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Distributed Model Predictive Control for Linear
Systems with Adaptive Terminal Sets

Georgios Darivianakis?, Member, IEEE, Annika Eichler†, Member, IEEE and John Lygeros‡, Fellow, IEEE

Abstract—We propose a distributed model predictive control
scheme for linear time-invariant constrained systems which
admit a separable structure. To exploit the merits of distributed
computation algorithms, the terminal cost and invariant terminal
set of the optimal control problem need to respect the coupling
structure of the system. Existing methods to address this issue
typically separate the synthesis of terminal controllers and costs
from the one of terminal sets, and do not explicitly consider the
effect of the current and predicted system states on this synthesis
process. These limitations can adversely affect performance due
to small or even empty terminal sets. Here, we present a unified
framework to encapsulate the synthesis of both the stabilizing
terminal controller and invariant terminal set into the same
optimization problem. Conditions for Lyapunov stability and
invariance are imposed in the synthesis problem in a way that
allows the terminal cost and invariant terminal set to admit the
desired distributed structure. We illustrate the effectiveness of
the proposed method on several numerical examples.

Index Terms—Predictive control, Large-scale systems, Coop-
erative control, Robust adaptive control, Optimal control.

I. INTRODUCTION

OPERATION of large-scale networks of interacting dy-
namical systems remains an active field of research due

to its high impact on real-world applications, e.g., regulation
of power networks [1] and energy management of building
districts [2]. For systems of this scale, the design and deploy-
ment of centralized controllers is often a difficult task due to
computation and communication limitations in the network.
Hence, it is desirable to design interacting local controllers
with a prescribed structure which rely only on local informa-
tion and computational resources. Even though the problem
of synthesizing optimal distributed controllers is known NP-
hard [3] in its general form, for certain network structures it
has been shown to admit either a closed-form solution [4] or
an exact convex reformulation [5]. For unstructured network
topologies, the usual practice is to resort to semidefinite pro-
gramming relaxations [6]–[10] to obtain suboptimal distributed
controllers with performance guarantees.

A downside of these static distributed controllers is their in-
ability to efficiently cope with state and input constraints of the
systems. Model predictive control (MPC) is an optimization
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based methodology that is well-suited for constrained linear
systems [11]. Despite recent advances on computation and
communication technologies, formulating and solving a large
optimization problem in real time remains a challenging task.
To circumvent this, several methods have been proposed in the
literature to leverage the distributed structure of the network to
approximate the original optimization problem through a set
of loosely coupled subproblems. Distributed model predictive
control (DMPC) approaches are typically categorized into
non-cooperative [12]–[18] and cooperative ones [19]–[26]. In
the former, each system considers the effect of neighboring
systems as a disturbance in its own dynamics and constraints.
Typical cases of non-cooperative DMPC approaches are tube-
based methods, where the states and inputs of neighboring sub-
systems are confined in a precomputed [12]–[14] or adaptive
[15]–[18] bounded set and each subsystem needs to account
for all possible impacts of its neighbors occurring within these
bounded sets. Though computationally simple and effective in
practice, non-cooperative approaches can be conservative in
the presence of strong coupling. On the other hand, cooperative
distributed MPC approaches require substantial communica-
tion infrastructure and computation resources since a system-
wide MPC problem is formulated and solved. Approaches
discussed in the literature [19]–[22] typically involve the
communication of planned control sequences or state trajec-
tories between neighboring systems. Unlike non-cooperative
methods, cooperative approaches can guarantee convergence to
the optimal solution of the centralized optimization problem.

In all these approaches the existence of a stabilizing static
terminal controller is assumed to guarantee recursive feasi-
bility and stability of the closed-loop system. This terminal
controller respects the state and input constraints of the system
when operated in an invariant terminal set. The infinite-horizon
cost associated with this terminal controller is upper bounded
by a terminal cost [11]. In the DMPC framework adopted
here, the terminal controller, cost and invariant terminal set
are designed to respect the distributed structure of the system
[12]–[26], making the resulting DMPC optimization problem
amendable to distributed computation algorithms such as the
alternating direction method of multipliers (ADDM) [27]. To
achieve this, current approaches in the literature typically split
the design phase into two sequential parts: (i) the terminal
controller and cost are synthesized based on Lyapunov stability
concepts, then (ii) the invariant terminal set is constructed to
satisfy the state and input constraints for the closed-loop sys-
tem under the given terminal controller. However, the resulting
invariant terminal set can be a small (or even empty) inner
approximation of the maximum invariant terminal set due to
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the imposed restrictions on its structure and the decoupled
design phases. This can lead the resulting DMPC scheme to
severe performance degradation.

In this paper, we propose a novel approach to design a dis-
tributed stabilizing terminal controller and invariant terminal
set that can be adapted in every iteration based on the current
and predicted state of the system. The necessity of online
adaptation of terminal sets based on the predicted system
evolution has previously been identified on several works (e.g.,
[17], [18], [23], [25], [28]). The key difference of our approach
is that the design of the stabilizing terminal controller, the
construction of the invariant terminal set, and the derivation of
the optimal input trajectory for the finite-time horizon DMPC
problem are the result of one single optimization problem. In
other words, unlike current approaches, the construction of
the terminal controller and invariant set is shifted from the
design phase to the online phase. This is achieved by each
system treating the influence of its neighboring systems as a
disturbance; thus, we resort to robust optimization techniques
to formulate the resulting synthesis problem. The proposed
method falls in the category of cooperative schemes since the
optimization variables of the proposed DMPC scheme need to
be agreed among all the involved systems in the network.

The rest of the paper is organized as follows. In Section II,
the dynamical system is analyzed and the standard DMPC
problem formulation is reviewed. The main contributions are
presented in Section III, where the methods to encapsulate the
design of the distributed stabilizing terminal controller, cost
and invariant terminal set, based on Lyapunov stability and
invariance conditions, in the DMPC problem formulation are
discussed. Section IV provides numerical studies to assess the
efficacy and scalability of the proposed method. Concluding
remarks are provided in Section V.

Notation: Let R, R+ and N+ denote the set of real
numbers, non-negative real numbers and non-negative integers,
respectively. For a vector v ∈ Rn, we denote by v> its
transpose and ‖v‖ its Euclidean norm. For given vectors
vi ∈ Rki with ki ∈ N, i ∈ M = {1, . . . ,m}, we
define [vi]i∈M = [v>1 . . . v

>
m]> ∈ Rk with k =

∑m
i=1 ki

as their vector concatenation, and diag(v1, . . . , vM ) as the
block diagonal matrix with v1, . . . , vM on the diagonal and
zeros elsewhere. The notation W � 0 is used to show that
a symmetric matrix W is positive semidefinite. A function
f : R+ → R+ belongs to class K if it is continuous, strictly
increasing and f(0) = 0. A function f : R+ → R+ belongs to
class K∞ if f ∈ K and limx→∞ f(x) =∞. For given matrices
A ∈ Rn×m, B ∈ Rn×n and C ∈ Rm×m, we define the

conventions ?>BA = A>BA and
[
B A

?> C

]
=

[
B A

A> C

]
.

