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Abstract

Genetic perturbation screens using RNA interference (RNAi) have been conducted suc-

cessfully to identify host factors that are essential for the life cycle of bacteria or viruses. So

far, most published studies identified host factors primarily for single pathogens. Further-

more, often only a small subset of genes, e.g., genes encoding kinases, have been targeted.

Identification of host factors on a pan-pathogen level, i.e., genes that are crucial for the repli-

cation of a diverse group of pathogens has received relatively little attention, despite the fact

that such common host factors would be highly relevant, for instance, for devising broad-

spectrum anti-pathogenic drugs. Here, we present a novel two-stage procedure for the iden-

tification of host factors involved in the replication of different viruses using a combination of

random effects models and Markov random walks on a functional interaction network. We

first infer candidate genes by jointly analyzing multiple perturbations screens while at the

same time adjusting for high variance inherent in these screens. Subsequently the inferred

estimates are spread across a network of functional interactions thereby allowing for the

analysis of missing genes in the biological studies, smoothing the effect sizes of previously

found host factors, and considering a priori pathway information defined over edges of the

network. We applied the procedure to RNAi screening data of four different positive-sense

single-stranded RNA viruses, Hepatitis C virus, Chikungunya virus, Dengue virus and

Severe acute respiratory syndrome coronavirus, and detected novel host factors, including

UBC, PLCG1, and DYRK1B, which are predicted to significantly impact the replication

cycles of these viruses. We validated the detected host factors experimentally using phar-

macological inhibition and an additional siRNA screen and found that some of the predicted

host factors indeed influence the replication of these pathogens.
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Author summary

Owing to their small genomes, positive-sense single-stranded RNA (ssRNA) viruses rely

heavily on host factors, i.e. genes of the host species that either promote or inhibit viral

replication. The identification of host factors that are essential for viral replication is not

only of scientific interest, but also of clinical relevance, since they could serve as targets for

the development of antiviral therapies, which is still unavailable for many important path-

ogens. So far genetic perturbation screens, for instance using RNAi or CRISPR, have been

used to detect genes that influence the viral replication cycle. In these screens, host genes

are first deprived of their function via genetic perturbation, followed by viral infection

and quantification of viral replication. Finally the impact of identified genes on the repli-

cation cycle of said virus is assessed statistically. In the case of positive-sense ssRNA

viruses a variety of such host factors have been earlier described and experimentally veri-

fied. However, most of the experiments have only analyzed a single virus. Since the major-

ity of positive-sense ssRNA viruses have remarkably similar genomes and life cycles, we

hypothesized that it should be possible to infer genes that restrict or promote replication

of these viruses alike, allowing for the design of broad-spectrum drugs that target the

entire group of viruses. Here, we present a two-stage procedure for broadly acting host

dependency and restriction factor prioritization.

Introduction

Genetic perturbation screens, such as RNA interference (RNAi) and CRIPSR-Cas9 screens,

allow for the detection of host dependency and restriction factors by perturbing a target gene

or transcript and observing its impact on the life cycle of a pathogen. In RNAi screens, genes

are perturbed with small interferring RNAs (siRNAs). These are 20-25 nucleotides in length,

complementary to mRNAs, and cause post-transcriptional gene silencing [1, 2]. The absence

of certain host proteins has been shown to have an impact on the life cycle of pathogens [3, 4,

5], e.g., by reducing the ability of the pathogen to grow or by enhancing it.

Positive-sense ssRNA viruses (in the following also called group IV viruses according to the

Baltimore classification [6]) such as the Hepatitis C virus, all share some common steps in

their replication cycle. First, the virus enters the host cell and releases its RNA genome into the

cytoplasm. Translation of the RNA results in the expression of viral (nonstructural) proteins

that assemble into a replication complex that drives the synthesis of new viral RNA. Newly

synthesized genomic RNA is encapsulated by capsid protein. Eventually, new virions are

assembled and released from the infected cells [7, 8, 9]. For virtually all of these steps, the virus

strongly depends on host proteins due to the small RNA virus genomes with limited coding

capacity. Another common feature of +RNA viruses is that their RNA synthesis takes place in

specialized structures that are associated with modified host membranes [10]. In order to

understand the virus-host interplay reliable identification of potential host factors involved in

virus replication is crucial.

However, statistical inference of these host factors is for multiple reasons often complicated.

For example, siRNA-mediated knockdown can cause off-target effects such that often not only

the transcript of interest is degraded but also other transcripts resulting in a non gene-specific

phenotype [11, 12, 13, 14]. Furthermore, in cell-based assays different cellular states or cell

context might lead to heterogeneous readouts [15, 16, 17].

