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Dissection of the mutation accumulation
process during bacterial range expansions
Lars Bosshard1,2* , Stephan Peischl2,3, Martin Ackermann4,5 and Laurent Excoffier1,2*

Abstract

Background: Recent experimental work has shown that the evolutionary dynamics of bacteria expanding across
space can differ dramatically from what we expect under well-mixed conditions. During spatial expansion,
deleterious mutations can accumulate due to inefficient selection on the expansion front, potentially interfering
with and modifying adaptive evolutionary processes.

Results: We used whole genome sequencing to follow the genomic evolution of 10 mutator Escherichia coli lines
during 39 days ( ~ 1650 generations) of a spatial expansion, which allowed us to gain a temporal perspective on
the interaction of adaptive and non-adaptive evolutionary processes during range expansions. We used elastic net
regression to infer the positive or negative effects of mutations on colony growth. The colony size, measured after
three day of growth, decreased at the end of the experiment in all 10 lines, and mutations accumulated at a nearly
constant rate over the whole experiment. We find evidence that beneficial mutations accumulate primarily at an
early stage of the experiment, leading to a non-linear change of colony size over time. Indeed, the rate of colony
size expansion remains almost constant at the beginning of the experiment and then decreases after ~ 12 days of
evolution. We also find that beneficial mutations are enriched in genes encoding transport proteins, and genes
coding for the membrane structure, whereas deleterious mutations show no enrichment for any biological process.

Conclusions: Our experiment shows that beneficial mutations target specific biological functions mostly involved
in inter or extra membrane processes, whereas deleterious mutations are randomly distributed over the whole
genome. It thus appears that the interaction between genetic drift and the availability or depletion of beneficial
mutations determines the change in fitness of bacterial populations during range expansion.

Keywords: Experimental evolution, Range expansion, Mutation load

Background
Many populations expanded or shifted their range in
their evolutionary history, for instance during the inva-
sion of new habitats or in response to environmental
changes [1–3]. Understanding the impact of dynamic
species range margins on the evolutionary forces driving
genomic and phenotypic evolution has become an im-
portant question in evolutionary biology, for example in
the context of the evolution of dispersal [4], genetic

diversity [5] or the structure of biodiversity [6]. Recent
theoretical and empirical studies show that new muta-
tions occurring at the edge of an expanding population
can increase in frequency and spread over a large pro-
portion of newly colonized territories. This process has
been called gene surfing [7] and results from stochastic
evolutionary processes at the wave front where popula-
tion density is low and genetic drift is strong [8–10].
Theoretical studies have predicted that gene surfing
should not only occur for neutral mutations, but also for
mildly deleterious mutations. Deleterious mutations can
thus accumulate during range expansion [11] and create
an expansion load [12]. This prediction could be
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confirmed experimentally with expanding Escherichia
coli populations [13].
Although the theory predicts that the fitness of

spatially expanding populations of bacteria should de-
crease over time, there is evidence that populations that
expand their range can evolve greater expansion speed
[14–16], which can be a result of spatial sorting [4]. It
remains unclear, however, if and how various evolution-
ary dynamics changes forces vary over time and space in
populations that are expanding their range. Recently, mi-
crobial evolution experiments in liquid media using
time-resolved sequencing have revealed complex dynam-
ics occurring that are characterized by rapid adaptation,
competition between beneficial mutations, epistasis, and
genetic parallelism [17–20]. It is possible that adaptation
is mainly due to constant selection occurring on muta-
tions of small effect, which would lead to a gradual
change in fitness. Alternatively, evolution on rugged fit-
ness landscapes could lead to alternating periods of
rapid phenotypic evolution and more static periods of
evolution [21]. This variation in the rate of adaptation
can be caused by changes in the environment, opportun-
ities for improvement after key innovations, and invasion
of new habitats [22, 23].
In this study, we investigate the rate at which muta-

tions accumulate during range expansion by performing
evolution experiments with populations of the bacterium
Escherichia coli. We selected 12 populations from our
previous experiment that expand their range on solid
surfaces of agar plates for a total of 39 days [13]. We se-
quenced 6 samples at 13 time point and 6 samples at 5
time points within 39 days of expansion to determine for
each line how many mutations accumulate over time.
Additionally, we used the measurement of the expansion
speed of the lines during the experiment to determine
the effect of these mutations on the expansion speed
and how these effects change over time.

