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Abstract: Land-cover classification on very high resolution data (decimetre-level) is a well-studied
yet challenging problem in remote sensing data processing. Most of the existing works focus on
using images with orthographic view or orthophotos with the associated digital surface models
(DSMs). However, the use of the nowadays widely-available oblique images to support such a
task is not sufficiently investigated. In the effort of identifying different land-cover classes, it is
intuitive that information of side-views obtained from the oblique can be of great help, yet how this
can be technically achieved is challenging due to the complex geometric association between the
side and top views. We aim to address these challenges in this paper by proposing a framework
with enhanced classification results, leveraging the use of orthophoto, digital surface models and
oblique images. The proposed method contains a classic two-step of (1) feature extraction and (2) a
classification approach, in which the key contribution is a feature extraction algorithm that performs
simplified geometric association between top-view segments (from orthophoto) and side-view planes
(from projected oblique images), and joint statistical feature extraction. Our experiment on five test
sites showed that the side-view information could steadily improve the classification accuracy with
both kinds of training samples (1.1% and 5.6% for evenly distributed and non-evenly distributed
samples, separately). Additionally, by testing the classifier at a large and untrained site, adding
side-view information showed a total of 26.2% accuracy improvement of the above-ground objects,
which demonstrates the strong generalization ability of the side-view features.

Keywords: land-cover classification; side-view; oblique image; photogrammetry

1. Introduction

Land-cover classification of high resolution data is an intensively investigated area of
research in remote sensing [1–3]. The classification often assumes applications to top-view images
(e.g., orthographic satellite images and orthophotos of photogrammetric products) or information of
other modalities (e.g., digital surface models (DSMs)) [4–6]. Spectral and spatial features are two basic
types of image features which separately record the optical reflections at different wavelengths and
the texture information in a continued spatial domain. Since different objects have different reflection
characteristics corresponding to different spectral bands, many indexes have proposed as classification
clues, such as normalized difference vegetation index (NDVI) [7], normalized difference water index
(NDWI) [8] and normalized differenced snow index (NDSI_snow) [9]. Based on these indexes,
there are many variations, including near surface moisture index (NSMI), which models the relative
surface snow moisture [10], and normalized difference soil index (NDSI_soil) [11]. For hyper-spectral
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imagery which can contain hundreds of bands, principal component analysis (PCA) and independent
component analysis (ICA) are used to reduce the dimension of spectral characteristics and extract the
features [12,13]. In some scenarios, spectral information is inadequate, especially for the high-resolution
images [14,15]. Therefore, in most current research, the spectral features are usually complemented
by spatial features, such as wavelet textures [16], the pixel shape index [17] and morphological filters
and profiles [18,19]. In addition, the object-based image analyzes (OBIA) for land-cover classification
has attracted significant attention [4]. The OBIA methods usually group the pixels into different
segments first and then perform the classification at the segment-level instead of the pixel-level.
The segment-level classification can reduce the local distributed spectral variation, generalize the
spectral information and offer useful shape-related spatial descriptions [20].

The idea of adding height information from the digital surface model (DSM) for remote sensing
interpretation has recently been popularized by the advanced development of photogrammetric
techniques, and light detection and ranging (LiDAR) data. With a dense matching algorithm,
the DSM and orthophoto can be generated from photogrammetric oblique images. By combining the
orthophoto and DSM, many methods involving 3D space features have been proposed and improved
the performance of land classification [21], change detection [22] and individual tree detection [23].
The height information can be directly used as a classification feature or be further processed
to hierarchy features, such as the dual morphological top-hat profile (DMTHP) proposed in [24].
Compared to the imagery derived elevation, LiDAR data can offer highly precise 3D information of
more areas where the dense matching does not work. In [3], the data from a multi-spectral airborne laser
scanner has been analyzed for the land-cover classification showing great advantages in illustration
conditions. Also, in [25], they introduced a multi-wavelength LiDAR that can acquire both topographic
and hydro-graphic information to improve the accuracy of land-cover classification.

Although the top-view based land-cover classification has been well practiced, it is known that
the high intra-class variability and inter-class similarity constitute the major challenges in such a task.
Difficult surfaces include concrete roads; building roofs; and occasionally, green roofs compared to
grasses. The use of elevation data (such as DSM) was concluded to be effective in addressing such
ambiguities [24], yet the height information alone still has limitations in complex scenarios where
off-terrain objects are difficult to extract, and scenarios where more demanding classification tasks are
needed, such as classifying types of building roofs.

With the development of multi-camera/head imaging systems, such as Microsoft/UltraCam
Osprey, Hexagon/Leica RCD30 and Track’Air MIDAS, many remote sensing platforms can
simultaneously capture the top-view and side-view images that toward different directions.
This oblique imagery is widely used for photogrammetric 3D reconstruction, especially for building
modelling, which not only offers façade textures but also greatly helps to identify the buildings,
as has been proven in several studies [26,27]. Although being widely used in 3D reconstruction and
texture mapping, such oblique information is not well utilized in classification tasks to distinguish
confusing object classes. For example, Figure 1 demonstrates how oblique images are able to support
the classification of above-ground objects with confusing top-views, as the roofs are full of greenery.
In addition to buildings, the side-view is also useful for object detection, such as in [28], wherein
the unmanned aerial vehicle (UAV) oblique images were used for tree detection. However, in all
these studies, the side-view from oblique images was not effectively utilized in a general land-cover
classification task.

One oblique aerial imagery based urban object classification work has been introduced in [29],
which seems very close to our study. In their work, the ground objects/areas, including building
façades are classified and segmented directly in the oblique images with gradient and height features.
However, the classification map on a perspective oblique image is not typically useful from a mapping
point of view, and associating the façade features at the segment level with top-view image segments
can be challenging. Therefore, we developed means to address this challenge to incorporate the
side-view information in a typical top-view based land-cover classification framework. However,
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to find and attach the vertical side-views to their hosts in the overview of orthographic images, could
be a challenging problem. There is no direct connection between a region in the orthographic image
and its possible side textures in most remote sensing data, even we schematically linked them in
Figure 1.