II. PROBLEM FORMULATION

A. Dynamically coupled constrained linear systems
Consider a discrete-time linear time-invariant system with

state dynamics at time t ∈ N+ given by

xt+1 = Axt +But. (1a)

Here, xt ∈ Rn denotes the states with x0 known and ut ∈
Rm the control inputs. The system matrices A ∈ Rn×n, B ∈

Rn×m are assumed known. The states and inputs of the system
are subject to linear constraints

xt ∈ X = {x ∈ Rn : Gx ≤ g}, (1b)
ut ∈ U = {u ∈ Rm : Hu ≤ h}, (1c)

where G ∈ Rp×n, g ∈ Rp, H ∈ Rk×m and h ∈ Rk are known
matrices. The system objective is to minimize the infinite-
horizon cost function

J∞ =
∞∑
t=0

`(xt, ut), (1d)

while satisfying its dynamics and constraints. The stage cost
`(·) is given by

`(xt, ut) = x>t Qxt + u>t Rut, (1e)

with Q ∈ Rn×n and R ∈ Rm×m known positive semi-definite
and positive definite matrices, respectively.

Assumption 1. (A,B) is a stabilizable pair, (Q1/2, A) is an
observable pair, and the sets X and U contain the origin in
their interior.

Assumption 1 is standard in the MPC literature [11] and
is made to guarantee that convergence to the origin, which
is the system equilibrium state, can be achieved. Henceforth,
we refer to the set of initial conditions, x0, for which the
optimizer of this infinite-horizon optimization problem exists
as its feasibility set.

We consider linear systems of the form (1) whose matrices
A, B, G, H , Q and R admit a structure that allows us to
decompose the original system into an ordered set M =
{1, . . . ,M} of M subsystems, which are coupled by their
states, i.e., B, H and R are block diagonal matrices.

Assumption 2. The subsystem dynamics, constraints and
objective functions are coupled only through the subsystem
states and not through the subsystem inputs.

Assumption 2 is not restrictive since any linear system with
coupled state and input constraints can be brought to the
desired form by considering its coupled inputs as additional
states, and their deviation in time as the corresponding new
inputs [25]. This increases the dimension of the system, since
integrator states need to be added. The system states xt and
inputs ut are partitioned as xt = [x>1,t, . . . , x

>
M,t]

> and ut =

[u>1,t, . . . , u
>
M,t]

> where xi,t ∈ Rni and ui,t ∈ Rmi denote
the local states and inputs of i-th subsystem, respectively.
For each i-th subsystem, we define Ni ⊆ M as the set of
subsystems whose states, xNi,t = [xj ]j∈Ni

∈ RnNi , affect
either the dynamics, constraints, or objective function of the i-
th subsystem. Notice that Ni also contains the i-th subsystem.
To simplify notation, we also define the projection matrices
Xi ∈ {0, 1}ni×n, XNi

∈ {0, 1}nNi
×n and Ui ∈ {0, 1}mi×m

such that

xi,t = Xixt, xNi,t = XNi
xt and ui,t = Uiut. (2a)

The i-th subsystem is now defined by state dynamics

xi,t+1 = ANi
xNi,t +Biui,t, (2b)
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constraints

xNi,t ∈ XNi
= {xNi

∈ RnNi : GNi
xNi
≤ gNi

}, (2c)
ui,t ∈ Ui = {ui ∈ Rmi : Hiui ≤ hi}, (2d)

and objective function

J∞ =
∞∑
t=0

M∑
i=1

`i(xNi,t, ui,t), (2e)

where `i(xNi,t, ui,t) = x>Ni,t
QNi

xNi,t + u>i,tRiui,t. Here,
the matrices ANi

, Bi, GNi
, gNi

, Hi, hi, QNi
and Ri are

constructed as ANi
= XiAX

>
Ni

, Bi = XiBUi
>, GNi

are
the non-zero rows of GX>Ni

with gNi
the respective rows of

g, Hi are the non-zero rows of HX>i with hi the respective
rows of h, QNi

= XNi
QX>Ni

and Ri = UiRUi
>.

B. Centralized MPC formulation
In the spirit of MPC, we fix a prediction horizon T and a

time window T = {0, . . . , T − 1}, and introduce a terminal
cost V : Rn → R+ to approximate the original infinite-horizon
objective function by

J̃∞ = V (xT ) +
∑
t∈T

`(xt, ut).

The terminal cost is chosen to upper bound the infinite-horizon
cost associated with the terminal closed-loop system

xt+1 = (A+BKc)xt, (3)

for all t ≥ T . To enforce state and input constraints, we require
xT to lie in the set Xf ⊆ X that is positive invariant under
the terminal closed-loop dynamics in (3). In other words, for
all t ≥ T and xt ∈ Xf ⊆ X then (A + BKc)xt ∈ Xf and
Kcxt ∈ U . The following theorem establishes the necessary
conditions for V (·) to be a Lyapunov function of this terminal
closed-loop system.

Theorem 1 (Lyapunov stability [11, §3]). If there exist func-
tions σ1(·), σ2(·) and σ3(·) ∈ K∞ such that for all x ∈ Xf it
holds

σ1(‖x‖) ≤ V (x) ≤ σ2(‖x‖), (4a)

σ3(‖x‖) ≤ `(x,Kcx), (4b)

V
(
(A+BKc)x

)
− V (x) ≤ −`(x,Kcx), (4c)

then the function V (·) is a Lyapunov function for the terminal
closed-loop system in (3).

Note that due to condition (4c), the control law ut = Kcxt
stabilizes the system and V (·) is an upper bound to the infinite-
horizon cost. Here, we consider a terminal cost of the form

V (x) = x>Pcx, (5)

where Pc ∈ Rn×n is a positive definite matrix. Then,
conditions (4a) and (4b) are satisfied by construction, while
condition (4c) can be reformulated as a linear matrix inequality
(LMI) of the form

In 0 0 Q1/2E

0 Im 0 R1/2Y

0 0 E AE +BY

(?)> (?)> (?)> E

 � 0, (6)

where E = P−1c and Y = KcP
−1
c . To find Kc and Pc that

satisfy the conditions of Theorem 1 and minimize the infinite-
horizon cost of the unconstrained closed-loop system in (3),
the problem of maximizing trace(E) under (6) is solved [29].
The solution to this problem, which is unique and known
to match the one obtained by the discrete algebraic Riccati
equation (DARE), implies that (4c) holds with equality; hence,
the derived V (·) captures the actual infinite-horizon cost.