Results
Linear increase in number of mutations and decrease of
colony size over time
We sequenced the genome of 12 lines of Escherichia
coli every third day for 39 days in total of radial ex-
pansion on agar plates. In total, we collected 108
DNA samples of the 12 lines during the 39 days of
expansion (see Methods). Two lines were excluded
after DNA sequence analysis due to contaminations
during DNA extraction and/or library preparation.
We thus used 90 sequences from 10 lines for all fur-
ther analyses. The colony size was also measured after
every growth period of 3 days.
We used a linear mixed effect regression model to pre-

dict expansion speed over time, and, separately, the
number of accumulated mutations. In the first mixed

effect model used to predict expansion speed, we esti-
mated an individual random effect for the intercept and
the slope of the linear model (to account for the depend-
ence of the measurements over time for each line). On
average, colony size, measured as the radius at the end
of a 3-day expansion period, decreased at a rate of
95 μm per day (95% CI: [− 129,-62]; p-value < 2.2 × 10−
16) over the course of the experiment (Fig. 1). The lines
accumulated on average 3.1 mutations per day (95% CI:
[2.45, 3.71], Fig. 1). For the colony size data, the linear
model explains about 67% of the variation (Rc

2 = 0.67)
indicating that there is still considerable variation that
this simple model cannot explain. This is not surprising
since there are several unaccounted factors that poten-
tially have an impact colony size, i.e. variation of muta-
tion effect size, temperature, humidity, agar
concentration, and fluctuations in nutrition composition.
In contrast, the model used to predict number of muta-
tions explains 95% of variation in the data (Rm

2 = 0.95)
suggesting that mutations accumulate almost linearly
over time. The linear accumulation of mutations sug-
gests that the mutation rate and the generation time
remained largely constant over the course of the experi-
ment and shows that evolutionary changes in colony size
did not impact the rate at which mutations accumulate.
If the colony size data are split in four periods and the
mixed effect model is used to analyze the time periods
separately, the slope is not significantly different from 0
at period 3–12 days (p = 0.5391), 21–30 days (p =
0.4352), and 30–39 days (p = 0.0529) (Supplementary
Figure 2). However, there is a significantly negative slope
in the period 12–21 days (p = 0.0142), suggesting that
the colony size only decreases significantly in the second
period (day 12–21) and that it does not change signifi-
cantly in the other periods. (Supplementary Figure 2).

dN/dS ratio decreases over time
We analyzed the mutations in four consecutive time pe-
riods: Mutations that occurred in days 3–12, days 12–
21, days 21–30, and days 30–39, respectively (Fig. 2).
The analysis of the dN/dS ratio change over time sug-
gests that there is a larger proportion of non-
synonymous mutations than synonymous mutations at
the beginning of the experiment (dN/dS = 1.4754, p =
0.0041) (Fig. 2, and Table 1) indicative of positive selec-
tion during this early phase. The dN/dS ratio is not sig-
nificantly different from 1 in the later period of the
evolution experiment (Table 1) indicating that non-
synonymous and synonymous mutations accumulate
randomly at later stages. The dN/dS ratio is significantly
different between day 3–12 and day 30–39 (p = 0.039).
All other pairwise comparisons between the different
time periods are not significant.
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The effects of mutations on colony size shifts become
more negative over time
We used an Elastic Net (EN) regression, which performs
both variable selection and variable regularization, to de-
termine the subset of genes that have the largest effect
on colony size by analyzing non-synonymous and loss of
function (LOF) mutations. This analysis estimates for
each gene the effect a mutation has on colony size. Posi-
tive values indicate that a mutation causes an increase in
colony size and negative values indicate a decrease in
colony size. We used the change in colony size between
two sampling points and a list of genes with new muta-
tions during the two sampling points for the EN analysis.
There were 6 genes remaining in the model associated
with an increased colony size and 34 genes associated
with a colony size reduction (Table 2). 15 genes out of
the 34 genes are involved in metabolic processes, 15
genes are connected to the formation of cell membrane,

