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Abstract

Well-controlled quantum systems, such as defects in the solid state, have emerged in
recent years as candidates for novel precision sensors for magnetic or electric fields
on nanoscopic length scales. This thesis reports on experiments with one such quan-
tum sensor: the nitrogen-vacancy (NV) center in diamond. The NV center is a stable
defect whose electron spin can be optically polarized and read out. Furthermore, co-
herent control of the spin state is possible even at room temperature. These unique
properties allow us to use the NV center as a local sensor for magnetic fields.

The main focus of this work is addressing the detection of nuclear magnetic reso-
nance (NMR) signals in the atomistic environment of the defect. The long-term goal
of this research is the structure elucidation of individual molecules attached onto the
diamond surface. In our experiments we detect NMR signals, arising from 13C spins
in the vicinity of the defect, using dynamical decoupling spectroscopy. Dynamical
decoupling spectroscopy uses a set of equidistant refocusing pulses applied to the
sensor to detect weak magnetic fields oscillating at a specific frequency. The detec-
tion frequency is controlled by the temporal separation between microwave pulses.

In a first set of experiments (in Chapter 5) we introduce a simple method, based
on shaped microwave pulses, to enhance control over the temporal separation be-
tween the pulses. Thereby we significantly increase the frequency tunability of our
spectroscopy sequences beyond the time resolution of our control hardware.

By detecting the position-dependent NMR frequencies of individual 13C nuclei,
their location relative to the defect can be determined. In previous NV-NMR ex-
periments, however, only partial spatial information was available. The second
project (Chapters 6 and 7) demonstrates the full three-dimensional imaging of in-
dividual nuclear spins by using the magnetic field vector of a custom-built planar
radio-frequency coil as a spatial reference. Two different imaging strategies are pre-
sented, which are based on different NMR control sequences and produce consistent
imaging results for nuclei at distances of up to ∼ 12 Å from the sensor.

Apart from the NMR experiments, which require the sensitive detection of har-
monic signals, this thesis further explores the more general problem of how arbitrary
magnetic waveforms can be detected with the NV center. We present a novel sens-
ing protocol (Chapter 8), which is based on differential spin echo sequences. The
method enables the reconstruction-free detection of waveforms with both high field
sensitivity (4 µT/

√
Hz) and high time resolution (20 ns). This new measurement

technique has potential applications for studying dynamics in nanoscale devices.
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Zusammenfassung

Wohlkontrollierte Quantensysteme, wie beispielsweise Defektzentren in Festkör-
pern, wurden in den letzten Jahren als neuartige Präzisionssensoren für magnetis-
che und elektrische Felder auf der Nanoskala indentifiziert. Die vorliegende Ar-
beit berichtet über Experimente mit einem solchen Quantensensor: dem Stickstoff-
Fehlstellen-Zentrum (NV-Zentrum) in Diamant. Das NV-Zentrum ist ein stabiler
Defekt, dessen Elektronenspin optisch polarisiert und ausgelesen werden kann.
Desweitern kann der Defekt bei Raumtemperatur kohärent kontrolliert werden.
Diese einzigartigen Eigenschaften erlauben es das NV-Zentrum als Sensor für lokale
magnetische Felder zu verwenden.

Der Hauptfokus dieser Arbeit liegt in der Detektion von Kernspinresonanz-
Signalen (NMR-Signale) in der Umgebung des Defektzentrums. Das langfristige
Ziel dieser Forschung liegt in der Strukturbestimmung von einzelnen Molekülen,
welche dazu auf die Diamantoberfläche aufgebracht werden. In den hier
diskutierten Experimenten detektieren wir die NMR-Signale von 13C-Spins in
der direkten Umgebung des Defekts mittels dynamischer Entkopplungsspek-
troskopie. Bei der dynamischen Entkopplungsspektroskopie werden equidistante
Refokussierungspulse verwendet, um magnetische Felder bei einer wohldefinierten
Frequenz zu detektieren. Die Detektionsfrequenz ist dabei durch den zeitlichen Ab-
stand von Refokussierungspulse gegeben.

In einer ersten Studie (siehe Kapitel 5) führen wir eine einfache Methode ein,
welche amplitudenmodulierte Pulse nutzt, um den zeitlichen Abstand zwischen Re-
fokussierungspulsen sehr präzise einzustellen. Dadurch erhöht sich die Frequenz-
abstimmbarkeit der Spektroskopiesequenz signifikant und überschreitet das Limit
welches durch die Zeitauflösung der Steuerungselektronik gegeben ist.

Durch die Detektion von positionsabhängigen Präzessionsfrequenzen von
einzelnen 13C-Spins lässt sich deren relativer Distanzvektor zum NV-Zentrum er-
mitteln. In bisherigen NV-NMR Experimenten konnten nur partielle Informationen
über den Distanzvektor einzelner Kernspins ermittelt werden. Das zweite in dieser
Arbeit beschriebene Projekt zeigt in den Kapiteln 6 und 7 wie der gesamte dreidi-
mensionale Distanzvektor einzelner Kernspins bestimmt werden kann. Dazu wurde
der lokale Feldvektor einer selbstgebauten, planaren Radiofrequenz-Spule als Ort-
sreferenz eingesetzt. Zwei konzeptionell unterschiedliche Positionierungsverfahren
wurden entwickelt, welche auf unterschiedlichen NMR Sequenzen basieren. Die
Methoden lieferen konsistente Resultate und ermöglichen in den vorgestellten Ver-
suchen die Positionsbestimmung von Kernspins mit einem Abstand von bis zu
∼ 12 Å zum Sensorspin.

Zusätzlich zu den NV-NMR Experimenten, welche die Detektion von harmonis-
chen Signalen erfordern, wurde in Kapitel 8 ein Verfahren für die Vermessung von
beliebigen Signalformen entwickelt. Dazu führen wir eine Sequenz ein, welche auf
differentiellen Spin-Echos basiert. Die Methode ermöglicht eine rekonstruktions-
freie Detektion von Signalformen mit hoher Feld- (4 µT/

√
Hz) und Zeitauflösung

(20 ns). Diese Methode kann für die Untersuchung von dynamischen Prozessen in
nanoskaligen Proben genutzt werden.
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CHAPTER 1
Introduction

About a century after the discovery of quantum mechanics [1–5] modern technology
enables physicists to fully control small quantum systems in a laboratory environ-
ment. Apart from using these pristine systems for tests of the fundamental laws of
quantum theory [6–10], also the technological application of well-controlled quan-
tum systems in computing [11–13], secure communication [14–16] and sensing or
metrology [17–22] is nowadays of interest. This is because devices based on quan-
tum systems can or are expected to perform certain tasks better than their classi-
cal implementation. This includes computational algorithms that leverage quantum
mechanics to provide exponential speed-ups versus their classical counterpart [23],
communication protocols that are information-theoretically secure [14] and quantum-
enhanced sensors whose precision improves faster with the number of measure-
ments than a classical counterpart [17, 18].

In quantum sensing a controllable quantum system is used to estimate an a-priori
unknown parameter, e.g., the local magnetic or electric field at the location of the
sensor system, by monitoring either energy splittings or the transition rate between
energy levels [22]. From the fundamental viewpoint quantum-enhanced sensing re-
quires an entangled set of sensing qubits to achieve a scaling advantage in measure-
ment precision over classical systems [17, 18]. Nevertheless, in recent years, mainly
individual sensing qubits or ensembles of uncorrelated quantum sensors have found
rich applications, which merely exploit, for example, the nanoscale spatial extension
of the sensor [20, 24–28]. Further, in frequency metrology, laser oscillators locked to
narrow optical transitions of trapped ensembles of ultracold atoms [29, 30] or indi-
vidual ions [31–33] are currently providing the most precise time standards. Here,
the extremely high quality factor of optical transitions combined with the fact that
all atoms or ions are identical in their physical properties is exploited.

In this thesis, we use an artificial atom [34], the nitrogen-vacancy center (NV cen-
ter) in diamond, as a quantum sensor. The NV center consists of a substitutional
nitrogen atom neighboring a vacancy in the diamond lattice [35, 36]. The defect oc-
curs naturally in diamond crystals, but can also be created artificially for example by
ion implantation of diamond with nitrogen [37]. Using a combination of optical tran-
sitions driven by laser pulses and magnetic transitions controlled with microwaves,
the NV center can be used to detect the local temperature [38], pressure [39], electric
[40] or magnetic field [20]. Throughout this thesis we will focus on the detection of
magnetic fields and therefore use the NV center as a local magnetometer. For this
purpose we monitor the splitting between energy levels associated with the spin of
the defect, which depends on magnetic field via the Zeeman effect [41].
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Molecule sample

Diamond chip
with single spin sensor

z

x
NV center
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A B Spin γ/(2�) (MHz/T) B (r = 4 nm)
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13C 1/2 10.708 5 nT

16O 0 - -

13C 15N 1/2 -4.316 2 nT

15N

FIGURE 1.1: Long-term vision for nanoscale magnetic resonance imaging with a single NV
sensor. (a) Sketch of the envisioned single-molecule imaging experiment with a spin sensor.
The atomic structure of a single molecule, here exemplarily the amino acid glutamine, could
potentially be directly imaged by measuring the distance vectors (dashed arrows) between
the NV electron spin and the nuclei composing the molecule. In this approach the sensor
spin has to be placed at most a few nanometers below the diamond surface to detect the faint
NMR signals of the nuclei. Spatial positions of nuclei can be encoded into NMR frequencies
by the dipolar hyperfine gradient of the sensor spin. In this thesis proof-of-principle imag-
ing methods based on the hyperfine gradient are experimentally demonstrated on 13C spins
(blue) inside the diamond crystal. (b) Summary of different nuclear spin species, their spin
quantum number, their gyromagnetic ratio γ and the generated magnetic field B at a dis-
tance of r = 4 nm to the sensor spin. In their most abundant isotope oxygen and carbon

nuclear spins posses zero spin and are therefore not detectable with NMR methods.

As the NV center is localized to atomic dimensions it is susceptible to variations
in magnetic field on the same length scale. Consequently, the NV center can be used
for nanoscale magnetic imaging, for example, by scanning a diamond tip hosting a
single NV center at its apex over a sample of interest. This was initially proposed
in [25, 42, 43] and recently demonstrated in several experiments at room and low-
temperature [28, 44–50]. In addition, a sample can be attached to the surface of the
diamond chip and a shallow NV center can be used to detect the magnetic field
generated by the sample to study its properties. Potential samples include solid-
state systems [51, 52], biomolecules [53–55] or small microwave and radio-frequency
circuits [56, 57].

Throughout the course of this thesis we will focus on magnetometry with in-
dividual, stationary NV centers residing in single-crystal diamonds. The long-term
motivation behind our experiments is to map the structure of individual biomolecules
that are attached to the surface of the diamond sensor chip. An illustration of such
an envisioned imaging experiment is shown in Fig. 1.1 (a). Here, a single NV cen-
ter serves as a sensor of the nuclear magnetic resonance (NMR) signals of the nu-
clei composing the molecule. The structure of the molecule can be determined by
measuring the distance vectors between the sensor spin and the nuclei. In contrast
to established structural imaging techniques like conventional NMR or cryogenic
electron microscopy, which average over large numbers of target molecules, only a
single copy of a molecule is required. Further, ensemble averages in conventional
structure determination can conceal conformational differences between individual
molecules, which could be unravelled using single-molecule NMR.

Heading for this challenging research goal this thesis reports on the measure-
ment of three-dimensional distance vectors between the NV center and individual
13C nuclei. In our experiments these nuclei are stochastically distributed (natural
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abundance 1.1 %) in the nanometer-scale vicinity of the defect inside the diamond
host (blue spins in Fig. 1.1 (a)). This nuclear spin system provides an ideal testbed for
NV-based NMR imaging experiments, because no molecule deposition is required
at this point and the nuclear spins are perfectly fixated inside the diamond. Fur-
ther, due to the short distances to the nuclei (distances ∼ 1 nm in this thesis), the
magnetic interaction to the sensor is stronger when compared to the expected inter-
action strength with external spins (see Fig. 1.1 (b) for a summary of the expected
magnetic interaction strength). This reduces the required sensor sensitivity to de-
tect the spins and decreases the experimental averaging time. Two complementary
methods for three-dimensional distance measurements will be presented in chapter
6 and 7.

A second set of experiments, presented in chapter 8, addresses a more general
sensing task. Here, we present the design and implementation of a novel sensing se-
quence for the detection of arbitrary, time-dependent magnetic fields. This sequence
enables us to operate the NV center in analogy to a conventional oscilloscope and
enables the study of complex temporal dynamics in nanoscale systems.

1.1 Outline of this thesis

This thesis is structured as follows:

• In Chapter 2 the basic electronic, optical and magnetic properties of the NV
center in diamond are described and the coherence times of the NV center at
room temperature are discussed. Finally, the basic concepts of magnetic field
sensing with the NV center are summarized.

• Chapter 3 introduces the basic pulse sequences used to detect, polarize, con-
trol and spectroscopically characterize nuclear spins in the vicinity of the NV
center.

• Chapter 4 provides a description of the experimental methods used through-
out this thesis.

Parts of the chapter are based on results from the publication: T. Unden, N.
Tomek, T. Weggler, F. Frank, P. London, J. Zopes, C. L. Degen, N. Raatz, J. Mei-
jer, H. Watanabe, K. M. Itoh, M. B. Plenio, B. Naydenov, and F. Jelezko, Coherent
control of solid state nuclear spin nano-ensembles, npj Quantum Information 4, 39
(2018).

• Chapter 5 discusses the application of shaped microwave pulses to high-resolution
quantum sensing of NMR signals with the NV center.

The chapter is based on the publication: J. Zopes, K. Sasaki, K. S. Cujia, J. M.
Boss, K. Chang, T. F. Segawa, K. M. Itoh, C. L. Degen, High resolution quantum
sensing with shaped control pulses, Phys. Rev. Lett. 119, 260501 (2017).

• Chapter 6 introduces a experimental technique to determine the location of
individual nuclear spins relative to the NV center. In addition, the limitation
in spatial resolution due to the finite extension of the electronic wave function
of the NV center in the diamond lattice is discussed.

The chapter is based on the publication: J. Zopes, K. S. Cujia, K. Sasaki, J.
M. Boss, K. M. Itoh, C. L. Degen, Three-dimensional localization spectroscopy of
individual nuclear spins with sub-Angstrom resolution, Nature Communications
9, 4678 (2018).
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• In Chapter 7 a second method for three-dimensional localization spectroscopy
of nuclear spins is introduced, which uses coherent radio-frequency pulses ap-
plied to nuclear spins.

The chapter is based on the publication: J. Zopes, K. Herb, K. S. Cujia, C. L. De-
gen, Three-Dimensional Nuclear Spin Positioning Using Coherent Radio-Frequency
Control, Phys. Rev. Lett. 121, 170801 (2018).

• Chapter 8 introduces a novel quantum sensing sequence based on differential
spin echoes, that enables the detection of arbitrary magnetic field waveforms
with a two-level quantum sensor.

The chapter is based on the publication J. Zopes and C. L. Degen, Reconstruction-
free quantum sensing of arbitrary waveforms, arXiv:1906.09176 (2019).

• Chapter 9 provides a conclusion on the results presented in this thesis and
gives an outlook on future opportunities and challenges.
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CHAPTER 2
The nitrogen-vacancy center:
A single-atom magnetometer

Summary

This chapter introduces the nitrogen-vacancy (NV) center in diamond, a stable defect that
we employ as a single-atom magnetometer throughout this thesis. In a first step we will
summarize the most relevant physical properties of the defect for magnetometry applications.
In a second step we will discuss how the electron spin associated with the defect can be
leveraged as a sensor. Furthermore, we will introduce the basic magnetometry techniques
and discuss their sensitivity to static and time-dependent magnetic fields.

2.1 Introduction

Historically, the strong potential of NV centers for quantum technologies was iden-
tified after the first optical detection of individual NV centers in 1997 [58]. Before
that ensembles of NV centers were already investigated optically and with electron
paramagnetic resonance (EPR) methods and the basic level structure of the defect
was inferred by Loubser and van Wyk in the 1970s [59]. After the aforementioned
optical detection of individual NV centers, initial experiments employed the NV
center to realize basic protocols of quantum information processing, e.g. controlled
single [60] and two-qubit gates [61]. Due to the large band gap of diamond the NV
center also represents a very stable single photon source, which led to early applica-
tions in quantum optics leading e.g. to the realization of Wheeler’s delayed choice
Gedanken experiment [9] and more recently to loophole-free tests of Bell’s inequality
[10].

The optically-detected magnetic resonance (ODMR) effect resulting from spin-
dependent fluorescence and optical polarizability founded the NV center’s use as
a local magnetic field sensor [62, 63], which has become a fast-growing research
direction in the last decade. The description in this chapter will focus on the room-
temperature properties of the defect and rationalizes the use of NV centers as sin-
gle spin sensors. Potential applications include, e.g., nanoscale nuclear magnetic
resonance (NMR) [64] electron paramagnetic resonance (EPR) spectroscopy [65] of
individual biomolecules [53] or solid-state systems [52] at ambient conditions. In ad-
dition, NV centers are currently also explored at cryogenic temperature (T < 10 K)
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FIGURE 2.1: Electronic structure of the NV center. (a) Crystal structure of the NV cen-
ter defect in the diamond host crystal. Dark grey points represent the carbon atoms of the
diamond lattice. The defect consists of a vacancy (white point with label V) adjacent to a
nitrogen atom (yellow point with label 15N ). The isotope of the nitrogen atom can be either
14N (natural abundance: 99.6 %) or 15N (natural abundance 0.4 %). Throughout this thesis
we work with NV centers with nitrogen nuclei of the 15N isotope, which are artificially gen-
erated by ion implantation (see section 4.2 in chapter 4). (b) Filling of the molecular orbitals
of the NV− defect in the ground-state with 6 electrons which comprise the valence shell and
originate from the carbon dangling bonds (3 electrons), the nitrogen atom (2 electrons) and
the lattice (1 electron). The lowest-lying energy level lies in the valence band of the host crys-
tal. Under optical illumination the occupation of the levels in the band gap changes from the

configuration a2
1e2 to the configuration a1

1e3.

where resonant optical transitions are resolved and enable spin-photon entangle-
ment [66] with applications in quantum communication [15]. Apart from the basic
description of the NV center in this chapter, with a focus on quantum sensing appli-
cations, extensive details on the NV center properties can be found in recent review
articles [35, 36, 39].

2.2 Defect structure

In Fig. 2.1 (a) we show the basic atomic structure of the NV center inside the dia-
mond crystal. It consists of a vacancy adjacent to a substitutional nitrogen atom. The
distance between vacancy and nitrogen inside the lattice according to density func-
tional theory (DFT) calculations is ∼ 1.65 Angstrom, while the empirical diamond
bond length between carbon atoms, at room-temperature, is 1.54 Angstrom.

The NV center exists in three different charge states, namely the NV+, NV0 and
NV− state. The NV0 and NV− state are stable at room-temperature and can be
distinguished optically via their optical zero phonon line (ZPL). The NV+ has been
discovered only recently [67] with additional external gate structures patterned onto
the diamond substrate. Only the negatively-charged NV− state provides an optical
interface to the spin state via state-dependent fluorescence and optical spin polar-
ization and is therefore of interest for quantum sensing applications. Therefore, we
will in the following discussion exclusively focus on the negative charge state.

The axial C3v symmetry of the defect defines the molecular orbitals, which trans-
form according to the irreducible representations of the point group. The filling of
the molecular orbitals of this NV− defect in the ground-state with the 6 electrons
which comprise the valence shell is shown in Fig. 2.1 (b). The electrons originate
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FIGURE 2.2: Quantum states of the NV center. (a) Electronic excited (|e〉) and ground-state
(|g〉) of the NV center inside the bandgap of the diamond host crystal. Both electronic states
comprise a spin-triplet (S = 1) sub-structure. A third meta-stable state (|m〉) is preferentially
populated from the mS = ±1 spin states of |e〉, which due to the slower and selective relax-
ation to mS = 0 leads to spin read-out and optical spin polarization. (b) Magnetic states of
the NV center in the orbital ground-state in an external magnetic field aligned along the z-
axis. Here, the z-direction is defined by the symmetry axis of the defect, which points along
the < 111 > direction of the diamond crystal. The energy of the spin states is described by
the Hamiltonian Ĥe,gs,‖ given in Eq. 2.4. (c) Hyperfine structure of the NV center magnetic
spin states due to the intrinsic nitrogen nuclear spin, here of the 15N isotope with spin 1/2.

The hyperfine splitting amounts to a|| = 2π × 3.05 MHz.

from the carbon dangling bonds (3 electrons), the nitrogen atom (2 electrons) and
the lattice (1 electron). The lowest-lying energy level lies in the valence band of the
host crystal [68]. Under optical illumination the occupation of the levels changes
from the configuration a2

1e2 to the configuration a1
1e3. The fact that these energy lev-

els are located deep inside the large band gap of diamond (5.5 eV) explains the photo
stability of the NV center.

2.3 Optical properties of the NV− defect

We will now turn to the available optical transitions of the NV center, which are
schematically represented in Fig. 2.2 (a). Both the electronic ground and excited
states have a spin triplet and a spin singlet state. The energy difference between the
ground and excited triplet state amounts to 1.945 eV, which defines the optical zero
phonon line (ZPL) of λZPL = 637 nm. The energy levels of the singlet states have
not been measured to date. For the description of the optical properties of the NV
center these can be subsumed under a single level |m〉 in-between the triplet states
(see Fig. 2.2 (a)). This simplification suffices to describe the relevant photo-physical
processes. Furthermore, as also indicated in Fig. 2.2 (a), spin-orbit and spin-spin
interaction split the mS-states of both the ground and excited triplet states. These
zero field splitting shifts are indicated and summarized in Tab. 2.1.

With the resulting level structure, we can describe the mechanism behind the



8
Chapter 2. The nitrogen-vacancy center:

A single-atom magnetometer

spin-state dependent fluorescence and the optical spin polarization once we intro-
duce the allowed transitions between the levels. In general, we excite the NV center
with laser radiation at a wavelength of λ = 532 nm. This prepares the defect into
the phonon sideband above the excited state. After a fast non-radiative decay the
NV center ends up in the excited state |e〉. From the excited state the NV center can
decay either to the ground-state |g〉 by re-emission of a photon or to the singlet state
|m〉, which has a long lifetime τ ∼ 250 ns. The latter process occurs preferentially
from the mS = ±1 states and leads to a spin-dependent fluorescence, which enables
spin-state read-out. Furthermore, the decay from the singlet states preferentially
populates the mS = 0 state, which results in optically induced spin polarization un-
der laser illumination and provides the basis for initialization of the electron spin.
This is an important prerequisite for quantum sensing and information processing
applications (see section 2.5). The spin polarization that can be achieved with this
very simple method reaches up to 95 %[39].

2.4 Spin states of the NV− electronic ground-state

In the following, we want to describe, in further detail, the structure of magnetic
states of the NV center in its electronic ground-state. We will consider the zero-field-
splitting, due to spin-spin interaction, the Zeeman splitting and the related g-factor
and finally turn to the hyperfine structure of the defect due to the intrinsic nitrogen
nuclear spin.

2.4.1 Zero-field and Zeeman splitting

The electron spin eigenstates of the NV center in the orbital ground-state with S = 1
are defined by the Hamiltonian He,gs, which consists of a zero field splitting term
(ZFS) due to spin-spin interaction and a Zeeman interaction term due to coupling to
external magnetic fields ~B0:

Ĥe,gs = DgsS2
z − γe~B0~S. (2.1)

Here, we have neglected the effect of strain and higher order spin-orbit coupling and
introduced the ZFS energy Dgs = 2π × 2.87 GHz. The most precise measurement of
the g-factor ge of the NV center is given by [69]

ge = −2.0029(2), (2.2)

which differs only very slightly from the value of the free electron [70]

gfree = 2.00231930436256(35). (2.3)

The anisotropy of the g-factor of the NV center is negligible. The gyromagnetic ratio
γe = geµB/h̄ of the NV center thus coincides very well with the one of the free
electron.

If no external magnetic field ~B0 is applied the eigenstates of the Hamiltonian are
eigenstates of the Sz operator and the projections mS = ±1 are degenerate. This
degeneracy of the Sz eigenstates is lifted by the application of an external field.
The field is in most experiments aligned along the z-direction, which simplifies the
Hamiltonian to:

Ĥe,gs,‖ = DgsS2
z − γeB0Sz. (2.4)
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FIGURE 2.3: Optically detected magnetic resonance. (a) Experimental sequence for pulsed
optically detected magnetic resonance. Initially, the NV center spin state is initialized with
a short laser pulse (duration ∼ 2 µs) and subsequently a microwave pulse with frequency
f drives a transition to either the mS = +1 or mS = −1 state, if f matches one of the two
magnetic transition frequencies. Finally, a second laser pulse detects the spin-state of the NV
center. (b) Resulting measurement spectrum of the normalized photon count rate (averaged
over many repetitions of the experiment) as a function of the microwave frequency f . Note
that the photon count rate is integrated only for a short time window after the start of the
second laser pulse. These integration windows are indicated in (a) as sig and ref for the sen-
sor signal and a reference measurement, respectively. Details on the time-resolved photon

integration follow in Chapter 4.

The z-direction is defined by the symmetry axis of the defect, which points along the
< 111 > direction of the diamond crystal. The resulting energy diagram of the three
magnetic states in the ground-state is shown in Fig. 2.2 (b).

2.4.2 Optically detected magnetic resonance

The combination of optically induced spin polarization, spin dependent fluores-
cence and the Zeeman splitting of the mS states (eigenstates of Sz) provides the basis
for the phenomenon of optically detected magnetic resonance (ODMR), which is the
fundamental physical mechanism for using the NV center as a local magnetic field
sensor. To explain the mechanism, we will consider the following experimental pro-
tocol which is schematically illustrated in Fig. 2.3 (a). Initially, we illuminate the
NV center for a short duration (typically 2 µs) with a laser pulse (λ = 532 nm) to
initialize it in the mS = 0 state. Subsequently, we apply a microwave pulse with fre-
quency f . Finally, we apply a second laser pulse and detect photons that are emitted
by the NV center. After averaging this experiment over many iterations (typically
105 − 106 repetitions), to build up sufficient photon statistics, we observe a signal
trace as shown in Fig. 2.3 (b). We can identify a reduced number of average photon
counts, if the microwave frequency f is tuned to a transition from the bright mS = 0
state to either the mS = +1 or mS = −1 dark state. As this transition frequency
between the mS states depends on the applied external field via the Zeeman effect,
the local magnetic field at the position of the NV center can be inferred by detecting
the magnetic resonance effect optically. This basic magnetometry method will be
extended to more sensitive, coherent methods in section 2.5 of this chapter.

2.4.3 Hyperfine structure due to the intrinsic nitrogen spin

Each NV center possesses the intrinsic nuclear spin of the nitrogen atom leading to a
hyperfine splitting of the mS = ±1 states. In principle the naturally most abundant
nuclear spin is of 14N isotope with spin I = 1. However, in all experiments reported
in this thesis the nitrogen atom is of 15N isotope with spin I = 1/2, due to the
isotope choice during ion implantation which is employed for NV center generation
(see chapter 4 for details). To describe the composite two spin system, we extend the
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Hamiltonian Ĥe,gs,‖ with a nuclear Zeeman term and the hyperfine interaction term:

Ĥen,gs,‖ = DgsS2
z − γeB0Sz − γ15NB0 Iz + ~SA~I. (2.5)

Here, γ15 N/(2π) = −4.316 MHz/T is the gyromagnetic ratio of the nitrogen nuclear
spin and A is the hyperfine tensor, which describes the coupling between the elec-
tron and the nuclear spin of the NV center. The hyperfine tensor in the principal axis
system (PAS) can be written as:

A =

A11 0 0
0 A22 0
0 0 A33

 . (2.6)

In the electronic ground-state the hyperfine tensor components are given by a⊥ =
A11 = A22 = 2π× 3.65 MHz and a|| = A33 = 2π× 3.05 MHz [68]. In the excited state
only the A33 component has been characterized experimentally and exceeds 2π ×
60 MHz [71]. Using the hyperfine tensor in the PAS, we rewrite the Hamiltonian of
the composite electron-nuclear spin system and obtain:

Ĥen,gs,‖,PAS = DgsS2
z − γeB0Sz − γ15NB0 Iz + a||Sz Iz + a⊥(Sx Ix + Sy Iy). (2.7)

Flip-flop transitions of the electronic and nuclear spin are strongly suppressed due
to the large energy mismatch in our experiments. Therefore, we can usually neglect
the last term in the previous Hamiltonian, thus finally arriving at the secular Hamil-
tonian Ĥen,gs,‖,PAS,Sec:

Ĥen,gs,‖,PAS,Sec = DgsS2
z − γeB0Sz − γ15NB0 Iz + a||Sz Iz. (2.8)

The resulting energy states are indicated in Fig. 2.2 (c). We note, that the intrinsic
nitrogen nuclear spin can be a useful additional resource for quantum sensing ex-
periments, as it can serve as a nuclear quantum memory[72, 73] and enables repet-
itive read-out schemes[73, 74]. The splitting of the electron spin states mS = ±1
into a doublet can experimentally be resolved by ESR spectroscopy and a typical
hyperfine-resolved spectrum of a single NV center is shown in Fig. 2.5 (b).

2.5 Magnetometry with the NV center

In the following paragraphs we will describe how the room-temperature quantum
coherence between the mS states of the NV center can be leveraged for sensitive
detection of local magnetic fields. We now assume that a static external bias field B0
is aligned with the quantization axis of the NV center. This bias field enables us to
selectively operate with the effective two-level system, defined by the mS = 0 (|0〉)
and mS = −1 (|−1〉) states. The transition frequency between these two states is
given by ω−1 = Dgs − γeB0. We pick these levels because the transition frequency
can be covered with our measurement electronics over a large range of bias fields
B0.

At the beginning of every sensing experiment performed during this thesis work,
we use a short laser pulse to polarize the NV center in the mS = 0 state. Subse-
quently, we apply a microwave pulse sequence which manipulates the spin state of
the NV center. This pulse sequence actuates the spin such that it becomes suscepti-
ble to an a-priori unknown magnetic field B(t) that we wish to detect. Finally, the
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NV center is read out with a second laser pulse and the information on B is encoded
in the probability p that the spin state has changed from the mS = 0 state.

