
DISS. ETH NO. 26371

A SCALED BOUNDARY APPROACH TO

FORWARD AND INVERSE PROBLEMS

With Applications in Computational Fracture Mechanics,

Damage Localization and Topology Optimization

A thesis submitted to attain the degree of

DOCTOR OF SCIENCES of ETH ZURICH

(Dr. sc. ETH Zurich)

presented by

Adrian Walter Egger

MSc ETH Civil Eng, ETH Zurich

born on 30.03.1987

citizen of

St. Gallen-Tablat, SG and Canada

accepted on the recommendation of

Prof. Dr. Eleni Chatzi (ETH Zurich, Zurich, Examiner)

Prof. Dr. Savvas Triantafyllou (University of Nottingham, Nottingham, Co-examiner)

Prof. Dr. Chongmin Song (University of New South Wales, Sydney, Co-examiner)

2019





Abstract

The demand for sustainable design in, e.g., the aerospace, automotive and construction industries has lead
to the development of lighter, stronger and more resilient structures, spawning the need to guard against
failure processes by leveraging robust, economical and high-fidelity numerical simulations.

Since its inception, the finite element method (FEM) has been advanced to handle a multitude of struc-
tural analysis problems ranging from linear to nonlinear, static to dynamic, fracture and contact prob-
lems among others. Within the context of fracture mechanics, it has been demonstrated that modeling of
damage-related phenomena such as crack initiation, crack propagation and delamination can successfully
be accomplished by means of the FEM. Nonetheless, various undesirable characteristics persist, which ren-
der this method computationally prohibitive for more involved analyses. As a result, alternative methods
have been pursued; the scaled boundary finite element method (SBFEM), is a little explored, yet highly
capable alternative within the domain of linear elastic fracture mechanics (LEFM). Hence, the objective of
this thesis is to accelerate computationally intensive numerical problems harnessing the merits and fur-
ther extending the capabilities of the SBFEM to a wide class of forward and inverse problems, specifically
with applications in computational fracture mechanics, damage localization and topology optimization.

The increasing importance of sustainability implies the prudent use of existing resources, such that
efficient computation schemes are sought. This thesis proposes several novel schemes to accomplish this
goal. The Hamiltonian Schur decomposition is first adopted, to reverse the computational toll incurred
during an SBFEM analysis, due to the linearization of the underlying quadratic eigen-problem. Further,
an efficient recovery based error estimator is proposed, which additionally permits calculating the gener-
alized stress intensity factors (gSIFs) at increased accuracy, using fewer degrees of freedom (DOF). The
use of linear quadtree (QT) meshes, pioneered by previous authors, to overcome SBFEM’s unique mesh-
ing requirements, can lead to reduced accuracy in calculated gSIFs for crack propagation problems. A
method of internally elevating the approximation space of a crack tip element is proposed, which is shown
to greatly improve the accuracy with which gSIFs are calculated on highly coarse QT meshes. These ap-
proaches are exploited to develop the multiscale scaled boundary finite element method (MSBFEM), which
harnesses the SBFEM to incorporate fracture on the fine scale and the enhanced multiscale finite element
method (EMsFEM) to construct a coarse scale representation, where the governing equations are solved
at a reduced computational cost. The newly developed MSBFEM is then extended to a highly efficient
crack propagation scheme, which resolves only regions directly surrounding the crack tip, and incorporates
the remaining domain via coarse scale macro-elements. In doing so, the amount of DOFs present during
analysis are drastically reduced, while the crack path is still accurately captured.

These novel insights in accelerating the forward problem are then applied to inverse analyses. Due to
its domain specific advantage, SBFEM is subsequently applied to damage localization schemes. Taking
advantage of the parallel nature with which heuristic algorithms approach damage localization, combined
with precomputation of the undamaged domain by SBFEM and updating the effects of varying crack can-
didates by reanalysis techniques, a highly efficient and effective scheme is devised to accelerate damage
localization analyses to near real-time levels.

Topology optimization (TO), which similarly to damage localization, is often marred by the repeated
solution of an expensive forward problem, stands to benefit from efficient solvers. Automated adaptive
analysis-ready meshes are achieved by harnessing image compression techniques. The proposed drop-in
replacement for the forward solver, reduces the amount of DOF during present during analysis by over an
order of magnitude. This approach is successfully extended to 3D problems.
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Kurzfassung

Die Nachfrage nach nachhaltigem Design in z.B. der Luft- Raumfahrt-, Automobil sowie der Bauindustrie
haben zur Entwicklung leichterer, beständiger und belastbarerer Strukturen geführt, deren Simulation
mittels robuster, wirtschaftlicher und präziser numerischer Simulationen gewährleist werden müssen.

Seit ihrer Einführung wurde die Finite-Elemente-Methode (FEM) weiterentwickelt, um unter anderem
eine Vielzahl von Strukturanalyseproblemen zu lösen, die von linearen über nichtlineare, statische bis
hin zu dynamischen, Bruch- und Kontaktproblemen reichen. Auf dem Gebiet der Bruchmechanik wurde
gezeigt, dass die Modellierung von schadensbedingten Phänomenen wie Rissentstehung, Rissausbreitung
und Delaminierung mit der FEM erfolgreich simuliert werden kann. Dennoch bleiben verschiedene limi-
tierende Eigenschaften bestehen, die diese Methode für aufwendigere Analysen unatraktiv machen. Da-
her wurden Alternativemethoden erforscht: Eine solche Methode ist die skalierte Rand-Finite Elemente
Methode (SBFEM), eine wenig erforschte und dennoch hochleistungsfähige Alternative im Bereich der
linear-elastischen Bruchmechanik (LEFM). Ziel dieser Arbeit ist es daher, die Vorzüge der SBFEM zur
Beschleunigung von rechenintensiven numerischen Problemen zu nutzen sowie ihre Anwendbarkeit auf
eine breite Klasse an Vorwärts- und Rückwärtsproblemen auszuweiten, insbesondere bei Anwendungen in
der rechnergestützten Bruchmechanik, Schadenslokalisierung (SL) und Topologieoptimierung (TO).

Die zunehmende Bedeutung der Nachhaltigkeit setzt den umsichtigen Einsatz vorhandener Ressourcen
voraus, sodass effiziente Berechnungsschemata angestrebt werden. Diese Dissertation schlägt mehrere
neuartige Schemata vor, um dieses Ziel zu erreichen. Die Hamiltonsche Schur-Zerlegung wird zuerst
angewendet, um den während einer SBFEM-Analyse aufgrund der Linearisierung des quadratischen
Eigenproblems anfallenden Rechenaufwandes zu beseitigen. Ferner wird ein effizienter Fehlerabschätzer
vorgeschlagen, der es zusätzlich ermöglicht, die verallgemeinerten Spannungsintensitätsfaktoren (gSIF)
mit erhöhter Genauigkeit selbst unter Verwendung von wenigen Freiheitsgraden (DOF) zu berechnen.
Die Verwendung von linearen Quadtree-Netzen (QT), die von früheren Autoren entwickelt wurden, um
die einzigartigen Netzanforderungen von SBFEM zu überwinden, kann zu einer verringerten Genauigkeit
der berechneten gSIFs bei Rissausbreitungssimulationen führen. Es wird ein Verfahren zum internen
Erhöhen des Approximationsraums eines Rissspitzenelements vorgeschlagen, das die Genauigkeit, mit
der gSIFs auf äusserst groben QT-Netzen berechnet werden, erheblich verbessert. Diese Ansätze werden
genutzt, um die Multiskalen-SBFEM (MSBFEM) zu entwickeln, welche mittels SBFEM Diskontinuitäten
in der Mikroskala berücksichtigt, und die erweiterte Multiskalen-Finite-Elemente-Methode (EMsFEM)
verwendet, um eine Makroskala-Representation des Systems zu erstellen, welches anschliessend mit re-
duziertem Rechenaufwand gelöst wird. Das neu entwickelte MSBFEM wird dann auf ein hocheffizientes
Rissausbreitungsschema erweitert, das nur Regionen auflöst, welche die Rissspitze direkt umgeben, und
die restliche Domäne über Makroelemente berücksichtigt. Auf diese Weise wird die Anzahl der DOFs
drastisch reduziert, während der Risspfad ausreichend genau erfasst wird.

Diese neuartigen Erkenntnisse zur Beschleunigung des Vorwärtsproblems werden dann auf Rück-
wärtsprobleme angewendet. Aufgrund seines domänenspezifischen Vorteils wird SBFEM folglich auf SL-
Schemata angewendet. Ausgehend von der Parallelität, mit der heuristische Algorithmen SL begegnen,
kombiniert mit der Vorberechnung der unbeschädigten Domäne durch SBFEM und der Aktualisierung
der Auswirkungen verschiedener Risskandidaten durch Reanalysetechniken, wird ein hocheffizientes und
effektives Schema entwickelt, um die SL-Analysen fast auf Echtzeitberechungen zu beschleunigen.

Die TO, die ähnlich wie die SL häufig durch die wiederholte Lösung eines teuren Vorwärtsproblems
beeinträchtigt wird, profitiert von effizienten Solvern. Automatisierte, adaptive, analysebereite Netze wer-
den durch die Nutzung von Bildkomprimierungstechniken erzielt. Der vorgeschlagene Drop-In-Ersatz für
den Vorwärtssolver verringert die Anzahl an DOF, welche während der Analyse behandelt werden müssen
um eine Grössenordnung. Dieser Ansatz wird erfolgreich auf 3D-Probleme ausgeweitet.
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Nomenclature

Acronyms
BEM Boundary element method
BESO Bi-directional evolutionary structural optimization
CMA-ES Covariance matrix adaptation evolution strategy
CMX Course multiscale element with X nodes
CONLIN Convex linearization method
CSchur Hamiltonian Schur decomposition according to [75]
CSM Cohesive segment method
CZM Cohesive zone method
DOF Degree of freedom
EMsFEM Enhanced multiscale finite element method
FEM Finite element method
GA Genetic algorithm
GFEM Generalized finite element method
gSIFs Generalized stress intensity factors
HMsFEM Hysteretic multiscale finite element method
HSchur Hamiltonian Schur decomposition according to [193]
IGA Isogeometric analysis
LEFM Linear elastic fracture mechanics
LSM Level set method
MM Meshless methods
MMA Method of moving asymptotes
MPM Material point method
MSBFEM Multiscale scaled boundary finite element method
MsFEM Multiscale finite element method
NBF Numerical basis function
nDOF Number of degrees of freedom
NURBS Non-uniform rational basis spline
OC Optimality criterion
PDE Partial differential equation
PFM Phase-field method
PS Pattern search
PSO Particle swarm optimization
PUM Partition of unity method
QT Quadtree
ROM Reduced order modeling
RVE Representational volume element
SBFEM Scaled boundary finite element method
SERA Sequential element rejection and admission
SHM Structural health monitoring
SIFs Stress intensity factors
SIMP Solid isotropic material with penalization
SPR Superconvergent patch recovery
TO Topology optimization
XFEM Extended finite element method
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viii NOMENCLATURE

Notation
d·c Diagonal matrix
[·] Matrix
·−1 Inverse
·[·] Matrix exponential
·T Transpose
diag(·) Form diagonal matrix
· Placeholder for mathematical expression
·,· Derivative with respect to
← Update
∇ Gradient operator
∇s Symmetric gradient operator
∂/∂· Partial derivative
∂Ω Domain boundary
{·} Vector

Upper-case Roman Letters
G Energy release rate
Gc Critical energy release rate
[B·] Scaled boundary strain-displacement matrix component
[D] Constitutive matrix
[E·] Scaled boundary coefficient matrix
[H] Hamiltonian matrix
[I] Identity matrix
[K] Stiffness matrix
[L] Linear differential operator
[P] Matrix of powers in least squares scheme
[Q] Influence matrix of unit changes in reanalysis scheme
[S] Real Schur form
[Z] Hamiltonian matrix
{F} Force Vector
{P} Boundary forces resulting from the nodal force modes {q}
D Measure of detectability
E Young’s modulus
E’ Effective Young’s modulus
Hei Weight factor
J Jacobian
Kc Critical stress intensity factor
K· Stress intensity factor
Keq Equivalent stress intensity factor
L Length
N Shape function
O Scaling center
V Volume

Lower-case Roman Letters
·(s) Singular quantities
·h Numerically computed quantities
·m Measured quantities
·0 Initial value
·max Maximum value
·min Minimum value
[b·] Scaled boundary strain-displacement matrix component
[b] Boolean matrix
[x] Design variables



NOMENCLATURE ix

{a} Vector of undetermined coefficients
{b} Body loads
{c} Integration constant of SBFEM solution
{n} Normal vector
{q} Scaled boundary nodal force modes
{t} Traction
{uh} Displacements calculated by finite element method
{u} Displacements
a Crack length
c Crack
c([x]) Compliance
e Element
e∗σ Error estimator for generalized stress intensity factors
eps Machine precision
f Volume fraction
l0 Characteristic length
m Positive move limit
npar Number of parameters
p Penalty parameter
r Radius
rb(θ) Distance to the boundary given θ

rd Radius of integration
re Radius of enrichment
t Thickness
tol Tolerance
u(ξ) Analytic displacements along ξ

Upper-case Greek Letters
[Ψ] Transformation matrix
[Ψσ] Stress mode
[Ψq] Force mode
[Ψu] Displacement mode
∆ Increment
Γ Boundary
Ω Domain
Π Total potential energy
{Γ} Stress mode

Lower-case Greek Letters
δ Variation
ε Very small parameter
η Numerical damping coefficient
η(θ) Scaled boundary coordinate in tangential direction
κ Condition number
λ Eigen-value
ν Poisson’s ratio
σraw Raw stresses
σrec Recovered stresses
τ Shear stress
θ Realization parameters of a flaw
θc Crack propagation angle
ξ Scaled boundary coordinate in radial direction
{ε} Strain vector
{φ} Modal displacement vector
{σ} Stress vector



Contents

Abstract i

Kurzfassung iii

Acknowledgements v

Nomenclature vii

I Introduction 1

1 Introduction 3
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Objective and Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.1 Origin of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Theory 9
2.1 The Linear Elastic Fracture Mechanics (LEFM) Problem Statement . . . . . . . . . . . . . . . 9
2.2 The Scaled Boundary Finite Element Method (SBFEM) in 2D Elastostatics . . . . . . . . . . . 10

2.2.1 Derivation Based on the Virtual Work Approach . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 Solution Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.3 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.4 Generalized Stress Intensity Factors (gSIFs) . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.5 Hierarchical Meshes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.6 Crack Propagation on Hierarchical Meshes . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 The Hamiltonian Schur Decomposition (HSchur) . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4 The Enhanced Multiscale Finite Element Method (EMsFEM) . . . . . . . . . . . . . . . . . . . 26
2.5 Damage Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5.1 The Inverse Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.5.2 Global Optimization Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.5.3 The Conventional Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.6 Topology Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Discrete and Phase Field Methods for LEFM 35
3.1 Comparison and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.1.1 Crack Propagation by XFEM/GFEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.1.2 Crack Propagation by SBFEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.1.3 Crack Propagation by PFM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.1.4 Contrasting Discrete and PFM Crack Representation Approaches . . . . . . . . . . . . 41

3.2 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2.1 Implemented Variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2.2 Single Edge–notched Tension Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2.3 Single Edge–notched Shear Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2.4 Notched Plate with Hole (NPwH) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2.5 L-shaped Panel (LSP) Test with Crack at Re-entrant Corner . . . . . . . . . . . . . . . . 53
3.2.6 Plate with Two Holes and Edge Cracks (PwHC) . . . . . . . . . . . . . . . . . . . . . . . 55

x



CONTENTS xi

II Accelerating the Forward Problem 59

4 Adopting the Hamiltonian Schur Decomposition 61
4.1 Stress Recovery to Enhance the gSIFs and Introduce an Error Estimator . . . . . . . . . . . . 61
4.2 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2.1 Edge-cracked Square Plate Under Bending . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.2.2 Edge-cracked Square Plate with Forced SIFs . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2.3 Double Edge-cracked Plate Under Tension . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.2.4 Slant Crack in Square Plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5 Multiscale SBFEM 87
5.1 The Multiscale Scaled Boundary Finite Element Method (MSBFEM) . . . . . . . . . . . . . . . 87

5.1.1 Homogeneous RVE with Embedded Slant Crack Under Tension . . . . . . . . . . . . . 87
5.1.2 Plate with Multiple Slant Cracks Under Tension . . . . . . . . . . . . . . . . . . . . . . . 88
5.1.3 Masonry RVE with Embedded Crack Under Tension . . . . . . . . . . . . . . . . . . . . 91
5.1.4 Masonry Wall Under Shear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.1.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.2 Asymptotic Tip Enrichment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.2.1 The Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.2.2 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.2.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.3 The Multiscale Crack Propagation Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.3.1 The Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.3.2 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.3.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

IIIAccelerating the Inverse Problem 111

6 Damage Localization 113
6.1 The Damage Localization Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.1.1 Precomputation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.1.2 Reanalysis Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.1.3 Design of Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.1.4 The Implemented Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.2 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.2.1 Edge Crack in Square Plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.2.2 Embedded Crack in Square Plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.2.3 Multiple Inclusions in Square Plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
6.2.4 Embedded Crack in Rectangular Plate Employing Real-world Strain Measurements . 128
6.2.5 Embedded Crack in Wing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7 Topology Optimization 133
7.1 Proposed Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
7.2 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7.2.1 Thick Cantilever . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
7.2.2 Modified L-bracket . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
7.2.3 3D Topology Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140



xii CONTENTS

IV Conclusions 143

8 Conclusions 145
8.1 Overview of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
8.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
8.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
8.4 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

V Appendix 149

A A State-of-the-Art Review of XFEM and PFM Theory 151
A.1 The eXtended/Generalized Finite Element Methods (XFEM/GFEM) . . . . . . . . . . . . . . . . 152
A.2 Phase Field Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

B List of Figures 169

C List of Tables 175

Bibliography 177



Part I

Introduction

1





1 Introduction

1.1 Motivation

Since its inception, the finite element method (FEM) has been advanced to handle a multitude of struc-
tural analysis problems ranging from linear to nonlinear, static to dynamic, fracture and contact problems
amongst others ([33], [140], [366]). Pertaining to the field of fracture mechanics, it has been demonstrated
that modeling of damage-related phenomena such as crack initiation, crack propagation and delamination
can successfully be accomplished by means of the FEM [159]. Further, with the introduction of singular
elements, stress singularities about crack tips may be more accurately quantified [366]. Nonetheless, var-
ious undesirable characteristics persist, which render this method computationally prohibitive for more
involved analyses. Extensive mesh refinement and remeshing, as well as mesh-dependent projection er-
rors, result in decreased accuracy and increased implementational complexity. As a result, alternative
methods have been pursued such as the Boundary Element Method (BEM) ([59], [326]), the Discrete Ele-
ment Method (DEM) [79], meshless methods [263], cohesive elements [226] and phase field models [132].
In general, these alternatives are not supported in commercial structural analysis software packages and
are more likely to be encountered in special purpose applications.

In mitigating the aforementioned issues of the FEM, the extended finite element method (XFEM) [207]
was introduced. A combination of the level set method (LSM) [305] for tracking discontinuities, combined
with jump and tip enrichment for the displacement solution, is utilized to decouple both weak (material
interfaces) and strong (cracks) discontinuities from the mesh. The popularity of XFEM, currently available
in numerous commercial software packages, may largely be attributed to the fact that the core steps of FEM
as well as its robustness are left intact, which facilitates implementation and end-user understanding alike.
Although this method has aggregated significant academic interest and resolved most shortcomings of
FEM-based damage simulation, a number of issues still remain. The most notable include the extension to
3D problems when using the LSM ([118],[5]), the larger condition number of the stiffness matrix ([124],[6])
and the a priori assumption for the type of tip enrichment [209]. Additionally, special integration schemes
are required in order to determine the stress intensity factors (SIFs).

An alternative approach, namely the scaled boundary finite element method (SBFEM), attempts to
fuse the advantageous characteristics of FEM and BEM into one method, while simultaneously introduc-
ing features that facilitate the modeling of damage-related phenomena. This method’s key feature, the
introduction of a scaling center, has long been exploited for the solution of electric field problems [286].
After refinement and application to solid mechanics it was initially termed the “Cloning Algorithm” by
Dasgupta [80], where it was used to model wave propagation in unbounded soils and found applications
in soil-structure interaction and earthquake engineering. Subsequent work by Wolf resulted in a simi-
lar formulation named the “infinitesimal finite element method" [343]. Wolf and Song, first coined the
term SBFEM, once the derivations for various types of problems were standardized using the minimum
weighted residual method ([344],[342]). Deeks and Wolf employed a virtual work formulation, facilitating
the practical implementation of the method [82]. Though early work on SBFEM was intended for modeling
unbounded domains, it soon became apparent that it is at least equally effective for bounded domains [342].
Prior to the work presented presented as part of this thesis, no comprehensive, direct comparison between
SBFEM and XFEM existed, though in [242] a polygon-based SBFEM is contrasted to XFEM, while [221]
compares XFEM with SBFEM tip enrichment to standard XFEM.

The SBFEM belongs to the class of semi-analytical methods and is therefore related to the thin layer
method [148], the Trefftz method [152], the BEM [192], spectral elements [248] and the semi-analytical
finite elements [223]. Although much of the early research focused on the treatment of unbounded domains,
it was soon discovered that SBFEM is more effective at modelling bounded domains [342], particularly in

3



4 CHAPTER 1. INTRODUCTION

the context of linear elastic fracture mechanics (LEFM). This is apparent, since the fracture parameters,
e.g., SIFs, T-stress as well as the coefficients of higher order terms, can be directly extracted from the
singular components of the stress field [72, 293]. The method is able to robustly transition between power
and power-logarithmic singularities [293]. It has thus been applied for computing the order of singularity
and SIFs in multi-material plates under both static and dynamic loading [292], for predicting the crack
propagation direction at bi-material notches [215], and for determining the free-edge stresses about holes
in laminated composites [173].

Yang et al. [354] first modelled crack propagation via use of SBFEM and few large sized subdomains,
whose initial meshes were manually specified. This approach was extended to model nonlinear cohesive
fracture in concrete [353, 352, 237, 236, 364], dynamic fracture [233, 234] and crack propagation in rein-
forced concrete [240]. Reaching the limits of the laborious meshing approach, fully automated modelling
of crack propagation was achieved by repurposing newly proposed meshers [242] for polygonal elements
[317]. Currently, the most widely adopted meshing procedure combines the use of a quadtree (QT) de-
composition with polygon clipping, to accurately represent curved geometries [238] with coarser meshes.
The advantage of adopting balanced quadtree meshes as a basis lies in the limited amount of possible
element realizations, whose pre-computation greatly enhances computational efficiency. Having resolved
most mesh related issues, SBFEM was most recently extended to treat functionally graded materials [73,
67] and non-local damage [361, 360]. However, the accurate calculation of generalized SIFs (gSIFs) re-
quires sufficient angular resolution of the singular stress field. This issue is traditionally circumvented
by refining an area around the crack tip with subsequent homogenization into a cracked macro element.
In conjunction with the balancing operation performed on the QT meshes, this introduces a significant
amount of degrees of freedom (DOFs) thus increasing the computational toll of analysis. Although the
direction of crack propagation is accurately determined by the ratio of gSIFs, the load-deflection curve can
exhibit significant errors. Hence, we aim to increase the accuracy of the calculated gSIFs, utilizing the
same global mesh as previously for analysis. This may be achieved by enforcing the external boundaries
of the cracked element to be compatible with the linear shape functions, yet internally permit the use of
arbitrary higher order approximations to model the singular stress field.

An interesting development pertains to the fusion of scaled boundary principles with isogeometric anal-
ysis (IGA), which is shown to provide lower error in displacement and energy norm per degree of freedom.
The method ensures exact treatment of curved boundaries [172, 222], delivers additional refinement pos-
sibilities and the ability of adjust continuity as required. However, the computational cost is increased as
compared against the standard SBFEM due to the integration procedure associated with IGA [23] partially
due to the non-uniform rational b-splines (NURBS) basis forming a larger support for calculation of ele-
ment related quantities [77]. When contrasted to established methods (e.g. FEM, IGA), this draw-back is
negated as only the boundary need be discretised.

The demand for sustainable design in, e.g., the aerospace, automotive and construction industries has
led to the development of lighter, stronger and more resilient structures, spawning the need to guard
against failure processes by leveraging robust, economical and high-fidelity numerical simulations. While
SBFEM significantly accelerates LEFM-related computations [92], the simulation of more involved prob-
lems bridging multiple scales still poses a considerable challenge. Upscaling techniques [191], which de-
rive an analytic formulation to inscribe micro-scale information onto a macro-scale model, or multiscale
methods [19, 321, 145], which define a numerically equivalent macro-scale problem based on micro-scale
properties may be harnessed to reduce the computational toll. Within the family of multiscale methods,
one typically distinguishes between homogenization methods [251] and multiscale finite element methods
(MsFEM) [91]. Whereas homogenization methods [29, 108, 355] evaluate an average strain and stress
tensor across a locally periodic representational volume element (RVE), the MsFEM, a computational ap-
proach, which does not require a full separation of scales or periodicity of the problem, seeks to numerically
evaluate a set of micro-scale basis functions (NBFs). The NBFs, which depend on the RVE’s topology and
material properties, map micro-scale information to a macro-scale mesh, where the governing equations are
then solved at reduced computational effort, typically by means of the FEM. Here we utilize the enhanced
multiscale finite element method (EMsFEM) [358], which applies FEM principles to map the microscopic
response to the macroscopic system response. The central idea is to numerically construct this mapping
by locally solving a series of Dirichlet boundary value problems (BVPs). Its predecessor, the multiscale
finite element method (MsFEM), was first applied to two-phase flow and transport problems in highly het-
erogenous porous media [135]. An augmentation thereof, the coupling MsFEM, treated the consolidation
of heterogeneous saturated porous media [357]. The further inclusion of Poisson’s effect in construction
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of the mapping led to its applicability in computational solid mechanics [358] and labelling as EMsFEM.
Triantafyllou and Chatzi subsequently proposed the hysteretic multiscale finite element method (HMs-
FEM) [323], which treats nonlinear static and dynamic analysis of heterogeneous structures within the
hysteretic finite element framework [324]. The multi-axial smooth hysteretic model controlling the evolu-
tion of plastic strains follows the Bouc-Wen model of hysteresis [55]. This approach was later applied to
model validation in reliability analysis and inverse problem formulations [325].