So far statistical identification of host factors has either been conducted for single viruses

[4, 8, 18, 19, 20], for two viruses of the same genus [5, 21] or family [22, 23], or for a group of
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only very remotely related pathogens [24]. Prioritizing host factors on a viral group level, such

as the group of positive-sense ssRNA viruses, has until now not been pursued in detail, even

tough it seems promising, because viruses of the same group often have very similar replication

cycles. Pathogens of one group might utilize the same, or at least functionally related, host fac-

tors and cellular pathways for replication. Consequently, development of anti-viral drugs tar-

geting common host factors would have the potential for broad-spectrum activity. Despite its

potential there are only very few pan-viral drugs under clinical investigation, for instance

inhibitor development for PI4Kβ targeting various human enteroviruses [25]. One of the rea-

sons could be that the overall success rate for inferring pan-viral hits seems to be low, since

even for single viruses the identified host or restriction factors have shown to be highly variable

between different studies (e.g. between [22] and [23]). Interestingly, if hits found against one

virus are tested against other viruses of the same group, it may well be observed that they are

effective in the other viruses as well [23], which speaks for the hypothesis that analyses on a

pathway-level could be promising or even necessary approaches.

Yet in most studies, statistical analysis is limited to gene- or siRNA-wise hypothesis tests,

e.g., using t-tests or hyper-geometric tests [26, 27, 28, 29], not considering a priori information,

for example, using biological networks, such as protein-protein interaction networks or co-

expression networks. Network approaches have admittedly been used for various gene prioriti-

zation tasks [30, 31, 32, 33], but so far have found only little attention in virology. For instance,

Maulik et al. [34] have presented a clustering approach to detect modules in a bipartite viral-

host protein-protein interaction network to identify host factors. Amberkas et al. use a meta-

analysis approach using network modules for RNAi screens [35]. Wang et al. [36] use a scoring

system based on integration of several RNAi screens to account for false positives and nega-

tives. However, while these approaches include a priori knowledge, they cannot be used to

detect genes on a pan-pathogen level.

Here, we present a two-stage procedure for pan-pathogen host dependency and restriction

factor identification (Fig 1), and apply it to RNAi screening data sets comprising four different

positive-sense ssRNA viruses, i.e. Hepatitis C virus (HCV), Chikungunya virus (CHIKV),

Dengue virus (DENV) and SARS-coronavirus (SARS-CoV). First, we apply a maximum likeli-

hood approach for joint analysis of viral host factors using a random effects model. Then, we

propagate this information over a biological graph using network diffusion with Markov ran-

dom walks in order to account for genes of importance on a pathway level, reduce the number

of false negatives and possibly stabilize the ranking of host factors. With our approach it is pos-

sible to detect novel pan-pathogen host factors, while also considering prior information in the

form of networks. Our model has been designed for heterogeneous data sets by accounting for

various confounding factors within the data. When applying our method to six different RNAi

screening data sets of the four positive sense ssRNA viruses, CHIKV, DENV, HCV and SARS-

CoV, we found that the procedure is able to recover the host factors for single viruses that have

been described in the literature before, and to predict novel pan-pathogen host factors. We val-

idated the host factors for which compounds were commercially available experimentally

using pharmacological inhibition screens for five virus, i.e., HCV, DENV, CHIKV, Middle-

East respiratory syndrome coronavirus (MERS-CoV) and Coxsackie B virus (CVB). Moreover,

we validated the newly predicted host factors, UBC, EP300 and PLCG1, using another siRNA

knockdown on the Hepatitis C virus.

Methods

In this section, we introduce the two-stage procedure which is then applied for inferring pan-

pathogen host factors. The first part of the procedure consists of a random effects model that is
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used to infer pan-pathogen gene effects that quantify the overall impact of gene perturbation

on the life cycle of a group of pathogens. The second part of the procedure uses the inferred

gene effects and propagates them over a biological network.

Random effects model

We model the readout yvgts of an integrated perturbation screen for virus v, gene g, siRNA s
and stage of infection t using a linear random effects model, where different intercept terms

for different biological hierarchies (groups) are introduced. Stage t is introduced to distinguish

effects that are primarily due to early stages of the viral replication cycle (entry and replication)

vs later stages (assembly and release).

Fig 1. Integrated host factor prioritization from viral infection RNAi screening data using a two-stage procedure. (A) We normalized and

integrated data from RNAi perturbation screens of four different positive-sense RNA viruses. (B) Stage 1: We estimate pan-viral effects γ = {γ1, . . ., γG}

from the integrated data sets for each of G genes using a random effects model and rank the genes by their absolute effect size. The gene effects

represent the impact of a genetic knockdown of the life cycle on the entire group of viruses. (C) Stage 2: To account for genes that have not been

knocked down in the RNAi screens, and to possibly account for false negatives in our rankings using biological prior knowledge, we map the gene

effects γg onto a protein-protein interaction network. We then propagate the inferred estimates over the graph using network diffusion resulting in a

final ranking of genes that are predicted to have a significant impact on the pan-viral replication cycle.

https://doi.org/10.1371/journal.pcbi.1007587.g001
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RNAi perturbation screens often suffer from high variability between replicates [11, 29, 37,

38]. To account for this variability, we introduce four random intercept terms that correct for

differences in the variance of genes, viruses, and infection stages. The remaining variance that

is not explained by these random intercepts or the fixed effects is captured by a Gaussian error

term. The readout is modeled as

yvgts ¼ xvbþ gg þ dvg þ zt þ xvt þ �vgts; ð1Þ

where the random effects and noise are distributed as

gg � N ð0; s2
g
Þ;

dvg � N ð0; s2
d
Þ;

zt � N ð0; s2
z
Þ;

xvt � N ð0; s2
x
Þ;

�vgts � N ð0; s2
�
Þ:

The covariate xv is a categorial variable representing the virus type using treatment con-

trasts, β is a fixed effect coefficient, γg and δvg are random effects for genes and nested effects

for genes within each virus, respectively. The terms zt and ξvt describe random effects for infec-

tion stages and nested effects for infection stages within each virus, respectively. The remaining

noise of the model is captured by �vgts.

