability distribution. Section 3 presents the estimation procedure and describes the computation of the un-
conditional and the scenario-based forecasts. The results are discussed in Section 4. Section 5 compares the per-
formance of the model against a model substituting switching volatility with stochastic volatility and another
one which combines switching intercepts, time-invariant autoregressive parameters and stochastic volatility.
Section 6 concludes. The interested reader may find technical details about the distributional properties of cen-
sored and uncensored variables in Appendix A. The Bayesian framework including prior specifications and the
derivation of posterior distributions is outlined in Appendix B. Appendix C displays additional results of the
various estimated models.
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2 Econometric model

2.1 Specification

To investigate changing dynamics among N variables yt, we frame the model within a time-varying parameter
VAR of lag order p

𝑦𝑡 = 𝜇𝑡 + 𝐵1𝑡𝑦𝑡−1 + ⋯ + 𝐵𝑝𝑡𝑦𝑡−𝑝 + 𝜀𝑡, 𝜀𝑡 ∼ 𝑁(0,Σ𝑡)

which is compactly written in regression form:

𝑦𝑡 = 𝑋𝑡𝛽𝑡 + 𝜀𝑡, 𝜀𝑡 ∼ 𝑁(0,Σ𝑡)

where 𝑋𝑡 = 𝐼𝑁 ⊗ [1, 𝑦′
𝑡−1, … , 𝑦′

𝑡−𝑝] and 𝛽𝑡 = 𝑣𝑒𝑐 ([𝜇𝑡, 𝐵1𝑡, … , 𝐵𝑝𝑡]
′
). The regression reflects explicitly that

we condition on past observed values 𝑦𝑡−1, … , 𝑦𝑡−𝑝, which includes interest rates at their low level as observed
recently. To capture the notion that conditional on past observed values the changing dynamics may have im-
plied lower interest rates than actually observed, or in other words that central banks felt constrained by the
zero lower bound, we extend the regression and write

𝑦∗
𝑡 = 𝑋𝑡𝛽𝑡 + 𝜀𝑡
̃𝑦1𝑡 = max{𝑦∗

1𝑡 = 𝑦1𝑡, 𝑏}
̃𝑦2𝑡 = 𝑦∗

2𝑡 = 𝑦2𝑡
(1)

We construct ̃𝑦𝑡 from the originally observed data. The sub-vector ̃𝑦1𝑡 collects the variables we perceive as po-
tentially constrained. Period-t values equal y1t if y1t is higher than b, and are censored at b if y1t is lower than b.
All variables perceived as unconstrained are collected in ̃𝑦2𝑡 and all values in ̃𝑦2𝑡 equal the observed values y2t.
In our application, 𝑦1𝑡 is the nominal interest rate and re-defining it yields a variable censored at b.2 However,
contrary to standard censored data, the lower bound b is not pre-determined by our data. The interest rate is
always observed and we have to choose b. We interpret b as the level of interest rates at which central banks be-
came constrained in setting the policy rate, forcing them to implement unconventional policy measures. Thus,
the relevant threshold b is not necessarily equal to zero, but might be at a value above, but close to zero. In the
application we set b = 0.25, defining periods of constrained interest rates as those when the policy rate decreased
below 25 basis points (bps). In the empirical section we provide additional justification for setting b = 0.25.3

We might also envisage to use a model in which the interest rate has truncated support with a moving lower
truncation threshold given e.g. by the lower bound of the libor target in the SNB’s case. We do not pursue this
avenue, because we also want to evaluate the extent to which policy is constrained, conditional on all available
observed values. If we condition on periods in which we assume the central bank has been constrained, the
Tobit framework allows us to form a model-based estimate of the latent interest rate 𝑦∗

1𝑡, i.e. the interest rate
level which would be consistent with the model and current and past observed data.

To model the time-varying process of the parameters, we rely on a mixture approach

𝛽𝑡 = 𝛽0(1 − 𝐼𝑡) + 𝛽1𝐼𝑡
Σ𝑡 = Σ0(1 − 𝐼𝑡) + Σ1𝐼𝑡

(2)

where the latent indicator 𝐼𝑡 ∈ {0, 1} drives the changing coefficients and the error covariance of the system. We
define It = 1 to indicate periods in which the interest rate is close to the ZLB, i.e. is close to being constrained.
We call these periods the critical ZLB region. Coefficients and the error variance are allowed to change, given
that the volatility of constrained variables may change and their covariance with other variables as well. The
indicator It may be specified ad hoc by defining a priori the periods of very low interest rates. The disadvantage
of this procedure is that the relevant threshold for the interest rate at which dynamics change is in fact unknown
to the investigator.

Therefore, we set up a probabilistic model for It which allows us to estimate it conditional on the data. A
natural indicator of whether It turns out to be 0 or 1 is the deviation of the lagged interest rate from the ZLB,
rt−1. To be consistent with model setup (1), we condition again on past observed values:

𝑝1𝑡 = 𝑃 (𝐼𝑡 = 1|𝑟𝑡−1, 𝛾, 𝛾𝑟) = exp (𝛾𝑟𝑟𝑡−1 + 𝛾)
1 + exp (𝛾𝑟𝑟𝑡−1 + 𝛾) (3)
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Model (1)–(3) differs from a smooth transition VAR specification where variables would be explained by a
mixture of two states (Teräsvirta and Anderson, 1992; Auerbach and Gorodnichenko, 2012):

𝑦∗
𝑡 = 𝑋𝑡𝛽0 (1 − 𝑝1𝑡) + 𝑋𝑡𝛽1𝑝1𝑡 + 𝜀𝑡, 𝜀𝑡 ∼ 𝑁 (0,Σ0 (1 − 𝑝1𝑡) + Σ1𝑝1𝑡)

By taking on either value {0, 1}, the state indicator It in (2) determines which dynamic regime characterizes
period t-specific variables. Posterior inference on It will indicate how well both periods can be discriminated,
i.e. whether a regime-switching representation is to be preferred over a smooth transition VAR representation.

2.2 Some considerations on the probability function

To identify It = 1 in (3) as corresponding to periods in which the interest rate is in the critical ZLB region, we
restrict γr < 0. Moreover, we call parametrization (3) the implicit threshold parametrization because we are able to
recover the threshold interest rate after having estimated the model. The threshold is defined as the level of rt
at which the state probability equals 0.5. For example, if the interest rate were expressed in percentage terms
and if 𝛾𝑟 = −1 and γ = 0.5, then the threshold level would lie at −𝛾/𝛾𝑟 = 0.5%. To estimate the model, we
use parametrization (3) because the non-linear model for the transition probabilities becomes linear in γr and
γ after two layers of data augmentation. This allows us to draw from full conditional distributions.

The usual parametrization, which we call the explicit threshold parametrization, includes explicitly the thresh-
old �̃�:

𝑃 (𝐼𝑡 = 1|𝑟𝑡−1, 𝛾, 𝛾𝑟) = exp (𝛾𝑟 (𝑟𝑡−1 − �̃�))
1 + exp (𝛾𝑟 (𝑟𝑡−1 − �̃�)) (4)

Note that from an estimate of (3), in case γr ≠ 0, we can also retrieve the threshold level �̃�,

−𝛾𝑟�̃� = 𝛾
�̃� = −𝛾/𝛾𝑟 (5)

Relation (5) indicates that the threshold �̃� and γ are mutually highly dependent. Conditional on γr, the threshold
determines γ and vice versa. For a given threshold, γ is increasing in γr. Figure 1 illustrates this point. The figure
plots values for the short term interest rate against the state probability obtained for various γr, assuming a
threshold level of 0.8%. As −𝛾𝑟 increases, the probability function approaches a step function. Conditional on
the threshold, γ is increasing proportionally to γr.

Figure 1: State probability 𝑃(𝐼𝑡 = 1|𝑟𝑡−1, 𝛾𝑟, 𝛾) for various sensitivities γr, where γ is adjusted to keep the threshold level
at 0.8%.

The relationship between both parameterizations can be used to include information into the prior distri-
bution for the parameters of the state probabilities. We may have some idea of an upper and of a lower bound
for �̃�. For example, �̃� is certainly well below 10%, is probably below 1%, and perhaps between 0.5% and 1.5%.
So, let the upper and lower bound on �̃� be 𝛾 and 𝛾, respectively, such that 𝛾 ≤ �̃� ≤ 𝛾.
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This implies 𝛾 ≤ − 𝛾
𝛾𝑟 ≤ 𝛾, or

−𝛾𝑟𝛾 ≤ 𝛾 ≤ −𝛾𝑟𝛾 (6)

This puts an upper and a lower bound on γ since 𝛾𝑟 < 0. The prior for (𝛾, 𝛾𝑟) is expressed with these inequalities
in place:

𝜋 (𝛾, 𝛾𝑟) = 𝑁 (𝑔0, 𝐺0) 1 (𝛾𝑟 < 0) 1 (−𝛾𝑟𝛾 ≤ 𝛾 ≤ −𝛾𝑟𝛾) (7)

We may also work with parametrization (4). Various priors have been suggested in the literature, see Lopes and
Salazar (2005) for an overview. Using this parametrization, a truncated normal prior distribution may be used
to incorporate prior information on the threshold.