Given these Kc and Pc, a positive invariant set Xf needs
to be computed to further guarantee state and input constraint
satisfaction for the terminal closed-loop system in (3). For
Xf , two standard forms have been proposed in the literature,
ellipsoidal and polytopic. Ellipsoidal sets of the form

Xf = {x ∈ Rn : x>Pcx ≤ α},

where α is a positive scalar, are the most commonly used,
since the problem of finding the maximum α such that
Xf remains a positive invariant set can be cast as a linear
optimization problem [29, §5.2]. However, ellipsoidal sets
typically provide an inner approximation of the maximum
positive invariant set, denoted by X∞. Alternatively, one can
consider polytopic invariant sets of the form

Xf = {x ∈ Rn : Afx ≤ bf}.

Indeed, it is shown in [30] that for linear and stable systems
confined by compact constraint sets containing the origin,
as the terminal closed-loop system in (3), the maximum
positive invariant set, X∞, admits a polytopic form and can
be computed through a finite iterative procedure, though the
computation is often prohibitive for larger systems.

In summary, in its centralized form, the MPC optimization
problem is given by

min V (xT ) +
∑
i∈M

(∑
t∈T

`i(xNi,t, ui,t)

)
s.t. xi,t+1 = ANi

xNi,t +Biui,t
(xNi,t, ui,t) ∈ XNi

× Ui

}
∀i ∈M,

xT ∈ Xf

(C)

with optimization variables (xt, ut) for all t ∈ T . Problem (C)
is solved at every time step and is designed to make the
infinite-horizon problem in (1) amenable to finite-dimensional
optimization. However, its optimal cost is greater and its fea-
sibility set smaller compared to (1), making it a conservative
approximation. Problem (C) is not amendable to distributed
computation algorithms since its terminal cost V (·) and set Xf

will not in general respect the distributed structure afforded by
the problem dynamics and constraints.

C. Distributed MPC formulation

To enforce decoupling along the system structure, the ter-
minal controller of each i-th subsystem can be designed as

ui,t = KNi
xNi,t,

where KNi
∈ Rmi×nNi , such that its closed-loop dynamics

are given by

xi,t+1 = (ANi
+BiKNi

)xNi,t. (7)
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In this setting, the system input, ut, for all t ≥ T is formed
as

ut =

(
M∑
i=1

Ui
>KNi

XNi

)
xt = Kdxt.

and the terminal closed-loop dynamics as

xt+1 = (A+BKd)xt. (8)

For each i-th subsystem, we define

V̂i(xi) = x>i Pixi,

where Pi ∈ Rni×ni is a positive definite matrix, such that the
terminal cost associated with the terminal closed-loop system
in (8), denoted by V̂ (·) to distinguish it from the non-separable
one in (5), is now given by

V̂ (xT ) =
M∑
i=1

V̂i(xi,T )

= x>T

(
M∑
i=1

X>i PiXi

)
xT = x>T PdxT .

Similarly to the centralized case, to find KNi
and Pi for

all i ∈ M, or equivalently Kd and Pd, that satisfy the
stability conditions of Theorem 1 and minimize the infinite-
horizon cost of the unconstrained closed-loop system in (8),
the problem of maximizing trace(E) under (6), where now
E = P−1d and Y = KdP

−1
d , is solved [29]. Unlike the

centralized case, condition (4c) does not in general hold with
equality because of the structure enforced on Kd and Pd. In
other words, the resulting terminal cost, V̂ (·), is an upper
bound to the cost of operating the system under the static
terminal controller ut = Kdxt for all t ≥ T .

Given Kd and Pd, a positive invariant set X̂f needs to
be computed such that the state and input constraints of the
system are satisfied under the terminal closed-loop dynamics
in (8). To retain the system’s decoupled structure, X̂f is
designed as

X̂f = X̂f,1 × · · · × X̂f,M ,

with X̂f,i ellipsoidal

X̂f,i = {xi ∈ Rni : x>i Pixi ≤ αi} (e.g., [23], [25], [26]),

or polytopic

X̂f,i = {xi ∈ Rni : Af,ixi ≤ bf,i} (e.g., [16], [19]).

In this distributed framework, the MPC optimization prob-
lem is given by

min
∑
i∈M

(
V̂i(xi,T ) +

∑
t∈T

`i(xNi,t, ui,t)

)
s.t. xi,t+1 = ANi

xNi,t +Biui,t
(xNi,t, ui,t) ∈ XNi

× Ui
xi,T ∈ X̂f,i

∀i ∈M,

(D)

with optimization variables (xNi,t, ui,t) for all i ∈M, t ∈ T .
Problem (D) exhibits the desired distributed structure which
is amendable to distributed computation algorithms (e.g., the
alternating method of multipliers [27]). However, Problem (D)

will in general be a conservative approximation, in terms
of optimal cost and feasibility set, of Problem (C) due to
the structure imposed on its terminal cost and invariant set.
Intuitively, if the terminal region is small then the effort needed
to push xT into it can be large or in some instances even not
feasible. Besides structural restrictions, further conservative-
ness is introduced in the computation of the terminal set X̂f by
not considering the system constraints during the design of the
distributed terminal controller Kd, although Kd directly affects
the shape of X̂f . In current state-of-the art approaches [12]–
[26], the design of Kd typically relies on satisfying the stability
conditions stated in Theorem 1 while the computation of X̂f

is performed afterwards. In what follows, we propose a new
method that allows us to couple the design of the stabilizing
terminal controller Kd and positive invariant set X̂f under the
same DMPC optimization problem.

III. ADAPTIVE DISTRIBUTED MPC

In this section, we consider the construction of an adaptive
terminal set and show how its computation can become
tractable by exploiting robust optimization techniques. Similar
to the DMPC formulation described above, we calculate Pd by
only considering Lyapunov stability, but allow Kd and X̂f to
adapt in every iteration based on the current and predicted state
of the system. We introduce additional constraints to ensure
that the underlying adaptive Kd stabilizes the terminal closed-
loop system. We conclude our analysis by bringing parts
together to formulate the proposed adaptive DMPC scheme
for which we establish recursive feasibility and stability under
receding horizon implementation.

A. Positive invariant terminal sets

For each i ∈ M, we consider ellipsoidal terminal sets of
the form

X̂f,i(αi) = {xi ∈ Rni : x>i Zixi ≤ αi},

where Zi is a predefined, fixed, positive definite matrix and αi

is a positive scalar decision variable. To ease exposition, we
define the decision-dependent matrices α = diag(α1, . . . , αM )
and αNi

= XNi
αX>Ni

, and the terminal set X̂f,Ni
(αNi

) =

×j∈Ni
X̂f,j(αj). The following proposition provides the nec-

essary conditions for X̂f,i(αi) to be positive invariant.

Proposition 1. If for each subsystem i ∈M and for all xNi
∈

X̂f,Ni
(αNi

) the following conditions hold

(ANi
+BiKNi

)xNi
∈ X̂f,i(αi), (9a)
xNi
∈ XNi

, (9b)
KNi

xNi
∈ Ui, (9c)

then each set X̂f,i(αi) is positive invariant under the i-
th subsystem closed-loop dynamics in (7); hence, X̂f(α) =
X̂f,1(α1) × · · · × X̂f,M (αM ) is also positive invariant under
the system closed-loop dynamics in (8).