Such inverse problems aim at identifying latent and unknown system parameters by measuring the
system response and comparing it to a simulated response, which is typically obtained from a numerical
model. The direct solution to the numerical model, i.e. the forward problem, is in practice often infeasible
due to incomplete system information. In the presence of measurement data, however, an inverse problem
can be formulated to identify the remaining unknown system characteristics. One such problem involves
the localization of damage in structures, an application in structural health monitoring (SHM) that has
benefited from the advent of low-cost and easily deployable sensor technologies. Damage localization is
one part of the SHM process, which comprises the detection of damage, its localization, quantification
of severity and extent, and an estimation of a structure’s future performance given the accumulation of
damage. Heuristic optimization [190] has been shown as a particularly well-suited approach to solving
the inverse problem: Such derivative free methods are capable of treating non-convex and non-smooth
problems. Localization of cracks was first pioneered by Rabinovich et al. [261, 260] combining XFEM
and genetic algorithms (GAs) in 2D static and dynamic problems. Subsequently, generalized flaws where
treated in [335, 66]. An adaptive algorithm capable of detecting multiple flaws was first presented in [311].
In [185], a 3-step algorithm for the detection of multiple flaw clusters was proposed. An alternative, yet
aligned direction of research lies is the acceleration of such detection schemes. To this end, surrogate
models [301, 84], multiscale schemes [325] and component mode synthesis for dynamics [247] have been
proposed. Notably absent are computational reduced order modeling (ROM) and reanalysis techniques.
Therefore, this direction is further explored.

The adoption of Topology Optimization (TO) into engineering practice stems from the ever-increasing
need for the sustainable, economical and accountable use of resources across diverse sectors, e.g., construc-
tion, aerospace and automotive. The solution of a computationally expensive forward problem is typically
fundamental to TO of continuum structures [44], which aims at defining an optimal structural layout
subject to constraints. Originally, Bendsøe and Kikuchi [45] proposed a homogenization based approach.
Due to difficulties in evaluating optimal micro-structures, their associated orientation and the absence of
a definite length-scale, alternative approaches were sought. The solid isotropic material with penaliza-
tion (SIMP) approach [43, 362, 203], assumes constant material properties within each element of the
domain, which are typically arranged in grids. Filtering techniques, perimeter or gradient constraints
must be adopted in order to ensure the existence of solutions, due to the underlying power-law governing
the material properties [283]. As opposed to the above approaches, which aim to solve the TO problem
using mathematical programming and a continuous description of the design variables, integer-based ap-
proaches have been proposed. While dual approaches [35] have been employed for large scale simulations,
approaches harnessing global optimization algorithms, e.g., GAs, are considered impractical due to the
excessive amount of function evaluations, i.e., forward analyses required. The conventional approach em-
ploying a fine grid of design variables, with values of 0 and 1 corresponding to void and solid, respectively,
and whose layout remains constant across all iterations, does not reflect the nature of the evolving topology
and leads to an excessive computational toll. Several adaptive schemes have been proposed to alleviate this
computational burden [337, 134, 273]. In [245] tree-based meshing strategies are explored. Unfortunately,
therein the treatment of hanging nodes severely affects the computational efficiency.

Although a mixed SBFEM has been employed for solving TO problems of incompressible materials [168],
it follows the conventional fine-grid approach to TO and limits its treatment to linear elements and 2D ap-
plications. The SBFEM has proven itself as a remarkably versatile tool in automatic image-based stress
analysis [276, 187]. Such hierarchical meshes arising from tree-like image decompositions drastically re-
duce the amount of DOFs present, which accelerates the solution of the forward problem by alleviating
computational effort and memory requirements. Image decomposition techniques, within the context of
TO, produce fewer DOFs when material transition zones are eliminated. Hence, bi-directional evolution-
ary structural optimization (BESO) [138], sequential element rejection and admission (SERA) [21], SIMP
combined with grayscale filters [20, 175] and level-set methods [244], for example, represent suitable al-
gorithms. Since image decomposition operates on the design variables to produce analysis-ready meshes
at each iteration, this family of techniques only requires interchanging the solver of the forward problem.
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Hence, incorporation into existing code bases requires minimal modification. Furthermore, as tree-like im-
age decomposition techniques [47] utilize the uniformity of an element as a criterion for subdivision, multi-
material TO [275] may be incorporated through extension to color-aware tree-like decompositions [161].

1.2 Objective and Scope

The objective of this thesis is to accelerate computationally intensive numerical problems harnessing the
merits and further extending the capabilities of the SBFEM to a wide class of forward and inverse prob-
lems, specifically with applications in computational fracture mechanics, damage localization and topology
optimization. The increasing importance of sustainability implies the efficient use of existing resources. In
the context of numerical simulations the research objectives are therefore numerous, e.g.:

• Propose efficient schemes to solve large-scale problems on workstation computers previously reserved
for compute clusters.

• Empower the analyst by minimizing the computational cost of analysis, such that either treatment
of certain problems become tractable again or variant studies may be performed.

• Enhance existing methods and provide efficient means of error estimation.
• Apply enhancements for solving forward problems to the solution of inverse problems.
• Disseminate the results by freely distributing the developed code bases.

The above objectives are pursued through the numerous contribution listed in this thesis. Integral to all
schemes in this thesis is the SBFEM. Therefore, reducing the computational toll incurred during such an
analysis benefits all. This is approached by seeking to improve the means by which the Hamiltonian eigen-
problem is solved. With the aim of exploiting the conventional, powerful algorithm of calculating gSIFs
by SBFEM, ways to reverse the computational toll incurred by linearizing the quadratic eigen-problem
are sought. Hence, alternative approaches such as employing B-splines to solve the ordinary differential
equation (ODE) termed the SBFEM equation in displacements are not considered. Since the gSIFs are of
fundamental importance in the LEFM framework, especially as a crack propagation criterion, an accurate
error estimator will be developed. Since the gSIFs in SBFEM are derived directly from the singular stress
modes, application of the superconvergent patch recovery (SPR) theory is self-evident, thus excluding the
investigation into competing methods.

Although SBFEM results in highly efficient simulations, large-scale and real-world problems still pose a
substantial computational burden. With the aim of rendering such problems tractable, multiscale methods
are investigated, specifically, adoption of the EMsFEM on the coarse scale and SBFEM to incorporate
fracture on the fine scale. Since the NBFs, which map the response across scales must only be computed
once in an offline phase prior to analysis, they are deemed the method of choice. An additional objective is to
ascertain the conventional NBF’s ability to accurately capture strong discontinuities on the fine scale, and
suggest appropriate modifications to the NBFs construction as required. Further, only a micro and macro
scale are considered, since in principle this scheme permits an arbitrary amount of scales. The findings
are to be used in the development of a multiscale crack propagation scheme. Since crack propagation is
highly dependent on an accurate reconstruction of the stress state in crack tip vicinity, hp-refinement of
macro-elements will be investigated.

Having developed highly efficient schemes to accelerate forward problems, these ideas are to be applied
towards the solution of inverse problems. Damage localization schemes are a natural choice due to SB-
FEM’s domain specific advantage of efficiently incorporating fracture, i.e., cracks. Since this constitutes a
novel application of SBFEM, the investigation is limited to elastostatics and a one-step heuristic approach.
Further, a comparison between available global optimization algorithms will be conducted, aiming to de-
termine each individual’s merits in minimizing the computational toll. Schemes to accelerate an inverse
analysis towards near real-time localization will be explored. To this end, parallel programming principles,
precomputation and reanalysis techniques are to be combined. The embarrassingly parallel nature of cal-
culating fitness scores for each individual of a generation should be considered. Precomputation techniques
stemming from the adoption of QT meshes will be explored to calculate an undamaged system response,
which serves as a baseline for the reanalysis technique. ROM techniques are considered outside the scope
of this work. Further, we refrain from incorporating data-drive approaches to damage localization.

TO is routine marred by the excessive computational burden stemming from the repeated solution of
an expensive forward problem. Various methods of incorporating adaptivity have been proposed in recent
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literature. Due to the pixel-based nature of current TO schemes, inexpensive automatic image compression
techniques will be investigated with the aim of arriving at adaptive analysis-ready meshes. The current
research limits itself to compliance minimization problems in order to compare with established methods.
Further, the merits and potential of this approach will be demonstrated by extending SBFEM-powered TO
to 3D problems.

1.3 Outline

This thesis comprises five parts, whose description is provided below:

1. Introduction:
As part of the introduction, the motivation, objectives and scope of this thesis are first outlined. Then
the salient theory is provided with emphasis on the use of SBFEM within the LEFM framework. For
the case where SBFEM is employed to enhance a broader range of applications within, e.g., EMs-
FEM, damage localization or TO, generic descriptions of the most commonly employed variants are
reproduced. Next, a critical reflection on the current state-of-the-art in discrete and phase field meth-
ods for LEFM is provided. This serves as a basis to understand the strengths and weaknesses of the
schemes developed in the subsequent parts.

2. Forward Problem:
In this part, schemes which aim at accelerating forward simulations are developed on the basis of
SBFEM. One chapter investigates the merits of adopting the Hamiltonian Schur decomposition to
reverse the computational burden incurred by linearizing the underlying SBFEM eigen-problem.
Further, an efficient and effective error estimator for gSIFs calculated by SBFEM is introduced. It
leverages SPR theory, thereby recovering the gSIFs to greater accuracy. Although SBFEM itself
is a highly effective numerical method, large problems still pose a significant computational bur-
den. Hence, adoption of the EMsFEM is considered. With the aim of developing a multiscale crack
propagation scheme, the effects of discontinuities embedded in RVEs are first examined. Observing
insufficient accuracy for select cases in combination with highly coarse meshes, as scheme inherent
to SBFEM is developed to locally elevate the approximation space of elements containing crack tips
and thereby recovering the gSIFs at significantly improved accuracy. This discussion forms the basis
for the developed multiscale crack propagation scheme, where SBFEM incorporates fracture on the
fine scale and the EMsFEM is harnessed to construct an associated coarse mesh representation on
which the governing equations are solved at a reduced computational toll.

3. Inverse Problem:
Having established and developed effective means of treating forward problems, the gained insights
are applied to accelerate large classes of inverse problems, e.g., damage localization and TO. Typ-
ically, inverse problems require the repeated solution of an expense forward problem. Within the
context of damage localization, automated construction of analysis-ready adaptive meshes coupled
with reanalysis and parallel programming techniques are explored to significantly accelerate the
localization of cracks and inclusions within solids. Similarly, TO benefits from the introduction a
drop-in replacement for the forward problem, which exploits adaptivity and automated image com-
pression techniques. A new and highly intuitive way to interact with TO, i.e., color-encoding analysis
information into an input image, is proposed and SBFEM-powered TO is extended to 3D applications.

4. Conclusion:
This thesis concludes with an overview of the merits of each individual contribution and summarizes
encountered limitations, which in turn provide the basis for a discussion on future work.

5. Appendix:
The appendix contains additional materials, i.e., the state-of-the-art review of the XFEM and PFM
theory, which complements their respective presentations in the introduction.
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1.3.1 Origin of Contributions

In this section the original contributions are specifically stated and, where applicable, collaborations and
parts contributed by external sources are identified. Although all content presented in this thesis stems
from publications, of which I am first author, I would like to acknowledge select sections, which have
benefited greatly from my co-author’s contributions (see Tbl. 1.1).

Chapter Title Source Collaboration
2.1 The LEFM Problem Statement [95] K. Agathos
3 Discrete and Phase Field Methods for LEFM [95] U. Pillai,

E. Kakouris,
S. Triantafyllou,
E. Chatzi

7.2.3 3D Topology Optimization [96] A. Saputra
A.1 The eXtended/Generalized Finite Element Methods [95] K. Agathos
A.2 Phase Field Methods [95] S.Triantafyllou,

U. Pillai,
E. Kakouris

Tbl. 1.1: Sections greatly benefiting from co-author’s contributions from selected first author publications.

Further, the chapters listed below (Tbl. 1.2) source material from the following of my publications:

Chapter Title Source
1 Introduction [95], [92], [96], [94], [93]
2 Theory [95], [92], [96]
3 Discrete and Phase Field Methods for LEFM [95]
4 Adopting the Hamiltonian Schur Decomposition [92], [95]
5 Multiscale SBFEM [94], [93]
7 Topology Optimization [96]
A Appendix [95]

Tbl. 1.2: Chapters containing materials sourced form first author publications.



2 Theory

2.1 The Linear Elastic Fracture Mechanics (LEFM) Problem Statement

To formulate the LEFM problem, we consider the two dimensional cracked domainΩ shown in Fig. 2.1. The
boundary Γ consists of the parts Γ0, where free surface boundary conditions apply, Γu, where displacements
ū are prescribed and Γt where the surface tractions t̄ are applied as Neumann conditions. The domain
includes a crack under the assumption of free surface conditions Γc. As depicted in Fig. 2.1, the domain
boundary is decomposed as Γ = Γ0 ∪Γu ∪Γt ∪Γc . Then, the elasticity equations with the corresponding
boundary conditions apply:

∇· {σ}+ {b} = {0} in Ω (2.1a)

{u} = {ū} on Γu (2.1b)

{σ} · {n} = {t̄} on Γt (2.1c)

{σ} · {n} = {0} on Γ0
c (2.1d)

where {σ} is the Cauchy stress tensor, {n} is the unit outward normal to the boundary, {b} is the applied
body force per unit volume, {u} is the displacement field and ∇ is the gradient operator.

If small deformations are assumed, then the strain field {ε} can be described as the symmetric gradient
of the displacement field:

{ε}=∇s{u} (2.2)

Further, if linear elastic material behavior is assumed, stresses can be obtained from strains through
Hooke’s law:

{σ}= [D]{ε} (2.3)

Fig. 2.1: Cracked body and boundary conditions.
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where [D] is the elasticity tensor, which in case of two dimensional problems assumes the following form:

[D]= E
1−ν2


1 ν 0
ν 1 0

0 0
1−ν

2

 , for plane stress (2.4a)

[D]= E
(1+ν) (1−2ν)


1−ν ν 0
ν 1−ν 0

0 0
1−2ν

2

 , for plane strain (2.4b)

with E and ν denoting the Young’s modulus and Poisson’s ratio respectively. Eqs. 2.1 combined with Eqs. 2.2
and 2.3 define the strong form.

A decisive quantity in classic fracture mechanics [120, 121] is the energy release rate, defined as:

G =−∂Π
∂a

(2.5)

where Π is the total potential energy and a is the crack length for 2D problems. Then, based on the energy
release rate criterion, crack propagation will occur when:

G ≥G c (2.6)

where G c is the critical energy release rate or fracture toughness, which can be considered as a material
parameter.

For a pure mode I problem, the mode I SIF is related to the energy release rate as follows:

G =
K2

I
E′ (2.7)

where K I is the stress intensity factor and E′ is the effective Young’s modulus:

E′ =
{ E for plane stress

E
1−ν2 for plane strain

(2.8)

Based on this, the critical stress intensity factor is defined as:

Kc =
√

E′G c (2.9)

The corresponding relation 2.7 for mixed mode planar problems is:

G = 1
E′

(
K2

I +K2
I I

)
(2.10)

where K I I is the mode II SIF. The square root of the quantity
(
K2

I +K2
I I

)
can be considered as an equivalent

SIF:

Keq =
√

K2
I +K2

I I (2.11)

Then, the energy release rate criterion of Eq. (2.6) can be written in terms of the SIFs as:

Keq ≥ Kc (2.12)

2.2 The Scaled Boundary Finite Element Method (SBFEM) in 2D Elastostatics

The fundamental difference between SBFEM and other numerical methods is the introduction of a scaling
center O. In all but a few special cases, this scaling center must be directly visible from any point on the
domain boundary. By introducing the scaling center, the Cartesian coordinate system is transformed into
one similar to polar coordinates. It is in this process that a radial coordinate ξ and a tangential coordinate
η are introduced (Fig. 2.2).
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P(x̂, ŷ)= point in domain
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(ūe, t̄e)= boundary conditions of elements (i.e. discretized boundary)

= nodes of line element with coordinates (xn, yn)
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(ξ,η)= scaled boundary coordinates with 0≤ ξ≤ 1 and −1≤ η≤ 1

DOFi = degree of freedom of each node in global (x,y)-direction

(x, y)= global coordinate system

Fig. 2.2: Introduction of SBFEM specific discretization of the bounded domain.
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Fig. 2.3: Possible domain types using SBFEM.

Assuming that for SBFEM an analytical solution can be found in radial direction ξ, which is later
shown to exist (Eq. 2.40), only the tangential direction η need be discretized in the finite element sense.
Depending on the bounds for ξ unbounded domains (1 ≤ ξ≤∞), bounded domains (0 ≤ ξ≤ 1) and bounded
domains with similar boundaries (ξ1 ≤ ξ≤ ξ2) can be accounted for (Fig. 2.3).

By choosing to discretize in radial direction along the boundary, the dimension of the problem is reduced
by one. Consequently, the information contained within each element on the boundary encompasses that
of the triangular domain spanned by itself and the scaling center (Fig. 2.2).

2.2.1 Derivation Based on the Virtual Work Approach

The theoretical basis of the SBFEM is summarized in [342] and more recently and extensively in [294]. In
this thesis, only the fundamental features are discussed. A thorough and more extensive treatment of the
latest SBFEM-advancements in the context of LEFM can be found in the recent review paper by Song, Ooi,
and Natarajan [295].

The scaled boundary transformation of geometry, wherein Cartesian coordinates (x, y) are mapped to
corresponding scaled boundary coordinates (ξ,η) is provided below. It states that any point in the domain
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can be equivalently expressed based on the position of the scaling center x0, some scaling factor in radial
direction ξ and an interpolation in tangential direction x(η).

x(ξ,η)= xO +ξx(η)= xO +ξ[N(n)]{x} (2.13a)

y(ξ,η)= yO +ξy(η)= yO +ξ[N(n)]{y} (2.13b)

where [N(η)] corresponds to the finite element interpolation functions [N1(η), N2(η), ..., Nn(η)], {x} repre-
sents the nodal coordinates {x1, x2, ..., xn}T and n is the number of nodes per element on the boundary.
The Jacobian [J], its inverse [J]−1 and determinant |J|, which link the derivatives in Cartesian to scaled
boundary coordinates on the boundary are given as:

{ ∂
∂ξ

∂
∂η

}
=

 ∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

{ ∂
∂x
∂
∂y

}
= [J]

{ ∂
∂x
∂
∂y

}
(2.14a)

{ ∂
∂x
∂
∂y

}
= 1

|J|

[ ∂y
∂η

− ∂y
∂ξ

− ∂x
∂η

∂x
∂ξ

]{ ∂
∂ξ

∂
∂η

}
= [J]−1

{ ∂
∂ξ

∂
∂η

}
(2.14b)

As a result, the differential volume unit dV is expressed as follows in scaled boundary coordinates:

dV = |J|ξdξdη (2.15)

Subsequently, these derivatives are used to evaluate the linear differential operator [L] in scaled bound-
ary coordinates. Splitting [L] into Cartesian components facilitates the substitution of their scaled bound-
ary equivalents. Factoring into scaled boundary components, this results in:

[L]=
1 0

0 0
0 1

 ∂

∂x
+

0 0
0 1
1 0

 ∂

∂y
= [L1]

∂

∂x
+ [L2]

∂

∂y
(2.16a)

= 1
|J|

[
[L1]

(
∂y
∂η

∂

∂ξ
− ∂y
∂ξ

∂

∂η

)
+ [L2]

(
∂x
∂ξ

∂

∂ξ
− ∂x
∂η

∂

∂ξ

)]
(2.16b)

=[b1(η)]
∂

∂ξ
+ 1
ξ

[b2(η)]
∂

∂η
(2.16c)

where [b1(η)] and [b2(η)] represent:

[b1(η)]= 1
|J|


∂y
∂η

0
0 − ∂x

∂η

− ∂x
∂η

∂y
∂η

 (2.17a)

[b2(η)]= 1
|J|

−
∂y
∂ξ

0
0 ∂x

∂ξ
∂x
∂ξ

− ∂y
∂ξ

 (2.17b)

The displacements {u(ξ,η)} follow an isoparametric formulation. They too consist of an analytical part
in radial direction {u(ξ)} and an interpolatory part in tangential direction based on shape functions [Nu(η)].

{u(ξ,η)}= [Nu(η)]{u(ξ)} (2.18)

where [Nu(η)] represents the shape functions [N(η)], which are applied to each DOF of an element sepa-
rately by means of multiplication with the identity matrix [I]:

[Nu(η)]= [N1(η)In, N2(η)In, ..., Nn(η)In] (2.19)

As a result, an expression for the strains may be derived by substituting the formulation for the displace-
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ments into Eq. 2.2.

{ε(ξ,η)}= [B1(η)]{u(ξ)},ξ+
1
ξ

[B2(η)]{u(ξ)} (2.20)

where

[B1(η)]= [b1(η)][Nu(η)] (2.21a)

[B2(η)]= [b2(η)][Nu(η)],η (2.21b)

Substituting Eq. 2.20 into the constitutive relation 2.3 results in the following expression for the stress
field.

{σ(ξ,η)}= [D]
(
[B1(η)]{u(ξ)},ξ+

1
ξ

[B2(η)]{u(ξ)}
)

(2.22)

In what follows, the virtual work method is implemented. To this end, the virtual displacements {δu(ξ,η)}
and strains {δε(ξ,η)} are expressed as follows:

{δu(ξ,η)}= [N(η)]{δu(ξ)} (2.23a)

{δε(ξ,η)}= [L]{δu(ξ,η)} (2.23b)

Thus, by equating internal work to external work, the weak form of the scaled boundary finite element
method is derived in the following form:∫

V
{δε(ξ,η)}T {σ(ξ,η)}dV −

∫
∂Ω

{δu(η)}T {t̄(η)}= 0 (2.24)

The second term in Eq. 2.24, gives rise to equivalent nodal loads {P}, due to applied tractions {t̄(η)}. The
corresponding displacements calculated on the boundary are termed {uh}. Equating the internal virtual
work to the external virtual work results in the complete virtual work equation as stated below and derived
subsequently:

{δu}T {[E0]{uh},ξ+ [E1]T {uh}− {P}}

−
∫ ξ=1

xi=0
{δu(ξ)}T

{
[E0]ξ{u(ξ)},ξξ+ [[E0]+ [E1]T − [E1]]{u(ξ)},ξ− [E2]

1
ξ

{u(ξ)}
}
dξ= {0} (2.25)

Considering Eqs. 2.20 and 2.22, the internal work assumes the following form:∫
V

{δε(ξ,η)}T {σ(ξ,η)}dV

=
∫

V

[
[B1(η)]{δu(ξ)},ξ+

1
ξ

[B2(η)]{δu(ξ)}
]T

[D]
(
[B1(η)]{u(ξ)},ξ+

1
ξ

[B2(η)]{u(ξ)}
)

dV

=
∫
∂Ω

∫ ξ=1

ξ=0
{δu(ξ)}T

,ξ[B
1(η)]T [D][B1(η)]ξ{u(ξ)},ξ|J|dξdη+

∫
∂Ω

∫ ξ=1

ξ=0
{δu(ξ)}T

,ξ[B
1(η)]T [D][B2(η)]{u(ξ)}|J|dξdη

+
∫
∂Ω

∫ ξ=1

ξ=0
{δu(ξ)}T [B2(η)]T [D][B1(η)]{u(ξ)},ξ|J|dξdη+

∫
∂Ω

∫ ξ=1

ξ=0
{δu(ξ)}T [B2(η)]T [D][B2(η)]

1
ξ

{u(ξ)}|J|dξdη

(2.26)
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Green’s theorem leads to the following formulation:∫
V

{δε(ξ,η)}T {σ(ξ,η)}dV

=
∫
∂Ω

{δu(ξ)}T [B1(η)]T [D][B1(η)]ξ{u(ξ)},ξ|J|dη
∣∣∣
ξ=1

−
∫
∂Ω

{δu(ξ)}T [B1(η)]T [D][B1(η)]×{{u(ξ)}ξ+{u(ξ)}ξξ}|J|dξdη

+
∫
∂Ω

{δu(ξ)}T [B1(η)]T [D][B2(η)]{u(ξ)}|J|dη
∣∣∣
ξ=1

−
∫
∂Ω

∫ ξ=1

ξ=0
{δu(ξ)}T [B1(η)]T [D][B2(η)]{u(ξ)},ξ|J|dξdη

+
∫
∂Ω

∫ ξ=1

ξ=0
{δu(ξ)}T [B2(η)]T [D][B1(η)]{u(ξ)},ξ|J|dξdη+

∫
∂Ω

∫ ξ=1

ξ=0
{δu(ξ)}T [B2(η)]T [D][B2(η)]

1
ξ

{u(ξ)}|J|dξdη

(2.27)

In order to simplify the above equation, the following substitutions are introduced:

[E0]=
∫
∂Ω

[B1(η)]T [D][B1(η)]|J|dη (2.28a)

[E1]=
∫
∂Ω

[B1(η)]T [D][B2(η)]|J|dη (2.28b)

[E2]=
∫
∂Ω

[B2(η)]T [D][B2(η)]|J|dη (2.28c)

These simplifications are named “coefficient matrices" and resemble in structure the stiffness matrix of
standard FEM schemes. They are calculated element wise and then assembled in the standard FEM
sense. Applying boundary conditions on the coefficient matrices is premature, as this will effectively delete
parts of the domain corresponding to the space spanned by the DOFs on the boundary and the scaling
center. Using the same notation to denote the fully assembled coefficient matrices, the previous equations
are rewritten as follows using an abbreviation on the boundary {u}=̂{u(ξ= 1)}:∫

V
{δε(ξ,η)}T {σ(ξ,η)}dV

= {δu}T {[E0]{u},ξ+ [E1]T {u}}−
∫ ξ=1

xi=0
{δu(ξ)}T

{
[E0]ξ{u(ξ)},ξξ+ [[E0]+ [E1]T − [E1]]{u(ξ)},ξ− [E2]

1
ξ

{u(ξ)}
}
dξ

(2.29)

In order for this equation to hold for all ξ, which implies it should be continuously satisfied in radial
direction and only compliant in the finite element sense in the tangential direction, the conditions specified
by both Eq. 2.30 on the boundary and Eq. 2.31 in the domain, must be satisfied:

{P}= [E0]{u},ξ+ [E1]T {u} (2.30)

[E0]ξ2{u(ξ)},ξξ+ [[E0]+ [E1]T − [E1]]ξ{u(ξ)},ξ− [E2]{u(ξ)}= {0} (2.31)

The above equation is termed the scaled boundary finite element equation in displacement. Alternatively,
one could also formulate the scaled boundary finite element equation in the time or frequency domain
by including inertial effects into the virtual work equation. Eq. 2.31 is equivalent to earlier work from
Wolf and Song, who first used a mechanically based approach [344] and then a weighted residual method
[342]. However, this derivation is more consistent with standard engineering principles and understanding.
Eq. 2.31 is characterized as a homogeneous set of Euler-Cauchy differential equations.

