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S U M M A R Y
Short-period internal multiples, resulting from closely spaced interfaces, may interfere with
their generating (bandlimited) primaries, and hence they pose a long-standing challenge in
their prediction and removal. A recently proposed method based on the Marchenko equation
enables removal of the entire overburden-related scattering by means of calculating an inverse
transmission response. However, the method relies on time windowing and can thus be inexact
in the presence of short-period internal scattering. In this work, we present a detailed analysis
of the impact of band-limitation on the Marchenko method. We show the influence of an
incorrect first guess, and that adding multidimensional energy conservation and a minimum
phase principle may be used to correctly account for both long- and short-period internal
multiple scattering. The proposed method can currently only be solved for media with a
laterally invariant overburden, since a multidimensional minimum phase condition is not well
understood for truly 2-D and 3-D media. We demonstrate the virtue of the proposed scheme
with a complex acoustic numerical model that is based on sonic log measurements in the
Middle East. The results suggest not only that the conventional scheme can be robust in
this setting, but that the ‘augmented’ Marchenko method is superior, as the latter produces
a structural image identical to one where the finely layered overburden is missing. This is
the first demonstration of a data-driven method to account for short-period internal multiples
beyond 1-D.

Key words: Theoretical Seismology; Wave propagation; Wave Scattering and Diffraction;
Inverse Theory; Image processing.

1 I N T RO D U C T I O N

Most seismic imaging algorithms of reflection data still rely on
a single-scattering assumption, making multiply scattered energy
often an undesired signal component. The resulting interference of
shallow-borne multiples with deeper primary reflections gives rise
to errors in structural and quantitative interpretation. For this reason,
multiple scattering events need to be predicted and removed from
the reflection data. The prediction step requires understanding of the
multiple generation (i.e. which reflectors caused multiple scattering)
and can be carried out by either modelling (given accurate and
detailed knowledge of the shallower medium), or in a data-driven
fashion (using the reflection data itself and little to no other medium
information).

In practice, successful strategies have been developed for the re-
moval of free-surface-related multiples, while this is not the case for
internally generated multiples. A priori knowledge of the medium

required for most available algorithms make it a considerable chal-
lenge. Several layer-stripping approaches have been proposed, in-
cluding the work of Jakubowicz (1998), who proposed to predict
internal multiples by a data correlation-convolution sequence of
three primary reflections, identified and extracted from the seis-
mic data itself. The surface-related multiple elimination (SRME)
method (Verschuur et al. 1992) has been extended for internal
multiples (Berkhout & Verschuur 1997) and relies on downward
extrapolation of data to reflective subsurface interfaces, and the
work of Berkhout & Verschuur (2005) relies on the identification
of primaries in the data. Another range of internal-multiple at-
tenuation approaches build up on inverse scattering theory (e.g.
Ware & Aki 1969), which do not require identification of individual
reflectors or events. The so-called inverse scattering series (ISS,
Weglein et al. 1997, and further developments of it) require the
source wavelet only. Similarly, methods using the Marchenko equa-
tion (Agranovich & Marchenko 1963) treat the whole overburden
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as a multiple generator and calculate a so-called focusing function
[i.e. an inverse transmission response, see recent 2-D and 3-D work
by Broggini et al. (2012), Slob et al. (2014), Wapenaar et al. (2014)
and van der Neut & Wapenaar (2016)]. Such approaches remove
the entire overburden (including related multiples and primaries).
They are therefore no demultiple methods in a classical sense (and
not as such referred to in this work). These Marchenko methods are
particularly advantageous over layer-stripping methods in geologi-
cal settings characterized by highly scattering overburdens. In such
cases the latter would not only be more costly (accounting for many
generation mechanisms independently), but could also introduce
an accumulation of amplitude errors cascading down, potentially
giving rise to multiple mispredictions in the deeper section of the
medium.

All of the above internal demultiple methods rely on some kind of
temporal windowing. Such a windowing approach ultimately always
introduces artefacts if the separation between the multiple genera-
tors is smaller than the inverse dominant frequency f −1

D (dominant
period TD). In this case adjacent reflectors create overlapping band-
limited primary reflections as well as so-called short period internal
multiples (SPIMs). Appropriately accounting for SPIMs is critical
not only for structural analysis, but also for amplitude-versus-offset
(AVO) investigations and for quantitative interpretation (QI), as
SPIMs can lead to perceived intrinsic attenuation, which leads to
quality factor (Q) overestimation and incorrect fluid content assess-
ment. Using demultiple methods that require time windowing is no
longer possible when the two primary reflections interfere and thus
cannot be separated without a priori information. As shown by Slob
et al. (2014) all methods making use of the Marchenko-equation
suffer from a similar problem, as the fidelity of the solutions depends
on the knowledge of the solution defined on the first, wavelet-wide,
interval on its support. This is true also for variations of the algo-
rithm that rely on partial prior knowledge of the solution, such as
overburden elimination introduced by van der Neut & Wapenaar
(2016), Marchenko double-focusing as used by Staring et al. (2017,
2018) or the work by Zhang et al. (2018). Assuming the solution
defined on this interval to be trivial in the presence of SPIMs leads
to erroneous solutions, and this is the problem that we intend to
solve.

In this work we show how all (i.e. both long- and short-period)
internal multiples can successfully be handled in 2-D or 3-D media
with horizontally layered overburdens. At the heart of the algorithm
lies verification of energy conservation (see, e.g. Resnick et al.
1986) and a minimum phase condition (Sherwood & Trorey 1965;
Claerbout 1968; Ware & Aki 1969; Rickett 2001) of the Marchenko
solution(s)—arguments which are both symptoms of incorrect solu-
tions as well as means to correct both their amplitude and the phase
spectra, respectively. This is a generalization of the work of Dukalski
et al. (2019). To the best of our knowledge these aspects have not
been combined in a multidimensional setting elsewhere. We call
this augmented Marchenko. It lifts the divide between long- and
short-period internal multiples that is typically enforced in other al-
gorithms. However, since the innovation of this algorithm lies in the
incorporation of short-period internal multiples in the Marchenko
scheme, we refer to this as the SPIM problem.

Our method is purely physics-based and does not add any ad-
ditional assumptions or a priori knowledge to the ‘conventional’
Marchenko method. However, because the implementation of the
algorithm presented here is limited by decoupled ray parameters in
the overburden, it is (for now) only valid for horizontally layered
overburdens. The structural complexity of the medium below the
focusing depth level does not affect the effectiveness of our method.

This still makes it the first method to account for SPIM that is com-
pletely data-driven. It is suitable for geological settings with layered
characteristics, such as the Middle East.

The SPIM problem is inherently linked to the band-limited nature
of measured data. It is therefore indispensable to carefully analyse
the representation theorems for the use of band-limited data. The
attempt to solve the band-limited Marchenko equations results in
a range of additional assumptions that must be considered. Only
a detailed analysis of the conventional and augmented Marchenko
scheme in a band-limited setting allows us to solve this problem
and point out ways for general 2-D and 3-D media. Since such an
analysis is crucial for this work and has not yet been presented in
detail elsewhere, we dedicate Section 2 to this analysis. If readers
are only interested in handling SPIMs for horizontally layered me-
dia, we refer them directly to Section 3. Throughout this paper we
assume that the source signature used for deconvolution is known.
We recognize that this is an outstanding practical challenge, how-
ever it is an independent problem than the one discussed in this
paper and henceforth will not be further discussed.

Fig. 1 demonstrates the impact of SPIM and the improvements
that result from the method described in this work. The figure illus-
trates injection of focusing functions into a layered medium with
thin layers, which give rise to SPIM. Such an injection ideally pro-
duces a single focus at the focusing position (marked with a black
cross), after which no more events should follow from the medium
above. The conventional Marchenko method provides blurred func-
tions [panel (a)] that do not properly account for SPIM. Injecting
it into the medium [panels (c), (e) and (g)] hence yields a blurred
focus [panel (e)], and many overburden-related internal multiples
that are not properly handled remain and reach the focusing position
after the actual focusing [panel (g)]. In contrast to that, the Aug-
mented Marchenko method provides an improved (i.e. deblurred)
focusing function [panel (b)], which correctly interacts with the
oberburden [panel (d)] to produce a ‘clean’ focus [panel (f)]. We
will show in this paper that improved focusing, as shown by these
examples, provides similar improvements on seismic imaging. This
is achieved in a completely data-driven way, and does not require
detailed knowledge of the medium.

This article is structured as follows: We use Section 2 for a de-
tailed analysis of the augmented Marchenko equations and the im-
pact of band-limitation. We start in Section 2.2 by presenting acous-
tic representation theorems, an energy conservation criterion and a
minimum phase argument, which are the three basic ingredients for
the augmented Marchenko method. In the same section we describe
why the problem is best approached inside the overburden elimi-
nation setting, rather than by Marchenko redatuming the sources
and receivers below the scattering overburden; in combination with
the minimum phase argument the former setting is the more natural
choice. In Section 2.3, we derive the coupled Marchenko equations
from the representation theorems using separability assumptions. In
Section 2.4, the shortcomings of band-limited data are summarized.
Ultimately, Section 2.5 is used to discuss the SPIM problem of the
coupled Marchenko equations, and how it may be solved for gen-
eral 2-D and 3-D media when these equations are complemented by
energy conservation and a minimum phase argument (i.e. by using
augmented Marchenko).

Section 3 is dedicated to the SPIM problem in media with lay-
ered overburden, in which the minimum phase criterion can be
enforced in the linear Radon domain. The section is divided into
two parts, which describe the correction of the amplitude spectrum
(Section 3.1) and of the phase spectrum (Section 3.2) of the focusing
function. The workflow is summarized in Fig. 4. Additional details
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Figure 1. Comparison of blurred and deblurred (i.e. incorrect and correct)
focusing, demonstrating the innovation of this work. Panels (a) and (b)
show blurred and deblurred downgoing focusing functions f̃ +

1 and f +
1 ,

respectively. The panels below show snapshots of simulations in which
these focusing functions are injected into the reference medium [compare
with Fig. 2(c) and Section 2.1], taken at time steps before [panels (c) and
(d)], just at [panels (e) and (f)] and after focusing [panels (g) and (h)].
Note the positive upwards time axis in panels (a) and (b), illustrating how
injection of the focusing functions ‘pushes’ them into the medium. Panels
(a) and (b) are clipped to 8 per cent of the maximum amplitude, all other
panels are clipped to 2 per cent of the maximum amplitude in the respective
simulation.

about implementation aspects are given in Appendix A, where we
investigate some important caveats, which are critical in success-
fully implementing this scheme in settings it is suitable for. We
present results for a complex synthetic, based on a well-log from
the Middle East in Section 4. The work is concluded in Section 5,
where we also give a short overview of future research questions.

