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STOCHASTIC-DYNAMIC MODELLING OF FARM-LEVEL 

INVESTMENTS UNDER UNCERTAINTY  

Abstract  

In the light of uncertainties, high initial costs, and temporal managerial flexibility, the real 

options approach has gained interest as a valuation tool for different types of natural resources 

management problems. Yet, neither real options valuation method excels under consideration 

of variability of resource endowments, returns-to-scale and predefined sizes of options. We fill 

the methodological gap by developing a method based on Monte Carlo simulation, scenario 

tree reduction, and stochastic programming that is advantageous for valuing real options where 

timing, scale and interactions among constraints and alternatives matter. The method advances 

in straightforward conversion of deterministic programming applications based on the classical 

net present value approach into a real options framework, and in introducing complexity into 

existing real options models. We illustrate the method with a case study featuring investment 

options regarding the adoption, coppicing, and conversion of perennial biomass energy 

production systems.  

Highlights 

- We offer a new method of spatial and temporal optimization of natural resource use 
- We use Monte Carlo simulation, scenario tree reduction and stochastic programming 
- The method allows for multiple uncertainties, non-linearity, various restrictions 
- The method ensures computational efficiency while being tractable and intuitive 
- The method produces comprehensive results and allows risk analyses 

Keywords 

Investment decision; real options; Monte Carlo simulation; stochastic programming; perennial 

crop. 

Software availability 

The open source model, including a Graphical User Interface that allows straightforward 

changes to the initial parameters, and all related documentation are available in Spiegel et al. 

(2017). 
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1. Introduction 

Land use changes and the resulting environmental impacts are to a large extent driven by 

economic decision making and management. Because economic consequences of these 

decisions span into future periods, many land use decisions have an investment character. This 

also implies that multiple uncertainties about future environmental, economics and institutional 

developments matter for such decision making (Uusitalo et al., 2015; Douglas-Smith et al., 

2020).1  Besides facing uncertainties, investments related to land and more general natural 

resource management are often subject to high initial sunk costs and temporal flexibility. For 

instance, in tree plantation management, decision makers are often interested to identify when 

to set-up a plantation and to cut trees. The three components ─ uncertainty, temporal flexibility, 

and sunk costs ─ can constitute a positive value of waiting, i.e., postponing the investment 

decision can be beneficial. That leads to the problem to find the value of an asset, which allows 

to invest at any time point in the future until this possibility expires − the domain of the real 

options approach (Dixit and Pindyck, 1994). An example is the current value of a piece of land, 

which one might  at some future time point convert into a plantation, under uncertain future 

prices and yields. Finding that value provides the information how likely the set-up at certain 

time points can be. These viewpoints motivate the application of the real options approach to 

different types of land and natural resources management problems (Alonso-Ayuso et al., 2014; 

Djanibekov and Villamor, 2017; Feng and Ryan, 2013; Sagastizábal, 2012; Simoglou et al., 

2014; Tee et al., 2014; van Ackooij and Sagastizábal, 2014).  

Furthermore, large management projects are usually characterized with (1) competition among 

multiple activities for (quasi-)fixed resources2, e.g., limited labor and machinery capacity; 

(2)  returns-to-scale as, e.g., technology adoption requiring acquisition of a license or new skills; 

(3) investment goods of predefined sizes, e.g., an indivisible land plot; (4) investment scale; (5) 

multi-stage decisions, e.g., finding an optimal distribution of extraction over time. These 

aspects are relevant in assessments of, for instance, agricultural infrastructure projects, setting 

                                                 
1 Hereinafter we refer by “uncertainty” to both positive and negative deviations, e.g. from price and yield 

expectations, to underline potential benefits of variability and avoid the negative connotation linked to the term 

“risk” and downside risk aversion (see, e.g., Finger et al., 2018). 
2 We explicitly refer to quasi-fixed resources, in order to highlight that resources could be expanded in the long-

run, e.g., by hiring extra labor or renting or buying more land. Yet, we do not consider this possibility in our 

model. 
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up plantations, climate change mitigation and adaptation measures, or resource extraction (e.g., 

Marinoni et al., 2009; O’Regan and Moles, 2001; Viaggi et al., 2013). Due to explicitly or 

implicitly inherent restrictions, existing models fail to (jointly) capture the aspects (1)-(5), while 

also considering temporal flexibility of a project (Bouchard and Warin, 2012; Bartolini and 

Viaggi, 2012; Feng and Ryan, 2013; Regan et al., 2015).  

In most cases, real options are valued using numerical methods as closed-form solutions do not 

exist (Black and Scholes, 1973; Geske and Johnson, 1984). There are two prominent approaches 

when multiple potential time points for the investment are considered: firstly, stochastic 

simulation based on a binomial (or trinomial) scenario tree (Cox et al., 1979; Trigeorgis, 1991) 

and, secondly, Monte Carlo simulation (Boyle, 1977), including the computationally more 

efficient Least Squares Monte Carlo simulation method (Longstaff and Schwartz, 2001). A 

binomial (or trinomial) scenario tree is an intuitive and generic approach, however, it suffers 

from the curse of dimensionality and leads to branches with exploding values or values close 

to zero already under rather conservative assumptions about variance at the nodes (Lander and 

Pinches, 1998, pp. 545–546), limiting its applicability to multi-stage investment options and 

longtime horizons. To give an example of a multi-stage option: the possibility to cut trees after 

a flexibly determined growth period is clearly conditioned on an initial set-up of the planation. 

Least Squares Monte Carlo simulation deals with multi-stage options efficiently, yet it is often 

criticized for sensitivity to the choice of functional form in the regression step (Stentoft, 2004, 

p. 136), especially if the dimension increases (Bouchard and Warin, 2012, p. 216). 

Our paper proposes a valuation method for problems with multiple potential investment points 

and related subsequent temporal flexible decisions that can cover simultaneously characteristics 

such as returns-to-scale, indivisibilities, quasi-fixed resources or multiple competing uses of 

assets. Addressing the advantages and shortcoming of existing approaches, we propose a 

valuation method that combines and benefits of scenario tree and simulation methods by 

applying a scenario tree reduction technique to the outcome of a Monte Carlo simulation. This 

controls for dimensionality and obtains an advanced scenario tree that enters stochastic 

programming, which then values real options. In contrast to Least Squares Monte Carlo 

simulation, this method does not approximate fitted payoffs and hence the optimal investment 

decisions with one function, but rather considers the fragmented distribution of self-contained 

expected payoffs. Each node of the constructed scenario tree summarizes draws of the 

stochastic variables and their respective added-up probabilities. Using stochastic programming, 
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we obtain an optimal strategy comprised of the distribution of (quasi-)fixed resources between 

competing investment options for each of these nodes under consideration of all possible 

developments of the stochastic variable. The results are hence intuitive and straightforward to 

communicate. Furthermore, sensitivity and other types of analysis can be easily exercised using 

our method. Finally, it advances in straightforward conversion of deterministic programming 

applications based on the net present value approach into a real options framework, as well as in 

introducing complexity into existing real options models.  

In order to illustrate the method and demonstrate its applicability to complex real-world 

examples, we choose an example related to perennial energy crop cultivation in Germany, i.e., 

dynamic land use decision. Specifically, a farmer considers redistributing land from annual 

crops to a perennial energy crop, which binds the land for a longer time period while the farmer 

faces uncertainty (at least) related to biomass output prices. That case study depicts an 

investment project, where not only timing, but also investment scale and interactions among 

alternatives are relevant due to competition for resources. Introducing perennial energy crops, 

and in particular sustainable biomass energy production systems such as short-rotation coppice 

(SRC), also in agricultural landscape can have manifold environmental advantages, including 

greenhouse gas (GHG) emission reduction (Lewandowski 2015), biodiversity protection, soil 

erosion reduction (Rokwood 2014; Adams and Lindegaard 2016), and increasing soil fertility 

(Tolbert et al. 2002). Furthermore, SRC is characterized with higher net energy ratio (i.e., the 

ratio between energy output and fossil energy input), compared with annual energy crops 

(Heller et al. 2003; Keoleian and Volk 2005; Eder et al. 2009). Nevertheless, farmers in the EU 

are often reluctant to adopt SRC (Dimitriou et al. 2011; von Wühlisch 2016; Warren et al. 2016; 

Parra-López et al. 2017), despite farm-level policy support introduced in many European 

countries in order to promote perennial energy crops (Hart 2015; Lindegaard et al. 2016). 