2.2.2 Solution Procedure

The general solution to the scaled boundary finite element equation can be written in power series form as:

{u(ξ)}= c1ξ
−λ1 {φ1}+ c2ξ

−λ2 {φ2}+ ...+ cnξ
−λn {φn}= [φ]ξd−λc{c} (2.32)

where λi and {φi} are the corresponding eigenvalues and vectors respectively. The boundary conditions
determine the integration constants ci. As a result, the solution of SBFEM in statics strongly resembles the
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mode superposition method of FEM. Hence, the eigenvectors {φi} can be interpreted as modal displacement
vectors on the boundary with a corresponding scaling factor in the radial direction λi (Fig. 2.4).

higher
modes

+

λ = 0 λ = 0
λ = −0.5

λ = −2

λ = −1
λ = −0.5

λ = −1

λ = −1 λ = −1 λ = −2

Fig. 2.4: Graphical representation of modes in a square domain with square root singularity. In black the
original domain with linear elements and in gray the modes with corresponding values.

A quadratic eigenproblem results from substituting the general solution into the scaled boundary finite
element equation in displacements:

[dλc2[E0]−dλc[[E1]T − [E1]]− [E2]]{φ}= {0} (2.33a)

{q}= [[E1]T −dλc[E0]]{φ} (2.33b)

In Eq. 2.33b the boundary forces are expressed in an equivalent modal formulation. Conceptually, they
constitute the nodal force modes {q}, which balance the corresponding displacement modes on the boundary,
who are directly dependent on {φ} by definition of the general solution. Linearizing the quadratic eigen-
problem has been shown to be beneficial in the context of fracture mechanics [291]. Unfortunately, this
means doubling the size of the eigen-problem. This is achieved by rearranging the equivalent nodal forces
equation (Eq. 2.33b) to obtain:

dλc{φ}= [E0]−1[[E1]T {φ}− {q}] (2.34)

which is in turn substituted into the scaled boundary finite element equation (Eq. 2.33a):

dλc[E0][E0]−1[[E1]T {φ}− {q}]−dλc[E1]T {φ}+ [E1][E0]−1[[E1]T {φ}− {q}− [E2]{φ}]= {0} (2.35)

which is equivalent to:
dλc{q}= [E1][E0]−1[[E1]T {φ}− {q}− [E2]{φ}] (2.36)

The linearized, combined form of the quadratic eigen-problem can thus be expressed more compactly in
matrix notation as:

[Z]

{
φ

q

}
= dλc

{
φ

q

}
(2.37)

with

[Z]=
[

[E0]−1[E1]T −[E0]−1

[E1][E0]−1[E1]T − [E2] −[E1][E0]−1

]
(2.38)

where [Z] is a Hamiltonian matrix. This special matrix form mandates symmetry about the real and the
imaginary axis for all eigenvalues. As a result, the eigenvalues corresponding to rigid body translational
modes can pose significant numerical issues. Machine precision can cause these eigenvalues to arbitrarily
alternate in sign.

Since eigenvalues of opposite sign contribute to the response of the system in fundamentally different
ways, which will be detailed in the following paragraph, they should be sorted accordingly.

[Z]

{
φ

q

}
= dλc

{
φ

q

}
=

[dλnegc
dλposc

][
[φ1] [φ2]

[Q1] [Q2]

]
(2.39)

The subscripts “pos" and “neg" refer to positive and negative eigenvalues respectively, which bear the
effect of separating the bounded from the unbounded response. For negative eigenvalues the contribution
at ξ = 0 is bounded and at ξ = 1 has a finite value, which represents a solution in agreement with that of
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ξλ
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∞ bounded
domain modes

unbounded
domain modes

Fig. 2.5: Contributions of the domain modes to the bounded and unbounded domain solutions

the bounded domain, whereas for positive eigenvalues the contribution at ξ = 1 is finite and at ξ = ∞ is
bounded, resembling the solution of an unbounded domain (Fig. 2.5).
Having determined the eigenvalues and eigenvectors, these can be substituted into the general solution
(Eq. 2.32) for determining the domain stiffness matrix.

{u(ξ)}= [φ1]ξd−λnegc{c1}+ [φ2]ξd−λposc{c2} (2.40)

Considering that only the negative eigenvalues contribute to the response of the bounded domain, the
terms associated with the positive eigenvalues of Eq. 2.40 are discarded. Next, in order to evaluate the
stiffness matrix, the displacement modes must be linked to the force modes. This is achieved by comparing
the displacements on the boundary {u(ξ= 1)} with the acting nodal forces {P}. Enforcing the corresponding
boundary conditions, by applying the integration constants to the force modes, results in the following
formulation:

{Pbounded}= [Q1]{c1} (2.41)

The integration constants are obtained by evaluating Eq. 2.40 at ξ= 1.

{c1}= [Φ1]−1{u(ξ= 1)} (2.42)

In a subsequent step, the integration constants are substituted into Eq. 2.33b:

{Pbounded}= [Q1][Φ1]−1{u(ξ= 1)} (2.43)

Therefore, the stiffness matrix of a bounded domain is found to be:

Kbounded =+[Q1][Φ1]−1 (2.44)

The stiffness matrix is symmetric, though fully populated. Hence, the use of higher order elements is not
penalized by higher bandwidth as in standard FEM approaches.

Similarly, the stiffness matrix for the unbounded domain may be determined by utilizing the analogous
expressions of the unbounded domain:

Kunbounded =−[Q2][Φ2]−1 (2.45)

In order to perform the back calculation of strains and stresses, first the integration constants (Eq. 2.42)
must be determined, next the general solution (Eq. 2.40) is sought, and only then are the strains (Eq. 2.20)
and stresses (Eq. 2.22) derived.

In order to better understand the steps, computational complexity and effort required for an SBFEM
analysis the flowcharts in Figs. 2.6 and 3.2 are provided. Restricting discretization along the boundary
when using SBFEM comes mainly at the price of the solution of an eigen-problem. Therefore, domains
with minimal surface to volume ratio are especially suited for analysis using SBFEM.

Very similarly to standard FE-based approaches, first element-wise coefficient matrices are evaluated
and assembled using a standard numerical integration procedure. However, this must be performed for
three separate coefficient matrices. As opposed to XFEM though, no additional enrichment terms must be
included, and thus the need for integration of singular terms is eliminated. Since in SBFEM all elements
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Fig. 2.6: Flowchart of a SBFEM analysis linked to corresponding equations from sec. 2.2.

can be treated equally, many issues pertaining to the condition number of the stiffness matrix can be
avoided. Additionally, no further assumptions, for instance pertaining to what type of singularity to include
in the crack tip enrichment, are put in place.

In 2D, since the domain is represented by a linked series of bar-type elements, the assembled coefficient
matrices are highly sparse and their entries are clustered about the diagonals facilitating the inversion re-
quired for constructing the Hamiltonian matrix [Z]. The eigen-decomposition is the central core of SBFEM
analysis, as it not only is necessary for determining the stiffness matrix, but also delivers the analytical
solution for the displacements in radial direction. Once the stiffness matrix is formed, the remaining steps
coincide with those of the standard FEM approach. Significant differences may be identified, in the cal-
culation of the SIFs, when compared against the XFEM approach. Not only are the SIF easily identified,
efficiently extracted in post-processing, smoothed for further accuracy and used to determine an effective
error-estimator in SBFEM (sec. 4.1), but they are additionally exempt from parameter-specific dependen-
cies, such as the radius of integration and enrichment in XFEM. To see how this contributes to reducing
computational complexity, approximate flop counts are listed in Tbl. 4.6.

Unfortunately, the calculation of the eigenvalues, λi, and eigen-vectors, φi, by means of eigen-decomposition
can result in numerical errors, when near parallel eigen-vector pairs are present [291]. To alleviate this,
the block-diagonal Schur decomposition may be adopted [92]. The displacement solution is obtained as a
superposition (Fig. 2.4) of the modes, with associated scaling values, and constrained by integration con-
stants ci, as obtained from the imposed boundary conditions.

{u(ξ)}= [Ψ(u)]ξ−[S]{c}=
n∑

i=1
{Ψ(u)

i }ξ−Si ci (2.46)

The transformation matrix [Ψ] and block diagonal real Schur form [S] are derived from recasting the
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system of first order differential equations as:

ξ

{
{u(ξ)}
{q(ξ)}

}
,ξ=−Z

{
{u(ξ)}
{q(ξ)}

}
(2.47)

with the Hamiltonian coefficient matrix [Z] defined as in Eq. (2.38) so that Eq. (2.47) is decoupled by the
block-diagonal Schur decomposition.

[Z][Ψ]= [Ψ][S] (2.48)

The columns of the transformation matrix contain the modes, whereas the diagonal blocks of the real
Schur form contain the corresponding eigenvalues. However, Eq. (2.47) results in doubling the amount of
DOFs present in the solution, which can be shown to contain a bounded response (0 < ξ < 1 and negative
eigenvalues) and an unbounded response (1 < ξ <∞ and positive eigenvalues). [S] and [Ψ] are sorted in
ascending order and partitioned accordingly.

[S]= diag([Sneg], [Spos]) (2.49)

[Ψ]=
[

[Ψ(u)
neg] [Ψ(u)

pos]
[Ψ(q)

neg] [Ψ(q)
pos]

]
(2.50)

By expressing the nodal forces on the boundary with enforced integration constants, an expression for
the stiffness matrix of the subdomain is obtained and a displacement solution is calculated analogous to
FEM:

[Kbounded]= [Ψ(q)
pos][Ψ

(u)
neg]−1 (2.51)

Finally, the stresses are obtained by substituting Eq. (2.46) into Eq. (2.22):

{σ(ξ,η)}= [Ψσ(η)]ξ−[Sneg−I ]{c} (2.52)

where [Ψσi(η)] is the stress mode of the corresponding displacement mode [Ψ(u)
i ].

[Ψσ(η)]= [D](−[B1(η)][Ψ(u)
neg][Sneg]+ [B2(η)][Ψ(u)

neg]) (2.53)

The calculation of the stress on the domain boundary (ξ= 1) does not require the evaluation of the matrix
exponential ξ[S]−[I]. This is beneficial when sufficient discretisation of the domain is achieved, e.g. via use
of quadtree meshes. However, in case the complete domain is represented by a single large-sized SBFEM
cell, the evaluation of displacements and stresses at internal points can become computationally intensive.

2.2.3 Constraints

Several minor constraints are associated with the use of SBFEM as the discretization method.

• Only star-convex domains can be treated.
• Elements containing a crack tip can only incorporate straight crack sides.
• Features in radial direction are analytically captured and cannot be discretized further due to a

degenerate Jacobian. Quantities acting along redial direction must therefore be incorporated into
the scaled boundary equation in displacements.

• The translational modes obtained from the eigen-decomposition must be overwritten.

The first three constraints are easily overcome by subdividing the domain. Treatment of the translational
modes is more invasive, yet still simple. Since the associated eigen-values with value zero are subject
to machine precision errors, the sorting procedure is error prone. Therefore, directly after completion
of the eigen-decomposition, the two corresponding eigen-modes are overwritten with rigid body modes
corresponding to translation, while the eigenvalues are prescribed equal to zero. This procedure consists
of rectifying machine precision issues by enforcing physical knowledge of the system.
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2.2.4 Generalized Stress Intensity Factors (gSIFs)

Since the general solution to the SBFEM equation is extracted as a power series, the singular modes are
readily identified: By inspection of Si any −1< real(λ)< 0 will result in a singularity at ξ= 0. Placement of
the scaling center at a crack tip may be exploited to calculate the generalized SIFs (Fig. 2.7a). By including

x

y

ξ

η

η = 1

η = −1

ξ = 1

ξ = 0

O

h-refinement

p
-r

efi
n
em

en
t

spline

(a) Polygon domain with scaled boundary
coordinates

x

y

rb(θ)
θO

r

(b) Transformation to polar coordinates of
singular stress field around crack tip

Fig. 2.7: Domain discretisation, scaling center O and introduction of scaled boundary coordinated

a double node at the crack mouth, two additional modes, the singular modes, arise (Fig. 2.4), whose eigen-
vectors resemble the mode I and mode II fracture cases. The singular stress field is extracted from the
general solution (Eq. (2.52)), where the superscript (s) denotes the singular quantities:

{σ(s)(ξ,η)}= [Ψ(s)
σ (η)]ξ−[S(s)−I]{c(s)} (2.54)

For consistency with other numerical methods and experimental reporting, a characteristic length L is
introduced and a transformation to polar coordinates is sought (Fig. 2.7b):

ξ= r
rb(θ)

= L
rb(θ)

× r
L

(2.55)

The singular stress field is equivalently expressed in polar coordinates as:

{σ(s)(r,θ)}= [Ψ(s)
L (θ)]

( r
L

)−[S(s)−I]
{c(s)} (2.56)

implying the corresponding stress modes [Ψ(s)
L (θ)] given by:

[Ψ(s)
L (θ)]= [Ψ(s)

σ (η(θ))]
(

L
rb(θ)

)−[S(s)−I]
(2.57)

For the case of 2D elastostatics, two singular stress modes exist. Hence, [S(s)] and [Ψ(s)
L (θ)] reduce to

matrices ∈ R2×2, while both {c(s)} and {σ(s)(r,θ)} form vectors ∈ R2. More specifically, only the components
of {σ(s)(r,θ)} = (σ(s)

θ
(r,θ),τ(s)

rθ (r,θ))T are retained, which correspond to mode I and II cracks, for which the
formal definition of the gSIFs at angle θ is given as [296]:{

σ(s)
θ

(r,θ)
τ(s)

rθ (r,θ)

}
= 1p

2πL

( r
L

)−[S̃(s)(θ)]
{

K I (θ)
K I I (θ)

}
(2.58)
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The matrix of orders of singularity [S̃(s)(θ)] is introduced such that:

[S̃(s)(θ)]= [Ψ(s)
L (θ)]([S(s) + I])[Ψ(s)

L (θ)]−1 (2.59){
σ(s)
θ

(r,θ)
τ(s)

rθ (r,θ)

}
=

( r
L

)−[S̃(s)(θ)]
[Ψ(s)

L (θ)]{c(s)} (2.60)

Comparing Eq. (2.58) with Eq. (2.60) permits the evaluation of the gSIFs as:{
K I (θ)
K I I (θ)

}
=
p

2πL[Ψ(s)
L (θ)][c(s)] (2.61)

The use of the matrix order of singularity automatically accounts for special cases in material inter-
faces. This is achieved by its off-diagonal terms [296]. Consequently, the SBFEM does not pose any a priori
assumption on the type of singularity, which greatly facilitates the simulation of crack propagation through
heterogeneous media.

Since the SIFs are directly evaluated using singular stress modes, standard recovery techniques may
be applied, in order to improve on the solution during post-processing. Two pertinent methods are the
SPR theory [367, 368, 83] and curve fitting by splines [239]. In the former, an improved estimation of the
singular stresses is obtained by smoothing the singular stress modes by means of SPR theory (sec. 4.1).
The main benefit originates in the availability of error estimators [92] and the theoretical underpinning
of the method. The latter is highly pragmatic and empirically offers comparable accuracy at reduced
computational cost. Differing from the SPR method, the singular stresses computed at the Gauss points
are fitted using a spline.

2.2.5 Hierarchical Meshes

Early efforts in SBFEM were limited due to the lack of specialized meshers. With the advent of polygon and
virtual finite element methods ([334],[312],[317]), this was partially remedied, allowing for treatment of
more involved and practical numerical examples. Specifically the use of the quadtree decomposition [238]
has established itself as the predominant mesh choice ([235],[241],[67]), since it elegantly complements
SBFEM’s polygon underpinnings. By restricting the differences in cell sizes between neighbors to a ratio
of 2:1, i.e., by enforcing balanced quadtrees (Fig. 2.8b), it suffices to precompute only 16 realizations of
SBFEM subdomains, while issues commonly associated with hanging nodes are alleviated.

Boundary

Constraint

(a) Conventional QT decomposition.

Boundary

Balancing

(b) Balanced QT decomposition.

Boundary

Polygons

(c) Hybrid-polygon QT decomposition.

Fig. 2.8: Polygon clipping operating on a balanced quadtree decomposition enables accurate geometry
representation with coarser meshes.

Features which do not align with the square grid of the quadtree decomposition require special treat-
ment. In the standard FEM, this is achieved by mans of refinement near boundaries, until the lower
threshold to a user-specified block size is reached. Generally, this results in step-like boundaries (Fig. 2.8a)
and excessively fine meshes. This is mitigated in SBFEM by employing polygon clipping. Consequently,
the mesh consists of a) standard square cells and b) clipped polygon cells (Fig. 2.8c). So-called hybrid
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quadtree meshes combine both types of cells, with the benefit of improved approximation of the geometry,
at coarser discretisation levels. Standard FEM quadtree decompositions are nonetheless also adopted in
SBFEM analyses, mostly in the context of automated image-based stress analysis [276], where the input
data (pixel information) is inherently jagged by nature. In conclusion, balanced quadtree meshes are eco-
nomical to construct, automatically provide a certain degree of adaptivity around changing domain features
and permit efficient analysis using the SBFEM by exploiting precomputation.

The schemes proposed in this thesis exploit the balanced hybrid-polygon quadtree decomposition as a
mesh for SBFEM analysis. The quadtree decomposition is termed after the method by which it subdivides
heterogeneous domains: A parent cell is bisected both horizontally and vertically, thus resulting in and
being replaced by four equally sized new cells, which are referred to as its children. If this procedure is
performed often enough, the resulting graphical representation (Fig. 2.9a) resembles that of a tree. The
criterion, which dictates how and when to subdivide is dependent on the variant of quadtree decomposition
used. Typically, a distinction is made between image and feature based SBFEM analysis. Image based
analysis appraises the gray-scale values contained within the parent cell. If the difference between the
minimum and maximum values is larger than a user specified tolerance, the cell is subdivided. For feature
based analysis, the criterion for subdivision is based on the points comprising the polygon, which describes
the problem geometry: If more points are detected within a cell than permitted according to user input,
then the cell is subdivided. A typical resulting quadtree decomposition is depicted in Fig. 2.9b. Character-
istic is the excessive refinement about boundaries, while these are still represented coarsely, in a step-like
fashion. Many different element realizations (orientation, size, neighbor configurations, transitions, etc.)
arise, rendering the resulting decomposition highly irregular. A polygon based FEM variant such as SB-
FEM can directly employ the quadtree decomposition as its mesh, however, from a computational expenses
perspective, this would mandate treating each cell individually. Upon balancing the quadtree, i.e., enforc-
ing all neighbouring cells to exhibit at most a 2:1: ratio in size difference, the irregularities are minimized
as at most 16 different realizations of cells arise. Quantities associated with these cells can be trivially pre-
computed and stored for later retrieval, rendering this approach highly computationally efficient. Further,
the transitions in element sizes across the decomposition domain are smoothed (Figs. 2.10a and 2.10b). Yet,
the issue of coarse resolution on boundaries still remains, necessitating excessive mesh refinement to mini-
mize errors in geometry representation. Since the SBFEM permits the treatment of star convex, polygonal
domains, a complementary approach arises, which simultaneously alleviates excessive mesh refinement
and enables an improved treatment of the boundary representation: The hybrid-polygon quadtree decom-
position. All generic quadtree cells along the boundaries are additionally subjected to polygon clipping, thus
generating polygon cells. The benefits of fusing these two types of cells within a mesh, comes at the price of
having to treat each of these newly clipped cells individually. Fortunately, this permits the usage of coarser
quadtree decompositions and thus meshes, which offset the computational toll introduced by clipping the
boundaries. Though polygon clipping can in principal be performed on any type of quadtree decomposition,
for computational efficiency reasons during SBFEM analysis the balanced variant is preferred, resulting
in the balanced hybrid-polygon quadtree decomposition.

(a) Image-based quadtree decomposition.

?

(b) Feature-based quadtree decomposition.

Fig. 2.9: Example of image decomposition by quadtree algorithm with sample SBFEM polytope element in
gray.
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(a) Image-based quadtree decomposition.

Polygon Mesh

u
n
b
a
la
n
ce

d
b
a
la
n
ce

d

(b) Feature-based quadtree decomposition.

Fig. 2.10: Segmentation of input with resulting mesh for unbalanced and balanced quadtree decomposi-
tions. Hanging nodes in red and additional elements introduced due to balancing in green.

2.2.6 Crack Propagation on Hierarchical Meshes

Cracks are introduced into the hybrid balanced quadtree mesh by polygon clipping [238]. Traversed blocks
are split into two parts, by introducing a double node. Blocks containing a crack tip are augmented with
an additional node, where the crack enters, and the scaling center is placed to coincide with the crack tip
(Fig. 2.11a). Discretisation of the crack tip segment is not required, since its solution is included in the
radial and therefore analytic portion of the SBFEM solution. Specifically, discretisation of the crack tip
segment is not permitted, due to the Jacobian of the respective element equalling zero.

In the case of crack propagation, the SIFs have to be calculated with sufficient accuracy. Since a simply
cracked block does not permit sufficient resolution of the singular stress field or its radial distribution, a
region surrounding the crack tip is homogenized (Figs. 2.11b and 2.11c). The crack is then propagated by
imposing a suitable criterion, e.g., Eq. (5.5), with which the new crack tip is then projected (Fig. 2.11d).

(a) Crack entering existing
balanced quadtree region.

Refinement
Balancing

(b) Refinement and bal-
ancing around crack tip.

Homogenization

(c) Unifying cells into
SBFEM macro element
around crack tip

(d) New crack tip projected
by gSIFs and ∆a.

Fig. 2.11: Main steps in SBFEM crack propagation scheme.
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2.3 The Hamiltonian Schur Decomposition (HSchur)

The SBFEM solution process benefits from the adoption of the Hamiltonian Schur decomposition (HSchur)
in multiple ways:

• It eliminates the need for an arbitrary stabilizing parameter ε, traditionally given by [E2]= [E2]+ε[I].
• By respecting Hamiltonian symmetry of the eigenvalues, regular and steeper convergence rates can

be achieved.
• The doubling of the problem size when linearizing the quadratic eigenvalue problem is reversed and

thus computational complexity is significantly reduced.
• It still benefits from a Schur form, which allows to quantify general SIFs for bi-material interfaces.

The following is an abridged treatment of the theory first presented in [193] with emphasis placed on
the parts integral to SBFEM. To alleviate visual clutter, all quantities are considered as matrices unless
explicitly stated otherwise.

A matrix H ∈R2n×2n is Hamiltonian iff:

Hstart =
[

A G
C −AT

]
(2.62)

Additionally, GT =G and CT = C, which holds for the case of SBFEM (Eq. 2.38).
Matrix H is said to be in Hamiltonian real Schur form if

H f inal =
[
T G
0 −TT

]
. (2.63)

where T is quasitriangular. Any eigenvalue +λ found in T has a corresponding eigenvalue −λ in −TT . For
most applications it makes sense to group eigenvalues with same sign into T and −TT respectively.

In order to arrive at H f inal from Hstart, a series of orthogonal symplectic similarity transformations
are performed:

Hi+1 ← Q̂T HiQ̂ (2.64)

Every step is accompanied by the corresponding update, for which the starting values of Q0 is chosen as
I2n:

Q i+1 ←Q iQ̂ (2.65)

In algorithmically formulating this process of arriving at the Hamiltonian real Schur form, first a symplec-
tic URV decomposition of H is performed. The SLICOT library [232] provides the necessary backwards
stable routines:

H =UR1V Twith R1 =
[
S G
0 TT

]
(2.66)

T ∈Rn×n is upper-triangular, S ∈Rn×n is quasitriangular and G ∈Rn×n. It is at this point that the eigenval-
ues of H can be determined as they are equal to the square roots of the eigenvalues of the quasitriangular
matrix −ST.

Next, the eigenvalues of −ST, which correspond to the eigenvalues of H2 are partitioned into blocks.
Many clustering algorithms exist, however here we choose an open ball with radius:

r = 10×||S||F ||T||F ×κ×ε (2.67)

|| • ||F denotes the Frobenius norm, κ is the condition number of the eigenvalue, ε is machine precision and
the factor 10 is included to arrive at a conservative estimate as originally proposed in [193]. Eigenvalues
of overlapping balls are placed in the same block. Complex conjugates are then added to the block if they
exist as well. In a last operation for this step, the eigenvalues of the URV decomposition are ordered to
match their blocks. The new structure of the matrix −ST is given as follows:

−ST = B =

B11 . . . B1s
. . .

...
0 Bss

 (2.68)
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The spectrum of Bii is given by eigenvalues Λi of block 1 < i < s. At this point, the first orthogonal sym-
plectic update is performed using the sorted output of the URV decomposition:

H ←UT HU (2.69)

Henceforth, each block will be considered separately. The general procedure will be illustrated based on
the first block B11 with size k. First, a QR decomposition is performed on:

[Ek HEk]=QR (2.70)

Ek ∈ R2n×k is the submatrix of I2n constructed from the first k columns. Next, a Schur decomposition is
performed:

G =QT HQ Schur−−−−→ Q̃T̃Q̃T (2.71)

The eigenvalues of Q̃ are subsequently sorted into left- (Q̃1) and right (Q̃2) half plane respectively:

Q̃ = [Q̃1,Q̃1] (2.72)

In order to construct an orthonormal basis for the invariant subspace of H, a matrix X is introduced as
follows:

X =QQ̃1 (2.73)

The main task lies in transforming X into Ek and thus to achieve a deflation. This is carried out by means
of finding an orthogonal symplectic S such that ST X = Ek, which will be subsequently used to perform an
update on H ← ST HS. To this end, first X is partitioned to conform to the block sizes:

X =



X1
...

Xs
Xs+1

...
X2s


(2.74)

S can be found as:

S =
[
Ŝ 0
0 Ŝ

]
with Ŝ = diag{Š, I} and Š =QF̃ (2.75)

F̃ is a flip vector obtained from reversing the column order of the identity matrix [I], Q results from the
QR decomposition of the submatrix of X corresponding to [Xs+1; Xs+2]. After carrying out the updates
X ← S̃T X and H ← S̃T HS̃, the vector X assumes the following form:

X =



X1
...

Xs
0

Xs+2
...

X2s


(2.76)
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Subsequent iterations on the lower blocks of X , introduce further blocks of zeros eventually resulting in:

X =



X1
...

Xs
0
...
0

X2s


(2.77)

For the last block a slightly modified procedure must be applied as there is no successive block, which
could be used to install a further block of zeros. For the last block the actions are modified, by considering
the submatrix [Xs; X2s]. Based on the QR decomposition of the aforementioned submatrix, from which Q̌
results, the required updates X ← Q̃T X and H ← Q̃T HQ̃ are constructed:[

Xs
X2s

]
=

[
Q̌1
Q̌2

]
R (2.78)

and

Q̃ =
[
Q̃1 −Q̃2
Q̃2 Q̃1

]
and Q̃1 = diag{I,Q̌1}; Q̃2 = diag{I,Q̌2} (2.79)

This results in the entire lower portion of X running from blocks s+1< k < 2s to be filled with zeros.
In a next step, an analogous procedure for the block 1< k < s will be applied. S can be found as:

S =
[
Ŝ 0
0 Ŝ

]
with Ŝ = diag{Š, I} and Š =Q (2.80)

Q results from the QR decomposition of the submatrix of X corresponding to [Xs−1; Xs]. Again a block of
zeros is inserted into X :

X =



X1
...