Proof. Conditions (9b) and (9c) guarantee that the state and
input constraints of the i-th subsystem are satisfied. To prove
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that X̂f,i(αi) is a positive invariant set, it remains to show
that for all xi,t ∈ X̂f,i(αi) then xi,t+1 ∈ X̂f,i(αi). This
is indeed guaranteed by condition (9a) as long as the set
×j∈Ni\{i}

X̂f,j(αj) is also positive invariant. The last argu-
ment directly follows since the Cartesian product of positive
invariant sets is itself a positive invariant set, and condition
(9a) is imposed simultaneously for all i ∈M.

Roughly speaking, the conditions of Proposition 1 are equiv-
alent to assuming that each subsystem treats the mutual depen-
dencies of its neighboring subsystems as bounded disturbances
to its own dynamics. Under this assumption the terminal set
X̂f,i(αi) can be considered as a robust positive invariant set
and the terminal controller KNi

as a disturbance feedback.
Thus, we employ robust optimization tools to express the
Lyapunov stability and invariance conditions explicitly on the
DMPC optimization problem in the form of LMIs that respect
the existing coupling structure of the system.

In the sequel, we provide the reformulations of the individ-
ual robust constraints in Proposition 1 into LMIs. To do so, we
make the substitution YNi

= KNi
α
1/2
Ni

where YNi
is a matrix

of decision variables, and introduce the notational conventions
Zij = XNi

X>j ZjXjX
>
Ni

, Pij = XNi
X>j PjXjX

>
Ni

. Recall
that Zj and Pj are predefined fixed matrices. We now start by
reformulating the invariance constraint in (9a).

Proposition 2. For each i ∈M, condition

(ANi
+BiKNi

)xNi
∈ X̂f,i(αi) for all xNi

∈ X̂f,Ni
(αNi

),

holds if there exists Λi = [λij ]j∈Ni
∈ R|Ni|

+ such that[
Z−1i α

1/2
i ANi

α
1/2
Ni

+BiYNi

?>
∑

j∈Ni
λijZij

]
� 0, (10a)

and ∑
j∈Ni

λij ≤ α1/2
i . (10b)

Proof. Parsing the expression of invariance for the i-th sub-
system, we get

x>Ni
(?)>Zi(ANi

+BiKNi
)xNi

≤ αi

for all x>j Zjxj ≤ αj with j ∈ Ni.

We use the auxiliary variables si ∈ Rni to make the substi-
tutions xi = α

1/2
i si for all i ∈ M. Using this, the robust

constraint above is equivalently written as

s>Ni
(?)>Zi(ANi

α
1/2
Ni

+BiYNi
)sNi

≤ αi

for all s>j Zjsj ≤ 1 with j ∈ Ni

⇔ s>Ni
(?)>Ziα

−1/2
i (ANi

α
1/2
Ni

+BiYNi
)sNi

≤ α1/2
i

for all s>Ni
ZijsNi

≤ 1 with j ∈ Ni.

Now using the S-lemma [29, §2.6.3], the robust constraint
above holds if there exists λij ≥ 0 with j ∈ Ni such that

(?)>Ziα
−1/2
i (ANi

α
1/2
Ni

+BiYNi
) �

∑
j∈Ni

λijZij ,

and ∑
j∈Ni

λij ≤ α1/2
i .

By applying the Schur-complement, we obtain (10).

We continue by providing tractable approximations to con-
ditions (9b) and (9c) of Proposition 1 that guarantee that the
state and input constraints of the system are satisfied by the
terminal controller. To do so, we denote the `-th row (out of
pi rows) of the GNi

and gNi
state constraint matrices by G`

Ni

and g`Ni
, respectively. Similarly, we denote the `-th row (out

of ki rows) of the Hi and hi input constraint matrices by H`
Ni

and h`i , respectively.

Proposition 3. For each i ∈M, the state constraints

GNi
xNi
≤ gNi

for all xNi
∈ X̂f,Ni

(αNi
),

hold, if there exists matrix Φi ∈ R|Ni|×pi

+ with `-th column
Φ`

i = [φ`ij ]j∈Ni
such that[
g`Ni

G`
Ni
α
1/2
Ni

?>
∑

j∈Ni
φ`ijZij

]
� 0, (11a)

and ∑
j∈Ni

φ`ij ≤ g`Ni
, (11b)

for all ` = 1, . . . , pi.
Similarly, the input constraints

HiKNi
xNi
≤ hi for all xNi

∈ X̂f,Ni
(αNi

),

hold, if there exists matrix Ψi ∈ R|Ni|×ki

+ with `-th column
Ψ`

i = [ψ`
ij ]j∈Ni

such that[
h`i H`

i YNi

?>
∑

j∈Ni
ψ`
ijZij

]
� 0, (12a)

and ∑
j∈Ni

ψ`
ij ≤ h`i , (12b)

for all ` = 1, . . . , ki.

Proof. For each i ∈ M, the `-th state constraint in (9b) is
given by

G`
Ni
xNi
≤ g`Ni

for all x>j Zjxj ≤ αj with j ∈ Ni.

We consider the auxiliary variables si ∈ Rni and make the
substitutions xi = α

1/2
i si for all i ∈M. The robust constraint

above is now equivalently written as

G`
Ni
α
1/2
Ni
sNi,t ≤ g

`
Ni

for all s>j Zjsj ≤ 1 with j ∈ Ni.

It is easy to verify that in case of ellipsoidal sets the robust
constraint above is equivalent to

‖G`
Ni
α
1/2
Ni
sNi,t‖2 ≤ g`Ni

for all s>j Zjsj ≤ 1 with j ∈ Ni

⇔ s>Ni,t
(?)>g` −1Ni

(Gj
Ni
α
1/2
Ni

)sNi,t ≤ g`Ni

for all s>Ni
ZijsNi

≤ 1 with j ∈ Ni.

Applying the S-lemma, this robust constraint holds if there
exists φ`ij ≥ 0 with j ∈ Ni such that

(?)>g` −1i G`
Ni

(α
1/2
Ni

) �
∑
j∈Ni

φ`ijZij ,
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and ∑
j∈Ni

φ`ij ≤ α
1/2
i .

Then, we apply the Schur complement to obtain (11). Follow-
ing similar derivation arguments, one can prove that the `-th
input constraint in (9c), that is equivalent to

H`
iKNi

α
1/2
Ni
sNi,t ≤ h

`
i for all s>j Zjsj ≤ 1 with j ∈ Ni,

holds, if (12) is satisfied.