Existing studies that analyze profitability of adopting SRC provide ambiguous conclusions. 

According to the review of 37 relevant studies made by Hauk et al. (2014), 43% report 

economic viability of SRC; 19% report economic disadvantages; and 38% mixed results that 

depend on particular assumptions. Based upon existing models, our method allows relaxing 

restrictive assumptions and hence revealing additional economic incentives and disincentives 

of SRC adoption. 

The remainder of this paper is organized as follows. Section 2 provides a methodological 

background of option valuation and identifies the gaps addressed by the proposed method. 
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Section 3 provides a general description of the method. Section 4 illustrates the method applied 

to the case study. Section 5 presents the main empirical findings from the case study. Section 6 

discusses further application potential for the proposed method. Section 7 concludes our study.  

2. State of the art 

Analytical solutions for real options valuation (e.g., Black and Scholes, 1973; Geske and 

Johnson, 1984) are elegant from a scholarly perspective, but are often deemed inappropriate for 

practical application due to restrictive assumptions required (e.g., regarding stochastic 

processes). If such is the case, a numerical method must be employed instead (Trigeorgis, 1996; 

Regan et al., 2015). Cetinkaya and Thiele (2014, p. 12) distinguish between methods that 

approximate the underlying stochastic process and methods that approximate partial differential 

equations (see, overview of latter in Trigeorgis, 1996). The most well-known method that 

approximates partial differential equations—the Black-Scholes-Merton model (Merton, 

1973)—was initially designed and is well suited for the valuation of simple European options 

(Regan et al., 2015, p. 146), i.e., options that can be exercised at some pre-defined point of time 

in the future or never — a rather restrictive assumption for management of natural resources. 

More sophisticated American options — the ones that can be exercised at any time within a 

certain time period — and multi-stage options are typically valued by approximating stochastic 

process methods. These methods can further be divided between Monte Carlo simulation 

(Boyle, 1977), including the computationally more efficient LSMC method (Longstaff and 

Schwartz, 2001), and scenario tree approximation. 

Scenario tree approximation usually implies either a binomial lattice or a binomial scenario tree 

(Brandão and Dyer, 2005; Smith, 2005). The core characteristic of a lattice model is that in a 

stochastic process a movement up, followed by a movement down of an uncertain parameter, 

provides the same outcome, as a movement down, followed by a movement up (Smith, 2005, 

p. 92). An (approximate) optimal value of investment options depicted by the constructed 

scenario tree or lattice is then found by dynamic programming (Dixit and Pindyck, 1994, pp. 

140–147; Guthrie, 2009, pp. 88–92) that are widely used to analyze investment decisions in a 

quantitative and relatively transparent way, including stochastic programming applications 

(Brandes et al., 1980; Haigh and Holt, 2002). Examples of real options valuation with stochastic 

programming include, energy economics (Feng and Ryan, 2013; Sagastizábal, 2012; Simoglou 

et al., 2014; van Ackooij and Sagastizábal, 2014), managing project portfolios (Beraldi et al., 

2013), and natural resource extraction (Alonso-Ayuso et al., 2014). One of the main 
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disadvantages of scenario tree approximation over a binomial lattice is that it can quickly 

threaten computational capacity as the number of time periods increases (Lander and Pinches, 

1998, pp. 545–546), since a binomial lattice requires �𝑛𝑛(𝑛𝑛 + 1)
2� �, and a binomial tree requires 

2𝑛𝑛 final leaves for 𝑛𝑛 time periods. Furthermore, development of stochastic parameters in a 

binomial tree or lattice with chained relative ups and downs in each node can lead to unrealistic 

values after a few points in time, since the already rather conservative assumptions about 

variance at any node can imply exploding branches. In this case, the standard approach is to 

aggregate the time periods down to the desired number, lumping them together (Bartolini and 

Viaggi, 2012; Feng and Ryan, 2013). Such aggregation, however, loses information relevant 

for real-world applications, when, e.g., yearly decisions are depicted by multi-year steps. 

The alternative Least Squares Monte Carlo simulation method evolves from the core finding 

that optimal strategy is determined by the conditional expectations of the value of postponing 

investment; and that these conditional expectations can be estimated using simulation results 

(Longstaff and Schwartz, 2001, p. 114). Thus, the method consists of the following three steps: 

(i) simulation of the payoffs of investing in every time period and keeping it in previous periods; 

(ii) regression of those payoffs using least squares; and (iii) specification of the optimal strategy 

based on estimated regression and fitted payoffs. Least Squares Monte Carlo simulation is 

considered a powerful method for the valuation of real options and is widely used (Abadie and 

Chamorro, 2009; Sabour and Poulin, 2006; Zhu and Fan, 2011). One disadvantage of the Least 

Squares Monte Carlo simulation method is that a functional form must be assumed for 

estimation of the Lagrangian, which can be crucial for determining optimal strategy (Stentoft, 

2004, p. 136). Although several papers addressed this issue (Haugh and Kogan, 2004; 

Létourneau and Stentoft, 2014; Rogers, 2002), to date there is no general payoff independent 

choice algorithm that works for higher dimensional problems (Bouchard and Warin, 2012, p. 

216).  

Due to computational and methodological challenges of introducing organizational realities and 

constraints into a theoretical model, empirical implementation of real options analysis is rather 

limited (Lander and Pinches, 1998; Regan et al., 2015; Trigeorgis and Reuer, 2017; Trigeorgis 

and Tsekrekos, 2018). Although the limitations listed above can be legitimate for short-term 

standing-alone investment options, they threaten valuation of large management projects that 

not only involve multi-stage investment, but also compete for (quasi-) scarce resources. This 

implies that (changes in) returns to inputs and possible management adjustments resulting from 
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resource reallocation also need to be considered. These interactions among endowment 

constraints and alternative activities are especially crucial in the context of returns-to-scale 

and/or a set of investment options of predefined sizes (i.e., binary decision variables): such as 

investments in indivisible assets, investments characterized by a high share of transaction or 

other (quasi-) fixed costs, and investments that affect the availability of resources over time for 

alternative uses. In such cases, both the timing and scale of investment option are at issue. Yet, 

none of the methods discussed above are suited for these problem conditions. Due to the curse 

of dimensionality, a binomial scenario tree hampers valuation of multi-stage investment 

options, particularly over a longtime horizon. Least Squares Monte Carlo simulation impedes 

the choice of Lagrangian function under high dimensionality, and requires solving with a 

programming model for each single fitted payoff if interactions among constraints and 

alternative activities are considered, which threatens its computational efficiency.  Trigeorgis 

and Tsekrekos (2018) conducted an extensive literature review on real options analyses and 

concluded that there is a room for alternative numerical methods, especially methods that are 

able to relax necessarily restrictive assumptions and thus facilitate more realistic applications, 

which is the motivation for our research. The method we propose inherits the transparency of a 

scenario tree and programming approaches and outperforms Least Squares Monte Carlo 

simulation in terms of computational capacity and required assumptions. The method is 

particularly relevant if alternative activities, returns-to-scale, indivisible assets, and resource 

endowments and other constraints are jointly considered.  

3. General methodology 

The section provides a description of the proposed method. Major equations and assumptions 

used for our illustrative example can be found in the next section. The method we propose 

includes four main steps (Fig. 1). First, we define the (state contingent) decision variables of 

the problem and the related real options, i.e., (multi-stage) investment with a potential positive 

value of waiting before exercising it. Integers, including binaries, enable differentiation among 

investment options with predefined sizes and reflect returns-to-scale. Second, the relationships 

(i.e., equations and constraints) among these decision variables are specified, including lagged 

relationships between time points, and then combined into a programming model. In this step, 

we add the payoff function (e.g., net present value) subject to constraints, including resource 

endowments. Hence, the first two steps design a deterministic mixed-integer linear 

programming model. Many operations research problems involving the timing of production 
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processes and related investment decisions are solved in that format, and thus employ already 

these two steps (Flisberg et al., 2014; Venter et al., 2018; Yan and Ji, 2017). This problem can 

be extended to a real option problem as discussed next. Third, we identify exogenous stochastic 

variables within the model, introduce different future outcomes (states), and the related state 

contingent decision variables. In order to convert the deterministic version into its stochastic 

programming equivalent, four additional elements are added: (i) the decision variables carry an 

additional index for the decision node (i.e., state); (ii) an ancestor matrix is introduced that 

reflects the dynamic order of the nodes in the decision tree; (iii) outcomes for the stochastic 

parameters for each state are defined; and (iv) probabilities are assigned to each node. In 

particular, we choose a distribution to account for uncertainty with respect to parameter(s) 

applying one of the existing forecasting techniques3. Based on the chosen distribution, we 

create Monte Carlo scenarios, and let a scenario tree reduction technique construct a reduced 

scenario tree of a desired size with (aggregated) probabilities for selected nodes approximating 

the Monte Carlo scenarios. Finally, we employ the stochastic programming for the valuation of 

investment options.  