The random effects model is fitted using the R-package lme4 [39] using weighted restricted

maximum likelihood (Supplement S6 Text for details).

Gene effect ranking. The model defined in Eq (1) allows identification of potential host

dependency and restriction factors on a pan-pathogen level, i.e., detection of host genes that

potentially alter and impact pathogen growth. The strength of the effect of a gene knockdown

(the effect size) on the replication cycle of a group of pathogens is given by the estimated ran-

dom effect γg for a gene g. A negative gene effect γg< 0 means that knockdown of gene g
restricts viral replication. A positive gene effect γg> 0 means that knockdown of gene g
promotes viral replication. Furthermore, we estimate the pathogen-specific gene effect as

ρvg = γg+ δvg [24].

Gene effect network propagation

We employ network diffusion to inform our estimates on a pathway-level post-inference and

in order to account for host genes missing in the analysis (for instance, unscreened genes),

potential false negatives, and to stabilize gene rankings using prior information. The diffusion

is used after estimation of gene effect sizes using the random effects model from Eq (1). The

Markov random walk is applied over a network of genes where edges represent biological rela-

tionships. These relationships can, for example, be encoded as interaction strengths between

proteins, gene co-expression patterns, or common transcription factor binding sites. Using

network diffusion it is possible to spread the information of single starting nodes, i.e. genes for

which gene effects γg have been estimated (Eq (1)), to their surrounding neighbours to include

potential genes in the list of host factors, reduce the number of false negatives and stabilize the

predicted ranking of genes given by their effect strengths γg.
Instead of choosing neighbors of a gene directly which would potentially introduce false

positives, Cowen et al. [31] argue that a diffusion approach has the advantage of down-weigh-

ing new predictions that are only supported by few edges or edges with low weight. Further-

more, genes that are connected to the prior list of genes by several edges or edges with high

weights have stronger support.

Host factor prioritization for pan-viral genetic perturbation screens
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We initialize the starting distribution over N network nodes of the Markov chain as:

p0 ¼
jg1jP
jgij

; . . . ;
jgGjP
jgij

; 0; . . . ; 0

� �T

; ð2Þ

where G� N is the number of genes estimated using Eq (1), i.e. the number of genes with esti-

mated effects γg. Using p0 the Markov chain is run until convergence with updates,

pt ¼ ð1 � rÞWpt� 1 þ rp0; ð3Þ

where r is a user-defined restart probability, i.e., the chance that the random walk returns to its

initial state and W is a left stochastic transition matrix derived from a biological network. In

this study we use the functional protein interaction network from [40]. They define a func-

tional interaction as one in which two proteins are involved in the same biochemical reaction as
an input, catalyst, activator, or inhibitor, or as two members of the same protein complex, i.e.

functionally significant molecular events in cellular pathways and not mere protein-protein

interactions which rarely show direct evidence of being involved in biochemical events. The

network consists in part of expert-curated, high-quality functional edges and in part of edges

that have been trained and validated with a naive Bayes classifier. Unlike many other biological

networks, the high quality of the annotations does not necessitate choosing edges with care,

such as edges derived from computational annotation or inference with older yeast-two-

hybrid technologies which are frequently false positives. Moreover, due to the biological

interpretability of the edges in a pathway-context, a functional network like this should serve

as a good choice to infer novel restriction and dependency factors and stabilize our rankings,

because it associates genes connected with a disease and separates genes with mere physical

interaction as in conventional pairwise networks. We stochastically normalized the weighted

adjacency matrix of this network and then use the normalized matrix as transition matrix W.

After convergence of the Markov chain, we use its stationary distribution p1 as new ranking

of host factors by sorting genes accordingly.

For a random walk on a network that uses restarts, the length of the walk, l, i.e., the number

of edges it travels, can be modelled as a geometric random variable:

PrðlÞ ¼ ð1 � rÞl� 1r; l 2 f1; 2; . . .g

that is parametrized by a success probability r 2 [0, 1), and models the number of Bernoulli tri-

als l needed for a success. The mean of the geometric distribution E½l� ¼ 1

r directly relates to

the average length of the random walk. For instance, choosing a success probability of r = 0.5

would result in on average 2 trials until success. For a success probability of r = 0.2 the average

number of trials is E½l� ¼ 5, which yields an average path length of 5. Consequently, choosing

a high success probability reduces the average number of edges travelled automatically and

ranks the starting genes higher than genes farther away. We chose to use a restart probability

of r = 35%, opting for on average approximately 3 travelled edges. Restart probabilities higher

than 50% deprioritize the network information over the data, while lower restart probabilities

than 20% give too much weight to the prior knowledge.