transporter proteins, and motility, and 5 genes are con-
trolling gene expression and DNA structure.
We additionally estimated mutation effects on colony

growth in the four time periods (A: 3–12 days, B: 12–21
days, C: 21–30 days, and D: 30–39 days) by analyzing
non-synonymous and loss of function (LOF) mutations
with ridge regression, which performs only variable
regularization without variable selection (Fig. 3). We es-
timated an effect for each gene, and took it into account
even if it was close to zero. Therefore, we could investi-
gate the distribution of the effects of all genes. The esti-
mated mean mutation effect does not significantly from
0 in the first 12 days and after day 21 (3–12 days: p =
0.7858; 21–30 days: p = 0.0627; 30–39 days: p = 0.1125).
Contrastingly, between days 12–21, we observe a signifi-
cantly negative mean effect of a new mutation (p < 2.2
10–16) (Fig. 3). This result implies that there is either a
shift to more deleterious mutations in the second period

Fig. 1 Dynamics of mutation accumulation and colony size over time for samples 1–10. Blue: Change in bacterial colony radius measured after
three days of expansion on agar plates. Red: Number of mutations accumulated in bacterial lines over the 39 days of expansion. The last two
panes display the mean number of mutations and the mean colony sizes computed over the 10 samples for each time period. Solid lines
indicate regression lines and dashed lines delimit 95% confidence intervals
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or that there are more beneficial mutations at the begin-
ning of the experiment. The latter explanation is in line
with the observed dN/dS ratio that is significantly larger
than 1 during the first period.

GO enrichment analysis
We investigated if there was a significant enrichment of
non-synonymous and LOF mutations found to have an
effect on colony size by our EN method (see Table 2) in
gene ontology terms, and this for the four different time
periods considered above as well as over the whole

experiment. For this analysis, we used all genes irre-
spective of whether they had been affected by positive or
negative mutations, since there were not enough muta-
tions in each of these separate categories. We found two
significantly enriched GO term using data from the en-
tire experiment: organelle inner membrane (GO:
0019866; q = 0.00017) and peptidoglycan-based cell wall
(GO:0009274; q = 0.00202) (Supplementary Figure 1).
Note that bacteria do not possess organelles, but genes
in this GO term are defined as membrane-bounded
structures with a specified protein content and specified
biochemical output [25]. We find the same two signifi-
cant GO terms in the first period (day 3–12): organelle
inner membrane (GO:0019866; q = 0.01725) and
peptidoglycan-based cell wall (GO:0009274; q = 0.01725).
There were no significant GO terms after 12 days until
the end of the experiment. The genes that are mutated
in the two GO terms (GO:0019866, GO:0009274) can be
further divided in four functional groups using Ecocyc
[24]: flagella assembly, transporter and signaling proteins

Fig. 2 Change in mutation types over time: Bar plot of the proportion of different mutations over time. Orange: non-synonymous mutations,
blue: synonymous mutations, green: loss of function mutations, brown: intergenic mutations

Table 1 dNdS ratio calculated for mutations occurring in four
time periods (3–12, 12–21, 21–30, and 30–39 days). Reported p-
values were obtained by a permutation test

day 3–12 day 12–21 day 21–30 day 30–39

dN/dS 1.4754 1.3516 1.2463 0.9909

p value 0.0041 0.1348 0.0823 0.9445
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Table 2 Effects of non-synonymous and loss of function mutations on colony size, as inferred by Elastic Net regression. Effect sizes
are relative to the initial colony size. The functional units were defined using Ecocyc [24]