                                                 
3 Forecasting has developed as a separate research discipline and includes a number of available methods. Fildes 

et al. (2017) distinguish between (i) extrapolative methods; (ii) causal and multivariate econometric methods; 

and (iii) computer-intensive data-mining methods of forecasting. We leave the choice of a forecasting method 

for a particular exogenous stochastic variable out of scope of the paper, as our method implies no restriction in 

terms of selected forecasting technique and the resulting distribution, as long as Monte Carlo scenarios can be 

generated. 
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Fig. 1 The main four steps of the proposed method. Note: Steps 1, 2, 3b, and 4 are exercised in GAMS; step 3a, 
although being able to be exercised in GAMS as well, is exercised using JAVA libraries, in order to advance in 
computational speed. For steps 3b and 4 we used a scenario tree reduction technique SCENRED2 and a solver 
CPLEX. 

There are several important details in the third step concerning how the outcomes and related 

probabilities are constructed. We assume stochastic processes for the stochastic components 

and run Monte Carlo simulations that result in a large scenario tree that is not solvable 

numerically due to the curse of dimensionality. We reduce the size of the tree without losing 

too much information about the underlying distributions by employing the tree reduction and 

construction algorithm of Heitsch and Römisch, (2008). Similar to a Gaussian quadrature, 

which describes a probability density function with few characteristic values and their 

probability mass, this algorithm picks representative nodes and assigns probabilities to capture 

the approximate distribution in original trees (Fig. 2). Methods generating a scenario tree can 

be summarized as aggregating nodes and stages, and trimming or refining trees (Consigli and 

Dempster, 1998; Dempster, 2006; Dempster and Thompson, 1999; Frauendorfer and Marohn, 

1998; Klaassen, 1998) differing only in the algorithm of selecting nodes and paths to aggregate. 

A practical advantage of the tree reduction and construction algorithm developed by Heitsch 

and Römisch, (2008) is a GAMS tool, SCENRED2. 
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Fig. 2 The basic principle of scenario tree reduction. Note: 𝒙𝒙𝟎𝟎 stays for the currently observed value; 

𝒙𝒙𝟏𝟏𝑰𝑰 ,𝒙𝒙𝟏𝟏𝑰𝑰𝑰𝑰,𝒙𝒙𝟏𝟏𝑰𝑰𝑰𝑰𝑰𝑰, 𝐚𝐚𝐚𝐚𝐚𝐚  𝒙𝒙𝟏𝟏𝑰𝑰×𝑰𝑰𝑰𝑰 stay for the possible realizations in the next time period; 𝒑𝒑𝑰𝑰,𝒑𝒑𝑰𝑰𝑰𝑰,𝒑𝒑𝑰𝑰𝑰𝑰𝑰𝑰, 𝐚𝐚𝐚𝐚𝐚𝐚 𝒑𝒑𝑰𝑰×𝑰𝑰𝑰𝑰 stay for 

the respective probabilities. 

The algorithm can also be depicted graphically as lumping together neighboring nodes and 

branches in the tree into bigger ones, where the thickness represents probability mass. The 

algorithm directly provides the ancestor matrix; SCENRED2 implies a single parent for each 

node in the reduced scenario tree. In particular, we opt to use a pre-defined number of final 

leaves and hence pre-determine the number of equations and variables in the model, letting the 

algorithm decide which nodes to maintain. There is no well-established approach to determine 

the optimal number of leaves in a reduced scenario tree. The choice, however, should be case 

study specific and reflect a tradeoff between accuracy and solution time: more leaves lead to 

higher precision in outcomes while increasing the solution time (Dupačová et al., 2000, p. 30). 

The extreme case is the net present value approach with only one leaf that represents 

expectations of all stochastic variables, and no incentive to postpone. Adding already one 

additional leaf converts the problem into real options and might create incentives to postpone 

investment. Also, note that the number of leaves has differential influence on model outcomes. 

In particular, it might be cumbersome to stabilize integer variables within a certain range of 

accuracy. We suggest proceeding as follows: (1) choose the model’s “main result variable”; (2) 

determine an appropriate degree of deviation for this variable; (3) run a sensitivity analysis with 

an increasing number of leaves and observe the effect on this variable; and (4) stop increasing 

tree size once the variable stabilizes within the deviation level.  

We solve the model described above with stochastic programming using standard Java libraries 

for Monte Carlo simulations; GAMS 24.3; a tree construction tool SCENRED2 (GAMS, 2015); 

and an optimization solver, CPLEX (IBM, 2016). The use of Java is mostly motivated by the 

fact that we store the generated simulations along with the ancestor matrix to describe the node 

structure efficiently in the proprietary data format GDX (of GAMS) to avoid costly 

computations (in GAMS). The computational speed can be increased by employing a multi-
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core processor as Mixed Integer Programming (MIP) solvers such as CPLEX efficiently work 

in parallel. Additional techniques for improving computational efficiency for such large-scale 

mixed-integer stochastic problems are available (Escudero et al., 2012). The output consists of 

an optimal distribution of (quasi-) limited resources between available investment options for 

each node of the reduced scenario tree, considering all the possible future paths and solving 

hence for both optimal timing and scale of investment (see Section 5 for more details). Various 

follow-up analyses can be run based on our method. A sensitivity analysis with respect to a 

stochastic variable is illustrated below; an example of a policy analysis can be found in Spiegel 

et al. (2018).  

4. Case study: reallocating land to perennial energy crops 

We choose farm-level decisions regarding the adoption, harvest and conversion of perennial 

crop production in the context of farm constraints and alternative activities. Specifically, we 

consider investments into short rotation coppice (SRC) poplar production systems under price 

and opportunity costs uncertainty in Germany; the problem is characterized by limited 

resources, returns-to-scale, and predefined sizes of available investment options. The main 

characteristics of the case study are summarized in Table 1.  

Table 1 Summary of the main characteristics of the case study. 

Characteristics of an actual large-scale 
investment project Expressed in the case-study via 

Multi-stage investment option 

Short rotation coppice plantation with initial 
establishment (can be postponed by four 
years), intermediate harvests after 2–5 years 
from previous stage (i.e., establishment or 
harvesting), and final conversion to 
alternative land use (maximum 20 years’ post 
establishment and exercised only in 
combination with harvest) 

Stochastic component Biomass price (i.e., price for short rotation 
coppice output) 

Sunk costs 

Establishment costs, harvest related costs, 
and final conversion costs. Typically, about 
2/3 of SRC production system costs are 
associated with the establishment and final 
conversion such that a large share of costs is 
sunk. 
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Predefined investment sizes Predefined land plots for potential conversion 
to short rotation coppice plantation 

Opportunity costs 

Annual production systems, specifically two 
annual crop options with different inputs (i.e., 
land and labor) and outputs (i.e., gross 
margins) 

Returns-to-scale 
Harvest costs including costs (a) on farm 
(fixed), (b) per plot (quasi-fixed), and (c) per 
ton of harvested biomass (variable) 

Resource endowments Land and labor: both are assumed to be 
limited without possibility for expansion 

Policy constraints 

An “Ecological Focus Area” representing 5% 
of farmland area must be left set-aside or 
converted to short rotation coppice plantation 
(SRC is recognized in the model as 
equivalent to set-aside land with a coefficient 
of 0.3) 

 

Under SRC management, fast-growing trees are harvested, or coppiced, for energy production 

within relatively short intervals—typically between two and five years if the end product is 

wood trunk, which is common in Germany; and longer than five years if the end product is 

wood chips. Harvest means that trees are cut down close to their roots and put out new shoots 

from their stump afterwards. That allows multiple harvests over a period of up to 20 years. We 

assume a farmer to stick to one end product (wood trunk) and hence restrict harvesting period 

by two to five years. Introduction of longer harvesting periods, e.g., for wood chips, would lead 

to fewer harvestings in total (i.e., max. 2 or 3 in total over 20 years). In order to quantify the 

effect of different agricultural practices (i.e., introducing an option to change the end product 

and hence to harvest between two and twenty years), a precise yield function for longer 

harvesting intervals would be required, which data is not available and goes beyond our 

expertise. 