Model assessment

We validate our method on simulated as well as biological data. First we conduct analyses of

the stability of gene rankings that our two-stage procedure produces. Then we assess the pre-

dictive performance of the random effects model in comparison to another model (PMM

[24]). Here, we briefly describe the procedures to simulate data and the used methods for

assessment.

Host factor prioritization for pan-viral genetic perturbation screens
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Data simulation. We simulated data using the procedures described in Supplement S2

and S3 Texts. Briefly, we sampled random vectors of effects for genes, viruses and screen types

and took all possible combinations over the three random vectors. Then, we replicated every

observation 8 times to guarantee convergence of the solver and added normal i.i.d. noise to

every observation. We created three data sets and added low, medium, and high i.i.d. white

noise (� � N ð0; s2Þ, σ2 2 {1, 2, 5}), respectively, separately to every observation.

Performance measures for stability analysis. We boostrap every simulated data set or

biological 10 times. For every bootstrap sample we sort the gene effects from the hierarchical

model by their absolute effect sizes and the equilibrium distributions of the network diffusion.

For every bootstrap sample j we take the top n 2 {10, 25, 50, 75, 100} gene effects as well as the

top n equilibrium probabilities. We then take each pair (j, k) of bootstrap samples and compare

the top n gene effect vectors and highest n equilibrium probability vectors. For every pair

ðA;BÞ of the top n elements of either gene effects or equilibrium distributions, we compute

the Jaccard index as JðA;BÞ ¼ jA\Bj
jA[Bj and Spearman’s correlation coefficient (Supplement S2

Text and Supplement S1 Code).

Performance measures to assess predictive performance. We use 10-fold cross-valida-

tion in order to assess the predictive performance between our random effects model (Eq (1))

and PMM. We repeatedly split the data in training and test sets and iteratively trained on nine

folds and predicted gene effects on the test fold. Finally, we compute the mean squared error

for every fold for each of the two models (Supplement S3 Text and Supplement S1 Code).

Results

We applied our method for gene prioritization to six biological data sets of four positive-sense

ssRNA viruses, HCV, DENV, CHIKV and SARS-CoV, and inferred potential pan-viral depen-

dency and restriction factors. We then validated the highest ranked host factors. We first show

results for normalization and integration of the RNAi data sets, then present the application of

the procedure and a benchmark, and finally discuss the biological findings. The entire proce-

dure is implemented in an R-package called perturbatr available on Bioconductor.

Data sets and normalization

We integrated data from six RNAi perturbation screens consisting of the four positive-sense

ssRNA viruses HCV, DENV, CHIKV and SARS-CoV. These screens have been generated

under different biological conditions (Table 1). Following the definition in Eq (1), we distin-

guish different stages of infection, i.e., either ‘early’ when the screen was conducted for detec-

tion of host factors that are essential for viral entry and replication, or ‘late’ when the host

factors are required for viral assembly and release. Screening of ssRNA viruses has been con-

ducted on MRC5 cells for CHIKV, Huh7 cells for DENV, Huh7.5 cells for HCV, and 293/

ACE2 cells for SARS-CoV. The screens used either libraries of Dharmacon SMART-pools (4

siRNAs per well/gene) for CHIKV and SARS-CoV or unpooled Ambion libraries for HCV

and DENV. We filtered the six RNAi data sets for genes that are available for every virus which

left a data set with a total of 714 genes and controls (Fig 1). For each of the screens, siRNAs

have been placed on 384-, or 96-well plates, respectively. Cells have been seeded and, after

transfection with siRNAs, infected with the respective reporter virus (Table 1). Univariate

readouts are either measurements of viral or reporter protein (GFP/Luciferase).

In order to have comparable phenotypes, i.e., fluorescence and luciferase readouts, special

emphasis has to be put on normalizing the screens, because different cell types (MRC5/Huh7/

Huh7.5/293ACE2) can lead to slightly different gene expression and knockdown patterns. Fur-

thermore, in addition to high between-screen variability in RNAi perturbations, high variance

Host factor prioritization for pan-viral genetic perturbation screens
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between plates from the same screen has to be taken into consideration (Fig 2). Before normal-

ization plates are not comparable due to highly varying plate effects (Fig 2a). After normaliza-

tion the data are in a final step centered and scaled to unit variance yielding comparable

phenotypes (Fig 2b).

High variability of phenotypes is mainly due to batch effects, stochasticity in transfection

and knockdown, and spatial effects in rows and columns, i.e., when wells on the margin on

average have higher or lower readouts compared to wells in the center. To account for these

effects, we use a combination of different normalization techniques for every screen separately

(Supplement S1 Text for details). Briefly, the CHIVK and SARS-CoV screens use a pooled

Dharmacon library on 96 well plates. We normalized the two data sets by first taking the natu-

ral logarithm over all samples, then substracting the mean background signal and finally com-

puting a robust Z-score over the whole plate readout. The procedure has been applied

separately for every plate. Since genes were not randomized on plates we did not use B-scoring

or other methods that account for spatial effects [2, 29, 38]. For the HCV and DENV genome

screens, we computed the natural logarithm for every readout of the complete data set, B-

scored the plates using two-way median polish and, in a last step, calculated robust Z-scores.