Figure 1. The top-view and side-view of two above-ground objects. When the objects have confusing
top-views (left), they may be more recognizable from the side-view (right).

Oblique images are not purposed for cartographic mapping, but their mapping products,
such as orthophoto and DSM have been extensively analyzed for the land-cover classification [24].
By observing the geometric constraints between the oblique images and the orthophoto and DSM,
finally, we found a way to incorporate the side-view information for land-cover classification. Firstly,
from the DSM, the above-ground objects can be segmented out as individual regions that could have
side-view information. Then, for each above-ground region, a virtual polygon boundary would be
calculated to map the side-view textures in the oblique images via a perspective transformation. Finally,
from these textures, the side-view information of each above-ground segment can be extracted and
incorporated in the land-cover classification with their top-view features.

Following this idea, in this study, we aimed to leverage the extra side-view information to improve
the land-cover classification with the oblique imagery. In general, the main contributions of this work
include: (1) to the authors’ best knowledge, this is the first work which proposes using the side-view
textures to support the top-view based land-cover classification; (2) a feasible framework is proposed
to extract the side-view features that can be precisely incorporated into top-view segments and can
improve the classification accuracy, especially when the training samples are very limited.

2. Materials and Methods

To incorporate side-view information in land-cover classification, firstly, we segment the
above-ground objects with which the textures can be mapped to the side-views. Then, based on
the segmentation boundaries, their side-view textures are mapped and selected from oblique images
via a perspective transformation. Finally, side-view information, including color and texture features,
are extracted for each above-ground segment.
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2.1. Above-Ground Object Segmentation

Above-ground object segmentation is a complicated problem which has been studied for
years [30,31], but still does not have a general solution. To simplify this problem, we assume all
above-ground objects have flat roofs; for example, if a building has two conjoint parts with different
heights, then the two parts are treated as two objects. With this assumption we are able to efficiently
segment the above-ground objects at the individual level with a simple height clustering algorithm,
in which the connected pixels that share similar heights are grouped as one above-ground object.
To implement, firstly, we use the DSM to calculate a gradient map which can approximate the
above-ground height with respect to surrounding areas. Then, from the highest to the lowest,
the connected pixels with height differences within 1 m are sequentially grouped as individual
segments. Finally, the segments which have 2.5 m average above-surroundings heights are classified
as above-ground objects, as shown in Figure 2.

It is possible that the resulting clusters may contain errors, such as incomplete segments and
incorrect above-ground heights, which are mainly in multi-layer objects (e.g., the towers on the roof
and the gullies on the ground). To fix these errors, we post-process these segments by simply using
neighboring merge technique.

Figure 2. Segmentation of above-ground objects with height clustering. (a,b) Orthophotos and the
digital surface model (DSM) of a study area; (c,d) the gradient map and the final segments (colors are
used to show different segments).

2.2. Side-View Texture Cropping and Selection

Similar to 3D building façade texture mapping [32], the vertical faces of above-ground objects
can be mapped and cropped from oblique images. However, unlike buildings which often have
well-defined plane/multi-plane structures in their façades, many above-ground objects, for example,
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trees, do not possess a specified vertical face. To solve this problem, we convert the boundaries of
above-ground segments into polygons with the Douglas–Peucker algorithm [33], thereby creating
pseudo vertical faces by cascading the top edges of each object to the ground, as shown in Figure 3,
image (a) and (b). In the experiment, only the three longest lines are used to extract side-view
textures. As illustrated in Figure 3, image (b), the vertical face is defined as a rectangle with four space
points (P1, P2, P3, P4). The upper points (P1, P2) are the two ending points of a polygon line with
the object height, while the lower points (P3, P4) are at the same positions but with ground height.
The georeferenced 3D coordinates (X, Y, Z) of the four points in the object space can be acquired from
the orthophoto and DSM; thus, their corresponding oblique image coordinates can be calculated via a
perspective transformation:

s

 u
v
1

 = P3×4


X
Y
Z
1

 , (1)

where (u, v, 1) are the 2D homogeneous coordinates in the oblique image with s as a scale factor,
and P3×4 is a perspective transform matrix which contains the intrinsic and extrinsic camera parameters
that are calibrated in the photogrammetric 3D processing. The reader can find more details about
the photogrammetry in [34]. As illustrated in Figure 3, image (c) and (d), after this perspective
transform, the four points can define a region of the side-view in many multi-view oblique image.
To get better side-views for the later feature extractions, we rectify the textures to the front view
through a homography transform that maps the points in one image to the corresponding points in
the other image (e.g., mapping P2, P1, P3 and P4 to the top-left, top-right, bottom-left and bottom
right corner of a rectangle image, separately), as shown in Figure 3e. The readers can find more details
about homography in [34].

Figure 3. The side-view texture extraction from multi-view oblique images. (a) An example of
above-ground object polygon boundaries and its DSM, while the next image (b) shows one of its
3D vertical faces. Next are possible projections of multi-view oblique images (c). Finally, (d,e) the
original and rectified side-view textures are shown, while the yellow rectangle in image (e) marks the
best texture.

There is in general more than one oblique image that can capture the side-view of an object.
To select the best one, we consider three factors: (1) V( f ), the quality of the angle between the normal
of the face plane and the camera imaging plane, (2) N( f ), the quality of the angle between the face
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normal and the line through camera and face centers, (3) O( f ), the proportion of the observable part.
Based on these factors, the best side-view is selected by a texture quality measurement:

Q( f ) = m1 ∗ V( f ) + m2 ∗ N( f ) + m3 ∗ O( f ), (2)

where the Q( f ) measures the quality of side-view f, while the m1, m2 and m3 are the weights of different
quality factors. In the experiment, m1, m2 and m3 are set as 0.25, 0.25 and 0.5, respectively, as we found
the visibility is more important. While the first two factors can be easily calculated, the visibility is
complicated to measure due to the fact that occlusions often exist in urban areas. Inspired by a Z-buffer
based occlusion detection [29], we examine the visibility with a distance measurement, as illustrated in
Figure 4.