• Name • Gene description • Pos. Coef. • Neg. Coef. • Function unit

• croE • RNA polymerase assembly factor • 0.867 • • DNA or RNA process

• livM • Transporter • 0.705 • • Transporter

• ybiO • Transporter • 0.243 • • Transporter

• ycfQ • Transcriptional repressor • 0.679 • • Regulator

• fdoG • Formate dehydrogenase • 0.627 • • Metabolic process

• ybdH • Swarming motility • 0.066 • • Motility

• yheT • Predicted hydrolase • • −3.766 • Metabolic process

• frlD • Phosphorylation • • −0.695 • Metabolic process

• metL • Amino acid biosynthesis • • −0.686 • Metabolic process

• pdxJ • Metabolic process • • −0.596 • Metabolic process

• fixC • Flavoprotein • • −0.593 • Metabolic process

• glnE • Glutamine synthesis • • −0.533 • Metabolic process

• yphB • Conserved protein • • −0.508 • Metabolic process

• yfeS • Conserved protein • • −0.381 • Metabolic process

• ybhJ • Metabolic process • • −0.181 • Metabolic process

• elbB • Lycopene biosynthesis • • −0.177 • Metabolic process

• panC • Biosynthetic process • • −0.104 • Metabolic process

• msyB • Heat sensitivity • • −0.081 • Metabolic process

• gtrB • Prophage • • −0.076 • Metabolic process

• hpc • Nitrate metabolism • • −0.044 • Metabolic process

• dmlA • D-malate dehydrogenase • • −0.032 • Metabolic process

• yfiL • Lipoprotein • • −1.484 • Membrane

• wcaL • Colanic acid synthesis • • −0.507 • Membrane

• lnt • Lipoprotein • • −0.228 • Membrane

• yfjD • Inner membrane protein • • −0.124 • Membrane

• yciM • Lipopolysaccharide assembly • • −0.072 • Membrane

• ddpA • Peptide ABC transporter • • −0.904 • Transporter

• fecC • Transporter • • −0.751 • Transporter

• yqcE • Transporter • • −0.282 • Transporter

• pheP • Phenylalanine transporter • • −0.103 • Transporter

• alsA • Transporter • • −0.081 • Transporter

• ccmB • Transporter • • −0.073 • Transporter

• uidB • Glucuronide transporter • • −0.045 • Transporter

• paaX • Regulator • • −0.784 • Regulator

• rssB • Regulator of RpoS • • −0.649 • Regulator

• preA • Swarming motility • • −0.497 • Motility

• yeaJ • Motility • • −0.011 • Motility

• recG • DNA repair • • −0.245 • DNA or RNA process

• der • Ribosomal stability factor • • −0.238 • DNA or RNA process

• leuP • tRNA • • −0.188 • DNA or RNA process
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at the inner membrane, and peptidoglycan assembly of
the cell wall (Supplementary Figure 1).

Discussion
We investigated here the accumulation of mutations in
10 Escherichia coli lines over 39 days of expansion on
agar plates. We analyzed the temporal dynamics of the
effect of mutations on the speed of expansion of bacter-
ial colonies on an agar plate. The focus was to identify
the temporal dynamics of the interactions between selec-
tion and genetic drift during range expansions. We do
not find here evidence of a constant decrease in fitness
over time. Rather, the dynamics of fitness change is
more complex, with the occurrence of a mixture of posi-
tively and negatively selected mutations at all stages,
even though their relative proportions and effects vary
over time (Figs. 2 and 3). Previous studies have shown
that expansion speed could be also influenced by inter-
actions among differentiated pioneering cells at the front
of the expanding population [26]. However, in this study
the standing variation in the ancestral population is

expected to be low, and interactions between different
cell types is therefore potentially limited.
We find evidence of positive selection driven by non-

synonymous mutations in the first 12 days, as attested by
a significant dN/dS ratio (dN/dS = 1.48, p = 0.0041,
Table 1). However, the estimated average effect of non-
synonymous and LOF mutations on colony size is not
significantly different from 0 in the first quarter of the
experiment (Fig. 3). It suggests that there are beneficial
mutations in the first 12 days of the experiment that are
compensating for the effect of other deleterious muta-
tions, resulting in a null effect on fitness. There is then a
significant decrease in fitness between days 12 and 21,
but the dN/dS ratio is not deviating significantly from 1.
The observation of a constant fitness at the beginning of
the experiment and of a decreasing fitness at a later
stage of the experiment could be due to a limited num-
ber of mutations that can lead to an increase in colony
size [27]. After the reservoir of potential positive muta-
tions is exhausted or becomes too small, we would in-
deed mainly see the effect of a constant accumulation of
deleterious mutations, leading to a progressive decrease