The application of real options in agricultural economics is rather limited, especially in terms 

of investment analysis of perennial energy crop production; the dominant approach in the 

literature is the net present value (Gandorfer et al., 2011; Lothner et al., 1986; Schweier and 

Becker, 2013; Strauss et al., 1988). The few existing models have either considered perennial 

energy crop cultivation as a stand-alone investment option (Frey et al., 2013), or (partly) 

omitted managerial flexibility it allows for (Bartolini and Viaggi, 2012), or both (Musshoff, 

2012; Song et al., 2011; Wolbert-Haverkamp and Musshoff, 2014). In particular, ignoring 
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alternative land use options is usually motivated by the assumption that perennial energy crops 

would be introduced on land that was previously set aside (Musshoff, 2012). Yet, this 

assumption is not plausible due to policy constraints such as the Ecological Focus Area (EFA) 

coefficient, where perennial energy crops are 1/3 of the one for set-aside land. Hence, perennial 

energy crops compete with alternative land use options. At the same time, existing real options 

valuation methods fail to capture complexity of the case study. In fact, if we opt for a binomial 

(trinomial) scenario tree, we would need to significantly reduce the considered time horizon 

(24 years), e.g., via aggregating time periods when the orchard is growing and therefore not 

considering different harvesting periods, as it was done, e.g., in Musshoff (2012). In addition, 

we would have an exploding scenario tree that would include unrealistic realizations. If we opt 

for LSMC, the problem would be numerically demanding, since to account for resource 

endowments and other constraints we would need to solve each Monte Carlo path backwards 

for each stage, starting from the last one, and each possible level of SRC adoption. We would 

also have to assume a functional form of the payoff function, in order to run Least Squares 

regression, while having no solid reference for such an assumption. 

Using our method, these restrictive assumptions can be simultaneously relaxed without 

hampering tractability and computational efficiency. We treat the decisions to invest into a SRC 

plantation and its subsequent management as a multi-stage real option, where establishment, 

each intermediate harvest, and final conversion to alternative land uses are the option stages. 

Due to stage-contingent inter-harvest periods ranging between two and five years and the 

maximum plantation lifetime, the total number of stages is flexible, not predetermined. As a 

consequence, the sooner each stage is exercised, the more available stages there are overall. 

Postponing the harvest and letting plantation to grow leads to higher yields over time. We 

assume that a farmer can postpone establishment up to four years and that the maximum age of 

a SRC plantation is twenty years; these assumptions lead to a total modelled time horizon of 24 

years. A longer postponement period would add an option value, i.e., incentives to wait, and 

also increase the overall time horizon; yet, it also provokes discussion on plausible time horizon 

from farmer’s perspective. 
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Fig. 3 Graphical representation of the farm-level model. See also Spiegel et al. (2018, 2017) for greater detail. 

Land that is not converted to SRC is allocated to alternative annual crops and set-aside land as 

fractional shares. Under annual resolution of the model, there is no incentive to postpone a 

decision with respect to annual crops. Choosing between SRC and annual crops can be found 

in the reality, yet these settings also allow for clarity and simplicity in this example, since no 

other investment with temporal flexibility beyond SRC is involved. In order to model 

competition for farm resources such as land and labor, we consider two relevant alternative 

crops for the case study region—winter wheat and winter rapeseed—of which the former is 

more labor intensive and has a higher gross margin per hectare. Both annual crops are 

characterized with stochastic gross margins, so that any land distribution among SRC and 

annual crops would cause stochastic returns. We use the fixed input-output coefficients to depict 

competition for land and labor resources of farm: 

 �𝑎𝑎�𝑐𝑐,𝑖𝑖
𝑐𝑐

∗ 𝐿𝐿𝑡𝑡,𝑐𝑐 ≤ 𝑏𝑏�𝑡𝑡,𝑖𝑖   ∀𝑖𝑖   ∀𝑡𝑡 (1) 

where 𝑖𝑖 represents inputs including land and labor; 𝑐𝑐 includes alternative land use options; 𝑎𝑎�𝑐𝑐,𝑖𝑖 

denotes fixed input-output coefficients of land uses; 𝑏𝑏�𝑡𝑡,𝑖𝑖 describes farm-level resource 

endowments; and 𝐿𝐿𝑡𝑡,𝑐𝑐 indicates the area allocated to each land use over years [ha y-1]. In 

Germany, land use competition between SRC and other land uses has been reduced under the 

European Common Agricultural Policy, which require large arable farms (>15 ha of arable 

land) to manage 5% of farmland as “Ecological Focus Areas” (EFA), as a part of the “greening 
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measures” of the Common Agricultural Policy, to which SRC partially qualifies (in Germany 

one unit of land under SRC management is equivalent to 0.3 of an equal area of set-aside for 

EFA purposes (BMEL, 2015)).  In particular, the direct payments to farmers are reduced by 

30%, unless certain environmental requirements are fulfilled. In our model, we consider two 

options to meet the “Ecological Focus Area” requirements: set-aside land with the coefficient 

of 1.0 and SRC with the coefficient of 0.3 (for a description of other options and the respective 

coefficients see BMEL (2015)). We also assume that the requirement has to be fulfilled, i.e. 

receiving reduced direct payments is not an option. Compliance with the 5% “Ecological Focus 

Area” land-use requirement is ensured as follows: 

 𝐿𝐿𝑡𝑡,𝑐𝑐=𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 0.3 ∗ 𝐿𝐿𝑡𝑡,𝑐𝑐=𝑆𝑆𝑆𝑆𝑆𝑆 ≥ 0.05 ∗ 𝑏𝑏�𝑡𝑡,𝑖𝑖=𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 (2) 

where 𝐿𝐿𝑡𝑡,𝑐𝑐 represent area under respective crop 𝑐𝑐 over years [ha y-1]; 𝑡𝑡 is the period of analysis 

(1, 2, …, T) with T equal to 24 years in our example; 𝑏𝑏�𝑖𝑖=𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 is the total land endowment [ha 

y-1]. 

We consider pre-defined plantation sizes because farmers would typically convert existing plots 

of some other land use to SRC plantation. Assuming total land endowment of 100 ha, we 

consider three potentially convertible plot sizes of 10 ha, 20 ha, and 40 ha, providing eight 

possible plantation size combinations from 0 to 70 ha. Initially four plots and 11 combinations 

from 0 to 100 ha were assumed, hence covering all available land. Since tests revealed that the 

optimal total area under SRC to be below 40 ha at any path of the scenario tree, we restrict 

ourselves to three plots as described in the text in order to decrease the number of variables and 

gain computational efficiency. This additional constraint is also in line with the reality, as 

farmers do not convert a substantial part of their farm into SRC. Each plot is characterized by 

three core decision variables over the simulation horizon (Fig. 3): (1) land-use decisions: 

whether a plot is used for SRC or one of the three alternative activities; (2) SRC harvesting 

decisions: whether or not a SRC plot is harvested in the current year; and (3) the decision of 

whether or not to convert SRC to an alternative land use. Conversion can be exercised only in 

combination with harvesting, i.e., costs for conversion include harvest and clear-cutting the 

SRC. Relative to alternative land uses, SRC is characterized by low-input production (Faasch 

and Patenaude, 2012); establishment and harvesting are usually outsourced to a contractor, 

minimizing or eliminating the need for on-farm labor (Musshoff, 2012, p. 77).  
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The model data are from SRC poplar production systems in northern Germany (federal state 

Mecklenburg-Western Pomerania) and based on the literature (Table 2). Relative to average 

conditions in Germany, the region is characterized by low soil quality and precipitation (Table 

3), and generally low returns from annual crops. The limited productivity of annual crops 

increases the attractiveness of land-use options such as SRC management. According to Schuler 

et al. (2014, p. 69), over 90% of agricultural lands in this region are suitable for SRC.  