3 Estimation and forecasting

3.1 Estimation

The estimation of model (1)–(3) proceeds along the lines of Chib (1992). We use data augmentation to obtain
posterior inference on the model parameters in (1). The augmented data will be an estimate of the underlying
values 𝑦∗

1𝑡 of the constrained observations in ̃𝑦1𝑡. In the following, bold faced objects gather all observations of
a vector, e.g. 𝑦𝑦𝑦 = {𝑦𝑡|𝑡 = 1, … , 𝑇} or X = {𝑋𝑡|𝑡 = 1, … , 𝑇}, and similarly for 𝑦∗𝑦∗𝑦∗ and I. We gather the latent values
underlying the censored observations in 𝑦∗

1𝑦∗
1𝑦∗
1 = {𝑦∗

1𝑡|𝑡 ∈ 𝑡∗𝑡∗𝑡∗}, 𝑡∗𝑡∗𝑡∗ = {𝜏|𝑦1𝜏 ≤ 𝑏, 𝜏 = 1, … , 𝑇} while 𝑦∗
2𝑦∗
2𝑦∗
2 contains all

uncensored observations, 𝑦∗
2𝑦∗
2𝑦∗
2 = {𝑦∗𝑦∗𝑦∗\𝑦∗

1𝑦∗
1𝑦∗
1}. The parameters are included in 𝜃 = {𝛽𝑘,Σ𝑘,𝛾𝛾𝛾|𝑘 = 0, 1,𝛾𝛾𝛾 = (𝛾𝑟, 𝛾)}, and

the augmented parameter vector contains the latent variables in addition to θ, 𝜗 = {𝜃,𝑦∗
1𝑦∗
1𝑦∗
1 , I}.

Data augmentation allows us to express the posterior distribution in terms of the complete data likelihood
and to design a Bayesian Markov chain Monte Carlo (MCMC) scheme to estimate the model:

𝜋 (𝜗| ̃𝑦 ̃𝑦 ̃𝑦) ∝ 𝑓 (𝑦∗𝑦∗𝑦∗|X, I, 𝜃) 𝜋 (I|r,𝛾𝛾𝛾) 𝜋 (𝑦∗
1𝑦∗
1𝑦∗
1) 𝜋 (𝜃) (8)

To sample from (8), we draw iteratively from the conditional posterior of

i. I, 𝜋 (I|𝑦∗𝑦∗𝑦∗,X, r, 𝜃)

ii. 𝑦∗
1𝑦∗
1𝑦∗
1 , 𝜋 (𝑦∗

1𝑦∗
1𝑦∗
1 |𝑦∗

2𝑦∗
2𝑦∗
2 ,X, I, 𝜃) 1(𝑦∗

1𝑦∗
1𝑦∗
1 ≤ 𝑏)

iii. 𝜸, 𝜋 (𝛾𝛾𝛾|r, I) 1 (𝛾𝑟 < 0) 1 (−𝛾𝑟𝛾 ≤ 𝛾 ≤ −𝛾𝑟𝛾)

iv. the parameters, 𝜋 (𝑣𝑒𝑐 ([𝛽0, 𝛽1]) |𝑦∗𝑦∗𝑦∗,X, I,Σ0,Σ1), 𝜋 (Σ𝑘 |𝑦∗𝑦∗𝑦∗,X, I, 𝛽𝑘), k = 0, 1.

All posterior distributions are standard distributions. Given that there is no state persistence, in step (i) we
can sample I in one draw from a discrete distribution. Conditional on observed values 𝑦∗

2𝑦∗
2𝑦∗
2 and X, the state I

and the model parameters, we draw 𝑦∗
1𝑦∗
1𝑦∗
1 from a truncated normal distribution. To derive the posterior of the

parameters governing the state distribution, we condition on two layers of data augmentation (see Frühwirth-
Schnatter and Frühwirth, 2010; Kaufmann, 2015). In the first layer, we obtain a linear model with non-normal
error terms, which relates the difference in latent state utilities to the interest rate effect on the state probability.
In a second layer, we approximate the exponential error distribution by a mixture of M normals. Conditional
on the differences in latent utilities and the components of the mixtures, the posterior of 𝜸 is normal. We draw
from the normal posterior truncated to the region where the parameters restriction derived in (7) are fulfilled.
The posterior distribution of the remaining parameters βk and Σk, k = 0,1, in (iv) are normal and inverse Wishart,
respectively. The interested reader finds a detailed derivation of distributional data properties and the Bayesian
approach including prior specifications and the derivation of posterior distributions in Appendices A and B,
respectively.
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3.2 Conditional forecasting

The model can be used to obtain forecasts over the forecast horizon H, h = 1, …, H. To obtain draws from the
unconditional posterior predictive distribution at each horizon h:

𝜋 (𝑦𝑇+ℎ|𝑦𝑇) ∝
ℎ

∏
𝑗=1

𝜋 (𝑦𝑇+𝑗|𝑦𝑇+𝑗−1, 𝐼𝑇+𝑗) 𝜋 (𝐼𝑇+𝑗|𝑦𝑇+𝑗−1) (9)

we produce dynamic forecasts and simulate for j = 1, …, h, we draw

1. 𝐼(𝑙)
𝑇+𝑗 from 𝜋 (𝐼(𝑙)

𝑇+𝑗|𝑟
(𝑙)
𝑇+𝑗−1,𝛾𝛾𝛾(𝑙)), with 𝑟(𝑙)

𝑇 = 𝑟𝑇 , and then

2. 𝑦(𝑙)
𝑇+𝑗 from 𝜋 (𝑦(𝑙)

𝑇+𝑗|𝑦
(𝑙)
𝑇+𝑗−1, 𝐼

(𝑙)
𝑇+𝑗, 𝜃(𝑙)) ∼ 𝑁 (𝑚(𝑙)

𝑇+𝑗,Σ𝐼(𝑙)
𝑇+𝑗

)

with 𝑚(𝑙)
𝑇+𝑗 = 𝑋(𝑙)

𝑇+𝑗𝛽𝐼(𝑙)
𝑇+𝑗

, 𝑦(𝑙)
𝑇 = 𝑦𝑇 and 𝑋(𝑙)

𝑇+1 = 𝑋𝑇+1.

for each draw (l) out of the posterior 𝜋 (𝜗| ̃𝑦 ̃𝑦 ̃𝑦).
We may also produce so-called conditional forecasts, which would reflect specific scenarios. In all examples,

step 2 above is adjusted appropriately. For example

2. (i) keep the mean forecast of the interest rate at or above the last rate, i.e. restrict the predictive distribution
to:

𝜋(𝑦𝑇+ℎ|𝑦𝑇 , (𝑚1,𝑇+1, … , 𝑚1,𝑇+ℎ) = 𝑦1𝑇) or 𝜋(𝑦𝑇+ℎ|𝑦𝑇 , (𝑚1,𝑇+1, … , 𝑚1,𝑇+ℎ) ≥ 𝑦1𝑇)

The second conditional forecast is implemented as follows. At each step j, j = 1, …, h, we set 𝑚(𝑙)
1,𝑇+𝑗 =

max {𝑋(𝑙)
1,𝑇+𝑗𝛽1,𝐼(𝑙)

𝑇+𝑗
, 𝑦1𝑇}.

2. (ii) implement a (mean) path for a variable i over a certain period of time, say h = 1, …, 4, (e.g. lower the
interest rate to −1% for one year):

Simulate first variable i, 𝑦(𝑙)
𝑖,𝑇+ℎ, from 𝑁 (𝑚𝑖,𝑇+ℎ,Σ𝑖,𝐼(𝑙)

𝑇+ℎ
), where 𝑚𝑖,𝑇+ℎ is pre-specified.

Then, conditional on 𝑦(𝑙)
𝑖,𝑇+ℎ, simulate all other variables, 𝑦(𝑙)

−𝑖,𝑇+ℎ|𝑦(𝑙)
𝑖,𝑇+ℎ, from 𝑁 (𝑚−𝑖|𝑖,𝑇+ℎ,Σ−𝑖|𝑖,𝐼(𝑙)

𝑇+ℎ
), the

moments of which are given by the moments of the implied normal conditional predictive distribution.

2. (iii) a combination of the two. Here we apply 2. (ii) in combination with 2. (i) for the mean forecast, i.e.
𝑚(𝑙)

𝑖,𝑇+ℎ = 𝑚𝑖,𝑇+ℎ for ℎ = 1, … 4, and 𝑚(𝑙)
𝑖,𝑇+ℎ = 𝑦(𝑙)

𝑖,𝑇+ℎ−1 for h = 5, …, H.4

4 Results

4.1 Data and prior specification

To illustrate the method, we estimate a level VAR for four Swiss variables, namely GDP, the CPI, the three-month
Swiss franc libor and the trade-weighted effective exchange rate. We use quarterly data covering the period 1974,
first quarter, to 2014, third quarter. As already mentioned, the state-identifying restriction γr < 0 defines It = 1
as indicating the periods in which the interest rate enters the ZLB critical region. We additionally induce the
threshold, i.e. the level of the interest rate at which 𝑃 (𝐼𝑡 = 1) = 0.5, to lie in the interval [𝛾, 𝛾] = [0.5, 1.5]. Hence
the prior mean for the threshold is 1.0. In the ZLB critical region, we define interest rate levels at or below 0.25
as those being constrained, i.e. b = 0.25.
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Figure 2: Three-month libor with target range.