Xs−10
0
...
0


(2.81)

This procedure is continued until only one block remains. After 2s−1 updates of X ← S̃T X and H ← S̃T HS̃
the desired deflation is nearly achieved. At this point, the Hamiltonian matrix H is of the form:

H =


A11 A12 G11 G12

0 A22 G21 G22
0 0 −AT

11 0
0 C22 −AT

11 −AT
22

 (2.82)

It is now admissible to deflate the problem. Subsequent operations are performed on the following Hamil-
tonian submatrix:

H =
[

A22 G22
C22 −AT

22

]
(2.83)

This deflation is repeated for each block until the real Hamiltonian Schur form is reached:

H =
[

A G
0 −AT

]
(2.84)

Q contains the orthonormal basis for the stable invariant subspace. In a last step, a sorting of the eigen-
values and vectors spanning the stable invariant subspace is performed, in order to retain only negative
eigenvalues. Such routines are also available in the Slicot library [232].
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It therefore becomes evident that application of the HSchur decomposition in the solution process of
SBFEM as proposed, will increase accuracy, while reducing complexity.

2.4 The Enhanced Multiscale Finite Element Method (EMsFEM)

Computational multiscale methods, in principle, aim to project dominant system behavior from a fine scale
(micro) mesh onto a significantly coarser scale (macro) mesh, where the governing equations are solved
at reduced computational cost. In contrast to homogenization methods, the EMsFEM follows a numerical
approach to construct NBFs, which map the response between scales. The generality of this approach
permits the treatment of an arbitrary number of scales as well as the construction of h-adaptive elements
on the coarse scale mesh.

Implementing EMsFEM comprises four steps. Quantities inherent to the first two may be calculated
prior to analysis, during the offline phase. Those associated with while the latter two must be computed
during analysis, in the online phase.

1. Numerically construct the basis functions (Fig. 2.12)
2. Evaluate the equivalent coarse element stiffness matrix
3. Solve the governing equations on the macro-scale
4. Downscaling of the macro-scale solution to micro-scale

Here we first illustrate the overall procedure by means of linear boundary conditions and one specific
BVP. Subsequently the general construction procedure of coarse element stiffness matrices is considered.
Then, different types of boundary conditions and associated formulations are treated. Regions from which
coarse scale representations are obtained, are termed RVEs.

The NBFs, which provide the mapping between scales (Fig. 2.12) are constructed numerically by solving
a Dirichlet BVP on a RVE. We implement linear boundary conditions. These are constructed sequentially
and independently of each other, permitting the use of parallel computing techniques. Example bound-
ary displacements are illustrated in Fig. 2.12: A unit displacement is imposed at node 1 in x-direction.
Displacements in x-direction vary linearly, analogous to bilinear shape functions, along the boundaries 12
and 14. The whole domain is constrained in y-direction. Additionally, boundaries 23 and 34 are further
constrained in x-direction.

u=1

1

4

2

3

y

x

Fig. 2.12: Construction the linear NBFs by solving the associated Dirichlet BVP.

The resulting displacement solution comprises a column entry of the basis function mapping the effect
of a unit displacement of the coarse scale to the response on the fine scale. Completing the procedure for
all coarse DOF, by appropriately adapting the unit displacement and associated prescribed displacements
on the boundary, results in:

{ue}= [N]{uE} (2.85)

where {ue} contains the displacements of the fine scale mesh, {uE} is the displacement vector of the coarse
mesh and [N] the basis function matrix. Here, [N] is a nDOF x 8 matrix for a RVE of 4 coarse nodes and 2
DOF per node, with columns obtained by solving the Dirichlet boundary value problem associated with the
corresponding DOF. The method does not impose a limit on the amount of coarse nodes permitted per RVE.
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Hence coarse element representing RVEs are abbreviated as CMX, where “CM” refers to coarse multiscale
elements and “X” is the amount of coarse nodes (see sec. 5.1).

The equivalent stiffness matrix of a coarse element is obtained by energy equivalence. To this end, the
strain energy of the fine scale is mapped to the coarse scale by means of Eq. 2.85.

Πe =
1
2

{ue}T [Ke]{ue}= 1
2

{uE}T [N]T [Ke][N]{uE} (2.86)

with the equivalent stiffness matrix of the RVE therefore given as [KRV E]= [N]T [Ke][N]. [Ke] is the RVE
stiffness matrix on the micro-scale.

The macro-scale computations are then performed in the standard FEM sense. Upon solution of the
governing equations on the coarse mesh, downscaling operations are necessary to evaluate the fine scale
response. Through reverse mapping of the macro-scale displacements to the micro-scale (Eq. 2.85) the
displacements are provided for each element on the fine scale and the standard procedures for strain and
stress evaluation are available. The EMsFEM therefore permits the extension of any numerical method
capable of solving Dirichlet BVPs to handle multiscale calculations. However, excessive over-constraining
and thus overestimation of an RVE’s stiffness associated with the use of linear boundary conditions can
limit the accuracy of the method. Periodic boundary conditions as well as oversampling techniques have
been proposed to overcome such issues. For periodic boundary conditions, the restrained boundaries are
exchanged with tie constraints, whereby opposite points are enforced to move in unison (Fig. 2.14). The
prescribed displacement δx takes on a value of 1 at and in direction of its associated DOF and varies
linearly until it vanishes at its neighboring coarse nodes. In essence it resembles the procedure to construct
linear boundary conditions with the addition of multi-point constraints, which are enforced by Lagrange
multipliers. Further, the use of periodic boundary conditions mandates the existence of opposite points
(e.g., A+ and A− in Fig. 2.14) and implies a continuous strain field.

Although these linear and periodic boundary conditions have been employed in numerous studies, cer-
tain issues still remain: The exact fraction of δx to apply to each node, is based purely on geometric
considerations (Fig. 2.15, top row), i.e., distance of a node to the application of unit displacement, thereby
neglecting material properties. Oversampling is introduced to overcome this issue (Fig. 2.15, bottom row).
By sampling a larger region on which a surrogate Dirichlet BVP is solved, the geometric constants can be
replaced by ones incorporating knowledge of the RVEs material properties: The values of the calculated
displacement constants are then applied as prescribed displacements on the original Dirichlet BVP. Hence,
oversampling can be combined with both linear and periodic boundary conditions.

N

RVE Macro Element

Fig. 2.13: Micro (left) and macro (right) scale representation of the problem domain with NBFs mapping
RVE quantities to the corresponding macro element.
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Fig. 2.14: Construction the NBF by solving the associated Dirichlet BVP. Left, application of linear bound-
ary conditions for the CM8 element. Right, application of periodic boundary conditions. Quantities denoted
by ·− and ·+ form a tie-constraint. The use of periodic boundary conditions mandates the existence of oppo-
site point pairs to tie-constrain.
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Fig. 2.15: Techniques of constructing boundary conditions for EMsFEM.

2.5 Damage Localization

2.5.1 The Inverse Problem

Inverse problems aim at identifying latent and unknown system parameters, based on measurement of
the system response. Typically, though not necessarily, they are accompanied by an associated numerical
model, as is the case in this study. The solution to the numerical model, i.e., the forward problem, is in
practice often infeasible due to incomplete system information. In the presence of supplementary informa-
tion, however, such as the measured system response, an inverse problem can be formulated to identify
the remaining unknown system characteristics of the forward problem. This thesis treats parametrized
structural flaws, in the form of strong (cracks) and weak (holes) discontinuities, as the aforementioned
unknowns. A solution is sought by recasting to a minimization problem of several design parameters θ,
which define the flaw’s geometry. These include number, location, shape, size and orientation. The aim is to
minimize the difference between measured system response (m) and candidate response (h). The latter is
obtained by repeated forward analysis with iteratively improved design variables characterizing the flaw.
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The measured response of structural systems typically comprises strains on specimen surfaces, though in
principle displacements, velocities and accelerations suffice as well given appropriate excitation and mea-
surement apparatus. Commonly, strains are calculated at and compared to the corresponding data at the
measurement points. Should too few sensors exist, be positioned too far away from the flaw or not sensi-
tive enough to adequately register their presence, the problem is said to be ill-posed and possibly without
unique solution. The way in which the objective function F(θi), which must be minimized, is defined,
greatly affects the well-posedness of the inverse problem. Typically, it relates the relative error between
the actual measured response to the simulated response in the form of the L2 norm. The inverse problem
is therefore summarized as the following optimization problem:

Find θi such that F(θi)→ min i = 1, . . . ,npar (2.87)

where

F(θi)=
||{εm}− {εh(θi)}||

||{εm}|| (2.88)

The numerically computed strains at the sensor locations, due to the candidate flaw with specific realiza-
tion parameters θi are consolidated into {εh(θi)}. The measured strains at the same locations are denoted
by {εm}. Depending on the measurement setup, the strains can contain up to three components for a 2D
plane stress analysis.

2.5.2 Global Optimization Algorithms

Global algorithms are suitable for solving the optimization problem stated in Eq. 2.87. Since an evaluation
of the objective function equates to performing a FEM analysis of the problem structure, computational
efficiency concerns arise. Hence, the algorithm of choice should fulfill certain conflicting requirements,
so to reduce the amount of necessary function evaluations: An algorithm must be both exploratory and
exploitative. Exploratory behavior a) ensures that all regions of the response surface are explored, b) is the
mechanism by which local minima are escaped and c) prohibits revisiting of already evaluated sections.
The exploitative behavior of the algorithm determines how efficiently a local minimum is determined. Any
algorithm capable of exploiting the physicality of the problem will exhibit favorable behavior.

The inherent non-convexity of such problems renders the use of efficient gradient-based algorithms
unsuitable, since the line search component cannot escape a local minimum (Fig. 2.16, from peaks com-
mand in Matlab). The adoption of heuristic global optimization algorithms remedies this short-coming by
exploiting its exploratory component at the cost of additional function evaluations, i.e., sampling and eval-
uating the fitness function for more varied combinations of θi. The way in which θi is sampled is specific to
the flavor of global optimization algorithm utilized. Although several are employed throughout this thesis
(see sec. 6.2), here the GA is presented for brevity: Its intuitive and simple structure permits a concise
treatment, while covering most of the salient features characterizing global optimization algorithms.
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Fig. 2.16: Example of a surface with both local and global minimum.

The GA attempts to mimic natural selection to arrive at the best estimate for the design parameters.
This process is based on selection, crossover, and mutation of populations across generations (Fig. 2.17). In
a first step an initial population, i.e., a user-specified number of design variable combinations are sampled.
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To this end, a Latin hyper-cube sampling of the design variables is often selected. Next, the fitness score of
each individual of the current generation is determined by forward analysis. If any so obtained fitness score
falls below a predetermined threshold, the termination criterion is met and the best overall individual is
returned. Otherwise the individuals with the best fitness score become the parents, i.e., form the basis, for
subsequent generations. A user-specified amount of elite design variable combinations are kept, the rest
are discarded. By means of crossover, i.e., the process of creating new individuals by recombining subsets
of the parent’s design variables, and mutation, i.e., a random seed operating on each individual separately,
unique individuals are constructed until the generation limit is met. This newly constructed generation
with design variables updated with last generations elite performers, is then again evaluated for fitness,
closing the loop. It should be noted that the exploratory behavior of the GA is attributed primarily to the
mutation phase, while the crossover phase enhances the exploitative capabilities.

Initial population

Evaluate fitness

Termination
criterium

Selection of parents

Crossover

Mutation

New Generation

Yes

No

End

1 0 1 1 10 0 0 0 01 1 1
1 0 1 10 0 0 0 01 1 1
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0 0 0 1
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0 1 10 0 0
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0 0
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B
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B*
C*

1 0 1 10 0 01 0 0 01 0 1B*
1 1 1 0 00 01 0 1B’ 0 1 1

Fig. 2.17: Flowchart of the GA approach, demonstrating the steps using a binary representation of the
design variables for specific realizations thereof (A-C).

2.5.3 The Conventional Approach

In a first step, the design variables are identified. Typically, each crack is characterized in 2D applications
by four numbers (either crack tip locations or center, length and angle), and circular inclusions by three
(center and radius). Further GA specific parameters are set, e.g., amount of generations, individuals per
generation, selection-, crossover- and mutation rates, to name a few. Each of these parameters is provided
with a lower and upper bound. This is a critical step ensuring solutions fall within a feasible and mean-
ingful space. Next a translation layer is required when passing the individual design variable realizations
to the forward solver, since the design variables constitute encoded crack and inclusion information.

Since global optimization algorithms have not been proven to arrive at global minima, albeit routinely
do so in practice, the results upon analysis completion must be checked. To this end, the convergence plots
of the fittest individual per generation may be considered. If the plot has not plateaued prior to analysis
completion, the simulation should be rerun with an increased generation limit. It is prudent to plot a
handful of the best individual of the last generation in order to check if small changes in the fitness score
significantly alters the design variables, since select problems may suffer from, e.g., symmetry issues. In
any case, secondary runs with different random seeds are advisable, to check that the obtained results are
independent of the initial population choice.
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2.6 Topology Optimization

In this thesis, an effective means to accelerate TO is proposed (sec. 7). This is achieved though a drop-
in replacement for calculating the displacement field. Seeing how the underlying scheme of TO remains
unchanged in the process, this section only concerns a generic TO formulation, i.e., minimum compliance
optimization, solid isotropic material with penalization (SIMP), optimality criterion (OC) and a convolution
based filtering technique.

We consider TO with focus on compliance minimization when subjected to a volume constraint, i.e.,
maximizing the structural stiffness when only a fraction of the original volume is available [44]:

min
{x}

: c({x})= {F}T {u}= {u}T [K]{u}=
N∑

e=1
g(xe){ue}T [k0]{ue}=

N∑
e=1

Ee(xe){ue}T [k0]{ue}

subject to : V ({x})/V0 = f
: [K]{u}= {F}

: {0}< xmin < {x}≤ {1}

(2.89)

where the set of N design variables {x} spans the design domain and specifies the material distribution.
Three conditions are imposed, constraining the optimal solution. First, each element of {x}, denoted by xe,
must fall within limit values of xmin and 1, which correspond to void and solid regions respectively. Typi-
cally, xmin is chosen as a small number, 10−3, to avoid numerical singularities. Second, a user prescribed
volume fraction f follows as the ratio of current volume V ({x}) to initial volume V0. Third, the displacement
field {u}, required to compute the compliance c, follows from the solution of the forward problem in elasto-
statics. [K] denotes the corresponding stiffness matrix and {F} the load vector respectively. The compliance
can either be calculated globally or locally, as a summation of element contributions. The elemental nodal
displacements are denoted by {ue} and the corresponding stiffness matrix, calculated with Young’s modulus
equal to one, i.e., a solid element, is given as [k0]. g(xe) is a function, which typically scales [k0] accord-
ing to the specific realization of its design variable xe to account for intermediate material properties, i.e.,
Young’s modulus. In the modified SIMP approach an element’s Young’s modulus is thus given as follows,
whereby intermediate material densities are penalized:

Ee(xe)= Emin + xp
e (E0 −Emin) (2.90)

E0 is the materials initial stiffness, Emin a small stiffness denoting void, typically 10−9 assigned to mitigate
a singular stiffness matrix and p the penalization power, whose value is traditionally set as p = 3.

The conventional OC method is invoked to solve the optimization problem of Eq. 2.89. To this end, the
following heuristic updating scheme is adopted [20]:

xnew
e =


max(0, xe −m), if xeBη

e ≤ max(0, xe −m)
min(1, xe +m), if xeBη

e ≥ min(1, xe −m)
xeBη

e , otherwise

 (2.91)

where m and η= 1/2 are the positive move limit and numerical damping coefficient, respectively. Be follows
from the necessary condition of optimality, which invokes Lagrange multipliers λ to satisfy the constraints
of Eq. 2.89:

Be =
− ∂c
∂xe

λ ∂V
∂xe

(2.92)

where λ is determined by, e.g., bisection algorithm, such that the volume constraint is satisfied. Assuming
each element is of unit volume, the change in volume with respect to any element xe is ∂V /∂xe = 1. To
evaluate the sensitivity of the objective function c with respect to an element density xe, the compliance is
augmented by a zero function, pre-multiplied by an arbitrary real displacement vector Ū:

c({x})= {F}T {u}− {ū}T ([K]{u}− {F}) (2.93)
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After rearrangement the sensitivities follow as:

∂c
∂xe

= ({F}T − {ū}T [K])
∂{u}
∂xe

− {Ū}T ∂[K]
∂xe

{u}=−{ū}T ∂[K]
∂xe

{u} since ({F}T − {ū}T [K])= 0 (2.94)

given that {ū} satisfies the adjoint problem, i.e., is obtained by solving the forward problem, e.g., by FEM.
It follows by inspection of the system stiffness matrix that Eq. 2.94 may be equivalently formulated on the
element level as:

∂c
∂xe

=−pxp−1
e (E0 −Emin){ue}T [k0]{ue} (2.95)

Filtering techniques are employed to ensure the existence of a solution to Eq. 2.89. Their application prior
to the heuristic updating scheme combats checker-boarding and has empirically been shown to produce
mesh-independent designs:

∂ĉ
∂xe

= 1
max(γ, xe)

∑
i∈Ne

Hei

∑
i∈Ne

Heixi
∂c
∂xi

(2.96)

where Ni comprises the elements i within a specified filter radius rmin of the current element e. Typically,
a linear decay for the weight factor Hei is assumed such that Hei = max(0, rmin −dist(e, i)). For numerical
stability reasons, γ= 10−3 is introduced.

The above procedure is summarized in Fig. 2.18. A TO analysis starts with an initial guess for the
material distribution. Typically, the volume fraction is assigned uniformly to the domain, i.e., a fine grid
of unit sized elements. After solution of the forward problem, the compliance for this initial iteration is
computed. Then the sensitivities are evaluated for each element. Filtering is subsequently applied to avoid
mesh-dependent results and the formation of checker-boarding. Next, the optimization algorithm of choice
selects the appropriate elements to either demote/promote towards void/solid respectively. This marks the
end of an iteration. If the change in calculated compliance varies less than a user specified amount across
iterations, convergence is assumed. Ultimately, the analysis is concluded and the resulting topological
layout is visualized.

Initial guess

Forward problem

Sensitivities

Filtering

Optimization step

Design variable update

Convergence

Visualization

Analysis concluded

N

Y

Fig. 2.18: Flowchart of a typical TO analysis.

For several of these steps, alternative methods have been proposed. The following are select examples
thereof. BESO, SERA and level-set based approaches have been reported as alternatives to the SIMP,
mathematical programming techniques such as the method of moving asymptotes (MMA) and the convex
linearization method (CONLIN) as powerful replacements for the OC method, and heavy-side, partial
differential equation (PDE) and gray-scale filters as substitutes for the convolution based filters. Further



2.6. TOPOLOGY OPTIMIZATION 33

one can differentiate so-called hard vs. soft kill variants. The latter is presented in this section. There
defining characteristic comprises the inclusion of void material during analysis by severely reducing such
an element’s stiffness. This can incur severe conditioning issues accompanied by slow convergence when
employing iterative methods for the solution of the forward problem. Hard kill variants disregard void
elements during solution. Hence, the size of the stiffness matrix is varies for each iteration. Although this
may be computationally favorable, it induces issues pertaining to unconstrained substructures.





3 Discrete and Phase Field Methods for LEFM

Over the past 20 years, the XFEM, the SBFEM and most recently the Phase Field method (PFM) have
emerged as distinct methodologies with the common objective of resolving fracture propagation. In this
chapter, we provide a comparative platform for these methodologies pertinent to both the mathematical
treatment of damage evolution and the corresponding algorithmic implications within the framework of
LEFM.

LEFM methods describe damage initiation and propagation within the remit of brittle and quasi-brittle
material response. LEFM has been traditionally treated within two distinct methodological frameworks,
i.e., computational fracture mechanics [see, e.g., 18] and continuum damage mechanics [see, e.g., 216]. In
the former, damage is explicitly defined as a discrete, i.e., topological discontinuity. In the latter, damage
is effectively homogenised over a representative volume. Diffuse crack approaches effectively lie in the
boundary of the two aforementioned methods. The need to predict damage related phenomena precisely,
accurately, and economically within the context of LEFM has spurred research into an extensive suite of
alternative methodologies.

The FEM, a representative of the discrete methods class, has reached a mature development status,
effectively becoming the industry standard in numerical methods. Yet, challenges remain when character-
izing singularities or propagation due to discrete cracks. This is a direct consequence of the following, se-
lect FEM shortcomings. The first four challenges primarily originate from the discretization method itself,
while the remaining two pertain to difficulties associated with integration of LEFM into the discretization
process:

1. A conforming mesh topology is required to represent the associated crack.
2. The typical polynomial-based interpolation functions cannot reproduce the singular stress field.
3. Tracking crack paths and incorporating branching and merging behaviour is algorithmically chal-

lenging.
4. Mesh dependant projection errors arise within the context of nonlinear and dynamic analyses.
5. Nucleation, branching and merging of cracks cannot be treated in a uniform and theoretically sound

manner.
6. Calculation of the SIFs requires additional post-processing methods.

A number of techniques have been developed to tackle the aforementioned issues. First, sophisticated
remeshing algorithms [48, 56, 24] and tools [25, 112] have been introduced to model the singular stress
field. The utilization of special element types or the introduction of a fine mesh around crack tips con-
tribute to tackling this challenge. Second, specially developed quarter-point elements [32], which are placed
around the crack tip, to accurately capture the crack tip singularity. Third, diverse techniques have been
proposed to determine the fracture parameters, such as the SIFs. This includes path-independent inte-
grals [210, 116, 78, 150], the virtual crack closure technique [271, 262, 154], the hybrid-element approach
[146], and the Irwin’s crack closure integral [339]. The computational toll for such analyses is significant,
with the majority of the effort stemming from the remeshing algorithm and the need for a fine mesh in
the vicinity of the crack tip. Due to these limitations several novel numerical methods treating discrete
cracks, such as meshless methods (MM), material point methods (MPM), BEM, the extended/generalized
finite element method (XFEM/GFEM), and the SBFEM have been applied, all distancing themselves from
FEM in the way they define their support.

MM [41, 40, 184] were conceived with the aim of eliminating difficulties associated with the reliance
on a mesh. Hence, the interpolation in MMs is solely based on a set of distributed nodes, thus eliminating
FEM issues commonly associated with mesh distortion and remeshing. Crack path extensions are effort-
lessly accounted for by introducing additional nodes. However, certain drawbacks remain. The MM shape
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functions require higher order integration and the treatment of essential boundary conditions is intricate,
since the shape functions do not satisfy the Kronecker delta property. Generally, the computational toll of
MMs results higher to that of the FEM [229].

MPM [310] is an extension to Particle-In-Cell methods [76], which efficiently treat history-dependent
variables. In MPM, the continuum is represented by a set of material points that are moving within a
non-deformable (Eulerian) computational grid where, contrary to MM, solution of the governing equations
is performed. Treatment of discrete cracks is accounted for by the introduction of multiple velocity fields
[218] or more recently phase fields [349, 143, 213]. MPM has been found to offer significant computa-
tional advantages when compared to purely meshless methods since it does not require time-consuming
neighbour searching.

The BEM [192] solves initial value problems described as boundary integral equations hence reducing
dimensionality by one. This significantly reduces the complexity of mesh generation, since only the bound-
ary and the crack front need be discretised. Further, compared to the FEM, BEM can often achieve greater
accuracy, due to the nature of integrals used in the problem description. However, this is simultaneously
the source of disadvantages. This formulation results in fully populated, dense matrices necessitating tai-
lored numerical methods [269, 126] to efficiently solve the resulting discrete equations. The introduction
of IGA [139, 228] suggests profound implications on practical engineering design. The key concept entails
employing NURBS not only for the geometric representation, but also for the discretization employed in
the subsequent analysis. NURBS substitute standard FEM shape functions with the solution obtained on
their support. A hybrid isogeometric boundary element method has been proposed [171, 288, 279] coupling
many of the advantages of its parent methods. The direct adoption of the geometry representation as given
by CAD software, greatly facilitates the integration of design and analysis, since no volume parametriza-
tion is required for crack propagation. Additionally, when applied to fracture [225, 253], the delivered
higher-continuity can increase the accuracy of the stress field around the crack tip.

An effective means of tackling the issues of mesh dependency and treatment of singularities, is pro-
vided by the XFEM/GFEM [205, 304], whose use is wide spread both in academia and industry. The most
characteristic trait of this method is the use of partition of unity (PU) enrichment [27, 28, 194], to in-
corporate known features of the solution in the finite element approximation space through appropriate
enrichment functions. For fracture mechanics problems, discontinuous and singular enrichment functions
are employed locally, i.e., in the vicinity of the crack, to allow the representation of discrete cracks inde-
pendently of the underlying mesh. This in turn significantly decreases or even removes the remeshing
burden, while also increasing the accuracy with which asymptotic fields are represented. Alternatively,
the SBFEM [343] naturally incorporates the singular stress field, providing an elegant extraction of the
gSIFs in post-processing at negligible additional computational cost [296]. This is a consequence of SB-
FEM retaining an analytical solution in the radial direction, while only requiring discretization along the
tangential boundary in the standard FEM sense. However, double nodes are introduced to accommodate
strong discontinuities. This is partially mitigated due to the polytope nature of SBFEM, which only im-
poses the condition of star-convexity on elements. Exploiting balanced quadtrees as hierachial meshes in
conjunction with polygon clipping the majority of meshing effort is circumvented [238].

Alternative discrete fracture methods based on cohesive theories have been utilized to overcome stress
singularities in LEFM and to consider the nonlinear separation phenomena [18]. [31] originally introduced
the cohesive zone method (CZM) to model fracture in brittle materials. Later, [90] extended the CZM
to study yielding and plastic zone around the crack tips and [131] proposed a linear decohesion relation
between the fracture energy and the tensile strength of concrete. In cohesive fracture theory, the material is
not considered perfectly brittle as in Griffith’s theory. Rather, there is a small zone in front of the crack that
can exhibit some ductility. The fracture energy is gradually released at the crack tip based on crack opening
and equals the critical fracture energy at full crack opening. If the cohesive zone is sufficiently small,
the ductility zone becomes unimportant and the theory of LEFM can be applied. In finite element-based
methods, the CZM introduces cohesive elements at the finite element interfaces. These cohesive elements
do not have any physical meaning. Rather, cohesive traction forces occur when the material interfaces are
separated. The degradation along a discrete crack is a function of these traction forces. The traction forces
are based on the relative displacements (crack opening) at the finite element interface. Crack paths can
only evolve along the element interfaces, hence limiting the possible crack patterns that the method can
account for or necessitating the use of a very fine mesh discretization. The cohesive elements can either be
defined at the area of interest if the crack path is known a priori, e.g. from experimental observations, or at
all element interfaces. In the latter case, the computational costs are dramatically increased. Examples of
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the CZM with FEM can be found in [351] for dynamic crack propagation problems where it was shown that
crack branching emerged normally without any ad hoc branching criteria. Furthermore, [68] introduced a
cohesive zone finite element-based method for modelling of hydraulic fracture. Apart from these, cohesive
theories has also been applied to other mesh-based method e.g. the BEM for the crack growth analysis in
concrete [274]. The main disadvantage of these procedures is that the crack paths always align with the
structure mesh, rendering the resulting solution mesh dependent. A possible solution to overcome that
issue is with remeshing techniques [141, 62]. Another way to overcome this issue is with the partition of
unity methods (PUMs) introduced by [28]. A third and natural way to overcome the sensitivity of the mesh
is with particle methods. Cohesive theories with particle methods has been studies by [224] with smooth
particle hydrodynamics, [153] with reproducing kernel particle method and [300] with the element-free
Galerkin method.