Fig. 3 Mutation effect dynamics: Distribution of mutation effects over colony growth. The mutations are distributed into four time periods.
Horizontal grey lines represent mutations in a given gene and the length of the grey line is proportional to the number of mutations that were
observed in that time period. Red lines indicate the mean value and red asterisks indicate if the mean value is significantly different from 0. 3–12
days: p = 0.7858; days 12–21: p < 2.2 10− 16; 21–30 days: p = 0.0627; 30–39 days: p = 0.1125. Black bars on top indicate if mutation mean effects in
different time periods are significantly different from each other, based on a pairwise t test with Bonferroni correction for multiple testing: 3–12
days - days 12–21: p = 6.5 10− 11; days 12–21 - 21-30 days: p = 6.2 10− 4; days 12–21 - 30-39 days: p = 1.4 10− 4. All other pairwise comparisons are
not significant

Bosshard et al. BMC Genomics          (2020) 21:253 Page 6 of 11



in the fitness of the bacteria on the front. Note that the
rate of fitness gain declines also in well mixed (liquid
growing) bacterial populations over time [28], but in
contrast to an expanding populations on a two-
dimensional surface, its molecular evolution is character-
ized by signatures of rapid adaptation during the experi-
ment [28]. After 21 days, the mutational effects are not
significantly different from 0 (Fig. 3), which is in line
with the predictions of a Fisher Geometric Model where
the proportion of beneficial mutations increases when a
population gets further away from its optimum [29].
Under this line of reasoning, the accumulation of dele-
terious mutations during days 12 to 21 would have
moved the lines away from their optimum, therefore
allowing for a higher influx of beneficial mutations after
21 days. However, the effect is either not strong enough
to see a significant dN/dS ratio after 21 days in our ex-
periment, or it is mainly driven by LOF mutations.
In this study, we focused on the average effect of mu-

tations among all 10 lines, but mutations occurring in an
individual line can show a large deviation from this aver-
age effect. There is indeed quite a high variability in the
fitness trajectories among different lines (Fig. 1), as the
fitness of some lines continues to decrease after 21 days.
The fact that the mean effect of the mutations is not sig-
nificantly different from zero after day 21 on Fig. 3 is
also potentially due our limited sample size. A larger
study performed over a longer time period would be
useful to draw more definitive conclusions. The fact that
the number of mutations per line increases linearly over
time suggests that mutations occur at a constant rate,
which is in line with previous studies of Escherichia coli
lines in liquid medium [28, 30], where the rate of gen-
omic evolution was nearly constant. However, in the
previous evolution experiments in liquid culture, the
dN/dS ratio was significantly larger than one [30] and
fitness increased after a short time period relative to the
ancestor [19, 28, 31]. Our observation that the fitness
decreases in the second period of the experiment (day
12–21) is in line with the theoretical predictions that
natural selection is inefficient during range expansions
due to low effective population size at the expanding
front, leading to an inefficient purging of deleterious
mutations [12, 32]. Expansion speed depends generally
on dispersal and growth rate, but mutations can have a
different impact on these two mechanisms, and these
two traits tend to interact and co-evolve [11]. Interest-
ingly, an increase in colony size has been predicted for
expanding motile bacteria where faster dispersal can
evolve [16]. Therefore, the relative strength of drift and
selection might change over time [33].
The GO enrichment analysis performed on non-

synonymous and LOF mutations revealed two significant
GO terms in the total data set as well as in the first 12