Figure 4. An illustration of the occlusion detection through Z-buffer with the DSM. A texture point
(e.g., p1), must be close to the side-view plane (yellow rectangle) in the object space; otherwise (e.g., p2
which is pointing at a tree) it should be an occlusion point.

For each side-view region in the multi-view oblique images, we can simulate emitting rays from
the camera center through the side-view texture and reach the DSM in the object space. If a pixel is not
part of the plane (e.g., due to occlusion), as with P2 in Figure 4, we determine that as an invalid pixel
for feature extraction. The resulting masked image is shown in Figure 3e.

2.3. Side-View Feature Description

To capture the side-view features, we compute the average color and the standard deviation in R,
G, B channels. The histogram of oriented gradients (HOG) [35] and Haar-like features [36,37] are also
adopted for the texture description.

HOG descriptor counts occurrences of the gradient orientation in different localized portions of
an image with a histogram. By normalizing and concatenating all local HOGs, such as different parts
of a human body, we are able to effectively describe object boundaries. In our case, the entire side-view
texture is treated as a single patch because there is no dominant or specified distribution. On the other
hand, considering that the elements (e.g., windows) in the building façades usually have a regular
and repetitive layout, we adopt the rectangle Haar-like features to the side-view images, as has been
shown to be highly descriptive. The rectangle Haar-like feature is defined as the difference of the
sums of the pixel intensities inside different rectangles. For the side-view textures, a triple-rectangle
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pattern Haar-like structure (e.g., black-white-black) is designed and used at the vertical and horizontal
direction, separately, at 3 different sizes (total 6 feature vectors). Finally, from pixels to blocks, the color,
gradient and Haar-like features are combined to describe the side-view for each above-ground segment.

2.4. Classification with Side-View and Top-View

Following the idea of object-based image classification, we first segment the top-view image into
small segments as basic classification units. Then, for each segment, top-view features are directly
extracted from orthophoto and DSM, while the side-view features are assigned based on the overlaps
between the segments and above-ground objects. Finally, with the top-view and side-view features,
a random forest classifier is trained to perform the classification.

2.4.1. Image Segmentation with Superpixels

Several image segmentation algorithms have been used for the remote sensing data, such as
mean-shift [20,22] and superpixel segmentation [38,39]. Without valuing the shape as a main rule,
the mean-shift algorithm can generate well-articulated segments, but the size of segments may vary and
the result is sensitive to the algorithm parameters, leading to unpredictable segments. The superpixel
algorithm generates compact segments with regular shapes and scales, which are more robust and
suitable to associate with the side-view features without unexpected mistakes. Hence, in this study,
we generated the SLIC superpixel segments [40] and assigned each segment the side-view features
based on its overlap with the above-ground objects, as illustrated in Figure 5. On the other hand,
for superpixels which are not in the above-ground areas, their side-view features will be set as zeros.

Figure 5. The assignment of side-view features for each superpixel segment. (a) The orthophoto with
superpixels. (b) Above-ground segments (color blocks) and (c) their overlap.

2.4.2. Classification Workflow

Side-view serves as a piece of complementary information and can be incorporated in any
land-cover classification framework with top-view features. Hence, in this work, we directly adopted
the framework introduced in [24] which uses a dual morphological top-hat profile (DMTHP) to
extract the top-view features and the random forest to classify the segments. More specifically,
the top-view features include the DMTHP features extracted from the DSM and brightness and
darkness orthophoto images produced by the principal component analysis (PCA) [41]. The DMTHP
extracts the spatial features with class-dependent sizes which are adaptively estimated by the training
data. This mechanism avoids exhaustive morphology computation of a set of sizes with regular
intervals and greatly reduces the dimensions of the feature space. On the other hand, the random forest
classifier is widely used for hierarchical feature classifications [42]. The voting strategy of multiple
decision trees and the hierarchical examination of the feature elements make this method have high
accuracy. The entire classification workflow can be found in Figure 6, and more details about the
top-view feature extraction and the random forest classifier can be discovered in [24].



Remote Sens. 2020, 12, 390 8 of 18

Figure 6. The proposed workflow for the land-cover classification.

3. Results

In the experiment, 306 aerial images were used as the study data, including 73 top-view,
64 forward-view, 47 backward-view, 62 left-view and 60 right-view images taken by a 5-head Leica
RCD30 airborne camera. The size of all images is 10,336 × 7788 pixels; the four oblique cameras were
mounted with a tilt angle of 35 degrees (see Table 1). These images were calibrated by a professional
photogrammetric software called Pix4DMapper software (Pix4D SA, Switzerland) which was also
used to produce the orthophoto and DSM. The georeferencing accuracy, computed from 9 ground
control points, is 2.9 cm. The ground sampling distance (GSD) of the orthophoto and DSM is 7.8 cm.
The study area centers around the campus of the National University of Singapore (NUS), where the
terrain contains a hilly ridge with tall and low buildings, dense vegetation, roads and manufacturing
structures, as illustrated in Figure 7. To analyze the improvement using our method, six sites that each
contain all the types with different scenarios were selected. As shown in Figure 7, site A is a complex
campus area which includes dormitories, dining halls, study rooms and multi-function buildings. Site
B and Site E are residential areas with different types of residential buildings. Site C is a secondary
school containing challenging scenarios: the education buildings and a playground are on the roof.
Site D is a parking site. Site F, with a complicated land-cover classes, is a much larger area which is
used to test the generalization capability of the method.

Figure 7. The study area around National University of Singapore (NUS) campus with six experiment
sites marked by rectangles.
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Table 1. The statistics of the images data.