Another popular PUM and a reasonable extension of CZM is the cohesive segments method (CSM)
introduced by [266], using the XFEM approach solution procedure. As mentioned earlier, CZM uses co-
hesive interface elements aligned with the finite element mesh, leading to mesh dependence during crack
propagation. CSM overcomes this limitation by introducing arbitrary cohesive segments into the finite ele-
ments that act as discontinuities in the displacement field with the PUM. The cracks are modelled as a set
of overlapping cohesive segments where their support nodes are enriched with jump and tip enrichment
functions similar to XFEM. A combination of overlapping crack cohesive segments results in a continuous
crack. [266] originally applied the CSM in quasi-static brittle fracture problems mainly focused on mode
I separation problems. Later, [267] extended the CSM in simulating dynamic crack propagation problems
where they demonstrated that the method can efficiently deal with multiple and branched cracks. Fol-
lowing the concept of CSM, various PUM with cohesive theories have been successfully introduced with
meshless methods. For instance, [30] introduced a meshless CSM for crack initiation and propagation in
composites, utilizing the reproducing kernel particle method. Similarly, a meshfree method based on the
local partition of unity for cohesive cracks was proposed by [259], using the element free Galerkin Method.

Rather than attempting to model the actual, discrete crack topology, either as a strong discontinuity in
the displacement field (e.g. XFEM) or an explicitly defined boundary (e.g. SBFEM), diffuse approximations
of cracks incorporate the effects associated with the crack formation, e.g., the stress release or the stiff-
ness degradation into the constitutive model [214]. Such approaches initiated with the pioneering work
of Rashid [264], who defined a cracking criterion for pre-stressed concrete pressure vessels on the basis
of loss of material stiffness in the direction normal to a crack as this evolves. During the past 10 years,
several methodologies pertinent to diffuse crack models emerged, such as gradient enhanced damage meth-
ods [252, 287], Thick Level Set methods [208], and Phase field methods [58]. In the taxonomy of damage
theories, diffuse crack approximations fall within the family of Continuum Damage Mechanics, where how-
ever particular treatment of strain localisation is implicitly performed. Borst and Verhoosel [54], Mandal,
Nguyen, and Heidarpour [see, also, 188] highlighted the similarities between gradient enhanced damage
methods and phase field methods. An insightful discussion on the similarities and differences between
thick level sets and phase fields is provided in [63].

PFMs for brittle fracture arose from the pioneering work of Francfort and Marigo [101], who treated
elastic fracture as an energy minimization problem within a robust variational setting. Bourdin, Franc-
fort, and Marigo [58] used the Mumford-Shah potential [16] to provide a regularization of this variational
formulation. In this, brittle fracture is numerically treated as a coupled, i.e., displacement and phase field
problem; the latter accounts for the crack interface geometry. To this point, finite element based phase
field formulations have been introduced to treat brittle/fatigue [9, 212, 10], ductile [15, 53], and hydraulic
fracture [340, 199, 129, 97, 256]. Very recently, the phase field method has been introduced within an MPM
[143, 144] and a Virtual element framework [9]. .

This thesis delivers a critical comparison among numerical methods relying on discretisation, namely
XFEM/GFEM and SBFEM, and the PFM, which belongs in the class of diffuse methods. The latter has
as of late garnered much attention, not only limited to the field of LEFM. Specifically, we compare the
potential of these methods in accurately and efficiently predicting crack propagation, paths and arrest.
Additionally, we remark on the overall computational effort involved in the analysis and the inherent
capabilities/limitations of each method within the LEFM context.
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3.1 Comparison and Discussion

This section initiates by detailing the steps involved in a crack propagation analysis, attempted by each of
the described methods. Emphasis is placed on identifying sources of computational effort, while illustrative
flowcharts are provided for each method. This visual representation of the methods then serves as a basis
for the discussion on the merits and drawbacks of each individual method within the context of LEFM.

3.1.1 Crack Propagation by XFEM/GFEM

A conceptual representation of the steps involved in a typical crack propagation analysis with the XFEM/GFEM
is provided in Fig. 3.1. As should be obvious based on sec. A.1, enriched finite element methods are essen-
tially discretisation schemes and, as such, require coupling to appropriate criteria in order to model crack
propagation. In the present case these are provided by the LEFM framework. The flowchart of Fig. 3.1
involves elastic solution steps followed by the evaluation of a crack propagation criterion. This is common
for most LEFM schemes relying on discretizstion, such as for instance FEM or SBFEM. The coupling to
further schemes for crack propagation, such as the cohesive zone model, is also possible, in which case the
steps of Fig. 3.1 would have to be modified.

The enriched finite element schemes contained within the XFEM/GFEM family of numerical methods
permit the treatment of discontinuities and singularities independently of the mesh, while preserving the
convergence rates of the underlying FE method. Hence, conventional meshers are employed, yet enriched
node and element sets need to be specified and their contributions to the equilibrium equations need to
be assembled. This, apart from introducing additional DOFs associated with the enrichment functions
(Eq. (A.6)) and potential conditioning problems, requires the use of more involved numerical integration
schemes leading to an increased computational toll. Nevertheless, these operations are only performed
on a small part of the domain, thus minimizing this additional cost. As mentioned in sec. A.1, several
techniques are available that allow to perform the required tasks in a robust and automated manner.

For the calculation of the SIFs, elements within the interaction integral domain are identified and their
contributions are assembled. A suitable crack propagation criterion is applied in order to evaluate the
propagation direction, and together with a user-specified crack propagation increment ∆a determine the
new crack tip location. Since implicit crack representation has become an almost integral part of enriched
finite element methods, the next step would involve the update of this representation. This task might
introduce additional challenges, however, significant work has been carried out in this direction, with
several methods available for tackling this issue in a simplified manner.

3.1.2 Crack Propagation by SBFEM

The crack propagation process by SBFEM, enhanced via hybrid balanced quadtree polygon meshes, re-
quires the polygon representation of domain features as input, including the crack. The points comprising
the polygons constitute the subdivision criterion for the quadtree decomposition. If more than a user-
specified number of points fall within a quadrant, this is subdivided. Together with the balancing oper-
ation, these steps entail minimal computational effort. The explicit neighbours of each cell do not need
to be calculated, but simply the size of its neighbour. This is efficiently achieved by querying the center
of each element, offsetting them by the element size in all four cardinal directions, passing them through
the tree structure, and finally returning the size of the final cell. Assuming a balanced mesh, all possi-
ble element realizations are precomputable. When the domain features, such as the boundary and strong
& weak discontinuities do not align with the Cartesian axes, polygon clipping algorithms are required.
Although efficient algorithms exist for polygon clipping, the resulting polygonal elements are no longer
precomputable and must therefore be calculated individually. In order to construct the stiffness matrix of
an SBFEM element, a Hamiltonian eigen-problem must be solved. This entails a real Schur decomposi-
tion, sorting of the eigenvalue blocks and subsequent block-diagonalization, as well as the inversion of the
matrix [E0] and the evaluation of a matrix exponential, if quantities of interest inside the SBFEM element
need be determined. For smaller elements, commonly employed on quadtree meshes, this additional step
when compared to the standard FEM procedure, does not generate a significant computational overhead.
Specifically, Ooi et al. [238] report a reduction of computational effort close to 50% on typical analysis do-
mains, when employing precomputable alongside clipped elements. When larger domains are investigated
by using a single SBFEM element for the whole domain and hp-refinement is employed, determining the
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Fig. 3.1: Steps comprising an XFEM/GFEM crack propagation analysis

stiffness matrix dominates the computational effort of the analysis. Unfortunately, the stiffness matrix is
fully populated, yet symmetric. Hence, this type of analysis is best suited for problems with small bound-
ary to domain ratios. Determining the gSIFs entails post-processing calculations localized to the element
containing the crack tip. The singular modes are identified according to Eq. (2.54) and the gSIFs are cal-
culated by evaluating the components of the stress tensor σ(s) in crack extension direction (Fig. 2.7b). The
crack propagation angle is selected based on a suitable criterion (Eq. (5.5)), while the crack propagation
increment ∆a is user specified. After definition of the updated crack tip location, the crack path polyline
is updated accordingly and provided as input to the meshing phase of the next iteration. The steps to a
standard SBFEM analysis are summarized in Fig. 3.2.
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Fig. 3.2: Steps comprising SBFEM analysis

3.1.3 Crack Propagation by PFM

In PFM fracture is not introduced as an explicit or implicit discontinuity in the displacement field. Rather,
it is associated with the evolution of a continuous field, i.e., the phase field. The governing equations of
the crack propagation problem emerge through the minimization of the total potential energy established
in Eq. (A.33), see, e.g., [58]. This gives rise to the coupled system of equilibrium and phase field govern-
ing equations established in Eqs. (A.34) and (A.35). The crack is not explicitly represented but derived
from the solution of the coupled system as the region where c = 0 (typically values of c < 10e−3). Within
the setting of an incremental solution procedure, the phase field is updated at each time step and with it
the crack topology. Nucleation, merging, branching and arrest of cracks as well as the associated crack
propagation increment is a natural byproduct of the phase field evolution. The mechanical/ phase field
coupling is enforced by introducing a material degradation function that is dependent on the phase field.
The evolution of fracture follows through the solution of this coupled strong form. Existing discontinu-
ities may be introduced into the domain by providing initial values to the phase field. Mesh density is
contingent on sufficient resolution of the fracture process zone, mandating a highly refined mesh in its
vicinity. The combination of length scale and level of mesh refinement interact and affect the estimation
of the fracture energy hence necessitating the scaling of the critical energy release rate. The numerical so-
lution of the PFM-coupled governing equations is performed using either monolithic or staggered solvers.
Monolithic solvers are typically based on the Newton-Raphson solution procedure and have been proven
to provide accurate fracture paths. However, they have been shown to suffer from poor convergence due to
the non-convex nature of the underlying energy functional [348]. Yet, the accuracy provided by monolithic
solvers renders them a favourable solution, especially in the case of dynamic fracture problems and several
attempts have been suggested in the literature to improve the robustness of monolithic procedures [see,
e.g. 109, 130, 289]. In staggered methods the displacement and phase field equations are decoupled and
solved separately within each load increment. In principle, a staggered algorithm for coupled field prob-
lems is based on freezing one field variable at a constant value, solving for the other until convergence is
achieved. The staggered approach (also known as alternate minimization approach) provides better con-
vergence rates than the monolithic due to the convexity of the energy functional (Eq. (A.33)) with respect
to the two unknown fields {u}, {φ} separately. However, its accuracy is dependent on the incremental step
unless staggered iterations are performed; these however increase the computational burden of the anal-
ysis. Very recent developments aim towards providing more robust staggered solvers, [see, e.g., 60]. The
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steps to a typical PFM solution procedure with a staggered solution scheme are summarized in Fig. 3.3.

Fig. 3.3: Steps comprising Phase field analysis

3.1.4 Contrasting Discrete and PFM Crack Representation Approaches

The merits of each method within the LEFM setting are discussed by contrasting key features and analy-
sis steps. For the discrete methods, the representation of the crack is typically available in explicit form.
Crack propagation analysis yields a polyline description of the crack topology. Since SBFEM employs poly-
gon clipping, it does not require further information. XFEM, if chosen to employ an implicit enrichment
representation, models the crack additionally by associated level sets. Crack path extraction is not neces-
sary, since it is already given as a polyline. A crack consisting of a one-segment polyline is usually provided
as input. For the PFM, the crack is represented by a scalar phase-field, with the phase-field variable di-
rectly embedded into the constitutive equations. The crack is represented as the region of fully degraded
material with c = 0. Hence, no explicit crack representation is required during the analysis, albeit readily
available in post-processing, if required. Initial defects are introduced in the system by specifying sets of
points with corresponding phase field values.

Meshing requirements for analysis by XFEM are largely decoupled due to the level set representa-
tion, yet substituted by more involved numerical integration procedures. This permits the use of a con-
stant mesh during crack propagation analysis. This is contrary to analysis by SBFEM, where the initial
quadtree decomposition, i.e., the mesh, is updated during each step incrementally. Discontinuities intro-
duced by polygon clipping result in double nodes, such that the nDOF of the system increase gradually
as the analysis proceeds. Further, in select cases, clipping can result in non star-convex elements, which
the method cannot treat. Delaunay triangulation of the element is required in such instances. Further,
due to clipping, elements with poor aspect ratios, in the conventional FEM sense, may arise. Empirically,
this does not seem to be as severe an issue manifesting itself in erroneous numerical integration results,
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when employing SBFEM. In order to adequately represent the fracture process zone, the PFM requires a
highly refined mesh in the regions of expected crack propagation as well as at the crack tip, rendering the
phase-field method computationally expensive for solving large-scale problems, especially when compared
to discrete fracture approaches. However, this computational burden is effectively addressed using par-
allel solvers, adaptive mesh refinement [52, 217], multiscale computation techniques [249] also within a
local/global solution context [111].

The methods further differ in the hyper-parameters that ought to be specified by the analyst. XFEM re-
quires the specification of crack tip enrichment type and radius, as well as the region where the interaction
integral is to be calculated. Special care must be taken to exclude blending elements from the calculation
of the SIFs, which may affect final results. SBFEM similarly requires the analyst to specify the homoge-
nization region about the crack tip. In the PFM the specification of the length scale regulates the response,
imposing guidelines on mesh discretization and scaling of the critical fracture energy.

The solution process for both XFEM and SBFEM involves a single elastic solution step. The PFM, as
previously described in sec. 3.1.3, comprises either monolithic or staggered approaches within an iterative
solution scheme. In the quasi-static regime, displacement or generalised control solution procedures are
typically employed. This however necessitates that either the Eqs. (A.34)-(A.35) must be solved with very
small time-increments (typically 10−5-10−6), or staggered iterations must be performed between both
equations to ensure energy convergence. Often both of these options lead to high computational cost.

Therefore, the corresponding load-deflection curve follows from the solution at every time step. In such
quasi-static analyses, displacement controlled analysis automatically yields the load-deflection curve along
with the softening branch. The discrete crack methods derive the load deflection curve in back-calculation.
To this end, an arbitrary loading, e.g., force or displacement based, is applied. The resulting equivalent
SIF is compared to the critical stress intensity factor. Hence, a scaling factor is derived for the loads and
displacements at which crack propagation is initiated. This implies that recovery of the linear branch is a
one-step process. Recovering an explicit linear elastic branch with the PFM requires either a linear phase
field approximation as in sec. A.2.0.4 or cubic degradation functions [53]. Absence of these approaches will
yield deviations from the linear elastic behaviour contingent on the evolution of material degradation in
the process zone. Since the overall system stiffness is underestimated, the associated displacements are
overestimated accordingly.

In the PFM a crack is never explicitly propagated, but associated with the evolution of the phase field
that emerges from the solution of the phase field governing equation. This is driven by the definition of
the crack driving force as discussed in sec. A.2.0.1. Depending on the PFM formulation employed, the
crack driving force can be established on the basis of either energy or limit-stress criteria. The discrete
crack methods, within the LEFM framework, require the calculation of the crack propagation angle and
some crack propagation increment. Examples of the later are either user specified or provided by Paris’
equation. The crack is assumed to propagate in a straight line, originating from the crack tip determined
in the previous analysis step. Hence, the history variables required are none other than the polyline for
SBFEM, while XFEM propagates the associated level sets as well. PFM require updating the scalar phase
field and specific realization of the PFM require further history variables to impose the crack-irreversibility
condition, preventing the crack from healing during cyclic loading.

The fact that the solution of the phase field governing equations emerge from an energy minimization
problem, opposite to discrete fracture approaches, enables the resolution of crack initiation without the
requirement for a crack path to be defined a priori. Furthermore, crack nucleation, growth and coalescence
happen automatically; this results in a robust method with enormous flexibility to model complex cracking
patterns including the simulation of curvillinear cracks, crack merging, and crack branching without the
need for ad-hoc crack tracking methods. Finally, the method is naturally extended to 3D [52], considering
also the case of fracture under multi-physics scenaria, e.g., temperature induced fracture [201, 156] and
hydraulic fracturing [230, 97, 199, 340, 363]. These advantages, render the phase-field approach a robust
crack prediction method. Compared to discrete fracture approaches, the variational structure upon which
the phase field theory emerges, equips it with significant capabilities for modelling diverse and complex
fracture problems in a unified and consistent manner.

The major advantage of the diffuse crack methods and the PFM specifically lies in their generality. Ex-
tending the discrete crack methods to exhibit similar capabilities involves significant algorithmic changes,
as these codes are custom and not readily extendable to further types of analysis. Furthermore, extension
to 3D problems is not straightforward, in addition, the definition of crack propagation increment in 3D is
difficult to specify. Further, judging if a crack arrests or the method simply does not permit continuation
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across obstacles, requires expert knowledge.

3.2 Numerical Examples

In this section, four numerical examples are presented, allowing for a comparison in terms of the model-
ing capabilities of the investigated methods. The first two examples consider a square plate, first under
tension, then under shear loading, with both setups having been studied extensively in existing literature.
Although analytical solutions for these two setups do not exists, the geometry can be modelled by one SB-
FEM subdomain and therefore a high-fidelity reference solution can be constructed for the peak load and
displacements following the first crack increment. For the last two examples, the notched plate with hole
and L-shaped panel, respectively, there exist experimentally obtained crack paths to compare against. Fur-
ther, the test setups closely mimic crack propagation scenarios under real world conditions. For the former
numerical example, modelling the complete crack path by discrete crack methods is particularly challeng-
ing, since they do not provide the capability to nucleate cracks. The later numerical example presents a
similar issue, however, modelling by discrete crack methods is achieved by placing the crack tip at the
re-entrant corner, effectively circumventing the nucleation issue manually. To this end, we first outline the
implementation details adopted for each numerical method, then proceed to the numerical examples.

3.2.1 Implemented Variants

For the numerical examples presented in this section, the standard XFEM with shifted enrichment func-
tions is employed. The enrichment radius assumes a value equal to re = 3.5h, with h denoting the element
size, while the radius used for the interaction integral is rd = 1.5h. Element partitioning and almost polar
integration are employed for the integration of jump and tip enriched elements respectively. Finally, levels
sets are updated using the φψrθ method from the work of Duflot [89].

The specific realization of SBFEM employed in the presented examples is based on balanced hybrid-
polygon quadtrees, unless otherwise explicitly stated, and thus discretises the boundary with linear line
elements. The Gauss-Lobotto integration scheme is employed, to offset computational effort for the numer-
ical examples where hp-refinement is introduced (sec. 3.2.2). Decoupling of the linear system of ordinary
differential equations (Eq. (2.47)) is performed by block diagonal Schur decomposition. The gSIFs are esti-
mated by means of the spline fitting approach. For the case of the tension test, the domain is approximated
via use of a single subdomain with hp-refinement on the boundary to produce gSIFs of highest possible ac-
curacy. Results obtained by this variant are termed SBFEM hi-fi, acknowledging the high fidelity solutions
they produce [74].

For the PF-FEM case, 4-noded quadrilateral plane strain/stress elements with bilinear basis functions
and based on a full integration technique have been adopted for the presented analysis. A displacement-
controlled nonlinear static analysis scheme is utilized with constant displacement increments. Displace-
ment is monitored and controlled at any single node on the loading edge, to which all other nodes on the
edge are kinematically coupled in the direction of loading. Unless explicitly stated, the solution is im-
plemented within a stagger phase-field solution algorithm with a single prediction step (Nstaggs = 1) and
tolu = 10−5.

3.2.2 Single Edge–notched Tension Test

This example considers mode-I fracture behavior of a square panel, with geometric description of the do-
main, boundary conditions and material parameters as defined in Fig. 3.4. A state of plane strain is
assumed, the specimen thickness is t = 1 mm. The Young’s modulus, Poisson’s ratio, length scale, fracture
energy density and crack propagation length are chosen as E = 210 kN/mm2, v = 0.30, l0 = 0.0075 mm,
Gc = 0.0027 kN/mm and a = 0.02 mm, where applicable. The bottom edge of the specimen is clamped in
both x and y directions, such that ux = 0;uy = 0. The loading and constraining of the top edge by dis-
crete and PFM is enforced differently, yet with equivalent outcome: For XFEM and SBFEM a prescribed
displacement of u = uy ≥ 0 is imposed on the top edge, while for PFM, a quasi-static displacement con-
trol analysis procedure is implemented considering a concentrated load applied at point C and kinematic
coupling of the vertical displacement DOF along the top edge, such that u = uy ≥ 0 is obtained.
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Fig. 3.4: Tension test geometry, material parameters, loading and boundary conditions.

The analysis procedures for each approach as described in sec. 3.2.1 apply. Two different solution
procedures based on standard and cohesive phase field approaches, as described in secs. A.2.0.7 and A.2.0.8
respectively, are studied within this example.

The nucleation and propagation of the crack at successive time-increments is shown in Fig. 3.5. The
nucleation of the crack automatically occurs at the notch-tip, and then this propagates linearly in the
direction perpendicular to the applied load. It is known that the value of the length scale parameter
lo not only controls the width of the phase field diffusion zone, but also affects the peak fracture force
values. This is illustrated in Fig. 3.6 and Fig. 3.8, where a decreasing the value of lo leads to sharper
crack topologies and higher peak fracture forces, thus showcasing a more brittle-like fracture behaviour.
It can be inferred from Fig. 3.8 that if lo is chosen sufficiently small, i.e., in the limit lo → 0, the force-
displacement curves converge towards Griffith’s description of brittle fracture; a property well-known as
Γ-convergence of regularized phase field fractures. However, an important point to note is that a formal
proof of Γ-convergence of anisotropic strain-energy splits (detailed in [198] and [17]) towards Griffith’s
theory isn’t available yet, as also stated in [348].

Fig. 3.5: Tension test phase field evolution for u=0.0057 mm (left), u=0.00585 mm (center) and u=0.00595
mm (right), with displacement increment ∆u = 1e−6 mm.

It is evident from Fig. 3.7 that both discrete crack methods, i.e., XFEM/SBFEM, predict similar fracture
characteristics, whereas the critical fracture force obtained from phase-field method is slightly overesti-
mated when the actual value of Gactual

c = 0.0027 kN/mm is used. Considering h = 0.005 mm and l0 = 0.0075
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Fig. 3.6: Tension test comparison of phase field diffusion widths employing lo=0.015mm (right),
lo=0.0075mm (center), lo=0.00375mm (left).

mm which have been used for the current analysis, an effective fracture energy Ge f f
c = 0.00231 kN/mm can

be calculated based on Eq. (A.48). The critical fracture load thus obtained using Ge f f
c shows very good

agreement with those predicted by discrete methods XFEM/SBFEM. The difference in the elastic stiffness
of the material between XFEM/SBFEM and PF-FEM cases is due the fact that in conventional PF-FEM
formulations, as in [58], the phase-field variable evolution and consequently stress degradation start as
soon as the material is loaded and hence, prevents recovery of a pure linear elastic limit. The crack paths,
however, coalign as expected, although for the PF-FEM the resulting displacements are over-estimated as
the fracture must initiate at the same critical load for a given value of Gc. An alternate approach, which
is highly effective in determining accurate gSIFs [74], may be applied when the domain is star convex
with regards to the crack tip, and is introduced here as a high fidelity reference solution (SBFEM hi-fi).
Although by hp-refinement on the boundary, the gSIFs are accurately determined utilizing only few DOFs,
and thus minimal computational resources, this approach is only applicable to crack propagation in select
few cases, such as in this symmetric tension test, where the crack path remains straight. Fig. 3.7 demon-
strates that the standard SBFEM and XFEM implementations match the deflections and peak load, while
the phase field method with Ge f f

c approximates only the peak load closely. The SIFs obtained by discrete
crack methods coincide to the fourth significant figure.
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Fig. 3.7: Tension test load-deflection curves.

For comparison, the tension test is also performed using the cohesive phase field method shown in
Eq. (A.55). The fracture response in this case depends on the shape parameter p, which controls the shape
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of cohesive stress-crack opening curve. Increasing the value of p enables faster degradation of stresses as
soon as the critical stress limit is reached, however, too large p may lead to poor convergence. Fig. 3.9 shows
the dependence of load-displacement responses and critical loads on the choice of shape parameter p. A
cohesive phase-field model is highly useful when the size of fracture process zone (FPZ) is large enough, and
the Griffith’s description of purely brittle fracture becomes inadequate [107]. In such cases, the numerical
phase-field model can be calibrated with the specific material responses by making an optimal choice for
the parameter p.
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Fig. 3.8: Tension test effect of length-scale parameter variation on load displacement curves.
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Fig. 3.9: Tension test with cohesive phase field formulation studying effect of shape parameter p on the
peak fracture loads, while l0 = 0.0075 mm is kept constant.

3.2.3 Single Edge–notched Shear Test

In the present example, mode-II fracture behavior of a square panel is examined, with geometric descrip-
tion of the domain and boundary conditions as shown in Fig. 3.10a. This is a standard benchmark test to
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evaluate damage characteristics under shear loads, and has been analyzed extensively in the literature,
see for e.g., [198, 52]. The specimen thickness is t = 1 mm and a state of plane-strain is assumed. The mate-
rial parameters are chosen as E = 210 kN/mm2, v = 0.30, l0 = 0.0075 mm, Gc = 0.0027 kN/mm and a = 0.02
mm, in accordance with [198]. Zero y-displacement boundary conditions are enforced (uy = 0, Fig. 3.10a)
on all outer edges of the plate. Furthermore, the bottom edge of the specimen is retrained in the horizontal
direction (ux = 0). For the discrete crack methods, a horizontal displacement u = ux ≥ 0 is imposed on the
top edge of the specimen, while the PFM applies a concentrated load P at point C, kinematically couples
the horizontal DOF on the top edge and solves enforcing quasi static displacement control. The second
order quadratic phase field formulation described in sec. A.2.0.2 is employed in this example. The analysis
procedures for each approach are as described in sec. 3.2.1.
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(a) Shear test geometry, material parameters, loading
and boundary conditions.

(b) Shear test crack-paths obtained from SBFEM,
XFEM and PFM based crack propagation analysis.