days of evolution: organelle inner membrane (GO:
0019866) and peptidoglycan-based cell wall (GO:
0009274). The mutated genes belonging to these GO
terms are coding for proteins functionally connected to
the cell membrane and potentially involved in the sur-
face structure of the cell ((Supplementary Figure 1).
There is evidence that structural changes of surface pro-
teins can lead to bacterial cell sorting, such as to more
easily allow them to move to the front of the expansion
by reducing drag [34]. Changes on the cell surface also
potentially have an impact on the stability of the edge of
the colony [35, 36]. By weakening the stability of the col-
ony, the same number of bacteria could spread over a
larger area, and lead to a thinner colony [15], since they
would be less densely packed. Our results thus strongly
suggest that some non-synonymous mutations in mem-
brane protein genes occurring early during the experi-
ment lead to an increase in colony size and are therefore
positively selected. Previous estimates of the distribution
of fitness effects (DFEs) over the whole experiment sug-
gest that there are on average more deleterious muta-
tions accumulating in during a long period of range
expansion on agar plates [13], but the DFE results sug-
gested that there were also many potentially positively
selected mutations occurring during these expansions,
even though it was not possible to individualize them.
Due to the relatively small sample size (10 lines) and the
smaller number of mutations observed in each time
period, it was not possible to infer period specific DFEs,
but we nevertheless show that these beneficial mutations
accumulated early during the experiment. The study of a
much larger number of strains could certainly enable
one to examine if and how DFEs change over the course
of the experiment.

Conclusions
Our results highlight the importance of considering the
spatially explicit process of bacterial growth when study-
ing bacterial adaptation and evolution, as functional con-
straints imposed by range expansions could seriously
limit the ability of bacteria to cope with environmental
changes [37]. Complex adaptive processes demonstrated
here in bacteria could also happen during the expansion
of other populations, including humans, but also during
the growth of solid tissues in eukaryotes. The analogy
between the evolution of bacterial communities and the
growth of eukaryotic tissue has recently been
highlighted, in particular in cancer [38]. Like bacteria,
solid cancers evolve by a process of clonal expansion, ex-
ploring the adaptive landscapes of tissue ecosystems
[39]. Expansion load theory in non-recombining organ-
isms could therefore also explain phenomena such as
spontaneous tumor recession, irregular growth patterns,
or extremely high clonal diversity in tumors [40–42]. In
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addition to having triggered the development of specific
life-history traits in most organism (reviewed in [43]),
the negative impact of deleterious mutations could have
led to the development of specific cellular mechanism
preventing their specific accumulation during tissue
growth, and apoptosis could be such an example.

Methods
Bacterial strain
We used Escherichia coli K12 MG 1655 strains where
the expression of the mutS gene is directly controlled by
the arabinose promoter pBAD inserted in front of the
mutS gene. In absence of arabinose, mutS is not
expressed, leading to a higher spontaneous mutation rate
due to the inactivation of the methyl-directed mismatch
repair system (MMR, [44]). Additionally, our strain had
a GFP marker located in the lac operon, which can be
induced by IPTG (Isopropyl β-D-1-
thiogalactopyranoside).

Experimental setup
Twelve bacterial strains were propagated on LB agar
plates at 37 °C for a total duration of 39 days. The strains
were transferred on new agar plates every 3 days (Fig. 4).
An image of the colony was taken before transferring
the strains to a new plate. The location of the sampling
point of each transfer was chosen at random on the per-
iphery of the colony. At each transfer, a sample contain-
ing about 100 million cells was collected from the
colony front using a sterile pipette tip and resuspended
in 100 μl 0.85% NaCl solution. About one million cells
were then used to inoculate a new plate (Fig. 4b). This
expansion experiment on several plates aims at mimick-
ing a continuous expansion for 39 day or 1650 genera-
tions (Fig. 4c). We extracted DNA from six lines during
each of the 13 transfers, and for six other lines, we ex-
tracted DNA at day 3, 12, 21, 30, and 39. We thus ana-
lysed a total of 108 DNA samples from the 12 lines
(Fig. 4a).