Leica RCD30 Airborne Camera (Altitude: 800 to 900 m) Top-View Side-View (Oblique Images)

Image size 10,336 pixels × 7788 pixels 10,336 pixels × 7788 pixels
Angle 0 35 degree
Average ground sample distance 0.078 meter 0.078 meter

In this study, the image was classified into (1) ground classes, including road, bare ground
and impervious surfaces; (2) grassland; (3) trees; (4) rain-shed including pedestrian overpasses;
and (5) building. Other objects, such as cars, rivers/pools and lower vegetation, were not considered.
The reference masks of the land-cover were manually drawn by an operator who visually identified
the objects in the orthophoto, DSM and oblique images. For each test site (except site F), around
2% of the labeled superpixel segments were used to train the classifier, and more statistics about the
experimental setup are listed in Table 2. For the random forest classifier [43], 500 decision trees were
used for training, while the number of variables for classification was set as the square root of the
feature dimension, which was 35 in the experiment.

Table 2. The statistics of training and test samples.

Site A B C D E

Training samples for each class

Ground 50 51 50 51 50
Grassland 50 51 49 51 44
Rain-shed 49 52 49 27 51

Tree 50 51 50 50 51
building 51 50 51 50 50

Total training samples 250 249 249 229 246
Total test samples 14,791 7883 7883 8099 6006

Total segments 17,285 11,237 11,237 11,232 11,236
Percentage 1.45 % 2.27 % 2.22 % 2.04 % 2.19 %

3.1. Validation of Above-Ground Object Segmentation

The above-ground object segmentation is an initial and critical step for the side-view information
extraction. To validate the above-ground segments, we compared the segments with the reference
labels of tree, rain-shed and building. The above-ground segmentation accuracy for the five test sites
is shown in Table 3. The evaluation metrics include the accuracy per-class, overall accuracy and
commission error, each corresponding to the percentage of correctly identified above-ground pixels in
the class, in total, and the miss-classified above-ground pixels, respectively.

Table 3. The accuracy of the above-ground segmentation.

Site Class Accuracy (%) Overall Accuracy
(%)

Commission Error
(%)Rain-shed Tree Building

A 97.82 83.25 96.16 93.44 1.32
B 94.64 85.02 99.14 94.55 2.92
C 89.05 94.66 99.64 96.79 0.39
D 99.92 63.17 98.81 85.33 4.91
E 79.42 84.80 98.40 93.71 2.54

Avg. 92.17 82.18 98.43 92.76 2.42

As observed from Table 3, most of the above-ground pixels were successfully segmented (92.7%
overall accuracy), and only a few were misclassified (2.42% commission error). For class accuracy,
most of the buildings were identified correctly, but with some fuzzy edges. This was mainly caused
by the smoothing operation in the generation of DSM, and this operation also reduced the accuracy
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of the rain-shed, which is low and close to buildings. On the other hand, some pixels of trees were
not identified mainly due to the complex structures, such as tree branches, generally not being
reconstructed well in current 3D reconstruction approaches, as illustrated by rectangles in Figure 8.
In addition, different objects may be segmented as one single object if they are close and have similar
heights. This kind of error may make objects have wrong side-views; for instance, the rain-shed
would have the side-views of trees, as marked by the circles in Figure 8. However, this error will not
significantly impact the final classification, because the side-view is just a piece of complementary
information; the top-view features still play an important role in the final classification.

Figure 8. The illustration of the errors in above-ground object segmentation. The orthophoto (a),
DSM (b), and above-ground segments with different colors (c). Rectangles mark the missed trees while
the circles mark a segment which contains multiple objects.

3.2. Classification with Different Samples

For supervised land-cover classification, the training samples are critical. In practice, depending
on the distribution, there are two kinds of samples: (1) evenly collected samples over the entire test site,
which we refer to as evenly distributed samples; (2) selectively collected samples covering part of the
test site, which we refer to as non-evenly distributed samples. As illustrated in Figure 9a, the evenly
distributed samples can offer abundant intra/inter-class information, but they need a considerable
amount of labor with scrutiny over the entire image. On the other hand, using non-evenly distributed
samples can reduce the manual work and is more efficient at larger scales, but they may not sufficiently
represent the data distribution. Considering that these two sample concepts are both very common in
practice, we experimented with both of them in our tests.

Figure 9. Training samples with different collection methods. (a) Evenly distributed samples;
(b) Non-evenly distributed samples.
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Classification with Evenly Distributed Samples

The evenly distributed training samples of each class were evenly picked up from reference data
with certain intervals. Following the training and prediction process, as described in Section 2.4.2, we
performed the classification with/without side-view features, and the results are shown in Table 4
with user accuracy (calculated by taking the total number of correct classifications for a particular class
and dividing it by the row total).

Table 4. The land-cover classification user accuracy (%) with evenly distributed samples.

Site Side-View Ground Grassland Rain-Shed Tree Building Overall
Accuracy Kappa

A Yes 93.52 95.70 93.67 94.11 90.63 92.65 89.46
No 92.40 95.93 92.64 87.30 89.12 90.83 86.85

B Yes 88.01 85.54 93.15 93.12 96.42 92.06 89.52
No 85.34 86.95 91.58 92.09 96.42 91.22 88.44

C Yes 92.74 94.61 96.33 96.96 99.45 97.26 95.86
No 92.66 94.62 95.70 97.48 99.12 97.30 95.93

D Yes 93.04 95.07 90.24 89.95 97.27 92.73 90.64
No 92.14 94.43 88.65 86.20 90.87 90.45 87.67

E Yes 95.08 95.78 88.17 92.71 96.30 95.15 92.37
No 94.83 95.14 88.17 91.87 95.87 94.71 91.68

Avg. Yes 92.48 93.34 92.31 93.37 96.01 93.97 91.57
No 91.47 93.41 91.35 90.99 94.28 92.90 90.11

As we can observe from Table 4, the results with side-view have higher overall accuracy and
Kappa values (on average our method improved 1.1% and 1.5%, separately) which means the side-view
information offers useful clues for the land-cover classification. The improvement seems to be limited,
as the training samples supply the full capacity of the classifier that is difficult to be further improved.
As proven by the experiment, the side-view can still improve the classification if we do not consider
the ground objects (ground, grassland) which are not benefited by this extra information. The average
per-class accuracy improvement is 1.7%.