B. Stability of the terminal closed-loop system

To ensure stability of the terminal closed-loop system in
(8), the adaptive Kd needs to be designed to also satisfy the
stability conditions in Theorem 1, for a given Lyapunov matrix
Pd. The non-decoupled structure of these conditions makes
them unsuitable for explicit consideration in the formulation
of Problem (D). Instead, we adopt the notion of structured
control Lyapunov functions, introduced in [31], which allow
us to consider the conditions for stability in a way that respects
the distributed structure of our system.

Theorem 2. ([31, §3.2]) If for each i ∈ M there exist
functions σ1

i (·), σ2
i (·), σ3

i (·) ∈ K∞, and γi(xNi
) : RnNi → R

such that for all xi ∈ X̂f,i(αi):

σ1
i (‖xi‖) ≤ V̂i(xi) ≤ σ2

i (‖xi‖) (13a)

σ3
i (‖xi‖) ≤ `i(xNi

,KNi
xNi

) (13b)

V̂i((ANi
+BiKNi

)xNi
)− V̂i(xi)

≤ −`i(xNi
,KNi

xNi
) + γi(xNi

)
(13c)

M∑
i=1

γi(xNi
) ≤ 0 (13d)

then V̂ (xi) =
∑M

i=1 V̂i(xi) is a Lyapunov function for the
terminal closed-loop system in (8).

Notice that Theorem 2 implies the more general Lyapunov
stability Theorem 1, when that is formulated using Kd and
Pd. Conditions (13a) and (13b) in Theorem 2 are satisfied by
the terminal and stage costs constructions. Conditions (13c)
and (13d) guarantee that the distributed terminal controllers
stabilize the system and V̂ (·) is an upper bound on the actual
value function. Note that the definition above does not impose
that each function V̂i(·) is a control Lyapunov function for the
corresponding subsystem in X̂f,i(αi). Roughly speaking, this
condition allows a local terminal cost to increase as long as at
the same time the sum of all terminal costs in (13d) decreases.

Proposition 4. Conditions (13c) and (13d) hold if there exists
ΠNi
∈ RnNi

×nNi such that
α
1/2
i INi

0 0 Q
1/2
Ni
α
1/2
Ni

0 α
1/2
i 0 R

1/2
i YNi

0 0 P−1i α
1/2
i ANi

α
1/2
Ni

+BiYNi

(?)> (?)> (?)> Piiα
1/2
i + ΠNi

 � 0.

(14)
and

M∑
i=1

X>Ni
ΠNi

XNi
� 0. (15)

Proof. Condition (13c) formulated with γi(xNi
) =

x>Ni
ΓNi

xNi
, where ΓNi

∈ RnNi
×nNi , is written as

x>Ni

(
Pii − (?)>Pi(ANi

+BiKNi
)−QNi

−K>Ni
RiKNi

+ΓNi

)
xNi
≥ 0 for all x>j Zjxj ≤ αj with j ∈ Ni.

Once again, we use the auxiliary variable si ∈ Rni to make
the substitution xi = α

1/2
i si. Then, the robust constraint above

is equivalently written as

s>Ni

(
α
1/2
Ni
Piiα

1/2
Ni
− (?)>Pi(ANi

α
1/2
Ni

+BiYNi
)

−α1/2
Ni
QNi

α
1/2
Ni
− Y >Ni

RiYNi
+ α

1/2
Ni

ΓNi
α
1/2
Ni

)
sNi
≥ 0

for all s>Ni
ZijsNi

≤ 1 with j ∈ Ni.

Making use of the substitutions α1/2
Ni
Piiα

1/2
Ni

= α
1/2
i Piiα

1/2
i

and ΠNi
= α

1/2
Ni

ΓNi
α
−1/2
i α

1/2
Ni

, and then applying the
S-lemma, we have that the robust constraint above holds, if
there exist τij ≥ 0 with j ∈ Ni such that0 0

0
Piiα

1/2
i − (?)>Piα

−1/2
i (ANi

α
1/2
Ni

+BiYNi
)

−α1/2
Ni
QNi

α
−1/2
i α

1/2
Ni
− Y >Ni

Riα
−1/2
i YNi

+ ΠNi


�
∑

j∈Ni
τij

[
1 0

0 −Zij

]
.

This implies τij = 0 for all j ∈ Ni; hence, the matrix
inequality constraint above is equivalently written as

Piiα
1/2
i − (?)>Piα

−1/2
i (ANi

α
1/2
Ni

+BiYNi
)

−α1/2
Ni
QNi

α
−1/2
i α

1/2
Ni
− Y >Ni

Riα
−1/2
i YNi

+ ΠNi
� 0.

We use the Schur complement to write this expression as,[
P−1i α

1/2
i (ANi

α
1/2
Ni

+BiYNi
)

(?)> Piiα
1/2
i + ΠNi

]

−
[
? ?

? ?

]> [
α
−1/2
i INi

0

0 α
−1/2
i

][
0 Q

1/2
Ni
α
1/2
Ni

0 R1/2YNi

]
� 0.

Applying, once again, the Schur complement, leads to (14).
Finally, conditions (13d) is written as:

x>
( M∑
i=1

X>Ni
ΓNi

XNi

)
x ≤ 0

for all x>i Zixi ≤ αi with i = 1, . . . ,M

⇔ s>
( M∑
i=1

αX>Ni
ΓNi

XNi
α
)
s ≤ 0

for all s>i Zisi ≤ 1 with i = 1, . . . ,M

⇔ s>
( M∑
i=1

X>Ni
αNi

ΓNi
αNi

XNi

)
s ≤ 0

for all s>i Zisi ≤ 1 with i = 1, . . . ,M

⇔ s>
( M∑
i=1

X>Ni
αNi

ΓNi
α
−1/2
i αNi

XNi

)
s ≤ 0

for all s>i Zisi ≤ 1 with i = 1, . . . ,M

⇔ s>
( M∑
i=1

X>Ni
ΠNi

XNi

)
s ≤ 0

for all s>i Zisi ≤ 1 with i = 1, . . . ,M
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Using the S-lemma, we have that the robust constraints above
holds if there exists ρij ≥ 0 with j ∈M such that[

0 0

0
∑M

i=1X
>
Ni

ΠNi
XNi

]
�
∑
j∈M

ρij

[
1 0

0 −X>j ZjXj

]
This implies ρij = 0 for all j ∈ Ni; hence, the matrix
inequality constraint above can be written as an LMI of the
form (15) which concludes the proof.

To be compatible with the LMI invariance and stability
conditions presented previously, we rewrite condition xi,T ∈
X̂f,i(αi) in terms of the square root of the decision variable
α
1/2
i , given by

xi,T ∈ X̂f,i(αi)⇔

[
Z−1i α

1/2
i xi,T

x>i,T α
1/2
i

]
� 0, (16)

where the Schur complement is applied. To this end, we define
for each i ∈M the set

X̃f,i(αNi
, YNi

,Λi,Φi,Ψi,ΠNi
)

= {xi ∈ Rni :Conditions (10) to (12) and (14) to (16) hold}.