DNA extraction
After the range expansion experiment on agar, one mil-
lion cells from the wave front were streaked out on an
LB agar plate containing 0.5% arabinose and incubated
for 24 h at 37 °C to isolate single clones. A single colony
was dissolved in 100 μl dilution solution (0.85% NaCl)
and 1 μl was transferred to a new LB agar plate contain-
ing 0.5% arabinose. The plate was then incubated for 24
h at 37 °C. Then, the entire colony was removed from
the agar plate and resuspended in 1ml dilution solution.
Genomic DNA was extracted using the Wizard Genomic
DNA Purification Kit (Promega) following the manufac-
turer protocol. The integrity of the DNA was checked by

gel electrophoresis. The DNA concentration was deter-
mined by fluorometric quantification (Qubit 2.0).

Whole genome sequencing and variant calling
108 DNA samples of 12 lines were sequenced using a
TruSeq DNA PCR-Free library (Illumina) on a HiSeq
3000 platform (Illumina), from which we obtained 100
bp paired end reads for all samples. Trimmomatic 0.32
[45] was used to remove the adapter sequences from the
reads and for quality trimming. Leading and trailing
bases with quality below 3 were removed. The reads
were scanned with a 4 bp sliding window and cut if the
average quality per base was below 15. Reads with a
length below 36 were excluded from the analysis. Vari-
ants were identified using BRESEQ (version 0.27.2), a
computational tool for analyzing short-read DNA data
[46]. BRESEQ uses Bowtie2 (Langmead, et al. 2009) to
map reads to the Escherichia coli K12 MG1655 (NC_
000913.3) reference genome. As a first step, it identifies
potential new junctions between disjoint regions of the
reference sequence using all available reads. BRESEQ
then uses an empirical error model for base quality re-
calibration considering the identity of the reference base,
the identity of the mismatch base, the base position
within the read, and the neighboring base identities. At
each alignment position, BRESEQ calculates the poster-
ior probability of a given nucleotide given the observed
aligned reads. If the nucleotide with the highest poster-
ior probability is different from the reference, BRESEQ
records read alignment evidence. The top/bottom strand
distribution of reads supporting the major base is com-
pared to the top/bottom distribution of reads supporting
the minor base by using a Fisher’s Exact Test to avoid
false-positive polymorphism prediction due to
sequencing-error hotspots in reads on one strand. A
one-sided Kolmogorov-Smirnov test was used to test
whether base quality scores supporting the minor muta-
tional variants are suspiciously lower than the base qual-
ity scores supporting the major variant. We excluded
two sample after analyzing the DNA sequences due to
potential contaminations.

Estimation of dN/dS ratio
The number of synonymous and non-synonymous sub-
stitutions were computed in each line. The dN/dS ratio
was then estimated by taking the expected number of
synonymous and non-synonymous substitutions into ac-
count if all codon positions in the reference genome
would have mutated. We used a bootstrap approach to
test if the dN/dS ratio is significantly different from 1.
dN/dS was computed using randomized data sets in
which the mutations were randomly sampled with repe-
tition among six types of non-synonymous and six types
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of synonymous mutations (four possible transition and
two possible transversions).

Analysis of colony size and number of mutations
We determined for each time point (Fig. 4a) the number
of mutations that have accumulated in each of the 12
lines, as well as the corresponding colony size. After ex-
clusion of one line due to contaminations we were left
with 103 measurements of 11 lines between 3 and 39
days. We determined the change in colony size and the
change in the number of mutations over time by fitting
a mixed-effect linear model to the data. We fit a fixed ef-
fect slope β to the data that describes the effects com-
mon to all lines, and the model also considers line-

specific variability in the slope by including random ef-
fects bi for the intercept and slope for the i-th line:

yi ¼ X iβþ Zibi þ εi

bi � N 0;Ψð Þ

εi � N 0; σ2I
� �

i ¼ 1;⋯; 20

where Xi and Zi are known fixed effect and random ef-
fect regressor matrices, εi is the within group error with
a spherical Gaussian distribution, and Ψ is the variance-
covariance matrix of the random effects.