As shown from Figure 10, the classification without side-view incorrectly classified some trees
into buildings (marked by circles). This misclassification is mainly caused by the fact that many
vegetation-covered roofs would make their top-view features have high similarity to the trees. On the
other hand, some tropical trees with dense and flat crowns, could have very similar top-view features
compared to vegetation-covered roofs. Besides, low vegetation on the roof, as marked by the rectangles
in Figure 10, could be misclassified as trees, since it has enough height. However, with the differences
in side-views, for example, trees are usually more green and darker, the classifier could identify fewer
trees as buildings, and vice versa.

It is possible that the side-view information can be incorrect and damage the classification, as is
shown in the circle in Figure 11, where the trees are better identified without side-view information.
From the 3D visualization of this area, we observe that the trees are growing through a roof, making
the trees have building side-views. This kind of error is mainly caused by the incorrect above-ground
segmentation, as we discussed in Section 3.1. Different objects are segmented together, leading to a
mismatching of side-views. However, even though the superpixels of trees are assigned with building
side-views, their top-views still insure some of them are correctly classified.

3.3. Classification with Non-Evenly Distributed Samples

Usually, the non-evenly distributed samples are more common and practical in real applications.
As illustrated in Figure 9b, in the experiment, the non-evenly distributed training samples were
generated by selecting training samples of a sub-region of an image. With the same training and
prediction process, the user accuracies of classification with/without side-view features are given in
Table 5.
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Figure 10. Classification results in site A.

Figure 11. Classification results in site C.

Table 5. The user accuracies (%) of land-cover classification with non-evenly distributed training samples.

Site Side-View Ground Grassland Rain-Shed Tree Building Overall
Accuracy Kappa

A Yes 41.59 97.85 68.12 77.66 91.09 83.03 75.16
No 42.73 97.95 59.51 74.91 64.46 69.67 58.17

B Yes 83.27 94.32 79.80 86.15 96.34 89.73 86.12
No 84.94 92.92 81.07 88.76 88.37 87.49 83.16

C Yes 95.79 87.47 84.11 99.31 91.92 95.03 92.46
No 91.66 87.93 94.99 94.52 85.20 90.23 85.19

D Yes 63.85 97.17 98.96 64.97 65.19 73.11 65.29
No 58.69 89.19 99.97 67.92 65.11 70.28 62.19

E Yes 91.24 69.38 95.72 76.19 90.22 87.08 81.29
No 81.71 76.40 98.62 77.12 85.21 82.43 75.13

Avg. Yes 75.15 89.24 85.34 80.86 86.95 85.60 80.06
No 71.95 88.88 86.83 80.65 77.67 80.02 72.77

As compared to the results of evenly distributed training samples, the non-evenly distributed
samples have a degraded performance (around 10% and 16% lower overall accuracy for classification
with/without side-view, separately). It is well-understood such a training sample selection process
may not sufficiently represent the data distribution. However, in such a situation, the side-view still
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improved the average overall accuracy by 5.6%, the building was even improved by 9.3%. However,
in sites B, D and E, the side-view information reduced the accuracy of the tree class. Trees close to
buildings and the rain-shed could have unstable side-view features due to the occlusion and the
3D structure of some trees not being reconstructed, which may introduce errors in tree recognition.
Thus, if with only limited training samples, this instability may damage the training leading to
unreliable predictions. Nevertheless, with high quality training samples, or even limited-quality ones,
the involvement of side-views can still greatly improve the land-cover classification, as demonstrated
by the classification of the buildings.

Generalization Ability of Side-View Information

To further analyze the generalization ability of the side-view information, we experimented with
the trained classifier at a much larger area (site F which is 16 times larger than other sites) at the center of
NUS campus. Due to the very high resolution of this data (GSD is 7.8 cm, contains 8262 × 8721 pixels),
we down sampled it to one-third of the original size. In this area, a total of 180,152 superpixel
segments were generated, containing short and high buildings, tropical trees with smooth canopies,
interchanging roads and constructions along the ridge of a hill. In the experiment, the classifier was
trained by the reference data of previously mentioned five test sites, and the classification results
(with/without side-view) are shown in Figure 12 and Table 6.

Figure 12. Land-cover classification at the center of NUS campus.

Table 6. The user accuracy (%) of the classification in site F.

Side-View Ground Grassland Rain-Shed Tree Building Overall Accuracy Kappa

Yes 86.45 76.86 40.06 95.31 85.61 87.04 81.96
No 87.96 85.71 5.53 79.74 57.24 72.54 63.04
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In Figure 12, we can observe that the side-view has greatly improved the classification accuracy:
(1) With the side-view, the overall accuracy and Kappa have been improved by 14.5% and 18.9%.
(2) For the above-ground objects, the overall accuracy of the building and rain-shed have been
improved by 28.37% and 34.53%, leading to a large category average improvement of 26.2% (including
the tree). If the classification is performed without side-view information, many buildings are identified
as ground, while some trees are identified as buildings. This site (F) contains a complicated area with
various man-made objects and dense trees crossing a hill with large topographic relief (more than
90 meters). In Singapore, many buildings with green/playground roofs can be challenging and
often mislead the algorithm to produce incorrect results, for example, by classifying green roofs to
the tree class. Especially, if the buildings are surrounded by trees or at the hillside, they could be
classified as ground due to the relief of the DSM, as shown in Figure 13. Unlike the top-view or the
elevation features that can be sensitive to the DSM relief changes, the side-view features are much
more consistent and robust to varying scenarios. For the two examples illustrated in Figure 13, with the
side-view information, the buildings at the hillside can be correctly classified, as can the one with a
playground roof.

Figure 13. The classifications of two complicated areas. The lower row shows examples of hillside
buildings, while upper row shows a building with a playground roof.