Table 2 Data and model parameters 

Parameter Units Assumed value Reference 
Short rotation coppice 

Labor requirements ha-1 0.00 Musshoff (2012) 
Establishment costs € ha-1 2875.00 Musshoff (2012) 
SRC biomass growth function    

Multiplier for last year’s biomass - 1.651 Derived based on 
Ali (2009) Constant increase per year t ha-1 3.962 

Harvesting costs    
Fixed costs at farm level € 66.75 Derived based on 

Schweier and 
Becker (2012) and 

Pecenka and 
Hoffmann (2012) 

Quasi-fixed costs for each plot € ha-1 272.13 

Variable costs, depending on 
harvest quantity € t-1 10.67 

MRP for logarithmic output price 
(ln𝑃𝑃𝑡𝑡) 

   

Starting value - 3.92 Musshoff (2012) 
Mean value - 3.92 Musshoff (2012) 
Speed of reversion - 0.22 Musshoff (2012) 
Standard deviation of Wiener 
process - 0.28 Musshoff (2012) 

Reconversion costs € ha-1 1400.00 Musshoff (2012) 
Annual crops 

Net annual cash flow from traditional 
land use    

Winter wheat € ha-1 537.15 CAPRI (2017) 
Winter rapeseed € ha-1 460.64 CAPRI (2017) 
Set-aside € ha-1 –50.00 CAPRI (2017) 

Labor requirements4    
Winter wheat ha-1 5.32 KTBL (2016) 
Winter rapeseed ha-1 4.16 KTBL (2016) 

                                                 
4 Only includes field work, excluding work associated with management, which is assumed to be limited per farm and hence 

has no effect on resource distribution. 
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Set-aside ha-1 1.00 KTBL (2016) 
Farm characteristics 

Land area ha 100.00 Own assumptions 
based on statistical 
data (StAmtMV, 

2016) and 
rounding for the 

sake of 
straightforward 
interpretation of 

results  

Labor availability5 - 455.00 

Real risk-free discount rate % 3.87 Musshoff (2012) 
 

Two elements of parameterization deserve further attention. First, we adapt the SRC biomass 

yield function from Ali (2009): 

 𝑌𝑌 = 2.27 ∗ (−0.1133 ∗ 10−8 ∗ 𝐷𝐷2 + 0.254 ∗ 10−4 ∗ 𝐷𝐷 + 0.028) ∗ (1.569

∗ 𝐻𝐻𝐻𝐻 + 0.4 ∗ 10−3 ∗ 𝑃𝑃𝑃𝑃 ∗ 𝑆𝑆𝑆𝑆𝑆𝑆

−
23.198 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

𝑊𝑊
)(0.34∗10−8∗𝐷𝐷2−0.501∗10−4∗𝐷𝐷+2.614) 

(3) 

where 𝑌𝑌 represents dry matter yields, 𝐷𝐷 is the density of trees per hectare; 𝐻𝐻𝐻𝐻 is the intermediate 

harvesting interval (2, 3, 4, or 5 years); 𝑃𝑃𝑃𝑃 is the mean sum of precipitation in May and June 

(mm); 𝑆𝑆𝑆𝑆𝑆𝑆 is a soil quality index value; 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 is the mean temperature from April through July 

(°C); and 𝑊𝑊 represents available ground water capacity (mm). All the variables in Eq. 3, except 

for intermediate harvesting interval 𝐻𝐻𝐻𝐻 (being a decision variable with possible values of 2, 3, 

4, or 5 years), were fixed the levels as presented in Table 3. 

Table 3. Parameters of the yield function and assumed values 

Variables Description Values References 

𝐷𝐷 density of trees per hectare 9,000 Musshoff (2012) 

𝑃𝑃𝑃𝑃 mean sum of precipitation 
in May and June (mm) 106.27 

Based on precipitation recorded for May and June 
(1995–2015) in Mecklenburg, Germany 
(WetterOnline 2016) 

𝑆𝑆𝑆𝑆𝑆𝑆 soil quality index 35 Musshoff (2012) 

                                                 
5 Based on the assumption that initially 47.5% of land area is devoted to winter wheat, 47.5% to winter rapeseed, and 5% is 

set-aside. This composition excludes management and off-farm work; both of which are assumed to be limited at the farm 

level and hence have no effect on resource distribution. 
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𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 mean temperature from 
April through July (°C) 14.51 

Mean of daily mean temperatures (minimum and 
maximum) for April through July (1995–2015) in 
Mecklenburg, Germany (WetterOnline 2016) 

𝑊𝑊 available ground water 
capacity (mm) 220.00 Musshoff (2012) 

 

Eq. 3 combined with values from Table 3 outputted SRC biomass yields as a function of 

harvesting interval 𝐻𝐻𝐻𝐻, which we fitted to a linear function for biomass stock that depends on 

previous year’s stock (the right hand side part of the Eq. 4). In combination with the harvest 

decision for the previous year, the SRC biomass yield function provides current SRC yields: 

 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡,𝑝𝑝 + ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡,𝑝𝑝 = (1.651 ∗ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡−1,𝑝𝑝 + 3.962) ∗ 𝑆𝑆𝑝𝑝 (4) 

where 𝑝𝑝 denotes the land plot index; 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡,𝑝𝑝 stays for standing biomass, [in tonnes of dry 

matter yields per year (t y-1)]; ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡,𝑝𝑝 stays for the amount of biomass harvested [t y-1]; 

𝑆𝑆𝑝𝑝 is the size of plot 𝑝𝑝 and can be 10, 20, or 40 ha y-1. We do not explicitly capture the yields 

of annual crops, considering deterministic net annual cash flows per hectare of annual crops 

that consist of respective yields multiplied by the farm-gate price minus all the associated costs 

(see Table 2 for the respective parameters). Also, set-aside land is characterized with a 

deterministic net annual cash flow per hectare. Our method allows further elaboration with 

respect to yield functions of SRC biomass and annual crops, for instance, by introducing 

uncertainty related to climate change or other environmental risks. For the sake of simplicity, 

we leave these potential model improvements for future research. 

Revenues from an SRC plantation are linked to harvest decisions, which are based on the 

interactions among SRC biomass growth and harvest cost functions. Harvesting the standing 

biomass only partly is not considered feasible; therefore, an additional equation ensures that 

standing stock from the previous year is completely removed when harvesting. Eq. 4 hence 

yields at the end of year 𝑡𝑡 either a biomass stock, which captures the additional growth in that 

year given last year’s stock, or a zero. In the latter case biomass stock is harvested at the end of 
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year 𝑡𝑡. The linkage between the decision to harvest in a specific year and harvested biomass is 

reflected by a binary indicator inequality and a maximal bound: 

 ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡,𝑝𝑝 ≥ ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡,𝑝𝑝 ∗ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚���������������������𝑝𝑝 (5) 

 ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡,𝑝𝑝 ≤ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚���������������������𝑝𝑝 (6) 

where ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡,𝑝𝑝 indicates whether a plot is harvested (=1) or not (=0); 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚���������������������𝑝𝑝 is a 

constant that defines the minimal harvest quantity [t y-1]; and 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚���������������������𝑝𝑝 is a constant 

that defines the maximal harvest quantity [t y-1]. Minimal and maximal harvest quantities are 

defined after the plantation has grown for a number of years (2 and 5 years respectively in our 

case) and can be calculated using the SRC biomass growth function (Eq. 4). These data can be 

introduced in the two equations above to ensure the minimal and maximal waiting times 

between harvests.  