2 E L E M E N TA RY R E L AT I O N S F O R T H E
AU G M E N T E D M A RC H E N KO M E T H O D
W I T H B A N D - L I M I TAT I O N

In this section we present all the necessary 2-D and 3-D rela-
tions used in the augmented Marchenko demultiple algorithm (Sec-
tion 2.2). We show how the coupled Marchenko equations are de-
rived and solved (Section 2.3), we highlight the implications of
band-limitation (Section 2.4), and ultimately present the effects of
SPIM on the augmented Marchenko equations (Section 2.5).

Figure 2. Synthetic 2-D acoustic velocity model inspired by the Middle
East. (a) Entire model; (b) 1-D reflection coefficient taken in the model cen-
tre; (c) reference model (with reflection-free underburden); (d) target model
(with smooth overburden). Surface ∂D0 denotes the original acquisition sur-
face at x0 = (x⊥, 0) (black doted line), which has been redatumed 100 m
upwards to the auxiliary surface ∂D0,aux (black dashed line, see explanation
in Section 2.3). The overburden-target separating boundary ∂Di is illustrated
with a red dashed line.

Figure 3. Schematic illustration of an exemplary spatio-temporal support
of V (yellow) and U (blue) for a single shot- or receiver gather. They overlap
within the green area.

2.1 Conventions and notation

We assume a dissipationless medium supporting propagation of
acoustic waves only. We denote spatial coordinates of the complete
medium with xn = (x⊥, zn) with depth zn located on a horizontal
surface ∂Dn . In particular, we will consider two special cases with
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x0 = (x⊥, 0) ∈ ∂D0 (acquisition surface) and xi = (x⊥, zi ) ∈ ∂Di

(a horizontal overburden-target separating boundary, often denoted
as focusing or redatuming level).

The medium containing only the overburden, with a homoge-
neous half-space below ∂Di , is called a reference medium (or simply
overburden). Similarly, the medium containing a smooth, contrast-
free overburden and the target (i.e. the medium below ∂Di ) will
be called target-medium. Lastly, the medium is assumed homoge-
neous at and above ∂D0 (i.e. the free surface is absent). In practice
this means that surface-related multiples have to be removed. Fig. 2
shows the 2-D velocity model that is used as synthetic example in
Section 4 and illustrates the reference medium, the target medium
as well as horizontal surfaces ∂D0 and ∂Di .

We use superscripts + and − to denote down- or up-decomposed
pressure-normalized one-way wavefields, respectively (Wapenaar
1998). This normalized choice can occasionally make the notation
slightly cumbersome, so to further simplify we introduce a short
hand notation ∂z,k f (x) = ∂z f (x⊥, z) |z→zk , that is, the value of a
vertical derivative of f (x) evaluated at z = zk. For functions of
more than one variable, we will use superscripts [1] ([2]) to denote
if the derivative is taken over the first (second) spatial coordinate.
Further notational simplifications will be made known in the course
of the article. In order to implement our scheme, we will need
to work across a number of domains. To keep the argument clear
and consistent we summarize all the notation in Table 1. The sign
convention of the Fourier transforms is used as defined in Wapenaar
& Berkhout (1989,p. 67), and similar to these authors we consider
only positive frequencies, that is ω ≥ 0.

We use the definition of the Green’s function (e.g. see Wapenaar
et al. 2014) due to a monopole volume injection rate source at x ′

and a receiver at x[
ρ (x) ∇ 1

ρ (x)
∇ + ω2

c (x)2

]
G

(
x, x ′, ω

)
= − iωρ (x) δ

(
x − x ′) .

(1)

The (complete) medium is characterized by an appropri-
ately scaled reflection (pressure) wavefield R∪(x ′′

0, x0, ω) =
[ 1

2 iωρ (x0)]−1∂
[1]
z,0G− (

x, x ′′
0, ω

)
, recorded using a (regularly spaced)

grid of colocated sources and receivers at ∂D0. Source or receiver
signatures are not considered for this quantity, however this will
become important later in this work.

We speak of broad-band wavefields if they contain frequencies
from zero to infinity (or zero to fNyquist for discrete signals), and of
band-limited wavefields otherwise (we will always make the pres-
ence of the wavelet explicit). This paper focuses on temporal band-
limitation aspects and the spatial sampling is always assumed to be
sufficiently dense to avoid spatio-temporal aliasing when computing
Rayleigh integrals.

2.2 Acoustic representation theorems

Marchenko equation-based methods [as derived by Slob et al.
(2014) and Wapenaar et al. (2014)] rely on a focusing wavefield
F1(x ′

0, xi , ω), defined in the reference medium [see illustration in
Fig. 2(c)], whose down- and up-propagating components obey

∂
[2]
z,i F+

1 (x ′
0, x, ω) = −1

2
iωρ

(
xi

′) δ
(
x⊥ − x⊥′) ,

F−
1 (x ′, xi , ω) = 0 ∀ z > zi .

(2)

The interpretation of these equations is that F1 collapses to a down-
ward radiating source at xi and has no upward propagating compo-
nent below [compare with Fig. 1]. The focusing field can be used
in the reciprocity theorems of correlation and convolution type
(Wapenaar & Grimbergen 1996) to derive the so-called represen-
tation theorems (Slob et al. 2014; Wapenaar et al. 2014) relating
the focusing functions F±

1 and the Green’s functions G± via the
reflection response R∪

G−(x ′
i , x ′′

0,ω) + F−
1 (x ′′

0, x ′
i , ω)

=
∫

dx0 R∪(x ′′
0, x0, ω)F+

1 (x0, x ′
i , ω) ,

(3)

−G+∗(x ′
i , x ′′

0,ω) + F+
1 (x ′′

0, x ′
i , ω)

=
∫

dx0 R∪∗(x ′′
0, x0, ω)F−

1 (x0, x ′
i , ω) .

(4)

The first index denotes the measurement location, the second index
is the the focal point location and the superscript ∗ denotes complex
conjugation.

Assuming knowledge of the reflection response R∪, the goal of
Marchenko redatuming techniques is to reduce this set of two equa-
tions with four unknowns into a system where solutions F±

1 can
be found. This is done by applying appropriate temporal mutes in
the time domain which remove (most of) G± and leave the overlaps
between G+∗ and F+

1 , or G− and F−
1 . By making some assumptions

about these overlaps (see Wapenaar et al. (2014) and the discussion
in Section 2.3), solutions F±

1 are found, eqs (3–4) are used to de-
termine G± and these are used to invert an Amundsen (2001)-type
relation

G−(xi , x ′′
0, ω)

=
∫

dx ′
i R∪

Target

(
xi , x ′

i , ω
)

G+(x ′
i , x ′′

0, ω) ,
(5)

also known as multidimensional deconvolution (MDD).
R∪

Target

(
xi , x ′

i , ω
)

denotes a Green’s function due to a dipole
source (at x ′

i ) and monopole receiver (at xi ) measured in the target
medium and hence called target data.1 The process of going from
R∪ to R∪

Target can be interpreted as a form of demultiple, as the latter
is void of any multiple scattering due to the overburden. It is not
a demultiple process in a classical sense though, as it removes all
events due to the overburden, including primary reflections. As
will become clear later in this article, the success of this approach
is contingent on knowing the overlaps of G+∗/F+

1 and G−/F−
1 ;

in particular the former, which is challenging in the presence of
closely spaced reflectors. This paper, and especially Section 3,
focuses on obtaining these overlaps correctly in a data-driven way.

To further simplify notation and bring it more in tune with a
numerical implementation, we represent each of the fields in eqs (3–
4) by an n0 × ni × nf array (and n0 × n0 × nf for R∪), where n0 and
ni represent the number of sources and receivers. Time translational
invariance (Noether 1918) of the representation theorems states that
they hold independently for every frequency component (subscript
f). We therefore represent eqs (3–4) by matrix multiplications for
every frequency slice (hence we suppress ω in further notation and
refer to Table 1 for representations in different domains) and we get

G− + F−
1 = R∪ F+

1 dx0 , (6)

1This data set has previously been referred to as a redatumed response
(Wapenaar et al. 2014) or one measured in an overburden-subtracted
medium (van der Neut & Wapenaar 2016). Here we prefer to take a more
unifying approach, by referring to this data set as target data.
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Figure 4. Workflow of the augmented Marchenko method including SPIM for media with a laterally invariant overburden as described in this section. Black
arrows illustrate the workflow of the conventional Marchenko method, green arrows illustrate additional steps of the augmented scheme. Important additional
aspects regarding the implementation are summarized in Appendix A.

− G+∗ + F+
1 = R∪∗ F−

1 dx0 . (7)

We leave the integration measure explicit next to every matrix prod-
uct as it is not only an essential scaling but also acts as reminder over
which surface the integration is being taken. The form of eqs (6–7)
also notably shows the freedom to multiply from the left or the right
by some compatible (frequency dependent) matrix, which is what
had been used previously by Singh et al. (2015) and Ravasi (2017)
from the left, and van der Neut & Wapenaar (2016) from the right.

In the reference medium the reciprocity theorem of correlation
type can be used to obtain

[
F+†

1 ∂
[1]
z,0 F1

+ + F−†
1 ∂

[1]
z,0 F1

−
]
ρ−1

0 dx0 = − iω2

4
ρi IM M , (8)

with the density ρ0 and ρ i at depth levels z0 and zi, respectively, and
where superscript † denotes the conjugate transpose and

IM M (x ′
i , xi ) = IM M (x ′

i − xi )

= 1

(2π )N

∫
dkx ei kx ·(x′

⊥,i −x⊥,i )k−1
z,i ,

(9)

where N = dim [kx], k2
z,i = ω2c (xi )

−2 − |kx |2 and kx are the
wavenumber components in the horizontal plane (x, y) perpen-
dicular to the z-direction. We have used subscripts MM to denote
the monopole-receiver and monopole-source character, respectively
(and we will use subscript D to denote a dipole source/receiver-
character). Expressing the definition of IMM in eq. (9) in the
wavenumber–frequency domain allows us to present it in a form
that is valid in any number of dimensions. We have assumed

∂x⊥,0ρ = ∂x⊥,iρ = 0 because ∂D0 and ∂Di should be scattering-
free. On the right-hand side of eq. (8) we used the defining
property of the focusing function in eq. (2). Eq. (8) states that
net in- and outgoing energy of the focusing fields along ∂D0 is
equal to an appropriately scaled ‘identity’, one whose vertical
derivative ∂

[1]
z,i IM M (x ′

i , xi ) ≡ IDM (x ′
i , xi ) is a zero time and a zero-

displacement acoustic propagator. In other words, this is a homoge-
neous medium impulse response due to a monopole source at and
dipole receivers along ∂Di . This is an extension of the 1-D energy
conservation statement that can be found in, for example, Resnick
et al. (1986). Note that the densities ρ(x0) and ρ(xi ) assure that
the focusing functions focus to a unit strength downward radiating
source, consistent with eq. (1). Mildner et al. (2019) have shown
how eq. (8) can be used to obtain two-way direct transmission am-
plitude information.

