

Adapting Smart Dynamic Casting to Thin Folded Geometries

Other Conference Item

Author(s): Szabo, Anna; Reiter, Lex; Lloret-Fritschi, Ena; Gramazio, Fabio; Kohler, Matthias; Flatt, Robert J. (b)

Publication date: 2018-09-11

Permanent link: https://doi.org/10.3929/ethz-b-000406774

Rights / license: In Copyright - Non-Commercial Use Permitted

Adapting Smart Dynamic Casting to Thin Folded Geometries

Anna Szabo¹, Lex Reiter², Ena Lloret-Fritschi^{1,2}, Fabio Gramazio¹, Matthias Kohler¹ and Robert J. Flatt²

¹ Gramazio Kohler Research, NCCR Digital Fabrication, ETH Zurich, Switzerland. ² Institute for Building Materials, NCCR Digital Fabrication, ETH Zurich, Switzerland.

NCCR Digital Fabrication

Collaboration between Gramazio Kohler Research and the group of Physical Chemistry of Building Materials

Gramazio Kohler Research ETH Zurich

DARCH Departement Architektur

Adapting Smart Dynamic Casting to Thin Folded Geometries

- Introduction
- Slipforming process model
- Material adjustments
- Conclusion and outlook

Introduction

Mühlimatt Sports Centre, Studio Vacchini Architetti, 2010

4

Gramazio Kohler Research ETH Zurich

Smart Dynamic Casting

- Robotic slipforming prefabrication
- Formwork moved along a digital trajectory
- Shaping the concrete

Smart Dynamic Casting production for the DFAB house, Gramazio Kohler Research, ETH Zürich

Gramazio Kohler Research 5 ETH Zurich

nart Dynamic Casting

......

Gramazio Kohler Research 6 ETH Zurich

-TINIT ALAM

Slipforming process model – gravitational extrusion

weight of concrete in the formwork <-> friction along the formwork walls

86

Gramazio Kohler Research 7 ETH Zurich

Slipforming process model – formworks

weight of concrete in the formwork <-> friction along the formwork walls

86

SDC Thin-walled

Gramazio Kohler Research 9 ETH Zurich

SDC Columns

86

Slipforming process model – formworks

Slipforming as gravitational extrusion: weight of concrete in the formwork <-> friction along the formwork walls

Differences in hydrodynamic radius

 $r_{hy} = \frac{2 \cdot Volume}{Surface}$

Slipforming process model – force balance

Force balance in the formwork:

$$\sigma_{VE} = \rho g H - \frac{2}{r_{hy}} \int_0^z \tau_{Fr}(z) \, dz$$

- Friction $\tau_{Fr}(t)$ is proportional to the yield stress
- Yield stress evolves according to a power law scaling over time

$$\tau_{Fr}(t) = \alpha_{Fr} \tau_0(t)$$

Slipforming process model – force balance

Force balance in the formwork:

$$\sigma_{VE} = \rho g H - \frac{2}{r_{hy}} \int_0^z \tau_{Fr}(z) \, dz$$

- Friction $\tau_{Fr}(t)$ is proportional to the yield stress
- Yield stress evolves according to a power law scaling over time

$$\tau_{Fr}(t) = \alpha_{Fr} \tau_0(t) = \alpha_{Fr} \alpha_C t^{\beta_C}$$

Gramazio Kohler Research 11 ETH Zurich

Slipforming process model – force balance

Force balance:
$$\sigma_{VE} = \rho g H - \frac{2}{r_{hy}} \int_0^z \tau_{Fr}(z) dz$$

Friction force:
$$au_{Fr}(t) = lpha_{Fr} au_0(t) = lpha_{Fr} lpha_C t^{eta_C}$$

$$\sigma_{VE} = \rho g H - \frac{2}{r_{hy}} \int_0^{t_{Extr}} \tau_{Fr}(t) v \, dt$$

$$\sigma_{VE} = \rho g H - \frac{2 \nu \alpha_{Fr} \alpha_C}{r_{hy} (1 + \beta_C)} t_{Extr}^{1 + \beta_C}$$
$$\sigma_{VE} = \rho g H - \frac{H \alpha_{Fr}}{r_{hy} (1 + \beta_C)} \tau_0(t_{Extr})$$
Global frictional parameter

Gramazio Kohler Research 12 ETH Zurich

Slipforming process model – failure mechanisms

Vertical stress σ_{VE} at the extrusion line:

- Positive
- Tresca criterion

Slipforming process model – failure mechanisms

Vertical stress σ_{VE} at the extrusion line:

- Positive
- Tresca criterion

Slipforming process model – failure mechanisms

Vertical stress σ_{VE} at the extrusion line:

- Positive
- Tresca criterion

Gramazio Kohler Research 12 ETH Zurich

Slipforming process model – process window

Vertical stress:

$$\sigma_{VE} = \rho g H - \frac{H \alpha_{Fr}}{r_{hy}(1+\beta_C)} \tau_0(t_{Extr})$$

Failure criteria:
$$0 \leq \sigma_{VE} \leq 2\tau_0(t_{Extr})$$

$$\frac{H\alpha_{Fr}}{r_{hy}(1+\beta_{C})} \leq \frac{\rho g H}{2 \tau_{0}(t_{Extr})} \leq 1 + \frac{H\alpha_{Fr}}{r_{hy}(1+\beta_{C})}$$

Global frictional parameter

Gramazio Kohler Research 13 ETH Zurich

Slipforming process model – limits

Results with empirical approach

Gramazio Kohler Research 15 ETH Zurich ABB

EPAL

Material adjustments

SDC_NEST Mix

Gramazio Kohler Research 17 ETH Zurich

Material adjustments

Time of casting (min)

SDC FoldedStructures_1 Mix

Gramazio Kohler Research 18 ETH Zurich

Conclusion and outlook

- Folded structures are underused
- Theoretical slipforming process model with mathematical basis instead of fully empirical approach
- The process window for thin folded structures is smaller than in previous SDC experiments
- Material adjustments were necessary to overcome the processing difficulties
- The adjusted composition and processing were validated by robotic experiments

Further improvements:

- Online feedback for the slipping process
- Changes affecting the global parameter for fiction $\frac{H\alpha_{Fr}}{r_{hy}(1+\beta_{C})}$

Gramazio Kohler Research 20 ETH Zurich

Thank you for your attention!

Gramazio Kohler Research ETH Zurich

ABB E

2

bachmann-ag.com