2.5.1 Magnetic field sensing with the Ramsey method

The interferometric Ramsey pulse sequence1 provides the basis for most common
quantum sensing sequences. The sequence is shown in Fig. 2.4 (a). Here, the NV
spin is initially prepared in the superposition state |ψi〉 of the mS = 0 and the mS =
−1 state by employing a π/2 rotation:

|ψi〉 =
1√
2
(|0〉+ |−1〉) . (2.9)

In the reference frame rotating with the transition frequency between the energy
levels ω−1 = Dgs − γeB0 the phase relation for this superposition state of mS = 0
and mS = −1 remains constant over time. Thus, the quantum state after a evolution
time τ is unchanged in this rotating reference frame. Hence a second, in-phase,
π/2 rotation results in the final state ψ f = |−1〉. This final state is experimentally
detected with a second laser pulse. We thus conclude that if apart from the static bias
field B0 no additional Zeeman field interacts with the NV spin and the microwave
frequency is properly calibrated to ω−1, we find a probability of p = 100 % that the
NV center changes from mS = 0 to mS = −1 independent of the waiting time τ.

If, however, a second unknown magnetic field B(t) acts on the sensor along the
quantization axis, it will imprint a shift on the phase during the waiting time, given
by:

φ(τ) =
∫ τ

0
γeB(t′)dt′. (2.10)

The resulting quantum state |ψ(τ)〉 after the waiting time is thus given by:

|ψ(τ)〉 = 1√
2
(|0〉+ exp (−iφ(τ)) |−1〉) . (2.11)

The phase shift is subsequently converted to a detectable change in the spin state
populations by the second π/2 pulse, which results in the state |ψ f (τ)〉:

|ψ f (τ)〉 =
1
2
(1 + exp(−iφ(τ))) |0〉+ 1

2
(1− exp(−iφ(τ))) |−1〉 . (2.12)

The final readout laser pulse detects the probability of finding the NV center in the
|0〉 state. The transition probability of the NV center from the initial state is then
given by:

p(τ) = 1− | 〈0 | ψ f (τ)〉 |2 . (2.13)

As an example let us assume that the unknown magnetic field B(t) is constant over
time B(t) = Bc. In this case the phase shift amounts to φ(τ) = γeBcτ and thus the
state after the waiting time τ is given by:

|ψ f (τ)〉 =
1
2
(1 + exp(−iγeBcτ)) |0〉+ 1

2
(1− exp(−iγeBcτ)) |−1〉 . (2.14)

1Named after the American physicist Norman Ramsey (1915-2011).
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FIGURE 2.4: Ramsey and Spin echo magnetometry sequences. (a) Experimental Ramsey
spectroscopy sequence applied to the NV center. Initially, the NV center is prepared in the
ms = 0 state with a Laser pulse. Subsequently, a microwave pulse with rotation angle π/2
prepares a coherent superposition state of the ms = 0 and ms = −1 manifold. The coherence
precesses and acquires a phase that depends on the magnetic field acting on the NV center
during the waiting time τ. The resulting phase, as given by Eq. 2.10 , is converted into a
detectable spin state population with the second π/2 pulse and readout with the final laser
pulse. (b) Spin echo sequence for NV magnetometry. In comparison to the Ramsey sequence
the pulse sequence is extended by a refocusing π-pulse, which is applied after half of the free
precession time τ/2. This enables the detection of ac signals, as discussed in further detail

in the text.

Using equation 2.13 we infer the transition probability p(τ), which reads:

p(τ) = sin2 (γeBcτ) =
1
2
(1− cos(γeBcτ)) . (2.15)

Consequently, the unknown static field Bc can be detected by recording the transition
probability of the NV center for varying τ. From equation 2.15 we can directly infer
that if the static perturbation Bc is small, the waiting time τ needs to be long to ensure
a detectable variation in p. This statement will be further clarified in the following
paragraph.

Quadratic or variance detection

After deriving the sensor output p(τ), we can in a next step derive an approximate
expression in the limit of small acquired sensor phases φ(τ). In the following we
will keep the assumption that the unknown magnetic field is constant over time
B(t) = Bc. Further, we will assume that the magnetic field is small, so that in fact
the sensor phase is small φ(τ) = γeBcτ � 1. In this case we can perform a Taylor
expansion of the cosine function in Equation 2.15: cos(x) ≈ 1− 1/2x2 +O(x4) for
x � 1. Applying the expansion to Equation 2.15 we obtain:

p(τ) ≈ 1
2
(1− 1 + 1/2(γeBcτ)2) =

1
4

γ2
e B2

c τ2 =
1
4

φ(τ)2. (2.16)

We observe that the variation in the sensour output p(τ) depends quadratically on
the acquired phase φ(τ) for small φ � 1. For this reason the detection sequence is
also called quadratic or variance detection [22], because fluctuating magnetic fields
with 〈B(t)〉 = 0 can be detected as long as the variance does not vanish 〈B2(t)〉 6= 0.
This is particularly useful for the spectroscopy of noise processes as discussed in
further detail in Chapter 3 and in [22, 75, 76].
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Linear magnetic field detection

The Ramsey spectroscopy sequence is most sensitive to small signals when operated
in the so-called linear detection regime. This measurement regime can be realized,
e.g., by phase shifting the second π/2-pulse by 90◦ relative to the first one. In this
case the resulting transition probability of the sensor is given by:

p(τ) =
1
2
(1− sin(γeBcτ)). (2.17)

We can again perform a Taylor expansion of the transition probability sin(x) = x +
O(x3) for x � 1 and obtain:

p(τ) ≈ 1
2
(1− γeBcτ) =

1
2
− γe

2
Bcτ =

1
2
− 1

2
φ(τ). (2.18)

The signal depends now linearly, instead of quadratically, on the small phase φ(τ)
and therefore more sensitive detection of magnetic fields with 〈B(t)〉 6= 0 is feasible.

2.5.2 Magnetic field sensitivity of Ramsey spectroscopy

At this point we can derive the magnetic field sensitivity of a spin-based quantum
sensor when operated with Ramsey spectroscopy in the linear detection regime. Sen-
sitivity in units of T/

√
Hz is defined as the minimum field that yields unit SNR for

an total measurement duration of T = 1 s [22, 36]. The general expression for the
SNR is given by:

SNR =
δp
σp

, (2.19)

where δp is the variation in the sensor output p(τ) and σp is the readout uncertainty
of the sensor variation. To derive sensitivity, we constrain the following derivation
steps to the linear detection regime. Hence, the variation in the sensor output is
given by δp = 1/2γeBcτ, as derived in equation 2.18. The readout uncertainty is
composed of several contributions that we will summarize now. The description
follows in parts [36] and [22]:

Readout noise sources

• Quantum projection noise: A single readout of the quantum sensor in the state
|ψ〉 = α |0〉+ β |−1〉 yields a discrete outcome of detecting either the state |0〉
with probability |α|2 or the state |−1〉 with probability |β|2. If we want to es-
timate, for example, p = |α|2 we have to perform a set of M measurements
with M0 outcomes of detecting the sensor in state |0〉 and M1 realizations of
detecting the state |−1〉. The estimate of p, is then given by: p = M0

M . The asso-
ciated uncertainty σp,qp of this estimate is given by the variance of the binomial
distribution σ2

p,qp = 1
M p(1− p). In the linear detection limit, we have p ∼ 0.5

and thus the variance due to projection noise is given by

σ2
p=0.5,qp ≈

1
4M

. (2.20)

• Photon shot noise: The readout of the NV center’s spin state is realized by de-
tecting fluorescence photons. The detection itself is a stochastic process due to
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Quantity Value Reference
zero phonon line λZPL 637 nm (1.945 eV) [39]
number of valence electrons nV 6 [35, 39]
ground-state electronic configuration a2

1e2 [39]
excited-state electronic configuration a1

1e3 [39]
ground-state zero field splitting Dgs 2π × 2.87 GHz [39]
excited-state zero field splitting Des 2π × 1.42 GHz [39]
electronic g-factor ge 2.0028 [39]
ground-state spin quantum number S = 1 [39]
excited-state spin quantum number S = 1 [39]
maximum ODMR contrast C 30− 38 % [35]
optical electron spin polarization ∼ 95 % [35]
ground-state parallel hyperfine coupling to 14N −2π × 2.16 MHz [39]
ground-state parallel hyperfine coupling to 15N 2π × 3.05 MHz [77]
ground-state quadrupole shift from 14N 2π × 5 MHz [77]
room-temperature spin lifetime T1 ∼ 1− 5ms [77]
room-temperature dephasing time T∗2 ∼ 1− 2µs (1.1 % 13C ) [20]
room-temperature dephasing time T∗2 ∼ 10− 20 µs (<0.3 % 13C ) [62]
room-temperature decoherence time T2 up to ∼ T1 under decoupling [78]
photon rate (bulk diamond, air objective) ∼ 50 kCts/s [79]
photon rate (patterned diamond, air objective) ∼ 500 kCts/s [74]

TABLE 2.1: Data base of physical properties of the NV− defect at room-temperature. This
table summarizes the most important electronic, optical and magnetic properties of the NV−

defect center in diamond. All parameters refer to the room-temperature value if not specified
else wise.

the inherent shot noise. The associated variance of this Poissonian process is
given by σ2 = c, where c is the number of photon counts detected. The average
number of detected photons for a single readout is given by the photon count
rate Rp ≈ 50 kCts/s (see Table 2.1, for bulk diamonds) multiplied with the
readout duration tr ≈ 500 ns (see Section 4.3.2), which yields Rp × tr ≈ 0.03.
Consequently, we detect significantly less than one photon per readout on av-
erage. Therefore, it is clearly not possible to detect the spin state of the NV
center with a single experimental realization and we can thus only detect the
average spin state by performing the same experiment many times.

We will assume now that we have performed M repetitions of an sensing ex-
periment and have recorded c photon counts from which we want to estimate
the transition probability p. In addition, we have reference values for the num-
ber of detected photons for the same number of measurements for the bright
state mS = 0 indicated by c0 and for the dark state mS = −1 indicated by c−1.
In this case we can estimate the probability p by the following relation:

p =
c− c0

c−1 − c0
. (2.21)

Now, we want to estimate the uncertainty in p, under the assumption that the
measurement of cp is limited by shot noise and that the reference values for c0
and c−1 incur no statistical uncertainty. Due to the Poissonian character of shot
noise the variance in cp is given by σ2

c = cp as discussed above. Therefore the
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variance in p is given by:

σ2
p,sn =

(
1

c−1 − c0

)2

σ2
c =

(
1

c−1 − c0

)2

cp. (2.22)

To express this uncertainty as function of the number of measurements, in
analogy to the quantum projection noise described before, we have to express
the number of collected photons as a function of the number of measurements.
This relation is given by: cp = (1− pC)MRptr, where Rp is the photon count
rate (see Table 2.1), C is the ODMR contrast and tr is the integration duration
of the readout laser pulse (see Chapter 4). Inserting this expression into the
relation for the shot noise relation, we obtain:

σ2
p,sn =

(
1

(1− C)MRptr −MRptr

)2

(1− pC)MRptr =
1− pC

C2MRptr
. (2.23)

The final expression can be further simplified at p = 0.5 to make comparison
with the quantum projection noise more convenient:

σ2
p,sn =

α

4M
= α× σ2

p=0.5,qp. (2.24)

Here the factor α expresses how strongly shot noise dominates over the pro-
jection noise. Under typical experimental conditions and for p = 0.5 the pre-
factor α is given by: α = 1−C/2

C2Rptr
≈ 400. Shot noise is thus by

√
α = 20 more

significant than the quantum projection noise. Here, we have assumed a flu-
orescence count rate detected from the NV center of Rp(mS = 0) = 50 kCts/s
and a fluorescence contrast of C = 30 %.

• Decoherence: Decoherence of the quantum sensor during the waiting time τ
originates either from spin flip processes of the sensor spin or dephasing due to
low-frequency magnetic noise. In both cases the sensor variation δp is reduced
and the reduction can be very generally modeled by a phenomenological de-
coherence function Ξ(τ) ∝ (Γτ)β in the form δpd(τ) = δp(τ) exp(−Ξ(τ)) [22].
Here, Γ is the decoherence rate and β ∈ [1, 3] depends on the underlying deco-
herence mechanism.

After we have derived the different noise sources limiting the performance of the
sensor, we can compute the signal to noise ratio SNR = δp

σp
. For the signal variation

δpd, we will use the model including decoherence:

δpd = δp× (τ) exp(−Ξ(τ)). (2.25)

Furthermore, we include an exponential dephasing term

exp(−Ξ(τ)) = exp(−τ/T∗2 ), (2.26)

with dephasing time T∗2 . For the noise term σp, we constrain ourselves to the shot
noise contribution as the quantum projection noise term is orders of magnitude
smaller for p = 0.5. Further, we can approximate 1−C/2

C2 ≈ 1/C2. Hence, we find
for the SNR:

SNR(τ, M) = δp exp(−Ξ(τ))C
√

MRptr = γeBcτ exp(−τ/T∗2 )2C
√

MRptr. (2.27)
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Finally, we compute the sensitivity, which is the minimum detectable field Bc for a
total integration time T = 1 s for which a SNR = 1 is reached. Setting SNR(τ, M) =
1 and solving for Bc = Bmin, we obtain:

Bmin(τ, M) =
exp(τ/T∗2 )

2Cγeτ
√

MRptr
(2.28)

The total duration of a single experiment is given by τ + tr + ti, where ti is the du-
ration of sensor initialization. This corresponds to the duration of the laser pulse
in our experiments. Consequently, the total duration of M experiments is given by
T(M) = M× (τ + tr + ti). Setting T(M) = 1 s and solving for M we find the number
of experiments that can be performed in 1 s: M = 1

τ+tr+ti
. Inserting this expression

for M into Equation 2.28 we obtain the Ramsey sensitivity ηR(τ):

ηR(τ) = Bmin(T = 1 s) =
exp(τ/T∗2 )

√
τ + tr + ti

2Cγeτ
√

Rptr
. (2.29)

If we assume that the evolution time is significantly longer than readout and ini-
tialization durations, τ � tr + ti, which is fulfilled for isotopically purified samples
with long electron spin dephasing times, the optimum evolution/sensing time is
given by τ = T∗2 /2 [22]. In this case we find for the optimum sensitivity:

ηR,opt =

√
2e

γeC
√

T∗2
√

Rptr
(2.30)

To finally compute the optimum Ramsey sensitivity for the experimental parameters
typical in our experiments, we insert Rp = 50 kCts/s, C = 0.3, T∗2 = 5 µs and tr =

500 ns and obtain: ηR,opt = 125 nT/
√

Hz.

2.5.3 Detection of ac signals

At the heart of this thesis is the detection of nuclear spins with the NV center. To
detect these precessing spins we require a method that detects the resulting time-
dependent signal. In principle also the static field of the nuclei could be detected
[80], but ac sensing tends to be more sensitive. According to equation 2.10 the phase
φ accumulated during the Ramsey sequence is proportional to the integral of the
magnetic field B(t). Thus for a rapidly oscillating magnetic field the phase accumu-
lation is averaged out over the waiting time:

φ(τ) = γe〈Bc(t)〉 → 0. (2.31)

In fact, the Ramsey sequence is not sensitive to signals that vary faster than a low-
frequency cut-off [22]. Thus we require a different pulse sequence to gain sensitivity
to alternating signals.

Hahn echo method

The most common approach to detect ac signals is based on the well-known Hahn
echo method, which is shown in Fig. 2.4 (b). In the Hahn echo sequence a third
microwave pulse with a π rotation angle is inserted in the middle of the waiting
time. This π pulse inverts the sign of the phase accumulation, such that the acquired
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phase after the total waiting time 2τ amounts to:

φ(2τ) =
∫ τ

0
γeBc(t′)dt′ −

∫ 2τ

τ
γeBc(t′)dt′. (2.32)

The Hahn echo sequence thus rectifies a sinusoidal signal whose period exactly fits
into the waiting duration 2τ and whose phase is matched with the sensing sequence.
Hence the refocusing pulse leads to a phase build-up that would be exactly cancelled
in the Ramsey sequence. In other words, the Hahn echo sequence can be tuned
into resonance with ac signals at frequency fc = 1/(2τ) by varying the waiting
time τ before and after the π pulse. In fact, as discussed in detail in Chapter 3, the
Hahn echo sequence effectively acts as a filter with center frequency fc and filter
bandwidth given by the total waiting time 2τ.

Further, the Hahn echo sequence can be extended by adding additional π-pulses
in the waiting time to further prolong sensor coherence and design more complex fil-
ter characteristics. Details on the detection of ac signals using these so-called multi-
pulse dynamical decoupling sequences will follow in Chapter 3 and 5. In addition, in
Chapter 8, we will present a novel detection method based on the differential appli-
cation of two refocusing pulses that enables the more general task of reconstruction-
free detection of arbitrary magnetic waveforms B(t).

Sensitivity for Hahn echo detection

The optimal sensitivity of the Hahn echo sequence to time-dependent signals B(t)
can be derived in analogy to the Ramsey sequence and the enhancement due to the
prolonged coherence time Techo

2 > T∗2 results in the echo sensitivity ηE:

ηE =

√
T∗2

Techo
2

ηR. (2.33)

As the coherence time Techo
2 is typically one order of magnitude larger than T∗2 the

optimum sensitivity is approximately improved by a factor of ×3 for the detection
of ac signals using the echo method with potential further improvement with multi-
pulse sequences.

2.6 Coherence and lifetime properties of the mS-states

As discussed in the previous section 2.5, the sensitivity of the NV quantum sensor
and thereby its ability to detect remote nuclear spins or other faint sources of mag-
netic signals is limited by the coherence time of the sensor spin. In this context, we
now report on the typical coherence times that we observe for shallow NV centers
in two different electronic-grade samples from ElementSix.

In recent years, the influence of a surface and the bulk bath of electronic spins [82,
83], surface-modified phononic coupling [84], fluctuating electric charges [85] and
the nuclear spin bath of 13C spins inside the diamond [86] and 1H spins [75, 76] at
the surface has been identified as sources of NV decoherence. In particular a depth-
calibrated study [83] revealed, that NV coherence starts to significantly deteriorate
at distances from the surface smaller than d = 25 nm.

The experiments reported in this work were performed on NV centers at a depth
of d ∼ 8 nm. This depth can be controlled by the energy of the ions during the im-
plantation procedure, which we fixed to 5 keV. The estimated depth can be obtained
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FIGURE 2.5: Coherent control of the mS states of the NV center. (a) Microwave-driven
Rabi oscillation between the mS = 0 initial state and the mS = −1 state. The probability of
detecting the NV center in the mS = 0 state after a resonant MW pulse (angular frequency
ωmw = Dgs − γeB0) of length tmw is shown. The Rabi frequency amounts here to ωR =
2π × 9.30(5)MHz. In our experiments Rabi frequencies of up to ωR ≥ 2π × 30 MHz can be
realized with a coplanar waveguide structure described in Chapter 4, which is positioned in
the vicinity of the NV center. (b) Hyperfine-resolved spectroscopy of the transition between
mS = 0 and mS = −1. The duration of the microwave pulse is fixed at ∼ 3 µs and the
frequency of the pulse is swept across the resonance. Two resonances are detected due to
the hyperfine splitting caused by the intrinsic nuclear spin of isotope 15N. The energy levels
of the spin system are described by the Hamiltonian given in Eq. 2.8. The asymmetry in the
transition probability between the to states is caused by the dynamical nuclear polarization
effect during optical excitation of the NV center [81]. (c) Ramsey spectroscopy performed
by the pulse sequence shown as an inset. The waiting time τ between the two π/2 pulses is
swept to record the decay of Ramsey fringes due to dephasing. The modulation of the signal
is due to a small detuning of the microwave frequency to the transition frequency. The
dephasing time amounts to T∗2 = 2.3(1) µs. (d) Hahn-echo decay of the coherence between
mS = 0 and mS = −1. The employed microwave pulse sequence is again shown as an inset.
The total free-precession time 2τ is swept to detect the decay of coherence, which is described
by the model exp(−(tfree/T2)

n) with tfree = 2τ. For the particular defect center we obtain
T2(echo) = 68(2) µs and n ≈ 1.7. All measurements shown in this figure where performed
on the same NV center on sample E1303 described in Chapter 4. This sample is partially
purified from 13C spins and thus no 13C revivals are found in the spin echo measurement.

by computer simulations using the SRIM software package2. For our particular im-
plantation energy the average depth is 8 nm with a straggle of 3 nm. When perform-
ing experiments with individual NV centers we initially characterize the dephasing
time T∗2 and the Hahn echo decay time Techo

2 using the Ramsey and Hahn echo ex-
periments discussed in the previous section. This is because NV centers show large
variation in coherence times, as discussed below.

2Stopping Range of Ions in Matter.
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FIGURE 2.6: Distribution of coherence times for shallow NV centers. (a) Coherence time
of NV centers (sample size N = 23) detected on the electronic-grade sample E1303 (see
Chapter 4 for further details). We find an average coherence time of < T2 >= 56 µs. The
NV centers were generated by ion implantation with an energy of 5 keV, which leads to a
depth of ∼ 8 nm below the diamond surface. The coherence time was measured with the
Hahn Echo sequence. (b) Distribution of coherence times on a second sample with identifier:
Berta, which is overgrown with a 50 µm layer of spin-free 12C (concentration 99.999 %). NV
centers were again generated with the same implantation energy. In addition, the sample is
again of electronic-grade quality. We find a average coherence time of < T2 >= 43 µs for a

sample size of 18 NV centers.

Electron spin dephasing time T∗2

In Fig. 2.5 (c), we show a representative measurement of the Ramsey coherence
decay for a single NV center. The decay of the Ramsey contrast is caused by slow
fluctuations of the local magnetic field, which is due to 13C spins in the vicinity
of the NV center, drifts in the static quantization field and due to spin flips in the
electron spin bath at the surface and inside the diamond. The decay time T∗2 =
2.3 µs represents a typical value for shallow NV centers with a natural abundance of
13C nuclei in the sensor environment. The signal modulation is caused by a small
detuning of the microwave oscillator to the electron spin transition. For NV defects
which reside far from the surface inside the diamond crystal, which is additionally
isotopically purified to reduce the concentration of 13C spins the dephasing time
can be prolonged by approximately an order of magnitude T∗2 ∼ 10− 20 µs [62] at
room-temperature.

Electron spin coherence time Techo
2

In Fig. 2.5 (d), we show a representative measurement of the Hahn echo decay time
Techo

2 performed on the same NV center. The microwave pulse sequence for this
measurement is shown as an inset of the figure. The decay time of Techo

2 = 68(2) µs
again represents a typical result for NV centers at a depth of d ∼ 8 nm. The refo-
cusing pulse consequently increases the sensor coherence by a factor of ×30, which
significantly increases the sensitivity to time-dependent magnetic fields.

In Fig. 2.6, we provide a more systematic study of the coherence time of shallow
NV centers. We show two histograms of the coherence times acquired on shallow
NV centers (implantation energy 5 keV) on two different electronic-grade samples.
On both samples around 20 NV centers were investigated and the average coherence
time is approximately 50 µs.

Electron spin lifetime T1

The lifetime of the electron spin T1 specifies the time until the electron spin stochas-
tically flips to a different mS state. Spin flips at room-temperature are resulting
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from thermally-activated, two-phonon Raman or Orbach-type processes [87] and
from cross-relaxation of the NV center with nearby impurity spins . Impurity spins
comprise nitrogen defects in the lattice (called P1 centers) originating, e.g., from the
implantation procedure, dangling bonds at the surface and potentially distant NV
centers. The typical spin lifetime of the electron spin of the NV center at room-
temperature amounts to a few milliseconds, which is also correlated with the dis-
tance from the surface [82]. We note that at low temperatures (T < 10 K) the spin
lifetime of the NV center can exceed hundreds of seconds [88].
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CHAPTER 3
Detection, polarization and control

of remote nuclear spins

Summary

This chapter introduces the basic pulse sequences that enable the NMR experiments pre-
sented in Chapters 5,6 and 7 of this thesis. First, we will give a short description of the
underlying spin system, which includes the NV electron spin surrounded by an ensemble of
13C nuclei. In this context we will describe the Hamiltonian that governs the dynamics of the
spin system. Further, we discuss how the presence of nuclear spins in the vicinity of the NV
sensor can be detected and how nuclei can be polarized, spectroscopically characterized and
controlled merely by periodically flipping the NV center between the mS = 0 and mS = −1
states. The pulse sequences discussed in this chapter have recently been established by vari-
ous groups in the NV center research community and can be found in the selected references
[77, 86, 89, 90].

3.1 Definition of the spin system

We consider in the following a spin system comprising the central electron spin of
the NV center, which is coupled by the hyperfine interaction to N remote nuclear
spins of the 13C isotope with gyromagnetic ratio γn = 2π× 10.7084 MHz/T (see Fig.
3.1 (a)). We assume that a magnetic bias field is applied to the system and aligned
with the crystallographic quantization axis of the NV center (z-direction). Here, we
neglect inter-spin coupling between the nuclei as the density of 13C spins inside the
diamond host at natural abundance is sufficiently low (1.1 %). In addition, we also
neglect the hyperfine splitting of the mS states due to the intrinsic nitrogen spin (see
Chapter 2 for details). The resulting Hamiltonian of the system can then be written
as (operators S refer to the NV center and operators I refer to nuclear spins):

ĤSI = DgsŜ2
z − γeB0Ŝz −

N

∑
i=1

γnB0 Îz,i +
N

∑
i=1

~SAi(~ri)~Ii. (3.1)

The coupling between each individual nuclear spin, described by the spin operators
~Ii = ( Îx,i, Îy,i, Îz,i), to the central spin is given by the hyperfine tensor Ai(~ri) and the
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FIGURE 3.1: Coupling of the NV center to 13C nuclear spins in the diamond host. (a)
Schematic illustration of four 13C nuclear spins coupled to the NV center via the hyperfine
interaction. (b) Precession axis and frequency of a single 13C spin if the NV center is in the
mS = 0 state. In this case the nuclear spin solely precesses along the external bias field B0
and the precession frequency is given by ω0 = γnB0. (c) If the NV center is prepared in the
mS = −1 state the additional hyperfine field of the NV center tilts the precession axis and
leads to a variation of the precession frequency. The precession axis in this case is given by
ωωω−1 = −γnB0ez −Az(~r). The secular hyperfine vector Az(~(r)) contains information about
the distance vector between NV and nuclear spin. The frequency of the precession is given

by the magnitude of the precession axis vector, which is ω−1 =
√
(γnB0 + a‖)2 + a2

⊥. In the
limit that the hyperfine interaction is weak compared to the Zeeman field: γnB0 � a⊥, a‖,

the precession frequency can be simplified to ω−1 = γn~B0 + a‖.

elements of the tensor depend on the distance vector~ri = (ri, θi, φi) from the electron
spin to the nucleus (details follow in the rest of this paragraph). Nuclear spins are
called weakly coupled, if the hyperfine splitting is not resolved in ESR experiments,
which means that the line width of the ESR transition exceeds the hyperfine split-
ting 1/(πT∗2 ) � ‖Ai‖. In the following, we will focus on the detection and control
of these weakly coupled nuclear spins using dynamical decoupling techniques. To
simplify the description, we will focus in the following on the composite spin system
of the NV center and just a single nuclear spin.

3.2 Hyperfine interaction to remote spins

The hyperfine interaction for such a sufficiently distant nuclear spins is of dipolar
character and in analogy to the interaction of two classical magnetic moments at
distance~r = (r, θ, φ) the energy can be written as [91]:

ĤHF =
µ0γeγi h̄

4πr3

(
~S~I − 3(~S ·~r)(~I ·~r)

r2

)
. (3.2)

In contrast, if nuclei are in close vicinity of the central spin an additional Fermi con-
tact energy shift and the extent of the electron spin wavefunction have to be taken
into account [68, 92]. As this will be discussed in detail in chapter 6, we constrain
ourselves to the simplified discussion and assume that the electron spin generates
the field of a point-dipole at the position of the nuclear spin, therefore Eq. 3.2 is
exact.

With the exception of the experiments discussed in chapter 6 the bias magnetic
field B0 is very well aligned along the z-axis and therefore all terms of ĤHF that
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do not commute with Ŝz in Eq. 3.2 can be neglected. This simplifies the hyperfine
interaction to the secular form:

ĤHF =
µ0γeγi h̄

4πr3

(
(3 cos2 θ − 1)Ŝz Îz + (3 sin θ cos θ)(cos2 φŜz Îx + sin2 φŜz Îy)

)
. (3.3)

To further simplify the discussion, we will now assume that the distance vector of
the particular nuclear spin we consider lies in the xz-plane, i.e., φ = 0. In Chapters 6
and 7 this simplification will be reconsidered, when the three-dimensional imaging
of nuclear spins is demonstrated and φ is a critical observable. However, at this
point the physics of the composite spin system is independent of φ. Using φ = 0 in
Eq. 3.3 allows us to write the hyperfine interaction in the form:

ĤHF = a||Ŝz Îz + a⊥Ŝz Îx, (3.4)

with the parallel and perpendicular hyperfine interaction parameters a|| and a⊥, re-
spectively, given by:

a|| = µ0γeγn h̄
4πr3 (3 cos2 θ − 1) , (3.5)

a⊥ = µ0γeγn h̄
4πr3 3 sin θ cos θ . (3.6)

To finalize the derivation of spin system’s Hamiltonian, we incorporate the just de-
rived hyperfine coupling constants into equation 3.3:

ĤSI = DgsŜ2
z − γeB0Ŝz − γiB0 Îz + a||Ŝz Îz + a⊥Ŝz Îx. (3.7)

3.3 Nuclear spin imaging

The coupling between the central electron spin and a specific nuclear spin can thus
be characterized by two hyperfine coupling constants. These coupling constants
contain information about the relative position of the nuclei from the electron spin.
By inverting equation 3.5 and 3.6, we can directly estimate the radial distance and
the polar angle of the distance vector from the hyperfine coupling constants:

θ = arctan

1
2

−3
a||
a⊥

+

√√√√9
a2
||

a2
⊥
+ 8


 , (3.8)

r =

{
µ0γeγnh̄(3 cos2 θ − 1)

4πa||

}1/3

. (3.9)

Therefore, hyperfine spectroscopy of the parallel and perpendicular components
provides spatial information about nuclear spins in the vicinity of the NV center
and is a highly relevant set of parameters for nanoscale magnetic resonance imag-
ing. Here, we exploit the gradient of the dipole field generated by the NV center for
encoding nuclear positions into hyperfine frequencies.