This assumption defines the interest rate since 2010 and two observations at the end of the 1970s as being
constrained.5 Figure 2 shows that when the SNB set the point target for the three-month Swiss franc libor to
this value, notably in March 2003 and March 2009, it also narrowed the target range from the usual 100 bps to 75
bps. While in March 2003 the SNB justified the narrowed target range by technical factors without explaining
in more details, on 12 March 2009 the SNB communicated that the narrowed target range “is due to the fact that
a negative libor is not technically possible” (SNB 2003, 2009). On 19 March 2009, the SNB discussed negative
interest on reserves as an additional tool to loosen policy further (Jordan 2009). Although this was an option,
the truncated target range suggests that the SNB viewed it impossible to push the libor into negative territory
under the current monetary regime. As a consequence, the ZLB was effectively binding because the SNB was
not yet willing to resort to this nonconventional policy. It continued to be binding in August 2011 when the SNB
narrowed the target range to 25 bps and imposed an exchange rate floor against the euro in September 2011.
In December 2014 the target range widened again to 100 bps when the SNB announced to introduce negative
interest on reserves, a month before the minimum exchange rate level was discontinued.

This history leads us to interpret that until the end of 2014, the SNB and in fact all economic agents viewed
the libor as increasingly constrained by the ZLB whenever it was falling to 0.25%.6 This interpretation is qual-
itatively in line with survey expectations and libor futures contracts. Figure 3 shows expectations from the
Swiss Economic Institute (KOF) Consensus Survey, a survey of professional forecasters for Switzerland.7 The
3-month forecast (in Panel (a)) dropped virtually to zero in August 2011 when the SNB intoduced the mini-
mum exchange rate level and announced a libor target as close to zero as possible (SNB 2011). No forecaster
expected the libor to fall below zero until 2015. The 12-month ahead forecasts (in Panel (b)) show that, before the
introduction of the minimum exchange rate, a fair share of survey participants expected interest rates even to
increase within twelve months. However, during the minimum exchange rate regime, interest rate expectations
of most participants remained close to zero.8

Figure 3: KOF Consensus Survey.
Professional forecasters’ libor expectations. Mean forecast (dots), 10th and 90th percentiles (dashed), minimum and max-
imum (dotted). The dashed horizontal lines give the 0–0.25% range. The vertical lines indicate the introduction and re-
moval of a minimum exchange rate against the euro. (A) 3-months ahead. (B) 12-months ahead
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For estimation, we adopt the following prior specifications for the model parameters and the latent variable
𝑦∗
1𝑦∗
1𝑦∗
1 , see Appendix B for the specification of hyperparameters:

1. We assume independent Minnesota type prior for the VAR parameters βk, k = 0, 1, 𝜋(𝛽𝑘) = 𝑁(𝑣, 𝑉) (Doan,
Litterman and Sims, 1984; Bańbura, Giannone and Reichlin, 2010).

2. For Σk, we assume inverse Wishart prior distributions 𝜋(Σ𝑘) ∼ 𝐼𝑊(𝑠, 𝑆𝑘), where the scale 𝑆𝑘 is proportional
to the variance of residuals of state-specific univariate autoregressions, 𝑆𝑘,𝑖𝑖 ∝ 𝜎2

𝑘𝑖, with pre-defined states
𝐼𝑡 = 1 if the libor ≤ 1% .

3. A relatively informative prior on γr is used to obtain a steep shape of the transition function (see Figure 1),
and also because there are only a few observations near the ZLB.

( 𝛾𝑟

𝛾 ) ∼ 𝑁 ([ −10
10 ] , diag (0.01, 6.25)) 1 (𝛾𝑟 < 0) 1 (−0.5𝛾𝑟 ≤ 𝛾 ≤ −1.5𝛾𝑟) (10)

Figure 4, Panels (a) and (b), plot the prior and posterior distributions of γr and γ, respectively. Although the
prior distribution for γr is quite tight (broken blue line), it is considerably updated conditional on the data
(solid blue). We observe a considerable update for γ, too (broken and solid red). Panel (c) shows what the
parameters imply for the transition function. Compared to the 95% highest prior density interval (left blue),
the posterior interval (right red) is quite dense and concentrated at the upper bound pre-specified for the
threshold.

4. For 𝑦∗
1𝑦∗
1𝑦∗
1 , we work with a diffuse prior, 𝜋 (𝑦∗

1𝑦∗
1𝑦∗
1) ∝ 1(𝑦∗

1𝑦∗
1𝑦∗
1 ≤ 𝑏).

Figure 4: (A) and (B) Prior and posterior distributions of γr and γ, respectively. (C) Prior (left blue region ) and posterior
(right red region) 95% highest density interval for the transition function conditional on γr and γ; the black line corre-
sponds to the median transition function.

4.2 Model inference

To estimate the model, we iterate 250,000 times over the sampling steps (i)–(iv) listed in Section 3.1, retain every
third after a burn-in of 50,000 draws, obtaining M = 66,666 draws for posterior inference. Figure 5 plots the
interest rate and the inflation rate along with the mean posterior probabilities of state 1 (It = 1) in yellow.9 The
estimate discriminates clearly between the two states. State 1 also prevailed at the end of the 1970s, a period
where the Swiss franc was also subject to appreciation against the German mark and where therefore, interest
rates were also decreased to a then all-time low. The horizontal line indicates the threshold level at 1.5% inferred
from the parameter estimates of the transition function.

8

http://rivervalleytechnologies.com/products/


Au
to

m
at

ica
lly

ge
ne

ra
te

d
ro

ug
h

PD
Fb

yP
ro

of
Ch

ec
kf

ro
m

Ri
ve

rV
al

le
yT

ec
hn

ol
og

ie
sL

td
DE GRUYTER Bäurle et al.

Figure 5: Annual inflation rate (red) and interest rate (blue).
Mean posterior probability (yellow) of state 1. The periods during which the interest rate is defined to be constrained are
those in which the interest rate lies in the shaded area (b ≤ 0.25). The horizontal line indicates the inferred threshold level
1.5% at which 𝑃 (𝐼𝑡 = 1) = 0.5.

The shaded area below b = 0.25 indicates in which periods the interest rate is thought to be constrained.
On the left-hand side in Figure 6, the observed interest rate is plotted along with the posterior estimates of the
latent observations. The areas decreasing in shades correspond to, respectively, the 25%, the 50% and the 80%
interval of highest posterior density. Compared with the end of the 1970s, the ZLB on the interest rate appears
to bind more strongly at the end of the sample given that the median of the latent interest rate decreases to
nearly −0.6%. The figures below the right-hand histograms in Figure 6 show, additionally, that over 90% of the
sampled period-specific latent interest rates, 𝑦∗

1𝑡 < 𝑏, were lower than the all-time minimum observed value for
the interest rate, min

𝑡
{𝑦1𝑡} through 2014.10

Figure 6: Left-hand: Observed interest rate and model-based estimate of 𝑦∗
1𝑦∗
1𝑦∗
1 < 𝑏 (red); the black line is the median, the

areas decreasing in shades correspond to, respectively, the 25%, the 50% and the 80% interval of highest posterior density;
mean posterior probability of state 1 (yellow). Right-hand: histogram of 𝑦∗

1𝑡 < 𝑏 for t = 2014.00, 2014.25, 2014.50, i.e. 2014
first through third quarter; the second and third numbers under each histogram refer to, respectively, 𝑃 (𝑦∗

1𝑡 < min𝑡{𝑦1𝑡})
and median (𝑦∗

1𝑡).

To document that dynamics change when the interest rate enters the critical ZLB region, we plot impulse
responses to a structural shock identified as a risk-premium shock. Monetary policy can counter-act the effects
of a risk-premium shock, which effects an appreciation for a small open economy, by lowering the interest rate.
Obviously, this reaction will be constrained if the interest rate is already very low. As a consequence, the short-
term and the long-term pass-through effects on prices will also differ in the two situations (see also Bäurle
and Kaufmann, 2018). To obtain structural identification, we impose sign restrictions on the impact and next
period responses of the variables as shown in Table 1 (Arias, Rubio-Ramírez and Waggoner, 2018). A risk-
premium shock is expected to appreciate the currency. In a small open economy, the pass-through should lead
to a decrease in prices. Monetary policy can counteract the effects by lowering the interest rate. The response

9

http://rivervalleytechnologies.com/products/


Au
to

m
at

ica
lly

ge
ne

ra
te

d
ro

ug
h

PD
Fb

yP
ro

of
Ch

ec
kf

ro
m

Ri
ve

rV
al

le
yT

ec
hn

ol
og

ie
sL

td
Bäurle et al. DE GRUYTER

of GDP is not restricted and all responses are left unrestricted after the first two periods thereby permitting
inference on whether the medium-term and the long-term effects differ between the two states.