The HCV and DENV kinome screens have been normalized by first taking the natural loga-

rithm of the well readouts and then fitting a local regression model to correct for cell counts.

Since the HCV and DENV screens have randomized plate designs, we also corrected for spatial

Table 1. Meta data of positive-sense ssRNA viral RNAi screens. The data sets are derived from separate screens using different cell lines, readout types or infection stages.

We use six RNAi screens for Chikungunya virus, Dengue virus, Hepatitis C virus, and SARS coronavirus.

Virus Stage Cell type Readout Library Screen Reference

CHIKV early MRC5 GFP Dharmacon pool Kinome

DENV early Huh7 E-protein Ambion single Kinome Cortese et al. [41]

DENV early Huh7 Luciferase Ambion single Genome

DENV late Huh7 Luciferase Ambion single Genome

HCV early Huh7.5 GFP Ambion single Kinome Reiss et al. [8]

HCV early Huh7.5 Luciferase Ambion single Genome Poenisch et al. [19]

HCV late Huh7.5 Luciferase Ambion single Genome Poenisch et al. [19]

SARS-CoV early 293/ACE2 GFP Dharmacon pool Kinome De Wilde et al. [4]

https://doi.org/10.1371/journal.pcbi.1007587.t001

Fig 2. Comparison of readouts for unnormalized vs. normalized data. Every box-plot shows the distribution of

readouts of a single plate on the x-axis. (a) Before normalization between plate readouts are hardly comparable due to

batch and spatial effects. (b) After normalization the data are eventually centered and scaled to unit variance yielding

comparable phenotypes.

https://doi.org/10.1371/journal.pcbi.1007587.g002
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effects using two-way median polish using B-scores and eventually computed robust Z-scores

(see Supplement S1 Code for the exact procedures).

Model assessment

In order to assess the stability of the inferred gene effects γg and the equilibrium distribution

p1g
, and the predictive power of the random effects model, we applied the model to two differ-

ent data sets: a simulated data set and the biological data set described before. First, we com-

pare the stability of hits, i.e., if the same genes appear among bootstrapped data sets, using the

Jaccard index and Spearman’s correlation coefficient. Second, we assess the predictive power

of the model using cross-validation.

Stability analysis. The models described by Eqs (1) and (3) estimate gene effects γg and an

equilibrium distribution p1g
for every gene g. To assess the reproducibility of these estimates,

i.e., the consistency of the rankings of gene effects and equilibrium distributions, we applied

the model to several simulated data sets as well as to the pan-viral biological data set intro-

duced above.

Simulated data. We simulated data as described before and validated the consistency of the

rankings of these data sets (Fig 3a). For low error variances the stability of both the random

effects model and the network diffusion is high between bootstrap samples. Increasing the error

levels for the hierarchical model only seems to reduce the Jaccard index, while the Spearman

correlations are staying stable. For high error levels and the first n = 10 genes, two sets of boot-

strap samples have on average 60% similarity and a correlation of around 90% for the random

effects model. The network diffusion, on the other hand, seems to be robust to increasing error

variances having similar Jaccard indexes and correlation for medium and high error variance,

emphasizing the previous argument regarding the stabilizing function of the network diffusion.

Biological data. We performed a similar analysis on the biological data set. Instead of com-

paring different noise levels we validated how the number of examined viruses influences the

different rankings. We bootstrapped the data set again and computed the Jaccard index and

Spearman’s correlation coefficient for every pair of bootstrap samples. For both models,

increasing the number of viruses from 2 to 4, does not significantly alter the Jaccard indexes

for all numbers of genes (Fig 3b). However, increasing the number of viruses reduces correla-

tions for both models. While the reductions are only marginal for higher gene numbers for the

random effects model, they are stronger for the network diffusion. Lower correlations can be

explained by the fact that RNAi screens are highly variable and different bootstrap samples

give as a consequence varying estimates of gene effects.

Analysis of predictive performance. In order to validate the predictive performance of

the random effects model from novel data, we used a simulated data set and the biological data

set as before, and benchmark the predictive performance using 10-fold cross-validation. We

compare our method against another random effects model, called PMM [24].

Simulated data We created three data sets using the procedure described in Supplement S3

Text. As before, the data sets can be distinguished by the amount of noise that has been added

to every observation. Our hierarchical model consistently outperforms PMM for different lev-

els of variance and different validation methods (Supplement S4a Fig). This is largely due to

the fact that our model was tailored to considering heterogeneous RNAi screens where differ-

ent infection stages are present while PMM does not make this distinction.