In the remainder of this chapter we will introduce several spectroscopy methods
that allow us to measure (a||, a⊥) (for a summary see table 3.1). All methods are
based on temporally controlling the hyperfine interaction between the NV center
and nuclear spins. Thereby also coherent control and polarization transfer to the
nuclei can be realized. In fact, all techniques can be efficiently realized merely using
the method of dynamic decoupling applied to the NV center. Combined with the
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Method Observables Spectral resolution Reference
DD spectroscopy (ω0, a||, a⊥) ∼ 1/T2 Ch. 5, 6, 7
Spin state tomography (ω0, aa

||, aa
⊥, φ) ∼ 1/T∗2,nuc Ch. 7

Correlation spectroscopy (ω0, a||, a⊥, φb) ∼ 1/T1 Ch. 6, 7
Polarization transfer - - Ch. 7

TABLE 3.1: Summary of measurement methods used in this work This table summarizes
the most important experimental sequences used for NMR imaging experiments with ref-
erences to the corresponding chapter in which it is used. In this chapter we derive the ac-
cessible observables of all listed spectroscopy methods using the product operator method.
aThe detection of (a||, a⊥) using spin state tomography is not explictly demonstrated in this
work. bCorrelation spectroscopy gives access to the azimuthal position φ of nuclei in tilted

magnetic quantization fields. For details, see chapter 6.

novel methods presented in chapters 6 and 7, which also gives access to the third
component φ of the distance vector~r = (r, θ, φ), we are then able to fully reconstruct
the three-dimensional distance vector of individual spins.

3.4 Detection of the presence of nuclear spins

After deriving the coupling Hamiltonian between the NV center and a single nu-
clear spin, we now introduce the method of dynamical decoupling (DD), which en-
ables the sensitive detection of weakly-coupled nuclei (as defined in section 3.1).
Dynamical decoupling is a coherent control method, which protects the sensor from
unwanted decoherence in a similar fashion as the well-known Hahn echo method.
However, instead of a single refocusing pulse many pulses are applied to the sen-
sor spin with inter-pulse delay τ. In fact, the number of pulses N in our system
approaches 104 in particular applications demonstrated in Chapter 5 and enables
much longer coherent evolution than the echo decay time Techo

2 .

3.4.1 Dynamical decoupling sequences

Experimental protocol

A particular implementation of multi-pulse dynamical decoupling that is almost ex-
clusively used in our experiments is shown in Fig. 3.2 (a). The NV center is initially
polarized in the mS = 0 state with a laser pulse and subsequently prepared in a su-
perposition of mS = 0 and mS = −1 with a π/2-rotation around the x-axis using a
microwave pulse. The resulting state can be written as:

|−Y〉 = 1√
2
(|0〉 − i |−1〉). (3.10)

Subsequently, we apply a sequence of N equidistant π-pulses (inter-pulse spacing
τ), known as the Carr-Purcell-Meiboom-Gill (CPMG) sequence [93]. We vary the
rotation axes of the π-pulses in sub-blocks of 8 pulses according to the scheme X-
Y-X-Y-Y-X-Y-X to minimize the influence of pulse error accumulation. As such this
sequence is identified as the XY8− k pulse sequence where k denotes the number
of repetitions of the fundamental building block and N = 8k is the total number of
microwave pulses excluding the π/2 rotations.
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FIGURE 3.2: Dynamical decoupling sequence with XY8 phase cycling. (a) Experimental
implementation: After polarizing the NV center with a short laser pulse (duration ∼ 2 µs),
we apply a sequence of in total 8k + 2 microwave pulses (8k up to 10.000 in Chapter 5). Ini-
tially, a coherent superposition is prepared with a π/2 rotation. Subsequently, we apply k
repetitions of 8 π-pulses with the phase cycling scheme X-Y-X-Y-Y-X-Y-X. The purpose of the
phase alteration is to cancel pulse imperfections. The duration of π-pulses typically amounts
to 20− 40 ns and the pulses are shaped with a cos2-envelope as discussed in Chapter 5. Fi-
nally, a second π/2-pulse converts the phase Φ acquired during the refocusing pulses into a
measurable polarization, which is subsequently readout with a second laser pulse. (b) Spec-
tral weighting or frequency filter function WN,τ( fac) associated with spectroscopy sequence
for k = {1, 2, 3, 4}. As described in the main text the dynamical decoupling sequence ef-
fectively acts as a filter with center frequency fc = 1/(2τ) and with the filter bandwidth
given by the total duration of the pulse sequence ∆ f = 1/T = 1/(Nτ) = 1/(8kτ). This
method enables the sensitive detection of magnetic signals in a specific frequency window:
By varying the inter-pulse delay τ, the sequence can be tuned into resonance with AC sig-
nals. Further, the back-action of the sensor spin during the sensing protocol on nuclear spins

leads to the ability of controlled rotations of the latter.
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Sensor phase accumulation during the sensing sequence

During the decoupling sequence a phase Φ accumulates between the states mS = 0
and mS = −1, in analogy to the Ramsey or Spin echo sequence described in Chapter
2. In the case of the multi-pulse decoupling sequence this phase is given by:

Φ =
∫ Nτ

0
γeB(t′)M(t′)dt′, (3.11)

where B(t) is the local magnetic field projected onto the quantization axis of the
sensor spin and M(t) = ±1 is the modulation function of the pulse sequence, which
changes sign whenever a π-pulse is applied to the sensor [22]. The quantum state
after the multi-pulse sequence can be written as:

|Φ〉 = 1√
2
(|0〉 − ie−iΦ |−1〉). (3.12)

The final π/2-pulse along the −x-axis results in the final state

|Ψ〉 = cos(Φ) |0〉+ sin(Φ) |−1〉 , (3.13)

which is subsequently readout in the Ŝz basis with a laser pulse. Consequently, we
will detect the NV center in the bright state |0〉, if no phase Φ has been acquired
during the sensing sequence. In the other extreme case, if the phase acquired during
detection sequence corresponds to Φ = π/2, we will detect the NV center in the
dark state |−1〉.

Spectral weighting function of the sensing sequence

To get an intuitive understanding of phase accumulation during the multi-pulse se-
quence it is beneficial to consider the response of the sensor to a harmonic signal
B(t) of the form:

B(t) = B cos (2π fact + α) (3.14)

with amplitude B, frequency fac and phase α. In this case the acquired sensor phase
Φ is given by [22]:

Φ =
γeB

2π fac

[
sin(α)− (−1)N sin(2π fact + α) + 2

N

∑
j=1

(−1)j sin(2π factj + α)

]
(3.15)

= γeBt×WN,τ( fac, α), (3.16)

where 0 < tj < Nτ are the times at which the π-pulse with index j is applied.
Here, we assume that the π-rotations are infinitely short. The limitations of this
assumption are described in a recent study of our group [94]. In the second line
of equation 3.16 we introduced, the spectral weighting function WN( fac, α), which
quantifies the sensitivity of the sensor under the dynamical decoupling sequence to
a signal at frequency fac. The spectral weighting function for the CPMG-sequence
shown in Fig. 3.2 (a) is given by [22]:

WN,τ( fac) =

∣∣∣∣sin(π facNτ)

π facNτ
[1− sec(π facτ)] cos(α + π facNτ)

∣∣∣∣ , (3.17)

In Fig. 3.2, we show this spectral weighting or filter function WN,τ( fac) for fixed
inter-pulse spacing τ and variable number of pulses N = {8, 16, 24, 32}. Here, we
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fixed the relative phase of the harmonic signal to the sensing sequence to α = 0.
Clearly, the sinc-term of the weighting function leads to a filter behavior with res-
onances, which become increasingly narrow for an growing number of pulses N.
Consequently, the XY8− k sequence acts as a filter with center frequency given by
fc = 1/(2τ) and filter-bandwidth ∆ f = 1/(Nτ). Therefore for large N the sensor
is effectively decoupled from signals that are not resonant with the center filter fre-
quencies defined by fc = q/(2τ). Here, q = {1, 3, 5, ...} is the harmonic order of
the filter. From Fig. 3.2 (b) we deduce that higher harmonic orders show reduced
spectral weights, thus leading to a reduced sensor response. Therefore, we typically
use the first order harmonic q = 1 for sensitive detection of ac-signals.

Detection of complex, multi-frequency signals

Finally, if the detected magnetic field is composed of several frequency components
with amplitudes Bi the accumulated total phase Φ after the sensing sequence is given
by the sum of the frequency amplitudes Bi multiplied with the spectral weighting
function at the corresponding frequency. However, for the most general application
of sensing an arbitrary magnetic field B(t) the sensor phase is non-trivially con-
nected to sensor phase. Nevertheless, in this case the magnetic field can also be
detected using the NV center with adapted sensing methods, as demonstrated in
Chapter 8. The frequency response of the XY8− k multi-pulse sequence will be fur-
ther explored experimentally in Chapter 5 and we will show that the expression in
Equation 3.17 can be experimentally verified over a wide range of parameters.

Frequency resolution of dynamical decoupling spectroscopy

As described in the previous paragraph, the filter-bandwidth of the multi-pulse
spectroscopy sequence depends on the total duration of the sequence Nτ = 8kτ. In
experiments the maximum duration of the spectroscopy sequence is limited by the
coherence time of the NV center T2 under the decoupling sequence. Consequently,
the frequency resolution is limited by ∼ 1/T2 for this spectroscopy technique. In
the following paragraphs of this Chapter we will introduce spectroscopy techniques
(see Section 3.8) that are instead limited by the spin lifetime T1 of the NV electron
spin, which is typically much longer (see Chapter 2). Further, the spectroscopic res-
olution can be enhanced to the spin lifetime T1,n of an auxiliary, nuclear quantum
memory [72, 73], which again is typically longer than the T1 time of the NV electron
spin. Finally, recently developed methods have been introduced that are not limited
by the coherence or lifetime of the sensor spin [74, 95].

3.4.2 NMR detection with dynamical decoupling spectroscopy

Spectroscopy on a bath of spins

Following the considerations in the previous paragraph, we can detect the presence
of nuclear spins in the vicinity of the NV center by tuning the center frequency of the
XY8− k sequence fc = 1/(2τ) into resonance with the Larmor frequency of nuclear
spins. This in turn leads to the accumulation of a sizable sensor phase due to the os-
cillating AC field generated by the nuclei, which can subsequently be detected by the
optical readout of the sensor. In Fig. 3.3 (c) we show the population p of an individ-
ual NV center in the mS = 0 state after applying the XY8− k protocol with k = 32 or
N = 256 for varying filter center frequencies 1/(2τ). The external bias field was here
set to B0 = 186 mT and we therefore expect 13C nuclei hosted inside the diamond
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FIGURE 3.3: Detection of NMR signals with dynamical decoupling spectroscopy. Spec-
troscopy measurements with the XY8− k sequence on two different NV centers in the same
diamond sample (E1303) are shown. In (a) the spectrum of a bath of 13C spins is shown,
which precess at a Larmor frequency fL close to 2 MHz due to the applied external bias
field of B0 = 186 mT. In this particular experiment the total number of pulses amounted to
N = 256 and hence k = 32. The measurement signal never exceeds the threshold of p < 0.5,
which would indicate coherent coupling to individual or a small number of spins [96]. The
red line is a numerical fit with a single Lorentzian function. The spectrum in (b) reveals a
richer structure due to two nearby nuclei, indicated in the spectrum as 13Cα and 13Cβ, which
are spectrally shifted from the bath peak due the hyperfine interaction with the NV center,
as given by the Hamiltonian in equation 3.4. In this measurement N = 320 and thus k = 40.

The red line is a fit which includes three independent Lorentzians.

to precess at a frequency of fL = ‖ − γnB0‖ = 2π × 1991 kHz. The measurement
clearly shows that the NV center population is only changed if the center frequency
of the DD sequence is tuned into resonance with the 13C precession frequency1. This
is consistent with the dependence of the NV center population on the acquired sen-
sor phase as given by Equation 3.13. The width of the resonance observed in Fig.
3.3 (a) is determined by the filter-bandwidth ∆ f = 1/(Nτ), which depends on the
total duration of the dynamical decoupling sequence. In this experiment the NMR
signal arises from a bath of many weakly coupled 13C spins in the vicinity of the NV
center. Individual nuclei can not be spectroscopically distinguished with the given
frequency resolution. This is schematically sketched with the spin environment in
Fig. 3.3 (a).

1In principle also for uneven subharmonics of fc and for spurious higher harmonics at 2 fc, 4 fc, 8 fc
as well as their odd subharmonics 2 fc/q, 4 fc/q, 8 fc/q [94].
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Spectroscopy on individual nuclear spins

In Fig. 3.3 (d), we show a complementary NMR spectrum acquired on a different
NV center. In this case we applied the XY8− k protocol with k = 40 under a similar
magnetic field of B0 = 185 mT. Again we observe a spectral feature at the expected
Larmor frequency of the nuclei, which is highlighted by fL. In addition, we observe
two satellite peaks at slightly higher and slightly lower frequency. These arise from
two 13C nuclei, which are sufficiently strongly coupled to the NV center via the hy-
perfine interaction such that we can spectrally distinguish them from the bath nuclei.
The spectral separation arises from the fact that during the multi-pulse sequence the
13C nuclei precess with an average frequency that is given by the external bias field
B0 and by the hyperfine field of the NV center. Further details will be described
in Section 3.5.4. In Fig. 3.3 (b), we again schematically represent the local nuclear
environment of the specific NV center.

3.5 Control of nuclei using dynamical decoupling

In this section, we aim to discuss how a particular nuclear spin can be detected,
coherently controlled and polarized using the NV center via dynamical decoupling
control. This forms the basis for all spectroscopy experiments performed in this
thesis. Parts of the description have been to a large part inspired by the original
research papers [77, 86, 89].

In a first step we will transform the Hamiltonian from Eq. 3.7 into the rotating
frame of the NV center. Subsequently we will describe the nuclear spin evolution
conditional on the state of the NV center, while working in the reduced two-level
system of the mS = 0 and mS = −1-state. Finally, we will show that conditional
rotations of the nuclear spin can be realized with the NV center and will describe
how this can be leveraged in spectroscopy and for polarization of nuclei.

3.5.1 Rotating-frame transformation

Transforming into the rotating-frame of the NV center simplifies the Hamiltonian
derived in Eq. 3.7 and enables us to focus on the nuclear spin evolution during
dynamical decoupling. Following the description in Ref. [77], we apply the trans-
formation e−iω01Ŝz t with ω01 = Dgs − γeB0 being the precession frequency between
the mS = 0 and the mS = −1 state and obtain:

ĤSI,rF = Dgs(Ŝ2
z + Ŝz)− γnB0 Îz + a||Ŝz Îz + a⊥Ŝz Îx. (3.18)

If the mS = 1 state is not populated in experiments the first term in Eq. 3.18 can
be neglected and we obtain the Hamiltonian describing the nuclear spin dynamics,
conditional on the electron spin state:

Ĥnuc = −γnB0 Îz + a||Ŝz Îz + a⊥Ŝz Îx. (3.19)

3.5.2 Precession axes of nuclear spins

From Eq. 3.19 we deduce that the nuclear spin evolution is conditional on the mS
projection of the electron spin. The Hamiltonian governing the dynamics if the NV
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center is held in the mS = 0 or mS = −1 state is then given by:

Ĥ0 = −γnB0 Îz (3.20)

Ĥ−1 = −γnB0 Îz − a|| Îz − a⊥ Îx. (3.21)

From these Hamiltonians we can directly deduce the precession axes of the nuclear
spin conditional on the mS state of the NV center. These precession axes are sketched
in Fig. 3.1 (b) and (c), respectively. In the NV center is held in the mS = 0 state, the
nuclear spin precesses around the axis ωωω0:

ωωω0 = −γnB0ez, (3.22)

with ez the unit vector along the symmetry axis of the NV center. In the case of the
NV center held in the mS = −1-state, the nuclear spin precesses around the axis ω−1ω−1ω−1:

ωωω−1 = −γnB0ez + Az, (3.23)

where Az = (a⊥, 0, a‖) is the secular hyperfine vector field under the assumption
that the internuclear vector has φ = 0, as discussed before.

3.5.3 Two-level description of the NV center

In the following paragraphs we want to describe NV-NMR sequences based on the
dynamical decoupling sequence. A simple, yet rigorous, formalism to compute the
unitary evolution of the spin system during the pulse sequences is the product op-
erator formalism. As the standard product operator formalism uses spin-1/2 opera-
tors it is at this point advantageous to reduce the spin operators S associated to the
NV center to spin-1/2 by reducing the Hilbert space to the manifold between mS = 0
and mS = −1. In the remainder of this chapter the spin operators hence always re-
fer to spin-1/2 representation. Consequently, the secular Hamiltonian in Eq. 3.19,
describing the interaction between NV center and a single nuclear spin, becomes:

H f = −ωLSe ⊗ Îz + a||(Ŝz − Ŝe/2)⊗ Îz + a⊥(Ŝz − Ŝe/2)⊗ Îx. (3.24)

3.5.4 Evolution of nuclear spins during decoupling

We now want to describe the time evolution of a nuclear spin during a dynamical
decoupling sequence applied to the NV electron spin. For simplicity we constrain
ourselves to a description of the effective Hamiltonian acting during the sequence, if
it is tuned into resonance with the target nuclear spin. A general, rigorous treatment
of the evolution of the spin-system during the dynamical decoupling sequence can
be found in [97, 98]. In the limit ω0 � a||, a⊥ the dynamical decoupling sequence is
resonant with the target nuclear spin, if the interpulse spacing is tuned to [89]:

τ =
qπ

ω0 + a||/2
. (3.25)

Here, q is the harmonic order of the filter function, as introduced in section 3.4.1.
Based on this expression, we again confirm that the frequency shift of the nuclear
spins in the NMR spectrum in Fig. 3.3 (d) corresponds to ∆ f = a||/(4π).
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FIGURE 3.4: Nuclear spin evolution during dynamical decoupling. (a) Under resonant
dynamical decoupling with τ = π/(ωL + a||/2) the composite spin system of NV center
and nuclear spin evolves under the Hamiltonian Hd = 2a⊥/πŜz ⊗ Îx. (b) Thus, if the NV
center is initially in the mS = 0 state, the nuclear spin rotates around the −x axis by an angle
given by α = 2a⊥/πt, where t is the duration of the dynamical decoupling block. (c) If the
NV center is initially prepared in the mS = −1 state the nuclear spin instead rotates around

the x axis.

For odd harmonic orders q = 1, 3, 5, ... and resonant interpulse separation τ the
effective Hamiltonian acting on the two-spin system during the dynamical decou-
pling sequence is given by [86, 89, 97]:

Ĥd = 2a⊥/πŜz ⊗ Îx. (3.26)

The effect of this Hamiltonian on the nuclear spin is a rotation around the x-axis,
which is conditional on the state of the NV center at the beginning of the dynamical
decoupling sequence. In Fig. 3.4 (b) and (c), we show the resulting nuclear spin
evolution for both the mS = 0 and mS = −1 initial state of the NV center. We note
that for even harmonic orders of the resonance condition the dynamical decoupling
sequence realizes an unconditional rotation of the nuclear spin along x. We will
show in the following sections, that conditional or controlled rotations of the nuclear
spin permit state tomography and polarization transfer protocols.

3.5.5 Dynamical decoupling signal of individual spins

At this point, we can derive the spectroscopy signal of a single nuclear spin using the
product operator formalism (see appendix A) and the effective Hamiltonian of the
decoupling sequence. Thereby we can explain the properties of the satellite peaks in
the NMR spectrum in Fig. 3.3 (d). We will assume, that the interpulse spacing τ is
resonant with a single nuclear spin, such that the decoupling sequence realizes the
effective Hamiltonian given in Eq. 3.26.
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The initial density matrix after the laser pulse in Fig. 3.2 (a) is given by:

ρinit = (Ŝz + Ŝe/2)⊗ Îe/2. (3.27)

This density matrix comprises a polarized NV center and an unpolarized nuclear
spin. After the initial π/2 pulse along the x-axis the density matrix transforms to ρα:

ρα = (−Ŝy + Ŝe/2)⊗ Îe/2. (3.28)

Subsequent to the π/2 pulse we apply the dynamical decoupling sequence. As
described in the previous sections, the XY8 − k dynamical decoupling sequence
with resonant τ leads to the evolution of the spin-system under the Hamiltonian
Hd = 2a⊥

π Ŝz Îx, for a duration t = 8kτ. The propagator for the decoupling sequence is
thus given by Ud = e−iHdt. The resulting density matrix ρβ = UdραU†

d , derived using
Eq. A.5, reads:

ρβ = cos(α/2)(−Ŝy)⊗ Îe/2 + sin(α/2)Ŝx ⊗ Îx +
1
4

Ŝe ⊗ Îe. (3.29)

After the final microwave π/2-rotation along the−x-axis we obtain the final density
matrix ργ:

ργ = cos(α/2)Ŝz ⊗ Îe/2 + sin(α/2)Ŝx ⊗ Îx +
1
4

Ŝe ⊗ Îe. (3.30)

The readout with the final laser pulse produces the observable p, which is the prob-
ability that the initial state of the NV center (mS = 0) is varied:

p =
1
2
− Tr[ργŜz] =

1
2
(1− cos(α/2)). (3.31)

The change in the initial state of the NV center thus depends on the perpendicular
hyperfine coupling a⊥:

p(t) =
1
2
(1− cos(a⊥/πt)). (3.32)

For small α, we can expand the cosine function and find that the variation in p at
resonance is given by:

p(t) ≈ a2
⊥t2/(4π2). (3.33)

Therefore, we can estimate the perpendicular hyperfine coupling by recording the
peak depth in the spectrum as function of the number of pulses in the sequence.
This is shown in Fig. 3.3 (d), where we indicate how the parallel and perpendicular
hyperfine influence position and modulation depth of the spectral feature associated
with 13Cβ.

3.6 Polarization transfer to individual nuclear spins

The next sequence that we describe, again via the product operator method, allows
us to selectively transfer polarization from the NV center to a nuclear spin. The pulse
sequence for this experiment is shown in Fig. 3.5 (b) and has been introduced to the
field of NV-NMR in reference [86]. Effectively the sequence realizes a swap oper-
ation of the quantum states of the NV center and the target nuclear spin. Further,
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the sequence is a central building block of the three-dimensional nuclear localiza-
tion experiment with coherent radio-frequency pulses discussed and introduced in
Chapter 7.

The density matrix of the spin system after the first laser pulse (see Fig. 3.5 (b))
is again given by a polarized NV center (operator S) and a nuclear spin in a fully
mixed state (operator I):

ρinit = ρ(tα) = (Ŝz +
1
2

Ŝe)⊗
1
2

Îe. (3.34)

In this paragraph we compute the density matrix at the times indicated below the
schematic of the pulse sequence in Fig. 3.5 (b). The first π/2-rotation with a mi-
crowave pulse around the y-axis prepares the state:

ρ(tβ) = (Ŝx +
1
2

Ŝe)⊗
1
2

Îe =
1
2

Ŝx ⊗ Îe +
1
4

Ŝe ⊗ Îe. (3.35)

Subsequently, the XY8− k decoupling sequence transforms the density matrix with
the unitary transformation Ud = e−iĤdt with Ĥd given in Eq. 3.26. This is in anal-
ogy to the previous discussion of the XY8− k spectroscopy signal. However, here
t = 8kτ is fixed to produce an evolution of πŜz ⊗ Îx. Thus the density matrix ρx
transforms into:

ρ(tγ) =
1
4

Ŝe ⊗ Îe + Ŝy ⊗ Îx. (3.36)

Subsequently, again a π/2 rotation around the x-axis is applied to the NV center
with an additional microwave pulse:

ρ(tδ) =
1
4

Ŝe ⊗ Îe + Ŝz ⊗ Îx, (3.37)

and directly followed by free precession of the nuclear spin for an angle π/2 around
the z-axis:

ρ(tε) =
1
4

Ŝe ⊗ Îe + Ŝz ⊗ Îy. (3.38)

This rotation around the z-axis is realized by simplying waiting for a time τ/2. Fi-
nally, the second conditional rotation again given by πŜz ⊗ Îx is applied to the spin
system with a second XY8− k sequence, resulting in the final density matrix:

ρ(tζ) =
1
4

Ŝe ⊗ Îe +
1
2

Ŝe ⊗ Îz =
1
2

Ŝe ⊗ ( Îz ⊗
1
2

Îe). (3.39)

Clearly, the population of the electron spin and the nuclear spin have been inter-
changed and thus the initial polarization on the NV center has been transferred to
the nucleus. The final laser pulse shown in Fig. 3.5 (b) repolarizes the NV center in
the mS = 0 state and concludes the initialization of the spin system. We note, that
due to the limited fidelity of all parts of the entire sequence the resulting polarization
of the nuclear spin is typically not larger than 50 % in our experiments.
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FIGURE 3.5: Polarization and state tomography of individual nuclear spins. (a) Laser and
microwave pulse sequence used to first polarize (indicated as (i)), then rotate by θ = π/2
(ii) and finally after a precession time t (iii) readout a single spin’s 〈Ix〉 or 〈Iy〉 expectation
value (iv). The polarization protocol is shown in detail in (b) and consists of two condi-
tional rotations of the nuclear spin mediated via the hyperfine interaction. The rotation of
the nuclear spin after the polarization and the tomography is based on a resonant XY8− k
dynamical decoupling sequence with τ ≈ [2( f0 + f1)]

−1, with f0 and f1 defined in Fig. 3.1.
This sequence is the central building block of the three-dimensional imaging protocol with
coherent radio-frequency pulses as described in Chapter 7. (c) Measurement of the 〈Ix〉 and
〈Iy〉 components of a single 13C nuclear spin. The applied magnetic bias field amounts to
B0 = 9.7 mT which results in a precession frequency of fL = 104 kHz. The quadrature 〈Iy〉 is
detected by converting it into a < Ix > component with a static waiting time τ/2 as shown

in (a).

3.7 Nuclear spin state tomography

The third sequence that we describe via the product operator formalism allows us
to probe the nuclear spin state with the NV center. We will refer to it as the nuclear
spin state tomography sequence as, in principle, all three nuclear spin projections
〈Ix〉, 〈Iy〉 and 〈Iz〉 can be measured via this sequence. Nevertheless we will restrict
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ourselves here to a detailed description of the sequence probing the 〈Ix〉 component.
The detection of the 〈Iy〉 projection can be simply realized by waiting for a quarter
of the precession period of the nuclear spins prior to readout, as this converts the
〈Ix〉 component into the 〈Iy〉 component. The detection of the 〈Iz〉 instead requires
a second additional rotation around the x-axis, which initially converts 〈Iz〉 into the
〈Iy〉 component. Further details on extensions of the sequence to the detection of the
〈Iy〉 and 〈Iz〉 component can be found in reference [86].

Pulse sequence for nuclear state tomography

In the following, we will consider the composite pulse sequence shown in Fig. 3.5
(a). The first part of the sequence, which is labelled polarization, is the previously
discussed sequence that enables the polarization of both the target nuclear spin and
the NV center. The detailed subsequence is shown in Fig. 3.5 (b). In principle also
a different polarization transfer mechanism could be employed here, for example
using the Hartmann-Hahn method [99]. In the second part of the main sequence
(labelled rotation), we apply a XY8− k sequence which is tuned into resonance with
the pre-polarized nuclear spin. The rotation angle is set to θ = π/2 by the proper
choice of k. Consequently, we start out with a nuclear spin state prepared in the xy-
plane of the Bloch sphere. Subsequently, in the sequence element labelled precession,
we let the nuclear spin precess in the equitorial plane. The resulting nuclear spin
density operator after the precession can be written as:

ρp = ξ Îx + χ Îy, (3.40)

with |ξ|2 + |χ|2 = 1. Here, the amplitudes ξ and χ are defined by the precession
time and the Larmor frequency of the target nuclear spin. The final part of the pulse
sequence under the block labelled tomography in Fig. 3.5 (a) represents the tomog-
raphy part of the sequence that we wish to describe in detail in the following. We
will again use the product operator method to show that this tomography sequence
probes the 〈Ix〉 component of the nuclear spin and thus the amplitude ξ.

Product-operator description of state tomography

Now, we will compute the effect of the 〈Ix〉 tomography sequence on the precessing
nuclear spin, described by the density matrix ρp = ρ(tC). The NV center is initially
prepared in the polarized state Ŝz (by the repolarization pulse in Fig. 3.5(b)) and thus
the density matrix of the full spin system, omitting terms proportional to Ŝe, can be
written as:

ρ(tC) = Ŝz ⊗ (ξ Îx + χ Îy). (3.41)

The time axis of the sequence is again indicated below the sketch of the sequence
in Fig. 3.5 (a). Application of the initial microwave pulse by π/2 to the NV center
along the x-axis leaves us with:

ρ(tD) = −Ŝy ⊗ (ξ Îx + χ Îy) = −Ŝy ⊗ ξ Îx +−Ŝy ⊗ χ Îy = ρx(tD) + ρy(TD) (3.42)

In the last step we have separated the density matrix into two product operators
ρx(tD) = −Ŝy ⊗ ξ Îx and ρy(tD) = −Ŝy ⊗ χ Îy and we will consider the effect of the
rest of the sequences separately.
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As discussed in section 3.5.4 the subsequent XY8− k dynamical decoupling se-
quence realizes a conditional rotation of the nuclear spin around the x-axis as de-
scribed by πŜz ⊗ Îx, which, according to Equation A.5, produces the density matrix:

ρx(tE) = −
ξ

2
(
Ŝy ⊗ Îx + 4i(ŜyŜz)⊗ ( Îx Îx)− 4i(ŜzŜy)⊗ ( Îx Îx) + 16(ŜzSyŜz)⊗ ( Îx Îx Îx)

)
(3.43)

= − ξ

2
(
Ŝy ⊗ Îx − Ŝy ⊗ Îx − Ŝx ⊗ Îe − Ŝx ⊗ Îe

)
(3.44)

= ξŜx ⊗ Îe. (3.45)

The final π/2 pulse on the electron spin along the y-axis results in the density matrix:

ρx(tF) = ξŜz ⊗ Îe. (3.46)

Thus the sequence converts the 〈Ix〉 population into a measurable 〈Sz〉 polarization.
Further, it is possible to show that the second product state in the density matrix
ρy produces no observable 〈Sz〉 polarization after application of the tomography
sequence. As already mentioned before, it is possible to detect the 〈Iy〉 amplitude
χ by inserting an extra waiting time τ/2 before the tomography sequence, which
converts this population into a 〈Ix〉 population, and vice versa. This is also indicated
in Fig. 3.5 (b).

Detection of nuclear precession by state tomography

In Fig. 3.5 (c) we show a measurement of the 〈Ix〉 and 〈Iy〉 components of a single
nuclear spin after a variable precession time t. The applied magnetic quantization
field amounted to B0 = 9.7 mT, which results in a nuclear precession frequency of
approximately fL = 104 kHz. As expected both measurement traces are 90◦ out of
phase. The inferred nuclear projection onto 〈Ix〉 and 〈Iy〉 does not reach the maxi-
mum excursion of ±1/2 due to non-ideal initial polarization and non-ideal nuclear
rotations.