Table 1: Sign restrictions on the impact and next period responses of the variables.

Reaction in

Shock to GDP CPI Short rate exchange rate

Risk-premium − ↓ ↓ ↑

Figure 7: Impulse responses to a risk premium shock identified by sign restrictions and normalized to a corresponding
1% appreciation shock.
The black line is the median response, the areas decreasing in shades correspond to, respectively, the 25%, the 50% and
the 80% interval of highest posterior density. (A) It = 0. (B) It = 1.

The state-specific impulse responses to a risk-premium shock are plotted in Figure 7. The responses are
normalized to a 1% appreciation in the exchange rate. Although the density intervals are quite large, clear
patterns are discernible. In the short-term, we observe that there is obviously more leeway for the interest
rate to decrease transitorily in state It = 0. The response of GDP is not restricted and is generally near zero.
Nevertheless, the median shows a positive transitory effect, likely initiated by the decrease in the interest rate.
The negative pass-through to prices is transitory and after two years, level-reversion takes place. The long-run
effects on prices, however, are very different between the two states. Given that in the ZLB region the interest
rate cannot react as strongly to the risk-premium shock, the initial negative pass-through to prices remains
permanent. Or in other words, a transitory risk-premium shock translates into a permanent effect on the price
level. Although long-run cross-country relationships are not modelled explicitly, we know that for a given real
exchange rate, permanent negative effects on the price level induce further long-run nominal appreciation on
the currency.

Figure 8 and Table 2 evaluate the differences between state-specific impulse responses more explicitly. We
compute the differences using 7341 (11% of all) draws accepted across both states. In state It = 1, the median
negative price response is lower after about two years and remains persistently low over the long-run. The
difference widens to 0.5% after 28 quarters. After half a year, the interest rate response is lower by a median
of 13 basis points (bps) in state It = 1. The difference widens to 19 bps, reflecting the inability to counteract the
appreciation shock at the ZLB. A slight reversion to a difference of 14 bps is observable in the long run only.
The lower interest rate and CPI responses in state It = 1 explain why GDP responses do not differ across both
states. Likewise, the persistence of the risk premium shock (the exchange rate responses) shock is virtually the
same in both states.11

Overall, these results are consistent with those presented in Bäurle and Kaufmann (2018), although we
obtain a weaker negative CPI response.12 However, empirical evidence for other countries also suggests that
the ZLB leads to a gradual but persistent effect on macroeconomic variables (see e.g. Caggiano, Castelnuovo
and Pellegrino, 2017).

10

http://rivervalleytechnologies.com/products/


Au
to

m
at

ica
lly

ge
ne

ra
te

d
ro

ug
h

PD
Fb

yP
ro

of
Ch

ec
kf

ro
m

Ri
ve

rV
al

le
yT

ec
hn

ol
og

ie
sL

td
DE GRUYTER Bäurle et al.

Figure 8: Difference in impulse responses: State It = 1 − State It = 0 response; computed with 7341 (11% of all) draws ac-
cepted simultaneously across both states.
Response to a risk premium shock identified by sign restrictions and normalized to a corresponding 1% appreciation
shock. The black line is the median response, the areas decreasing in shades correspond to, respectively, the 25%, the 50%
and the 80% interval of highest posterior density.

Table 2: Difference in impulse responses: State It = 1 − State It = 0 response; computed with 7341 (11% of all) draws ac-
cepted simultaneously across both states.

Horizon GDP CPI Short rate Exchange rate

1 −0.0002 0.0001 0.0579 0
(−0.0030, 0.0027) (−0.0014, 0.0015) (−0.1250, 0.2668) −

4 −0.0006 0.0003 −0.0275 −0.0011
(-0.0047, 0.0031) (−0.0017, 0.0025) (−0.2425, 0.1919) (−0.0046, 0.0025)

8 −0.0007 −0.0004 −0.1283 0.0004
(−0.0046, 0.0033) (−0.0032, 0.0027) (−0.3128, 0.0445) (−0.0043, 0.0049)

12 −0.0007 −0.0014 −0.1816 0.0007
(−0.0047, 0.0032) (−0.0047, 0.0023) (−0.3479, −0.0344) (−0.0046, 0.0059)

16 −0.0001 −0.0026 −0.1924 0.0006
(−0.0042, 0.0041) (−0.0065, 0.0014) (−0.3553,−0.0517) (−0.0051, 0.0063)

20 0.0004 −0.0033 −0.1820 0.0002
(−0.0038, 0.0049) (−0.0076, 0.0010) (−0.3491,−0.0395) (−0.0060, 0.0063)

24 0.0011 −0.0044 −0.1678 0.0006
(−0.0032, 0.0060) (−0.0092, 0.0000) (−0.3440,−0.0257) (−0.0055, 0.0075)

28 0.0016 −0.0050 −0.1398 0.0003
(−0.0029, 0.0068) (−0.0103,−0.0005) (−0.3214, 0.0092) (−0.0064, 0.0072)

Response to a risk premium shock identified by sign restrictions and normalized to a corresponding 1% appreciation shock. The median
difference (50% highest posterior density) in log levels, except for the short rate (percentage points).

4.3 Scenario-based forecasts

By implementing Scenario 2. (iii), the model estimate is used to answer the following questions. Where does
the system drift to if the mean interest rate is observed to fall to −1% in the first quarter of the forecast horizon
and remain at this level for one year? What is the probability of exiting the ZLB critical region and under what
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economic conditions does this happen? These questions may be relevant against the background of the SNB’s
decision to introduce negative interest rates at the end of 2014. However, it is important to recognize that our
scenario does not implement a policy experiment, i.e. it does not provide an estimate of the causal impact of a
decrease in interest rates to −1%. It merely describes the economic conditions consistent with an average interest
rate at −1% for one year.13

The forecast horizon is 6 years, H = 24. The sample from the forecasting density (9) is obtained by producing
dynamic forecasts using all posterior parameter draws. The left-hand side in Figure 9 displays the forecasts we
obtain if the mean interest rate stays at a level of −1% for one year from 2014Q4 onwards and is held stable
at lagged forecasts afterwards. Over the whole forecasting period, the mean interest rate remains stable in this
scenario. However, there is a relevant chance (12%) for the system to exit the ZLB region. Year-on-year GDP
growth and inflation are low on average, but still positive (1.2% and 0.1%, respectively). This overall stable
development is accompanied by further appreciation pressures.

The right-hand side in Figure 9 plots the forecasts of those 12% paths that finally exit the ZLB region again.
On average, year-on-year GDP growth and inflation reach, respectively, 1.4% and 0.9%, and we observe that they
are accelerating over the forecast period. At the end of the forecast horizon year-on-year GDP growth reaches 3%
and inflation 3.8%. At the same time, the appreciation trend is broken. On average, appreciation still amounts
to 0.2%, while towards the end of the forecast horizon depreciation increases to 3.3%. Thus, the results indicate
that economic conditions have to improve quite substantially to permanently exit the ZLB regime. In contrast
to the previous results, an exit from the ZLB region would be accompanied by a depreciation of the Swiss franc.

Figure 9: Conditional forecast distributions.
The black line is the median forecast, the areas decreasing in shades correspond to, respectively, the 25%, the 50% and the
80% interval of highest forecast density. The vertical line denotes the end of the sample, 2014Q3. (A) Forecast distribution
conditional on a mean interest rate lowered to −1% for 1 year. (B): Conditional forecast distribution for those paths that
exit the ZLB region (mean 12% probability), IT+H = 0

On exiting the ZLB region, our model is slightly more optimistic than professional forecasters’ expectations
about a positive libor. Figure 10 shows the share of survey participants in the KOF Consensus Survey that expect
a positive three-month libor one and twelve months ahead. From 2015 onwards, this share hovers slightly below
10% which indicates that participants expected the SNB to exit the negative interest rate regime, if at all, a bit
later than what the model predicts (12%).
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Figure 10: KOF Consensus Survey.
Share of professional forecasters expecting a positive libor 3-months (blue) and 12-months (red) ahead. The vertical lines
indicate the introduction and removal of a minimum exchange rate against the euro.