Biological data For the biological analysis we used the integrated pan-viral RNAi screen as

before. In this benchmark, our model slightly outperforms PMM (Supplement S4b Fig). Our

model achieves a lower mean residual sum of squares on all test sets. Furthermore, increasing

the number of viruses from two to four, leads to a decrease of mean residual sum of squares.
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Biological results

We applied our method to the RNAi screening data described in Table 1. First we estimated

gene-effects γg using the random effects model described in Eq (1) and then propagated these

Fig 3. Stability analysis on simulated and biological data. We assessed the stability of our random effects model using the Jaccard index and

Spearman’s correlation coefficient (y-axis) given the first i 2 {10, 25, 50, 75, 100} highest ranked genes from 100 bootstrap samples (x-axis). (a) For low

error variance σ2 = 1, gene rankings are highly stable. While increasing the error variance keeps correlations stable, Jaccard indexes reduce. The

network diffusion is stable against increasing error variances having similar Jaccard indexes and correlation for medium and high error variance. (b)

On the biological data set increasing the number of viruses does not significantly reduce Jaccard indexes or correlations for the random effects, with the

exception for the correlations for 10 genes. The network diffusion has stable Jaccard indexes for increasing virus numbers at around 60%. The

correlations between bootstrap samples, however, decrease with a higher number of viruses.

https://doi.org/10.1371/journal.pcbi.1007587.g003
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effects over a functional protein-protein interaction network using network diffusion (Eq (3))

resulting in a ranking of genes by their estimated impact on the life-cycle of the group of

viruses. We validated the inferred genes for five viruses using pharmacological inhibition and

another siRNA knockdown of three further genes for HCV.

Gene effect ranking. Given the results from the stability analysis and analysis of predictive

performance, we concluded that the proposed random effects model model is preferable to

PMM, due to the fact that it captures more of the variance in the data, for instance, when

strong infection stage effects are visible, and because it allows distinguishing between genes

that are influencing the viral replication cycle in the early stages of replication, or in the later

stages, respectively.

We applied the hierarchical model to the pan-viral data set and inferred the gene effects γg
(of which the top 25 are shown in Supplement S5 Text). We then used the estimated gene

effects γg and propagated these using the Markov random walk described in Eq (3). After diffu-

sion we obtain a ranking of all genes in the network (Table 2). While the majority of genes has

already been previously selected by the random effects model, we also discovered novel hits,

such as UBC (rank 1), EP300 (rank 9), and PLCG1 (rank 13) using the network diffusion.

Among the strongest effectors derived from the hierarchical model are, DYRK1B (rank 3), a

nuclear-localized protein kinase participating in cell-cycle regulation, and PKN3 (rank 11), a

rather little studied kinase that has been implicated in Rho GTPase regulation and PI3K-Akt

signaling. UBC encodes ubiquitin, which is involved in numerous cellular processes, most

prominently protein degradation. PLCG1 is crucially involved in signal transduction from

receptor-mediated tyrosin kinases (e.g. Src) and catalyzes the formation of the second messen-

ger IP3 and DAG. Recently PLCG1 was also found to impact progression of HCC [42], the

HCV replication cycle [43], as well as receptor-mediated inflammation and innate immunity

Table 2. First 20 host dependency and restriction factors selected by the ranking of the network diffusion using a restart probability of r = 0.35. ‘Ranking’ shows the

rank after network diffusion, ‘Gene effect’ shows the effect sizes γg inferred by the hierarchical model, the other columns show virus specific effects ρvg.

Gene Ranking Gene effect CHIKV DENV HCV SARS-CoV

ubc 1 n.a. n.a. n.a. n.a. n.a.

plk1 2 -0.14 -0.11 -0.25 -0.15 -3.77

dyrk1b 3 -0.15 -0.26 -0.14 -0.15 -3.97

pik4ca 4 -0.13 -0.12 -0.48 -2.69 -0.51

mapk3 5 -0.06 -0.52 -0.33 0.05 -0.93

pik3r1 6 0.06 0.47 0.36 0.39 0.51

dusp1 7 -0.12 -1.45 0.02 -0.13 -2.05

pck1 8 -0.11 -0.69 -0.84 -0.80 -1.08

ep300 9 n.a. n.a. n.a. n.a. n.a.

mapk1 10 0.03 -0.09 -0.14 0.30 0.74

pkn3 11 -0.11 -0.11 -0.63 -0.22 -2.37

dgke 12 -0.11 -1.16 0.02 -0.13 -1.98

plcg1 13 n.a. n.a. n.a. n.a. n.a.

cdk6 14 0.08 0.16 0.70 0.47 1.22

lats1 15 0.08 0.47 0.41 0.46 0.99

csnk2b 16 -0.10 -1.02 -0.82 -0.46 -0.62

cdk5r2 17 -0.10 0.78 -1.51 -0.10 -2.19

shc1 18 -0.07 -0.97 -1.24 -0.63 0.76

mapk14 19 0.03 -0.06 0.15 0.25 0.59

camkk2 20 -0.10 -1.66 -0.85 -0.48 0.09

https://doi.org/10.1371/journal.pcbi.1007587.t002
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[44]. EP300 is an acetyltransferase and acts as a transcriptional co-activator and has not been

studied in detail so far.