Lastly, in the reference medium we have that G−(xi , x ′
0) = 0

and G+(xi , x ′
0) = T +(xi , x ′

0) (a transmission response between a
monopole source at x ′

0 and a monopole receiver at xi ) and hence
reciprocity theorem of convolution type yields

[
∂

[2]
z,0T +

]T
F+

1 ρ−1
0 dx0 = ω2

4
ρ−1

i IM M , (10)

meaning that focusing and transmission fields are each others in-
verses in the sense of eq. (10), where the additional pre-factors and
derivatives are a consequence of the up-/downpressure normaliza-
tion choice. Note that due to our definition of the Green’s function
[eq. (1)] the transmission T +(xi , x ′

0) in eq. (10) could also be re-
placed by the equivalent T −(x ′

0, xi ).
In 1-D, eq. (10) has a well known interpretation: when measured

from the onset of the signal, transmissions (T+) and their inverses
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Table 1. Notation convention for different wavefields used in this work.

Notation Meaning Example

Lowercase x-t-domain f −
1 , g+

Uppercase x-ω-domain F−
1 , G+,V+,U−,W

Bold uppercase kx -ω-domain F+
1 , V−, B

Lowercase, underline τ - p-domain f +
1

, v−

Uppercase, underline ωτ - p-domain F+
1 , V −, B

Lowercase bold Vectors x0, x′
i , k⊥, p

Overbar Wavelet-dressed f +
1 , V −, F−

1 ,V+

Check Band-limited Ř∪

Tilde Blurred with B f̃ +
1 , Ũ+, f̃

+
1

, Ṽ
−

(
F+

1

)
form a minimum phase couple (Sherwood & Trorey 1965;

Claerbout 1968; Ware & Aki 1969). This means that they are always
stable and causal 1-D responses2 with stable and causal inverses. As
a consequence of that, the amplitude spectrum dictates the phase
spectrum (and vice versa) through the Kolmogorov relation (Claer-
bout 1976; Skingle et al. 1977). Eq. (10) is a manifestation of the
same fact, but now in a multidimensional sense. Since the minimum
phase condition is unaffected by scalar multiplication, the densities
in eq. (10) can be ignored and the factor of ω2 can be absorbed by
redefining the Green’s function source term and hence too can be
ignored.

A possible way to generalize minimum-phase properties to a
multidimensional setting is to propagate the entire transmission-
and focusing functions F+

1 and T+ by the direct transmission event
T +

d or the direct inverse transmission T +inv
d , respectively.3 For a

justification of this argument further remarks on minimum phase
objects beyond 1-D are summarized in Appendix B. Consequently,
the propagated minimum phase transmission T + and inverse trans-
mission V+ fields are defined as

V +(x ′
0, x0) =

∫
dxi F+

1 (x ′
0, xi )T

+
d (xi , x0) , (11)

T +(x ′
0, x0) =

∫
dxi T +(x ′

0, xi )T
+inv

d (xi , x0) , (12)

where T +
d and T +inv

d are appropriately-scaled dipole-source dipole-
receiver propagators (though we omit subscripts DD to make for
a more compact notation). The direct arrival events of V+ and T +

(potentially including forward scattering, but no internal multiples)
collapses onto IDM (or its derivative depending on the Green’s func-
tion definition), evaluated at ∂D0. Definition of V+ is akin to the
one found in van der Neut & Wapenaar (2016), except that we are
using pressure-normalized wavefield separation, and we are sug-
gesting to account for forward scattering and 2-D effects such as
triplications etc. We also prefer to use the term ‘propagated’ instead
of ‘back-projected’ to imply a temporal shift and to avoid alluding
to dimensionality reduction.

Seeing how V+ (rather than F+
1 ) appears to be the more natural

candidate to investigate, we define the propagated equivalents of
F±

1 and G± as

V − = F−
1 T +

d dxi , (13)

U+∗ = G+∗T +
d dxi ,

U− = G−T +
d dxi ,

2Impulse responses are always full bandwidth, while signals (measured
responses) can be band-limited.

3In many not-too-complex cases this should be the inverse of the first event
in either of the response.

and multiply both sides of eqs (6–7) from the right by T +
d dxi . This

results in

U− + V − = R∪ V +dx0 , (14)

− U+∗ + V + = R∪∗V −dx0 , (15)

which are the propagated equivalents of eqs (6–7). Note that U+ is
propagated in the same direction in time as T + [see eq. (12)], but
in opposite direction as U−.

Eqs(14–15) can be further multiplied by a frequency-dependent
scalar (i.e. a band-limited wavelet) such that wavefields V± and U±

can be replaced with their band-limited equivalents V ± and U±.
Moreover, we wish to point out that eqs (14–15) still retain the
freedom of being multiplied by an arbitrary frequency dependent
matrix from either side—a property that we will make use of in
Section 2.5.

Using the same freedom, we multiply the energy conservation
relation [eq. (8)] from the left with T +†

d dx ′
i and from the right with

T +
d dxi and get a modified energy conservation relation[
V +†∂

[1]
z,0V + + V −†∂

[1]
z,0V −

]
ρ−1

0 dx0 (16)

= − iω2

4
ρi T

+†
d IM M T +

d dxi dx ′
i .

In this propagated formalism we can still obtain R∪
Target, however

now with sources and receivers at ∂D0

U−(x0, x ′′
0, ω)

=
∫

dx ′
0 R∪

Target

(
x0, x ′

0, ω
)

U+(x ′
0, x ′′

0, ω)
(17)

such that R∪
Target

(
x0, x ′

0, ω
)

and R∪
Target

(
xi , x ′

i , ω
)

[from eq. (5)]
contain the same set of events, however, with different timing,
moveouts and amplitudes. Relating this to the example model used
in this work, the former is recorded at ∂D0 of Fig. 2(d), whereas
the the latter is recorded at ∂Di in a model that contains only the
target, but is homogeneous above (not shown). The former is a par-
ticularly convenient data set for quality control of the Marchenko
method, as the target primaries are identical to those in the input
R∪, but with a transmission correction, compare Figs 5(a) and (b).
Appendix C elaborates on that transmission correction using a sim-
ple 1-D example. Using wavelet-dressed wavefields U± instead of
their broadband equivalents U± in eq. (17) allows to recover Ř∪

Target,
a band-limited version of the target medium reflection response
R∪

Target.

2.3 Deriving and solving the coupled set of Marchenko
equations

To extract the propagated focusing functions V± we introduce sep-
arability conditions. They aim at muting (parts of) U± from the
representation theorems given in eqs (14–15) and therefore reduce
the number of unknowns. This is achieved by means of a projector
� (i.e. a window operator). Due to an overlap in V± and U±, the
equations must be physically constrained by providing that overlap
on input. A schematic illustration of an exemplary spatio-temporal
support of V± and U± in Fig. 3 is used to depict the separability
assumptions.

We define a projector � which by design preserves V− according
to �t0

[
V −] = V − and is given by

�t0 =
{

1, if t0(x ′
0, x0) < t < td (x ′

0, x0)
0, otherwise.

(18)
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Figure 5. Central shot of modelled and Marchenko-derived reflection responses, all dressed with a 20 Hz Ricker wavelet. (a) modelled data of the entire model;
(b) modelled target data; (c) target data obtained from blurred Marchenko results; (d) target data obtained from deblurred Marchenko results. Reflection data
r∪(x′′

0, x0) in panel (a) corresponds to the model in Fig. 2(a), r∪
Target(x′′

0, x0) in panels (b) and (d) and r̃∪
Target(x′′

0, x0) in panel (c) correspond to Fig. 2(d). The

Marchenko-derived data [panels (c) and (d)] have been dip-filtered in kx-ω-domain to reduce linear artefacts. Panels (a) and (b) are displayed with a t2-gain,
all panels are clipped to 15 per cent of the maximum amplitude.

The bounds of the projector are marked with red lines in
Fig. 3. The late bound td (x ′′

0, x ′
0) (dotted line) is the travel-

time of the direct arrival between sources and receivers at ∂D0

via a focusing position at ∂Di (similar to a two-way travel-
time). The early bound t0 is defined by a (band-limited) spatio-
temporal delta function. It is illustrated at negative and at pos-
itive times in Fig. 3 (solid and dashed line), because its defi-
nition is dependent on a choice that is further explained in the
following.

We introduce a subdivision of U+ = U+
e + U+

l and V + = V +
e +

V +
l into their ‘early’ and ‘late’ parts (denoted with subscripts e

and l), respectively. By construction, the two early parts U+∗
e and

V +
e always temporally overlap over some offset dependent interval

|t | ≤ ε
(
x0, x ′

0

)
, illustrated by the green area in Fig. 3. For the

solution of eqs (14–15) this overlap needs to be provided as input
and is naturally dependent on the bandwidth of these fields. It can
be treated in two ways: either by providing U+∗

e on input and using
t0 = −ε

(
x0, x ′

0

)
for the projector �t0 (i.e. the solid red line in

Fig. 3), or by setting t0 = ε
(
x0, x ′

0

)
(dashed line) and providing V +

e

instead. Here we chose the latter, and defer the discussion on the
former to Appendix D.

Another separability assumption requires that V− is separated
from U− through td (see the dotted red line in Fig. 3). This as-
sumption might break down in the presence of diving waves in high
velocity gradients, but also if the level ∂Di is sandwiched between
two closely spaced reflectors such that their (band-limited) primary
reflections overlap. We will assume that any diving waves or steeply
dipping events have been removed, and that the target is separated
from the overburden by a sufficiently thick layer in which ∂Di can
be placed. Consequently, in the following V− and U− are assumed
to be well separated.