Fig. 3.10: Shear test description and resulting crack paths.

The shear test results in a biaxial stress state developed at the notch-tip which leads to an inclined
crack propagation at an angle 45o to the horizontal. Fig. 3.11 depicts various stages of evolution of the
phase field variable for the shear fracture case.

Fig. 3.11: Shear test phase field evolution at u = 0.009 mm (left), u = 0.011 mm (center) and u = 0.013mm
(right), with displacement increment ∆u = 1e−6 mm.

The crack paths are closely aligned (Fig. 3.10b), however, the origin of the discontinuity differs slightly
between the PFM and the discrete crack methods, resulting in a slight differentiation of the crack paths
upon crack propagation. Such behavior is a consequence of the discrete crack methods mandating the crack
propagate starting from the proceeding crack tip, whereas the PFM permits the evolution along the notch.
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Further discrepancy is also observed in the significantly differentiated behavior of the associated load-
deflection curve. The higher peak load obtained by discrete crack methods and the snap back behavior is
not mirrored in the PFM result. Contrary to the discrete methods where equilibrium path is derived from
sequential linear solutions, PFM relies on incremental iterative solvers; hence the snap back response
would not be captured with a displacement control nonlinear analysis procedure; rather, a generalized,
e.g., arc-length, analysis is required. Even though the PFM results shown in Fig. 3.10b are identical to the
results provided in the literature [see, e.g., 198, 13], the 8% difference in the peak load compared to discrete
methods highlights the importance of the length scale parameter on the solution. The effect of the length
scale l0 on the crack topology and the peak fracture loads is shown in Figs. 3.12 and 3.13b, respectively.
It can be noted that the shear crack paths and load-displacement curves show a similar trend as already
seen in sec. 3.2.2, wherein decreasing l0 leads to sharper and more brittle cracks with higher peak fracture
forces which converge to the discrete fracture solution.

Fig. 3.12: Shear test comparison of phase field diffusion widths with respect to decreasing lo, where
lo=0.015mm (left), lo=0.0075mm (center) and lo=0.00375mm (right).
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(a) Load-deflection curves of the shear test.
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(b) Shear test effect of length-scale parameter lo vari-
ation on load displacement curves.

Fig. 3.13: Shear test load deflection curves.

3.2.4 Notched Plate with Hole (NPwH)

A notched plate containing a hole is considered with geometric description of the domain, boundary condi-
tions and material parameters as defined in Fig. 3.14. In [14, 143], a similar example has been analyzed
previously. The specimen thickness is t = 15 mm and a state of plane-stress is treated. The Young’s mod-
ulus, Poisson’s ratio, length scale, fracture energy density and crack propagation length are chosen as
E = 5.98 kN/mm2, v = 0.221, l0 = 0.35 mm, Gc = 0.00228 kN/mm and a = 2 mm, where applicable. A zero
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displacement boundary condition (ux = 0;uy = 0) is enforced on the bottom pin, whereas a vertical dis-
placement u = uy ≥ 0 is imposed on the top pin. The analysis procedures for each approach as described in
sec. 3.2.1 apply. The numerically predicted crack path is compared with the experimental results presented
in [13].
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Fig. 3.14: NPwH geometry, material parameters, loading and boundary conditions.

For the PF-FEM case, a comparison is made (see also [143]) for the influence of the number of stag-
gered phase field iterations on the accuracy of the predicted peak fracture loads. Four different cases with
constant displacement increments ∆u = 10−2, ∆u = 5 ·10−3 mm, ∆u = 10−3 mm and ∆u = 5 ·10−4 mm are
considered in Fig. 3.15 (left). In all cases, the phase-field solution is predicted with a single staggered iter-
ation step Nstaggs = 1 and a tolerance of tolu = 10−5 is maintained. It can be seen that solution accuracy
improves when the size of displacement increments ∆u is sufficiently small, and convergence is achieved
for ∆u = 1 ·10−3mm. Further reduction of ∆u marginally affects the results at the cost of increased num-
ber of calculations, with ∆u = 5 ·10−4 mm and ∆u = 1 ·10−3mm yielding almost similar load-displacement
curves.
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Fig. 3.15: NPwH PFM force displacement response illustrating the dependence of peak fracture force on ∆u
for Nstaggs=1 (left) with further investigation of the ∆u=5e-3mm case subject to Nstaggs=1 and staggered
iterations until convergence (right).

Fig. 3.15 (right) compares the converged solution of Fig. 3.15 (left) with the ∆u = 5 ·10−3mm case based
on a) single staggered iteration Nstaggs = 1 and, b) staggered iteration performed until the phase field
solution converges. It is evident that the peak fracture loads obtained in converged staggered iteration
case is lower as compared to the Nstaggs = 1 case, and are actually closer to the converged solution shown
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in Fig. 3.15 (left). Fig. 3.16 represent the evolution of phase field at successive displacements u = 0.35
mm, u = 0.96 mm and u = 1.20 mm respectively, obtained using single staggered iteration Nstaggs = 1 and
constant displacement increment ∆u = 10−3 mm. The crack paths obtained from phase field calculations
(Fig. 3.17) show good agreement with the experimental fracture results presented from [13]. Comparing
PFM to discrete crack methods, the obtained peak load is similar (Fig. 3.18), however, the crack paths
differ significantly (Figs. 3.19 and 3.20). Since the discrete methods do not possess an intrinsic method to
nucleate cracks, once the crack tip has propagated into the hole, the algorithm terminates. This is appar-
ent, since both XFEM and SBFEM report a final vertical displacement of approximately 0.33 mm. Due
to this inherent limitation, expert judgment is required to interpret crack propagation results stemming
from discrete crack methods as their termination is indistinguishable from crack arrest, when inspecting
conventional results. The phase field methods circumvent these issues resulting in a highly flexible and
generalized method, at the cost of significantly increased computational effort.

Fig. 3.16: NPwH phase field analysis for time step u=0.35 mm, u=0.96 mm and u=1.20 mm (left to right),
with displacement increment ∆u = 1e−3 mm and 1 stagger iteration.

Fig. 3.17: NPwH comparison of crack topologies depicting experiments from [14] on the left vs. phase field
simulations on the right.
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Fig. 3.18: NPwH load-deflection curves.

Furthermore, the analysis has been conducted using two different anisotropic strain energy splits
widely used within the phase field literature (Fig. 3.21):

1. Spectral decomposition of strains proposed in [198]
2. Volumetric Deviatoric strain split proposed in [17]

The crack path predicted via the spectral strain decomposition [198] appears closer to the experimen-
tally observed crack than the volumetric-deviatoric strain split [17] (Fig. 3.21 (a)-(b)). These minor differ-
ences are also reflected to the equilibrium paths shown in Fig. 3.21c. Since, contrary to the spectral strain
decomposition split, the volumetric-deviatoric split only partially prohibits degradation due to purely com-
pressive stresses, a higher amount of material is overall degraded in the latter case; hence the peak force is
indeed expected to be lower. However, the spectral strain decomposition leads to a highly nonlinear formu-
lation and therefore increased computational costs - see also [13] for a hybrid procedure to alleviate these.
This highlights the significance of choosing the appropriate split and hence the level of expert judgment
required when employing PFM for LEFM.

Fig. 3.19: NPwH meshes for SBFEM (top) and XFEM (bottom), with focus on crack path region.
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Fig. 3.20: NPwH crack-paths obtained from SBFEM, XFEM and PFM based crack propagation analysis.

(a) Crack path from
analysis implementing
the anisotropic split
proposed in [198].

(b) Crack path from
analysis implementing
the anisotropic split
proposed [17]
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(c) Force-displacement response comparison between the anisotropic
phase field models.

Fig. 3.21: NPwH comparison between anisotropic phase field models with strain energy splits proposed in
[198] and [17].
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3.2.5 L-shaped Panel (LSP) Test with Crack at Re-entrant Corner

Fig. 3.22 (left) depicts the geometric description of the domain, boundary conditions and material parame-
ters for an L-shaped panel. A state of plane stress is considered with specimen thickness t = 100 mm. The
Young’s modulus, Poisson’s ratio, length scale, fracture energy density and crack propagation length are
chosen as E = 5.98 kN/mm2, v = 0.2, l0 = 2.5 mm, Gc = 0.0089 kN/mm and a = 10 mm, where applicable. A
zero displacement boundary condition (ux = 0;uy = 0) is enforced on the bottom side, while a cyclic imposed
displacement envelope is considered at a distance dl = 30 mm from the rightmost edge of the panel with a
constant displacement increment ∆u = 10−3 mm and the load history as shown in Fig. 3.22 (left).
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Fig. 3.22: LSP geometry, material parameters, loading and boundary conditions (left) with corresponding
loading scheme (right).

(a) LSP crack paths for SBFEM, XFEM and PFM.
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(b) LSP load-deflection curves.

Fig. 3.23: LSP crack paths with corresponding load-deflection curves.

The analysis procedures described in sec. 3.2.1 for each method apply. Through this application, we
simulate the experimental program undertaken in [341] which has also been investigated in previous pub-
lications pertinent to computational fracture mechanics (see, e.g., [13]). Since the discrete crack methods
do not intrinsically posses the capability to avoid crack over-closure and interpenetration, without intro-
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ducing contact, the numerical simulations employing XFEM and SBFEM follow a modified loading path
(3.22 right) starting from time step 1000.

The crack path obtained in Fig. 3.24 coincides with the experimentally observed crack in [341], where
all methods remain within the envelope of the experimental results (Fig. 3.23a). Moreover, the load-
displacement curve and the peak fracture force (Fig. 3.23b) is in accordance with existing literature [13]
(See also [143]) and all methods report similar results. For the case of SBFEM, the crack tip does not
coincide with the re-entrant corner, since the implementation requires the crack tip to reside within the
domain and not on the boundary. Hence, the crack tip was perturbed by a small value and thus the peak
load is slightly overestimated. Furthermore, a comparison is drawn between the load-displacement curves
obtained using spectral strain decomposition in [198] and the constrained hybrid phase field model pro-
posed in [13]. From Fig. 3.25c it is noted that the anisotropic spectral split [198] naturally avoids crack
face overlapping during crack closure when cyclic loads are considered. On the other hand, the hybrid
phase-field model in [13] requires an additional constraint to prohibit interpenetration of crack faces dur-
ing compression phases.
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Fig. 3.24: LSP crack topology and constitutive force-displacement response under cyclic loading defined in
Fig. 3.22 (right).
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Fig. 3.25: LSP comparison of load-displacement curves implementing the anisotropic spectral split vs.
hybrid phase field models.
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3.2.6 Plate with Two Holes and Edge Cracks (PwHC)

The case of the plate shown in Fig. 3.26 is considered here. This numerical example is studied, since it
poses challenges for both diffuse and discrete methods as discussed in [348]. The boundary conditions and
material parameters are also shown in Fig. 3.26 according to [56].

A state of plane strain is considered. The Young’s modulus, Poisson’s ratio, length scale, fracture energy
density and crack propagation length are E = 210 kN/mm2, v = 0.3, l0 = 0.1 mm, Gc = 1.0 N/mm, hPFM ≈
0.06 mm, and ∆a ≤ 1 mm, where applicable. Furthermore, for the phase-field analysis, a volumetric-
deviatoric strain decomposition (similar to Amor, Marigo, and Maurini [17]) is employed. The bottom edge
of the plate is clamped, while on the top edge a prescribed displacement is applied in the vertical direction
and displacements in the horizontal direction are prohibited (ux = 0;uy > 0). The specimen thickness is
t = 1 mm.
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Fig. 3.26: PwHC geometry, material parameters, loading and boundary conditions.

In the presence of multiple cracks inside a domain, methods employing discrete crack representations
typically implement a stability analysis [61] to ascertain the propagating cracks at each step. However,
in this specific case, this involved procedure can be circumvented, due to the symmetric test setup. Nev-
ertheless, the naive approach of simply running the analysis will result in an undesirable outcome, since
slight numerical imbalances can result in asymmetric and erroneous results. To counteract these effects,
symmetric meshes are employed in the XFEM analysis, while the SBFEM analysis enforces symmetric
gSIFs about the diagonal. An average of the gSIFs is calculated to determine the crack propagation angle.

Solving this example using the PFM produces interesting characteristics with respect to the crack ini-
tiation location and crack-paths. It is observed that when there is no restriction imposed on the crack from
initiating near the holes, the phase-field variable (or crack) initiates simultaneously and symmetrically at
the top and bottom hole edges and propagates almost horizontally as if no notches were present in the
structure (Fig. 3.27). However, when the crack evolution is restricted near the hole boundary (by imposing
a very high Gc in the surrounding region), the crack initiates at both notch tips and propagates towards
the hole edges simultaneously (Fig. 3.28a). Further loading leads to evolution of multiple cracks initiating
at the edges of holes which ultimately merge in the centre of the structure (Fig. 3.28c). This observation is
similar to what has been previously reported in [348]. However in the absence of experimental results for
this problem, it is currently difficult to deduce which method predicts a realistic crack pattern. Hence, we
refrain from reporting the typical load-deflection curves and focus only on the crack paths.

Since the crack paths derived from XFEM/SBFEM have been shown to coincide very well when em-
ploying similar discretization levels and crack propagation increments, modified mesh discretizations and
crack propagation increments are sampled (Fig. 3.29). The crack paths for all three variants align very well
for the initial portion, while separating slightly as they approach the holes due to the crack propagation
increment and mesh density variations.
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(a) Cracks initiating at the holes. (b) Growth of cracks originating from the holes.

(c) Additional cracks nucleate at the holes. (d) Nucleated cracks reach the domain boundary.

Fig. 3.27: PFM crack path without restricting nucleation at the holes.

(a) Crack growth at the notches. (b) Crack nucleation and growth at the holes.

(c) Joining of nucleated cracks at the holes. (d) Merging of notch and hole cracks.

Fig. 3.28: PFM crack path when restricting the nucleation at the holes.
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XFEM ∆a = 0.50 mm
SBFEM ∆a = 1.0 mm

(a) Prior to crack nucleation at the holes.

PFM
XFEM ∆a = 0.25 mm
XFEM ∆a = 0.50 mm
SBFEM ∆a = 1.0 mm

PFM
XFEM ∆a = 0.25 mm
XFEM ∆a = 0.50 mm
SBFEM ∆a = 1.0 mm

(b) After crack merging.

Fig. 3.29: Crack path overlay for three variants: XFEM employing a fine mesh with ∆a = 0.25 mm (pink),
a coarse mesh with ∆a = 0.50 mm (green) and SBFEM employing an adaptive mesh with ∆a = 1.00 mm
(orange).
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4 Adopting the Hamiltonian Schur
Decomposition

A blocked Hamiltonian Schur decomposition is herein proposed for the solution process of the SBFEM,
which is demonstrated to comprise a robust simulation tool for LEFM problems. By maintaining Hamil-
tonian symmetry increased accuracy is achieved, resulting in higher rates of convergence and reduced
computational toll, while the former need for adoption of a stabilizing parameter and, inevitably user-
supervision, is alleviated.

The method is further enhanced via adoption of superconvergent patch recovery theory in the formu-
lation of the stress intensity factors. It is shown that in doing so, superconvergence, and in select cases
ultraconvergence, is succeeded in the SIFs calculation. Based on these findings, a novel error estimator for
the stress intensity factors within the context of SBFEM is proposed.

To investigate and assess the performance of SBFEM in the context of linear elastic fracture mechanics,
the method is contrasted against the FEM and the XFEM variants. The comparison, carried out in terms
of computational toll and accuracy for a number of applications, reveals SBFEM as a highly performant
method.

The two conventional approaches to solving the SBFEM’s underlying eigen-rpoblem are the eigen-
decomposition and the Schur decomposition. In the case of the eigen-decomposition, early strategies to
compensate for the numerical issues arising from its use include:

1. Minimizing the condition number by

• Preconditioning coefficient matrices [169]
• Normalizing domain properties [344]

2. Addition of a mesh and platform dependent stabilizing parameter ε to [E2]. The optimal value of this
parameter is unknown a priori ([344], [180]). This corresponds to physically adding small springs to
the boundary.

However, these are demonstrated to be insufficient. Employing a Schur decomposition effectively alleviates
numerical issues. Unfortunately, due to the linearization of the underlying quadratic eigen-problem, one
still must solve a system with double as many unknowns than DOF. With the adoption of the HSchur,
which exploits symmetry during the solution process, this doubling is reversed.

4.1 Stress Recovery to Enhance the gSIFs and Introduce an Error Estimator

What sets SBFEM apart from other numerical methods is how elegantly highly accurate SIFs may be
obtained. The standard solution procedure by default accommodates cracks. Values for the SIFs can
easily be extracted during post-processing of the stresses with only negligible additional computational
effort. This is a consequence of the analytical solution in radial direction. If the scaling center is placed
at the crack tip, an analytical solution for the strains and therefore additionally the stresses in radial
direction may be computed. The SIFs can be determined by evaluating the limit of the stresses as ξ→ 0.
After substituting the general solution for displacements into the definition of the stresses (Eq. 2.22), the
stresses for any particular element can be obtained as a superposition of stress modes:

σ(ξ,η)=
n∑

i=1
ciξ

−λi−1Γi (4.1)
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Fig. 4.1: Cracked SBFEM domain with crack tip location coinciding with scaling center. Additionally, the
DOFs of the two element used to compute the SIFs are identified.

with Γi representing the associated stress modes.

Γi =

Γxx
Γyy
Γxy


i

= [D](−λi[B1(η)]+ [B2(η)]){Φi} (4.2)

The contribution of each mode to the stress response is illustrated in Fig. 4.2. Only the modes corre-
sponding to eigenvalues within the range −1 < λ < 0 contribute to the singular response at the crack tip
(ξ = 0). Consequently, for the purpose of determining the SIFs, all other modes can be discarded. In 2D
elastostatics, only two eigenvalues and thus modes in the aforementioned range exist. As each element
contains these singular modes, theoretically the SIFs could be extracted from any element in the domain.
Here, the elements lying directly along the crack path extension (Fig. 4.1, point A) are chosen. Once the
singular modes have been identified, corresponding stresses can be theoretically computed using values
from anywhere within the bounded domain 0< ξ< 1. Due to numerical concerns, the singular stresses are
evaluated at the boundary (ξ= 1) and consequently the power expression for ξ in Eq. 4.1 is reduced to 1.
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Fig. 4.2: Contribution of eigenvalues to the stress solution, reaffirming that −1<λ< 0 leads to singularities
as ξ→ 0.

Since the singular components of the stresses can be derived analytically, these can be matched directly
to the definition of the SIFs. The integration constants ci correct for the boundary conditions. L0 is then
defined as the distance from the crack tip to the location of the evaluated stresses. Thus, the mode I and
mode II SIFs assume the following form:{

K I
K I I

}
=

√
2πL0

{∑
i=I,I I ciΓyy(η= ηA)i∑
i=I,I I ciΓxy(η= ηA)i

}
(4.3)
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The stress modes Γi need only be evaluated at one specific point (−1< η= ηA < 1) along the element. In or-
der to accomplish this, the correct submatrix φi must be identified. This consists in finding the eigenvector
linked to the singular eigenvalue, as well as identifying the rows representing the DOFs of the correspond-
ing element on the boundary. Their intersection (Fig. 4.3) marks the relevant data for the calculation of
the SIF modes. Consequently, the calculation of the SIFs requires only minimal computational effort.
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Fig. 4.3: Singular displacement modes as columns and associated DOFs in rows of a representative element
on the boundary. The dark gray intersection signifies the submatrix φi required in order to compute the
SIFs.

Since the SIFs are determined solely on the basis of calculated stresses, they can be easily inferred.
Should the crack extension fall directly between two elements, different stresses are calculated for each
element at the respective node A (Fig. 4.4). Trivial averaging of the stresses is an option, but not necessarily
the best one. Thus, in this work, a novel application of SPR theory to SIFs is proposed, resulting in
superconvergent and in select cases ultraconvergent convergence rates for the SIFs. This extends previous
work by Deeks [83].

Recovered stresses are gained by least squares fit of the raw stresses sampled at the Gauss integration
points over a patch of two elements. For the case of enhancing SIFs, the two elements are proposed to
coincide with those in the direction of crack extension. Based on [83] and [342] the fitted recovered stresses
are calculated as:

σrec(η)= {P}{a} (4.4)

where −1 < η < 3 (Fig. 4.4) and for this specific application η = 1, i.e., point A. {P} is a vector of powers of
η and {a} is a vector of undetermined coefficients ai. The vector of raw stresses computed at the Gauss
integration points is denoted by {σraw}.

{P}=



η0

η1

...
ηi

...
ηn



T

, {a}=



a1
a2
...

ai
...

an


, {σraw}=



σraw
1

σraw
2
...

σraw
i
...

σraw
n


(4.5)

where n denotes the amount of Gauss integration points present in the patch. The vector of unknown
coefficients {a} can be determined by evaluating vector {P} at each Gauss integration point, and adding its
contribution to matrix [P̄].

[P̄]=



η0
1 η2

1 . . . ηi
1 . . . ηn

1
η0

2 η2
2 . . . ηi

2 . . . ηn
2

...
...

. . .
...

. . .
...

η0
i η2

i . . . ηi
i . . . ηn

i
...

...
. . .

...
. . .

...
η0

n η2
n . . . ηi

n . . . ηn
n


(4.6)
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The least squares problem can then be formulated as:

[P̄]({σraw}− [P̄]{a})= 0 (4.7)

Subsequently, the vector of unknown coefficients is determined as:

{a}= ([P̄]T [P̄])−1[P̄]T {σraw} (4.8)

Thus, recovered stresses in the direction of crack extension are determined by substituting η= ηA (Fig. 4.4,
point A) into Eq. 4.4. These stresses are indirectly recovered, by smoothing the stress modes Γi (Eq. 4.2),
which in turn rely on the displacement modes [Φi]. Since only two displacement modes contribute to
the singular response, only a small subset of the eigenmodes resulting from the SBFEM solution must
be smoothed. This is the first means used to reduce the computational effort for determining the SIFs.
Further, since only one patch in direction of crack extension is considered, recovery over only two elements,
again a small subset of the whole domain, is necessary. It is assumed that this trade off in potential
accuracy is offset by the gain in computational speed. This is later demonstrated to hold true in sec. 4.2.
Consequently, Eq. 4.1 may be rewritten as:

σs(ξ,η)=
2∑

i=1
ciξ

−λi−1Γs
p (4.9)

in which superscript s denotes the singular modes and subscript p corresponds to the stress modes smoothed
on the patch in direction of crack extension. Since the stresses are evaluated at the boundary, ξ = 1 and
Eq. 4.9 simplifies to the extent that the SIFs can now be formulated as:{

K rec
I

K rec
I I

}
=

√
2πL0

{∑2
i=1 ciΓ

s
p,yy(η= ηA)∑2

i=1 ciΓ
s
p,xy(η= ηA)

}
(4.10)

Finally, it stands by virtue of the SPR theory, that the so-recovered SIFs should be at least supercon-
vergent.

Based on the difference in raw and recovered stresses, a novel error estimator accompanying the pro-
posed recovery scheme for SIFs can be deduced.

{e∗σ(ξ,η)}= {σ∗(ξ,η)}− {σh(ξ,η)} (4.11)

where superscript * denotes the recovered value and subscript h denotes the raw value of the stress calcu-
lated in direction of crack extension. By consequence, obtaining the error estimator is rendered computa-
tionally inexpensive.

η

Γi

Aelement 1 element 2
node
integration point

raw stresses
recovererd stresses

Fig. 4.4: Stress recovery based on SPR. A least square fit is constructed for the stresses in point A, based
on values computed at the Gaussian integration points.

4.2 Numerical Examples

The first numerical example illustrates the benefits to the overall robustness of the proposed SBFEM so-
lution, incorporating the HSchur decomposition, versus the established eigen and standard Schur decom-
position. This novel contribution alleviates the need for an architecture-dependent stabilizing parameter
ε. The second numerical example demonstrates the consequently improved convergence behavior of the
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L2 displacement and stress norms. Additionally, an efficient procedure is proposed to enhance the accu-
racy of the calculated SIFs. According to the latter, only local stress recovery over select few elements is
performed on the boundary instead of over the whole domain, simultaneously resulting in significantly re-
duced computational effort. Further, it is established that the SIFs calculated by the proposed method are
superconvergent for even-noded elements or even ultraconvergent for some odd-noded cases. This forms
the basis for a novel error estimator for SIFs. As part of the third numerical example, the computational
effort for an SBFEM solution is contrasted to that of FEM, based on an approximate flop count, which is
demonstrated for the first time herein. Additionally, the enhancement in accuracy for the proposed local
recovery of the stresses compared to adoption of trivial averaging of raw stresses at nodes is demonstrated.
Next, SBFEM is directly contrasted to XFEM and the FE-based commercial software Abaqus in terms of
SIF reconstruction and conditioning of the stiffness matrix. To the authors knowledge, this is the first oc-
currence of a direct comparison between standard SBFEM and XFEM in literature. As XFEM represents a
major competing method to SBFEM within the context of LEFM, the fourth numerical example primarily
considers this comparison. Furthermore, the computational time required for various parts of the SBFEM
procedure are shown, illustrating the computational gains achieved by the proposed HSchur decomposition
and smoothing processes.

Calculations were performed on an Intel Core i5 6600K and an Intel Xeon E3-1225 v3. SBFEM and
XFEM where implemented in Matlab 2015b. In Abaqus 6.14-1 the contour integral method was used to
determine the SIFs.

4.2.1 Edge-cracked Square Plate Under Bending

A square, homogeneous domain with an edge crack as depicted in Fig. 4.5 is considered, with length L = 2
units and crack length a = L/2. The domain boundary is uniformly discretized. For this special case of
pure bending, an analytical solution exists for the SIFs [100]. The application of point boundary restraints
in SBFEM is similarly problematic as would be in the standard FEM case, as these must be applied for
eliminating rigid body motion. Since in this numerical example restraints have to be positioned along the
direction of crack extension, they may induce restraining forces precisely at the position used to calculate
the SIFs. This complicates the accurate determination of the SIFs, though it may be mitigated to an extent
for this special test case by scaling the problem domain uniformly. This is admissible since the SIF for an
edge cracked square plate under bending only depends on the ratio of side length to crack length [100].

E = 200 [N/mm2]

ν = 0.3

σ = 1

L

L

a = L/2

Fig. 4.5: Edge-cracked square plate subject to bending. The problem statement for the first numerical
example.

Numerical difficulties arise in the solution process of SBFEM due to the occurrence of rigid body modes.
In 2D elastostatics, a 4x4 block of zero eigenvalues exists. Two are associated with the response of the
bounded domain, whereas the other two contribute to the response of the unbounded domain (Fig. 2.5).
Numerical issues may perturb eigenvalues, resulting in signs, which may alternate arbitrarily. A subse-
quent reordering of eigenvalues into left half plane and right half plane may thus result in an eigenvalue
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intended for the unbounded domain to falsely contribute to the bounded domain. Since the stiffness matrix
is constructed from the corresponding eigenvectors, this effect leads to erroneous results. As an example, it
is possible that the rigid body mode of horizontal displacement is considered twice, whereas the rigid body
mode of vertical displacement is not considered at all and vice versa (Fig. 2.4).