As the NV center is kept in the mS = 0 state during this free precession, the
spin precesses at the bare Larmor frequency given by the quantization field fL =
γn/(2π)B0. Thus, nuclear tomography provides an efficient method to determine
the nuclear precession frequency with high-resolution, especially as no coherence
on the NV center needs to be preserved during the precession time. This is in con-
trast to the basic dynamical decoupling spectroscopy discussed before. Thus the fre-
quency resolution of this spectroscopy method is not limited by T2 of the NV center
but merely by the spin lifetime T1, as spin flips on the NV center lead to stochas-
tic switching of the hyperfine interaction. This frequency resolution can be further
increased up to the dephasing time of the nuclear spin [100]. Note that we can in
principle also measure the hyperfine shift of the NV center onto the nuclear spin by
preparing the NV center in the mS = −1 state prior to the free precession period.
However, spectroscopy of hyperfine shifts was performed mainly using the corre-
lation spectroscopy technique, which is in detail discussed in the following section.
In chapter 7, we use the nuclear spin state tomography to detect the nuclear preces-
sion phase after rotating the nuclear spin with a radio-frequency pulse applied to the
planar coil. This gives access to the azimuthal component φ of the distance vector
between NV center and nuclear spin.
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3.8 Correlation hyperfine spectroscopy

We now describe how the hyperfine couplings a|| and a⊥ can be determined with
high precision using multi-pulse dynamical decoupling without the need to polarize
the nuclear spins. These methods are extensively used in chapter 5,6 and 7 for the
positioning of nuclear spins.

In the following we assume that the nuclear Zeeman frequency ωL = γnB0 is
much larger than (a||, a⊥) and that the inter-pulse delay τ is fixed to τ = π/(ωL +
a||/2) such that the expression for the action of the dynamical decoupling sequence
derived in equation 3.26 is exact. In some experiments in Chapters 6 and 7 the ap-
proximation ωL � a||, a⊥ is not fulfilled and a full description of the spin dynamics
requires numerical simulations based on the density matrix formalism (see chapter 7
for details). Nonetheless the methods described here can still be applied when extra
care is taken during data analysis of (a||, a⊥) [77]. This is further discussed in section
3.8.3.

3.8.1 Spectroscopy of the parallel hyperfine coupling

The basic pulse protocol for high-resolution correlation spectroscopy is shown in Fig.
3.6 (a) and consists of two dynamical decoupling blocks sandwiched in between two
π/2 pulses each and separated by a variable waiting or precession time t1. We will
now show that this sequence enables us to detect the nuclear free induction decay
(FID). In addition, the sensing duration, which determines the frequency resolution
of the spectroscopy method is limited by T1 of the NV center electron spin, instead
of T2 in the case of dynamical decoupling spectroscopy.

Product operator description

In a first step we derive the effect of the basic correlation spectroscopy protocol using
the product operator approach and we show that the Larmor frequency ωL and the
parallel hyperfine coupling a|| can be measured with this protocol. Later we will
also discuss variations of the basic pulse sequence which enables the measurement
of the transverse hyperfine coupling a⊥.

The initial density matrix at the beginning of the experiment is given by (the time
axis is indicated below the pulse sequence in Fig. 3.6 (a), (i)):

ρinit = ρ(tα) = (Ŝz + Ŝe/2)⊗ ( Îe/2), (3.47)

and after the initial π/2 rotation around the x-axis we obtain the density matrix:

ρ(tβ) = (Ŝe/2− Ŝy)⊗ ( Îe/2). (3.48)

The density matrix after the decoupling sequence then reads ρ = ÛdρÛ†
d which ac-

cording to equation A.5 can be written as:

ρ(tγ) = cos2(α/4)(−Ŝy)⊗ Îe/2− sin2(α/4)(−Ŝy)⊗ ( Îe/2)

+ 2 sin(α/4) cos(α/4)Ŝx ⊗ Îx, (3.49)

with α = 2a⊥/πNτ. Now we use the trigonometric identities cos2(x)− sin2(x) =
cos(2x) and 2 cos(x) sin(x) = sin(2x) to simplify the expressions above and thereby
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obtain:

ρ(tγ) = cos(α/2)(−Ŝy)⊗ Îe/2 + sin(α/2)Ŝx ⊗ Îx. (3.50)

After the second π/2 pulse around the y-axis the density matrix reads:

ρ(tδ) = cos(α/2)(−Ŝy)⊗ Îe/2 + sin(α/2)Ŝz ⊗ Îx. (3.51)

After this pulse the spin system evolves freely for a duration t1. The Hamiltonian
during the free evolution, again under the assumption ωL � a||, a⊥, is given by:

H f = −ωLŜe ⊗ Îz + a||(Ŝz − Ŝe/2)⊗ Îz. (3.52)

In the following we will neglect the electron coherence, i.e. the term scaling with
Ŝy, because the free precession time t1 is in experiments always chosen much longer
than the dephasing time T∗2 of the electron spin and hence the coherence term Ŝy
decays during t1. Consequently, we only continue the computation with the density
operator:

ρI(tδ) = sin(α/2)Ŝz ⊗ Îx. (3.53)

Again, we use Equation A.5, to compute the effect of H f on the spin system’s density
matrix. After simplifying the resulting expressions, we obtain the following density
operator:

ρI(tε) = ξ cos(a||/2t1)Ŝz ⊗
[
cos(−(ωl + a||/2)t1) Îx + sin(−(ωl + a||/2)t1) Îy

]
+ ξ sin(a||/2t1)Ŝe/2⊗

[
cos(−(ωl + a||/2)t1) Îy − sin(−(ωl + a||/2)t1) Îx

]
,

(3.54)

with ξ = sin(α/2). After multiplying out the terms in the previous expression and
using the trigonometric product-to-sum identities, we obtain the density matrix after
the free-precession time :

ρI(tε) =
ξ

2
(cos(−ω′t1)(Ŝz − Ŝe/2)⊗ Îx + cos(−ωlt1)(Ŝz + Ŝe/2)⊗ Îx

+ sin(−ω′t1)(Ŝz − Ŝe/2)⊗ Îy + sin(−ωlt1)(Ŝz + Ŝe/2)⊗ Îy). (3.55)

Here, we introduced the precession frequency ω′ = ωL + a||.
We proceed with the π/2-pulse around the y-axis, which results in the density

matrix:

ρI(tζ) =
ξ

2
(cos(−ω′t1)(Ŝx − Ŝe/2)⊗ Îx + cos(−ωlt1)(Ŝx + Ŝe/2)⊗ Îx

+ sin(−ω′t1)(Ŝx − Ŝe/2)⊗ Îy + sin(−ωlt1)(Ŝx + Ŝe/2)⊗ Îy). (3.56)

Afterwards, we apply a second decoupling sequence to the spin system, which is
followed by a final π/2 pulse along the x-axis and the laser readout. To keep expres-
sions concise, we now only consider elements of the density matrix which result in
a detectable variation in Ŝz at readout. A short computation shows that this requires
us to only keep terms proportional to Ŝx ⊗ Îx, which results density matrix prior to



3.8. Correlation hyperfine spectroscopy 39

Laser

µWave

Polarize Readout

XY8-kX Y XY8-kY X

Free precession time
t(i)

B C

D E
fR

f0 f-1

A

tα tβ tγ tδ tε tζ tη tθ

XY8-kX Y XY8-kY XXY8-mτ
2

τ
2(ii)µWave

tA tB tC tD tE tF tG tH tI tJ

FIGURE 3.6: Correlation spectroscopy applied to a single nuclear spin. Correlation-type
sequences are extensively used throughout this thesis to detect nuclear spins and to precisely
determine their hyperfine coupling to the NV center. The first sequence, indicated as (i) in
(a), consists of two nuclear phase measurements with the NV center, which are correlated
and enable the detection of the free induction decay (FID) of the nuclear spins by scanning
the free precession time t. The second correlation spectroscopy sequence, indicated as (ii) in
(a), is used to measure the perpendicular hyperfine coupling a⊥. (b) Free precession signal
recorded on a single nuclear spin using the sequence displayed in Fig. 3.6 (a), (i). (c) Power
spectrum of the measurement trace shown in (a). The two Fourier components ( f0, f−1)
represent the nuclear Larmor frequency f0 = γnB0 and the hyperfine shifted precession
frequency f−1 ≈ γnB0 + a||. (d) Measurement of the perpendicular hyperfine coupling using
the correlation spectroscopy sequence shown in Fig. 3.6 (a), (ii). (e) Power spectrum of the
measurement data in (d). The single fourier component fR is proportional to the transverse
hyperfine coupling component, according to fR = a⊥/(2π2). The external magnetic bias
field B0 in both measurement amounted to 9.6 mT, aligned to the quantization axis of the
NV center. The interpulse delay of the dynamical XY8− k decoupling sequence was set to
τ = 4.762 µs. In (b,c) the number of pulses was fixed to N = 8 pulses and in (d,e) it was

swept up to N = 168.
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readout:

ρI(tθ) =
ξ2

4
cos(ωlt1)Ŝz ⊗ Îe +

ξ2

4
cos(ω′t1)Ŝz ⊗ Îe. (3.57)

As the readout probes the expectation value of the Ŝz operator, we obtain for the
signal p(t1) of the correlation spectroscopy sequence:

p(t1) =
1
2
− Tr[ρi(tθ)Ŝz] =

1
2

[
1− ξ2

2
cos(ωlt1)−

ξ2

2
cos(ω′t1)

]
. (3.58)

The signal thus contains two frequencies, the bare Larmor frequency ωl and the
Larmor frequency shifted by the parallel hyperfine parameter of the targeted nuclear
spin ω′ = ωl + a||.

In Fig. 3.6 (b) we show a representative correlation spectroscopy signal p(t1) for
a single nuclear spin. The measurement was performed at a magnetic field of 9.6 mT.
From the power spectrum of the time trace, which is shown in Fig. 3.6 (c), we clearly
identify the two frequency components (ωl , ω′) = (2π × 104(1), 2π × 107(1))kHz.
Hence, the correlation sequence enables the measurement of the Larmor frequency
and the parallel hyperfine coupling of an individual nuclear spin.

3.8.2 Spectroscopy of the perpendicular hyperfine coupling

In this paragraph we describe a second correlation-based spectroscopy sequence to
detect the perpendicular hyperfine coupling a⊥ between the NV center and a target
nuclear spin. The experimental pulse sequence is depicted in Fig. 3.6 (a), (ii). Clearly,
the sequence is analougous to the previous sequence until the time tδ = tD, indicated
below the sequence protocols in Fig. 3.6 (a). In addition, the electron coherence can
again be neglected and we can thus write the density matrix at tD as:

ρI(tD) = ξŜz ⊗ Îx, (3.59)

with ξ = sin(α/2), as defined in the previous section. The waiting time τ/2, from
tD to tE, converts the nuclear projection from Îx to Îy:

ρI(tE) = ξŜz ⊗ Îy. (3.60)

Subsequently we apply a decoupling sequence with 8m pulses, where m is a free
parameter that we sweep to record a time trace. In the example measurement shown
in Fig. 3.6 (d) we varied m from 1 to 21. Note that by increasing m the duration of
the decoupling sequence, corresponding to t = tF − tE on the x-axis in Fig. 3.6 (d),
increases as well. The effect of the decoupling sequence is again given by the unitary
transformation Ûd = exp(i2a⊥/π8mτŜz ⊗ Îx), which results in the density matrix:

ρI(tF) = ξ cos(Θ/2)Ŝz ⊗ Îy + ξ sin(Θ/2)Ŝe/2⊗ Îz, (3.61)

with Θ = 2a⊥/π8mτ. After the waiting time τ/2 the density matrix is given by:

ρI(tG) = −ξ cos(Θ/2)Ŝz ⊗ Îx + ξ sin(Θ/2)Ŝe/2⊗ Îz. (3.62)

Further, after the microwave rotation by π/2 around the y-axis we find:

ρI(tH) = −ξ cos(Θ/2)Ŝx ⊗ Îx + ξ sin(Θ/2)Ŝe/2⊗ Îz. (3.63)
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Here we recall that, as discussed in the previous section, only the term proportional
to Ŝx ⊗ Îx produces a observable variation in the sensor projection Ŝz at the end of
the sequence. The resulting density matrix prior to readout is thus given by:

ρI(tJ) = −ξ cos(Θ/2)Ŝz ⊗ Îe. (3.64)

The laser readout probes the Ŝz component of the NV center and the measurement
signal is therefore:

p(tJ) =
1
2
− Tr

[
ρI(tJ)Ŝz

]
=

1
2
(1 + ξ cos(Θ/2)) =

1
2
(1 + ξ cos(a⊥/π8mτ)) (3.65)

Consequently, we expect to observe a Rabi-like oscillation with Rabi frequency ωR =
a⊥/π and contrast ξ ∈ [0, 1] after applying the sequence for varying t = 8mτ.

A measurement realizing this sequence on a single nuclear spin is shown in Fig.
3.6 (d). In addition, in Fig. 3.6 (e) we show the Fourier spectrum of the time trace,
which clearly shows a single component corresponding to fR = a⊥/(2π2). Here, we
observe a Rabi frequency of ωR = 2π × 6(1) kHz, which results from a perpendicu-
lar hyperfine coupling of a⊥ = 2π × 18(1) kHz.

3.8.3 Determination of hyperfine couplings from precession frequencies

The hyperfine couplings a|| and a⊥ in the limit 2π f0 � a||, a⊥ are given by:

a||/(2π) = f−1 − f0, (3.66)
a⊥/(2π) = π fR. (3.67)

Here, ( f0, f−1, fR) are the frequencies detected in the correlation spectroscopy pro-
tocol (as indicated in Fig. 3.6 (c) and (e)). In some of our experiments in chapter 6
and 7 the hyperfine couplings and the nuclear Larmor frequency f0 were of similar
magnitude, and we used the following transformations, derived analytically in [77],
to obtain the hyperfine couplings:

a|| = 2π f−1

(
cos

(
2π f−1

τ
2

)
cos

(
2π f0

τ
2

)
− cos(π − 2π fRτ)

sin
(
2π f−1

τ
2

)
sin
(
2π f0

τ
2

) )
− 2π f0 (3.68)

a⊥ =
√
(2π f−1)

2 −
(
2π f0 + a||

)2 (3.69)

Alternatively, the hyperfine couplings can be obtained by fitting numerical simula-
tions to the measurement traces. This is discussed in further detail in chapter 7.

3.8.4 Frequency-resolution of correlation spectroscopy

The frequency resolution ∆ f of the dynamical decoupling spectroscopy protocol in-
troduced in the previous sections is limited by the coherence time ∆ f = 1/T2. The
frequency resolution of the correlation spectroscopy sequence is determined by the
waiting time between the two phase measurements of the nuclear spin. As the phase
detected in the first measurement is stored in the population of the NV center, the
waiting time can be extended up to the spin lifetime T1 of the electron spin. Conse-
quently, the frequency resolution of the correlation spectroscopy sequence is limited
by the inverse of this time-scale. As the spin lifetime of the electron spin is typically
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much longer than the coherence time, correlation spectroscopy enables higher res-
olution and therefore also higher precision measurements of the nuclear precession
frequencies.
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CHAPTER 4
Experimental methods

Summary

This chapter covers a technical description of the diamond chips and the experimental setup
used for the experiments described in this thesis. In a first step the properties of the em-
ployed single-crystal diamonds and their generation with ion implantation and subsequent
high temperature annealing will be described. Subsequently, we will briefly describe all com-
ponents of the experimental setup for optical, microwave and radio-frequency control of the
NV center and nearby nuclear spins. This includes the description of a novel planar, radio-
frequency coil for nuclear spin manipulations.

4.1 Introduction

The previous chapter summarized the basic physical properties of the NV− center
in diamond. We have seen that the defect shows quantum coherence under ambient
conditions, which makes it a promising system for sensing applications, e.g. of bi-
ological systems with NMR methods. This chapter will provide a concise summary
of the experimental setup that enables NV-NMR and the more general quantum
sensing experiments described in Chapters 5, 6, 7 and 8 of this thesis. In addition,
the employed bulk diamond chips and the preparation of NV centers using ion im-
plantation and annealing will be discussed at the beginning of this chapter. Further
details on the experimental setup can be found in the following PhD theses from our
research group [79, 97, 101].

4.2 Diamond chips

The experiments described in this thesis were performed on bulk, electronic-grade
diamond crystals from ElementSix with typical dimensions 2 mm× 2 mm× 0.5 mm
with 〈1 1 0〉 edges and a 〈1 0 0〉 front facet. After receiving the samples, NV centers
were generated by ion implantation of 15N with an energy of 5 keV, corresponding
to a depth d of ∼ 5− 10 nm. This implantation depth is a compromise between the
deteriorated coherence properties of very shallow NV centers (d < 5 nm) and the
distance of the sensor to target molecules that we plan to embed into a matrix layer
on top of the diamond chip for future experiments. First experiments describing the
preparation of surface matrix layers with spin-coating techniques are described in
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the Master’s thesis of N. Hauff [102]. The implantation process itself was carried
out by collaborators at the University of Leipzig1 or alternatively by an industrial
partner2. Prior to the implantation process we attached a metallic mask with a grid
of ∼ 100 µm-wide holes on top of the front facet of the diamond to define a implan-
tation pattern. After implantation, we anneal the samples in-house with a custom-
built, evacuated tube furnace (Carbolite MTF) at a background pressure lower than
10−8 mbar for 60 − 120 min at T = 880 ◦C. During the annealing step vacancies,
that are generated during the implantation process, mobilize and combine with the
nitrogen atoms to form NV centers. The conversion efficiency of implanted nitro-
gen to NV centers at the given implantation energy amounts to approximately 0.5 %
[103]. The temperature of the tube furnace is ramped up slowly to the desired set
temperature to preserve high-vacuum during the entire process. Further details on
the recent development of diamond processing can be found in the Master’s thesis
of N. Hauff [102].

The diamond chip used for most experiments in Chapters 5, 6, 7 and 8 with the
internal identifier E1303 was overgrown, prior to implantation, with a layer struc-
ture of 20 nm enriched 12C (99.99 %), 1 nm enriched 13C (estimated in-grown con-
centration ∼ 5− 10 %) and a 5 nm cap layer of again enriched 12C (99.99 %). The
overgrowth was performed by H. Watanabe at AIST, Japan. The resulting isotope
structure is shown in Fig. 4.1, where the estimated distribution of NV centers rel-
ative to the isotope layers is indicated. After annealing this particular sample, we
had to slightly etch the surface (at 580◦C in pure O2) to remove persistent surface
fluorescence. Further characterizations and details on the sample can be found in
a recently published study (sample B in Ref. [104]). In general the sample shows
on the one hand NV centers with long dephasing times (T∗2 ∼ 5− 15 µs), which are
most likely located beneath the enriched 13C layer in a spin-free environment. On
the other hand also strongly coupled nuclear spins can be observed on defects which
are most likely located close to the enriched layer and which show shorter dephas-
ing times. Finally, a very high charge stability of most NV centers studied during
the course of this thesis was observed.

4.3 Experimental setup

The experimental setup for sensing experiments with NV centers operates at room-
temperature and fits onto a small optical table, with further miniaturization possible
and under way. The setup can be divided into four main components, which will
be described in the following in further detail: a confocal laser microscope for the
optical initialization and read-out of the NV center, a microwave line to control the
electron spin of the NV center, a planar microcoil to control nuclear spins and finally
a moveable permanent magnet to apply magnetic bias fields.

4.3.1 Confocal laser microscope

The experimental setup is centered around a custom-built confocal microscope, which
is optimized for the optical excitation and emission spectrum of the NV center. A
simplified schematic of the microscope is shown in Fig. 4.2 (a). We excite the NV cen-
ter with a diode-pumped solid-state laser (DPSSL) with a wavelength of λ = 532 nm.
For fast optical pulses we switch the laser on and off with an acousto-optic modu-
lator (AOM, GH AOMO 3200-125) that has a typical rise time of 10 nanoseconds

1By the group of Prof. Jan Meijer at the Felix-Bloch-Institute.
2Cutting Edge Ions, CA, USA.
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FIGURE 4.1: Layer structure of isotopically-purified diamond samples hosting NV centers.
(a) Layer structure of an isotopically-purified diamond sample, that was employed for most
experiments in Chapters 5, 6 and 7. The substrate is a bulk, electronic-grade diamond from
ElementSix, which was overgrown with a layer structure of 20 nm enriched 12C (99.99 %),
1 nm enriched 13C (estimated in-grown concentration ∼ 5− 10 %) and a 5 nm cap layer of
again enriched 12C (99.99 %) at the AIST, Japan. (b) After overgrowth Nitrogen-vacancy (NV)
centers were generated by ion-implantation of 15N with an energy of 5 keV and subsequent
annealing in a custom-built tube furnace at 880 ◦C under high vacuum. The NV centers
were formed at a depth of∼ 5− 10 nm according to Stopping Range of Ions in Matter (SRIM)
simulations. The final cleaning step, again performed in the tube furnace, but under ambient
pressure, is performed to remove fluorescent graphite on the diamond surface that forms

during annealing.

and an extinction ratio in double-pass configuration that is better than 50 dB. Re-
cently, our group has also developed a new laser source [102] that does not require
a acousto-optic modulator and is based on directly switching the current applied to
a high-bandwidth (> 150 MHz) laser diode. This approach considerably simplifies
the optical setup, increases the extinction ratio and is further not prone to misalign-
ment due to mechanical drift. Nevertheless, all experiments in this thesis were per-
formed with the AOM-based laser system. For bulk diamond samples we typically
require optical powers in the range of 5− 10 mW to saturate the NV center. After
passing the AOM the laser beam is coupled to a single-mode fiber in order to clean
the transverse mode profile and to deliver the beam to the main setup (see Fig. 4.2
(a)).

The green excitation beam is subsequently transmitted through a dichroic mirror
and via a dual-axis, galvanometric mirror system (GM, Thorlabs, GVS212) steered
into a high-resolution microscope objective with a numerical aperture of NA = 0.95,
which is compensating for chromatic aberrations. The objective focuses the excita-
tion beam onto the diamond sample and collects the emitted, red-shifted photons.
For axial focusing we employ a piezo-based objective scanner (Piezo Systems Jena
MIPOS-100) with a travelling range of 90 µm. The red-shifted photons, emitted by
the NV center, propagate through the optical path in opposite direction and are sep-
arated from the excitation photons on the dichroic mirror where they are reflected.
After passing a pin-hole (PH, 30 µm diameter) photons are focused on an avalanche
photodiode (APD). From individual NV centers in a bulk sample we typically de-
tect 40− 50 kCts/s with a background fluorescence of 2− 5 kCts/s, which results in
ODMR contrasts of up to 40 %. The collection efficiency is mainly limited by total
internal reflection of the emitted photons at the diamond-air surface due to the high
refractive index of diamond n = 2.41 [105] and can be increased, by more than one
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FIGURE 4.2: Confocal microscopy of individual NV centers. (a) Schematic of the custom-
built confocal microscope used in all experiments reported in this thesis. A diode-pumped
solide-state laser (DPSSL) with wavelength λ = 532 nm is switched on and off using a
acousto-optic modulator (AOM) in double-pass configuration and transferred to the con-
focal microscope via a single-mode (SM) fiber. The laser beam is steered over the sample in
the lateral, xy- directions by means of a galvanometric pair of mirrors (GM), which varies the
entrance angle into a high numerical-aperture (NA=0.95) objective (HO), which focuses the
beam onto the diamond surface. A high-precision, piezo-electric actuator is employed for
focusing in the z-direction. The emitted, red-shifted photons are collected with the objective,
separated from the exication photons using a dichroic mirror (DM), filtered by a pin-hole
(diameter ∼ 20 µm) and finally detected with an avalanche-photodiode (APD). Mirrors (M)
and lenses (L) are included in the schematic and indicated by the respective capital letters.
(b) Confocal scan (15 µm× 15 µm) of a bulk diamond sample. From individual NV centers

we typically detect 40− 50 kCts/s with a background fluorescence of 5 kCts/s.

order of magnitude, by etching photonic structures into the diamond chip [106].

4.3.2 Control and readout electronics

The electronic signals required to steer the experimental setup are controlled by two
arbitrary waveform generators (AWG-1 and AWG-2) and a multi-channel data ac-
quisition board. A schematic of the control electronics is shown in Fig. 4.3. All
devices are operated with a control software implemented in Labview, which is fur-
ther described in [79].

Microwave and radio-frequency signal generation

The first AWG (AWG-1, Tektronix AWG5002C) acts as the master device, which trig-
gers the execution of signal generation and acquisition on the other devices (see Fig.
4.3 (b)). In addition, the internal reference clock of AWG-1 is distributed to all other
devices to ensure proper synchronization of all sub-systems (see Fig. 4.3 (c)).

AWG-1 has two analog output channels with a resolution of 14 bits and a max-
imum sampling rate of 600 MS/s and controls the microwave pulses that we use
to manipulate the electron spin of the NV center. For this purpose we up-convert
the output of the AWG-1, which is set to a carrier frequency of 100 MHz. For up-
conversion we employ an IQ-mixer (Marki IQ1545) in the single sideband regime
and a low phase noise local oscillator (Phasematrix, Quicksyn FSW-0020). The re-
sulting signal at frequency 1− 4 GHz is subsequently amplified and transmitted to
an impedance-matched coplanar waveguide (CPW) and dissipated in an attenuator
rated for high powers of up to 100 W. Details on the microwave CPW can be found
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FIGURE 4.3: Control electronics of the experimental setup. (a) Two arbitrary waveform
generators (AWG-1,AWG-2) generate the microwave and radio-frequency pulses. AWG-1
(Tektronix AWG5002C) has two analog output channels with a resolution of 14 bits and a
maximum sampling rate of 600 MS/s and drives the I and Q channels of a IQ-Mixer (Marki
IQ1545), which is operated in the single sideband regime to up-convert the AWG carrier
frequency of 100 MHz with a high-frequency tone at 1− 4 GHz with a low phase noise lo-
cal oscillator. The resulting microwave pulses are amplified and transmitted to a coplanar
waveguide. The second AWG (AWG-2, National Instruments, PCI-5421) controls the radio-
frequency pulses for nuclear spin control. The device provides a single analog output chan-
nel with a resolution of 16 bit and a maximum sampling rate of 100 MS/s. The generated
voltage signals are subsequently amplified with a waveform amplifier (Accel Instruments
TS-200) that drives the radio-frequency coil. The scanning mirrors (Thorlabs GVS212) and a
z-focusing piezo attached to the microscope objective (HO) are steered with analog control
signal from a DAQ card (National Instruments PCIe-6363). Photons emitted by the NV cen-
ter are detected with an avalanche photodiode (APD) and time tagged with the integrated
counter of the DAQ card with a temporal resolution of 10 ns. (b) The master device AWG-
1 provides the start trigger for the execution of waveforms on AWG-2 and for the counter
clock. Furthermore, the laser is switched with a digital output of AWG-1. (c) Timing syn-
chronization of all devices is ensured by distributing the integrated 10 MHz reference clock

of AWG-1 to AWG-2, the DAQ and the microwave oscillator.

in [101]. Apart from the two analog output channels AWG-1 also includes four digi-
tal marker output channels, which we use to trigger the slave devices and to switch
the laser.

The second AWG (AWG-2, National Instruments, PCI-5421) controls the radio-
frequency pulses for nuclear spin control. The device provides a single analog out-
put channel with a resolution of 16 bit and a maximum sampling rate of 100 MS/s.
The generated voltage signals are subsequently amplified with a waveform ampli-
fier (Accel Instruments TS-200) that drives the radio-frequency coil. The waveform
amplifier has a limited bandwidth of∼ 1 MHz. In most NMR experiment performed
at low magnetic bias field this bandwidth is sufficient. At higher magnetic bias field
and thus higher nuclear precession frequencies, we switch to a conventional radio-
frequency amplifier (Mini Circuits LZY-22+ 200 MHz bandwidth).

At the beginning of each experiment the corresponding pulse sequences includ-
ing all trigger and marker signals are compiled from a script file (see [79] for ex-
ample pulse files and details of the script syntax) that contains a chronological set
of instructions that are executed during the sequence. Subsequent to the compila-
tion the resulting waveforms are uploaded to the waveform generators and signal
generation starts upon a trigger signal.
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FIGURE 4.4: Time-resolved photon counting. (a) Experimental sequence used to probe the
time-dependent fluorescence rate of the NV center prepared either in the ms = 0 (first laser
pulse in the sequence) or ms = −1 state (second and final laser pulse in the sequence).
The sequence is repeated 105 − 106 to acquire sufficient photon statistics. (b) Histogram of
photon counts for the experimental sequence shown in (a). The first burst of photons results
from readout of the NV center prepared in the mS = 0 state and the second photon burst
results from readout of the NV center after a π-pulse has been applied to prepare the NV
center in the mS = −1 state. (c) Overlay of the two photon bursts shown in (b) according to
the timing table generated from the pulse file corresponding to the sequence shown in (a).
(d) ODMR contrast (black line) and normalized read-out SNR (blue dashed line) as function
of the integration window of the time-dependent photon rate. The maximum contrast for
individual NV centers in well aligned magnetic fields (tilt of the external bias field to the

quantization axis smaller than 1◦) is 30− 40 %.
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Time-resolved photon counting

The integrated counter of a multi-channel data acquisition board (National Instru-
ments PCIe-6363) time stamps the photons, that are detected by the APD, relative
to the start trigger with a time resolution of 10 ns. The resulting time stamps are
binned into a histogram in software. Based on the pulse file, discussed in the pre-
vious paragraph, the software further generates an integration table, which defines
the integration intervals of the histogram. This integration table is later used for the
analysis of the measurements as described below.

A very basic example of an experiment, which merely records the photon count
rate of the NV center in the mS = 0 and the mS = −1 state is shown in Fig. 4.4 (a):
Two laser pulses with duration tp = 2 µs are applied to the NV center. The second
laser pulse is preceeded by a microwave π-pulse, which prepares the NV center
in the dark mS = −1 state. Fig. 4.4 (b) shows the resulting histogram of photon
counts, obtained from the time tags of the counter. Clearly, two time intervals with
photon bursts can be identified. In the remaining time intervals the photon count-
rate corresponds to the dark count rate of the detector because in this time interval
the laser is turned off (typical dark count rate ∼ 40− 100 Cts/s). Furthermore, the
initial count rate of the first photon burst is significantly stronger than that of the
second photon burst. This is also shown in Fig. 4.4 (c) where both bursts are overlaid.
We also note that the photon count rates converge to a common steady state value
approximately after t = 1.2 µs, which implies that the NV center is repolarized into
the ms = 0 state.