C. Stability and recursive feasibility

The decentralized MPC problem with adaptive terminal sets
is given by

min
∑
i∈M

(
V̂i(xi,T ) +

∑
t∈T

`i(xNi,t, ui,t)

)
s.t. xi,t+1 = ANi

xNi,t +Biui,t
(xNi,t, ui,t) ∈ XNi

× Ui
xi,T ∈ X̃f,i(αNi

, YNi
,Λi,Φi,Ψi,ΠNi

)

∀i ∈M,

(AD)

with optimization variables (xNi,t, ui,t, αNi
, YNi

, Λi, Φi, Ψi,
ΠNi

) for all i ∈M, t ∈ T .
Following similar arguments to [11], we now show that

establishing stability and recursive feasibility for the closed-
loop system (1) under the receding horizon MPC controller
defined in Problem (AD) is equivalent to requiring that
Problem (AD) is feasible for the initial system state.

Theorem 3. The closed loop system formed by solving Prob-
lem (AD) in receding horizon enjoys the following properties:

1) It is recursively feasible, in the sense that if Prob-
lem (AD) is feasible for the initial condition x0 it
remains feasible throughout the closed loop system
evolution;

2) It is asymptotically stable.

Proof. Assume that the optimization Problem (AD) is feasible
at time t = t0. Then, we obtain a sequence of optimal
inputs [ui,t0 , . . . , ui,t0+T−1] for all i ∈ M, referred as
“optimal” sequence, which satisfy the state, input and ter-
minal constraints of the problem. Since X̃f,i(·) is a positive
invariant set thanks to Proposition 1, the sequence of inputs
[ui,t0+1, . . . , ui,t0+T−1,KNi

xNi,t0+T ] for all i ∈M, referred
as “tail” sequence, is a feasible solution for Problem (AD) at
time t = t0 +1. Hence, if the optimization Problem (AD) has
a solution at time t0 then it is guaranteed to have a solution

at time t0 + 1. Since any solution to Problem (AD) enforces
the terminal set to be positive invariant, recursive feasibility
is preserved even though the terminal sets are adapting on the
current state of the system.

To prove stability of Problem (AD), define the objective
function cost Jt0 at time t0 as

Jt0 =
∑
i∈M

(
V̂i(xi,T ) +

t0+T−1∑
t=t0

`i(xNi,t, ui,t)

)
.

Let now J∗t0 be the cost at time t0 when applying the “optimal”
sequence and Ĵt0+1 be the cost when applying the “tail”
sequences from time t0 + 1. Then, we have that

Ĵt0+1 − J∗t0 ≤ V̂ (xNi,t0+T+1) + `(xNi,t0+T ,KNi
xNi,t0+T )

−V̂ (xNi,t0+T )− `(xt0 , ut0)

≤ −`(xt0 , ut0)

since V̂i(·) is a Lyapunov function thanks to Proposition 4.
Moreover, noting that Ĵt0+1 ≥ J∗t0+1 due to the suboptimality
of the tail sequences gives

J∗t0+1 − J∗t0 ≤ −`(xt0 , ut0)

implying that J∗ is a Lyapunov function for the closed-
loop system (1) under the receding horizon DMPC controller
defined in Problem (AD).

We now summarize in Algorithm 1 the main steps involved
towards implementing the proposed DMPC scheme.

Algorithm 1 Receding horizon implementation of DMPC
scheme with adaptive terminal sets

Offline phase:
1: Calculate Pd � 0 by solving the LMI in (6)
2: Choose and fix Zi � 0 for all i ∈M

Online phase:
3: Measure current state x0
4: Solve Problem (AD)
5: Apply ui,t0 for all i ∈M

In an offline phase, we calculate the distributed Lyapunov
function V̂ (·) by solving the LMI in (6) using the structured Pd

and Kd, and we also fix, by predefining Zi, the shapes of the
decentralized terminal sets, which introduces conservatism. It
is common practice in literature to select Zi = P−1i [22]–[25],
although, this might not be the least conservative choice, as
discussed in [26]. Note that similar offline calculation steps are
involved in most DMPC schemes presented in the literature
[12]–[26]. Our method, however, does not consider the Kd

corresponding to the calculated Lypaunov matrix Pd as the
terminal controller used to compute the positive invariant set
X̂f . Instead, at every iteration of the online phase, Kd and
X̃f(·) are adapted because (10) to (12) and (14) to (16)
take the current and predicted system states into account.
This unified framework allows for additional flexibility dur-
ing the online phase by considering the synthesis of the
stabilizing terminal controllers and the scaling of positive
invariant terminal sets under the same DMPC optimization
Problem (AD). Although global information is needed in
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steps 1 and 4 of Algorithm 1, we remark that both steps
are amendable to distributed computation, without the need
for additional communication links among the agents; for
instance, [25] provides a distributed algorithm to calculate
Pd, and [27] uses consensus ADMM as a suitable distributed
optimization algorithm to solve Problem (AD). Comparing
to Problem (D), one would expect increased communication
overhead with adaptive terminal sets due to the requirement
that subsystems additionally agree on the scaling, αi, of the
terminal set. Thus, while in Problem (D), each subsystem
needs to reach consensus on niT variables with each neighbor,
in Problem (AD), consensus needs to be achieve for niT + 1
variables. In this context, the number of communication rounds
needed to reach consensus in a distributed implementation
is likely to increase. Formally quantifying the increase is
hard, however, this will depend on the network structure, the
subsystems characteristics and on the problem initialization.

IV. NUMERICAL EXAMPLES

In this section, we conduct a number of simulation-based
studies to assess the efficacy of the proposed DMPC formu-
lation with adaptive terminal sets. We focus our attention on
two examples: (i) an illustrative two-dimensional system that
allow us to assess, numerically and graphically, the benefits
of invariant terminal sets that can adapt to the current and
predicted states of the system, and (ii) a spring-mass-damper
system which is a common benchmark (e.g., see [16], [23],
[25], [26]) for studying the scalability and the closed-loop
behavior in distributed control.

A. Illustrative example

We consider a linear time-invariant system with dynamics

xt+1 =

[
5 0.1

0.3 0.9

]
xt +

[
1 0

0 0.5

]
ut, (17a)

where xt ∈ R2 denotes the states and ut ∈ R2 the inputs. The
system is subject to linear state and input constraints[

−5

−5

]
≤ xt ≤

[
5

5

]
and

[
−1

−1

]
≤ ut ≤

[
1

1

]
(17b)

and its goal is to minimize the infinite-horizon objective
function

J∞ =

∞∑
t=0

(
x>t Qxt + u>t Rut

)
, (17c)

where Q = diag(1, 1) and R = diag(0.1, 0.1). We split
the system into two dynamically coupled subsystems with
states x1,t, x2,t ∈ R and inputs u1,t, u2,t ∈ R such that
xt = [x1,t x2,t]

> and ut = [u1,t u2,t]
>. The dynamics,

constraints and objective functions of these subsystems can
straightforwardly be constructed through (17).