Since one is not able to predict the outcome of the sorting a priori, a stabilizing parameter ε is typically
introduced in existing literature [344], with the intent of shifting the eigenvalues of the rigid body modes
off of the imaginary axis. This is achieved by modifying the input to the Hamiltonian Matrix [Z] (Eq. 2.38)
as follows, which physically bears the effect of introducing springs on the boundary:

[E2]= [E2]+ε[I] (4.12)

Tbl. 4.1 summarizes the solution quality of SBFEM for various values of epsilon. According to [344],
the typical values for epsilon range from 10−6 < ε < 10−12. Below, the eigen decomposition is considered,
though similar effects may also be observed for the standard Schur decomposition. It is evident, that values
of ε exist, where incorrect solutions are obtained. Further, there exist regions for which the choice of ε does
not bear significant influence on the solution. Remarkable is the fact that on different CPUs, the values
for epsilon, which result in solution errors due to incorrect separation of eigenvalues, differ. Consequently,
the correct choice of epsilon cannot be determined prior to the analysis. In order to ensure robust results,
multiple runs with different values for epsilon are necessary and usually require user intervention, which
reduces the computational advantage of SBFEM. This significantly complicates modeling of crack propa-
gation and effectively bars SBFEM from being used for problems, where successive function evaluations
are required, such as optimization problems using heuristic methods.

Tbl. 4.1: Correct solutions obtained as a function of the stabilizing parameter ε for various CPU architec-
tures. Discretized with 3-noded elements and 6 elements per side.

ε= 10−() 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15
Core i5 X X X X X X X X X X X X X X X X X X X

Xeon E3 X X X X X X X X X X X X X X X X X X X

The main advantage of the HSchur decomposition stems from the fact that it accounts for the special
structure of the Hamiltonian Matrix [Z], which dictates symmetry about the real and imaginary axis for
all eigenvalues. Taking advantage of symmetry by only considering the left half plane associated with
the negative eigenvalues, the eigenvalues are always separated properly, and the need for a stabilizing
parameter is removed by default. Thus, this novel approach enables a robust, parameter independent
solution process for SBFEM.

This symmetry may be observed in Fig. 4.6, where the eigenvalues for the square plate are plotted.
The HSchur decomposition better respects symmetry in comparison to the corresponding eigen and Schur
decompositions. For the Schur decomposition, the block diagonalization seems to weaken symmetry. The
eigen-decomposition approach does not require this step, resulting in improved symmetry. However, the
issues pertaining to the sorting of the rigid body modes remains. Slight variation of the stabilizing pa-
rameter induces variation in the eigenvalues, resulting in modified eigenvectors. As a result, the stiffness
matrix loses its symmetry (Fig. 4.7), which results in solution errors.

A large value for the stabilizing parameter epsilon results in loss of solution accuracy, as introducing
springs on the boundary effectively results in a different structural system. On the other hand, too small
values for epsilon may result in incorrect solutions due to improper separation of eigenvalues. Fig. 4.7
visualizes, that there is a region for ε, where the solution is better behaved. For this purpose, the values
in the stiffness matrix (K i, j) are compared to the averaged sum (Kave = (1/2)∗ (K i, j +K j,i)). According to
Brenner and Kressner [46] this difficulty of computing the zero and negative eigenvalues of a Hamiltonian
matrix is well known for QR and Arnoldi based decompositions, leading to loss of symmetry due to round-
off errors. It is further well-known that accuracy is compromised, when computing eigenvalues of a matrix
whose elements differ by several orders of magnitude [320]. Since this is the case for the entries of the
Hamiltonian matrix [Z], due to the contribution of the inverse of [E0], this further compounds numerical
errors. Normalizing the contributions of the coefficient matrices [344] or applying a preconditioner [169]
mitigate this effect partially, however the issues discussed in [46] still remain.



4.2. NUMERICAL EXAMPLES 67

-10 -5 5 10

real

-3

-2

-1

1

2

3 im
a
g

Hamiltonian eigenvalue symmetry error

Schur
Eigen
HSchur

Fig. 4.6: Symmetry of eigenvalues for eigen, Schur and HSchur decomposition. Discretized with 2-noded
elements and 4 elements per side.
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Fig. 4.7: Symmetry of stiffness matrix for various choices of ε compared to HSchur decomposition. Dis-
cretized with 2-noded elements and 4 elements per side.

Further, the condition number of the stiffness matrix varies, depending on different choices of sta-
bilizing parameter. Fig. 4.8 depicts the evolution of the condition number for the eigen-decomposition
with ε = 10−12.5 compared to the HSchur decomposition. However, since the condition number addition-
ally varies as a function of ε for the standard eigen-decomposition case, box plots are further provided,
indication variation for the range of 10−6 < ε< 10−15. The observed spread in condition number may pose
unpredictable, numerical challenges. This spread is not present for the proposed HSchur decomposition.
The same is observed for matrix [Φ] (Eq. 2.44), whose inversion is required for the formation of the stiffness
matrix and the evaluation of the vector of coefficients {c} (Eq. 2.42).

Since the HSchur decomposition results in a robust and predictable solution for SBFEM, the calculated
SIFs result independently of the stabilizing parameter epsilon. Fig. 4.9 demonstrates the fluctuation
in computed SIFs by eigen-decomposition, contrasted to the estimates of the HSchur decomposition. It
is observed that the error in calculated SIFs via eigen-decomposition with a variable ε may outweigh
the inherent accuracy of the method itself. Additionally, as is later demonstrated in the next numerical
example, the L2 displacement error for lower order elements also fluctuates significantly with variation in
ε (Fig. 4.15). This is not the case when employing the HSchur decomposition (Fig. 4.16).

In [100] an exact value for K I is provided for the edge cracked plate subjected to pure bending. In Figs.
4.10 and 4.11 respectively, the SIF K I computed using raw stress and recovered stress is depicted. Stress
recovery is performed only on the two element patch in the direction of crack extension (Fig. 4.1), and
not on the entire domain. Tbl. 4.2 indicates that for the proposed case of local recovery the computational
effort is drastically reduced, while achieving similar accuracy to full domain recovery. This is important,
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Fig. 4.10: Error in SIF K I computed using raw averaged stress.

since stress recovery in SBFEM occupies a significant portion of the total execution time (Tbl. 4.5). The
formulation of an error estimator for SIFs based on the difference of the raw and recovered stresses, as
proposed herein, may be exploited to greatly facilitate the SBFEM post-processing procedure. In Fig. 4.12
the computed error estimator is contrasted to the exact error for the SIF, where good agreement is noted.
The proposed procedure allows for inherent checking of the accuracy of the computed SIFs, within a single
analysis and with minimal computational effort.

Tbl. 4.2: Percent of total analysis time spent on calculating K I based on full or local domain stress recovery.
Discretized with 3-noded elements and 3 elements per side, 4-noded elements and 4 elements per side and
5-noded elements and 5 elements per side respectively.

#DOF full domain local domain
% total time % error K I % total time % error K I

98 36.03 0.128 0.24 0.131
198 30.63 0.019 0.10 0.020
322 26.11 0.001 0.02 0.001

4.2.2 Edge-cracked Square Plate with Forced SIFs

The square, homogeneous domain with an edge crack, as depicted in Fig. 4.13 is considered, with length
L = 2 units and crack length a = L/2. The boundary is uniformly discretized. An analytical solution for
displacements, stresses and SIFs is given in [99]. The expressions linking the displacements, stresses and
SIFs are given in Tbl. 4.3.

For this example, the mode I and mode II SIFs are chosen as K I = 0 and K I I = 1. The coinciding exact
displacements on the boundary are then enforced as boundary conditions at each node. The improvements
in convergence properties when using the novel approach based on the HSchur decomposition are inves-
tigated. To this end, first the L2 error in displacements norm is considered, followed by the L2 error in
stress norm. Figs. 4.15 and 4.16 demonstrate the L2 error in displacements norm for the eigen and HSchur
decomposition respectively. Since the boundary conditions are applied to all nodes, the error norm is cal-
culated based on chosen displacements post-processed at 10 equally spaced points along ξ, as denoted by
crosses in Fig. 4.14. The same procedure was carried out in the case of the stresses.

A significant improvement in the regularity and rate of convergence is observed between the proposed
HSchur decomposition (Fig. 4.16) and the standard eigen-decomposition (Fig. 4.15), as optimal convergence
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Tbl. 4.3: Analytical solution for edge cracked plate under forced K I I

Component Exact solution

u1: K2
2∗µ

√
r

2π sin(θ/2)(κ+1+2cos2(θ/2))

u2: − K2
2∗µ

√
r

2π cos(θ/2)(κ−1−2sin2(θ/2))

σ11: −K2/
p

2πrsin(θ/2)(2+2cos(θ/2)cos(3θ/2))

σ22: K2/
p

2πrsin(θ/2)cos(θ/2)cos(3θ/2)

σ12: K2/
p

2πr cos(θ/2)(1−2sin(θ/2)sin(3θ/2))

is almost achieved. Since the proposed HSchur decomposition is independent of a stabilizing parameter, its
convergence properties do not exhibit oscillations, as is observed for the standard eigen-decomposition. For
the eigen-decomposition, these oscillations may be amended, by appropriate variation of ε, a task, which
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Fig. 4.13: Edge-cracked square plate problem domain subject to K I I = 1 as boundary conditions. The
problem statement for the second numerical example.
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O

Fig. 4.14: Points at which the L2 norms are calculated, denoted by crosses. The upper left quarter of the
domain is depicted.

however is not straightforward. This further implies that an increase of the employed number of DOFs
does not guarantee higher accuracy in the eigen-decomposition case. Furthermore, the convergence rates
m of this newly proposed method, better approximate the values predicted by established FEM theory.
Optimal values mopt are equal to the order of the interpolation function. For SBFEM, this is equal to the
amount of nodes present in each element.

Next, the performance of i) the Schur decomposition as provided in Matlab, ii) the Hamiltonian Schur
decomposition of [75], and iii) the proposed new blocked Hamiltonian Schur decomposition, HSchur, is
further investigated via the following residual metric [75]:

ResidualSchur =
||{U}T [H]{U}− [Ĥ]||2

||[Ĥ]||2
(4.13)

where [Ĥ] represents the computed Hamiltonian Schur form and [H] denotes the original Hamiltonian
Matrix. The residual of the current Matlab implementation of the Schur decomposition, does not vary
significantly with changing values of ε. In Tbl. 4.4 the residual for all three methods is provided for different
levels of discretization. The newly proposed HSchur decomposition clearly outperforms the competing
methods, which results in improved convergence rates and elimination of the oscillations of the standard
eigen-decomposition (Fig. 4.15). It should be noted that the Hamiltonian Schur method (CSchur) proposed
by Chu et al. [75], which is the precursor to the currently proposed method, has previously been shown to
exhibit increased residuals when clusters of tightly grouped eigenvalues are present.

Clustering of eigenvalues is generally the case for SBFEM, which is demonstrated in Fig. 4.6 for few
DOFs and Fig. 4.17 for a typical amount of DOFs necessary for such an analysis. Naturally, as the amount
of DOFs increases the clustering issues further propagate, and the residual of CSchur tends to accordingly
increase. The block of zero eigenvalues [193] still poses a computational challenge for the proposed HSchur
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Fig. 4.15: Convergence results of the L2 displacement error based on the eigen-decomposition.
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Fig. 4.16: Convergence results of the L2 displacement error based on the HSchur decomposition.

Tbl. 4.4: Residuals for each decomposition type. Discretized with 3-noded elements.

# DOF Schur CSchur HSchur

160 5.4∗10−1 8.1∗10−5 9.1∗10−11

226 6.3∗10−1 6.2∗10−5 7.5∗10−12

280 2.7∗10−1 9.0∗10−3 6.3∗10−9

360 3.5∗10−2 1.3∗10−2 5.2∗10−9

448 7.7∗10−2 2.6∗10−2 2.8∗10−12
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Fig. 4.17: Eigenvalue clustering for domains with higher levels of discretization. Discretized with 5-noded
elements and 10 elements per side.
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Fig. 4.18: Convergence results of the L2 stress error based on the eigen-decomposition.

method. The presence of purely imaginary eigenvalues results in failure to find an invariant, isotropic
subspace to working precision. By relaxing the isotropy checks, a near real Schur form is nonetheless
obtained, thereby forfeiting numerical accuracy. The is observed for residual values greater than machine
precision (eps = 2.22∗10−16).

Figs. 4.18 and 4.19 plot the L2 norm of the stress error vs DOFs. To this end, the stresses are first
computed, and then recovered using SPR theory. The von Mises stress is adopted for this comparison.
Again, the proposed HSchur decomposition outperforms the standard eigen-decomposition scheme. How-
ever, certain features cannot be overcome. A change in convergence rate is observed, when few element are
used to model a side of the domain. As stress recovery techniques require at least two elements to form
a recovery patch, they are not applicable when one element is used to discretize a side. The lack of stress
recovery options leads to a decreased rate of convergence. It is therefore proposed to discretize each side by
at least two elements, in order to harness the benefits of SPR theory. Furthermore, a coarse discretization
significantly limits the resolution of the mode shapes comprising part of the SBFEM solution.

Since the stress variation in the tangential direction is not smooth around corners, special consideration
must be taken for these cases. In order to avoid errors, an automated procedure is proposed, based on the
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Fig. 4.19: Convergence results of the L2 stress error based on the HSchur decomposition.

Fig. 4.20: Qualitative location of errors in von Mises stress (yellow), by comparing the SBFEM solution to
the analytical ones provided in Tbl. 4.3. Discretized with 3-noded elements and 4 elements per side.

orientation of adjacent elements. As long as the normal vectors of two adjacent elements point along the
same direction, i.e., the cosine of the angle spanned between them approaches the value of 1, then the
adjacent element is added to the patch. Such a process may not be put in place for the case of corner points,
an issue, which is elaborated upon in the fourth numerical example.

Fig. 4.20 contrasts the von Mises stresses computed with only few DOF by SBFEM with the exact
stresses obtained from Tbl. 4.3. The largest discrepancy on the domain results around abrupt changes in
boundary orientation for the reason hinted at earlier. Hence, it it shown that optimal superconvergence
cannot be obtained due to this limitation. Apart from this exception, the HSchur decomposition succeeds
in improving the convergence behavior.

For the current numerical example, the stresses along the boundary in the direction of crack extension
are recoverable and thus the SIFs are accurately and efficiently calculated, as observed in Fig. 4.21.
The error is determined based on the exact values for the SIFs, imposed originally through the boundary
conditions. The improvement over the case with only trivial averaging of stresses at nodes (Fig. 4.22) is
recognizable. The convergence rates m are observed as superconvergent, i.e., the stresses converge at the
same rate as the displacements.

Since one of the aims is to determine the potential of SBFEM for readily determining the SIFs, the
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Fig. 4.21: Percent error in K2 calculated using recovered stress.
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Fig. 4.22: Percent error in K2 calculated using averaged stress.

error in K2 is plotted against wall clock time for each analysis (Fig. 4.23). It is apparent, that SBFEM
can compute the SIFs with sub-percent accuracy in well under a second on current generation computers.
Further, it seems that the odd-noded elements outperform their even-noded counter parts.

Tbl. 4.5 summarizes the computational time required for completing the various tasks in SBFEM.
Striking is the fact that for the current implementation of SBFEM, recovery of the stresses over the entire
domain significantly extends the required computational time. In contrast, calculation of SIFs by the
proposed local stress recovery scheme does not add any significant computational toll.

The associated error estimator for the SIFs is plotted in Fig. 4.24. Moreover, for this example, the
a posteriori error estimator is highly effective and may be easily determined. In contrast to other SIF
error estimators ([246],[115]), solving for a second right hand side is not necessary. The absolute difference
between estimated and exact error estimator is seen to decrease for all elements and is generally in the
order of percent fractions (Fig. 4.24).
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Fig. 4.23: Percent error in K2 calculated using averaged stresses vs wall clock time. The calculations were
performed on an Intel Xeon E3-1225 v3.

Tbl. 4.5: Percentage of computational time spent on various tasks for the solution of SBFEM. Discretized
with 3-noded elements and 3 elements perside, 4-nodd elements and 4 elements per side and 5-noded
elements and 5 elements per side respectively.

Task 98 DOF 198 DOF 322 DOF

invert [E0] 0.53 0.63 0.43
HSchur 52.26 64.03 70.18
form [K] 0.38 0.30 0.25

invert [K] 6.87 3.88 2.64
form {c} 3.69 0.43 0.37

stress recovery 36.03 30.63 26.11
SIF 0.24 0.10 0.02

4.2.3 Double Edge-cracked Plate Under Tension

A double edge-cracked plate under tension as depicted in Fig. 4.25 is considered, with length L = 1 units
and crack length a = L/4. The boundary is uniformly discretized. For this numerical example, SBFEM is
compared to XFEM and the commercial FEM software Abaqus. Three primary metrics for a solution, i.e.,
accuracy of calculated SIFs, floating point operations (flops) and number of DOFs are considered. Since the
motivation for employing SBFEM to model fracture is accelerating simulations, analysis time is included
as a secondary metric.

The flops required for the solution of each method are based on simplified assumptions. Steps exist,
such as the inversion of matrices and the solution of the eigen-problem, which dominate the computational
toll of an analysis. For XFEM and the standard FEM, this toll is assumed to stem primarily from the
inversion of the structures stiffness matrix. In SBFEM however, multiple computationally intensive steps
exist, summarized in Tbl. 4.6. The variables n and m denote the DOFs present in SBFEM and XFEM
respectively, whereas b represents the half-bandwidth of the matrix [E0]. The solution process in SBFEM
is constrained by the computational demands of the Schur decomposition. The newly proposed HSchur
decomposition reduces this burden by exploiting the symmetry conditions of the Hamiltonian matrix [Z].
Considering flops alone, the HSchur decomposition is clearly more performant. Since the method is cur-
rently implemented as proof-of-concept code written in Matlab, execution times are similar to the generic
Schur decomposition. Once this novel method is assimilated into high performance libraries, calculation
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Fig. 4.25: Double edge cracked plate under tension. Problem statement for the third numerical example.

times are expected to improve considerably.
In Abaqus, quadratic elements are used with the mid-side nodes set at the quarter points and the ele-

ment sides are collapsed into a single node, in order to emulate singular elements capable of representing
a square root singularity. The SIFs are calculated by a contour integral with four contours. In XFEM,
linear elements are employed. The radius of enrichment is kept constant at re = 0.2 units, while the radius
of integration is fixed at r i = 2.55 times the element size. The SIFs are calculated by interaction integral.
In SBFEM, the use of higher order elements does not significantly alter the computational effort. Since
the stiffness matrix is fully populated, higher order elements do not affect the bandwidth other than in
the formulation of [E0]−1 (Eq. 2.38). This operation constitutes a minor part of the overall computational
complexity (Tbl. 4.6). Subsequently, the worst case is assumed and the half-bandwidth is chosen to be
maximal. The computational burden due to fully populated matrices is offset by symmetry and the fact
that only the boundary need be discretized.

Fig. 4.26 depicts the theoretical flop count required for analysis as a function of DOFs. A comparison
focused simply on flop count favors the XFEM and FEM-based implementations. The proposed HSchur
decomposition performs favorably, compared to the current standard Schur, requiring roughly an order of
magnitude less flops for the same solution. However, in a direct comparison to XFEM, it still requires
substantially higher computational effort at an equal level of discretization.
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Tbl. 4.6: Rough flop counts for two SBFEM variants and (X)FEM

Step SBFEM (X)FEM
Schur HSchur

Coefficient Matrices bn2 bn2 0
Decomposition. 25∗ (2n)3 40n3 +205n2 0

Sort 3n3 3n3 0
Diagonalize 2n3 2n3 0

Stiffness Matrix 2/3n3 2/3n3 0
{u}= [K]−1{F} 1/3n3 1/3n3 1/3m3

Integration Constants 1/3n3 1/3n3 0

Total 619
3 n3 +bn2 139

3 n3 + (205+b)n2 (1/3)m3
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Fig. 4.26: Computational requirements for solution for (X)FEM, SBFEM using the conventional Schur
decomposition and the newly proposed HSchur decomposition.

In order to offer a more meaningful comparison, Fig. 4.27 provides the corresponding accuracy of the
calculated SIFs plotted against the DOFs. To this end, a reference solution obtained from a fine mesh
in Abaqus of approximately half a million DOFs is used. SBFEM evidently outperforms the competing
methods, as fewer DOFs are required in order to approach the reference solution. Significantly higher
rates of convergence are obtained by SBFEM by employing higher order elements. Noteworthy are the
linear, two noded elements, which outperform XFEM and the standard FEM approach with a slope of
m = 2, calculated using recovered stresses.

Fig. 4.28 depicts the error in calculated SIF as a function of the flops required for analysis. At lower flop
counts, all methods perform comparably. A slight edge goes to the FEM implementation. Since in Abaqus
the integration domain is specified manually, the amount of DOFs present in the system is not uniformly
distributed at coarser discretizations. Consequently, the FEM plot exhibits a plateau. Once this plateau is
passed, the rate of convergence stabilizes to mFEM = 0.88. The rate of convergence for XFEM is higher at
mX FEM = 1.06. At higher flop counts, SBFEM begins to separate itself from the competing methods, due
to higher rates of convergence.

Fig. 4.29 indicates the error in computed SIFs as a function of wall clock time. For Abaqus, analysis
times are extracted from the log file. For XFEM and SBFEM, the stopwatch timer in Matlab is employed.
Results for this numerical example are obtained on an Intel i5-6600K @ 3.9 GHz. As observed in Fig.
4.29, the current implementation of SBFEM, based on the newly adopted HSchur, outperforms XFEM
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Fig. 4.27: Accuracy of K I as a function of DOFs for SBFEM, XFEM and FEM for the double edge crack
problem. For SBFEM the proposed HSchur decomposition is utilized.
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Fig. 4.28: Accuracy of K I as a function of the flops required to obtain the solution for the double edge crack
problem. For SBFEM the proposed HSchur decomposition is utilized.
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Fig. 4.29: Accuracy of K I as a function of analysis wall clock time for the double edge crack problem. For
SBFEM the proposed HSchur decomposition is utilized.

by approximately an order of magnitude. This quantification must be treated with caution, since both
the SBFEM and XFEM implementations have yet to undergo optimization. This discrepancy between
analysis time and computation complexity (Fig. 4.28) is attributed to operations specific to XFEM, not
incorporated in the theoretical flop count, and language related performance limitations. Examples for
the former are operations associated with the integration of the enrichment terms and the post-processing
of the SIFs. Employing loops in scripting languages, such as Matlab, is known to significantly impact
run time. The number of loops performed during analysis is dependant on the amount of elements and
integration points, which is significantly larger for the case of XFEM than SBFEM. These considerations
are equally applicable to the fourth numerical example.

Compared to the optimized code of the commercial software Abaqus, which utilizes highly optimized
numerical routines, SBFEM compares favorably. Similar accuracy in the calculated SIFs is observed at
comparable analysis times. Further, for the higher noded elements, SBFEM with the adopted HSchur
decomposition manages to outperform commercial software.

Fig. 4.30 compares the accuracy of the calculated SIFs to the computational effort by proxy of flop
count. The computational advantage of the HSchur decomposition over the generic Schur decomposition is
demonstrated to approach an order of magnitude, with the analysis time expected to decrease with further
refinement of the code.

A last comparison between XFEM and SBFEM considers the evolution of the condition number of the
stiffness matrix for an increasing number of DOFs. Fig. 4.31 demonstrates the numerical difficulties
associated with standard XFEM. Typically, the condition number of the stiffness matrix increases rapidly,
mandating preconditioning, which constitutes a computational burden. This is not the case in SBFEM
since the method naturally extends to encompass fracture related phenomena. Consequently, no terms are
added, which affect the condition number adversely. However, it is evident that higher order elements do
increase the condition number steadily.

4.2.4 Slant Crack in Square Plate

A slant crack as depicted in Fig. 4.32 is considered, with length L = 1 unit, crack length a = L/2 and
crack inclination angle equal to π/4. The boundary is evenly discretized. A crack inclination angle of π/4
is purposely chosen, since the largest errors in computed stresses appear at corner points (Fig. 4.20).
The aim of this numerical example is to ascertain, how SBFEM performs in a worst case scenario, when
compared against alternatives. XFEM and the standard FE-based approach are considered in the following
comparisons. For XFEM, the enrichment radius is kept constant at re = 0.2 units, while the radius of
integration is fixed at r i = 2.55 times the element size. For Abaqus, the same quadratic elements where
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Fig. 4.30: Accuracy of K I comparing the proposed HSchur and standard Schur decomposition, based solely
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Fig. 4.32: Slant crack in square plate under tension. The problem statement for the fourth numerical
example.

Fig. 4.33: Sample discretization scheme for modeling a slant crack with SBFEM. It can be seen, that in
order to accommodate different crack inclination angles, simply the scaling centers (circles) must be moved,
which may be done independently of the mesh (crosses).

chosen as in the previous example. Modeling the slant crack problem with SBFEM entails separating the
domain into two parts. Each is inscribed its own scaling center, placed at the crack tip (Fig. 4.33). The
results reported, correspond to the SIFs calculated at the upper right sided crack tip.

Fig. 4.34 illustrates the accuracy of computed K2 as a function of DOFs. To this end, a finely meshed
reference solution in Abaqus was employed. The FEM-based calculation of the SIFs by Abaqus, the XFEM
implementation as well as the 2-noded elements of SBFEM are observed to converge at a comparable
rate, although XFEM has a slightly higher rate of convergence. Admitting higher order elements, SB-
FEM outperforms the other numerical methods. The odd-noded elements outperform their even-noded
counterparts. Since the computational effort per DOF for SBFEM is greater than for the two contrasted
numerical methods, Fig. 4.35 plots the accuracy of K2 as a function of flops. SBFEM compares favorably
to the FE-based approach and the XFEM implementation, even in this worst-case scenario. It would seem
that the calculation of SIFs at a crack inclination angle of π/4 is also a challenging task for other FE-based
numerical methods.

Fig. 4.36 provides the analysis times for calculating the SIFs based on all three compared methods.
Calculations were performed on an Intel Xeon E3-1225 v3. Oscillatory behavior for the first few points
is attributed to the method of reporting in Abaqus. Values are reported at discrete 0.1 second intervals.
Since for systems with small amounts of DOFs the I/O overhead dominates the overall computational
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Fig. 4.34: Accuracy of K2 as a function of DOFs for the slant crack problem. For SBFEM the proposed
HSchur decomposition is utilized.
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Fig. 4.35: Accuracy of K2 as a function of flops required for solution of the slant crack problem. For SBFEM
the proposed HSchur decomposition is utilized.

time, oscillatory values of 0.2 and 0.3 seconds were obtained. SBFEM is demonstrated to perform on par
with current commercial software in terms of efficiently and accurately calculating the SIFs. Further, for
problems with simple crack geometries, it outperforms a similarly implemented XFEM by approximately
an order of magnitude at equivalent accuracy. This is attributed to the ease with which higher order
elements may be employed. However, considering only linear elements, the advantage of SBFEM over
XFEM is marginal.