We apply �t0 (given by the yellow area in Fig. 3) to both sides of
eqs (14) and (15)

X− + V − = �t0

[
R∪ V +dx0

]
, (19)

�t0

[−U+∗ + V +] = �t0

[
R∪∗V −dx0

]
, (20)

where X− ≡ X−(x0, x ′
0) = �t0

[
U−(x0, x ′

0)
]
. Due to the second

separability assumption introduced above X− = 0, and our choice
for the first separability assumption reduces the left-hand side of
eq. (20) to V +

l . Combining the two resulting equations with V + =
V +

e + V +
l yields

V + − �ε

[
R∪∗�ε

[
R∪V +dx0

]
dx0

] = V +
e , (21)

which can be solved in several ways (Slob et al. 2014; van der Neut
& Wapenaar 2016; Dukalski & de Vos 2017). For most purposes
where free-surface multiples are absent (as assumed in this work) a
Neumann series expansion

V + =
∞∑

k=0


k

[
V +

e

]
and V − = �ε

[
R∪V +dx0

]
,

with 
k [A] = �ε

[
R∪∗�ε

[
R∪
k−1 [A] dx0

]
dx ′

0

]
and 
0 [A] = A

(22)

yields the quickest convergence (Dukalski & de Vos 2017). For a
broadband reflection response R∪ with infinitesimal shot and re-
ceiver sampling (dx0 → 0), ε

(
x0, x ′

0

) → 0 and the initial term V +
e

in the series above is given by IDM. Note that, in practice (i.e. in
a band-limited setting and in the presence of SPIM), V +

e is often
unknown. It is the purpose of this work to show how to correct for
an erroneous estimate of V +

e , and thus obtain the true solution.
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Note that �t0 is defined in the time domain, therefore its action
on frequency domain arrays is implicitly understood as a sequence
of an inverse Fourier transform, temporal mute application (with
appropriately chosen tapers) and a forward Fourier transform. Note
also that t0 is the time smaller than the onset of signal in V−, which
should be the same as the onset of signal in R∪. In the case of a very
shallow first reflector (e.g. a water bottom), where t0(x ′′

0, x ′
0) is closer

to t = 0 than the width of a wavelet, one should first sufficiently
extrapolate the source and receiver locations in R∪ upwards, using
a homogeneous medium Green’s function. For short distances a
simple static shift applied to each trace would suffice. This has
been done for the model illustrated in Fig. 2, for which the original
acquisition surface ∂D0 has been redatumed upwards by 100 m to
obtain the auxiliary surface ∂D0,aux .

2.4 Shortcomings introduced by band-limited data

In practice the reflection response R∪ is band-limited in the
wavenumber and frequency domain, here denoted with Ř∪. It en-
ables calculation of the band-limited fields V ±, U± and Ř∪

Target, with

spatio-temporal bandwidths that do not exceed those of Ř∪. As a
result of band-limitation, the initial term V +

e also has a temporal
width and ε

(
x0, x ′

0

) �= 0. One must therefore use a band-limited
expression to constrain the solution of the representation theorems:
instead of using IDM as initial term, one must use a band-limited
version I DM , which is dressed with a 2ε (x0, x0)-wide zero-phase
wavelet. This could be a good choice under the assumption that
the coda wave information is present in V +

l only, and not in V +
e .

This assumption is no longer true in the presence of SPIMs, as the
shortest multiple reverberation is less than ε and enters the over-
lap between V +

e and U+∗
e . Choosing V +

e = I DM therefore leads to
erroneous solutions. This problem is further discussed in the next
section.

Band limitation introduces another problem that is independent
of the SPIM problem identified above. We have observed that for
sufficiently strongly scattering media eq. (22) requires many itera-
tions, which leads to erroneous solutions. We further explain this
challenge in Appendix E.

2.5 Failure to estimate V+
e : consequences and remedies

In order to remedy errors that originate from the incorrect choice of
the initial term V +

e , we first need to understand what impact it has
on the solutions to eq. (21) and secondly find a way to reverse it. To
achieve that we use the right-multiplicative freedom of the repre-
sentation theorems in eqs (3–4). We exploited this freedom already
to transform these equations to their modified versions in eqs (14–
15) using a known operator Td

(
x ′

i , x0

)
. We now repeat the process

on the latter set of equations using an a priori unknown operator
B

(
x0, x ′

0, ω
)
. Due to linearity of eqs (14–15), this transformation

replaces variables V+, V−, U− and U∗ + with their so-called blurred
equivalents according to the following rule

Ṽ + = V + Bdx0 ,

Ṽ − = V − Bdx0 ,

Ũ− = U+ Bdx0 ,

Ũ+∗ = U+∗ Bdx0 .

(23)

The V ± → Ṽ ± transformation also does not affect eq. (21) under
the assumption that �ε

[
Ũ−] = 0 and �ε

[
Ṽ −] = Ṽ − still holds.

This is the case given that B is a location dependent filter with a

temporal support identical to the one of the wavelet used to dress
I DM . Solutions are still given by eq. (22) and we again obtain Ṽ +

given some initial term Ṽ +
e .

This shows that the incorrect choice of the initial term Ṽ +
e = I DM

can be interpreted as a specific choice of an unknown B. Hence,
using I DM as initial choice is erroneous, in which case we actually
calculate Ṽ ± instead of V ±. The latter is the desired set of solutions,
whereas the former is that solution multidimensionally convolved
with some unknown filter B

(
x0, x ′

0, ω
)
. Henceforth, this filter is

referred to as a blurring operator. It is critical to realize that both
solutions (V + and V −) are modified by the same operator B, leading
not only to an incorrect initial part V +

e , but to incorrect amplitude
and phase spectra of the entire V .

To reconstruct fields V ± from Ṽ ± we use a data-driven procedure
that correctly recovers V +V +†, that is, the multidimensional auto-
correlation of V + (a multidimensional equivalent to a 1-D power
spectrum). We then attempt to fix the phase using a minimum phase
argument mentioned in Section 2.2.

First, we observe that the energy conservation relation for fields
Ṽ ± is given by[

Ṽ +†∂
[1]
z,0Ṽ + + Ṽ −†∂

[1]
z,0Ṽ −

]
ρ−1

0 dx0 ≡ � , where

� = − iω2

4
ρi B†T +†

d IM M T +
d Bdxi dx ′

i dx ′′
0dx ′′′

0 ,

(24)

where the right-hand side is a consequence of eq. (16) and the
definition of Ṽ +

e in eq. (23) was used. Here we assumed that ∂ z, 0B
= 0 and ∂ z, iB = 0, which means that B (and hence also the SPIM
contribution) does not change over infinitesimal displacements z0

→ z0 + dz and zi → zi + dz, that is, z0 and zi are sufficiently (at least
half a wavelet width) far away from the nearest reflector. This is the
same condition which guarantees X̃− = 0. Note that since V +

e is a
function of the location of ∂Di (i.e. our choice of overburden target-
separation), so is B. This becomes clear in the expression that relates
these two quantities (1 − �ε)V Bdx0 = Ṽ +

e , since regardless of the
level choice we always use an identity for Ṽ +

e .
In order to recover V + from Ṽ +, we can follow a line of research

proposed by Reinicke et al. (2019). We take the right-hand side of
eq. (24), (pseudo-)invert it and multiply with Ṽ + and Ṽ +† from the
left and right, respectively. This yields the normal productV +

1 V +†
1 ,

up to factor given by frequency vector, local densities and vertical
wavenumbers measured at ∂D0 and ∂Di . In order to recover the
multidimensional phase, we need to be able to factorize this normal
product, such that V + is a wavelet-dressed minimum phase ma-
trix. Performing such factorization uniquely and on band-limited
matrices in general (arbitrary overburdens) is a huge outstanding
theoretical challenge (Horn & Johnson 1990) and we hope to return
to this question in the future. In this work we will present a special
case of laterally invariant overburdens where such factorization is
straightforward due to an additional conservation law.

3 A C C O U N T I N G F O R S H O RT - P E R I O D
I N T E R NA L M U LT I P L E S O F A
H O R I Z O N TA L LY L AY E R E D
OV E R B U R D E N

In this section, we show how the augmented Marchenko equations
can be used to alleviate the SPIM problem if the overburden does
not vary laterally. To give an overview of the augmented Marchenko
scheme, and to guide the reader through the equations in this section,
we illustrate a workflow in Fig. 4. Different columns indicate the
different domains in which individual steps are performed (compare
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with Table 1). The thick black arrow illustrates the workflow of the
conventional Marchenko method, and the green arrows illustrate the
additional steps introduced in this section. In addition to the theory
outlined in this section, we give insights into the implementation
details in Appendix A.

For laterally invariant overburdens we can exploit symmetry prop-
erties in either the wavenumber-frequency domain or the linear
Radon domain [also denoted as τ − p domain] (Deans 1983; Fos-
ter & Mosher 1992). In particular the latter is very useful, as Snell’s
law conserves frequency-independent ray parameters p(z) over a
sequence of horizontal interfaces, that is,

p(z) = sin(φ (z))

c (z)
= constant. (25)

Here φ (z) and c(z) are the propagation angle and the wave propaga-
tion speed at depth z. This equation states that in a laterally invariant
overburden focusing functions can be analysed independently per
ray parameter, such that a 2-D or a 3-D field V± decouples into a
set of 1-D fields v± (note the domain-specific notation).

3.1 Amplitude spectrum correction

Focusing functions V± of laterally invariant overburdens only de-
pend on x⊥,0 − x⊥,i , a relative horizontal distance between the fo-
cusing location and a receiver.4 Spatial integrals such as those in
eq. (8) become convolutions, which can be evaluated by Hadamard
(piece-wise) products in kx-ω domain, and we express wavefields
in this domain with capital, bold letters, for example, Ṽ

+
(kx,n, ω).

We can thus rewrite eq. (24) as

4
kz,0kz,i

ρ0ρi

1

ω2

[
|Ṽ +|2 − |Ṽ −|2

]
= �̃(kx,i , ω) ,

with �̃(kx,i , ω) = ∣∣B(kx,i , ω)
∣∣2 ∣∣T d (kx,i )

∣∣2
,

(26)

where we have used ∂
[1]
z,0Ṽ

± = ±ikz,0Ṽ
±

and eqs (2) and (13); |P |2
denotes an element-wise amplitude squared of P . Also note that

�̃ decomposes into a frequency dependent part
∣∣B(kx,i , ω)

∣∣2
and

frequency-independent part
∣∣T d (kx,i )

∣∣2
. The latter term has already

been studied by Mildner et al. (2019) and accounts for relative
amplitudes. It is inconsequential for this work and will hence not
be further considered.