We approximate the infinite-horizon objective function by

J̃∞ = V (xT ) +
T−1∑
t=0

(
x>t Qxt + u>t Rut

)
,

where V (·) denotes the terminal cost. In the centralized MPC
formulation, V (xT ) = x>T PcxT , where Pc ∈ R2×2, together

with the underlying Kc, is computed by solving the LMI in
(6) derived by the stability condition in Theorem 1, leading to

Pc =

[
3.46 0.13

0.13 1.25

]
and Kc =

[
−4.86 −0.11

−0.48 −1.36

]
.

Given Kc, the maximum invariant terminal set, X∞, is com-
puted using routines developed in MPT 3.0 toolbox [32],
while the ellipsoidal invariant terminal set, Xf , is computed by
solving a linear optimization problem, described in [29, §5.2].
We refer to Problem (C) formulated with X∞ as (C-Max.) and
Xf as (C-Ellip.).

We compare these centralized formulations with the pro-
posed distributed one where the terminal cost is given by
V (xT ) = x>1,TP1,dx1,T + x>2,TP2,dx2,T = x>T PdxT , where
P1,d, P2,d ∈ R. Pd, together with the underlying fixed dis-
tributed controller K̂d, is computed by solving the LMI in (6)
with E = P−1d and Y = K̂dP

−1 (c.f., step 1 of Algorithm 1),
leading to

Pd =

[
8.07 0

0 4.25

]
and K̂d =

[
−4.94 −0.10

−0.54 −1.63

]
As decentralized terminal sets, we consider two alternatives:
(i) the fixed X̂f = {x ∈ R2 : x>Pdx ≤ α}, where α is
a positive scalar computed by solving a linear optimization
problem [29, §5.2]. We refer to Problem (D) formulated with

(a)

(b)

Fig. 1. Shapes of X∞ (green), Xf (red) X̂f (gray) and X̃f (α1, α2) (blue)
for different terminal states xT .
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(a) (b) (c)

Fig. 2. Closed-loop receding horizon (RH) performance of the compared MPC schemes for different initial states x0 and horizon T = 2.

X̂f as (D-Fix.), and we remark that the cost of (D-Fix.) can
be seen as a lower bound to the cost of the DMPC schemes
in [23], [25] since X̂f is an outer approximation to their opti-
mally chosen decentralized sets; (ii) the adaptive terminal set
X̃f(α1, α2) = {(x1, x2) ∈ R2 : x>1 Z1x1 ≤ α1, x

>
2 Z2x2 ≤

α2}, where α1, α2 are positive scalars computed with the
methods presented in Section III and Z1 = P1,d, Z2 = P2,d

(c.f., step 2 of Algorithm 1). In this adaptive process, a
different feedback gain K̃d is computed at each iteration that
makes the corresponding X̃f(α1, α2) invariant (c.f., step 4
of Algorithm 1). We report the values of the different K̃d

in the numerical results below. Problem (AD) formulated
with X̃f(α1, α2) is referred as (D-Adap.). We formulate and
solve the respective optimization problems using MATLAB
with YALMIP and MOSEK on a computer equipped with
8 GB RAM and a single core 2.9 GHz processor.

In Figure 1, the shapes of X∞ (green), Xf (red), X̂f (gray)
and X̃f(α1, α2) (blue) are depicted for different terminal states
xT . Note that X̃f(α1, α2) appears to be a box, because for this
two dimensional example the combined terminal set is the
product of two one dimensional, convex ellipsoidal sets. As
convex ellipsoids are equivalent to intervals in one dimension,
their product is equivalent to a box in two dimensions. If xT

lies outside the invariant terminal set, then the respective MPC
problem is infeasible. That being said, this example highlights
the ability of X̃f(α1, α2) to adapt and include terminal state
xT in its interior; hence, appropriately adapting the feasibility
domain of Problem (D-Adap.). This adaptation also involves
adjusting the values of the terminal controller K̃d, as reported
in Figure 1.

To investigate the closed-loop behavior of the system for dif-
ferent initial conditions we choose a time horizon T = 2 and
evaluate the performance of the system on a receding horizon
implementation, i.e., repeating steps 3 to 5 of Algorithm 1. As
a metric, the cost of operating the system until convergence
within a ball of radius ε = 10−3 close to the origin is used. We
report these comparison results in Figure 2. It can be observed
that if the initial state x0 is close to the origin, as in Figure 2(a),
then MPC schemes (C-Max.) and (C-Ellip.) achieve the same
cost, outperforming the decentralized approaches. This is not
surprising since Kc is the optimal controller for the infinite
horizon problem, thus, if the terminal state of (C-Max.) is
inside the terminal set of (C-Ellip.), then the two approaches
lead to the same solution. However, as the initial state is chosen

further away from the origin, then higher control inputs are
needed in the first two steps to ensure that the resulting xT

lies in the respective terminal set. For instance, in Figure 2(b),
(D-Fix.) is infeasible while (D-Adap.) outperforms in terms
of cost even the centralized MPC scheme (C-Ellip.). Note
that (C-Max.) remains a strict lower bound on the achievable
cost under comparable conditions, however, computing X∞
offline is challenging and maybe prohibitive for more complex
systems. The importance of considering adaptive terminal
sets is further highlighted in Figure 2(c) where the DMPC
scheme (D-Adap.) is feasible for initial states for which a
solution for the centralized scheme (C-Ellip.) does not exist.
This is attributed to the methods ability to modify the size
of its terminal region by appropriately adapting its terminal
controller K̃d while satisfying the stability and invariance
conditions.

B. Spring-mass-damper

m4 m3 m2 m1

Fig. 3. A chain of four masses connected by springs and dampers.

We now consider a series of masses that are connected by
springs and dampers and arranged in a chain formation, exem-
plified in Figure 3. The values of the masses, spring constants
and damping coefficients are chosen uniformly at random
from the intervals [5, 10]kg, [0.8, 1.2]N/m and [0.8, 1.2]Kg/s,
respectively. We assume that the i-th mass is a subsystem with
its state vector xi,t ∈ R2 representing the position and velocity
deviation from the system’s equilibrium state, and its input
ui,t ∈ R an external force applied to it. We assume that the
states and inputs are constrained by[

−2

−5

]
≤ xt ≤

[
2

5

]
and − uc ≤ ut ≤ uc,

where uc is chosen uniformly at random from the interval
[2, 4]N. The subsystems are initially at rest and positioned
uniformly at random within the intervals [−2, −1.8]m and
[1.8, 2]m from their respective equilibrium positions.