Second, based on Schweier and Becker (2012) and Pecenka and Hoffmann (2012) we derive 

harvesting cost for SRC biomass separated by (a) costs at farm level (fixed) and (b) per plot 

(quasi-fixed), plus (c) costs per metric ton of harvested SRC biomass (variable) in order to 

consider the economy of scale. The harvest cost function considers transaction costs for 

outsourcing labor, field-level transport costs, harvest costs, post-harvest fertilization costs, and 

costs of drying and storing harvested biomass and is defined as follows: 

 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡 = �[66.75 + 272.13 ∗ 𝑆𝑆𝑝𝑝 + 10.67 ∗ ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡,𝑝𝑝]
𝑝𝑝

 (7) 

where 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡 represents total harvest related costs in euros. Considering different 

harvest intervals allows the plantation to store biomass, such that temporal arbitrage can be 

applied: a farmer might allow trees to continue growing if biomass prices are low and expected 

to increase in the future, increasing future harvestable volumes. Moreover, since we specify 

fixed and quasi-fixed harvest costs, the total harvest cost per ton of dry matter declines over 

time elapsed since establishment or the preceding harvest; between two and five year intervals 

are considered in the case study (Table 4).  
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Table 4 SRC biomass yields and harvest costs based on harvest interval and land area. Source: calculated using 

Eq. 4 for different land areas and harvest intervals 

 Land area 
under SRC 

(ha) 

Harvest interval (years) 

2 3 4 5 

Dry matter yields 
(t ha–1) any 10.503 21.302 39.133 68.571 

Harvest costs  
(€ ha–1) 

 
In parentheses are 
harvest costs per 

tonne of dry matter (€ 
t–1) 

1 
450.95 
(42.94) 

566.17 
(26.58) 

756.43 
(19.33) 

1,070.53 
(15.61) 

10 
390.87 
(37.22) 

506.10 
(23.76) 

696.35 
(17.79) 

1,010.46 
(14.74) 

30 
386.42 
(36.79) 

501.65 
(23.55) 

691.90 
(17.68) 

1,006.01 
(14.67) 

50 
385.53 
(36.71) 

500.76 
(23.51) 

691.01 
(17.66) 

1,005.12 
(14.66) 

 

The objective function is defined as follows: 

 
𝑁𝑁𝑁𝑁𝑁𝑁 = ���

𝐺𝐺𝐺𝐺𝑡𝑡,𝑐𝑐 ∗ 𝐿𝐿𝑡𝑡,𝑐𝑐

(1 + 𝑖𝑖)𝑡𝑡
𝑐𝑐

𝑇𝑇

𝑡𝑡=1

+ �
𝑃𝑃𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆 ∗ ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡,𝑝𝑝 − 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡,𝑝𝑝 − 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡,𝑝𝑝

(1 + 𝑖𝑖)𝑡𝑡
𝑝𝑝

−
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡

(1 + 𝑖𝑖)𝑡𝑡
�] 

(8) 

where 𝐺𝐺𝐺𝐺𝑡𝑡,𝑐𝑐 stays for gross margin of a land use option 𝑐𝑐 in time period 𝑡𝑡 [€ ha-1 y-1]; 𝐿𝐿𝑡𝑡,𝑐𝑐 stays 

for fractional land area dedicated to a land use option 𝑐𝑐 in time period 𝑡𝑡 [ha y-1]; 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡,𝑝𝑝 

represents the actual set-up costs per plot [€ y-1]; 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡,𝑝𝑝 represents actual reconversion 

costs per plot [€ y-1]; 𝑖𝑖 is an annual risk-free discount rate of 3.87 [% y-1]. The net present value 

defined in Eq. 8 is maximized subject to two constraints: (i) farm resource endowments 

including land and labor (Eq. 1); and (ii) policy constraint that includes the 5% EFA land-use 

requirement (Eq. 2). 

After setting up the mixed integer programming model that maximizes the net present value 

(Fig.3), uncertainties are introduced into the model. We assume that during the lifetime of a 
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plantation, farmers face a SRC biomass price uncertainty. While the same might hold true for 

alternative land uses, the ability to adjust the land use composition and management intensity 

on an annual basis might substantially reduce subjective uncertainty for individual farmers (Di 

Falco and Perrings, 2003). In particular, we assume a natural logarithm for the SRC output price 

to follow a mean-reverting process (MRP), specifically an Ornstein-Uhlenbeck process (de 

Oliveira et al., 2014; Musshoff, 2012): 

 𝑑𝑑𝑃𝑃�𝑡𝑡 = 𝜇𝜇𝑆𝑆𝑆𝑆𝑆𝑆�𝜃𝜃𝑆𝑆𝑆𝑆𝑆𝑆 − 𝑃𝑃�𝑡𝑡�𝑑𝑑𝑑𝑑 + 𝜎𝜎𝑆𝑆𝑆𝑆𝑆𝑆𝑑𝑑𝑊𝑊𝑡𝑡
𝑆𝑆𝑆𝑆𝑆𝑆 (9) 

where 𝑡𝑡 is the time period; 𝑃𝑃�𝑡𝑡 is the natural logarithm of price of SRC biomass; 𝜇𝜇𝑆𝑆𝑆𝑆𝑆𝑆 is the 

speed of reversion of the stochastic process for SRC biomass price; 𝜃𝜃𝑆𝑆𝑆𝑆𝑆𝑆  is the long-term 

logarithmic average price of SRC biomass; 𝜎𝜎𝑆𝑆𝑆𝑆𝑆𝑆 is the standard deviation of logarithmic SRC 

biomass price; 𝑑𝑑𝑊𝑊𝑡𝑡
𝑆𝑆𝑆𝑆𝑆𝑆 is the standard Brownian motion. The choice of stochastic process is 

motivated by the assumption that the farmer is a price-taker in a market where the price 

fluctuates around a constant long-term level due to market forces, for instance, under the 

assumption of no monopolistic power (Metcalf and Hassett 1995) and/or of constant technology 

(Song, Zhao, and Swinton 2011). An MRP process is also assumed for SRC biomass price in 

the previous literature (Musshoff 2012; de Oliveira et al. 2014). See Spiegel et al. (2018, 2017) 

for introduction of multiple (correlated) stochastic processes. After 10,000 Monte Carlo 

simulation runs for output prices, we apply scenario tree reduction. To determine the optimal 

number of leaves, we choose the expected area under SRC as the main result and stabilize it 

within 10% of the expected area under SRC under 500 leaves. We found 100 leaves to be a 
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good tradeoff between accuracy and speed. The objective function defined in Eq. 8 is modified 

as follows: 

 𝐸𝐸[𝑁𝑁𝑁𝑁𝑁𝑁] = � [𝜋𝜋𝑝𝑝𝑝𝑝𝑝𝑝ℎ ∗ 𝑁𝑁𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝ℎ]
𝑝𝑝𝑝𝑝𝑝𝑝ℎ

= � [𝜋𝜋𝑝𝑝𝑝𝑝𝑝𝑝ℎ
𝑝𝑝𝑝𝑝𝑝𝑝ℎ

∗���
𝐺𝐺𝐺𝐺(𝑡𝑡,𝑛𝑛),𝑐𝑐 ∗ 𝐿𝐿(𝑡𝑡,𝑛𝑛),𝑐𝑐

(1 + 𝑖𝑖)𝑡𝑡
𝑐𝑐

𝑇𝑇

𝑡𝑡=1

+ �
𝑃𝑃(𝑡𝑡,𝑛𝑛)
𝑆𝑆𝑆𝑆𝑆𝑆 ∗ ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡,𝑛𝑛),𝑝𝑝 − 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡,𝑛𝑛),𝑝𝑝 − 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡,𝑛𝑛),𝑝𝑝

(1 + 𝑖𝑖)𝑡𝑡
𝑝𝑝

−
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑡𝑡,𝑛𝑛)

(1 + 𝑖𝑖)𝑡𝑡
�] 

(10) 

where 𝐸𝐸[∙] represents expectation operator; 𝜋𝜋𝑝𝑝𝑝𝑝𝑝𝑝ℎ stays for probability of each path, where 

∑ 𝜋𝜋𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑝𝑝𝑝𝑝𝑝𝑝ℎ = 1; and (𝑡𝑡,𝑛𝑛) is a combination of time and node of the scenario tree assigned to 

each path. The constraints are modified accordingly. Note that assuming a risk-averse farmer 

would require applying different discount rates to the cash flows from SRC (i.e., stochastic) 

and from alternative agriculture (i.e., risk-free) (e.g. see Finger (2016) for further details). For 

the sake of clarity in our analysis, we restrict ourselves to a risk-neutral decision and hence 

apply the market-based risk-free discount rate to all cash flows. 