Eq. (26) can be used directly for quality control. If it is evaluated
using the correct (i.e. not blurred) fields [analogue to eq. (16)] it
yields an unblurred � which is the input wavelet squared and car-
ries the imprint of the overburden’s two-way transmission response
in kx-direction (caused by the T +

d ’s on the right hand side). Since
the kx-dependence is not relevant for this work [it drops out upon
deconvolution in eq. (17)], in the following we will neglect the two-
way transmission imprint and assume a � that is flat in kx-direction.
For more information on how to correct for the overburden’s trans-
mission effect (i.e. the kx-dependency of the focusing and Green’s
functions) we refer the reader to Mildner et al. (2019)5. Otherwise,
if eq. (26) is evaluated with the blurred fields, it yields �̃, which

4In case of a laterally varying target the same is not true for Green’s functions
G± and the reflection response R∪, because these also contain information
about the target.

5The imprint of the two-way transmission is introduced on � due to the
use of propagated wavefields [defined in eq. (13)]. If energy conservation
is computed using the correct, non-propagated focusing functions [as in
eq. (8)] the right-hand side is flat in kx -direction.

can be used to correct the amplitude spectrum of |Ṽ +
(kx,0, ω)|.

However, in the wavenumber-frequency domain it can not be used
to recover any phase spectra. We therefore continue in the linear
Radon domain, where we can exploit minimum phase properties
per ray parameter p.

Taking the square root of �̃(ωτ , p) yields |B(ωτ , p)| which re-
lates the blurred and deblurred (propagated) focusing functions as

|Ṽ +
(ωτ , p)||w(ω)| = |V +(ωτ , p)||B(ωτ , p)| . (27)

This equation can be used to derive the amplitude spectrum of
the correct V +, for example, by finding a Moore-Penrose pseudo-
inverse.

Seeing how densities ρ(x0) and ρ(xi ) are typically unknown
they can be omitted in eq. (26). As a result amplitudes of all re-
constructed propagated focusing functions V ± and the propagated
Green’s functions U± will be off by the same scalar, which will
drop out when inverting eq. (17) for Ř∪

Target. Likewise, the multipli-
cation with kz, 0kz, i can be omitted if offset-dependent scaling is not
important (Mildner et al. 2019).

3.2 Phase correction

For media with a horizontally layered overburden the minimum
phase condition [eq. (10)] can be rewritten as

T + ( p, ωτ ) V + ( p, ωτ ) = 1 . (28)

The advantage of this is that in 1-D we can uniquely determine the
phase given an amplitude spectrum using the Kolmogorov method
(Claerbout 1976)

Arg [D (ω)] = −H [log |D (ω)|] , (29)

of any minimum phase response D(ω) via the Hilbert transform H

H [D (ω)] = D (ω) ∗ 1

πω
(30)

where ∗ stands for a convolution. This definition holds for both
continuous and discrete signals, and highlights the fact that in order
to determine the phase spectrum, the entire amplitude spectrum
needs to be known. This generally is an immediate problem for
phase spectrum recovery of band-limited signals (as opposed to
responses that by our definition are always broadband), however it is
not so in this particular case. To address this problem let us consider
a band-limited minimum phase signal Ď obtained by convolving a
broad-band one D(ω) with some band-limiting rectangle function
rect(ω) which is equal to identity on [ωmin, ωmax] and some η �
1 otherwise. Using

∣∣∣Ď
∣∣∣ to get the phase spectrum of Ď via the

Kolmogorov method from eq. (29) and elementary properties of
logarithms we obtain

Arg
[

Ď (ω)
]

= Arg [D (ω)] − H [log [|rect (ω)|]] , (31)

where the second term is the approximate band-limitation artefact
which is dependent on the actual value of η. Fortunately, applying
−H [log · · · ] to both sides of eq. (27) to solve for −H

[
log

∣∣V +∣∣]
yields two such artefacts (one due to Ṽ

+
on the left and another

due to B on the right-hand side), which approximately cancel out
in expression

Arg
[
V +(ωτ , p)

]
= H

[
log |B(ωτ , p)|] − H

[
log |Ṽ +

(ωτ , p)|] .

(32)

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article-abstract/221/2/769/5700712 by ETH

 Zürich user on 07 April 2020



778 P. Elison et al.

This allows reliable recovery of a phase spectrum from a band-
limited signal.

4 N U M E R I C A L E X A M P L E

A complex 2-D velocity model that consists of a laterally invariant
overburden and a laterally varying target was kindly provided by
Shell, see Fig. 2(a). The overburden, with a thickness of over 1 km,
is extremely finely layered (with medium properties varying every
2 m), whereas the target is composed of three ‘packages’ of reflec-
tors. This lossless acoustic model is inspired by sonic measurements
in the Middle East and is discretized on a 2 m × 2 m grid. A cor-
responding density distribution is obtained from Gardner’s relation
(Gardner et al. 1974), and reflection coefficients (Fig. 2b) high-
light the fine layering and relatively high-impedance contrast, which
should cause a significant amount of overburden-borne SPIM. In-
dustry standard approaches to handling internal multiples in such
a setting would amount to dip-filtering the migrated result, how-
ever that would come at the cost of removing the apices of the
anticlines in the target. Available internal demultiple elimination
methods would fail here because of a sheer number of possible
internal multiple generators and because of temporal inseparabil-
ity of primaries. Layer-stripping approaches would likely introduce
cascading down errors in the amplitudes of the demultipled data.

Here we wish to demonstrate that a Marchenko equation-based
scheme can perform reasonably well and that the augmented scheme
that we introduce additionally handles all orders and all periods of
internal multiples properly. The workflow follows the one outline
in Section 3, but given the two-dimensionality of the example the
vectors kx and p reduce to scalars kx and p. We ensure that the
model is homogeneous above z = 0 (no free surface) and that we
can extend the model upwards by 100 m, to ensure that the onset
of the first primary reflection (due to a shallow reflector originally
around 50 m) arrives after t = ε (i.e. a vertical upward redatuming
of sources and receivers). This is in line with the discussion in
Section 2.3, where we wish to ensure that �ε[V−] = V− is satisfied.
We illustrated this with the auxiliary acquisition surface ∂D0,aux in
Fig. 2.

To model synthetic 2-D reflection data we use a conventional
second-order staggered-grid finite-difference solver (Virieux 1984)
on a computational grid of 10.0 by 3.1 km with 2 m discretization
(i.e. 5001 by 1551 grid points). Appropriate data scaling in line with
the definitions of Green’s function G and R∪ (as given in Section 2.1)
requires that the data are a 2-D Green’s function recorded with
colocated dipole-sources and monopole receivers. Here we use a
fixed-spread acquisition with a grid of 1001 sources and receivers
of 10 m spacing, and the data is modelled using a 20 Hz Ricker
wavelet. The data is appropriately scaled and deconvolved for the
wavelet used in modelling to conform with the definition of Ř∪.
Lastly, these data are free from random noise6 and do not contain
surface-related multiples. A shot gather of r∪(x ′′

0, x0) is presented
in Fig. 5(a).

We choose the overburden-target separating boundary ∂Di at z
= 1270 m depth (marked with a dashed red line in Fig. 2). This
choice ensures that a mute �ε can be defined such that the side

6There is little published work on effects of random noise on the solutions to
the Marchenko equation in 1-D or 2-D, but we expect that in the presence
of random (incoherent) noise, similar to methods such as SRME or IME,
multidimensional convolutions/correlations of noisy input data will stack
out incoherent noise.

lobes of V − and U− do not overlap, that is, X− = 0 (or X̃− = 0)
in eq. (19). It was suggested by van der Neut & Wapenaar (2016)
that this mute can be obtained by picking a primary that is due to a
strong reflector in the target. However, considering the shot gather in
Fig. 5(a) it is clear that this is a tall order in this setting (we used red
arrows to indicate some target primaries). Additionally, there is little
evidence supporting the claim that one could use primary reflections
due to non-horizontal reflectors to derive said mute.7 Instead, we
use a smoothed (migration) velocity model and an eikonal solver to
obtain two way travel times td

(
x0, x ′

0

)
between ∂D0 and ∂Di [shown

with dashed red lines in Fig. 6(a)] that are used in the definition of
the mute �ε in eq. (18).

We use a temporally and spatially band-limited delta spike as
the first term V +

e of the Neumann series expansion [see eq. (22)].
It is obtained by defining its triangular-shaped spectrum in the
wavenumber-frequency domain (compare with Fig. A1), and dress-
ing it with a 20 Hz Ricker wavelet. Given the fine layering we
know that this choice is incorrect and hence the solutions will be
the blurred wavefields Ṽ ±, which we will subsequently fix. Since
highly scattering overburdens require many iterations (Dukalski &
de Vos 2017), we calculate the first 100 terms in eq. (22). Conver-
gence is further analysed in Appendix F. The resulting propagated
downgoing focusing function is illustrated in x-t-domain (ṽ+) and
in τ -p-domain (ṽ+) in Figs 6(b) and (e), respectively. At the early
end of the time window it can clearly be seen how �ε protects the
first event ṽ+

e , which is identical in Figs 6(a) and (b).
The blurred focusing functions ṽ+ and ṽ− are Fourier trans-

formed to the kx-ω-domain and used to evaluate energy conserva-
tion [eq. (26)]. The result is displayed in in Figs 7(a), (e) and (i) in
the x-t-domain (σ̃ ), kx-ω-domain (�̃) and τ -p-domain (σ̃ ), respec-
tively. It can be seen in a number of domains that the propagated
focusing functions are blurred: in the x-t-domain we do not obtain
a single spike for σ̃ , but we observe additional side-lobe energy;
in the kx-ω-domain the spectrum is not flat in kx-direction but has
a peak around kx = 0 which is not centered around the peak fre-
quency of the input wavelet (it is at 15 Hz instead of at 20 Hz);
and in τ -p-domain σ̃ deviates from a straight line and contains too
much side-lobe ‘ringiness’.

The amplitude and phase spectrum of the blurred, propagated
focusing functions need to be corrected, using eq. (27) and eq. (32)
[compare also with Fig. 4]. As outlined in Appendix A, the corrected
V +

e is isolated with �ε , which is subsequently used to re-evaluate
eq. (22). The resulting band-limited (propagated) focusing function
is shown in Figs 6(c) and (f). The difference to the previous, blurred
equivalents [Figs 6(b) and (e)] is most visible around the first ar-
rival, which clearly differs from our first estimate [Figs 6(a) and
(d)]. Additionally, the ‘noisy’ events beyond |p| > 1.7×10−4sm−1

are not present in the corrected result since they are not contained
in σ̃ [Fig. 7(i)] and consequently many of these linear artefacts are
removed. To highlight that all events are affected by the correction
process we compare central traces in Fig. 6(g). Although the differ-
ences might seem subtle, the impact on imaging is considerable, as
we will see later.