5 Stochastic instead of regime switching volatility

5.1 Alternative models

Work by Clark (2011) and Diebold, Schorfheide, and Shin (2017), among others, show that macroeconomic data
display a large amount of changing volatility. Our model is restrictive insofar as volatility is fixed within each
regime. In order to assess the implication of the regime switching specification, we compare our model (the
Full model henceforth) to one which generalizes to stochastic volatility (SV henceforth), re-specifying Σt in (2)
as:

Σ𝑡 = 𝐴−1
𝑡 𝐻𝑡𝐴−1

𝑡
′ (11)

with Ht diagonal, 𝐻𝑡 = diag (exp (𝜎1𝑡) , … , exp (𝜎𝑁𝑡)) and At lower diagonal with ones on the diagonal. As
usual, we specify independent random walk processes for the log volatilities 𝜎𝜎𝜎𝑡 = (𝜎1𝑡, … , 𝜎𝑁𝑡)

′ and the struc-
tural correlations a𝑡 = {𝑎𝑖𝑗,𝑡|𝑖 = 2, … , 𝑁; 𝑗 = 1, … , 𝑖 − 1}:

𝜎𝜎𝜎𝑡 = 𝜎𝜎𝜎𝑡−1 + 𝜁𝑡, 𝜁𝑡 ∼ 𝑁 (0,Ω𝜎) (12)

a𝑡 = a𝑡−1 + 𝜂𝑡, 𝜂𝑡 ∼ 𝑁 (0,Ωa) (13)

Following the setup of Chan and Eisenstat (2018), we treat initial conditions 𝝈0 and a0 as parameters to estimate,
assuming normal prior distributions 𝑁 (0, 10𝐼𝑘), with Ik being the identity matrix of dimension 𝑘 = {𝑁, 𝑁(𝑁 −
1)/2} for, respectively, 𝝈0 and a0. Elements of innovation variancesΩσ andΩa are independently inverse Gamma
distributed, 𝜔𝜎𝑗 ∼ 𝐼𝐺 (5, 𝑆𝜔𝜎

), j = 1, …, N, and 𝜔a𝑗 ∼ 𝐼𝐺 (5, 𝑆𝜔a), 𝑗 = 1, … 𝑁(𝑁 − 1)/2, respectively. The scales
𝑆𝜔𝜎

and 𝑆𝜔a are specified such to obtain a prior mean of 0.12 and 0.012 for, respectively, 𝜔𝜎𝑗 and 𝜔a𝑗.
In empirical work we often find strong evidence that intercepts are significantly time-varying while evidence

for time-varying autoregressive coefficients is much weaker (Belmonte, Koop and Korobilis, 2014). Against this
background, we additionally compare the Full model with a model including stochastic volatility, switching
intercept and constant autoregressive coefficients (Intercept and SV henceforth). The compact form of restricted
model (1) is written as

𝑦𝑡 = 𝜇𝑡 + 𝑋𝑡𝛽 + 𝜀𝑡, 𝜀𝑡 ∼ 𝑁(0,Σ𝑡) (14)
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with time-invariant 𝛽 = 𝑣𝑒𝑐 ([𝐵1, … , 𝐵𝑝]
′
), Σ𝑡 = 𝐴−1

𝑡 𝐻𝑡𝐴−1
𝑡

′ specified as above and intercepts 𝜇𝑡 = 𝜇0(1−𝐼𝑡)+
𝜇1𝐼𝑡 the only parameters subject to regime switches.

Note that both models are estimated with the Tobit specification as defined in (1). A Tobit specification
combined with stochastic volatility and regime switching in (some) parameters is, up to our knowledge, unique
in applied econometric studies.

Define ̂𝑦𝑡 = 𝑦∗
𝑡 −𝑋𝑡𝛽𝑡, i.e. condition on right-hand side variables in (1), and represent the conditional model

in structural form:

𝐴𝑡 ̂𝑦𝑡 = 𝜈𝑡, 𝜈𝑡 ∼ 𝑁 (0, 𝐻𝑡)
̂𝑦𝑡 = Ŵ𝑡a𝑡 + 𝜈𝑡

(15)

with

Ŵ𝑡 =
⎡
⎢
⎢
⎢
⎢
⎣

0 … 0
− ̂𝑦1𝑡 0 … 0
0 − ̂𝑦1𝑡 − ̂𝑦2𝑡 0 … 0
⋮ 0 ⋱ ⋮
0 … − ̂𝑦1𝑡 … − ̂𝑦𝑁−1,𝑡

⎤
⎥
⎥
⎥
⎥
⎦

Based on (15), we adjust the sampler in Section 3.1 to estimate the model generalized to stochastic volatil-
ity in (11) and (14). For both setups, model parameter θ is expanded to include Σt and hyperparameters,
𝜃SV = {𝛽𝑘,Σ𝑡,𝛾𝛾𝛾,𝜎𝜎𝜎0, a0,Ω𝜎 ,Ωa|𝑘 = 0, 1,𝛾𝛾𝛾 = (𝛾r , 𝛾)} and 𝜃IwSV = {𝜇𝑘, 𝛽,Σ𝑡,𝛾𝛾𝛾,𝜎𝜎𝜎0, a0,Ω𝜎 ,Ωa|𝑘 = 0, 1,𝛾𝛾𝛾 = (𝛾r , 𝛾)},
respectively. When generalized to stochastic volatility, sampling step (iv) becomes:14

(iv.SV)

(a) 𝜋 (𝛽0, 𝛽1|𝑦∗𝑦∗𝑦∗,X, I,ΣΣΣ)
(b) 𝜋 (𝜎𝜎𝜎| ̂𝑦 ̂𝑦 ̂𝑦, a,Ω𝜎 ,𝜎𝜎𝜎0) and 𝜋 (𝜎𝜎𝜎0| ̂𝑦 ̂𝑦 ̂𝑦, a,𝜎𝜎𝜎1,Ω𝜎)
(c) 𝜋 (a| ̂𝑦 ̂𝑦 ̂𝑦,𝜎𝜎𝜎,Ωa, a0) and 𝜋 (a0| ̂𝑦 ̂𝑦 ̂𝑦,𝜎𝜎𝜎, a1,Ωa)
(d) 𝜋 (Ω𝜎 | ̂𝑦 ̂𝑦 ̂𝑦,𝜎𝜎𝜎,𝜎𝜎𝜎0) and 𝜋 (Ωa| ̂𝑦 ̂𝑦 ̂𝑦, a, a0)

where again, bold-faced values gather all observations of a vector or matrix, e.g. ΣΣΣ = {Σ1, …Σ𝑇} or a =
{a1, … , a𝑇}.

For estimating model (14), step (a) in (iv.SV) is adjusted to
(iv.ISV) (a) 𝜋 (𝜇0, 𝜇1, 𝛽|𝑦∗𝑦∗𝑦∗,X, I,ΣΣΣ)

while steps (b)–(d) remain the same with re-defined ̂𝑦𝑡 = 𝑦∗
𝑡 − 𝜇𝑡 − 𝑋𝑡𝛽.

Sampler convergence for the SV and Intercept with SV models is much slower. Therefore, we iterate 700,000
times over the sampler, retaining every third of the last 200,000 draws, i.e. 66,666 draws for posterior inference.

5.2 Model comparison

We evaluate the log predictive score and the Bayesian information criterion (BIC) jointly for GDP and CPI to
compare the model fit of the Full model with the SV and Intercept and SV models. We choose these two variables
because they represent Swiss monetary policy’s main focus and we observe all values over the sample period.

Table 3 documents that the Full model performs significantly better in terms of log predictive score and
BIC than the alternative specifications. This applies even though we favour both models with SV when deter-
mining the penalty term. We count each of the N(N + 1)/2 elements of Σt as one parameter neglecting its time
variation and also neglect counting the estimated elements of Ωσ and Ωa. Intercept and SV performs slightly
better than SV. Figure 11 plots time-specific values of the log-predictive scores (Panel (a)) and the log determi-
nant log ∣Σ𝑡,GPD,CPI∣ (Panel (b)). Obviously, the Full model achieves a higher log predictive score in most periods.
The log predictive score is considerably worse only in quarters where large shocks occurred: In 1974 and 2008
when, respectively, the oil price and the financial crisis shock hit the economy. This evidence in favour of the
Full model is reflected in Figure 12. Overall, volatility evolves smoothly over time. In particular for GDP and
CPI, volatilities remain fairly constant over time. For the three-month libor and the exchange rate, volatilities
also remain quite stable after adjusting to lower levels over time.

Table 3: Average log predictive score and BIC; evaluated for GDP and CPI.

Model Log predictive score BIC

Mean Median ∑𝑡 log |Σ𝑡,GDP,CPI| Penalty BIC

14

http://rivervalleytechnologies.com/products/


Au
to

m
at

ica
lly

ge
ne

ra
te

d
ro

ug
h

PD
Fb

yP
ro

of
Ch

ec
kf

ro
m

Ri
ve

rV
al

le
yT

ec
hn

ol
og

ie
sL

td
DE GRUYTER Bäurle et al.

Full 1.26 1.26 −3473.7 42log(160) −3260.5
SV 1.11 1.11 −2879.4 39log(160) −2681.5
Intercept and
SV

1.11 1.11 −2890.2 23log(160) −2773.5

Model with switching parameters and error covariance matrix (Full), switching parameters and stochastic volatility (SV) and switching
intercept, constant AR parameters and stochastic volatility (Intercept and SV).

Figure 11: Regime switching against stochastic volatility.
Evaluations for GDP and CPI. Model with switching parameters and error covariance matrix (Full), switching parameters
and stochastic volatility (SV) and switching intercept, constant AR parameters and stochastic volatility (intercept and SV).
(A) Mean log predictive score. (B) Mean log|Σt,GDP,CPI|.

Figure 12: Stochastic volatility estimates.
Lower diagonal of Σt. The shaded areas refer to the 25%, 50% and 80% highest posterior density interval.