The continuous-time dynamics of this interconnected dy-
namical system naturally admits a distributed structure. The
prediction control model is obtained by the discretization of
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(a)

(b)

Fig. 4. (a) Receding horizon (RH) position and velocity trajectories for (C-
Max.) and (D-Adap.) schemes; (b) Cost and solution time comparison for
DMPC schemes with (D-Adap.) as basis for 100 randomly generated system
instances. Spread of cost and solution time for the compared DMPC schemes
are reported in their respective colors, while mean values in black.

the system’s continuous dynamics using forward Euler with
the sampling time 0.1s. Although inexact, Euler discretization
is chosen to preserve the distributed structure of the system.
On the contrary, the discrete-time simulation model of the
system is obtained using the exact zero-order hold discretiza-
tion method with the sampling time 0.1s. The objective
function of each system is of the quadratic form (2e) with
QNi

= diag(1, 1) and Ri = 0.1. Similar to Section IV-A, we
formulate the respective LMIs from the Lyapunov conditions
of Theorem 1 to compute Pc, Kc, Pd = diag([Pi,d]i∈M)

with Pi,d ∈ R2, and K̂d; then, we compute the sets X∞,
Xf and X̂f . We refer to Problem (C) formulated with X∞ as
(C-Max.) and Xf as (C-Ellip.), Problem (D) formulated with
X̂f as (D-Fix.), and Problem (AD) with adaptive invariant
terminal sets X̃f(α), where Zi = Pi,d for all i ∈ M, as (D-
Adap.). We formulate and solve the respective optimization

problems using MATLAB with YALMIP and MOSEK on
a computer equipped with 8 GB RAM and a single core
2.9 GHz processor.

The performance of the system is evaluated on a receding
horizon implementation. We use as a metric the cost of
operating the system until convergence within a ball of radius
ε = 10−3 close to the system’s equilibrium state. Such a
closed-loop simulation experiment for a system comprising
three masses and a prediction horizon of T = 8 is shown
in Figure 4(a) for the trajectories generated by the MPC
(C-Max.) and DMPC (D-Adap.) schemes. We observe that
these trajectories are very similar, indicating the proximity in
performance between the centralized and distributed designs.

The proposed approach relies on the adaptation of the
invariant terminal sets in each receding horizon simulation
which involves the formulation and solution of a semi-definite
program. To avoid the computational burden of this online
phase (steps 3 to 5 in Algorithm 1), we compare the proposed
fully adaptive method (D-Adap.) with its simplification (D-
Ad0) in which the adaptation of the invariant terminal sets
is only performed once at time t = 0 to account for the
effect of the initial state of the system. Then, we enforce these
computed terminal sets for the rest of the receding horizon
simulations. That requires in step 4 of Algorithm 1 to only
solve a quadratically constraints quadratic program instead of
a semidefinite one. These two approaches are compared as the
number of subsystems increases where for each topology we
generate 100 random system instances. We use as metrics for
this comparison the mean solution time and the cost of the
receding horizon simulations until convergence to the origin
is achieved. The results are reported in Figure 4(b). It is
observed that adapting the invariant terminal sets in every
iteration provides a slightly better solution quality with respect
the case where the adaptation is only performed once at time
t = 0. This is partially attributed to the dissipative nature
of the spring-mass-damper system, the relatively small model
mismatch and the absence of noise which make the initial
displacement to be the determining factor for the shape of the
terminal sets. Roughly speaking, once a feasible solution is
found at t = 0, the receding horizon solution more or less
follows the prediction you made at t = 0, hence, there is little
need to adapt the sets to get feasibility. If there was noise or
larger model mismatch, there would be occasional “outliers”
with the system state to find itself far from the trajectory
predicted at t = 0 during receding horizon implementation.
At such times, it may be beneficial to adapt the sets again. If
solve time permits, one could also do this in an event driven
manner; if (D-Ad0) with the current terminal sets becomes
infeasible, solve the full (D-Adap.) to get new sets. On the
contrary, the computational benefit occurring when using the
(D-Ad0) method is considerable since this simplified approach
only requires a fraction of the time used by (D-Adap.) to
generate the solution of the DMPC optimization problem.

To better quantify the performance comparison between the
proposed adaptive DMPC approach and centralized MPC, we
conducted several simulation experiments for systems with
different horizons and number of subsystems. The comparison
is performed on the suboptimality of the respective methods
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(a)

(b)

Fig. 5. Cost comparison of different MPC schemes with (C-Max.) as basis
for 100 randomly generated system instances as (a) the number of subsystems
increases and (b) the time horizon of the MPC formulation increases. Spread
of cost for each MPC scheme is reported in its respective color and mean
value of cost in black.

during receding horizon simulations using as basis the cost
associated with the centralized MPC Problem (C-Max.). In-
stead of (D-Adap.), we use the (D-Ad0); the online solution
times are comparable for all four methods and not reported.
Figure 5(a) shows the cost as the number of subsystems
increases, with a simulation horizon of T = 8. We observe
that the proposed method (D-Ad0) considerably outperforms
even the centralized approach (C-Ellip.) as the number of sub-
systems increases. This is attributed to the proposed method’s
ability to adapt to the initial condition. As expected, the
suboptimality gap increases with the number of subsystems.
We note, however, that with (D-Ad0) the suboptimality gap
remains bounded which indicates the efficiency of the pro-
posed distributed design method. Finally, Figure 5(b) shows
the cost associated with the length of prediction horizon for
a system comprising fourteen masses. We observe that the
increase of the horizon length results in cost convergence for

the compared methods. Notably as the horizon increases the
centralized methods outperform the decentralized ones. This is
expected since large horizons make the use of terminal sets and
costs obsolete as the system is capable of steering its states
close enough to the equilibrium state within the prediction
horizon.

V. CONCLUSION

In this paper, we presented a design approach for distributed
cooperative MPC that encapsulates the design of the dis-
tributed terminal controller, cost and invariant set in the MPC
formulation. Conditions for Lyapunov stability and invariance
are imposed in the design problem in a way that allows the
terminal cost and invariant set to admit the desired distributed
structure. This allows the resulting distributed MPC problem
to be amendable to distributed computation algorithms. The
proposed distributed MPC method couples the design of the
terminal stabilizing controllers and invariant terminal sets with
the current and predicted states of the system. The closed-
loop performance of the proposed distributed MPC approach
is shown to outperform even the centralized MPC problem
formulated with the ellipsoidal invariant terminal set for short
prediction horizons.

Future work involves the theoretical investigation of the
conjecture, verified in simulation, that the proposed method
outperforms established centralized and distributed MPC ap-
proaches. In addition, we plan the extension of the proposed
methodology to plug-and-play applications where only the
new and a few of the existing distributed controllers need to
be redesigned, and the conditions for Lyapunov stability and
terminal set invariance need to be evaluated in a completely
distributed way. In addition, the proposed method is not limited
to distributed systems, where the decomposition is dictated by
local information, neighbor communication, etc. It can also
be seen as a way of exploiting structure in a centralized
MPC to speed up or parallelize computation or capitalize
on the potential advantage of using product of ellipsoids as
terminal sets. In this sense it would be interesting to see
whether one can develop methods to identify such beneficial
decompositions when given a system.
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