We run two types of sensitivity analyses. First, we quantify the effect of introducing temporal 

flexibility into the model by comparing the results under the baseline real options settings as 

presented above and the results under the net present value approach. For the latter, we impose 

in the model that the farmer makes decisions on establishment, harvesting and conversion 

immediately based on expected biomass output price, i.e., we switch from a stochastic to 

deterministic model. For consistency, we use the same Monte Carlo draws and the same reduced 

scenario tree for both real options and net present value approaches. We also compare our 

results with results obtained with a less complex model applied to the same case study by 

Musshoff (2012). In particular, the model is also based on the real options approach, but ignores 

economy of scale, considers SRC as a stand-alone option, and fixes the harvesting intervals at 

three years. Second, we analyze the influence of the observed biomass price on farmer’s 
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decision making. We shift the constructed scenario tree up and down in parallel keeping all the 

other parameters constant. In other words, the value in each node of the constructed scenario 

tree is multiplied by a certain coefficient, while deterministic parameters of the model remain 

at their baseline levels. Spiegel et al. (2018) provide a comprehensive policy analysis, as well 

as illustrate introducing multiple correlated stochastic variables. The model, including a 

Graphical User Interface that allows straightforward changes to the initial parameters, and all 

related documentation are available in Spiegel et al. (2017).  

5. Empirical results and related discussion 

Under the baseline SRC output price scenario (i.e., observing in year one a SRC biomass output 

price of 50 € t-1), the farmer waits and establishes SRC in the second or third years with a 

probability of 23%, and in the fourth year – with a probability of 41%, depending on the SRC 

biomass price development in the respective years (Fig. 4). There is a chance of 13% ( = 100% 

(in year one) − 23% (in year two) − 23% (in year three) − 41% (in year four)) that SRC would 

never be established, if the SRC biomass price hits the lowest paths of the scenario tree. A 

breakdown by investment scale is beyond the scope of the information presented in Fig. 4: if 

an SRC plantation is established in the second year under the baseline scenario, 87% of the 

SRC plantations would be 10 ha and the remaining 13% would be 20 ha, depending on the 

observed SRC biomass price in t=2. The expected net present value of these investments is 

75,743.89€. 

We now compare these results with the optimal behavior produced by less complex models. 

Assuming no temporal flexibility, the model suggests to immediately convert 10 ha into SRC 

at the baseline observed biomass price (50 € t-1) and estimates the optimized expected net 

present value  at 58,667.85€. Comparing this value with the optimized expected net present 

value under real options approach (75,743.89€) means that the value of waiting is equal to 

17,076.04€. The positive option value for postponing SRC adoption is in line with the observed 

reluctance of farmers in Germany to adopt SRC under current prices (Allen et al., 2014; 

Bemmann and Knust, 2010). To this end, implementing real options instead of widely used net 

present value approach led to a different optimal decision (i.e., wait instead of invest 

immediately). Yet, a different approach is not the only reason for improving the results. For 

instance, Musshoff (2012) also applied real options approach to the same case study, used the 

same parameters as we do (Table 2), but made some restrictive assumptions, such as ignoring 
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economy of scale, considering SRC as a stand-alone option, and fixing the harvesting intervals 

at three years. Such model suggests that immediate establishment of SRC is profitable despite 

possibility to postpone, which contradicts the observed reluctance towards SRC. We presume 

that our model better explains the observed behavior due to consideration of more aspects of a 

real-world investment context, such as full managerial flexibility in SRC cultivation and 

alternative land uses that compete for resources. Since the model designed by Musshoff (2012) 

is designed on per-hectare-basis and not at farm level, it does not consider the expected scale 

of SRC introduction, which is crucial when evaluating aggregate economic and environmental 

effects of SRC. 

 
Fig. 4 Sensitivity analysis with respect to biomass output price for short rotation coppice (SRC) establishment 
decisions with temporal flexibility. Note: the interrupted red line is on the level of 17 ha, which is 5% of the total 
area of 100 ha if the coefficient 0.3 is applied (17ha * 0.3 ≈ 5ha).  

Improved results are not the only empirical advantage of our method. Our method also advances 

at revealing additional incentives and driving forces that is illustrated below. The results of the 

sensitivity analysis with respect to the observed biomass price (i.e., the starting value of the 

scenario tree) confirm that the (expected) area under SRC increases as biomass prices increase 

(blue solid line in Fig. 4), and the chance of an earlier establishment of SRC is higher. Increasing 

the observed biomass price further, e.g., going beyond Fig. 4, would produce a trigger price, 

i.e., a price level at which the option value of waiting diminishes and it is optimal to adopt SRC 

immediately. The same sensitivity analysis can be performed for every stage of investment, 

such as for harvest and land use conversion decisions at any time point. The EFA requirements 

are not fulfilled with SRC only under the presented scenarios. The interrupted red line in Fig. 4 
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indicates the area of SRC needed to satisfy EFA requirements and is always above the expected 

area under SRC. This reveals that the policy measure is not fully exploited; under the scenarios 

considered SRC is not competitive with alternative land uses. Ignoring policy measures and 

opportunity costs would have obscured this result. According to the concept of the future 

Common Agricultural Policy in the EU, Member States are expected to have more freedom in 

setting up weighting factors for EFA requirements (EC, 2019). In this regard, our method is a 

powerful tool that allows informing policy makers about true (dis)incentives of currently 

implemented environmental policies, as well as designing and comparing potential policy 

instruments. 

 
Fig. 5 Expected land distribution (annual mean) between alternative farm activities under different starting 
(observed) values of the scenario tree assuming temporal flexibility. Note: although SRC is expected to be 
implemented (e.g., under baseline conditions when observed biomass price is equal to 50 € t-1), it is not established 
immediately. 

The relative competitiveness of SRC management in our analysis considers redistribution of 

resources among alternative land uses as an investment consequence. On the one hand, more 

land under SRC is required for EFA compared to set-asides, as one hectare of SRC is equivalent 

to 0.3 ha of set aside for EFA purposes. On the other hand, labor requirements of SRC are lower 

than for alternative land uses. Thus, converting area under productive land uses to SRC allows 

increasing the labor share for more intensively managed crops with a higher gross margin per 

hectare (wheat) on the remaining farm area, which dampens the impact of competition for land. 

This effect is illustrated in Fig. 5. Increasing the biomass price leads to an increase in the 

expected area under SRC; yet it also leads to redistribution of resources among all activities of 

the farm. A similar result can be found if we assume that any freed labor is employed off-farm. 
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Observing this additional incentives for investing is only possible by taking into account 

alternatives (i.e. competing activities), policy measures and constraints.  

For clarity, we presented a simplified model that can be improved by adding more alternatives 

and constraints. Multiple uncertainties, including mutual correlation, can be assumed with the 

scenario tree characterized by a vector of simulated values in each node (Spiegel et al., 2018). 

Alternatively, several stochastic parameters can be combined into a single composite 

uncertainty (Bartolini and Viaggi, 2012; Beraldi et al., 2013; Flaten and Lien, 2007). 

Furthermore, several investment options with temporal and spatial flexibility can be evaluated 

and compared, e.g., a choice between several perennial crops with each being able to be 

introduced, harvested and clear-cut now or later in the future. Risk preferences can also be 

considered; our method allows the assumption of any risk attitude. If risk preferences are 

considered, a risk analysis can be conducted. Investment triggers can be determined by 

conducting sensitivity analyses with respect to any model parameter as a potential trigger. 

Modifying the respective parameter stepwise would determine intervals within which the 

decision changes to invest immediately, defining the trigger within this interval. The smaller 

the sensitivity analysis steps, the narrower the range that encompasses the investment trigger. 

Our method allows for stepwise relaxation of assumptions and hence quantifying their influence 

on optimal behavior. A comprehensive policy analysis can be performed, either for measures 

that directly affect investment options or the alternatives, resource endowments, and/or other 

constraints (Spiegel et al., 2018). Such analyses would reveal both direct and indirect effects of 

policy measures due to resource redistribution among alternatives and other management 

changes.  