To optimize the efficiency of spin-state readout photon counts have to be inte-
grated in an integration window that maximizes the read-out SNR. In the measure-
ment software both starting position of the integration and length of the integration
window are selected to ensure optimal readout. In Fig. 4.4 (d) we show the ODMR
contrast on a single NV center, obtained from the measurements shown in Fig. 4.4
(b) as function of the integration duration. The black line in Fig. 4.4 (d) shows the
ODMR contrast, that is the relative change in fluorescence rate between ms = 0 and
ms = −1, as function of the integration window width. The integration duration
for optimal ODMR contrast is obtained for an integration duration of approximately
200 ns. Optimal integration duration is, however, not only determined by the ODMR
contrast C but also by the number of photons N collected. In Fig. 4.4 (d) we there-
fore also show the normalized signal to noise ratio of the NV readout (as discussed
in Chapter 2) as function of the integration (blue dashed line):

SNR ∝ C
√

N. (4.1)

Here, optimal readout SNR is achieved for an integration duration of approximately
700 ns where a reduction in ODMR contrast is compensated by higher absolute pho-
ton counts, which reduces the photon shot noise.

The ideal starting position of the integration may shift over time as the dead time
of the acousto-optic modulator changes if the position of the laser beam entering the
modulator varies. Further, the optimal window of the integration generally changes
with the laser intensity. Therefore, the integration settings have to controlled reg-
ulary and adjusted correctly. Complementary details on the readout procedure are
additionally described in [79]. Finally, we note that the typical peak ODMR contrast
is between C ∼ 30− 40% on diamond chips with low background fluorescence and
under the condition that the external magnetic bias field is properly aligned.
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FIGURE 4.5: Definition of the laboratory and NV center coordinate systems. (a) Definition
of the laboratory and NV center coordinate systems. The diamond chip with 〈1 1 0〉 edges
and a 〈0 0 1〉 front facet is indicated in light blue. The origins of the coordinate systems
coincide with the position of the vacancy in the lattice. (b) (Top view) NV centers with
laboratory, azimuthal orientation φ = 0 (green) are used for NMR spectroscopy or quantum
sensing experiments. NV centers with azimuthal orientations φa,1 = 90◦ (yellow) and φa,2 =
270◦ (purple) are employed as auxiliary field sensors for the calibration of vector magnetic
fields. (c) Confocal scan of a segment of the diamond chip. A green circle indicates the
sensing NV with φ = 0◦ and yellow and purple circles highlight the auxiliary NV centers

used for field calibrations.

Control of the confocal microscope

In addition to photon integration, the multi-channel data acquisition board (Na-
tional Instruments, PCIe-6363) controls the scanning mirrors and the focusing piezo
attached to the microscope objective with three analog control signals. The focus-
ing piezo has a traveling range of 90 µm and the scanning mirrors enable access
over a field of view of at least 150 µm × 150 µm. During experiments the spatial
focusing position of the target NV center shifts, mainly due to the heating effects
resulting from dissipation of microwave power in the coplanar waveguide. To con-
tinuously correct for this shift the scanning mirrors setting and the focus position
are re-optimized for maximum fluorescence rate 10− 20 times per hour. Further de-
tails on the fluorescence rate optimization procedure can be found in the thesis of T.
Rosskopf [79].

4.3.3 Calibration and alignment of static quantization fields B0

We apply static quantization fields with a cylindrical, NdFeB magnet, which is at-
tached to a three-axis, precision translation stage. By varying the distance between
sample and magnet the magnitude of the bias field can be altered between ∼ 5 mT
to ∼ 350 mT. The orientation of the bias field can be changed and aligned to the
crystallographically defined z-axis of the NV center by moving the magnet relative
to the sample.

Precise alignment of the external bias field to the quantization axis of the NV
center (z-axis) is critical to ensure long coherence times and high contrast of the
ODMR effect [107]. Further, very precise alignment of the external quantization
field is very important for azimuthal localization measurements reported in Chapter
6 and 7, because residual transverse fields of ~B0 introduce systematic uncertainty in
the nuclear position vector inferred from spectroscopy experiments.
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Field alignment at high magnetic field (20 mT < B0 < 350 mT)

To align the vector magnet field in the limit of high magnetic fields (20 mT < B0 <
350 mT), we first move the magnet to several spatial (x, y, z)-positions (typical 4− 5
positions) above the sample and record the ODMR resonance frequencies of a par-
ticular NV center to which we aim to align the permanent magnet’s field. Sub-
sequently, we determine the orientation and spatial position of the NV center, in
the coordinate system of the xyz-stage moving the magnet. This is achieved by fit-
ting a numerical model of the field map generated by the permanent magnet to the
recorded ODMR frequencies, which encode the vector field experienced by the NV
center. Once the orientation and position of the NV center in the coordinate system
of the permanent magnet is known, the model allows us to predict where to move
the permanent magnet to generate an aligned magnetic field with desired magnitude
B0 at the position of the NV center. This procedure enables us to align the vector field
of the permanent magnet with a residual tilt of a few degrees to the z-axis of the NV
center.

Field alignment at low magnetic field (B0 < 20 mT)

At low magnetic fields (B0 < 20 mT) the field of the magnet can be aligned to the
symmetry axis of the NV center with a different technique, which typically results
in more precise alignment. The coarse alignment of the magnet and a rough adjust-
ment of the magnitude of the field is again achieved by recording ODMR spectra
of the target NV center for different (x, y, z)-positions of the magnet and by fitting
procedure described above. Afterwards, we iteratively optimize the alignment of
the magnet. In each iteration, we reconstructed the vector field ~B0 using the method
used for the calibration of the coil field ∆~B as described in section 4.3.5. Subse-
quently, we move the magnet in the lateral (x, y)-plane of the laboratory frame. The
direction and step size is determined from a field map of the permanent magnet and
the residual transverse components of the field ~B0. We terminate this iterative pro-
cess when the residual transverse field components are smaller than 50 µT. Thus we
achieve residual tilts to the quantization axis of the NV center which are significantly
smaller than 1◦. At high magnetic field this procedure can not be used because the
significant magnitude of transverse fields acting on the auxiliary NV centers elimi-
nates the ODMR contrast due to state mixing [107].

Stability of B0

For NV-NMR experiments the stability of the external bias field is crucial, because
temporal drifts of B0 lead to a variation of the Larmor frequency of nuclear spins
which over long integration times leads to broadened spectra [73] and non-resonant
multi-pulse dynamical decoupling sequences. Most experiments reported in this
thesis have been performed at low magnetic bias fields of ∼ 10 mT. At this magni-
tude of B0 we have calibrated the magnetic field stability by tracking the EPR fre-
quency of the NV center over several hours. A resulting trace of the EPR frequency
is shown in Fig. 4.6 (b), for a measurement duration of ∼ 35 hrs. The standard
deviation of the EPR frequency amounts to 33 kHz, which corresponds to a mag-
netic field stability of ∼ 1.2 µT. The variation in the magnetic field is most likely
resulting from temperature fluctuations in the laboratory, which lead to a change
in the magnetization of the permanent magnet. At higher magnetic field, we find
that the relative fluctuations in the magnetization with temperature remain similar.
However, the absolute shifts in frequency are consequently significantly larger. For
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FIGURE 4.6: Magnetic bias field source and field stability. (a) A cylindrical NdFeB per-
manent magnet attached to a high-precision translation stage Newport M-462-XYZ-M (reso-
lution in xyz: 1 µm, travel range in xyz: 25 mm) provides the magnetic bias field. By mov-
ing the magnet relative to the sample vector fields with magnitude between ∼ 5 mT and
∼ 350 mT can be applied and aligned to the quantization direction of the NV center. (b)
Stability of the EPR frequency over the course of a long experiment (> 30 hrs integration
time) at B0 ≈ 10 mT. The fluctuations in the magnetic field are predominantly caused by
temperature-induced variations of the magnetization of the permanent magnet. (c) His-
togram of the EPR shifts generated from the time trace in (b). The distribution of EPR shifts
shows a standard deviation of σ = 33 kHz, which corresponds to a fluctuation of the mag-

netic field of 1.2 µT.

example, at a magnetic field of 200 mT the typical fluctuations of the EPR transition
are in the range of several MHz, translating into a magnetic field stability in the
range of ∼ 20− 30µT.

4.3.4 Planar radio-frequency coils for nuclear spin control

The NV-NMR experiments in this thesis require active control of both the sensor
electron spin of the NV center and of target nuclear spins. In principle both the mi-
crowave pulses for the sensor and the radio-frequency pulses for the nuclei can be
transmitted through the coplanar waveguide, however, a planar micro-coil directly
placed above the sample achieve significantly higher nuclear Rabi frequencies: In
fact, we typically achieve Rabi frequencies of ΩR ∼ 2π × 30 MHz on the electron
spin of the NV center, which correspond to a driving fields of B1 =

√
2ΩR/γe ∼

0.76 mT. In contrast we have, based on numerical simulations (see section 4.3.4),
estimated that driving fields of B1 ∼ 5 − 10 mT are feasible with a small planar
coil. This represents an increase of one order of magnitude in the driving field and
permits much faster control of nuclear spins. We note that an alternative approach
to achieve high nuclear Rabi frequencies would be to directly pattern a small con-
ductor onto the diamond as was demonstrated in [108]. In this case, however, the
conducting material on the diamond surface might deteriorate the coherence prop-
erties of shallow NV centers [109] and further complicates sample deposition on the
diamond chip.

Numerical optimization of the coil geometry

We have performed a simple numerical optimization of the coil geometry with the
target of maximizing the coil B1 field, while constraining the inductance of the coils
to 2.5 µH to maintain sufficient bandwidth. The coil geometry was parameterized by
its inner diameter di, the number of windings N1 and the number of layers N2. We
constrained ourselves to circular windings and wire diameters of 120 µm (including
the isolation layers). Further, only a small set of possible inner diameters, provided
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FIGURE 4.7: Numerical optimization of the coil geometry. (a) Optimized coil magnetic
field magnitude for various inner diameters di of the coil. For the optimization the number
of vertical and horizonal windings has been varied under the constraint that the inductance
remains below 2.5 µH. The magnetic field was computed using the Biot-Savart law and the
inductance of the coil was estimated from empirical analytical models [110]. (b) Optimized
number of vertical and horizontal windings for the same inner diameters as in (a). In this
thesis experiments were performed with a coil with inner diameter di = 2 mm (highlighted

with a dashed box).

by the manufacturer (Sibatron AG) was evaluated to keep the production cost low.
The magnetic field B1 produced by the coils described by (di, N1, N2), at a stand-
off distance of 1 mm was computed using the Biot-Savart law. This vertical offset
of the coil from the NV centers results from the thickness of the diamond (500 µm),
the thickness of the microscope glass slide used to mount the diamond (200 µm)
and possible air gaps. The resulting optimized parameter sets (N1, N2) for all di are
shown in Fig. 4.7 (b).

Integration into the confocal microscope

A schematic of the mechanical holder structure used to integrate the planar coil into
the existing confocal microscope is shown in Fig. 4.8. Apart from minimizing the
stand-off distance of the coil to the NV centers, an efficient thermal contact of the
coil to the metallic holder structure is highly desirable to minimize heating due to
the Joule effect. Therefore, we glued the coil with silver glue to a small copper plate,
which itself was attached with the same glue to a holder frame made of aluminium
(see Fig. 4.8). This heat sink structure was later replaced with a diamond plate and
attached with non-conductive glue to reduce eddy currents, which limit the coils
bandwidth (see description of an improved coil design at the end of this chapter).
Using the holder structure the coil can be placed directly on top of the microscopy
glass slide holding the diamond. We estimated the final stand-off distance of the
vertical center of the coil to the NV center to be ∼ 925− 1125 µm.

4.3.5 In-situ characterization of the planar coils

Heating effects due to DC current and current pulses

After installation of the coil into the setup, we carefully tested heating effect while
applying DC current with a 100 % duty cycle. We used a handheld infrared ther-
mometer to measure the temperature of the coil for varying input currents. In Fig.
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geometry v 1.0 (this work) v 2.0 [98]
no. of windings (lateral) 9 10
no. of layers (vertical) 3 2
wire diameter (inc. isolation) 120 µm 120 µm
inner diameter 2 mm 1.02 mm
outer diameter 4.2 mm 2.22 mm
vertical height 360 µm 240 µm
vertical stand-off to NV center ∼ 1000 µm ∼ 1000 µm

magnetic fields
B (∼ 1 mm stand-off, simulated) ∼ 6.4 mT/A ∼ 4.5 mT/A
B (∼ 1 mm stand-off, measured) ∼ 5.6 mT/A -

electrical
self-inductance ∼ 2.5 µH ∼ 0.9 µH
intrinsic resistance (at DC) ∼ 0.5 Ω ∼ 0.5 Ω
termination resistance 4.7 Ω 50 Ω
bandwidth (-3dB criterion) ∼ 100 kHz ∼ 20 MHz
max. current (100 % duty cycle) 0.6 A ∼ 2 A
max. current (10 % duty cycle) 2 A > 2 A

TABLE 4.1: Geometry, magnetic and electrical design properties of the planar coil. This
table summarizes the design properties of the planar micro-coils that have recently been
developed in our group. The properties of the initially developed, first version (v 1.0) is
highlighted in Fig. 4.7 (a) and (b). The coil was manufactured by Sibatron AG and used for
all low field NMR experiments reported in Chapters 6 and 7. A coil with lower inductance,
higher bandwidth and more efficient thermal management (v 2.0) was used for the high-
field NMR measurements (B0 > 200 mT). This coil was also manufactured by Sibatron AG.

The development of this coil is described in detail in [98].

4.9 (a), we show the measured temperature of two different coils with a total num-
ber of windings of 15 and 27, respectively. Both measurements show a quadratic
dependence of the temperature onto the injected current. For current higher than
1 A, we observe temperatures exceeding 40 ◦C, which also led to thermal drifts de-
tected in the confocal microscope, prohibiting higher current. Nonetheless higher
currents can be applied in pulsed operation with reduced duty cycles. Temperature
measurements have shown that at a duty cycle of 10 % square current pulses with
2 A can be applied without exceeding 40 ◦C. At these peak currents B1 fields of up to
10 mT can be realized, which is approximately one order of magnitude higher than
the fields produced by the microwave stripline.

Field magnitude measurement and vector magnetometry

We calibrated the vector field generated by the coil ∆~B using the target NV, coupled
to nuclear spins of interest, and two auxiliary NV centers with different crystallo-
graphic orientation. All three NV centers were located in close proximity to each
other, with a distance of typically ≤ 5 µm (see Fig. 4.5 (c)). Over this separation
the magnetic field of the coil can be assumed to be homogeneous. We determined
the orientation of the symmetry axis of many NV centers by moving the permanent
magnet over the sample and observing the ODMR splitting. The azimuthal orien-
tation of the target NVs defines the x-axis in the laboratory and NV frame (φ = 0).
This orientation was the same for all target NV centers investigated in this work. The
auxiliary NV centers were selected to be oriented along φa1 = 90◦ and φa2 = 270◦.
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FIGURE 4.8: Schematic of the central part of the experimental setup used in this work.
Microwaves for spin control are transmitted through a coplanar waveguide, which has been
lithographically defined on a quartz slide. The quartz slide is glued onto a PCB board and
contacted to SMA connectors using wire bonds. A bulk diamond chip is placed on top of
a quartz slide and NV centers are excited and detected with a high-resolution (NA=0.95)
objective, which is installed below the quartz slide. For focusing the microscope objective
can be translated in the vertical direction using a piezo scanner. The planar coil is located
directly on top of the diamond chip and glued to a copper plate, which itself is mounted on

metallic holder.

To calibrate the coil field, we removed the permanent magnet and recorded ODMR
spectra for the target NV center and both auxiliary NV centers with the field of the
coil activated. In this way we record in total 6 ODMR lines, with 2 lines per NV
center.

A numerical, nonlinear optimization method was used to determine the mag-
netic field ∆~B from these ODMR resonances. For each of the three NV centers we
simultaneously minimized the difference between the measured ODMR lines and
the eigenvalues of the ground-state Hamiltonian:

Hi = DS2
z + γe(∆~B)i · ~S. (4.2)

Here, the magnetic field (∆~B)i acting onto the specific NV center is obtained by a
proper rotation of ∆~B into the respective reference frame. It is important to note
that for certain orientations of the coil field the determination of the field from the
six ODMR resonances is not unique due to the symmetry of the diamond crystal.
Nevertheless, a single solution could always be identified by invoking that the coil
field is oriented approximately along the z-direction of the laboratory system.

All calibration measurements of the produced magnetic field were performed
with a coil with parameters (di = 2 mm, N1 = 9, N2 = 3). These calibrations were
performed with an injected current of ∼ 0.5 A and the magnitude of the calibrated
magnetic field vector was∼ 2.5 mT, which corresponds to a normalized produced B1
field of 5 mT/A. This normalized field is slightly smaller than the theoretical expec-
tation from the idealized simulation in Fig. 4.7 from which we expect a normalized
field of ∼ 6 mT/A at a stand-off distance of 1 mm.
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FIGURE 4.9: Characterization of the planar, radio-frequency coil. (a) Temperature of the
planar coil as a function of injected DC current (100 % duty-cycle). The temperature was de-
tected with an optical temperature sensor. A coil with 15 windings was tested with (orange)
and without (blue) heat sink / holder made out of copper. Clearly, the heat sink enables
much higher operation currents. In addition, we tested a coil with 27 windings, which was
ultimately used for most measurements in this work and whose properties are summarized
in detail in Table 4.1. The shaded areas represent the confidence intervalls of a quadratic fit
to the measured data points. (b) Step-response of the coil circuit detected by the NV cen-
ter. The data points (black) show the normalized shift of the NV’s EPR transition frequency
due to the coil’s magnetic field. The rise-time of the coil circuit amounts to 1.96 µs with an
ohmic termination of 4.7 Ω. The shift of the EPR frequency was detected with time-resolved
ODMR spectroscopy (experimental sequence indicated as an inset), which is explained in
detail in Chapter 7. In addition, the time-resolved detection of the magnetic field could be
realized by the protocol developed in Chapter 8. The rise time of the coil can be reduced
by using a higher impedance termination. (c) Rabi-oscillations of a single 13C nuclear spin
driven by the planar coil for increasing peak currents (top to bottom). The injected currents
are I = {0.2, 0.3, 0.4}A which is significantly below the treshold current with 100 % duty cy-
cle of I ∼ 1.2 A. The external bias field amounted to ∼ 9.81 mT and the frequency of the coil
pulse (square envelope) was fixed to the nuclear precession frequency fL = 105 kHz. The
Rabi frequency in these experiments varied between 4.4 kHz to 8.7 kHz. Using the planar

coil Rabi frequencies up to 25 kHz have been realized.

Step response of the coil circuit

To calibrate the dynamic response of the coil, we perform in situ measurements of
the step-response using time-resolved ODMR spectroscopy (see Fig. 4.9(b)). In brief,
we acquired ODMR spectra in snapshots of 200 ns after applying a step to the AWG
controlling the coil circuit, and determine the temporal magnetic field profile by
fitting the peak positions of the resonance curves (see inset of Fig. 4.9 (b) for the
pulse sequence). Full details on time-resolved ODMR techniques are provided in
Chapter 7 and 8. The microwave pulses applied to the NV center had a duration of
100 ns to provide sufficient time-resolution. In this measurement we terminated the
coil circuit with a small high-power resistor (R=4.7 Ω). All measurements reported
in Chapter 6 and the low field measurements in Chapter 7 were conducted in this
configuration. We deduce a rise-time of the coil circuit of trise = 1.96 µs. This corre-
sponds to a bandwidth of ∼ 77 kHz. The bandwidth can be increased by employing
a higher ohmic termination (e.g. 50 Ω), because the time constant of the RL circuit is
given by τ = L/R.

Nuclear radio-frequency pulses

As discussed in the beginning of this section, the main purpose of the planar coil
is to apply radio-frequency pulses for active control of nuclear spins. In Fig. 4.9
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(c), we show exemplary Rabi oscillation measurements on a 13C single nuclear spin.
The measurements were performed at a magnetic bias field of B0 = 9.81 mT. Hence,
the nuclear Larmor frequency amounted to 105 kHz. Resonant coil pulses with fre-
quency fixed to the Larmor frequency and with a square pulse-shape were gener-
ated with AWG-2 and amplified with a waveform amplifier. Details of the coil elec-
tronics are described in the previous section 4.3.2. The nuclear spin was polarized
prior to the application of the radio-frequency pulse using a polarization transfer
method [111], which is in more detail described in Chapters 3 and 7. We detect
the < Iz > expectation value of the nuclear spin, after application of a rf-pulse
with length trf, using AC magnetometry with the NV center, as described in full
detail in Chapter 7. We observe Rabi oscillations with increasing Rabi frequencies
ΩR = 2π × {4.4, 6.5, 8.7} kHz for moderate injected currents I ∼ {0.2, 0.3, 0.4}A.
The maximum Rabi frequencies that were achieved in experiments on 13C amounted
to ΩR = 2π × 25 kHz for injected peak currents of 1.2 A.

Development of an improved coil design

The first version of the planar micro coil, described in the previous sections, has
recently been replaced by an improved design. This design was developed in the
course of the Master’s thesis of K. Herb [98]. The new design resulted in higher
bandwidth as well as better thermal heat management and thus stronger generated
magnetic radio-frequency fields. The design properties are summarized in table 4.1
and key changes are summarized in the following.

• Increased bandwidth: Most NMR experiments in this thesis were performed
at low magnetic field (B0 = 10 mT) on 13C spins. For these magnetic fields the
bandwidth of the first generation coil (∼ 100 kHz) was sufficient. At higher
magnetic fields nuclei precess at higher frequency and hence radio-frequency
pulses with higher frequency are required. Therefore three measures have
been taken to increase the coil circuits bandwidth. First, the termination re-
sistance of the circuit was adapted to 50 Ω. This increases the time constant of
the coil circuit, which is given by τ = L/R. In addition, the coil was attached
with a non-conductive glue to a heat sink made of non-conducting diamond.
This ensures that no eddy currents are excited, which would otherwise limit
the bandwidth. Finally, a smaller coil with lower inductance L = 0.9 µH was
installed to increase the resulting bandwidth to ∼ 20 MHz. This upgrade will
enable NMR pulses on both 13C and 1H at magnetic fields of up to ∼ 0.5 T.

• Improved thermal heat management: In the new coil design the coil is glued to
a thin diamond plate. Due to the very high thermal conductivity of diamond,
which exceeds that of copper, higher threshold currents can be applied to the
coil (2 A at 100 % duty cycle). The thermal management of the metallic holder
structure was also improved by using thicker structures made of copper, which
remove heat more efficiently from the coil.

• Better positioning capabilities: The smaller size of the new coil requires a more
precise positioning relative to the diamond sample. Hence, the new coil holder
is equipped with three translation stages, which permit precise adjustments of
the coil’s position relative to the diamond chip.
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CHAPTER 5
High-resolution quantum sensing

with shaped control pulses

Summary

In this chapter we investigate the application of amplitude-shaped control pulses for enhanc-
ing the time and frequency resolution of multipulse quantum sensing sequences. Using the
electronic spin of the nitrogen vacancy center in diamond and up to 10,000 coherent mi-
crowave pulses with a cosine square envelope, we demonstrate 0.6 ps timing resolution for
the interpulse delay. This represents a refinement by over 3 orders of magnitude compared to
the 2 ns hardware sampling. We apply the method for the detection of external AC magnetic
fields and nuclear magnetic resonance signals of 13C spins with high spectral resolution. Our
method is simple to implement and especially useful for quantum applications that require
fast phase gates, many control pulses, and high fidelity.

This chapter has been previously published as:
J. Zopes, K. Sasaki, K. S. Cujia, J. M. Boss, K. Chang, T. F. Segawa, K. M. Itoh, C.
L. Degen, High resolution quantum sensing with shaped control pulses, Phys. Rev. Lett.
119, 260501 (2017)

5.1 Introduction

Pulse shaping is a well-established method in many areas of physics including mag-
netic resonance [112–114], trapped ion physics [115, 116] and superconducting elec-
tronics [117] for improving the coherent response of quantum systems. Introduced
to the field of nuclear magnetic resonance (NMR) spectroscopy in the 1980s, shaped
pulses enable selective excitation of nuclear spins with uniform response over the
desired bandwidth, which led to more selective and more sensitive measurement
techniques. More recently, with the advent of fast arbitrary waveform generators
(AWG), pulse shaping techniques also entered the field of electron paramagnetic
resonance (EPR), thereby improving spectrometer performance via chirped pulses
for broadband excitation [118, 119]. In quantum information processing applica-
tions, shaped microwave pulses are utilized to optimize the fidelity and stability of
gate operations against environmental perturbations that cause detuning of transi-
tion frequencies or fluctuations in the driving frequency [120, 121].



60 Chapter 5. High-resolution quantum sensing with shaped control pulses

5.1.1 The time-resolution limitations of multi-pulse sequences

In this chapter we investigate the application of pulse shaping to enhance the timing
resolution in the emerging field of dynamical decoupling spectroscopy [122, 123].
Dynamical decoupling is a quantum control method developed to protect a quan-
tum system against dephasing by environmental noise [124]. More recently dynam-
ical decoupling sequences have also been applied to map out noise spectra and to
detect time-varying signals with high signal-to-noise ratio [123, 125–127]. In their
simplest implementation, dynamical decoupling sequences consist of a periodic se-
ries of π pulses with repetition time τ [93] (see Figure 5.1(a)). For large numbers of
pulses N, the spectral response of these sequences resembles that of a narrowband
frequency filter, with center frequency 1/(2τ) and bandwidth 1/(Nτ), that rejects
noise at all frequencies except for those commensurate with the repetition time τ.
By tuning τ into resonance with a signal at a particular frequency fac ≈ 1/(2τ), the
sensitivity to the signal can be enhanced while suppressing the influence of noise,
thereby resembling the properties of a classical lock-in amplifier in the quantum
regime [125].

When using many control pulses, the filter bandwidth becomes very narrow and
the repetition time τ must be precisely tuned to the signal frequency fac ≈ 1/(2τ).
On any controller hardware, however, τ can only be adjusted in increments of the
sampling time ts. This limits in practice the frequency resolution of the technique
[128]. Specifically, when detecting a signal with frequency fac, the minimum fre-
quency increment is given by

δ f =
1

2τ
− 1

2τ + 2ts
≈ 2ts f 2

ac . (5.1)

Arbitrary waveform generators (AWGs) employed for the control of superconduct-
ing and spin qubits have sampling rates of typically 1 GS/s, corresponding to a time
resolution of ts = 1 ns. When operating at high frequencies fac this timing resolution
quickly becomes prohibitive. For example, at a signal frequency of fac = 5 MHz,
the minimum frequency increment is δ f = 50 kHz, which precludes the detection of
weak signals with sharply defined spectra. Although pulse generators with faster
sampling rates exist, they are either extremely costly or require dedicated hardware
development [129, 130] yet barely reach adequate timing resolution. Hardware sam-
pling therefore is a severe limitation for dynamical decoupling spectroscopy.

5.1.2 Pulse shaping for high-resolution dynamical decoupling

Recently, an elaborate experimental scheme termed quantum interpolation has been
devised and demonstrated to overcome this issue [131]. It enables a frequency sam-
pling beyond the hardware limit of the control electronics by varying the interpulse
delay between subblocks of the sensing sequence. This leads to an interpolation of
the spin evolution at a more precisely controlled interpulse delay.

Here, we study the complementary and conceptually simpler approach of utiliz-
ing shaped control pulses to interpolate the pulse timing. The concept of our method
is illustrated in Figure 5.1. Instead of modulating the high frequency control field by
the common square pulse profile (Fig. 5.1(b)), we shape the envelope of the pulses by
a smooth function. In this study we use a cosine-square profile (Fig. 5.1(c)) which is
very simple to implement, although any other smooth profile could be applied [132,
133]. It is also possible to implement optimized control pulses that are more robust
against pulse imperfections [134]. Because the AWG has a high vertical resolution,
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FIGURE 5.1: Pulse shaping for dynamical decoupling spectroscopy. (a) Dynamical decou-
pling spectroscopy is based on a periodic pulse modulation of the qubit control field with a
precisely timed pulse repetition time τ. (b) Modulation of the microwave signal with square
pulses limits the time resolution to multiples of the sampling time ts of the pulse generator
hardware. Solid and faint profiles show original and time-shifted pulses. (c) Shaped pulses,
here with a cosine-square amplitude profile, enable much finer variations of the pulse timing
at the same hardware sampling rate. The minimum interpolated δt is set by the slope of the
pulse envelope and the vertical resolution of the pulse generator (inset). tπ is the duration
of the π pulse defined by the full width at half maximum of the pulse envelope. In our ex-
periments, the qubit is the solid-state spin of a single nitrogen-vacancy center in diamond.

we can interpolate the center position of a pulse with a timing resolution δt that is far
better than sampling time ts. The interpolated timing resolution δt is approximately
given by the slope of the pulse envelope, δt = (∂y/∂t)−1δy ∼ tπδy, where tπ is the
duration of the pulse and δy the minimum amplitude increment. Specifically, for a
cosine-square shaped pulse of duration tπ = 25 ns implemented on an AWG with 14
bits of vertical resolution (δy = 2−14), an interpolated timing resolution of δt ∼ 1 ps
can be expected.

5.2 Experimental realization

To experimentally demonstrate the shaped-pulse interpolation method we study the
coherent response of the electronic spin associated with a single nitrogen-vacancy
(NV) center in a diamond single crystal [135]. Control pulses are generated on an
AWG operating at 500 MS/s with 14 bits of vertical resolution (Tektronix AWG5002C),
and upconverted to the∼ 2.2 GHz qubit resonance by frequency mixing with a local
oscillator (Fig. 5.1(a)). Additional amplification is used to reach Rabi frequencies of
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FIGURE 5.2: Demonstration of high time-resolution with shaped pulses. Experimental
sampling resolution for a sensing sequence with (a) square control pulses and (b) cosine-
square control pulses. ts is the hardware sampling time and δt the interpolated sampling
time enabled by the pulse shaping. N is the number of control pulses. p is the probability
that the qubit sensor maintains its coherence for different values of the pulse repetition time
τ. Solid lines show the theoretical response given by Eq. (2) and (3) with Bac as the only
free parameter, squares and hexagons show the experimental data, and sketches show pulse

shapes.

∼ 20 MHz corresponding to pulse durations of tπ ∼ 25 ns. Microwave pulses are
applied to the NV center by a coplanar waveguide structure, and the NV spin state
is initialized and read out by optical means [136]. All experiments are performed
under ambient conditions.