As mentioned above, the classification could be sensitive to the training samples. To analyze
that, we changed the training samples by alternatively removing samples site by site. In other words,
we alternatively selected samples from the four of five test sites (A–E) and tested the performance
robustness with varying training samples. The results with accuracy and Kappa values, and their
average (Avg.) and standard deviation (Sd.) values can be found in Table 7.

Table 7. The performance robustness with varying training samples.

Without Samples From A B C D E Avg. Sd.

With
side-view

Overall accuracy 85.28 86.4 86.13 87.13 85.65 86.12 0.71
Kappa 79.68 81.06 80.65 82.13 80.02 80.71 0.96

Without
side-view

Overall accuracy 70.51 77.0 72.4 70.93 71.54 72.48 2.63

Kappa 60.78 68.77 62.97 61.0 61.77 63.06 3.31

From Table 7, we observe the classification with side-view is more robust to the change of training
data, and has smaller standard deviations for both overall accuracy and Kappa. We can find the training
samples from site A and D are crucial for the top-view features, as the classifications have obviously
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decreased without their training data, indicating the top-view features are sensitive to training samples.
On the contrary, with the side-view information, the performance is stable, indicating the side-view
features are more steady and robust to the randomness of training samples.

4. Discussion

As demonstrated in the experiments, the side-view information can steadily improve the
classification performance. However, there are still some issues we need to further discuss. Firstly,
as mentioned, the above-ground objects segmentation which decides the boundaries of each object
and the corresponding textures is critical for the side-view information extraction. In this study, we
tried several methods to segment the above-ground objects [30,31]. However, it is a quite complicated
problem and we did not find an obviously better solution than the adopted height-grouping
algorithm. There are two issues in the segmentation, incorrect boundaries and under-segmentation
of multi-objects. We observed the first issue will not damage the side-view information due to the
fact that incorrect boundary can still offer appropriate locations for the side-view texture. On the
other hand, the under-segmentation of multi-objects cannot be ignored. It will confuse the side-views
between different objects and classes. To solve this, the color difference could be considered, with the
height-grouping in the above-ground object segmentation. However, this introduction usually causes
over-segmentation, fragmenting objects into pieces and hindering the side-view extraction. The deep
learning neural networks [44–46] could be promising solutions which we would explore in the future.

The selection of training samples is another important fact that decides the classification
performance. As mentioned in the results, the evenly-distributed samples have much better
performance than non-evenly distributed ones, because this kind of training sample can supply
category-level features, instead of object-level ones. The classifier can be well trained with complete
data, leading to ideal performance which is hard to be further improved. On the contrary, the dataset
underrepresented by the non-evenly distributed samples and the classifier training will be partial,
leading to poor classification. This is mainly caused by the high intra-class variability of top-view
features that makes the classifier vulnerable to untrained data. As shown in the results, the side-view
information is more robust and consistent. This also inspires us to consider multiple dimension
features for object classification and recognition in future works.

In our experiment, we also observed a few misclassified areas, for example, many rain-sheds were
not classified correctly. There are two main challenges for rain-shed identification: the rain-sheds are
short in height and are close to the buildings and trees, the side-view of which might be misleading.
On the other hand, we found the ground objects have slightly worse classification results with the
side-view. This is mainly caused by the errors in the above-ground segmentation. Many ground areas
are wrongly segmented as above-ground objects due to the limited accuracy of the DSM. Particularly,
objects in slope may be mixed with ground area in the slope. Hence, how to extract and use side-view
information still needs further development.

5. Conclusions

In this study, we aimed to fully utilize the possible information acquired by the oblique
aerial image and analyze the potential of using side-view information for land-cover classification.
To contribute the side-view information to the top-view segments, we proposed a side-view
information extraction method, described in Section 2. More specially, to get the side-view information,
we first segment out the above-ground segments with a height grouping algorithm. Then, based on
the boundaries which have been converted to polygons, their 3D vertical side-view planes are defined.
With the perspective transformation, the side-view textures of above-ground objects can be cropped
and selected from oblique images. Finally, from these oblique textures, the side-view information,
including color, HoG and Haar-like features, are extracted as extra information for the classification.
Our experiment in different test sites shows that the side-view can steady improve the classification
accuracy either with evenly distributed or non-evenly distributed training samples (by 1.1% and 5.6%,
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respectively). Also, the generalization ability of the side-view is evaluated and demonstrated as a
14.5% accuracy improvement as tested at a larger and untrained area.

Even though the side-view features show strong consistency and high robust to different sites,
the training samples are still critical to the classification. In our experiments we observed some
commission errors, which were primarily from incorrect segmentation results, which should be
further improved.

Author Contributions: R.Q. and C.X. initiated this research. C.X. performed the experiment, and X.L. contributed
to part of the data processing. C.X. wrote this manuscript; R.Q. and X.L. helped with the edit. All authors have
read and agreed to the published version of the manuscript.

Funding: This material is based on research/work supported by the National Research Foundation under Virtual
Singapore, award number NRF2015VSG-AA3DCM001-024.

Acknowledgments: We are grateful to Singapore Land Authority (SLA) for their great support on multi-sensor data.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Audebert, N.; Le Saux, B.; Lefèvre, S. Beyond RGB: Very high resolution urban remote sensing with
multimodal deep networks. ISPRS J. Photogramm. Remote Sens. 2018, 140, 20–32. [CrossRef]

2. Inglada, J. Automatic recognition of man-made objects in high resolution optical remote sensing images
by SVM classification of geometric image features. ISPRS J. Photogramm. Remote Sens. 2007, 62, 236–248.
[CrossRef]

3. Matikainen, L.; Karila, K.; Hyyppä, J.; Litkey, P.; Puttonen, E.; Ahokas, E. Object-based analysis of
multispectral airborne laser scanner data for land cover classification and map updating. ISPRS J. Photogramm.
Remote Sens. 2017, 128, 298–313. [CrossRef]