6. Implications and further research of the proposed method 

The here developed methodological approach particularly advances in straightforward 

conversion of existing programming applications based on the net present value approach into 

real options framework, as well as in introducing more complex and realistic settings into 

existing real options models. Below, we comment on the main conversion options (A, B, and C 

on Fig. 6 and Table 6) for so-called “basic model” that implies investing now or never, considers 

investment option as standing alone, operates in relative terms, but relies on a complex scenario 

tree. If uncertainty is captured differently, we describe the main ways to transform to a complex 

scenario tree (I and II on Table 5 and Fig. 6). Combinations of conversion options, i.e. A and B, 

A and C, B and C, as well as A and B and C, are also possible. 
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A complex scenario tree (i) better captures the reality due to an appropriate underlying 

distribution; (ii) is more flexible due to controlled number of leaves and the range of simulated 

values; and (iii) keeps the transparency and intuitiveness of a binomial scenario tree. Table 5 

captures two major alternatives to a complex scenario tree ─ a binomial (trinomial) scenario 

tree or lattice and a distribution ─ and describes how to use our method and introduce a complex 

scenario tree. 

Table 5  Introducing a complex scenario tree into existing models step-by-step 

 Uncertainty in the initial 
model 

Steps to transform to complex scenario tree 

I Binomial (trinomial) scenario 
tree or lattice 

1. Find an appropriate distribution for all the 
stochastic variables; also consider possible 
correlation between them; 

2. Run Monte Carlo simulation for all the 
stochastic variables; 

3. Apply a scenario tree reduction technique to 
Monte Carlo draws, pre-determining the 
desired number of final leaves in the tree; 

In order to select an optimal number of final leaves: 

4. Choose the “main result” of the model and its 
appropriate degree of deviation;  

5. Select a relatively low number of final leaves 
and run scenario reduction; run the model; 

6. Step-by-step increase the number of final 
leaves in the reduced scenario tree, re-run the 
model and observe how the “main result” 
changes; 

7. Stop increasing the number of leaves once the 
“main result” stabilizes within the allowed 
deviation range. 

II Distribution or stochastic 
process 

See I starting from the step 2. 
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Fig. 6 Possible transformation of existing models for investment analysis based on the net present value using 
the method developed and illustrated in the paper 

Introducing complexity into a model reflects the reality and the pursued research objective. Yet, 

if higher complexity is intended, our method allows its straightforward introduction. Table 6 

summarizes the major peculiarities. 

Table 6  Peculiarities of introducing complexity into existing models for investment analysis based on the net 
present value using the method developed and illustrated in the paper 

 Introducing ... Peculiarities 

A Returns-to-scale Introducing returns-to-scale requires the model to operate with 
absolute terms, e.g. maximizing the total net present value 
instead of rate of return; so, the model might need to be adjusted 
accordingly. 

Returns-to-scale might be introduced into the objective function, 
as well as into the constraints, e.g. a policy requirement.  
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Returns-to-scale might be additionally specified with using 
investment options of pre-defined sizes (introduced into the 
model via binary variables) 

B Competing 
investment 
options 

Competing investment options imply at least one (quasi)fixed 
resource or another constraint, e.g. political regulation, that 
restricts exercising all available investment options; hence, one 
or several additional constraints might be required. 

Competing investment options are usually introduced via 
opportunity costs. 

There are two approaches generally available:  

• “either-or” meaning that exercising one investment 
options excludes exercising the others; this can be 
modelled via one or several binary variables; 

• “portfolio” meaning that all investment options might be 
exercised optimizing their shares in the overall portfolio. 

C Simple or 
multistage real 
options 

Converting a model based on the net present value approach into 
real options implies solving not only for the optimal scale of 
investment, but also for optimal timing. Multistage real options 
allow adjustment of investment based on observed states-of-
nature, including expanding and earlier disinvestment. 

There are three conditions that should be jointly present in order 
to create incentives to postpone investments (make sure all three 
are introduced into the model when converting to real options): 

• Possibility to postpone; 
• Uncertainty; 
• (Partly) sunk costs of investments. 

Converting to real options and hence allowing to postpone 
investment decision would require extending the planning 
horizon accordingly. 

 

Our method offers multiple methodological advances: using any of the existing methods for 

illustrative case study would have required making additional restrictive assumptions. The 

proposed combination of Monte Carlo scenarios and a scenario tree reduction technique 

overcomes the curse of dimensionality of a binomial (trinomial) scenario tree. The constructed 

asymmetric scenario tree reflects the underlying distribution, while values are not exploding 

and the number of leaves is restricted. In contrast to Least Squares Monte Carlo simulation, our 

method can be applied efficiently to problems of greater complexity. Once resource 
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endowments and other constraints are considered the Least Squares Monte Carlo simulation 

requires a numerical method to solve each Monte Carlo path backwards for each stage, starting 

from the last one. If the size of the investment project is a decision variable, the Least Squares 

Monte Carlo simulation requires an additional sensitivity analysis with respect to project size. 

Generating payoffs for all potential combinations of exercising time points and Monte Carlo 

runs can be numerically demanding with a programming approach. We find it more 

straightforward to use stochastic programming directly. Instead of approximating the payoff 

matrix with a regression function as in Least Squares Monte Carlo simulation, we approximate 

the Monte Carlo fan based on tree reduction, which is more transparent than Least Squares 

Monte Carlo simulation. Furthermore, as our case study demonstrates, the method is rather 

general. It is able to value complex multi-stage options, such as choosing the best combination 

from a portfolio of different investments that interact, or problems where the number of stages 

is not pre-determined. There are no restrictive methodological requirements associated with our 

method. Indeed, any underlying stochastic process can be assumed as long as it is possible to 

run Monte Carlo simulations and construct a reduced scenario tree. The number of stages is not 

limited either, unless the relationships between stages cannot be captured with equations. The 

time horizon is a model parameter and its choice is not restricted. Our method is suitable for 

comprehensive sensitivity, policy and risk analyses, while representing outcomes in a 

transparent and intuitive manner.  

There are four issues that deserve additional attention. First, an exploding stochastic process 

cannot be assumed, since a Monte Carlo simulation might quickly lead to unrealistic values. 

For instance, both a Geometric Brownian Motion and an Arithmetic Brownian Motion—

common assumptions used in the literature for estimating stochastic biomass price (Di Corato 

et al., 2013; Kallio et al., 2012)—explode by simulating over multiple time periods. Since such 

simulation values are not plausible, this limitation refers to the assumption itself, rather than 

the method. Another issue that requires further research is the choice of the number of leaves. 

As mentioned above, there is no well-established procedure to determine the “optimal” size of 

the reduced tree. Next, if applying a risk-adjusted discount rate to a scenario tree, it should 

differ from the risk-adjusted discount rate applied to the underlying asset, because a tree does 

not correctly represent the underlying volatility (Lander and Pinches, 1998, p. 553). In addition, 

trees are characterized by decreasing uncertainty approaching the leaves. Therefore, further 

research could explore methods for determining the appropriate risk-adjusted discount rate for 

a scenario tree. Finally, introducing complexity and relaxing assumptions of a model usually 
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require additional data, which in turn might hamper application of our method. Data availability 

is crucial, since the method and resulting model have no value added if required data is not 

available or not reliable.  

7. Conclusion 

This paper proposes a new method which extends the widely applied linear programming 

approach, for instance used in many bio-economic farm-scale models, to determine 

simultaneously optimal investment and management decisions and their impacts on 

environmental impacts. It inherits from the programing approach the possibility to address 

simultaneously characteristics, such as returns-to-scale, indivisibilities, quasi-fixed resources 

or multiple competing uses of assets, and adds two new aspects. Firstly, it explicitly models 

that decision makers might rather wait to learn more about the future and thus are reluctant to 

invest. The risky future might, e.g., relate to future prices of the investment good or of relevant 

policies. Secondly, it considers that investment and management plans might be revised in the 

future depending on how markets and policies evolve. The proposed method thus allows an 

improved assessment of policies and their environmental impacts where a long-term investment 

perspective is appropriate. 

We apply this approach to analyze the probability of scale and timing of setting up a SRC 

plantation as an example for the transition towards low-input perennial biomass energy 

production systems. Such plantations have been found to have multiple environmental 

advantages compared to biomass energy from conventional arable field crops. We find in our 

case study that the optimal scale of such investments is quite limited. Furthermore, model 

results suggest that investors are likely to postpone the investment for some years. Both findings 

fit the observed reluctance towards SRC and contradict previous analyses with simpler models 

that claimed such plantations to be profitable immediately. The case study thus underlines the 

usefulness of the method. 
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