Figure 5.2 shows a first set of measurements, in which we directly compare
the timing resolution of dynamical decoupling sequences with and without shaped
pulses. For this purpose we combine the control field with a sinusoidal AC test sig-
nal ( fac = 9.746969 MHz, Bac = 7.15 ¯T) before delivering it to the coplanar waveg-
uide. In this case the sensing sequence becomes resonant with the AC field for a
pulse repetition time of τ = 51.298 ns. When utilizing square pulses, the repetition
time can only be stepped in increments of ts = 2 ns and the sampling of the AC
signal spectrum is very coarse (Fig. 5.2(a)). In stark contrast, we can finely sample
the spectrum using shaped control pulses and clearly augment the hardware-limited
time resolution (Fig. 5.2(b)).

5.3 Theoretical description and analysis

We have compared the experimental data to the expected spectral response for the
dynamical decoupling sequence. Because the phase of the AC magnetic field is not
synchronized to the measurement sequence, we can describe the probability that the
sensor qubit maintains its original state by [22]

p(t, τ) =
1
2
[1 + J0(WN,τγBact)] . (5.2)

Here, γ = 2π × 28 GHz/T is the gyromagnetic ratio of the electronic sensor spin,
t = Nτ is the total duration of the phase acquisition, and J0 is the zeroth-order
Bessel function of the first kind. Further, WN,τ( fac) is the spectral weighting or filter
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FIGURE 5.3: Sensor response for increasing number of shaped pulses. Sensor response to
a dynamical decoupling sequence with (a) N = 192, (b) N = 672 and (c) N = 10, 000 shaped
control pulses. The frequency and amplitude of the AC test signal is fac = 9.746969 MHz and
Bac = 0.84 ¯T for all measurements, respectively. (d) High-resolution plot of the N = 10, 000
dynamical decoupling sequence showing a timing resolution of δt = 0.6 ps. Solid lines
reflect the theoretical model multiplied by an overall decoherence factor exp(−(t/T2)

2) with
T2 = 535 us.

function of the sequence [22],

WN,τ( fac) =

∣∣∣∣sin(π facNτ)

π facNτ
[1− sec(π facτ)]

∣∣∣∣ , (5.3)

which has a maximum response of W = 2/π when fac = 1/(2τ). We find excellent
agreement between the experimental spectra and the analytical filter profile of the
dynamical decoupling sequence, but only the interpolated sequence provides the
required fine frequency sampling. We have verified that the filter profile does not
depend on whether square or shaped control pulses are used.

In a second set of experiments, shown in Figure 5.3, we analyze the sensor re-
sponse under the action of an increasing number of shaped microwave pulses. Here,
we keep the frequency of the test signal unchanged but reduce its amplitude. We
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first record the response to a sequence with N = 192 and 672 shaped pulses to
calibrate the amplitude of the AC signal. In both cases the sensor is operated in the
small signal regime where the argument of the Bessel function is small (WN,τγBact ≤
2γBact/π � π).

5.4 Non-linear signal detection

Subsequently, we tune the sensor into the strongly non-linear regime by increasing
N up to 10, 000 (Fig. 5.3(c)). For this large number of pulses, the argument of the
Bessel function in Eq. 5.2 is no longer a small quantity because the total duration of
the sequence t = Nτ becomes very long. The non-linear regime has recently been
explored with trapped ions [137] and it has been found that this regime gives rise
to spectral features far below the Fourier limit. Here, we exploit these features to
precisely characterize and test the frequency response of the sensor. Figure 5.3(d)
shows a zoom into the center region of spectrum (c) that is acquired with a time
increment of δt = 0.6 ps. We observe that even for this fine time resolution the ob-
served response of the sensor spin agrees well with the model expressed by Eq. 5.2.
The time increment of 0.6 ps corresponds to a frequency sampling of 114 Hz, which
is an improvement by over three orders of magnitude compared to the frequency
sampling of 380 kHz possible without pulse shaping.

5.5 Comparison of filter functions for dynamical decoupling
sequences with different pulse shapes

To investigate whether the type of control pulse used has an influence on the fil-
ter function of a dynamical decoupling sequence, we simulated the response of the
sequence to a single 13C nucleus using the density matrix method [77, 94]. For
this example, we used the same parameters as for the 13C in Fig. 4(b) of the main
manuscript. The π pulse duration was tπ = 25 ns, the 13C Zeeman frequency was
1.975 MHz, and the detuning of the NV electronic spin due to the 15N nuclear was
taken into account.

We simulated the responses of sequences using four different control pulses:
ideal, square, cosine-square-shaped, and cosine-square-shaped rounded to 14 bits.
Figure 5.4(a) shows the response for the sequence with ideal (infinitely short and
exact) π rotations. Figure 5.4(b) plots the difference to the ideal response when us-
ing square pulses (blue curve) and when using cosine-square-shaped pulses (red
curve). We find that there is a difference to the ideal response, but that the difference
between the square and cosine-square control pulses is small. The differences are
mainly due to the rather low Rabi frequency (∼ 20 MHz) which results in compara-
bly long pulses and different phase pickup between ideal, square and cosine-square
sequences. We have also simulated the response to cosine-square pulses with a dis-
crete amplitude, reflecting the 14 bits of vertical resolution of the AWG; here, the
difference in p is < 10−6 (not shown).

5.6 Applications of dynamical decoupling with shaped pulses

To demonstrate the ability of the interpolated dynamical decoupling sequence to
spectrally resolve nearby signals, we expose the sensor to a two-tone AC magnetic
field composed of two slightly different frequencies. We select equal amplitudes
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FIGURE 5.4: Numerical comparison between ideal and non-ideal as well as shaped and
non-shaped control pulses. Simulated response of a dynamical decoupling sequence with
N = 320 pulses to a single 13C nuclear spin. (a) Response of a sequence with ideal π pulses.
(b) Response of the sequences with square and cosine-square-shaped π pulses, respectively.

Shown is the difference to the ideal response.

for both frequency components and operated the sensor in the linear regime. As
shown in Figure 5.5(a) both frequency components can be clearly distinguished in
the resulting spectrum even though the frequencies are only 3 kHz apart.

Finally, we demonstrate that the application of shaped pulses also enables the
detection of NMR spectra with high frequency resolution. NMR spectroscopy is an
important test case for our method because very high frequency resolutions com-
bined with MHz detection frequencies are typically required.

Specifically, we detect the NMR signal of 13C nuclei located in close proximity to
the NV center [89, 138, 139]. Figure 5.5(b) shows the observed spectrum (points) for
a sequence with N = 320 control pulses together with a theoretical model (lines).
Because the response of the sensor spin is no longer described by the classical de-
scription of Eq. (5.2), we perform density matrix simulations of the NV-13C system to
calculate the p(t, τ) response curve. The simulations require knowledge of the par-
allel and perpendicular hyperfine coupling constants a|| and a⊥, respectively, which
we determine in separate high-resolution correlation spectroscopy measurements
[77]. Two simulations are shown with Figure 5.5(b): A first curve (dashed line) plots
the expected response from the single 13C nuclear spin. The second curve (solid
line) reflects a simulation that includes three additional, more weakly coupled 13C
nuclei. The example of Figure 5.5(b) clearly shows the advantage of a high sampling
resolution for detecting NMR spectra.

5.7 Conclusion and outlook

To conclude, we have presented a simple method for greatly increasing the timing
resolution of dynamical decoupling sequences. Using sequences with up to 10,000
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FIGURE 5.5: Applications of pulse shaping for high-resolution spectroscopy. (a) Spectrum
of two AC test signals separated by 3 kHz. Both signals can be clearly distinguished. (b)
NMR spectrum of 13C nuclei located in close proximity to the NV center sensor spin. Dashed
line is the theoretical response to a single 13C nucleus with hyperfine coupling parameters
a|| = 2π × 114(1) kHz and a⊥ = 2π × 62(1) kHz. Solid line includes three additional, more

weakly coupled 13C bath spins. Frequency is 1/(2τ).

coherent, cosine-square-shaped control pulses, we were able to improve the effec-
tive timing resolution of the interpulse delay by more than 3 orders of magnitude,
with time increments as small as 0.6 ps. The resulting high frequency resolution has
been demonstrated by sensing AC magnetic fields and NMR signals from individual
carbon nuclear spins.

The advantage of our technique is that it simple to implement, robust, and gen-
erally applicable. Although a slightly finer timing resolution could possibly be real-
ized by specifically optimized pulse shapes, such as those available through quan-
tum optimum control [134], these methods typically require extensive computation
and pulse calibration. Pulse shaping provides a simple means to further push the
boundaries in frequency resolution and sensitivity in quantum sensing applications
and can also be applied to other physical implementations, such as other solid state
defect spins, trapped ultracold atoms and ions, or superconducting qubits.
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CHAPTER 6
Three-dimensional localization

spectroscopy of individual nuclear
spins with sub-Angstrom

resolution

Summary

In this chapter we report on precise localization spectroscopy experiments of individual 13C
nuclear spins near the central electronic sensor spin in a diamond chip. By detecting the
nuclear free precession signals in rapidly switchable external magnetic fields, we retrieve
the three-dimensional spatial coordinates of the nuclear spins with sub-Angstrom resolution
and for distances beyond 10 Å. We further show that the Fermi contact contribution can be
constrained by measuring the nuclear g-factor enhancement. The presented method will be
useful for mapping the atomic-scale structure of single molecules, an ambitious yet important
goal of nanoscale nuclear magnetic resonance spectroscopy.

Parts of this chapter have been published as:
J. Zopes, K. S. Cujia, K. Sasaki, J. M. Boss, K. M. Itoh, C. L. Degen, Three-dimensional
localization spectroscopy of individual nuclear spins with sub-Angstrom resolution, Nature
Communications 9, 4678 (2018)

6.1 Introduction

One of the visionary goals of nanoscale quantum metrology with NV centers is the
structural imaging of individual molecules, for example proteins, that are attached
to the surface of a diamond chip [65]. By adapting and extending measurement tech-
niques from nuclear magnetic resonance (NMR) spectroscopy, the long-term per-
spective is to reconstruct the chemical species and three-dimensional location of the
constituent atoms with sub-Angstrom resolution [53, 140]. In contrast to established
structural imaging techniques like X-ray crystallography, cryo-electron tomography
or conventional NMR, which average over large numbers of target molecules, only a
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single copy of a molecule is required. Conformational differences between individ-
ual molecules could thus be directly obtained, possibly bringing new insights about
their structure and function.

In recent years, first experiments that address the spatial mapping of nuclear
and electron spins with NV based quantum sensors have been devised. One pos-
sibility is to map the position into a spectrum, as it is done in magnetic resonance
imaging. For nanometer-scale imaging, this requires introducing a nanomagnet [63,
96, 141]. Another approach is to exploit the magnetic gradient of the NV center’s
electron spin itself, whose dipole field shifts the resonances of nearby nuclear spins
as a function of distance and internuclear angle. Refinements in quantum spectro-
scopic techniques have allowed the detection of up to 8 individual nuclear spins [35,
89] as well as of spin pairs [88, 142, 143] for distances of up to ∼ 30 Å [100, 138].
Due to the azimuthal symmetry of the dipolar interaction, however, these measure-
ments can only reveal the radial distance r and polar angle θ of the inter-spin vector
~r = (r, θ, φ), but are unable to provide the azimuth φ required for reconstructing
three-dimensional nuclear coordinates. One possibility for retrieving φ is to change
the direction of the static external field [138], however, this method leads to a mixing
of the NV center’s spin levels which suppresses the ODMR signal [107] and short-
ens the coherence time [144]. Other proposed methods include position-dependent
polarization transfer [145] or combinations of microwave and radio-frequency fields
[57, 146, 147].

Here, we demonstrate three-dimensional localization of individual, distant nu-
clear spins with sub-Angstrom resolution. To retrieve the missing angle φ, we com-
bine a dynamic tilt of the quantization axes using a high-bandwidth microcoil with
high resolution correlation spectroscopy [77, 90]. Our method provides the advan-
tage that manipulation and optical readout of the electronic spin can be carried out
in an aligned external bias field. This ensures best performance of the optical readout
and the highest magnetic field sensitivity and spectral resolution of the sensor.

6.2 Theoretical description of the method

We consider a nuclear spin I = 1/2 located in the vicinity of a central electronic spin
S = 1 with two isolated spin projections mS = {0,−1}. The nuclear spin experiences
two types of magnetic field, a homogeneous external bias field B0 (aligned with the
quantization axis~ez of the electronic spin), and the local dipole field of the electronic
spin. Because the electronic spin precesses at a much higher frequency than the
nuclear spin, the latter only feels the static component of the electronic field, and we
can use the secular approximation to obtain the nuclear free precession frequencies,

fmS =
1

2π
|| − γn~Btot|| =

1
2π
|| − γnB0~ez + mS ~Az(~r)|| . (6.1)

Here, γn is the nuclear gyromagnetic ratio and

~Az(~r) = A(~r) ·~ez = (Axz, Ayz, Azz)

= (a⊥ cos(φ), a⊥ sin(φ), a||) (6.2)

is the secular hyperfine vector of the hyperfine tensor A(~r) that gives rise to the
hyperfine magnetic field mS ~Az(~r)/γn (see Fig. 6.1 (b)).

To obtain information about the distance vector~r, a standard approach is to mea-
sure the parallel and transverse components of the hyperfine vector, a|| = Azz and
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FIGURE 6.1: Coordinate systems for spins and magnetic fields. (a) Reference frame of
the central nitrogen-vacancy (NV) sensor spin (red) with a nuclear spin (blue) located at the
three-dimensional position~r = (r, θ, φ). The quantization axis of the NV center defines the z-
axis. The hyperfine field of the NV spin (red field lines) provides the magnetic field gradient
for imaging. (b) Sketch of two nuclear spins I1 and I2 experiencing the same hyperfine
interaction (red) [Eq. (6.2)]. Application of a transverse field ∆~B (purple) reduces (I1) or
increases (I2) the total magnetic field ~B′tot (blue) experienced by the nuclear spins depending
on the φ angle, allowing us to discriminate the nuclear locations. B0 is the static external
field (green). (c) Geometry of the experimental setup in the laboratory frame of reference. A
small solenoid on top of the diamond chip provides a rapidly switchable magnetic field ∆~B.

To change the vector orientation of ∆~B, we translate the coil over the diamond.

a⊥ = (A2
xz + A2

yz)
1/2, and to relate them to the field of a point dipole (see also chapter

3),

a|| =
µ0γeγnh̄

4πr3 (3 cos2 θ − 1) + aiso , (6.3)

a⊥ =
µ0γeγnh̄

4πr3 3 sin θ cos θ , (6.4)

where µ0 = 4π · 10−7 T m A−1 is the vacuum permeability, h̄ = 1.054 · 10−34 J s is
the reduced Planck constant, |γe| = 2π · 28 GHz T−1 is the electron gyromagnetic
ratio, and where we have included a Fermi contact term aiso (set to zero for now) for
later discussion. Experimentally, the parallel projection a|| can be inferred from the
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precession frequencies fmS using Eq. (6.1), and the transverse projection a⊥ can be
determined by driving a nuclear Rabi rotation via the hyperfine field of the central
spin and measuring the rotation frequency [77]. Once a|| and a⊥ are known, Eqs.
(6.3,6.4) can be used to extract the distance r and polar angle θ of the distance vector
~r = (r, θ, φ). Due to the rotational symmetry of the hyperfine interaction, however,
knowledge of a|| and a⊥ is insufficient for determining the azimuth φ.

To break the rotational symmetry and recover φ, we apply a small transverse
magnetic field ∆~B during the free precession of the nuclear spin. Application of a
transverse field tilts the quantization axes of the nuclear and electronic spins. The
tilting modifies the hyperfine coupling parameters a|| and a⊥ depending on the angle
between ∆~B and ~Az, which in turn shifts the nuclear precession frequencies fmS . To
second order in perturbation theory, the mS-dependent precession frequencies are
given by [148]

fmS =
1

2π
|| − γn~B′tot|| =

1
2π
|| − γnB0~ez − γn(1 + α(mS))∆~B + mS ~Az(~r)||, (6.5)

where α(mS) is a small enhancement of the nuclear g-factor. The enhancement re-
sults from non-secular terms in the Hamiltonian that arise due to the tilting of the
electronic quantization axis, and is given by [148]

α(mS) ≈ (3|mS| − 2)
γe

γnD

Axx Axy Axz
Ayx Ayy Ayz

0 0 0

 . (6.6)

Here D = 2π× 2.87 GHz is the ground-state zero-field splitting of the NV center. By
measuring the shifted frequencies fmS and comparing them to the theoretical model
of Eqs. (6.5,6.6), we can then determine the relative φ angle between the hyperfine
vector and ∆~B.

6.3 Results

We experimentally demonstrate three-dimensional localization spectroscopy of four
13C1−4 nuclei adjacent to three distinct NV centers. NV1 is coupled to two 13C spins,
while NV2 and NV3 are each coupled to a single 13C spin. For read-out and control
of the NV center spin, we use a custom-built confocal microscope that includes a
coplanar waveguide and a cylindrical permanent magnet for providing an external
bias field of B0 ∼ 10 mT applied along the NV center axis ~ez. Precise alignment of
the bias field is crucial for our experiments and is better than 0.3◦ (Methods).

To dynamically tilt the external field we implement a multi-turn solenoid above
the diamond surface (see Fig. 6.1 (d)). The coil produces ∼ 2.5 mT field for 600 mA
of applied current and has a rise time of ∼ 2 µs. We calibrate the vector magnetic
field of the coil with an absolute uncertainty of less than 15 µT in all three spatial
components using two other nearby NV centers with different crystallographic ori-
entations (Ref. [149] and Methods).

6.3.1 Mapping of r and θ

We begin our 3D mapping procedure by measuring the parallel and perpendicular
hyperfine coupling constants using conventional correlation spectroscopy [77] with
no coil field applied, ∆~B = 0 (Fig. 6.2). The parallel coupling a|| is determined from
a free precession experiment (sequence ¬ in Fig. 6.2) yielding the frequencies f0 and
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FIGURE 6.2: Implementation of three-dimensional localization spectroscopy. (a) Correla-
tion spectroscopy protocol. By correlating two phase measurements we trace out the preces-
sion of the target nuclear spin(s) under different NMR sequences. Phase measurements are
implemented by a Carr-Purcell-Meiboom-Gill (CPMG) train of microwave π pulses (blue)
applied to the central electronic spin, where τ ≈ [2( f0 + f−1)]

−1. Laser pulses (green) are
used to polarize and read out the electronic spin. Repetitions are N = 4− 8 and M = t/τ.
(b) Free precession signal of the nuclear spin as a function of time t, using sequence ¬.
Right panel shows the corresponding power spectrum. The two frequencies f0 and f−1 are
approximately equal to γnB0/(2π) and (γnB0 + a||)/(2π), respectively, see text. (c) Appli-
cation of periodic π pulses on the NV center during t (sequence ) causes a Rabi nutation
of the nuclear spin, whose oscillation frequency fR is approximately equal to (a⊥/π)/(2π).
(d) Activation of a transverse microcoil field ∆~B during the nuclear precession (sequence
®) leads to shifted frequencies f ′0 and f ′−1. All measurements were conducted on 13C1. Ex-

tracted frequencies are listed in Table 6.1.

f−1 (Fig. 6.2 (b)). The coupling constant is then approximately given by a||/(2π) ≈
f−1− f0. The transverse coupling a⊥ is obtained by driving a nuclear Rabi oscillation
via the NV spin, using sequence , and recording the oscillation frequency fR, where
a⊥/(2π) ≈ π fR (Fig. 6.2 (c)). Because the Zeeman and hyperfine couplings are of
similar magnitude, these relations are not exact and proper transformation must be
applied to retrieve the exact coupling constants a|| and a⊥ (Ref. [77] and Methods).
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Quantity Value Reference
f0, f−1 101.7(1), 114.2(1) kHz Fig. 6.2 (b)
fR 14.4(1) kHz Fig. 6.2 (c)
f ′0, f ′−1 88.3(3), 103.2(2) kHz Fig. 6.2 (d)
~B0 (0.028,−0.056, 9.502)mT Ref. [150]
∆~B (−1.715, 0.614,−1.547)mT Ref. [150]

TABLE 6.1: Data base of measured precession frequencies and calibrated external mag-
netic fields used to determine the 3D position of 13C1. Five further measurements of
( f ′0, f ′−1) were made to improve the localization accuracy (data given in Ref. [150]). Vec-

tor magnetic fields refer to the NV coordinate system defined in Fig. 6.1.

Once the hyperfine parameters are known, we can calculate the radial distance r =
8.58(1) Å and the polar angle θ = 52.8(1)◦ of the nuclear spin by inverting the point-
dipole formulas (6.3,6.4). The measurement uncertainties in r and θ are very small
because correlation spectroscopy provides high precision estimates of both a|| and
a⊥.

6.3.2 Mapping of φ

In a second step, we repeat the free precession measurement with the coil field
turned on (sequence ®), yielding a new pair of frequency values f ′0, f ′−1 (Fig. 6.2

(d)). We then retrieve φ by computing theoretical values for f (th)0 , f (th)−1 based on Eq.
(6.5) and the calibrated fields in Table 6.1, and minimizing the cost function

ξ(φ) = [ f ′−1 − f ′0]− [ f (th)−1 (φ)− f (th)0 (φ)] . (6.7)

with respect to φ. To cancel residual shifts in the static magnetic field and improve
the precision of the estimates, we compare the frequency difference between mS
states rather than the absolute precession frequencies.

In Fig. 6.2 (a), we plot |ξ(φ)| for three different coil positions and opposite coil
currents for 13C1. We use several coil positions because a single measurement has
two symmetric solutions for φ, and also because several measurements improve the
overall accuracy of the method. The best estimate φ = 239(2)◦ is then given by
the least squares minimum of the cost functions (dash-dotted line in Fig. 6.2 (a)).
To obtain a confidence interval for φ, we calculate a statistical uncertainty for each
measurement by Monte Carlo error propagation taking the calibration uncertainties
in ~B0 and ∆~B, as well as the measurement uncertainties in the observed precession
frequencies into account. Values for all investigated 13C nuclei are collected in Sup-
plementary Tables 2-9 in [150].

6.3.3 Fermi contact interaction

Thus far we have assumed that the central electronic spin generates the field of a
perfect point dipole. Previous experimental work [92, 148] and density functional
theory (DFT) simulations [68, 151], however, suggest that the electronic wave func-
tion extends several Angstrom into the diamond host lattice. The finite extent of the
spin density leads to two deviations from the point dipole model: modified hyper-
fine coupling constants Aij, and a non-zero Fermi contact term aiso. In the remainder
of this study we estimate the systematic uncertainty to the localization of the nuclear
spins due to deviations from the point dipole model.
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FIGURE 6.3: Determination of azimuth angle φ and Fermi contact contribution aiso for
13C1. (a) Cost function |ξ(φ)| between observed and predicted precession frequencies, as
defined in Eq. (6.7). Here aiso = 0. Six measurements are shown for three spatial coil
positions (solid curves) and opposite polarities of the coil current. The estimate for φ is given
by the minimum of the squared cost functions ∑ |ξ(φ)|2 of the six measurements (dash-
dotted curve). (b) Scatter plot of maximum likelihood estimates of φ and aiso obtained by
Monte Carlo error propagation. The plot is generated from 4 · 104 scatter points, where
each point is the result of minimizing ∑ |ξ(φ, aiso)|2 for a different Monte Carlo sampling.
Histograms for φ (bottom) and aiso (right) are obtained by integrating the 2D scatter plot
along the vertical or horizontal direction, respectively. Corresponding plots for 13C2−4 are

given in Ref. [150].
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(b) Reconstructed locations of the four distant nuclear spins 13C1−4. Shaded regions mark
the 2σ-confidence area of the localization projected onto (xy,yz,xz)-planes of the coordinate
system. Gray points represent carbon lattice positions projected onto the same planes. The
origin is set to the expected center of gravity of the spin density at 2.29 Å from the nitro-
gen nucleus on the N-V symmetry axis [68, 151]. Due to the inversion symmetry of the
hyperfine interaction, our method cannot distinguish between sites in the upper and lower

hemisphere; all 13C are therefore plotted in the upper hemisphere.
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Experimental values
Atom a||/kHz a⊥/kHz aiso/kHz r/A θ/◦ φ/◦
13C1 3.1(1) 44.5(1) 9(8) 8.3(2) 58(4) 238(2)
13C2 119.0(1) 65.9(1) 19(15) 6.8(3) 19(3) 20(5)
13C3 18.5(1) 41.4(2) 3(4) 8.9(1) 43(4) 197(4)
13C4 1.9(1) 19.2(1) —c 11.47(1) 51.8(2) 34(4)

TABLE 6.2: Measured hyperfine couplings and inferred 3D locations of 13C nuclei mea-
sured on three NV centers. Errors are one standard deviation and represent the confidence

interval from the Monte Carlo error propagation according to Fig. 6.2 (b).

DFT values [151]
Atom Lattice sitesa a||/kHz a⊥/kHz aiso/kHz rDFT/A θDFT/◦ φDFT/◦
13C1 447 1.1 43.1 3.9 8.6 60b 240
13C2 25 100.4 64.8 -2.4 6.3 24b 30
13C3 47 15.9 37.8 1.7 9.2 45b 195
13C4 —d

TABLE 6.3: DFT values of 13C nuclei that best fit to the detected nuclear spins. DFT values
are for the lattice site(s) whose calculated hyperfine couplings best match the experimental
data. aRef. [151] does not specify the φ angle, therefore, three symmetric sites are compatible
with our data. bDue to the inversion symmetry of the hyperfine interaction, our method
cannot distinguish between sites in the upper and lower hemisphere; the table therefore lists

min(θDFT, 180◦ − θDFT). cConstrained to aiso = 0. dNo DFT data available.

We first consider the influence of the Fermi contact interaction, which arises from
a non-vanishing NV spin density at the location of the nuclear spin. The Fermi con-
tact interaction adds an isotropic term to the hyperfine coupling tensor, A + aiso1,
which modifies the diagonal elements Axx, Ayy and Azz. DFT simulations [68, 151]
indicate that aiso can exceed 100 kHz even for nuclear spins beyond 7 Å. It is there-
fore important to experimentally constrain the size of aiso.

To determine aiso, one might consider measuring the contact contribution to the
parallel hyperfine parameter a||, which is equal to Azz. This approach, however, fails
because a measurement of a|| cannot distinguish between dipolar and contact contri-
butions. Instead, we here exploit the fact that the gyromagnetic ratio enhancement
α depends on Axx and Ayy, and hence aiso. To quantify the Fermi contact coupling
we include aiso as an additional free parameter in the cost function (6.7). By min-
imizing ξ(φ, aiso) as a joint function of φ and aiso and generating a scatter density
using Monte Carlo error propagation, we obtain maximum likelihood estimates and
confidence intervals for both parameters (Fig. 6.2 (b)). The resulting contact cou-
pling and azimuth for nuclear spin 13C1 are aiso/(2π) = 9(8) kHz and φ = 238(2)◦,
respectively; data for 13C2−4 are collected in Table 6.2. Because the gyromagnetic
ratio enhancement α is only a second-order effect, our estimate is poor, but it still
allows us constraining the size of aiso. By subtracting the Fermi contact contribution
from a||, we further obtain refined values for the radial distance and polar angle,
r = 8.3(2) Å and θ = 58(4)◦. Note that introducing aiso as a free parameter increases
the uncertainties in the refined r and θ, because the error in aiso is large. This leads to
disproportionate errors for distant nuclei where aiso is small. Once nuclei are beyond
a certain threshold distance, which we set to r = 10 Å in Table 6.2, it therefore be-
comes more accurate to constrain aiso = 0 and apply the simple point dipole model.
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6.3.4 Extended electronic wave function

The second systematic error in the position estimate results from the finite size of
the NV center’s electronic wave function. Once the extent of the wave function
becomes comparable to ~r, the anisotropic hyperfine coupling constants Aij are no
longer described by a point dipole, but require integrating a geometric factor over
the sensor spin density [68]. While we cannot capture this effect experimentally, we
can estimate the localization uncertainty from DFT simulations of the NV electron
spin density. Following Ref. [151], we convert the calculated DFT hyperfine param-
eters of 510 individual lattice sites to (r, θ) positions using the point-dipole formula
(6.3,6.4), and compute the difference to the DFT input parameters (rDFT, θDFT). For
the conversion we use the experimental constraint of the contact interaction and
subtract it prior to conversion. Here, we used the exact theory value of the con-
tact term, which means that we slightly overestimate the precision of the experi-
mental constraint. The result is plotted in Fig. 6.4 (a). We find that the difference
〈∆r〉 = r− rDFT decreases roughly exponentially with distance, and falls below 0.2 Å
when r > 10 Å (grey dots and curve). If we do not subtract the contact term the dif-
ference 〈∆r〉 = r − rDFT still decreases roughly exponentially, but is approximately
twice as large.

6.3.5 Conclusion

Fig. 6.4 (b) summarizes our study by plotting the reconstructed locations for all four
carbon atoms in a combined 3D chart. The shaded regions represent the confidence
areas of the localization, according to Table 6.2, projected onto the Cartesian coor-
dinate planes. We note that the DFT simulations are in good agreement with our
experimental results. The accuracy of our present experiments is limited by devia-
tions from the point-dipole model, which dominate for small r (see Fig. 6.4 (a)). For
larger r & 1 nm, this systematic uncertainty becomes negligible, and the localiza-
tion imprecision is eventually dictated by the NMR frequency measurement. In the
present study, which probed isolated 13C nuclei with a narrow intrinsic line-width,
the frequency precision was limited by the accuracy of our detection protocol to
∼ 100 Hz. This corresponds to a radial localization error of ∼ 0.75 Å at a distance of
r = 3 nm (solid black line in Fig. 6.4 (a)). Improving the frequency precision to 3 Hz
[88, 152] would extend this distance to r ∼ 7 nm (dashed black line).