5.3 Selected results for the SV model

Although achieving a lower model fit, the results obtained from the SV model confirm those of the Full model.
Figure 13 and Figure 14 show the analogue of Figure 7 and Figure 8, respectively.15 Generalizing to stochastic
volatility, increases estimation uncertainty, in particular in state It = 1. The main conclusions remain unchanged,

15
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however. Near the ZLB, a risk-premium shock has a persistent negative effect on CPI, and the short rate remains
persistently lower as well. As in the Full model, GDP’s responses do not differ significantly between regimes,
while the shock reflects less persistently in the exchange rate.16

Figure 13: Switching VAR with SV.
Impulse responses to a risk premium shock identified by sign restrictions and normalized to a corresponding 1% appre-
ciation shock. The black line is the median response, the areas decreasing in shades correspond to, respectively, the 25%,
the 50% and the 80% interval of highest posterior density. (A) It = 0, Σt,1991Q1. (B) It = 1, Σt,2005Q2.

Figure 14: Switching VAR with SV.
Difference in impulse responses: State It = 1 − State It = 0 response; 8801 (13%) accepted draws across both states. Re-
sponse to a risk premium shock identified by sign restrictions and normalized to a corresponding 1% appreciation shock.
The black line is the median response, the areas decreasing in shades correspond to, respectively, the 25%, the 50% and
the 80% interval of highest posterior density.

Figure 15 shows the analogue to Figure 6. The posterior mean probabilities of It = 1 do not differ much
compared with the Full model. Again stochastic volatility introduces more estimation uncertainty, which is
reflected in a more dispersed posterior distribution for y*. Overall, the SV model estimates a decrease in the
median latent short rate to −0.74 to the end of the sample, compared with −0.57 for the Full model. Qualita-
tively, the conditional forecasts (Figure 16) are relatively similar to the Full model. Quantitatively, compared

16
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with the Full model, average year-on-year GDP growth and inflation are forecasted to be somewhat lower
(1.0% compared with 1.2%) and higher (0.3% compared with 0.1%), respectively. As in the Full model, this
development is accompanied by further appreciation pressures (left-hand in Figure 16). The SV model predicts
a lower probability of exiting the ZLB region, 2% compared with 12% in the Full model. Those draws exiting
the ZLB region (right-hand in Figure 16) show a more subdued development than in the Full model. On aver-
age, year-on-year GDP growth is 0.6% and CPI inflation 0.3% compared with 1.4% and 0.9% in the Full model,
respectively.

Figure 15: Switching VAR with SV.
Left-hand: Observed interest rate and model-based estimate of 𝑦∗

1𝑦∗
1𝑦∗
1 < 𝑏 (red); mean posterior probability of state 1 (yellow).

Right-hand: histogram of 𝑦∗
1𝑡 < 𝑏 for t = 2014.00, 2014.25, 2014.50, i.e. 2014 first through third quarter; the second and

third numbers under each histogram refer to, respectively, 𝑃 (𝑦∗
1𝑡 < min𝑡{𝑦1𝑡}) and median (𝑦∗

1𝑡).

Figure 16: Switching VAR with SV.
The black line is the median forecast, the areas decreasing in shades correspond to, respectively, the 25%, the 50% and
the 80% interval of highest forecast density. The vertical line denotes the end of the sample, 2014Q3. (A): Forecast distri-
bution conditional on a mean interest rate lowered to −1% for 1 year (Σ𝑇+ℎ = Σ𝑇, ℎ = 1, … , 4). (B): Conditional forecast
distribution for those paths that exit the ZLB region (mean 2% probability).

6 Conclusion

In the present paper, we propose to capture changing dynamics between variables near the ZLB with the use
of a nonlinear model. A latent state indicator determines the changes in parameters and error covariances of
a VAR model. The probability of state transitions depends on the lagged level of the interest rate, which is
a natural candidate to indicate whether the system is away from or in the so-called critical ZLB region. It is

17
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obvious that other variables determining the policy stance like GDP growth or the inflation rate could also be
used as covariates. For a small open economy, an alternative could be to include a monetary condition index,
which determines the monetary stance by a weighted average of the interest rate and the exchange rate. The
specification of the VAR model takes into account that in the ZLB region, the interest rate might be a constrained
variable. The estimation of the model then provides us with an inference on the latent rate, i.e. the lower than
observed level of the interest rate which would be state- and model-consistent.

We setup a model for four Swiss variables, namely GDP, CPI, the three-month Swiss franc libor and a trade-
weighted effective exchange rate. We estimate it within a Bayesian framework, which allows to handle the
situation of few observations near the ZLB. Also, we can input subjective information into the specification of
prior distributions. For example, a notion for an upper and a lower bound for the interest rate at which we
think that dynamics may change, i.e. a prior notion on the threshold value, can be included into the prior of
the parameters of the state probability distribution. The results show that dynamics indeed change when the
interest rate enters the ZLB region. The impulse response analysis gives evidence that transitory risk-premium
shocks which correspond to a 1% appreciation in the exchange rate translate into a permanent negative price
level effect when the interest rate is in the ZLB region. This differs from the normal situation, in which the
negative price level effect is transitory.

The endogenous specification of the state probability distribution allows to dynamically forecast the state
and the VAR system into the future. In particular, we can evaluate the probability with which the system ex-
its the ZLB region based on its own dynamics. We find that there is a relevant chance to exit the ZLB after
2014. However, this needs to be accompanied by substantial improvements in the economic environment. The
model developed in this paper performs well compared to other reasonable alternatives in terms of both fit (as
measured by BIC) and forecasting performance.

The model used in the present paper can be extended in various ways. The model for a small open economy
would be completed by including a set of foreign, exogenous variables. Additional scenarios could then be
evaluated, like the reaction to a further increase or decrease in the foreign policy rate, or a protracted recovery
abroad. Another avenue would be to model explicitly long-run common trending behavior among the variables.
An issue that is not addressed in the paper is how to identify a monetary policy shock in the ZLB region. Further
research will address these extensions.
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A Appendix

Distributional properties of censored and uncensored variables

Given the normality assumption on εt, model (1) defines a joint normal distribution for the variables 𝑦∗
𝑡 =

[𝑦∗′
1𝑡 , 𝑦′

2𝑡]
′, where y2t gathers the uncensored variables.

[ 𝑦∗
1𝑡

𝑦2𝑡
] |𝑋𝑡, 𝐼𝑡, 𝜃 ∼ 𝑁 ([ 𝑚1𝐼𝑡

𝑚2𝐼𝑡
] , [ Σ11,𝐼𝑡 Σ12,𝐼𝑡

Σ21,𝐼𝑡 Σ22,𝐼𝑡
]) (16)

where 𝜃 = {𝛽𝑘,Σ𝑘, 𝛾𝑟, 𝛾|𝑘 = 0, 1} represents the model parameters and 𝑚𝑖𝐼𝑡
= 𝑋𝑖𝑡𝛽𝑖,𝐼𝑡

and Σ𝑖𝑗,𝐼𝑡 are obtained
by gathering the corresponding rows in (1) and by partitioning accordingly the moment matrices. This allows
the expression of the joint observation density 𝑓 (𝑦∗

𝑡 ) as the product of a marginal and a conditional density,
𝑓 (𝑦∗

𝑡 |⋅) = 𝑓 (𝑦∗
1𝑡|𝑦2𝑡, ⋅)𝑓 (𝑦2𝑡|⋅), where:

𝑓 (𝑦2𝑡|⋅) = 𝑁 (𝑚2𝐼𝑡
,Σ22,𝐼𝑡

) = 𝑁 (𝑋2𝑡𝛽2𝐼𝑡
,Σ22,𝐼𝑡

) (17)

𝑓 (𝑦∗
1𝑡|2|⋅) = 𝑓 (𝑦∗

1𝑡|𝑦2𝑡, ⋅) = 𝑁 (𝑚1𝐼𝑡 |2, 𝑀1𝐼𝑡 |2) (18)

with
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𝑚1𝐼𝑡 |2 = 𝑚1𝐼𝑡
+ Σ12,𝐼𝑡Σ

−1
22,𝐼𝑡

(𝑦2𝑡 − 𝑚2𝐼𝑡
)

𝑀1𝐼𝑡 |2 = Σ11,𝐼𝑡 − Σ12,𝐼𝑡Σ
−1
22,𝐼𝑡

Σ21,𝐼𝑡

The factoring of 𝑓 (𝑦∗
𝑡 |⋅) partitions the joint distribution into two parts and allows the implementation of a normal

regression model for the unconstrained variables and a conditional censored normal regression model for the
constrained variables

[ ̃𝑦1𝑡|2
𝑦2𝑡

] |𝑋𝑡, 𝐼𝑡, 𝜃 ∼ 𝑁 ([ 𝑚1𝐼𝑡 |2
𝑚2𝐼𝑡

] , [ 𝑀1𝐼𝑡 |2 0
0 Σ22,𝐼𝑡

]) 1 ( ̃𝑦1𝑡 ≥ 𝑏) (19)