4. Ma, L.; Li, M.; Ma, X.; Cheng, L.; Du, P.; Liu, Y. A review of supervised object-based land-cover image
classification. ISPRS J. Photogramm. Remote Sens. 2017, 130, 277–293. [CrossRef]

5. Zhang, C.; Pan, X.; Li, H.; Gardiner, A.; Sargent, I.; Hare, J.; Atkinson, P.M. A hybrid MLP-CNN classifier
for very fine resolution remotely sensed image classification. ISPRS J. Photogramm. Remote Sens. 2018, 140,
133–144. [CrossRef]

6. Zhang, C.; Sargent, I.; Pan, X.; Li, H.; Gardiner, A.; Hare, J.; Atkinson, P.M. Joint Deep Learning for land
cover and land use classification. Remote Sens. Environ. 2019, 221, 173–187. [CrossRef]

7. Rouse, J.; Jr.; Haas, R.; Schell, J.; Deering, D. Monitoring Vegetation Systems in the Great Plains with ERTS;
NASA Special Publication: Washington, DC, USA, 1974.

8. McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water
features. Int. J. Remote Sens. 1996, 17, 1425–1432. [CrossRef]

9. Salomonson, V.V.; Appel, I. Estimating fractional snow cover from MODIS using the normalized difference
snow index. Remote Sens. Environ. 2004, 89, 351–360. [CrossRef]

10. Lampkin, D.J.; Yool, S.R. Monitoring mountain snowpack evolution using near-surface optical and thermal
properties. Hydrol. Process. 2004, 18, 3527–3542. [CrossRef]

11. Rogers, A.; Kearney, M. Reducing signature variability in unmixing coastal marsh Thematic Mapper scenes
using spectral indices. Int. J. Remote Sens. 2004, 25, 2317–2335. [CrossRef]

12. Huang, P.S.; Tu, T.M. A target fusion-based approach for classifying high spatial resolution imagery.
In Proceedings of the IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data,
Greenbelt, UK, 27–28 October 2003; pp. 175–181.

13. Zhang, L.; Huang, X.; Huang, B.; Li, P. A pixel shape index coupled with spectral information for classification
of high spatial resolution remotely sensed imagery. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2950–2961.
[CrossRef]

14. Benediktsson, J.A.; Palmason, J.A.; Sveinsson, J.R. Classification of hyperspectral data from urban areas
based on extended morphological profiles. IEEE Trans. Geosci. Remote Sens. 2005, 43, 480–491. [CrossRef]

15. Huang, X.; Lu, Q.; Zhang, L. A multi-index learning approach for classification of high-resolution remotely
sensed images over urban areas. ISPRS J. Photogramm. Remote Sens. 2014, 90, 36–48. [CrossRef]

http://dx.doi.org/10.1016/j.isprsjprs.2017.11.011
http://dx.doi.org/10.1016/j.isprsjprs.2007.05.011
http://dx.doi.org/10.1016/j.isprsjprs.2017.04.005
http://dx.doi.org/10.1016/j.isprsjprs.2017.06.001
http://dx.doi.org/10.1016/j.isprsjprs.2017.07.014
http://dx.doi.org/10.1016/j.rse.2018.11.014
http://dx.doi.org/10.1080/01431169608948714
http://dx.doi.org/10.1016/j.rse.2003.10.016
http://dx.doi.org/10.1002/hyp.5797
http://dx.doi.org/10.1080/01431160310001618103
http://dx.doi.org/10.1109/TGRS.2006.876704
http://dx.doi.org/10.1109/TGRS.2004.842478
http://dx.doi.org/10.1016/j.isprsjprs.2014.01.008


Remote Sens. 2020, 12, 390 17 of 18

16. Ouma, Y.O.; Tetuko, J.; Tateishi, R. Analysis of co-occurrence and discrete wavelet transform textures for
differentiation of forest and non-forest vegetation in very-high-resolution optical-sensor imagery. Int. J.
Remote Sens. 2008, 29, 3417–3456. [CrossRef]

17. Huang, X.; Zhang, L.; Li, P. Classification and extraction of spatial features in urban areas using
high-resolution multispectral imagery. IEEE Geosci. Remote Sens. Lett. 2007, 4, 260–264. [CrossRef]

18. Fauvel, M.; Chanussot, J.; Benediktsson, J.A. A spatial–spectral kernel-based approach for the classification
of remote-sensing images. Pattern Recognit. 2012, 45, 381–392. [CrossRef]

19. Pingel, T.J.; Clarke, K.C.; McBride, W.A. An improved simple morphological filter for the terrain classification
of airborne LIDAR data. ISPRS J. Photogramm. Remote Sens. 2013, 77, 21–30. [CrossRef]

20. Huang, X.; Zhang, L. An adaptive mean-shift analysis approach for object extraction and classification from
urban hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 2008, 46, 4173–4185. [CrossRef]

21. Huang, X.; Zhang, L.; Gong, W. Information fusion of aerial images and LIDAR data in urban areas:
vector-stacking, re-classification and post-processing approaches. Int. J. Remote Sens. 2011, 32, 69–84.
[CrossRef]

22. Qin, R.; Huang, X.; Gruen, A.; Schmitt, G. Object-based 3-D building change detection on multitemporal
stereo images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 2125–2137. [CrossRef]

23. Xiao, C.; Qin, R.; Xie, X.; Huang, X. Individual Tree Detection and Crown Delineation with 3D Information
from Multi-view Satellite Images. Photogramm. Eng. Remote Sens. 2019, 85, 55–63. [CrossRef]

24. Zhang, Q.; Qin, R.; Huang, X.; Fang, Y.; Liu, L. Classification of ultra-high resolution orthophotos combined
with DSM using a dual morphological top hat profile. Remote Sens. 2015, 7, 16422–16440. [CrossRef]

25. Teo, T.A.; Wu, H.M. Analysis of land cover classification using multi-wavelength LiDAR system. Appl. Sci.
2017, 7, 663. [CrossRef]

26. Fradkin, M.; Maıtre, H.; Roux, M. Building detection from multiple aerial images in dense urban areas.
Comput. Vis. Image Underst. 2001, 82, 181–207. [CrossRef]

27. Morgan, M.; Habib, A. Interpolation of lidar data and automatic building extraction. In ACSM-ASPRS
Annual Conference Proceedings; Citeseer: Princeton, NJ, USA, 2002; pp. 432–441.