6.3.6 Outlook

Our work demonstrates a basic strategy for mapping spatial positions of single nu-
clei in 3D with high precision. Extending these experiments to single molecules
outside a diamond chip poses a number of additional challenges, and overcoming
them will require the combination of several strategies. To isolate single molecules,
they can be embedded in a spin-free matrix layer deposited on the diamond sur-
face [153] or immobilized by a linker chemistry [154]. Nuclear dipole interactions
can be suppressed using homo- and heteronuclear decoupling [100], taking advan-
tage of the existing micro-coil. Line-widths and spectral complexity can be further
reduced by polarizing the constituent nuclei, and by spin dilution and isotope la-
beling of molecules [155]. Alternatively, measurements of inter-spin couplings will
allow constraining the structure and size of molecules [132]. To sensitively detect
very weakly coupled nuclei in distant molecules, spin precession can be recorded by
repetitive weak measurements [99, 156]. Further improvement of sensitivity is pos-
sible by optimizing the optical detection efficiency compared to our present setup
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[157], and possibly by cryogenic operation [88]. How well these strategies will work
we do not know at present, but we believe that the prospect of a general single-
molecule MRI technique, which will have many applications in structural biology
and chemical analytics, provides sufficient motivation to warrant these efforts.
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CHAPTER 7
Three-dimensional nuclear spin

positioning using coherent
radio-frequency control

Summary

Distance measurements via the dipolar interaction are fundamental to the application of nu-
clear magnetic resonance (NMR) to molecular structure determination, but they provide
information on only the absolute distance r and polar angle θ between spins. In this chapter,
we present a protocol to also retrieve the azimuth angle φ. Our method relies on measuring
the nuclear precession phase after the application of a control pulse with a calibrated external
radio-frequency coil. We experimentally demonstrate three-dimensional positioning of indi-
vidual 13C nuclear spins in a diamond host crystal relative to the central electronic spin of a
single nitrogen-vacancy center. The ability to pinpoint three-dimensional nuclear locations
is central for realizing a nanoscale NMR technique that can image the structure of single
molecules with atomic resolution.

Parts of this chapter have been published as:
J. Zopes, K. Herb, K. S. Cujia, C. L. Degen, Three-Dimensional Nuclear Spin Positioning
Using Coherent Radio-Frequency Control, Phys. Rev. Lett. 121, 170801 (2018)

7.1 Introduction

Nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) spec-
troscopy are among the most important analytical methods in structural biology and
the chemical sciences. By combining local chemical information of atoms [158] with
pair-wise distance constraints [159, 160], it becomes possible to reconstruct three-
dimensional structures or structural changes of proteins and other biomolecules.
While conventional NMR typically analyzes large ensembles of molecules, consider-
able effort has recently been expended on advancing NMR detection to the level of
individual molecules [161–163]. If successfully extended to the atomic scale, NMR
could enable direct imaging of three-dimensional molecular structures, with many
applications in structural biology and the nanosciences. A promising platform for
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FIGURE 7.1: Measurement principle for azimuthal positioning with coherent radio-
frequency pulses. (a) Bloch-sphere schematic of a nuclear spin before (grey arrow) and
after (colored arrows) application of a π/2 rotation. The rotation is either mediated by the
hyperfine interaction (blue-dashed axis) or a radio-frequency pulse generated by an external
micro-coil (orange-dashed axis). The different azimuth angles of the rotation axes are trans-
lated into a phase difference ∆φ of the nuclear spin precession, thereby linking the known
orientation of the coil field to the a priori unknown azimuth orientation of the inter-spin vec-
tor. (b) Pulse sequence used to measure the phase of the nuclear spin precession. The nuclear
π/2 pulse is implemented either (c) by a modulation of the NV center’s hyperfine field us-
ing periodic microwave π pulses or (d) by driving with an external rf coil. The modulation
frequency 1/(2τ) is matched to the resonance of the nuclear spin. (e) AC magnetometry is
implemented by a Carr-Purcell-Meiboom-Gill sequence of microwave pulses. The sequence
maps the nuclear component 〈 Î~a〉 that is parallel to the hyperfine axis~a ∝ (cos φ, sin φ) onto
the optically detectable polarization state of the NV center. To register the nuclear precession

we sample 〈 Î~a〉 for a series of waiting times t1.
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this task are diamond chips containing near-surface nitrogen-vacancy (NV) centers
whose electronic spins can be exploited as sensitive local NMR probes [75, 80].

Structural imaging of single molecules involves determining the three-dimensional
coordinates and elemental species of the constituent nuclei. In NV-NMR, informa-
tion on the spatial position can be gained from the dipolar part of the hyperfine
interaction between the nuclei and the central electronic spin [89, 138, 139]. Because
of the axial symmetry of the dipolar interaction, however, only the absolute distance
r and the polar (inter-spin) angle θ can be inferred from a NMR spectroscopy mea-
surement. Although the axial symmetry can be broken by a static [138] or dynamic
[150] transverse magnetic field, determination of the azimuth angle φ, required for
reconstructing the full three-dimensional distance vector~r = (r, θ, φ), has remained
challenging [145–147].

In this Chapter, we demonstrate a second, simple and precise method for re-
trieving the azimuth φ of the inter-spin vector, allowing us to perform full three-
dimensional nuclear distance measurements. Our technique relies on measuring the
nuclear precession phase after application of a radio-frequency (rf) pulse by an ex-
ternal micro-coil. A similar concept has recently been proposed in conjunction with
position-dependent polarization transfer [145]. Spatial rf-phase shifts further are a
recognized issue in medical MRI [164]. We determine φ at low and high magnetic
fields, and for polarized as well as unpolarized nuclear spins. We exemplify our
method by mapping the three-dimensional locations of 13C nuclei for distances up
to 11 A and angular uncertainties below 4 ◦.

7.2 Theory

Our scheme for measuring the azimuth angle is introduced in Fig. 7.1 (a)-(d): start-
ing from a polarized nuclear state, we perform a π/2 rotation of the nuclear spin.
The rotation is generated either by modulating the hyperfine field of the NV center
using microwave pulses (Fig. 7.1 (c)), or by applying a rf pulse with an external coil
(Fig. 7.1 (d)). Subsequently, we let the nuclear spin precess in the equatorial plane
of the Bloch sphere and detect the frequency and phase of the precession by an AC
magnetometry measurement with the NV center [125, 126, 165] (Fig. 7.1 (e)).

Crucially, the starting phase of the nuclear precession at t1 = 0 is set by the axis
of the π/2 rotation, which is determined by the spatial direction of the rf field in the
laboratory frame of reference. When driving the nuclear rotation via the hyperfine
interaction, the rf field direction is given by ~Az/γn, where ~Az = (a⊥ cos φ, a⊥ sin φ, a||)
is the secular part of the hyperfine tensor, a|| and a⊥ are the parallel and transverse
hyperfine coupling parameters [77, 145], and γn is the nuclear gyromagnetic ratio
(Fig. 7.1 (a), blue). Conversely, if the external coil is used to generate the rf field,
the rotation axis is given by the in-plane component of the coil field ~Bcoil (Fig. 7.1
(a), red). By comparing the phases of the precession signals, we directly obtain the
relative angle ∆φ between the unknown orientation of the hyperfine vector φ and
the calibrated orientation φcoil of the external coil field.

7.3 Experimental method

We experimentally determine the φ angles of three 13C nuclear spins from three dif-
ferent NV centers in two single-crystal diamond chips [166]. We optically polarize
and read out the NV spin by short laser pulses (∼ 2 µs) and detect the fluorescence
intensity in a confocal microscope arrangement. Microwave pulses at ∼ 2.5 GHz are
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used to actuate the mS = 0↔ mS = −1 electronic spin transition. To polarize the nu-
clear spins, we transfer polarization from the optically aligned NV center by swap-
ping the electronic state onto the nuclear spin using two conditional rotations [86,
166]. AC magnetometry is performed by a periodic sequence of microwave π pulses
with XY8 phase cycling [167] enclosed by two π/2 pulses that are phase-shifted by
90◦ [74, 165]. We use a permanent magnet to apply bias fields of B0 ∼ 10 mT and
200 mT for low field and high field experiments, respectively, aligned to within 1◦ of
the NV quantization axis.

The key component of our experiment is the external rf coil, whose field orienta-
tion serves as the spatial reference for the φ angle measurement. Two generations of
micro-coils are used: the first coil has a 3-dB-bandwidth of 77 MHz (deduced from
the step response recorded with the NV center) and is used for low field experi-
ments. The second coil reaches a bandwidth of 1.72 MHz. Both rf coils produce
fields of ∼ 5 mT/A and are operated with currents of up to 1 A. Crucial for our
experiments is a precise knowledge of the direction and temporal shape of the coil
magnetic field. We determine the three-dimensional vector of the coil magnetic field
~Bcoil using two other nearby NV centers with different crystallographic orientations
with an uncertainty of less than 15 µT in all three spatial components [149, 150]. We
align our (x,y,z) laboratory reference frame to the ([11̄2],[1̄10],[111]) crystallographic
axes of the single crystal diamond chips (up to an inversion symmetry about the ori-
gin). To calibrate the dynamic response of the coil, we perform in situ measurements
of the rf field using time-resolved optically-detected magnetic resonance (ODMR)
spectroscopy (Fig. 7.2 (a),(e)) [166]. We acquire ODMR spectra in snapshots of 400 ns
(a) or 100 ns (e) over the duration of the rf pulse, and determine the pulse profile by
fitting the peak positions of the resonance curves.

7.4 Results

7.4.1 Flip and evolve method

Low-field measurements

In Fig. 7.2 (c),(d), we show a first set of measurements for nuclear spin 13C1 carried
out at low magnetic field, B0 ∼ 10 mT. The hyperfine coupling parameters of this
nuclear spin are (a||, a⊥) = 2π× (18.5(1) kHz, 41.4(2) kHz), calibrated by a separate
correlation spectroscopy measurement [77]. Fig. 7.2 (c) shows the reference mea-
surement of the nuclear spin precession after application of the π/2 pulse using the
hyperfine field. Fig. 7.2 (d) plots the corresponding precession signal after apply-
ing the π/2 rotation with the rf coil. We observe a clear phase shift ∆φ between the
two signals, indicating that the hyperfine field ~Az/γn and the coil field ~Bcoil point
in different spatial directions. We verify that the phase shift changes if we vary the
direction of ~Bcoil by moving the rf coil to a different position (green data in Fig. 7.2
(d)).

For ideal rf pulses and exact timings, the observed phase shift ∆φ corresponds to
the difference φ− φcoil between the azimuth angles of the hyperfine and coil mag-
netic fields, allowing us to directly deduce φ. However, due to the limited band-
width of the rf circuit and the finite length of feed lines, the actual rf pulses tend
to be delayed and distorted, leading to a phase offset. In addition, the AC magne-
tometry measurement is very sensitive to timing errors and resonance offsets in the
microwave modulation, causing additional uncertainty in the phase measurement.
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FIGURE 7.2: Azimuthal positioning with coherent radio-frequency pulses. (a-d) Precision
measurement of the azimuth angle of 13C1 at low magnetic field, B0 = 9.600(8)mT. (a)
Waveform of the pulse sent to the rf coil. (b) ODMR spectra (vertical axis) of the rf coil
magnetic field recorded in time steps of 400 ns (horizontal axis). The black vertical line marks
the start time t = 0 of the rf pulse. The white solid line connects the resonance positions
determined by Lorentzian fits. For comparison, we also plot the input waveform from (a)
(white dashed line). (c,d) Nuclear precession signal measured as a function of t1. Dots
show the experimental data. Colored lines represent density matrix simulations (best fit)
discussed in the text. Shaded areas specify 2σ confidence intervals of the fits. Panel (c)
shows the reference measurement (sequence of Fig. 7.1 (c)) and panel (d) measurements for
two different coil positions (sequence of Fig. 7.1 (d)). (e-h) Same experiment performed on

13C3 at high magnetic field, B0 = 204.902(9)mT.
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FIGURE 7.3: Polar plot of the reconstructed nuclear spin positions in the xy-plane of the
laboratory frame. Shaded regions mark the uncertainty in φ of the respective nuclear spin.
Radial distances ρ = r sin θ and vertical heights z = r| cos θ| of the nuclear sites are de-
termined from the parallel and perpendicular hyperfine parameters by inverting the point-
dipole formula [150]. The measurement uncertainties in z and ρ, neglecting deviations from
the point-dipole model [68, 150, 151], are less than 0.02 Å for all nuclei. Grey points repre-
sent the lattice sites of diamond. 13C1 and 13C3 are in good agreement with sites C47 and
C390 (black circles) of a recent density functional theory (DFT) simulation [151] (13C2 is not
part of the simulation). The offset between experimental and best-fitting DFT locations is
due to the extended NV wave function that limits the point-dipole approximation [150]. The

through-space distance of 13C2 is r = 11.5 Å.

To compensate for these issues, we determine φ by fitting the experimental data
with a Levenberg-Marquardt algorithm using a density matrix simulation [166, 168]
as fit function and φ as fit parameter. We propagate the two-spin density matrix
through the full sequence shown in Fig. 7.1 (b) using piece-wise constant Hamilto-
nians for the nuclear spin propagation, taking the calibrated vector field and tem-
poral shape of Fig. 7.2 (a) as well as the hyperfine parameters (a||,a⊥) as inputs. By
calculating the nuclear spin evolution in the laboratory frame of reference, the sim-
ulation captures the Bloch-Siegert shift [169] and the z-component of the rf field. In
addition, we directly retrieve the absolute laboratory frame azimuth φ rather than
the relative ∆φ between ~Az and ~Bcoil.

We start the analysis by fitting the simulation to the reference measurement (Fig.
7.2 (c)), which allows us to determine B0 with an uncertainty smaller than 10 µT.
As B0 defines the nuclear precession frequency, this calibration is of paramount im-
portance for a precise estimate of φ. Afterwards we determine φ with a second fit
to the measurements with the rf pulse (Fig. 7.2 (d)) while keeping B0 fixed. All fit
results are shown by solid lines in Fig. 7.2 (c),(d). We find an azimuth location of
φ = 191± 2 ◦.
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FIGURE 7.4: Measurement of the hyperfine φ angle by a nuclear spin echo. (a) Pulse
sequence of the experiment: The free evolution time of a correlation spectroscopy sequence is
interspersed with a π pulse generated by the rf coil. A cosine-square envelope [78] is used to
suppress pulse transients, and the pulse is selective to the nuclear spin transition associated
with the electronic mS = 0 state. The correlation spectroscopy sequence is implemented by
two AC magnetometry blocks as in Fig. 7.1 (e); the bar on the second block indicates that the
sequence is reversed. (b) Spin echo modulation detected on 13C3. Black dots show the data
and the green line shows the density matrix simulation (best fit with φ as free parameter).
The 2σ confidence intervals of the fit are indicated by shaded areas. The evolution time is

2t1 = 31.36 µs.

We have previously determined the three-dimensional coordinates of the same
nuclear spin using a different positioning method [150], where φ = 197 ± 4 ◦, in
good agreement with the present result. The accuracy of our experiment is presently
limited by the calibration uncertainty of the coil field angle (∼ 1 ◦) and by the sta-
tistical fit error of the precession phase (∼ 1 ◦). The uncertainty due to misalign-
ment of B0 is below 1 ◦ [166]. Additional sources of uncertainty, like an influence of
the local chemical environment, are not included in the analysis, but are expected
to be insignificant for our study. The estimated three-dimensional location for this
(13C1) and another nuclear spin (13C2; (a||, a⊥) = 2π× (1.9(1) kHz, 19.2(1) kHz)) are
shown in Fig. 7.3.

High-field measurements

Next, we demonstrate that our azimuth positioning technique can be readily ex-
tended to high magnetic fields. High bias fields are desirable in NMR because of a
better peak separation and a simplified interpretation of spectra. In addition, in NV-
NMR, more efficient dynamical decoupling control and repetitive readout schemes
become possible at higher fields [170]. In Fig. 7.2 (e)-(h) we show measurements
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carried out at ∼ 200 mT on a third nuclear spin (13C3) with hyperfine coupling pa-
rameters (a||, a⊥) = 2π × (98.4 kHz, 138.4 kHz). Here, we find φ = 81 ± 4◦. The
three-dimensional location of 13C3 is also indicated in Fig. 7.3.

The φ uncertainty at high magnetic field is larger than at low field because of
timing errors. At 200 mT, the nuclear Larmor period is only ∼ 460 ns, such that 1 ns
of timing uncertainty causes a phase uncertainty of about 0.8◦. For the rf pulse in
Fig. 7.2 (e), we find a phase delay of 12± 3 ◦, corresponding to an overall timing un-
certainty of the ODMR calibration of ∼ 4 ns. Although the measured phase delay is
in good agreement with the value predicted from the electrical characteristics of the
rf circuit (∼ 11◦), it already introduces the largest error to the φ measurement. For
future experiments carried out in the high bias fields of superconducting magnets
[55] a precise calibration of control fields will therefore become even more critical.

7.4.2 Nuclear echo method

Finally, we discuss a complementary scheme for reconstructing the azimuth angle
that does not require pre-polarization of nuclear spins. Instead of recording the nu-
clear precession signal as a function of t1, we intersperse a correlation spectroscopy
sequence [77, 90] with a central rf π pulse to generate a nuclear spin echo at a fixed
time t = 2t1 (Fig. 7.4 (a)). By varying the pulse phase φrf from 0− 360◦, we modulate
the amplitude of the spin echo, leading to an oscillatory signal ∝ cos(2φrf − 2φ). We
then determine φ from the phase offset of the oscillation. Fig. 7.4 (b) shows a spin
echo oscillation for 13C3 measured at a bias field of 204.9(1)mT. The compatible an-
gles are {88± 4◦, 268± 4◦}, in good agreement with the result from Fig. 7.2 (h). Note
that the echo method is afflicted by a 180◦ ambiguity in the angle measurement, be-
cause the echo oscillation repeats with φrf modulo π. Although the ambiguity could
possibly be resolved by applying concomitant rf and microwave rotations or by in-
troducing dc field pulses [150], it is unlikely to restrict future experiments on single
molecules where relative, rather than absolute, positions are important. In addition,
single-molecule NMR experiments can exploit internuclear interactions to further
constrain the nuclear positions.

7.4.3 Density matrix simulations and estimation of φ

Density matrix simulations of the spin system

We performed density matrix simulations for all measurements and extracted the
nuclear azimuthal location φ using non-linear least squares fitting [171]. We used
the Quantum Toolbox in Python (QuTiP, [168]) software package to set up spin op-
erators and compute the time-evolution propagators. We propagate the initial den-
sity matrix ρ = |0〉 〈0| ⊗ Ie/2 using time-independent Hamiltonians through the full
measurement sequence, including the nuclear polarization step. Here |0〉 〈0| is the
projector on the ms = 0 state of the NV center and Ie is the nuclear spin identity.
All timings are taken from the pulse file that was uploaded to the arbitrary wave-
form generators (AWG) controlling the experiments. Further input parameters are
the parallel and perpendicular hyperfine parameters (a||, a⊥), calibrated by conven-
tional correlation spectroscopy [77], as well as the magnetic vector orientation and
temporal shape of the coil rf pulse.

We reconstruct the azimuthal angle φ in two consecutive steps from the measure-
ments: First, we determine the precession frequency of the nuclear spin. The preces-
sion frequency is a critical parameter in our experiments, because uncertainty in the
frequency directly translates into an uncertainty in the detected phases and thereby



7.4. Results 87

to an uncertainty in the azimuthal position φ. We estimate the nuclear precession
frequency using the reference measurement traces, which were acquired after rotat-
ing the nuclear spin via the hyperfine interaction. The most precise estimate of the
precession frequency can be obtained by simulating the dynamics of the nuclear-
electron spin system to include the coherent evolution of the nuclear spin starting
from the rotation with the NV center until the read-out of the NV center. The to-
tal evolution or interrogation time in our experiments is typically 20 − 40 µs long
and therefore the precession frequency of the nuclear spin can be determined very
precisely.

Extraction of the nuclear precession frequency

We fit the simulation to the reference measurement with the magnitude of the ex-
ternal bias field B0 as a free parameter to adjust the precession frequency. Here,
the bias field is assumed to be aligned with the symmetry axis of the NV center. A
discussion of the effect of tilted magnetic fields follows in Section 7.4.4. We fit the
simulated time trace to the experimental data with a non-linear least-squares opti-
mization. Apart from the bias field B0 we only allow for an amplitude scaling factor
(accounting for non-ideal nuclear polarization, e.g., due to relaxation) plus a constant
offset as additional free parameters of the fit. Using this procedure, we determine B0
with an uncertainty smaller than δB0 = 10 µT, which corresponds to an uncertainty
of the nuclear precession frequency of ∼ 100 Hz.

Extraction of the azimuthal position

Afterwards, we determine the azimuthal position of the nuclear spin using the nu-
clear precession trace after a rotation with the micro-coil. Again, we simulate the
dynamics of the spin system by propagating the density matrix with B0 now fixed.
The temporal shape of the coil pulse, as determined by the 2D spectroscopy, and the
vector field of the coil are added as input parameters to the simulation. The evolu-
tion of the nuclear spin during the rf-pulse is approximated by piecewise constant
propagators during which the Hamiltonian is time-independent. We operate in the
non-rotating reference frame of the nuclear spin, hence counter-rotating terms lead-
ing, e.g., to the Bloch-Siegert shift are also captured by the simulation. Again we use
a non-linear least squares optimization procedure to fit the simulated time trace to
the experimental data. The free parameters are the nuclear azimuthal position φ and
an offset and an amplitude scaling factor.

7.4.4 Effect of tilted magnetic bias fields on the accuracy in estimating
~r = (r, θ, φ)

As discussed before, we have carefully aligned the magnetic bias field B0 to the
quantization axis of the NV center with a resulting tilt smaller than 1 ◦. Here, we
discuss the influence of the residual tilt on the accuracy in estimating the nuclear
position.

We performed a detailed analysis of the positioning accuracy by making use of
the density matrix simulations (Section 7.4.3) to perform a Monte Carlo sampling
of the distribution of the estimates (r, θ, φ). As an example, we consider nuclear
spin 13C3, whose three-dimensional position was determined in a magnetic field
of B0 = 204.902(9)mT. All other nuclear spins were positioned in a significantly
smaller magnetic field of 9.600(8) mT, where the alignment of the magnetic field
can be performed much more precisely using auxiliary calibration NV centers, as
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FIGURE 7.5: Nuclear positioning uncertainty due to tilted bias fields for 13C3. (a) His-
togram of the distribution of deviations in the estimated radial distance ∆r from the actual
distance r. The histogram contains 10949 samples of a Monte Carlo simulation described in
the text. (b) Histogram of the deviation of θ obtained from the same Monte Carlo simulation
as in (a) and with the same sample size. (c) Histogram of the deviation in φ. The average tilt

in the Monte Carlo simulation generating the distribution was set to ∼ 1◦.

described in [150]. Hence, the positioning uncertainty due to tilted magnetic fields is
significantly smaller in low magnetic field (approximately one order of magnitude)
and 13C3 serves as a worst-case estimate.

The error estimation protocol follows a two-step process: First, we generate arti-
ficial measurement data with a random field tilt and a given nuclear positon (r, θ, φ).
In a second step, we use the procedures described before to estimate (r̃, θ̃, φ̃). Finally,
we compare the resulting values to the input coordinates. In each iteration of this
Monte Carlo (MC) simulation we add random transverse magnetic field compo-
nents which were drawn from a normal distribution with mean zero and standard
deviation σ = 1.4 mT. This corresponds to tilts of ∼ 1 ◦. In the resulting tilted
magnetic field we simulated each step of the three-dimensional positioning proto-
col. First, we simulated the outcome of correlation spectroscopy experiments [77] to
infer (ωL, a||, a⊥). From these parameters, we directly obtain the estimates of (r, θ) of
the nuclear spin location by inverting the relations for (a||, a⊥) [150]. Due to the tilt
of the magnetic field the hyperfine coupling parameters are slightly modified, which
leads to a distribution of (r, θ) which depends on (Bx, By). These distributions are
shown as histograms in Fig. 7.5 (a),(b), respectively. The resulting variations in r
and θ amounts to ∼ 0.01 and ∼ 0.5 ◦, respectively. For the histograms we gener-
ated 19140 Monte Carlo samples. Afterwards, we post-selected N = 10949 samples
for which the deviation between nuclear precession frequency, obtained from the
simulated correlation spectroscopy, and the one predicted by the EPR frequency (by
diagonalizing the Hamiltonian) is smaller than 2π × 1 kHz. This condition was en-
forced in all experiments.

Subsequently, we simulate the azimuthal imaging protocol as discussed before.
The interpulse spacing τ of the multipulse sequences used for the AC magnetometry
was adjusted based on the result of the correlation spectroscopy. The outcome of the
simulation, i.e., the precession trace of the nuclear spin is analyzed by the non-linear
fitting procedure (see Section 7.4.3), in the same manner as the experimental traces.
The resulting distribution of ∆φ is shown in Fig. 7.5 (c). We find that the variation
in ∆φ amounts to ∼ 0.3 ◦. The distributions of (∆r, ∆θ, ∆φ) are not exactly centered
at zero because of the gyromagnetic ratio enhancement of the nuclear spin resulting
from the transverse magnetic fields [148].
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7.5 Conclusion

In conclusion, we have introduced a simple method for measuring the inter-spin az-
imuth φ, enabling us to perform three-dimensional distance measurements on single
nuclear spins. We demonstrate the potential of our technique by mapping the 3D lo-
cation of individual 13C nuclei in diamond with a precision sufficient for assigning
discrete lattice sites. Future experiments will apply 3D distance measurements to
molecules deposited on the surface of dedicated diamond NMR sensor chips [54, 76,
80, 172] and provide an avenue to analyze the structure and conformation of single
molecules with atomic resolution [173].
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CHAPTER 8
Reconstruction-free quantum

sensing of arbitrary waveforms

Summary

We present a protocol for directly detecting time-dependent magnetic field waveforms with
a quantum two-level system. Our method is based on a differential refocusing of segments
of the waveform using spin echoes. The sequence can be repeated to increase the sensitivity
to small signals. The frequency bandwidth is intrinsically limited by the duration of the
refocusing pulses. We demonstrate detection of arbitrary waveforms with ∼ 20 ns time
resolution and ∼ 4 µT/

√
Hz field sensitivity using the electronic spin of a single nitrogen-

vacancy center in diamond.

This chapter has been published as:
J. Zopes and C. L. Degen, Reconstruction-free quantum sensing of arbitrary waveforms,
arXiv:1906:09176 (2019).

8.1 Introduction

Well-controlled two-level quantum systems with long coherence times have proven
useful for precision sensing [19, 22] of various physical quantities including temper-
ature [38], pressure [39], or electric [40] and magnetic fields [78, 136]. By devising
suitable coherent control sequences, such as dynamical decoupling [174], quantum
sensing has been extended to time-varying signals. In particular, coherent control
schemes have allowed the recording of frequency spectra [74, 95, 127] and lock-in
measurements of harmonic test signals [125].

A more general task is the recording of arbitrary waveform signals, in analogy
to the oscilloscope in electronic test and measurement. In this case, conventional
dynamical decoupling sequences are no longer the method of choice as the sensor
output is non-trivially connected to the input waveform signal, requiring alternative
sensing approaches. For slowly varying signals, the transition frequency of the sen-
sor can be tracked in real time [175], permitting detection of arbitrary waveforms in a
single shot. By using a large ensemble of quantum sensors detection bandwidths of
up to ∼ 1 MHz have been demonstrated [176, 177], with applications in MRI tomo-
graph stabilization [176], neural signaling [178, 179], or magnetoencephalography
[180].
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FIGURE 8.1: Schemes for equivalent-time waveform sampling by a quantum sensor. (a)
Schematic of a repetitive arbitrary waveform B(t). t is the time relative to the preceding
trigger and trep is the repetition time. Dots indicate the waveform sampling and ts is the
sampling time. (b) Standard integrative Ramsey detection of the waveform. The sensor
acquired phase is proportional to the integral of the waveform between 0 and t. Signals are
detected by stepping t in increments of ts. Microwave pulses are shown in dark blue. Labels
indicate the pulse angles and subscripts the pulse phases. Laser arm and readout pulses
are shown in green. (c) Small interval Ramsey detection of the waveform. (d) Differential
detection of the waveform by spin echoes. tint is the differential integration time and tπ is
the π pulse duration. The differential protocol can be repeated k times to linearly increase

the accumulated phase.

For rapidly changing signals the waveform can no longer be tracked, and a gen-
eral waveform cannot be recorded in a single shot. However, if a waveform is repet-
itive or can be re-triggered, multiple passages of the waveform can be combined to
reconstruct the full waveform signal. This method, known as equivalent-time sam-
pling, is routinely implemented in digital oscilloscopes to capture signals at effective
sampling rates that are much higher than the rate of analog-to-digital conversion.

In quantum sensing, one possibility is to record a series of time-resolved spec-
tra that cover the duration of the waveform [57]. This method, however, is limited
to strong signals because the spectral resolution inversely scales with the time res-
olution. Other approaches include pulsed Ramsey detection [62], Walsh dynamical
decoupling [181, 182], and Haar wavelet sampling [183], discussed below. These
methods use coherent control of the sensor to achieve competitive sensitivities, but
require some form of waveform reconstruction.
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8.2 Waveform quantum sensing protocols

In this Chapter we experimentally demonstrate a simple quantum sensing sequence
for directly recording time-dependent magnetic fields with no need for signal recon-
struction. Our method uses a spin echo to differentially detect short segments of the
waveform, and achieves simultaneous high magnetic field sensitivity and high time
resolution. The only constraints are that the waveform can be triggered twice within
the coherence time of the sensor, and that the signal amplitude remains within the
excitation bandwidth of qubit control pulses. Possible applications include the in
situ calibration of miniature radio-frequency transmitters [57, 147], activity mapping
in integrated circuits [184], detection of pulsed photocurrents [185], and magnetic
switching in thin films [186].

To motivate our measurement protocol we first inspect the interferometric Ram-
sey method, which has been a standard method for early quantum sensing of wave-
forms [62]. In a Ramsey experiment a superposition state, prepared by a first π/2
pulse, evolves during a sensing time t and acquires a phase factor φ(t) that is pro-
portional to the transition frequency ω0 between ground and excited states (see Fig.
8.1(b)). For a spin sensor, where ω0 is proportional to the component of the magnetic
field along the spin’s quantization axis, the acquired phase is

φ(t) =
∫ t

0
γeB(t′)dt′. (8.1)

Here, B(t) is the time-dependent magnetic field that we aim to measure and γe is
the gyromagnetic ratio of the spin. To extract the phase, φ(t) is typically converted
into a population difference p(t) by a second π/2 pulse,

p(t) =
1
2
(1 + sin(φ(t)))

φ�1
≈ 1

2
(1 + φ(t)). (8.2)

followed by a projective readout of the sensor and signal averaging [22]. By measur-
ing p(t) as a function of t, one thus effectively measures the integral of the magnetic
field in the interval [0, t]. Using a numerical derivative the magnetic field can subse-
quently be reconstructed [62]. However, this reconstruction greatly increases noise
due to the derivative [187] and often requires phase unwrapping.