The quality of the deblurred focusing functions is controlled by
re-evaluating energy conservation, shown in Figs 7(b), (f) and (j). As
opposed to the results from the blurred wavefields (left-hand column
of the same figure), a significant improvement can be observed: in

7In Wapenaar et al. (2014), the authors always require that the boundary ∂Di

is horizontal to ensure actual up-down (i.e. normal to ∂Di ) decomposition
of the focusing and the Green’s functions.
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Figure 6. Propagated focusing functions in different domains, before and after deblurring. The top row shows quantities in the x-t-domain, the central row in
the τ -p-domain. (a) ṽ+

e with the projection condition �ε illustrated using dashed red lines, (b) ṽ+, (c) v+, (d) ṽ+
e , (e) ṽ+, (f) v+, (g) central traces taken from

the propagated focusing functions before (red) and after (blue) deblurring. To highlight their difference at late times panels (a)–(c) and (g) are displayed with a
t2-gain; panels (a)–(f) are clipped to 5 per cent of the maximum amplitude.

the x-t-domain energy conservation yields an isolated, band-limited
spike, in the kx-ω-domain the spectrum is flat in kx-direction, and in
the τ -p-domain we observe a flat ‘line’ without the side-lobe energy
that is present in Fig. 7(i). The dominant frequency is shifted towards
higher frequencies, such that the peak frequency after correction
occurs at the frequency of the input wavelet (20 Hz), as it should.
These observations assure us that we have successfully corrected
the amplitude spectrum of the focusing functions. However, they
do not allow any conclusions about the correctness of the newly
obtained phase (though an incorrect amplitude spectrum will always
give rise to an incorrect phase spectrum, seeing how the latter is
derived from the former). Note that the frequency dependent errors
in the amplitude spectrum may actually drop out when obtaining the
target medium reflection from multidimensional convolution [see
eq. (17)]. Analysis of the phase spectrum is thus important, and will
be addressed when quality controlling the migrated reflection data.

The rest of the workflow follows the conventional approach, see
the last two steps in Fig. 4. Inverting for the reflection response of
the target medium Ř∪

Target(x0, x ′
0, ω) is done by solving the normal

problem U−U+† = Ř∪
TargetU

+U+† (Amundsen et al. 2001; van der
Neut et al. 2011) per frequency slice using MATLAB’s rdivide
functionality. This step requires stabilization of low amplitudes,
which we implement by ensuring a denominator with at least 5 per
cent of its maximum amplitude. The result for a central shot is
shown in Fig. 5(d)

To benchmark the performance of the scheme presented in this
paper we compare it to the conventional Marchenko scheme (i.e.
the black arrows in Fig. 4). The resulting target-data is illustrated
in Fig. 5(c). Whereas the augmented scheme imposes an aperture

limitation (to avoid artefacts introduced by the Radon transform,
see Appendix A), this is not the case for the conventional scheme.
We therefore use conventional Marchenko solutions with the widest
possible aperture [i.e. the aperture shown in Fig. A1(b)]. Hence, the
resulting focusing functions (not shown) have a wider aperture than
the augmented ones [and wider than the ones shown in Figs 6(b)
and (e), which have been artificially limited in aperture for better
comparison with panels (c) and (f)].

The fact that Fig. 5(c) does not have a significantly wider aper-
ture than Fig. 5(d) (regardless of using propagated focusing func-
tions with wider aperture), is due to filtering. In order to su-
press linear artefacts introduced by multidimensional deconvolu-
tion, Marchenko-derived reflection responses have been dip-filtered
in the kx-ω-domain using a filter velocity of cfilt = 4000 m s−1 (such
that all signal is muted for which |kx| > f/cfilt). This results in similar
apertures of the Marchenko derived reflection data, which is reduced
as opposed to the modelled data in panels (a) and (b). Comparison
of panels (c) and (d) shows that both data contain the relevant main
primary reflections related to the three ‘packages’ of reflectors in
the target (marked with red arrows), however the deblurred (aug-
mented Marchenko output) data in panel (d) contains less coherent
and incoherent noise.

Moreover, in order to show that the deblurred result is an actual
improvement and not just different from the conventional one, we
need to compute the reference target medium reflection response
(i.e. the result of the workflow in Fig. 4). This proves to be no
easy task: one could model Ř∪

Target(xi , x ′
i ), with sources and re-

ceivers along ∂Di , however, this results in illumination angle dif-
ferences, which are not captured by our acquisition of R∪(x0, x ′

0)
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Figure 7. Energy Conservation [eq. (26)] displayed in different domains and evaluated for blurred, band-limited wavefields (left-hand column), for the corrected
(deblurred and band-limited) wavefields (second column). The third column illustrates references (for an ideal point source created by the focusing functions).
The right-hand column shows individual traces taken from the panels in the first three columns. Panels in the first row are in the x-t-domain, panels in the
second row in the kx-ω-domain, and panels in the third row in the τ -p-domain. Panels in the first, second and third row are clipped to 5, 100 and 8 per cent of
their maximum amplitudes, respectively.

(sources and receivers along ∂D0). It would therefore require ar-
tificial post-processing of Ř∪

Target(xi , x ′
i ) to reduce the illumina-

tion angles, which introduces additional artefacts. For these rea-
sons we have opted for an alternative approach which respects the
ray content of the data used on input. We smooth the overburden
(in slowness) in order to properly replicate the kinematics of the
overburden and remove any scattering, and leave the target un-
touched, resulting in Fig. 2(d). We use the same finite difference
modelling scheme as before to obtain Ř∪

Target(x0, x ′
0), illustrated in

Fig. 5(b). Although very smooth, the overburden still introduced
some reflections which also result in some unwanted (very low fre-
quency) overburden-related multiples that will be visible in the final
image.

The four reflection data sets described above (Fig. 5) are Kirch-
hoff depth migrated (e.g., Schneider 1978), and the results are shown
in Fig. 8. Note that no scaling or normalization was applied to the
redatumed results. Migration of the conventional Marchenko pre-
processing result shown in panel (c) is clearly an improvement
over the migrated input data [panel (a)], as it removes a lot of co-
herent internal-multiple noise. Moreover, Fig. 8(c) indicates that
conventional Marchenko appears to perform reasonably well in this
setting (suggesting some robustness in handling the SPIM-induced
errors).

The result produced by the augmented Marchenko scheme in
Fig. 8(d) is much more similar to the input model [Fig. 2(a)] than
the conventional Marchenko approach shown in panel (c). It is also
closer to the reference solution shown in Fig. 8(b) [though it is
important to keep in mind that the latter also contains spurious
overburden-related artefacts, indicated with arrow (I)]. Comparison
of Figs 8(c) and (d) highlights that the former contains both acausal
and causal ghosts [events appear to be smeared out], marked with
arrows (II) and (III) for the first package of events. Neglecting
SPIMs also introduces artefacts [arrow (IV)] which may interfere
with other events such that, for example, continuous events seem
discontinuous [arrows (V)].

To highlight the differences between the two Marchenko re-
sults we display vertical traces in Figs 8(e) and (f). The aug-
mented Marchenko results follow the reference traces very closely.
Moreover, the conventional Marchenko result appears to have a
small overall phase shift, which is not present in the augmented
Marchenko result.

In the review process it has been pointed out that a bilinear mini-
mization process that relies on sparsity of the solution (similar to the
one presented by Becker et al. 2018) could be a viable alternative to
incorporate SPIMs into the Marchenko method. However, such an
inversion process involves inverting an underconstrained problem,
and there is no physical proof that dictates that the true solution is
sparse. To date, no attempts to account for SPIMs with an algorithm
alike the one proposed by Becker et al. (2018) have been made, and
there is no evidence that such an approach would work in general.

5 C O N C LU S I O N A N D O U T L O O K

We have introduced an augmented Marchenko method for 2-D and
3-D media which can correctly account for SPIM in a horizontally
layered overburden. Our imaging results for a complex synthetic
model, representing the challenges in the Middle East, reveal that
conventional Marchenko redatuming removes a great amount of
overburden-related internal multiples and thus yields much cleaner
images than migration of surface data. Moreover, the augmented
Marchenko method correctly accounts for SPIMs, yielding another
significant improvement with sharper events and fewer artefacts.

The theory we introduced is valid for general 2-D and 3-D media,
however, we are currently only able to solve it for laterally invari-
ant overburdens. This is because, in the latter case, the problem is
(irreducibly) represented per ray parameter, where minimum phase
recovery is possible using the Kolmogorov method. For general,
laterally varying media different ray parameters will be coupled,
and hence the entire solution (all coupled rays) will be a multidi-
mensional minimum phase response (as opposed to each ray being
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Figure 8. Migration results for the target model, using the offset range marked with a black box in Fig. 2. Panels (a)–(d) correspond to the data for which
central shots are shown in Fig. 5. (a) Migration of modelled reflection data computed in the entire model; (b) migration of modelled data corresponding to
the target model in Fig. 2(d), used as a reference for panels (c) and (d); (c) migration of target data derived from blurred Marchenko results; (d) migration of
target data derived from deblurred Marchenko results; (e) and (f) show traces recorded at −2 km and 0.5 km offset, respectively. Red arrows point at erroneous
events and artefacts discussed in the text. Panels (a)–(d) are clipped to 20 per cent of the maximum amplitude.

minimum phase individually). Seeing how in 1.5-D, for geologically
relevant models, the correction imposed by energy conservation
and minimum phase was rather subtle [but which had significant
effects on the migrated image, compare the traces in Fig. 6 (g) with
Figs 8(c) and (d)], we first require sensitive tools for quality control
(i.e. that allow us to accurately calculate true (propagated) focusing
functions in complex media). However, such tools are not available
yet. Once a robust methodology is found to address this problem,
further work will be necessary to investigate, understand and quan-
tify how quickly the algorithm proposed in this work breaks down
on a range of synthetics. A generalized solution for more complex
media will require a unique matrix factorization and understanding
of minimum-phase properties in higher dimension than 1-D. This
will be subject to future research.

An initial and possibly simpler approach involves investigating
the limitations of a ray-parameter approach for subhorizontally lay-
ered media. For media with gently dipping interfaces and without
significant horizontal scattering a constant ray parameter approach
might still be acceptable.