B Appendix

Bayesian framework

B.1 Likelihood

Define the number Nj, j = 1, 2, which indicates the number of, respectively, censored and uncensored variables.
Conditional on I and using (19), the data likelihood can be factorized

𝑓 ( ̃𝑦 ̃𝑦 ̃𝑦|X, I, 𝜃) =
𝑇

∏
𝑡=𝑝+1

𝑓 ( ̃𝑦𝑡|𝑋𝑡, 𝛽𝐼𝑡
,Σ𝐼𝑡

) 1 ( ̃𝑦1𝑡 ≥ 𝑏) (20)

=
𝑇

∏
𝑡=𝑝+1

𝑓 ( ̃𝑦1𝑡|𝑦2𝑡, 𝑋1𝑡, 𝛽1𝐼𝑡
,Σ11,𝐼𝑡

) 1 ( ̃𝑦1𝑡 ≥ 𝑏) 𝑓 (𝑦2𝑡|𝑋2𝑡, 𝛽2𝐼𝑡
,Σ22,𝐼𝑡

) (21)

From (17), the period t density contribution is multivariate normal for y2t

𝑓 (𝑦2𝑡|𝑋2𝑡, 𝛽2𝐼𝑡
,Σ22,𝐼𝑡

) = (2𝜋)−𝑁2/2 |Σ22,𝐼𝑡 |
−1/2×

exp {−
1
2

(𝑦2𝑡 − 𝑋2𝑡𝛽2𝐼𝑡
)′

Σ−1
22,𝐼𝑡

(𝑦2𝑡 − 𝑋2𝑡𝛽2𝐼𝑡
)}

(22)

and the period t contribution of censored variables is

𝑓 ( ̃𝑦1𝑡|𝑦2𝑡, 𝑋1𝑡, 𝛽1𝐼𝑡
,Σ11,𝐼𝑡

) 1 ( ̃𝑦1𝑡 ≥ 𝑏) = Φ (𝑀−1/2
1𝐼𝑡 |2 (𝑏 − 𝑚1𝐼𝑡 |2))1( ̃𝑦1𝑡=𝑏)

× |𝑀1𝐼𝑡 |2|
−1/2𝜙 (𝑀−1/2

1𝐼𝑡 |2 ( ̃𝑦1𝑡 − 𝑚1𝐼𝑡 |2))1( ̃𝑦1𝑡>𝑏) (23)

where Φ (𝑀−1/2
1𝐼𝑡 |2 (𝑏 − 𝑚1𝐼𝑡 |2))1( ̃𝑦1𝑡=𝑏)

equals

∫
𝑏𝑁1

−∞
… ∫

𝑏1

−∞
|𝑀1𝐼𝑡 |2|

−1/2𝜙 (𝑀−1/2
1𝐼𝑡 |2 ( ̃𝑦1𝑡 − 𝑚1𝐼𝑡 |2)) 𝑑 ̃𝑦11,𝑡 … 𝑑 ̃𝑦1𝑁1,𝑡,

and ϕ denotes the pdf (see (22)) of the standard (multivariate) normal distribution.
The likelihood of the complete data factorizes

𝑓 (𝑦∗𝑦∗𝑦∗|X, I, 𝜃) =
𝑇

∏
𝑡=𝑝+1

𝑓 (𝑦∗
1𝑡|𝑦2𝑡, 𝑋1𝑡, 𝛽1𝐼𝑡

,Σ11,𝐼𝑡
) 𝑓 (𝑦2𝑡|𝑋2𝑡, 𝛽2𝐼𝑡

,Σ22,𝐼𝑡
) (24)

where the moments of the marginal and condition normal observation densities are given in, respectively, (17)
and (18).
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B.2 Prior distributions

To complete the Bayesian setup, we specify the prior density of the state indicator I:

𝜋 (I|r, 𝛾, 𝛾𝑟) =
𝑇

∏
𝑡=𝑝+1

𝜋 (𝐼𝑡|𝑟𝑡−1, 𝛾, 𝛾𝑟) (25)

The prior for the censored variables is assumed to be diffuse, 𝜋 (𝑦∗
1𝑦∗
1𝑦∗
1) ∝ 1(𝑦∗

1𝑦∗
1𝑦∗
1 ≤ 𝑏). We might also work with a

proper prior distribution, restricted to the latent area, 𝜋 (𝑦∗
1𝑦∗
1𝑦∗
1) ∼ 𝑁 (0, 𝜅𝐼) 1(𝑦∗

1𝑦∗
1𝑦∗
1 ≤ 𝑏) with κ some real number.

Finally, we assume independent priors for the model parameters:

𝜋 (𝜃) = 𝜋 (𝛾, 𝛾𝑟)
1

∏
𝑘=0

𝜋 (𝛽𝑘) 𝜋 (Σ𝑘) (26)

The prior for (γr , γ) includes a state-identifying restriction and additional information on the threshold level,
see (10).

The priors on βk are independent normal, with variance structure implied by Minnesota priors, 𝜋 (𝛽𝑘) =
𝑁 (𝑣, 𝑉𝑘). The vector 𝑣 is of dimension N(Np + 1), see (1). Given that we estimate a VAR in levels, we center the
first own autoregressive lag at 1 and all other coefficients at zero, 𝑣 = {𝑣𝑙|𝑙 = 1, … , 𝑁(𝑁𝑝 + 1)}, with

(𝑣𝑙, 𝑉𝑘,𝑙𝑙) = { 1 𝑙 = (𝑗 − 1)(𝑁𝑝 + 1) + (𝑗 + 1), 𝑗 = 1, … , 𝑁
0 otherwise

�

We specify the corresponding elements in 𝑉k as

𝑉𝑎𝑟(𝐵𝑘𝑙,𝑖𝑗) = { 0.01/𝑙2 𝑖 = 𝑗
0.25(0.01/𝑙2)(𝜎2

𝑘𝑖/𝜎2
𝑘𝑗) 𝑖 ≠ 𝑗

� , 𝑖, 𝑗 = 1, … , 𝑁

for k = 0,1 and l = 1, …, p. The state-specific variances in the scale factor (𝜎2
𝑘𝑖/𝜎2

𝑘𝑗) are equal to the variance of
residuals of univariate state-specific autoregressions in which states are predefined as 𝐼𝑡 = 1 if the libor ≤ 1%.
For the intercepts, we work with diffuse priors, 𝑉𝑎𝑟(𝜇𝑘𝑖) = 5.

For Σk, we assume an inverse Wishart prior distribution 𝐼𝑊(𝑠, 𝑆𝑘) with degrees of freedom 𝑠 = 𝑁 + 2 and
scale 𝑆k with diagonal elements 𝑆𝑘,𝑖𝑖 = 𝜎2

𝑘𝑖.

B.3 Posterior distributions

To obtain draws from the posterior

𝜋 (𝜗| ̃𝑦 ̃𝑦 ̃𝑦) ∝ 𝑓 (𝑦∗𝑦∗𝑦∗|X, I, 𝜃) 𝜋 (I|r, 𝜃) 𝜋 (𝑦∗
1𝑦∗
1𝑦∗
1) 𝜋 (𝜃)

we sample iteratively from the posterior of

1. the state indicator, 𝜋 (I|𝑦∗𝑦∗𝑦∗,X, r, 𝜃). Given that there is no state dependence in the state probabilities, we
are able to sample the states simultaneously. We update the period t prior odds 𝑃 (𝐼𝑡 = 1) /𝑃 (𝐼𝑡 = 0) =
exp (𝛾𝑟𝑟𝑡−1 + 𝛾) to obtain the posterior odds

𝑃 (𝐼𝑡 = 1|⋅) /𝑃 (𝐼𝑡 = 0|⋅) =
𝑓 (𝑦∗

𝑡 |𝑋𝑡, 𝛽1,Σ1) exp (𝛾𝑟𝑟𝑡−1 + 𝛾)
𝑓 (𝑦∗

𝑡 |𝑋𝑡, 𝛽0,Σ0)
, 𝑡 = 𝑝 + 1, … , 𝑇

We sample T − p uniform random variables Ut, and set It = 1 if

𝑃(𝐼𝑡 = 1|⋅)/ (𝑃(𝐼𝑡 = 0|⋅) + 𝑃(𝐼𝑡 = 1|⋅)) ≥ 𝑈
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2. the censored variables, 𝜋 (𝑦∗
1𝑦∗
1𝑦∗
1 |𝑦2𝑦2𝑦2,X, I, 𝜃) 1(𝑦∗

1𝑦∗
1𝑦∗
1 ≤ 𝑏). Conditional on I and the observed variables, and given a

diffuse prior, the moments of the posterior normal distribution 𝜋 (𝑦∗
1𝑦∗
1𝑦∗
1 |⋅) are given by (18). We sample from

this distribution truncated to the region 𝑦∗
1𝑦∗
1𝑦∗
1 ≤ 𝑏.