We compared the strongest gene effects γg inferred by the hierarchical model (Supplement

S5 Fig) to the virus-specific gene effects ρvg (for which RNAi screens have mostly been used;

Fig 4) and found that for some of the estimates for the gene effects γg the pathogen-specific

effects are not consistent over all pathogens. For example, while perturbation of gene CDK5R2

has a beneficial impact on CHIKV replication, it has a restricting effect on the other three

viruses. On the other hand perturbation of DYRK1B, PKN3, CDK6, or CSNK2B has either an

all-negative or all-positive impact on the replication cycle of the ensemble of viruses. Genes

that upon perturbation show the same consistent effect, i.e. suppression of early or late stages

of the viral replication cycle, could be targets for the development of broad-spectrum antiviral

drugs.

Validation of identified host factors. We validated some of the top genes from Table 2

using pharmacological inhibitors to verify whether the predicted genes are indeed host factors

Fig 4. Effect matrix of pathogen-specific gene effect strengths ρvg. The 25 strongest hits when sorting by absolute

effect sizes γg are shown. Every column shows one virus and every row represents the effect size of a gene knockdown

on the specific virus ρvg. For some of the genes, such as DYRK1B, PKN3, CDK6 or CSNK2B, the knockdown has an

either all-positive, or all-negative effect on the viral replication cycle.

https://doi.org/10.1371/journal.pcbi.1007587.g004
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that are involved in viral replication. In short, we searched the literature for inhibitors and

conducted a screen for the proteins for which compounds were commercially available (see

Supplement S4 Text for details on the experimental setup and Supplement S6 Fig for results).

In order to assess if the top inferred gene products really have a pan-viral effect, inhibitors

were tested on DENV, CHIKV and HCV as before and two novel positive-strand ssRNA

viruses, MERS-CoV and CVB. Of the top 20 host factors from Table 2 inhibitors were available

for the dependency factors CAMKK2, CDK5R2, DGKE, DUSP1, DYRK1B, PIK4CA, PKN3

and PLK1. The inhibitors were tested in dose-response CPE reduction assays on cells infected

with the viruses. In parallel we assessed cytotoxicity of the compounds and discarded measure-

ments that led to a significant reduction in cell viability (below 75% of the signal obtained

for untreated control cells). For every host factor, virus and compound concentration, we

tested if inhibition of a protein reduced viral replication in comparison to a negative control

significantly (one-sided two-sample Wilcoxon test). We adjusted all p-values for multiple test-

ing using the Benjamini-Hochberg correction [45]. We found that inhibition of several host

factors showed significant reductions in replication on subsets of the five viruses and specific

compound concentrations. For instance, CDK5R2, PKN3 and DYRK1B were significant at the

10%-level after multiple testing correction for at least some compound concentrations in four

of the five viruses. However, none of the tested compounds had a significant effect on the repli-

cation of all of the five viruses (Supplement S6 Fig). Note that PLK1 was discarded due to cyto-

toxicity of the inhibitor at higher compound concentrations. For that reason, we point out that

PLK1 should possibly also be discarded in the analysis of the primary screens.

Furthermore, we validated the three genes that were newly identified by the network model

(UBC, PLCG1, EP300) for HCV using two different siRNAs per gene. In particular, we were

interested to see whether knockdown of these three genes would impact the viral replication

significantly (see Supplement S5 Text for experimental details, data normalization and statisti-

cal analysis). We found that knockdown of UBC and PLCG1 caused a significant inhibition of

replication at a level of α = 5% (Fig 5) in comparison to a negative control for all tested siRNAs

(two-sided two-sample Wilcoxon-test). However, EP300 was not confirmed at the same signif-

icance level for both siRNAs tested.

Fig 5. Validation of UBC, PLCG and EP300 against a negative control and a positive control, PI4K, for HCV.

UBC and PLCG1 show significant p-values at the 5%-level for all validated siRNAs. The positive control PI4K also was

highly significant, while the two siRNAs used for EP300 did not show a significant trend.

https://doi.org/10.1371/journal.pcbi.1007587.g005
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Discussion

In this work, we have integrated RNAi screening data of a group of four different positive-

sense ssRNA viruses and presented a two-stage procedure to prioritize pan-viral host depen-

dency and restriction factors from genetic perturbation screens. The result of our method is a

ranking of genes that are predicted to impact the life cycle of an entire group of pathogens. We

implemented the two-stage procedure in an R-package called perturbatr which is

designed for the analysis of large-scale high-throughput perturbation screens of multiple data

sets and is available on GitHub and Bioconductor.

We validated host factors for which pharmacological inhibitors were commercially avail-

able experimentally by treating cells infected with five positive-sense ssRNA viruses with

these compounds, and another siRNA knockdown of the three newly predicted genes on

HCV.

Our procedure first infers a list of possible host factors using a random effects model

where we model the readout of a genetic perturbation screen as a linear dependency

on a virus, a pan-viral gene effect γg, and a sum of other random effects to capture the het-

erogeneity of the data. With a likelihood-based formulation jointly analyzing genetic pertur-

bation screens of different viral RNAi screens is straightforward in comparison to a meta-

analysis, since in the latter case every virus is analyzed independently and results have to be

aggregated, thereby potentially discarding common host factors. Furthermore, the noise

model and inclusion of random effect terms allow to account for high variance in the data

sets.