A more direct method that avoids numerical processing is the sampling of the
waveform in small intervals tint and to build up the waveform by stepping t. The
simplest approach is use a Ramsey sequence with a very short integration time tint
(Fig. 8.1(c)). In this case the sensor phase φ(t) encodes the field in the time interval
[t, t + tint],

φ(t) =
∫ t+tint

t
γeB(t′)dt′ ≈ γeB(t)tint , (8.3)

without the need for numerical post-processing. Thanks to the short tint one can
often take advantage of the linear approximation (sin φ ≈ φ) in Eq. (8.2). The short
tint, however, impairs sensitivity because φ ∝ tint.

To maintain adequate sensitivity even for short tint we introduce a detection pro-
tocol that accumulates phase from several consecutive waveform passages. Our
scheme requires that the repetition time is short, trep � T2, where T2 is the sensor’s
coherence time, which is often the case for fast waveform signals. Our protocol is
shown in Fig. 8.1(d): By inserting two π pulses at times t and t + tint relative to two
consecutive waveform triggers, we selectively acquire phase from the time interval
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[t, t + tint] while canceling all other phase accumulation. A similar scheme of partial
phase cancellation has been implemented with digital Walsh filters [182] and Haar
functions [183] via a sequence of π rotations. The linear recombination of sensor out-
puts in such waveform sampling, however, is prone to introducing errors, especially
for rapidly varying signals whose detection requires many π pulses [181]. In our
scheme, the π rotations effectively act as an in situ derivative to the phase integral
(Eq. 8.1), bypassing the need for a later numerical differentiation or reconstruction.
To further amplify the signal, the basic two-π-pulse block can be repeated k times to
accumulate phase from 2k waveform passages, up to a limit set by 2ktrep ≤ T2. The
amplified signal is (in linear approximation)

p(t) ≈ 0.5 + 2kγeB(t)tint , (8.4)

and when converted to units of magnetic field,

B(t) ≈ p(t)− 0.5
2kγetint

. (8.5)

8.3 Experimental realization

We experimentally demonstrate arbitrary waveform sampling using the electronic
spin of a single nitrogen-vacancy (NV) center in a diamond single crystal. The NV
spin is initialized and read out using ∼ 2 µs green laser pulses and a single-photon-
counting module [136]. Microwave control pulses are generated by an arbitrary
waveform generator (AWG), amplified to reach Rabi frequencies of ∼ 25 MHz, and
applied to the NV center via a coplanar waveguide (CPW) structure [78]. Test mag-
netic waveforms are generated by a second function generator operated in burst
mode and triggered by the AWG. The test signals are delivered to the NV center
either by injecting them into the common CPW using a bias-T [73] or by an auxiliary
nearby microcoil [57, 150]. The setup is operated in a magnetic bias field of 43 mT
(aligned with the N-V crystal direction) to isolate the {ms = 0, ms = −1} manifold
of the S = 1 NV spin, and to achieve preferential alignment of the intrinsic nitrogen
nuclear spin (here the spin 1/2 of the 15N isotope) [81]. The latter is not required for
our scheme, but helps reducing microwave pulse errors.

8.4 Detection of a magnetic square waveform pulse

We begin our study by recording a simple, 270-ns-long square waveform (Fig. 8.2).
We record the waveform both using the standard integrative Ramsey scheme [Fig.
8.1(b)] and our differential sampling technique [Fig. 8.1(d)]. For the Ramsey scheme,
we reconstruct the magnetic waveform by a numerical differentiation of the raw sig-
nal (black data in Fig. 8.2(a)) via the central difference quotient of the smoothed
signal [188]. The reconstructed waveform is shown in blue. For our differential
detection scheme, we directly plot the signal output without any further data pro-
cessing (Fig. 8.2(b)). Clearly, the differential sampling method is able to faithfully
reproduce the square pulse and is not affected by the noise amplification of the Ram-
sey scheme.
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FIGURE 8.2: Pulse detection and time resolution. (a) Sensor response to a square-wave
magnetic signal (dashed curve) recorded using the standard integrative Ramsey method
[protocol of Fig. 8.1(b)]. The raw data are shown in black and the reconstructed waveform
is shown in blue. The waveform is reconstructed by applying a 4-point moving average to
the raw data and calculating the difference ∆p between adjacent points. The dwell time
is ts = 8 ns and the total averaging time is 1 hour. (b) Sensor response (raw signal) to
the same waveform signal recorded using the differential spin echo technique [protocol of
Fig. 8.1(d) using k = 2]. The total averaging time is 15 min. (c) High resolution sampling
(ts = 4 ns) of the rising edge of the square pulse waveform. The blue points are measured
data. The dashed black line is the expected step response for π-pulse and integration lengths
of tint = tπ = 20 ns. (d) Magnitude plot of the corresponding sensor transfer function. Blue
dots are the data and the black dashed curve is the Fourier transform of a Hann window of
duration 2tπ = 40 ns. The red curve additionally takes the finite response time of the test

signal circuit (∼ 8 ns) into account.
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FIGURE 8.3: Increased sensitivity by integrating 2k waveform passages. (a) Sensor output
p(t) for k = 1, 2, 4 and 8 repetitions of the two-π-pulse unit (see Fig. 8.1(c)), for a sine
waveform of amplitude 10 µT and frequency f = 4 MHz. The integration time and π-pulse
duration are tint = tπ = 20 ns and the repetition time is trep = 344 ns. (b) Peak output signal
∆pmax as a function of k (colored squares). The gray dashed line shows a linear scaling that
would be expected in the absence of sensor decoherence. The black dash-dotted line takes
decoherence into account (T2 = 14 µs). (c) Minimum detectable magnetic field Bmin per unit
time as defined by Eq. (8.6) (black curve). Colored dots represent the data from (a). The

dashed, dash-dotted and dotted curves are explained in the text.

8.5 Time resolution of waveform sensing

To characterize the time resolution of the method, we record the rising edge of the
pulse with fine sampling ts = 4 ns (Fig. 8.2(c)). We find a 10-90% step response time
of τ ∼ 20 ns. The response time is approximately given by τ ≈ max(tπ, tint), since
the finite pulse duration and the integration time both act as moving average filters.
While tint can be deliberately adjusted, tπ is determined by the Rabi frequency of the
system and sets a hard limit to the response time.

In Fig. 8.2(d) we show the corresponding frequency transfer function G(ω) of
the sensor, i.e., the Fourier transform of the unit impulse response obtained from the
step response. In our experiments, where tint = tπ, the unit impulse response of the
sensor is approximately given by a Hann function with characteristic length 2tπ (see
appendix C). The Bode plot indicates a -3dB sensor bandwidth f−3dB ≈ 25 MHz,
with good agreement between theory and experiments. This bandwidth could be
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slightly increased, up to ∼ 40 MHz (see appendix C), by choosing shorter integra-
tion times tint � tπ; however, the short integration time comes with the penalty of
vanishing sensitivity.

8.6 Signal gain by repetitive acquisition

In a next step, we investigate the signal gain possible by accumulating phase from
2k consecutive waveform passages. Fig. 8.3(a) plots the sensor response from a
weak sinusoidal test signal recorded with k = 1, 2, 4 and 8. Clearly, a much larger
oscilloscope response results for higher k values. To estimate the signal gain, we
plot the peak sensor signal ∆pmax (indicated in (a)) as a function of k, see Fig. 8.3(b).
At small k values the increase of ∆pmax is proportional to k, as expected, while at
larger k decoherence of the sensor attenuates the signal. By correcting for sensor
decoherence, we can recover the almost exact linear scaling of the signal phase ∆φmax
with k (dashed line in (b)).

To quantify the overall sensitivity in the presence of decoherence and sensor
readout overhead, we calculate a minimum detectable field Bmin, defined as the in-
put field that gives unity signal-to-noise ratio for a one-second integration time. Bmin
is given by [22],

Bmin =

√
tm + 2ktrepe

2ktrep
T2

2γekCtint
, (8.6)

where tm = 3 µs is the arm/readout duration (see Fig. 8.1(c)), T2 ∼ 14 µs is the
coherence time, and C ∼ 0.02 is a dimensionless number that quantifies the quan-
tum readout efficiency [22]. In Fig. 8.3(c) we plot Bmin as a function of k. We find
that Bmin ∝ k−1 for short durations ktrep < tm, that is, the benefit of repeating the se-
quence is largest for small k and high repetition rates (dotted curve). Once ktrep > tm
the scaling reduces to Bmin ∝ k−0.5 because the linear phase accumulation now com-
petes with standard signal averaging (dashed curve). For large ktrep that exceed the
sensor coherence time T2 the efficiency of the method rapidly deteriorates (dash-
dotted curve).

8.7 Detection of a complex test waveform

We complete our study by demonstrating detection of a complex test waveform (Fig.
8.4). The waveform contains the sum of several Fourier components with the ana-
lytical expression for B(t) given in the figure caption. In Fig. 8.4(a) we show the ex-
perimentally measured waveform (light blue points) together with the input wave-
form (dashed black line) in the same plot. The experimental waveform consists of
N = 280 data points sampled at ts = 4 ns horizontal resolution. Clearly, the exper-
imental waveform agrees very well with the applied input. The experimental data
are plotted without any data processing, demonstrating that our differential sam-
pling method directly reproduces the waveform signal. Fig. 8.4 (b) further presents
the corresponding power spectra of the input waveform (black dashed line) and the
recorded sensor output (light blue points). Although the signal lies within the ana-
log bandwidth of the sensor (∼ 25 MHz), some attenuation is observed at higher
frequencies. If desired, inverse filtering techniques could be applied to compensate
the high-frequency roll-off of the sensor.
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σ=530 nT

A

B

FIGURE 8.4: Example of arbitrary waveform detection. (a) Input waveform (dashed
line) and recorded waveform data (blue dots) for a complex waveform given by B(t) =
B sin2 (ωt/2)

[
sin (12ωt) cos (ωt) sin2 (ωt)

]
, with B = 81.87 ¯T and ω = 2π × 1 MHz. The

waveform is sampled using N = 280 data points and ts = 4 ns. Further parameters are
tint = tπ = 20 ns, trep = 1400 ns and k = 4. The total experimental time is 60 h corresponding
to ∼ 1.44× 1010 waveform triggers. The baseline noise is σ ≈ 530 nT-rms. (b) Normalized
power spectra of the input waveform (black dashed line) and the detected waveform (light
blue connected points). Fourier components at higher frequencies are slightly attenuated

due to the limited bandwidth of the sensing sequence.

8.8 Limitations and possible remedies

Before concluding, we point out a few limitations and possible remedies of the differ-
ential waveform sampling technique. First, our scheme is only applicable to wave-
forms that can be triggered twice within the sensors T2 time. While T2 could be
extended to some extent by adding dynamical decoupling π pulses to our proto-
col, very long repetition times cannot be covered, and will require resorting to, e.g.,
the inefficient small-interval Ramsey technique (Fig. 8.1(c)). Second, the maximum
peak-to-peak signal amplitude is limited by the excitation bandwidth of π pulses to
(γetπ)−1, here ∼ 2 mT. Only relatively weak fields can therefore be detected with
our method. To cover strong signals, time-resolved spectroscopy techniques are
available [57]. Third, when accumulating signal over many passages k, the phase
may exceed the sensor’s linear range (see Eq. 8.1). In this situation, the relative
phase of the second π/2 pulse could be cycled [189] to recover a linear response.
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8.9 Conclusion and Outlook

In summary, we have presented a quantum sensing method for direct detection of ar-
bitrary waveforms in the time domain using equivalent time sampling. Our method
does not require any waveform reconstruction, allowing, for example, to sample ar-
bitrary segments from a longer waveform. In addition, our protocol can be repeated
to coherently accumulate phase from many waveform cycles to improve sensitivity.
The analog bandwidth of our scheme is fundamentally limited by the Rabi frequency
of the sensor, which sets the minimum π pulse duration tπ. In the present work, we
demonstrate a time resolution of tπ ∼ 20 ns using a Rabi frequency of ∼ 25 MHz. To
achieve better time resolution, the Rabi frequency could be increased by more than
an one order of magnitude by miniaturizing the coplanar waveguide [108, 190]. The
highest demonstrated Rabi frequencies are 200 − 500 MHz for NV centers, corre-
sponding to tπ = 1− 2.5 ns [108, 190]. At this time resolution it may become feasible
to study the photoresponse in materials [185] or the switching in thin film magnetic
memory devices [186].
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CHAPTER 9
Conclusion and Outlook

In this thesis, we presented novel magnetometry protocols for spin-based quantum
sensors. We experimentally realized these protocols using the NV center in dia-
mond. All experiments were performed on single-crystal diamonds with individual,
near-surface NV centers at room temperature.

Nanoscale magnetic resonance imaging

The main focus of this work, with results presented in Chapters 5, 6 and 7, was the
detection of nuclear spins in the vicinity of the NV center: We developed two imag-
ing methods to determine the three-dimensional distance vector of individual nu-
clear spins relative to the NV sensor. Both methods used a novel micro-coil placed
in close vicinity to the diamond surface to actively manipulate nuclear spins. The
first method (presented in Chapter 6) records nuclear precession in dynamically
tilted external magnetic bias fields. The second method (presented in Chapter 7)
uses coherent radio-frequency control to extract the nuclear location. Both imaging
protocols were used to retrieve the nuclear coordinates for distances up to ∼ 12 Å
and, in combination with DFT data, allowed us to constrain the position of the nuclei
to individual sites in the diamond lattice. The main contribution to the uncertainty
in the nuclear coordinates comes from the extent of the NV spin density. In future
experiments, probing more distant spins, this uncertainty will be reduced and only
spectroscopic resolution will limit the imaging accuracy.

At this point many promising research directions can be explored with the final
goal of elucidating the structure of a small molecule. The most important experi-
mental challenges that need to be overcome on the way to this goal are:

• Increasing sensitivity: To date the field sensitivity of the NV center suffices to
detect individual nuclei at distances of up to 3 nm [138]. To improve the sen-
sitivity the coherence properties of shallow NV centers have to be enhanced
by proper surface preparation. Further, the collection efficiency of the photons
emitted by the NV center have to be increased by etching optimized waveg-
uide structures into the diamond chips. Finally, new spectroscopy techniques
optimized for weakly-coupled spins have to be applied [99].

• Enhancing spectral resolution: The spectral resolution of the hyperfine spec-
troscopy techniques employed in this work is limited by the sensor spin life-
time T1. Recently, spectroscopy techniques have been developed in our group
and elsewhere, which permit signal detection with spectral resolutions beyond
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the sensor lifetime limit [74, 95, 99, 152]. For imaging of distant, very weakly
coupled nuclear spins these spectroscopy methods can be combined with the
positioning techniques described in this work. In addition, the inter-spin cou-
pling between nuclei in the molecule will lead to broad, complex spectra that
could be simplified by homo-nuclear decoupling techniques [100].

• Detection of inter-spin couplings between nuclei: Apart from spectral broad-
ening couplings between nuclei also provide structural information. Con-
trolled detection of the inter-spin couplings can be used to constrain possible
structural properties of spin clusters [88].

• Sample surface preparation: Structure determination experiments on molecules
critically require proper fixation and preparation of the molecules on the dia-
mond surface. In our group first attempts to prepare organic, spin-labeled
molecules in a thin polymer matrix have been conducted and signatures of
the spin-labels were detected with double resonance techniques [102]. How-
ever, limited stability of the molecules has been observed, possibly due to the
optical illumination. One possible remedy would be to perform experiments
at low temperature and vacuum conditions were spin-labeled samples were
found to be stable [191]. At room temperature the next experiments can also
be performed on nuclear spins, e.g., 1H spins, under the condition that suffi-
cient sensitivity is achieved.

Detection of arbitrary magnetic signals

The differential spin echo sequence presented in Chapter 8 addresses the problem of
detecting an arbitrary magnetic field waveform with a two-level system. The novel
protocol enables reconstruction-free measurements of magnetic signals, if the signal
can be triggered repetitively. Our new sensing technique effectively turns the NV
center into a "quantum oscilloscope" with many potential applications: Although
the demonstration experiments performed in this thesis only detect artificial test
waveforms, the presented method is promising for the magnetic and electrical char-
acterization of nano-structures (including, for example, magnetic switching [186], IC
activity mapping [184] or photo-response measurements [185]). For this purpose the
protocol has recently been implemented on one of the scanning NV magnetometers
in our group [192]. In future experiments several extensions and improvements of
the differential spin echo technique can be envisioned:

• Enhancing time resolution: In the current experiments the time resolution of
the sensing sequence was limited to∼ 20 ns due to the duration of the refocus-
ing pulses. In future experiments a higher time resolution is desirable to de-
tect the rapid dynamics of magnetization switching in next-generation mem-
ory devices or to perform photo-response measurements. The most promising
approach to improve the time resolution is to reduce the distance of the NV
centers to the microwave stripline as demonstrated in [108, 190]. In initial test
experiments performed in our group a scanning tip was positioned in close
vicinity of a microwave source and Rabi frequencies of up to ∼ 150 MHz have
been observed, which would translate to a time resolution of ∼ 3.3 ns [192].

• Vector magnetometry: In principle, the differential spin echo technique can be
applied to an ensemble of NV centers with different crystallographic orienta-
tions. From the magnetometry signal of at least three of the orientations it is
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possible to reconstruct the time-dependent vector field at the position of the
ensemble of NV centers.
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APPENDIX A
Product operator calculations

Here, we derive a useful relation for two-spin product operators that in chapter 3 al-
lows us to simplify the computation of the action of pulse sequences. We start with
a arbitrary product state of a two-spin system ρ = Sb⊗ In and apply the transforma-
tion U = e−iα(Sa⊗Im):

ρ′ = UρU† = e−iα(Sa⊗Im)ρeiα(Sa⊗Im) = e−iα(Sa⊗Im)(Sb ⊗ In)eiα(Sa⊗Im). (A.1)

In the following discussion the operators S and I are assumed to describe the NV
electron spin (S), reduced to a two-level system, and a nuclear spin (I), respectively.
We now use Euler’s formula for operators A which obey A2 = 1 (fullfilled for Pauli
matrices):

eiθA = cos(θ)1 + i sin(θ)A. (A.2)

Applying this identity to U and U†, we obtain:

ρ′ = [cos(α/4)1− i sin(α/4)(2Sa ⊗ 2Im)] (Sb ⊗ In) [cos(α/4)1 + i sin(α/4)(2Sa ⊗ 2Im)]
(A.3)

We now multiply out the right part of the equation and use the mixed-product prop-
erty (A⊗ B)(C⊗ D) = (AC)⊗ (BD):

ρ′ = [cos(α/4)1− i sin(α/4)(2Sa ⊗ 2Im)] [cos(α/4)(Sb ⊗ In) + 4i sin(α/4)(SbSa)⊗ (In Im)]
(A.4)

Now we additional multiply out the left part of the equation to obtain:

ρ′ = cos(α/4)2(Sb ⊗ In) + 4i cos(α/4) sin(α/4)(SbSa)⊗ (In Im)

− 4i cos(α/4) sin(α/4)(SaSb)⊗ (Im In) + 16 sin(α/4)2(SaSbSa)⊗ (Im In Im). (A.5)

In chapter 3, we will compute the effect of parts of a given pulse sequence on two-
spin systems using the relation that we have just derived. We will in particular
discuss the most important NMR spectroscopy techniques that provide the basis for
the nuclear spin imaging experiments discussed in Chapter 6 and 7.
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APPENDIX B
Nuclear precession in tilted

magnetic fields

Here, we derive the shift in the hyperfine coupling constants due to a tilted external
quantization field in second-order perturbation theory and obtain equation 6.6 in
chapter 6. The derivation follows the description in [193].

B.0.1 Definition of Hamilton operators

We consider the following Hamilton operator of a coupled spin-system consisting of
the sensor spin (S = 1) and a single nuclear spin (I = 1/2):

H = DS2
z − γe~B0 · ~S− γn~B0 ·~I −~I · (A) · ~S (B.1)

and separate it into a pseudo-secular term (H0) and the perturbation (V):

H0 = DS2
z − γeBzSz − γn~B0 ·~I −~I ~Az · Sz (B.2)

V = −γe(BxSx + BySy) + (Ix Axx + Iy Ayx + Iz Azx)Sx + (Ix Axy + Iy Ayy + Iz Azy)Sy
(B.3)

= −γe(BxSx + BySy) + (~Ax~I)Sx + (~Ay~I)Sy, (B.4)

where we defined ~Ax = (Axx, Ayx, Azx) and ~Ay = (Axy, Ayy, Azy). We further denote
the six eigenstates of H0 as |ψi〉 = |−1, {↓, ↑}〉 , |0, {↓, ↑}〉 , |1, {↓, ↑}〉.

B.0.2 Perturbation theory up to second order and for D � Bz

Here, we only calculate the correction of the energy eigenvalues due to V and do
not construct the perturbed eigenstates. The theoretical background is described in
the literature [193]. We first note, that the first-order perturbative correction of the
energy eigenstates is given by E(1)

i = 〈ψi|V |ψi〉. This expression vanishes for all six
eigenstates of H0, because 〈ψi| Sx |ψi〉 = 0 and 〈ψi| Sy |ψi〉 = 0, as the eigenstates |ψi〉
of H0 are eigenstates of Sz.

The second-order correction of the eigenstates of H0 due to V is given by:

E(2)
i = 〈ψi|VQ

1

E(0)
i − H0

QV |ψi〉 , (B.5)
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with Q = 1 − | i〉 〈 i|. First, we now consider the correction to the state ψi =
|0, {↓, ↑}〉 To simplify the calculation, we drop the nuclear quantum state in the no-
tation and work with the electronic eigenstates only: |0〉. Due to the completeness
of Hilbert space, we may write:

Q = 1− |0〉 〈0| = |−1〉 〈−1|+ |1〉 〈1| , (B.6)

which gives the following correction of the ms = 0 state:

E(2)
0 =

〈0|V |−1〉 〈−1|V |0〉
E(0)

0 − E(0)
−1

+
〈0|V |1〉 〈1|V |0〉

E(0)
0 − E(0)

1

, (B.7)

with E(0)
0 − E(0)

−1 = −D ± γeBz. Further, we use the following relations of spin-1
operators to simplify the expression given above:

〈1| Sx |0〉 =
1√
2

〈1| Sy |0〉 =
−1√

2i
〈−1| Sx |0〉 =

1√
2

〈−1| Sy |0〉 =
1√
2i

.

(B.8)

Using these expressions we obtain:

〈0|V |−1〉 = − 1√
2
(γe(Bx − iBy) + (~Ax − i~Ay) ·~I) (B.9)

〈0|V |1〉 = − 1√
2
(γe(Bx + iBy) + (~Ax + i~Ay) ·~I) (B.10)

We now consider 〈0|V |−1〉 〈−1|V |0〉 and keep only terms that are at least linear in
γeBx, γeBy, as γeBx, γeBy � Aij:

〈0|V |−1〉 〈−1|V |0〉 = −1
2
(γ2

e B2
x + γ2

e B2
y + 2γeBx(~Ax + ~Ay) ·~I + 2γeBy(~Ax + ~Ay) ·~I),

(B.11)

and note that:

〈0|V |1〉 〈1|V |0〉 = 〈0|V |−1〉 〈−1|V |0〉 . (B.12)

Inserting these expressions into equation B.7 and approximating −D± γeBz ≈ −D,
we obtain:

E(2)
0 =

γ2
e B2

x + γ2
e B2

y + 2γeBx(~Ax + ~Ay) ·~I + 2γeBy(~Ax + ~Ay) ·~I
D

(B.13)

=
γeBx

D
γeBx +

γeBx

D
γeBy +

2γeBx(~Ax + ~Ay) ·~I + 2γeBy(~Ax + ~Ay) ·~I
D

(B.14)

The first two terms correspond to the energy shift of the NV electron spin, due to the
perpendicular field and the third term corresponds to the enhancement formula for
the gyromagnetic ratio of the nuclear spin.

For the ms = ±1 - state, we obtain for the correction of the energy eigenstates:

E(2)
±1 =

〈±1|V |0〉 〈0|V |±1〉
E(0)
±1 − E(0)

0

. (B.15)
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as a consequence, we obtain in this case E(2)
0 = −2 · E(2)

±1 . Finally, we give the gener-
alized formula (for any of the ms-states) for the enhanced gyromagnetic ratio of the
nuclear spin, as given in chapter 6 in 6.6:

α(ms) = (3|ms| − 2)
γe

γnD

Axx Axy Axz
Ayx Ayy Ayz

0 0 0

 . (B.16)
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APPENDIX C
Sensitivity and transfer function of

the differential echo sequence

C.1 Transfer function and response time

We derive the expression for rise time τ and the transfer function shown by a dashed
line in Fig. 8.2(d). The probability function p of the sensor in the small signal limit
φ� 1 is according to Eq. (2) of the main text given by

p ≈ 1
2
(1 + φ) . (8.2)

The total phase accumulated over one cycle of the differential echo sequence is given
by

φ(t) =
∫ 2trep

0
γeB(t′)M(t, t′)dt′, (C.1)

where trep is the repetition time of the waveform and M(t, t′) is the modulation func-
tion [22] of the sensing sequence, defined below. Because the waveform function is
repetitive, B(t′ + trep) = B(t′), we can rewrite Eq. (C.1) as

φ(t) =
∫ trep

0
γeB(t′)

[
M1(t, t′) + M2(t, t′)

]
dt′, (C.2)

where M1(t, t′) and M2(t, t′) are the modulation functions of the two differential
spin echo segments, which both have a duration of trep. In the case of ideal, short π
pulses the modulation functions are given by step functions,

M1(t, t′) =

{
+1 : t′ ≤ t
−1 : t′ > t,

(C.3)

M2(t, t′) =

{
−1 : t′ ≤ t + tint

+1 : t′ > t + tint,
(C.4)

In the case of finite pulse durations, the modulation functions are no longer
abrupt step functions, but rather described by the Rabi nutation formula where the
value of M is proportional to the z-projection of the qubit. For square π pulses of
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duration tπ, the modulation functions are given by

M1(t′) =


−1 : t′ ≤ t− tπ/2
+ sin( [t

′−t]
tπ/π ) : t− tπ/2 < t′ ≤ t + tπ/2

+1 : t′ > t + tπ/2,

(C.5)

M2(t′) =


1 : t′ ≤ t + tint − tπ

2

− sin( [t
′−t−tint]
tπ/π ) : t + tint − tπ

2 < t′ ≤ t + tint +
tπ
2

−1 : t′ > t + tint +
tπ
2 .

(C.6)

For the general case where tint 6= tπ we estimate the response time τ through
a set of numerical simulations of Eqs. (C.1-C.6). We compute the acquired sensor
phase for varying tint and tπ for a ideal step input waveform and determine the
response time of the sensor output for each pair (tπ, tint). We find that the response
time approximately follows

τ ≈ 2
π

√
t2
π +

π

2
t2
int. (C.7)

For the case where tint = tπ, the transfer function can be computed analytically.
The sum M ≡ M1(t, t′) + M2(t, t′) of the two modulation functions is given by

M(t, t′) =

{
1 + cos(π[t′−t−tπ/2

tπ
) : t− tπ

2 < t′ ≤ t + 3tπ
2

0 : otherwise
(C.8)

The function M(t, t′) is equivalent to a Hann function of characteristic duration 2tπ

that is centered at t′ = t+ tπ/2. The transfer function of the sensing sequence is thus
given by the Fourier transform of the Hann function.

C.2 Sensitivity Analysis

We analyze the sensitivity of the differential echo sequence and compare it with
the sensitivity of the Walsh method presented in Ref. [182] and the time-resolved
Ramsey method described by Fig. 8.2(c). According to Ref. [183], the Haar wavelet
sensing method provides the same sensitivity as the Walsh method.

The reconstructed field B(t) at time t using N measured Walsh coefficients B̂m is
given by [182]:

B(t) =
N−1

∑
m=0

B̂mwm(t/trep). (C.9)

Here, wm(t/trep) is the m-th Walsh function, which oscillates between ±1 in the in-
terval [0, trep]. The minimum resolvable Walsh coefficient per unit time is given by
an expression analogous to Eq. (8.6):

B̂min =

√
tm + trep exp(trep/T2)

γeCtrep
. (C.10)
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k=44

k=22

k=7

k=1

FIGURE C.1: Minimum detectable field per unit time for different waveform sensing
methods. We plot the minimum detectable field as a function of the waveform duration
trep. We use parameters typical for our experiment, tm = 3 µs, T∗2 = 1.5 µs, T2 = 14 µs and
tint = 20 µs. For each trep, the number of waveform samples is set to N = trep/tint and
the repetition factor k of the differential echo sequence is adjusted for optimum sensitivity

according to Fig. 8.3(c).

Consequently, the minimum resolvable field at time t, according to error propaga-
tion, is given by:

Bmin,Walsh =

√√√√N−1

∑
m=0

B̂2
min =

√
NB̂min

=

√
N
√

tm + trep exp(trep/T2)

γeCtrep
. (C.11)

This expression can be compared to the minimum resolvable field for the differential
echo method, Eq. (8.6):

Bmin,Diff =

√
tm + 2ktrep exp(2ktrep/T2)

γeC2ktint
. (8.6)

Finally, for the time-resolved Ramsey method (Fig. 8.1c), the minimum detectable
field is given by:

Bmin,Ramsey =

√
tm + trep exp(tint/T∗2 )

γeCtint
. (C.12)
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Note that to build up the full N-point waveform, a total of N measurements are
needed for all methods. For the differential echo and Ramsey methods, the wave-
form is measured point-by-point in the time domain. For the Walsh method, N
Walsh coefficients must be measured.

To get an idea of the relative sensitivities of the three methods, we compare the
errors for waveform parameters set by N = trep/tint and k = T2/(4trep), and disre-
gard dephasing and decoherence. For the differential echo method we find:

Bmin,Diff ≈


√

N
k

[
T2
tm

]1/2
Bmin,Walsh for trep � tm ,√

N
k Bmin,Walsh for trep � tm .

(C.13)

For the Ramsey method we find:

Bmin,Ramsey ≈
√

NBmin,Walsh (C.14)

We find that the error of the differential echo sequence is lowest for small N and
large k, i.e. , for short waveforms and long coherence times.

In Fig. C.1, we plot the minimum detectable field per unit time as function of
the duration of the waveform trep for the parameters used in our experiments. We
find that for short waveforms (trep < 400 ns, as in Figs. 8.2,8.3) the differential echo
technique provides the highest sensitivity. For longer waveforms (trep > 1 µs, as
in Fig. 8.4) the Walsh method is superior in sensitivity. The sensitivity of the time-
resolved Ramsey sequence is inferior to both sensing methods for the waveform
durations considered in this work.
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