Fig. 4 Sketch of the experimental setup. a Sampling design of the 12 bacterial lines evolved over the 39 days of the experiment. The vertical
dashed grey line represents the transfer of the lines to a new agar plate, which occurred every three days. Blue dots indicate that the DNA of this
line was extracted and sequenced at this time. b We transferred about one million cells taken from a random point on the edge of the colony
after three days of growth to the center of a new agar plate. c The periodic transfer occurring every three days without any strong bottleneck
aims at mimicking a continuous expansion in space
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Two types of determination coefficients (R2) can be
calculated for mixed effect regression models. The mar-
ginal R2

m represent the variance explained by the fixed ef-
fects of the model, whereas the conditional R2

c

represents the variance explained by the entire model
(with both fixed and random effects). The r.squar-
edGLMM function of the R package MuMIn was used to
calculate R2

m and R2
c . In the model for the change in col-

ony size over time and the model for the change in
number of mutations the addition of a random effect of
the slope significantly improves the fit of the models
compared to a model with only a random effect for the
intercept (Likelihood ratio tests; for the colony size
model: p-value = 0.0017; for the number of mutation
model: p-value = < 0.0001).

Effect of mutations on the colony size
The difference in colony size (Δc) arising from two con-
secutive expansions on agar plates, each of these expan-
sions lasting for three days, was calculated for all lines
and the mutations that accumulated during this period
were determined. Only non-synonymous, frameshift, and
non-sense mutations were considered, and for each Δc,
the number of mutations (M) in every gene was deter-
mined. M has the same number of rows as the change of
colony size Δc and 888 columns, one for every gene that
had at least one mutation during the experiment. We
used a regression approach to model the change in col-
ony size Δc with the number of mutations in the genes
M:

Δc ¼ M þ ε

where ε is the vector of residuals.
To avoid overfitting due to the high dimensionality of

M, ridge regression was used to estimate the effect of a
mutation on colony size in a given gene. If a mutation in
a gene has no effect on the colony size, ridge regression
shrinks the coefficient close to zero. Positive coefficients
indicate an increase of colony size and negative coeffi-
cients indicate a decrease. The shrinking of the parame-
ters is controlled by the regularization parameter λ,
whose value was chosen by 3-fold cross-validation using
the cv.glmnet function of the glmnet package.

βridge ¼ argminβ
XN
i¼1

yi−β0−
Xp
j¼1

xijβ j

 !2

þ λ
Xp
j¼1

β2j

 !

Gene ontology enrichment test
We tested if there was a signal of adaptation during dif-
ferent periods of the experiment by using a gene ontol-
ogy (GO) enrichment analysis where we only used non-
synonymous, frameshift and nonsense mutations in each

time period. The test was performed with the topGO
package for R [47] on the genes that were detected to
have a positive coefficient in the ridge regression. The
resulting list of genes was used separately to perform a
Fisher’s exact test to determine significantly over-
represented GO terms. The weight01 algorithms used in
the topGo analysis iteratively removes the genes mapped
to significant GO terms from higher level GO terms and
the significance score of connected nodes are compared
to detect the locally most significant terms in the GO
graph by down-weighting genes in less significant neigh-
bors. The GO enrichment was applied separately to the
following time periods: days 3–12, days 12–21, days 21–
30, and days 30–39.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12864-020-6676-z.

Additional file 1: Supplementary Figure 1: Cellular location of the
four main functional groups present in the two GO terms that are
significant when using the data from the entire experiment and from
days 3–12 (organelle inner membrane, GO:0019866; q = 0.01725;
peptidoglycan-based cell wall, GO:0009274; q = 0.01725). There were no
significant GO terms in the other time periods (12–21, 21–30, 30–39 days).
Supplementary Figure 2: Colony size data split into four periods (3–12
days, 12–21 days, 21–30 days, and 30–39 days). The regression line in-
ferred under a mixed effect model for each time period is shown in blue.
The slope of the regression lien is not significantly different from 0 in pe-
riods 3–12 days (p = 0.5391), 21–30 days (p = 0.4352), and 30–39 days (p =
0.0529), but it is significantly negative in the period 12–21 days (p =
0.0142).
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