Apart from accounting for SPIM, extending the conventional
Marchenko equations with energy conservation may enable a range
of other applications. Mildner et al. (2019) have shown how to ob-
tain true amplitude-versus-offset Green’s functions (a step that is
implicit in our work), and Reinicke et al. (2019) introduced ways
to deal with overlapping events in elastodynamic Marchenko reda-
tuming. Possible future research questions could involve the use of
energy conservation for assessing forward-scattered acoustic waves
(such as prismatic events related to salt diapirs) as well as tunneling
effects in finely layered media with high velocity contrasts.
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Figure A1. Spectra in kx -ω-domain. (a) Ř∪, (b) Ṽ +
e with the same aperture

as the data in panel (a), (c) Ṽ +
e with a narrow aperture used to create the

deblurred examples in Section 4. All panels are clipped to 100 per cent of
the maximum amplitude.

A P P E N D I X A : I M P L E M E N TAT I O N
A S P E C T S O F AU G M E N T E D
M A RC H E N KO F O R S P I M

A1 Amplitude stabilization for phase retrieval

It has already been recognized by Lamoureux & Margrave (2007)
that Hilbert transforms of band-limited signals need to be stabi-
lized around frequencies which are (close to) zero, and that the
result can be sensitive to amplitude stabilization for each of the
terms on the right-hand side of eq. (32) . Therefore to improve the
band-limitation-borne artefact cancellation in this expression, prior
to evaluating the logarithm we stabilize the amplitude spectra as
follows∣∣D(ωτ , p)

∣∣
η

=
{∣∣D(ωτ , p)

∣∣ if
∣∣D(ωτ , p)

∣∣ ≥ η

η, otherwise.
(A1)

This yields a significant improvement however it still leaves one
with a free parameter of η. If chosen too small the phase error
can be very large and vary considerably on [0, fNyquist] and make
cancellation less efficient. If η is set too large that could mask the
relevant signal in D . Investigations on simple 1-D models have
shown that we can express η in terms of the maximum value of
the amplitude spectra, based on the overall transmission amplitude
from ∂D0 to ∂Di : the lower the transmission amplitude (i.e. the more
interfaces, or the stronger the scattering in the overburden) the lower
the required stabilization relative to the maximum amplitude. For
transmission amplitudes of more than 0.6 we suggest a stabilization
of 10 per cent, whereas for more complex overburdens with smaller

transmission amplitudes a stabilization of 2 per cent yields good
results. For geological settings where SPIMs play a significant role
the latter is more likely to be the factor of choice.

Moreover, we have found that �2-normalizing the amplitude spec-
tra (prior to stabilization with η) balances the two terms on the
right-hand side of eq. (32), such that the expression becomes

Arg
[
V +(ωτ , p)

]
=H

[
log |B(ωτ , p)|η,n

] − H
[

log |Ṽ +
(ωτ , p)|η,n

]
,

(A2)

where the additional subscript n denotes �2-normalization. This
results in more similar band-limitation borne artefacts that cancel
each other out more effectively, and thus further improve the efficacy
of phase spectra recovery.

A2 Using propagated focusing functions

The use of propagated focusing functions V± over the (conventional)
focusing functions F± has practical advantages in addition to the
aforementioned mathematical ones. On the one hand we find that
fewer linear artefacts originating from the Rayleigh integral are
introduced in the propagated focusing functions. Although we have
not studied this in detail, this might originate from a better handling
of refractions. In conventional Marchenko these artefacts so far had
not been identified as a serious cause for concern. However, in our
scheme better behaved linear artefacts are an advantage, due to the
need for forward and inverse Radon transform (compare with the
workflow summarized in Fig. 4).

The same applies to events that are cut off by the projector,
which is why we cannot chose a first event with too large aperture.
We illustrated this problem in Fig. A1: if we chose the first event
Ṽ +

e , shown in panel (b), with the same aperture as the reflection data
Ř∪ in panel (a), the time domain version will have too steep flanks,
and consequently the projector will cut into the first events of the
created coda Ṽ +

l . Such a truncation of events translates to strong
artefacts in the τ - p-domain upon forward Radon transform. To
prevent this from happening, we have chosen a Ṽ +

e with a relatively
narrow aperture [Fig. A1(c)] and therefore gently dipping slopes in
the time domain, as seen in its time-domain equivalent in Fig. 6(a).
The time domain equivalent of Fig. A1(b) would have much steeper
slopes as opposed to the object in Fig. 6(a), and hence would cut
into the coda events visible in Fig. 6(b).

Note that the correct aperture for Ṽ +
e is given by its definition

Ṽ +
e = T +,inv

d T +
d dxi . The aperture of this expression is narrower

than the input data [Fig. A1(a)], since the aperture of T +
d is simi-

lar to a primary from ∂Di (and hence narrower than that of earlier
primaries contained in the data). These considerations might there-
fore justify choosing a narrow aperture for Ṽ +

e such as the one in
Fig. A1(c).

A3 Rerun Marchenko after amplitude and phase
correction

After reconstruction of Ṽ + → V + (amplitude and phase correc-
tion), we extract V +

e from V + with an appropriately chosen time
windowing operator 1 − �ε (i.e. the green region in Fig. 3). This
(corrected) early focusing field is subsequently used to re-evalute
eq. (22), which together with eq. (19) yields V − (with X− = 0).
In theory this is not necessary, because we should have already
obtained both amplitude and phase information with eq. (27) and
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(32). We find however, that the target medium reflection response
obtained that way is closer to the true one.

A4 Definition of the linear Radon transform

Care has to be taken with the linear Radon transform. The for-
ward and its corresponding inverse transform require a pre-factor
of |ω|/(2π ), and it is a free choice how this factor is ‘distributed’
over the foward/inverse transform pair. Zhou & Greenhalgh (2002)
denote these transforms with |ω|/(2π ) applied on either the for-
ward transform or the inverse transform as version 1 and version 2,
respectively.

If version 1 of the forward linear Radon transform is used, the fact
that the pre-factor |ω|/(2π ) has been used on the forward transform
gives an added phase distribution to |B|, and gives rise to an erro-
neous phase spectrum of |V +|. Consequently, this problem can be
avoided if version 2 of the linear Radon transform is used. Insights
into the implementation of the Radon transform can be found in
Schonewille (2000).

A P P E N D I X B : M I N I M U M P H A S E
B E YO N D 1 - D

The statement ‘when measured from the onset of signal’ means that
in 1-D the wavefields (as well as their inverses) are shifted to start
at t = 0. In 2-D and 3-D, this shift is offset dependent and hence
to get a better understanding on how to extend this concept beyond
1-D in this work a 1.5-D (laterally invariant 2-D or 3-D) medium
is considered. For the laterally invariant scenario the problem can
be decoupled into a series of 1-D problems, each characterized by
some ray parameter p, where eq. (10) becomes

T + ( p) F+
1 ( p) = 1 ∀ p < pmax, (B1)

and pmax is the ray parameter for the maximally oblique plane wave
component measured at ∂D0. The fields satisfying the minimum
phase condition are T + ( p) e−iωτ τd ( p) and F+

1 ( p) eiωτ τd ( p), where
the exponent iωττd ( p) takes care of the p-dependent linear phase
shift.

Multi-dimensional minimum phase responses are more complex
than their 1-D equivalents, and certain conditions need to be better
investigated in the future (compare with Rickett 2001; Wapenaar
et al. 2003; Frijlink & Wapenaar 2004). Possible research questions
include if invertibility and stability are always satisfied (e.g., in
complex media with large local velocity variations or for different
data acquisition modes), and whether the former should be replaced
with pseudo-invertability.

A P P E N D I X C : T R A N S M I S S I O N
C O R R E C T I O N O F T H E R E DAT U M E D
DATA

In this section, we use a simple 1-D example to demonstrate that
the target data R∪

Target(x0, x ′
0, ω), obtained from eq. (17) by (mul-

tidimensional) deconvolution of the propagated focusing functions
U±, are corrected for overburden-related transmission effects. This
can be interpreted that in the process of retrieving R∪

Target(x0, x ′
0, ω)

from R∪(x0, x ′
0, ω), one removes all events from the overburden (in-

cluding primaries and multiples), and the remaining (underburden-
related) events are identical to those in the input data R∪(x0, x ′

0, ω),
but corrected for an angle-dependent transmission coefficient of the
overburden.

Assume a 1-D medium with three reflectors R1 to R3, which are
described by Zi = riexp {iωti}, where ri is the reflection coefficient
of reflector Ri and ti is the two-way traveltime (Slob et al. 2014).
The reflection coefficient R∪(ω) for such a medium is given by

R∪(ω) = Z1 + Z2 + Z3 + Z3 Z∗
2 Z1

1 + Z2 Z∗
1 + Z3 Z∗

2 + Z3 Z∗
1

. (C1)

From eq. (22) the propagated focusing functions V+ and V− can be
derived from eq. (22), given by

V + = 1 + Z2 Z∗
1 , and

V − = Z1 + Z2 .
(C2)

With eqs (14) and (15) the propagated Green’s functions U± are
hence given by

U− = R∪V + − V − = Z3
(1 − |Z1|2)(1 − |Z2|2)

1 + Z2 Z∗
1 + Z3 Z∗

2 + Z3 Z∗
1

,

U+∗ = −R∪∗V − + V + =
[

(1 − |Z1|2)(1 − |Z2|2)

1 + Z2 Z∗
1 + Z3 Z∗

2 + Z3 Z∗
1

]∗

.

(C3)

Deconvolution of these two expressions yields a target reflection
response [see eq. (17)]

R∪
Target(ω) = U−

U+ = Z3 , (C4)

which is the primary reflection of the third interface void of the
overburden’s transmission effect [which are contained in the same
primary in the input data in eq. (C1].

A P P E N D I X D : A LT E R NAT I V E
M A RC H E N KO E Q UAT I O N M U T E ,
I N I T I A L C O N D I T I O N A N D I T S
C O N S E Q U E N C E S

Alternatively to the way we proceeded in Section 2.3 we can apply
to both sides a different mute �−ε (with t0 = −ε), such that the
overlap in eq. (20) is preserved instead of muted away. As a result
the system of equations reduces to

V + − �−ε

[
R∪∗�−ε

[
R∪V +dx0

]
dx ′

0

] = U+∗
e , (D1)

which can be solved by Neumann series expansion

V + =
∞∑

k=0


k,−ε

[
U+∗

e

]
(D2)

with 
k,−ε[A] = �−ε[R∪∗]
ε[R∪
k−1,−ε[A]dx ′
0]

and 
0,−ε[A] = A.