28. Lin, Y.; Jiang, M.; Yao, Y.; Zhang, L.; Lin, J. Use of UAV oblique imaging for the detection of individual trees
in residential environments. Urban For. Urban Green. 2015, 14, 404–412. [CrossRef]

29. Rau, J.Y.; Jhan, J.P.; Hsu, Y.C. Analysis of oblique aerial images for land cover and point cloud classification
in an urban environment. IEEE Trans. Geosci. Remote Sens. 2014, 53, 1304–1319. [CrossRef]

30. Luethje, F.; Tiede, D.; Eisank, C. Terrain extraction in built-up areas from satellite stereo-imagery-derived
surface models: A stratified object-based approach. ISPRS Int. J. Geo-Inf. 2017, 6, 9. [CrossRef]

31. Piltz, B.; Bayer, S.; Poznanska, A.M. Volume based DTM generation from very high resolution
photogrammetric DSMs. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 41, 83–90. [CrossRef]

32. Frueh, C.; Sammon, R.; Zakhor, A. Automated texture mapping of 3D city models with oblique aerial
imagery. In Proceedings of the 2nd International Symposium on 3D Data Processing, Visualization and
Transmission, Thessaloniki, Greece, 9 September 2004; pp. 396–403.

33. Douglas, D.H.; Peucker, T.K. Algorithms for the reduction of the number of points required to represent a
digitized line or its caricature. Cartogr. Int. J. Geogr. Inf. Geovis. 1973, 10, 112–122. [CrossRef]

34. Hartley, R.; Zisserman, A. Multiple View Geometry in Computer Vision; Cambridge University Press:
Cambridge, UK, 2003.

35. Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In Proceedings of the 2005 IEEE
Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA,
20–25 June 2005.

36. Crow, F.C. Summed-area tables for texture mapping. In Proceedings of the 11th Annual Conference
on Computer Graphics and iNteractive Techniques, Minneapolis, MN, USA, 23–27 July 1984; Volume 18,
pp. 207–212.

37. Viola, P.; Jones, M. Rapid object detection using a boosted cascade of simple features. CVPR (1) 2001, 1, 3.
38. Audebert, N.; Le Saux, B.; Lefevre, S. How useful is region-based classification of remote sensing images in

a deep learning framework? In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing
Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 5091–5094.

http://dx.doi.org/10.1080/01431160701601782
http://dx.doi.org/10.1109/LGRS.2006.890540
http://dx.doi.org/10.1016/j.patcog.2011.03.035
http://dx.doi.org/10.1016/j.isprsjprs.2012.12.002
http://dx.doi.org/10.1109/TGRS.2008.2002577
http://dx.doi.org/10.1080/01431160903439882
http://dx.doi.org/10.1109/JSTARS.2015.2424275
http://dx.doi.org/10.14358/PERS.85.1.55
http://dx.doi.org/10.3390/rs71215840
http://dx.doi.org/10.3390/app7070663
http://dx.doi.org/10.1006/cviu.2001.0917
http://dx.doi.org/10.1016/j.ufug.2015.03.003
http://dx.doi.org/10.1109/TGRS.2014.2337658
http://dx.doi.org/10.3390/ijgi6010009
http://dx.doi.org/10.5194/isprsarchives-XLI-B3-83-2016
http://dx.doi.org/10.3138/FM57-6770-U75U-7727


Remote Sens. 2020, 12, 390 18 of 18

39. Wu, Z.; Hu, Z.; Fan, Q. Superpixel-based unsupervised change detection using multi-dimensional change
vector analysis and SVM-based classification. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci.
2012, 7, 257–262. [CrossRef]

40. Achanta, R.; Shaji, A.; Smith, K.; Lucchi, A.; Fua, P.; Süsstrunk, S. SLIC superpixels compared to
state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 2274–2282. [CrossRef]
[PubMed]

41. Wold, S.; Esbensen, K.; Geladi, P. Principal component analysis. Chemom. Intell. Lab. Syst. 1987, 2, 37–52.
[CrossRef]

42. Sun, X.; Lin, X.; Shen, S.; Hu, Z. High-resolution remote sensing data classification over urban areas using
random forest ensemble and fully connected conditional random field. ISPRS Int. J. Geo-Inf. 2017, 6, 245.
[CrossRef]

43. Pal, M. Random forest classifier for remote sensing classification. Int. J. Remote Sens. 2005, 26, 217–222.
[CrossRef]

44. Kampffmeyer, M.; Salberg, A.B.; Jenssen, R. Semantic segmentation of small objects and modeling of
uncertainty in urban remote sensing images using deep convolutional neural networks. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Las Vegas, NV, USA,
26 June–1 July 2016; pp. 1–9.

45. Marmanis, D.; Wegner, J.D.; Galliani, S.; Schindler, K.; Datcu, M.; Stilla, U. Semantic segmentation of aerial
images with an ensemble of CNNs. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 3, 473.
[CrossRef]

46. Wang, H.; Wang, Y.; Zhang, Q.; Xiang, S.; Pan, C. Gated convolutional neural network for semantic
segmentation in high-resolution images. Remote Sens. 2017, 9, 446. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.5194/isprsannals-I-7-257-2012
http://dx.doi.org/10.1109/TPAMI.2012.120
http://www.ncbi.nlm.nih.gov/pubmed/22641706
http://dx.doi.org/10.1016/0169-7439(87)80084-9
http://dx.doi.org/10.3390/ijgi6080245
http://dx.doi.org/10.1080/01431160412331269698
http://dx.doi.org/10.5194/isprsannals-III-3-473-2016
http://dx.doi.org/10.3390/rs9050446
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