The list of gene effects γg is then propagated over a functional interaction network using a

Markov random walk with restarts. Functional interactions networks, such as [40], allow

incorporation of true biological association in a pathway-context to the analysis and stabilizing

of the the rankings. By subsequently applying a network diffusion approach it is also possible

to not only account for genes that have not been in the primary RNAi screens, but also to re-

rank genes using pathway information allowing to potentially reduce the number of false nega-

tive predictions.

The analysis produced a set of host factors, such as DYRK1B, UBC, PLCG1 and PKN3,

that likely impact the replication cycle of a broad range of positive-sense ssRNA viruses. Of

the top 20 host factors (Table 2), we were able to find commercially available compounds for

nine of them, which we then biologically validated. While the screen confirmed the impor-

tance of these genes on the pan-viral replication cycle of subsets of viruses, no host factor

could be found that is significant for all viruses. In general, viruses usurp defined cellular

pathways. Even closely related viruses may use different entry points to the pathway. One

example are the Dengue and Zika viruses which both depend on the host factor STT3A, but

only DENV requires STT3B for replication [22]. The degree of similarity of the molecular

biology of the viruses seems to determine the success of finding pan-viral genes in contrast to

finding relevant pathways. While it makes theoretical sense that all positive-sense ssRNA

viruses use the same host factors, detection of these has proven to be complicated and, as

already mentioned in the introduction, yields variable results even for the same virus. A lack

of overlap between screens, flexibility of the cell in several aspects and the possibility of viruses

to just take different routes to achieve replication corroborates this hypothesis and makes

pathway-analyses even more important. The broader the targeted group of viruses, the more

central a target gene would have to be (e.g. UBC), but in that case it gets increasingly unlikely

to find a inhibitor condition that only harms the virus but not the host cell. For bacteria, anti-

biotics are only specific to a more or less related group of bacteria (e.g. gram-positives),

because of the metabolic similarity of the group. For viruses, it is likely that these groups need
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to be much narrower because in many cases only closely related viruses might actually share

enough similarity in the metabolic or regulators pathways they exploit. Additionally, it has to

be emphasized though that a protein inhibition screen like the one we conducted is not per-

fectly able to validate the inferred genes and their function in the replication cycle of the

viruses. Thus a more rigorous validation could shed light on the biological importance of

these genes.

We validated the three newly found host factors, UBC, PLCG1, and EP300, using siRNA

knockdown for HCV and could confirm UBC and PLCG1 to be proviral host factors. Gener-

ally, host dependencies and restriction factors are not necessarily crucial for host cells survival,

i.e. host factors can be knocked down without inducing cell death. Exceptions are single candi-

dates such as UBC which is central player in cell biology. Ubiquitination of proteins can target

them for degradation in the proteasome which is an important homeostatic process in every

cell. The proteasome has come up frequently as host factor for many viruses, albeit not always

the same genes [46]. Inhibition of the proteasome, while being vital for the cell, is already done

therapeutically, for instance in cancer treatment [47], or in studies for antiviral treatment [48].

Consequently, the inhibition of host factors that are also crucial for the host cell can be

achieved even though it is a matter of fine balancing between cytotoxicity to the cell and effici-

acy against disease.

The proposed procedure to infer pan-pathogen host factors could aid in the development

of broad-spectrum antiviral drugs for a group of viruses or even bacteria that could allow the

treatment of multiple diseases (Table 2) with the same substance. In addition, our model gen-

erates estimates of gene effect sizes for the single viruses.

In this work we selected a group of positive-sense ssRNA for analysis. The replication

cycles of any subgroup of positive-sense ssRNA viruses consist of notably similar steps and,

given the similarities of how they replicate, we hypothesized that they share the same host

dependency or restriction factors or, at least, the same pathways (hence the network analysis).

While our model can be applied to any group of pathogens the success of finding relevant

host-factors for a highly diverse group of pathogens is less unlikely. In addition the experi-

mental design of such a study, a factor which we did not emphasize enough, is critical: con-

tributing factors might be quality of interventions, number of replicates, or the type of

readout, e.g. GFP signals of viral growth or cell death, or even sequencing data in CRISPR

screens.

Our two-stage procedure has also some limitations. In our case the integrated data set

showed strong heterogeneity and variance between the different biological conditions which

necessitated the inclusion of random effects. For data sets with less variance a random effects

model might not be needed at all. Moreover, utilizing biological prior knowledge in the form

of protein-protein interaction networks could possibly bias and corrupt results, especially

when networks with incorrect edges are used. The use of multiple, different networks may

improve this situation [33].

Since we apply a stochastic approach for network diffusion we cannot gain information

about whether genes are dependency or restriction factors. This could be addressed by devel-

oping a network diffusion model applying state probabilities for pro-viral and anti-viral effects.

Finally our method does not provide estimates for statistical significance for the genes, but

only a ranking of genes.

Currently our model can be used for RNAi screens with continuous readouts, but can

readily be generalized to sequencing-based perturbation screening methods, such as

CRISPR, where read counts are usually modelled as negative binomial or Poisson random

variables.
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