3. the parameters of the state distribution, 𝜋 (𝛾𝛾𝛾|r, I) 1 (𝛾𝑟 < 0) 1 (−𝛾𝑟𝛾 ≤ 𝛾 ≤ −𝛾𝑟𝛾). First, we introduce two
layers of data augmentation, which renders the non-linear, non-normal model into a linear-normal model
for the parameters (Frühwirth-Schnatter and Frühwirth, 2010):

– We express the state distribution in relative terms, i.e. as difference between the latent state utilities

𝜛𝑡 = 𝐼𝑢
1𝑡 − 𝐼𝑢

0𝑡
= 𝛾𝑟𝑟𝑡−1 + 𝛾 + 𝜖𝑡, 𝜖𝑡 ∼ Logistic

where

𝐼𝑢
1𝑡 = 𝛾𝑟𝑟𝑡−1 + 𝛾 + 𝜈1𝑡, and 𝐼𝑢

0𝑡 = 𝜈0𝑡
with 𝜈𝑘𝑡 i.i.d. Type I EV

– We approximate the Logistic distribution by a mixture of normals with M components, 𝑅𝑅𝑅 = (𝑅1, … , 𝑅𝑇).
Conditional on the latent relative state utilities ϖ and the components, we obtain a normal posterior
distribution, N(g, G) with moments:

𝐺 = ⎛⎜⎜
⎝

𝐺−1
0 +

𝑇
∑

𝑡=𝑝+1
𝑍′

𝑡𝑍𝑡/𝑠2𝑚𝑡
⎞⎟⎟
⎠

−1

𝑔 = 𝐺 ⎛⎜⎜
⎝

𝐺−1
0 𝑔0 +

𝑇
∑

𝑡=𝑝+1
𝑍′

𝑡𝜛𝑡/𝑠2𝑚𝑡
⎞⎟⎟
⎠

where 𝑍𝑡 = [𝑟𝑡−1, 1]
′ and 𝑠2𝑚𝑡

= 𝑠2𝑚 is the variance of the mixture components Rt, see Table 2 in Frühwirth-
Schnatter and Frühwirth (2010).

To implement the restrictions on 𝜸 according to (6), we partition the posterior appropriately:

𝜋 (𝛾𝑟, 𝛾|⋅) ∼ 𝑁 ([ 𝑔1
𝑔2

] , [ 𝐺11 𝐺12
𝐺21 𝐺22

])

Then we first sample 𝛾𝑟,(𝑚𝑐) from 𝑁(𝑔1, 𝐺11)1 (𝛾𝑟 < 0) and then sample γ from the truncated conditional
posterior (Robert, 2009; Botev, 2017):

𝛾|𝛾𝑟 = 𝛾𝑟,(𝑚𝑐) ∼ 𝑁 (𝑔𝑐
2 , 𝐺𝑐

2) 1 (−𝛾𝑟𝛾 ≤ 𝛾 ≤ −𝛾𝑟𝛾)

with moments

𝑔𝑐
2 = 𝑔2 − 𝐺21𝐺−1

11 (𝛾𝑟,(𝑚𝑐) − 𝑔2)
𝐺𝑐
2 = 𝐺22 − 𝐺21𝐺−1

11 𝐺12

4. the rest of the parameters, 𝜋 (𝜃−𝛾𝛾𝛾 |X, 𝑦∗
1𝑦∗
1𝑦∗
1 , I). Conditional on I and the augmented data 𝑦∗𝑦∗𝑦∗, the model in (1) is

linear. The posterior distribution of the regression parameters and of the error variances are then, respec-
tively, normal and inverse Wishart, the moments of which can be derived in the usual way.
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C Appendix

Addtional results

C.1 Duration of minimum 2 periods

Figure 17: Duration of minimum 2 periods.
Left-hand: Observed interest rate and model-based estimate of 𝑦∗

1𝑦∗
1𝑦∗
1 < 𝑏 (red); the black line is the median, the areas de-

creasing in shades correspond to, respectively, the 25%, the 50% and the 80% interval of highest posterior density; mean
posterior probability of state 1 (yellow). Right-hand: histogram of 𝑦∗

1𝑡 < 𝑏 for 𝑡 = 2014.00, 2014.25, 2014.50, i.e. 2014 first
through third quarter; the second and third numbers under each histogram refer to, respectively, 𝑃 (𝑦∗

1𝑡 < min𝑡{𝑦1𝑡}) and
median (𝑦∗

1𝑡).

C.2 Additional results of the Full model
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Figure 18: Scatter plots: State It = 0 (x-axis) against It = 1 (y-axis) parameter draws along with the 45% line. (A) Intercept
and lag 1. (B) lag 2.

C.3 Additional results of the SV model
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Figure 19: Switching VAR with SV. Scatter plots: State It = 0 (x-axis) against It = 1 (y-axis) parameter draws along with the
45% line. (A) Intercept and lag 1. (B) lag 2.

Notes
1 Additionally, there are a number of contributions focussing on the behaviour of the yield curve at the ZLB (see e.g. Wright, 2012; Chris-
tensen and Rudebusch, 2016; Krippner, 2015; Swanson and Williams 2014a; 2014b; Bauer and Rudebusch, 2016).
2 The model can be generalized to ̃𝑦1𝑡 being a sub-vector of yt and b containing different bounds. For example, in the Swiss case, in
addition to the interest rate constraint, this could be the 1.20 floor introduced for the euro-Swiss franc exchange rate. Appendices A and B
detail, respectively, the distributional properties and the Bayesian framework including sampling steps for a general setup, i.e. for multiple
constrained variables.
3 Swanson and Williams (2014b) emphasize, for example, that the effective lower bound is potentially positive for institutional reasons.
4 The results are nearly unchanged if the mean of the interest rate forecast is not allowed to be lower than the lagged forecast, i.e. setting
𝑚(𝑙)

𝑖,𝑇+ℎ ≤ 𝑦(𝑙)
𝑖,𝑇+ℎ−1 for h = 1, …, H. The scenario we implement yields smoother interest rate dynamics when exiting the ZLB region.

5 Bäurle and Kaufmann (2018) take into account another brief episode with interest rates as low as 0.5% in 2003 and 2004, based on the
argument that a shadow short-rate fell below the three-month libor and into negative territory.
6 Wu and Xia (2016) also set b = 0.25 to estimate a non-linear term-premium model with a shadow short-term policy rate for the US. They
justify the threshold by the fact that the lower bound of the target range was 0 by the time the target for the Federal funds rate was lowered
to 25 bps.
7 We thank Anne Kathrin Funk for providing the individual participant’s interest rate forecasts.
8 Expectations according to futures contracts reflect professonial forecasters’ expectations. Before August 2011, market participants ex-
pected the libor to remain between 0.2 and 0.25% during the next quarter.
9 Some of the identified It = 1 periods last only one quarter at the beginning of the sample. Enforcing a minimum duration of two quarters
leaves posterior inference nearly unchanged, see Figure 17 in online Appendix C.1. Uncertainty about state classification is larger, however.
10 These and the following results are robust to estimating a model in which the upper bound for the threshold is set to 𝛾 = 2.0. Increasing
the censoring value to b = 1.0 for both specifications of 𝛾 = {1.5, 2.0} leads to a latent rate that follows closely the observed rate at the end
of the 1970s and from mid 2002 to the end of 2005. At the end of the sample the latent rate reaches the zero bound and then passes into
negative territory by the third quarter of 2009. Given that, in the current setting, b = 0.25 and the latent rate turns negative at the beginning
of 2010, we can infer that the interest rate was bounded from below at the end of the sample while it was not during the previous periods
of low interest rates. These additional findings corroborate our setting b = 0.25. To save space, the additional results are not reported but
available upon request from the authors.
11 For the interested reader, Figure 18 in Appendix C.2 shows scatter plots of State 𝐼𝑡 = 0 (x-axis) against  𝐼𝑡 = 1 (y-axis) draws of intercepts
and VAR parameters. For some parameters, the posterior distribution is shifted away from the 45% line. Those are the relevant ones leading
to differences in impulse responses.
12 Bäurle and Kaufmann (2018) incorporate the ZLB in a New Keynesian model with Calvo pricing (Galí, 2005). A risk premium shock
leads to an immediate and strong drop in the price level when the ZLB is binding, because those firms that adjust reduce strongly their
price after the appreciation shock. Results are potentially more in line with our empirical results when strategic complementarity in price
setting is present. Firms that adjust like to keep prices close to those of their competitors that do not adjust. Therefore, adjusting firms
change prices only by a small amount, which leads to a more gradual but nevertheless protracted decline in the price level.
13 In this basic model with four variables, it is not obvious to identify a monetary policy shock in state It = 1 when interest rates are near
the ZLB. Therefore, we provide forecasts obtained with the reduced form.
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14 The interested reader finds the derivation of the posterior distributions in Chan and Eisenstat (2018). We thank the authors for sharing
their matlab code.
15 Imposing sign restrictions yields 24,292 retained draws for state It = 0 and 24,138 retained draws for state It = 1. Given that volatilities
evolve smoothly, we chose two periods corresponding to It = 0 and It = 1 in the Full model to draw impulse responses: The first quarter of
1991 and the second quarter of 2005, respectively.
16 The interested reader finds scatter plots of switching parameters in Figure 19 of Appendix C.3
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