The solution is now parametrized by the choice of U+∗
e , instead

of V +
e (see eq. (22) for comparison).

Recall the definition from eq. (13)

U+∗ = G+∗T +
d,DDdxi = (

T −∗
d,M M + G+∗

coda

)
T +

d,DDdxi ,

where MM and DD stand for monopole-monopole and dipole-dipole
source and receiver pair respectively. In a broadband setting (i.e. ε

→ 0) U+∗
e should be given by T −∗

d,M M T +
d,DD , which in a simple (e.g.

laterally invariant) case is just IDM with a ray-parameter dependent
(two-way direct transmission) amplitude, that is a non-isotropic
zero-distance propagator. However, in more complex media T +

d

(and hence U+
e ) can contain additional events (in the event of for-

ward scattered acoustic waves or triplications). This problem can
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be avoided by propagating eqs (3–4) with T −inv
d,DD , and changing the

definition of U+ to U+ = G+T −inv
d,DDdxi such that U+

e = IDM .
Similar to the discussion in Section 2.3, with band-limited R∪,

the U+
e term has a temporal extend and the best guess for it is I DM .

This guess is correct provided that the U+ coda
(
G+∗

codaT +
d,DD

)
is not

contained in U+
e (i.e. in the absence of SPIMs). From the medium

point of view this is the same condition as discussed is Section 2.3,
just for a different choice of t0.

Following the approach from Section 2.5, we can again use the
right-multiplicative freedom and define a different operator B

′ �= B,
such that

Ṽ
′+ = V + B ′dx0 ,

Ṽ
′− = V − B ′dx0 ,

Ũ
′− = U+ B ′dx0 ,

Ũ
′+∗ = U+∗ B ′dx0 ,

(D3)

and where we can then make the choice Ũ
′+∗
e = I DM in

Ṽ
′+ =

∞∑
k=0


k,−ε

[
Ũ

′+∗
e

]
. (D4)

As argued towards the end of Section 2.5, in order to recover V +V +†

from Ṽ
′± we use the energy conservation condition[

Ṽ
′+†∂z,0Ṽ

′+ + Ṽ
′−†∂z,0Ṽ

′−
]
ρ−1

0 dx0 ≡ �, (D5)

where

� = − iω2

4
ρi B

′†T +†
d IM M T +

d B ′dxi dx ′
i dx ′′

0dx ′′′
0 (D6)

or

� = − iω2

4
ρi B

′†T −inv†
d IM M T −inv

d B ′dxi dx ′
i dx ′′

0dx ′′′
0 , (D7)

depending on the propagation operator used in the definition of V
and U. As with the t0 = ε case we can subsequently invoke the
minimum phase property to recover V +.

The challenge with the approach using t0 = −ε is that the so-
lutions Ṽ

′± can have rather large amplitudes (on account of many
auto-correlations in the |t0| ≤ ε window in Ṽ

′+), and these can cause
round-off errors whose difference [on the left-hand side of eq. (D5)]
could lead to numerically induced errors in �.

A P P E N D I X E : W RO N G B A N D - L I M I T E D
S O LU T I O N F O R A H I G H LY
S C AT T E R I N G OV E R B U R D E N

In this paper we have shown how using band-limitated data when
solving the Marchenko equation may result in failing to retrieve the
correct focusing function (propagated or otherwise). Whereas the
reciprocity theorems in eqs (3–4) are exact scattering relations, the
band-limited, constrained Marchenko equations are only true under
the conditions mentioned in the main body of the article: that Ṽ −

does not have any events very close to t0 (i.e. no extremely shallow
reflectors) and that Ṽ − does not overlap with Ũ−. We have also
pointed out and presented a solution to the problem of the unknown
overlap between Ṽ + and Ũ+∗.

There is however a third problem with band limitation, and it
has to do with solving eq. (21) or eq. (D1) itself. The problem is
best illustrated for strongly-scattering overburdens and a Neumann
series-type solver (but it is not limited to it) where many terms in the
expansion need to be calculated [see eqs (22) or (D2)]. The problem

will not result in convergence (or divergence) issues as observed by
Dukalski & de Vos (2017), but will result in convergence to an
incorrect solution.

We illustrate this with three simple, 1-D examples shown in
Figs E1 (a), (f) and (k), with amplitude spectra of reflection re-
sponses given in (b), (g) and (l) respectively. Blue and red traces
illustrate broadband and band-limited results, respectively. The
first example features a simple two reflector overburden with an
archetipical two-event focusing function [panel (d)]. The second
example features the same overburden, but with increased reflectiv-
ities of the two interfaces (unrealistically for seismic applications),
such that a greater number of iterations is required [see panel (h)
vis-a-vis panel (c)] to converge to the solution. The result should
be the same focusing function but with a greater amplitude coda
[compare panels (d) and (i)]. We see that if broadband data is used
(in combination with the wavelet-dressed first arrival field), the two
solutions do defer by an expected amplitude difference of the coda
event. However if band-limited data is used instead, the solution
not only converges slower, but it also does not converge to a true
solution.

In order to show that this could be a relevant problem in a setting
such as the Middle East (i.e. for strongly scattering overburdens),
we use the third example with many interfaces and with realisti-
cally strong (and alternating) reflection coefficients, yet sufficiently
spaced to avoid short-period scattering issues (see a wavelet used
for comparison in purple). Here we observe the same qualitative
features as with the simple (unrealistically) high-impedance two-
interface model.

We believe that the source of the problem has to do with the

convolve-mute-correlate-mute sequence �±ε

[
Ř∪∗�±ε

[
Ř∪ · · ·

]]
,

combined with the fact that the amplitude spectrum of the reflec-

tion response
∣∣∣Ř∪ (ω)

∣∣∣ ≈ 1 for a large number of frequencies. The

tempral mute is equivalent to a convolution in the frequency domain,
which can wash in the incorrectly scaled amplitudes at the slopes
of Ř∪ towards the correctly scaled frequency band. This would
suggest that some form of regularization step inside the convolve-
mute-correlate-mute sequence could help alleviate the problem.

Spotting that one might be dealing with this problem could be
a challenge. However, we have observed that in many (but not
necessarily all) cases, when the incorrectly converged solutions are
used to evaluate the energy conservation [see panels (e), (j) and
(o)] the amplitude spectrum of the energy conservation relation can
carry uniquely abrupt and spiky features.

A P P E N D I X F : C O N V E RG E N C E

In the course of this work we have noticed that understanding the
implications of convergence of the Marchenko equation solver [e.g.
the series expansions in eqs (22) or (D2)] is very important. There
are three aspects that we will outline here: theoretical soundness, in-
terpretation of consecutive terms in the expansion and implications
for field data studies.

On the theoretical front, the augmented Marchenko algorithm
presented here, in particular the statements surrounding the energy
conservation condition, only hold when the Marchenko equation
solver converged completely. They do not hold on a term-by-term
basis. In theory that means that we need to take the k → ∞-limit
in the Neumann series expansion, however for many practical cases
fewer than 20 iterations tend to be sufficient.

It was proposed by van der Neut & Wapenaar (2016) to carry
out internal demultiple by expanding the conventional Marchenko
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Figure E1. Illustration of 1-D models for which the band-limited iterative Marchenko scheme succeeds or fails to retrieve the correct solution. (a) two-reflector
model with interfaces at 0.2 s and 0.5 s and reflectivities of 0.5 (black lines), the focusing position at 0.75 s (green triangle) and the input 30 Hz Ricker wavelet
(purple); (b) Amplitude spectrum of the full-bandwidth reflection data R∪(blue) and the band-limited equivalent Ř∪(red); (c) Convergence illustrated in terms
of the energy that is contributed to the focusing function with consecutive iterations; (d) Focusing functions retrieved using full-bandwidth data (blue) and
band-limited data (red); (e) amplitude spectra energy conservation (d). Panels (f)-(j) are equivalent for a two-reflector model with reflectivities 0.95, panels
(k)-(o) for a 50-reflector model with randomly placed (but well-separated) interfaces of reflectivities between ±0.36. ampl. = amplitude, En.= Energy, a.u. =
arbitrary unit.

method (see Fig. 4) in series. The authors suggested to collect only
the first two terms of the Neumann series and append them with a

(time-dependent) matching filter, which is supposed to fix the am-
plitude mistakes emerging from the series truncation. This approach
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Figure F1. Migration images derived from conventional Marchenko results for different (and insufficient) numbers of iterations in eq. (21). Red circles and
arrows are used to denote artefacts.

Figure F2. Convergence of the Marchenko scheme. Here the differential
energy is defined as the squared difference between the ṽ+-wavefields of
two subsequent Marchenko iterations.

naturally would no longer work in the presence of SPIMs, as such a
series would not be possible due to overlapping events. Any methods
alluding to using or assuming the ability to extract particular events
of V or U are likely to fail in the setting where internal multiples are
a significant challenge. Moreover, in complex geological settings
the first few terms of the Neumann series contain complex interfer-
ence patters, and various ‘counter-terms’ from these early terms are
collectively removed by higher order terms in the expansion. Put
differently, in order to remove ‘erroneous’ contributions from the

lower order terms the higher order terms must be included in the
series. Otherwise, the early counter-terms may introduce significant
amplitude and phase distortions to the solutions, which hamper a
matching filter approach like the one proposed by van der Neut
& Wapenaar (2016). The impact of using too few iterations in the
Neumann series is illustrated in Fig. F1.

When trying to apply Marchenko-equation based methods to
field data a correct data scaling is a great practical challenge: if the
data is ‘underscaled’ (‘overscaled’), then we will see that the series
will converge too quickly (too slowly, or even diverge). Provided
that the data set is off by a single scalar, the rate at which the
series in eq. (22) converges contains valuable information. Suppose
that some knowledge about the geological setting is available, for
example access to a well log. Thomsen et al. (2017) suggested
to improve scaling by matching a VSP signal with the Green’s
functions G. Our approach relies on comparing convergence rates
that can be computed based on a 1-D synthetic model from that well
log, and the scaling of the data is subsequently adjusted to match
its convergence rate to that of the synthetic example. Said synthetic
can be obtained either from a well log, or from regional geological
knowledge. A good reference can be found in Fig. F2, where one
sees that the L2 norm of the update (differential energy) falls to
below 1 ppm after 20 iterations – perhaps a good general rule of
thumb in the Middle East setting.
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