Fig. 4.37 plots K2 calculated based on raw stresses and the standard eigen-decomposition as a func-
tion of analysis time. Especially the lower noded elements suffer from this transition. While the XFEM
implementation outperforms the 2-noded elements, the commercial software Abaqus performs similarly to
the 3-noded elements. SBFEM is only observed to maintain its competitive advantage, when employing
elements with four or more nodes.

In Fig. 4.38 the condition number of an SBFEM solution is contrasted to that of XFEM as a function of
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Fig. 4.36: Accuracy of K2 as a function of analysis wall clock time for the slant crack problem. For SBFEM
the proposed HSchur decomposition is utilized.
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Fig. 4.37: Accuracy of K2 as a function of analysis wall clock time for the slant crack problem. For SBFEM
the eigen-decomposition combined with raw stresses for the calculation of K2 is utilized.
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Fig. 4.38: Evolution of the condition number of the stiffness matrix as a function of DOFs for the slant
crack problem.

increasing DOFs. The condition numbers are not clearly separated. For finer domain discretizations, the
condition number of SBFEM approaches that of XFEM. However, at that level of discretization, SBFEM
is fully converged as opposed to XFEM. This escalation in condition number is dependent on the angle
spanned between an element on the boundary and the scaling center. The smaller the angle, the more
numerical difficulties occur due to the degeneration of the Jacobian. With a higher boundary discretiza-
tion, these angles tend to further decrease. Should severe numerical issues be encountered, a splitting of
the domain perpendicular to the crack line is advised, distributing the angles spanned by the boundary
elements and the scaling center more evenly.

One of the strengths of SBFEM is exploited to perform a study of variants. Modeling of varying crack
inclination angles becomes trivial, as only the scaling centers must be repositioned. As a result, a procedure
is proposed, which accommodates the application of SPR theory to the SIFs.

1. The direction of crack extension is determined.
2. The intersection point between the boundary and the crack extension line is calculated. The nearest

node is calculated and the corresponding intersection element is found.
3. The stresses are recovered over a patch of two elements, as described in sec. 4.1, with the addition

of a check, ensuring the chosen patch does not entail corners. This process is automated by applying
the orientation checking procedure as detailed in sec. 4.2.2.

4. The SIFs are calculated based on the locally recovered stresses, which are rotated by the crack incli-
nation angle.

In Tbl. 4.7 the SIF K I is tabulated for various discretization levels and crack inclination angles. A
reference solution is obtained from a fine meshed Abaqus analysis. In order to investigate the stability of
SBFEM for various crack inclination angles, the values for K I are normalized with respect to the reference
solution. As observed in Tbl. 4.7, K I behaves independently of the crack inclination angle. All three
methods, SBFEM, XFEM and FEM provide comparable results, with deviations lower than 1%. Tbl. 4.8
summarizes the results for the case of K2. It is verified that the SIFs computed by SBFEM are independent
of the crack inclination angle. However, as the crack inclination angle is increased, numerical issues arise
due to the introduction of small angles spanned by the elements on the boundary and the scaling center.
These angles approach the values of zero as the crack inclination angle approaches 90◦ (Fig. 4.33).
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Tbl. 4.7: Values of computed K I as a function of the crack inclination angle ranging from 10◦ to 80◦. For
SBFEM, 3-noded elements were chosen with 1 to 4 elements discretizing each side. For Abaqus and XFEM,
K I was calculated using fine meshes. The normed values correspond to the ratio of SBFEM K I solution to
the Abaqus reference solution.

Type 10◦ 20◦ 30◦ 40◦ 50◦ 60◦ 70◦ 80◦

36 DOFs 1.09394 1.03033 0.87814 0.69875 0.50031 0.31072 0.15275 0.05671
50 DOFs 1.09307 1.02125 0.87838 0.69869 0.50038 0.31028 0.15225 0.04827
74 DOFs 1.09390 1.01546 0.87856 0.69873 0.50042 0.31006 0.15200 0.04691
98 DOFs 1.09486 1.01544 0.87871 0.69865 0.50046 0.31001 0.15189 0.04682
Normed 1.00475 1.00444 1.00581 1.00735 1.00538 1.00515 0.99140 0.99272

Abaqus ref. 1.08968 1.01094 0.87364 0.69355 0.49778 0.30843 0.15321 0.04716
XFEM 1.09278 1.01336 0.87647 0.69119 0.50215 0.30976 0.15172 0.04707

Tbl. 4.8: Values of computed K2 as a function of the crack inclination angle ranging from 10◦ to 80◦ using
the same methodology as in Tbl. 4.7.

Type 10◦ 20◦ 30◦ 40◦ 50◦ 60◦ 70◦ 80◦

36 DOFs 0.13061 0.29445 0.41963 0.49134 0.50066 0.44532 0.33312 0.17540
50 DOFs 0.13018 0.29185 0.41719 0.49132 0.50072 0.44541 0.33329 0.17823
74 DOFs 0.12990 0.29034 0.41713 0.49123 0.50073 0.44569 0.33344 0.17862
98 DOFs 0.12935 0.28989 0.41703 0.49126 0.50073 0.44572 0.33348 0.17862
Normed 0.99768 1.00279 1.00322 1.00338 1.00190 1.00051 0.99779 0.99700

Abaqus ref. 0.12965 0.28908 0.41569 0.48961 0.49978 0.44550 0.33422 0.17915
XFEM 0.12946 0.28948 0.41683 0.49037 0.49991 0.44586 0.33454 0.17923

4.3 Conclusion

In this work, the adoption of a blocked Hamiltonian Schur decomposition is proposed, which proves highly
beneficial when substituted into the solution process of SBFEM. By preserving Hamiltonian symmetry,
i.e., the symmetry of the eigenvalues about the real and the imaginary axis, enhanced accuracy is achieved
leading in improved, near optimal, convergence rates. Further, only half of the analysis domain need
be considered, which alleviates the additional computational toll incurred in linearizing the quadratic
eigenvalue problem. An additional benefit stems from the fact that the eigenvalues are automatically
partitioned based on sign. Thus, errors incurred due to improper sorting, resulting in an erroneous stiffness
matrix are eliminated along with the prior need for a stabilizing parameter ε. By consequence, the adopted
HSchur decomposition is demonstrated to significantly improve the regularity of the method.

The convergence rates of SBFEM are investigated in a benchmark example, featuring an analytical
solution. The L2 error in displacements, stresses as well as the error in computed stress intensity fac-
tors are recovered. Implementation of SPR theory allows for superconvergent recovery of stresses, and in
select cases ultracovergent behavior. This property is exploited to significantly improve the accuracy and
convergence behavior of the calculated SIFs. It is further demonstrated that stress recovery need not be
carried out for the entire domain, since similar accuracy is achieved when only considering the patch in di-
rection of crack extension, at reduced computational cost. A local error estimator is proposed, which arises
as a natural extension of the stress recovery scheme, and is highly accurate as well as computationally
inexpensive.

Finally, SBFEM is explicitly contrasted against other numerical methods within the context of LEFM
in terms of rough flop count, and wall clock time (albeit for unoptimized Matlab implementations for the
SBFEM and XFEM variants). It is demonstrated that for simple crack geometries, a higher order SBFEM
consistently outperforms frequently adopted alternatives.



5 Multiscale SBFEM

Modeling of structures comprising features across multiple length scales can, in principle, be achieved by
utilizing the conventional FEM. However, excessive discretization required to account for micro-structural
heterogeneity can render such an approach intractable from both a compute and storage perspective. Since
the complexity to solve large finite element problems is roughly of order O(n3/2

z ), where nz denotes the
nDOF, such schemes are typically limited to small scale numerical experiments focusing on RVEs. Multi-
scale methods have been proposed to circumvent this issue, by projecting the fine scale information onto
a coarse mesh, where the governing equations are then solved at reduced computational cost. Due to its
generality, the family of MsFEMs, which constitute computational approaches to constructing mapping
functions between scales, are adopted. First, fusion of the EMsFEM with SBFEM, which treats fracture
on the fine scale, is investigated. Then a method of enhancing the SBFEM’s ability to accurately calcu-
late the gSIFs on coarse meshes is proposed. This is subsequently exploited in a multiscale SBFEM crack
propagation scheme, to further reduce the computational toll.

5.1 The Multiscale Scaled Boundary Finite Element Method (MSBFEM)

Accounting for damage related phenomena via use of the SBFEM significantly accelerates computation,
however, full scale problems still pose a challenge: Problems which are inherently multi-scale in nature
constitute a significant computational burden. Multiscale methods [2] are therefore introduced in order to
mitigate such issues. A novel multiscale scheme is proposed, which harnesses the SBFEM benefits on the
microscale for modeling fracture, and employs the EMsFEM [3] for defining a coarse mesh on the macro
scale, where the governing equations of the problem are solved, greatly reducing the computational toll
and analysis time. The different scales are linked by mapping functions, which are only computed once,
prior to analysis.

Four numerical examples are presented. In in the first two, an RVE with embedded crack is represented
by two subdomains, each containing a crack tip. For the latter two, the image based quadtree decomposition
is employed to automatically create an analysis-ready adaptive mesh of a masonry RVE.

5.1.1 Homogeneous RVE with Embedded Slant Crack Under Tension

A rectangular plate as depicted in Fig. 5.1 is considered. A state of plane stress is assumed. The Young’s
modulus, Poisson ratio, side length, crack angle, crack length and tension force are given as E = 200
[N/mm2], ν = 0.3, L = 1 [mm], α = 30◦, a = variable and t = 0.1 [N/mm]. The quantities of interest are
the global displacement field as well as the gSIFs K I & K I I at the right crack tip. The domain is mod-
eled as a single RVE employing CM4-16 elements, with coarse nodes as given in Fig. 5.2. Both linear and
periodic boundary conditions are studied. Inspection of the displacement fields obtained from simulations
employing CM4-12 elements (Fig. 5.3), with a/L = 0.5 indicates that already CM8 elements manage to ac-
curately capture the RVE’s behavior for this load case and crack orientation. The CM4 element cannot
accurately account for the curvature displayed in the displacement field at the top edge, due to the linear
interpolation between coarse nodes.

Typical accuracy targets for harnessing the computed gSIFs for subsequent applications, mandate er-
rors smaller than 1%. A reference solution for the gSIFs is constructed using the commercial software
Abaqus and seen to match the values obtained from using SBFEM. Hence, the accuracy of the gSIFs ob-
tained from the multiscale analysis is compared to those obtained from SBFEM across 0.1 ≤ a/L ≤ 0.9.
In addition to the CM4-16 elements constructed by both linear (L) and periodic (P) boundary conditions,
quadratic (Q) boundary conditions are investigated for the CM8 element (Fig. 5.4). Due to the amount of
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SBFEM

Fig. 5.1: Problem geometry of homogeneous RVE with embedded slant crack under tension.

CM4 CM8 CM12 CM16

Fig. 5.2: Coarse node placement of CM4-16 elements.

Fig. 5.3: Comparison of displacement field obtained by multiscale methods to SBFEM reference solution.
Node positions in blue, SBFEM solution in red, MSBFEM solution in black with green denoting the coarse
node locations. From left to right; CM4, CM8 and CM12 elements are employed.

data, results are color-coded (see the scale in Fig. 5.4 at the bottom). Since the quadratic boundary condi-
tions do not offer an improvement in performance, they are discarded from subsequent reporting. If the
accurate calculation of gSIFs is required within a multiscale context, CM4 elements should not be utilized.
Improvements for the case of linear NBFs seem to track well with increased amounts of coarse nodes:
While CM8 elements manage to accurately capture a/L ≤ 0.2, CM12 and CM16 can handle upto a/L ≤ 0.3
and a/L ≤ 0.4 respectively. For the case of periodic NBFs only the CM16 element can capture the gSIFs to
desired accuracy levels.

5.1.2 Plate with Multiple Slant Cracks Under Tension

A rectangular plate comprising a grid of 5x5 RVEs, as depicted in Fig. 5.5, is considered. Both cracked
and undamaged RVEs exist in this analysis. The cracked RVEs (Fig. 5.5, numbered 1-5) are placed so that
specific conditions may be evaluated: Performance when affected by displacement boundary conditions,
traction boundary conditions, interaction of two cracked RVEs and the exclusion of interaction is evaluated
by considering the RVEs 1, 5, 3 & 4, and 2 respectively.
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a/L SIF SBFEM CM4L CM8L CM8LQ CM12L CM16L CM4P CM8P CM8PQ CM12P CM16P
KI 0.0281 0.53 0.66 1.21 0.26 0.04 0.79 0.47 0.66 0.06 0.07
KII 0.0168 9.17 0.29 1.36 0.31 0.18 8.25 1.39 2.88 1.14 0.38
KI 0.0441 1.92 0.31 0.21 0.13 0.14 1.64 0.35 0.34 0.44 0.15
KII 0.0241 10.49 0.06 1.35 0.15 0.22 10.00 1.70 2.77 1.11 0.47
KI 0.0573 5.21 2.35 1.82 0.80 0.50 3.74 0.10 0.31 0.95 0.28
KII 0.0309 12.39 0.29 1.37 0.11 0.33 12.62 2.12 2.61 1.13 0.63
KI 0.0716 9.51 5.41 4.79 1.65 1.04 6.44 0.96 1.31 1.51 0.50
KII 0.0370 14.38 0.61 1.34 0.35 0.59 15.43 2.43 2.32 1.28 0.82
KI 0.0881 14.19 9.51 8.60 2.62 1.77 9.27 2.23 2.48 1.99 0.82
KII 0.0427 16.29 0.47 0.96 0.31 1.23 17.67 2.39 1.88 1.78 1.06
KI 0.1080 18.84 14.57 13.09 3.82 2.62 11.88 3.92 3.69 2.38 1.18
KII 0.0484 18.03 0.93 0.32 0.58 2.70 18.08 1.75 1.48 3.07 1.32
KI 0.1327 23.31 20.23 18.08 5.96 3.27 14.31 6.19 5.13 3.20 1.51
KII 0.0545 19.76 4.59 3.17 3.33 5.33 15.20 0.27 1.59 5.78 1.48
KI 0.1649 27.93 25.65 23.34 10.68 3.16 17.17 9.28 7.62 5.88 1.68
KII 0.0613 21.96 10.98 8.04 8.80 7.94 8.29 2.35 2.41 10.02 1.65
KI 0.2102 33.67 29.75 28.54 20.12 2.87 21.64 13.26 12.25 12.30 2.12
KII 0.0672 26.02 19.26 15.11 15.20 4.40 1.24 6.28 3.04 13.46 4.29
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Fig. 5.4: Percentage error across various ratios of a/L in calculated gSIFs when employing a multiscale
representation of the domain. The Suffixes L, P and Q denote linear, periodic and quadratic NBFs respec-
tively.

A state of plane stress is assumed. The Young’s modulus, Poisson ratio, side length, crack angle, crack
length and tension force are given as E = 200 [N/mm2], ν= 0.3, L = 5 [mm], α= 30◦, a = variable and t = 0.1
[N/mm].

1

2

3

4

5

Fig. 5.5: 5x5 grid of RVEs comprising the square plate under tension with cracked RVEs 1-5.

The errors in gSIFs are reported in Fig. 5.6 for RVEs 1 and 5. By inspection, elements with eight coarse
nodes or less tend to perform poorly and do not comply with the desired accuracy threshold. They are there-
fore excluded from subsequent discussions. Employing CM12-16 elements permits accurate computation
of the gSIFs for a/L ≤ 0.5. Fig. 5.7 depicts the results for RVEs 2-4. An interesting trend presents itself:
Coarse elements constructed using linear NBFs outperform their periodic counterparts. While for the lin-
ear case the desired accuracy is obtained for a/L ≤ 0.6, in the periodic case a/L ≤ 0.3 is barely reached.
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This can be attributed to the underlying physics of the original assumptions with which the NBFs are
constructed. Periodic NBFs assume a constant strain state across the domain, which does not hold in the
presence of discontinuities such as cracks. Hence, the linear NBF, which prevent movement of opposite
nodes and attribute the full influence of an imposed unit displacement to the affected side, better represent
the discontinuous physical behavior in the presence of cracks. Since linear boundary conditions excel at
representing cracks, while periodic boundary conditions do so for undamaged media, we investigate an em-
pirical hybrid boundary condition approach. If opposite nodes are interrupted by the presence of a crack,
linear boundary conditions are enforced, else periodic ones are applied for that node pair (Fig. 5.8). As a
result, an improved representation of the displacements and overall strain within the domain is achieved,
coupled with a more consistent characterization of the SIFs (Fig. 5.9). Benefits of employing periodic
boundary conditions are obtained, where applicable, while considering physical crack behavior. This bal-
anced behavior, unburdens the analyst from guessing prior to analysis which type of boundary conditions
might prove to be most suitable.

a/L KI KII KI KII KI KII KI KII a/L KI KII KI KII KI KII KI KII

0.9 23.8 25.4 10.6 16.4 5.4 3.2 0.1 4.3 0.9 33.0 26.8 15.3 31.3 14.6 3.9 0.1 7.5
0.8 17.8 19.5 8.2 8.7 2.4 2.3 0.6 3.3 0.8 28.4 22.6 13.4 22.9 7.8 2.4 1.6 8.5
0.7 13.4 15.9 5.9 3.7 1.4 0.8 1.0 1.7 0.7 24.6 19.8 8.8 16.0 4.5 0.2 2.4 5.8
0.6 9.7 13.3 3.6 0.7 1.2 0.0 1.0 0.6 0.6 20.7 16.9 2.9 11.4 3.2 1.5 2.1 3.3
0.5 6.4 11.3 1.6 1.0 1.2 0.3 0.8 0.1 0.5 16.4 13.8 3.0 9.2 2.5 1.8 1.5 1.8
0.4 3.5 9.5 0.1 1.8 1.0 0.2 0.6 0.1 0.4 11.9 10.3 8.4 9.0 1.8 1.4 0.9 1.0
0.3 1.0 7.9 1.4 2.1 0.8 0.0 0.4 0.1 0.3 7.4 6.6 12.8 10.2 1.1 0.9 0.5 0.6
0.2 0.8 6.7 2.4 2.4 0.5 0.2 0.2 0.2 0.2 3.5 3.2 16.0 12.7 0.5 0.4 0.2 0.3
0.1 1.4 5.9 3.0 2.5 0.3 0.4 0.1 0.2 0.1 1.0 0.8 16.3 16.1 0.1 0.1 0.0 0.1

a/L KI KII KI KII KI KII KI KII a/L KI KII KI KII KI KII KI KII

0.9 21.4 5.1 5.1 8.2 5.7 0.9 1.6 5.8 0.9 19.7 8.5 1.6 10.1 4.1 4.3 1.3 1.2
0.8 12.7 2.8 6.4 5.2 4.8 3.0 2.0 6.7 0.8 16.8 13.4 0.6 5.9 0.0 4.3 0.9 1.0
0.7 7.3 8.7 5.9 3.0 3.8 3.0 2.0 5.5 0.7 14.6 17.2 0.2 3.2 1.0 2.1 0.6 0.4
0.6 4.1 11.4 4.5 2.0 2.5 2.4 1.7 3.8 0.6 12.5 18.0 0.5 1.5 0.7 0.4 0.5 0.1
0.5 1.9 11.3 3.0 1.8 1.3 1.9 1.2 2.5 0.5 10.1 16.1 0.6 0.5 0.1 0.3 0.4 0.0
0.4 0.4 9.8 1.7 1.7 0.5 1.5 0.7 1.7 0.4 7.3 12.3 0.6 0.1 0.2 0.5 0.4 0.0
0.3 0.7 8.0 0.6 1.4 0.0 1.1 0.3 1.1 0.3 4.5 7.9 0.4 0.1 0.2 0.4 0.3 0.0
0.2 1.5 6.4 0.2 1.0 0.4 0.9 0.1 0.8 0.2 2.1 3.8 0.3 0.0 0.1 0.2 0.2 0.1
0.1 1.5 5.6 0.6 0.7 0.4 0.7 0.2 0.5 0.1 0.6 0.9 0.1 0.0 0.0 0.1 0.1 0.1
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Fig. 5.6: Percentage Error in gSIFs for cracks 1 and 5 of Fig. 5.5

a/L KI KII KI KII KI KII KI KII a/L KI KII KI KII KI KII KI KII a/L KI KII KI KII KI KII KI KII

0.9 19.7 30.0 7.8 21.2 3.6 1.6 1.2 5.4 0.9 29.0 32.7 8.3 24.2 4.5 1.8 0.6 5.1 0.9 25.2 28.0 3.6 20.8 3.7 0.6 0.8 5.0
0.8 15.4 24.6 7.0 14.3 1.1 0.0 0.4 3.8 0.8 23.1 27.5 5.0 16.4 1.6 0.2 0.0 3.7 0.8 20.5 23.6 1.7 14.3 1.3 0.3 0.0 3.6
0.7 12.1 20.8 6.0 9.8 0.3 0.2 0.1 2.2 0.7 18.5 23.2 2.1 10.9 0.7 0.4 0.5 2.1 0.7 16.8 20.1 0.3 10.2 0.6 0.3 0.6 2.1
0.6 9.3 17.4 5.0 7.3 0.3 0.6 0.3 1.0 0.6 14.5 19.0 0.4 7.5 0.6 0.8 0.6 1.1 0.6 13.6 16.7 2.4 8.1 0.6 0.7 0.6 1.1
0.5 6.6 14.1 4.2 6.4 0.3 0.8 0.2 0.4 0.5 10.9 14.7 2.5 5.8 0.6 0.8 0.4 0.5 0.5 10.4 13.1 4.2 7.5 0.6 0.8 0.5 0.5
0.4 3.9 10.7 3.5 6.5 0.3 0.7 0.1 0.1 0.4 7.6 10.4 4.2 5.4 0.5 0.7 0.3 0.3 0.4 7.4 9.4 5.8 8.2 0.5 0.7 0.3 0.3
0.3 1.4 7.5 3.0 7.3 0.1 0.4 0.0 0.0 0.3 4.5 6.4 5.4 6.0 0.4 0.5 0.2 0.2 0.3 4.5 5.7 7.2 9.9 0.4 0.5 0.2 0.1
0.2 0.6 4.7 2.6 8.4 0.0 0.1 0.1 0.1 0.2 2.0 3.1 6.2 7.2 0.2 0.2 0.1 0.1 0.2 2.0 2.5 8.0 12.2 0.2 0.2 0.1 0.1
0.1 1.6 2.9 2.7 9.6 0.1 0.0 0.2 0.1 0.1 0.4 0.8 5.7 8.9 0.0 0.1 0.0 0.0 0.1 0.4 0.3 7.3 15.2 0.0 0.0 0.0 0.0

a/L KI KII KI KII KI KII KI KII a/L KI KII KI KII KI KII KI KII a/L s KII KI KII KI KII KI KII

0.9 13.7 11.7 11.3 2.1 9.4 1.0 3.9 1.9 0.9 20.6 15.2 10.2 1.6 8.8 0.9 4.1 3.0 0.9 17.1 12.1 15.0 2.3 12.2 1.6 5.2 2.2
0.8 7.9 14.5 13.1 2.2 9.1 1.3 4.5 3.3 0.8 13.9 17.8 12.8 1.7 8.9 0.9 4.8 3.7 0.8 11.7 15.2 15.9 2.2 11.1 0.7 5.4 3.4
0.7 4.2 17.4 12.3 1.4 8.1 1.3 4.5 2.8 0.7 9.4 19.6 12.3 0.7 8.0 0.7 4.7 2.8 0.7 8.2 17.6 14.3 1.1 9.3 0.7 5.1 2.7
0.6 1.9 18.2 10.1 0.9 6.3 0.8 3.9 2.0 0.6 6.5 19.2 10.2 0.2 6.3 0.1 4.0 1.7 0.6 5.9 17.6 11.4 0.5 7.1 0.2 4.3 1.7
0.5 0.3 16.4 7.5 0.9 4.4 0.5 2.9 1.3 0.5 4.4 16.4 7.5 0.1 4.4 0.2 3.0 0.9 0.5 4.2 15.2 8.3 0.4 5.0 0.0 3.2 1.0
0.4 0.8 13.0 4.9 1.0 2.7 0.4 2.0 1.0 0.4 2.8 12.2 5.0 0.2 2.7 0.3 2.0 0.5 0.4 2.8 11.3 5.5 0.5 3.2 0.1 2.2 0.5
0.3 1.6 9.0 2.6 0.9 1.3 0.5 1.1 0.8 0.3 1.5 7.6 2.8 0.2 1.5 0.3 1.2 0.2 0.3 1.6 6.9 3.2 0.3 1.8 0.2 1.3 0.3
0.2 2.2 5.4 0.9 0.8 0.3 0.6 0.4 0.6 0.2 0.5 3.6 1.1 0.1 0.5 0.2 0.5 0.0 0.2 0.6 3.0 1.4 0.1 0.7 0.2 0.6 0.1
0.1 2.2 2.9 0.2 0.6 0.3 0.6 0.0 0.5 0.1 0.0 1.0 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.0 0.3 0.3 0.1 0.1 0.2 0.1 0.1
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Fig. 5.7: Percentage Error in gSIFs for cracks 2, 3 and 4 of Fig. 5.5
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1
δx

Fig. 5.8: The proposed hybrid NBFs. In color, node pairs for which tie constraints are applied, incorporating
periodic information. All other nodes are restrained in accordance with linear NBFs.

a/L KI KII KI KII KI KII KI KII KI KII KI KII

0.45 29.00 32.66 20.57 15.24 21.83 17.85 8.27 24.17 10.24 1.56 8.57 4.95
0.40 23.10 27.54 13.93 17.78 15.31 19.24 5.03 16.35 12.76 1.66 6.19 3.86
0.35 18.46 23.19 9.43 19.62 10.79 20.16 2.13 10.89 12.29 0.75 3.66 2.27
0.30 14.50 18.96 6.48 19.21 7.68 18.99 0.41 7.45 10.16 0.18 1.87 1.27
0.25 10.91 14.67 4.39 16.44 5.37 14.94 2.51 5.76 7.52 0.12 3.26 0.96
0.20 7.55 10.42 2.76 12.22 3.48 10.69 4.17 5.38 4.99 0.21 4.29 0.99
0.15 4.51 6.43 1.47 7.65 1.92 6.61 5.43 5.96 2.82 0.21 3.21 1.07
0.10 2.03 3.06 0.53 3.63 0.76 3.15 6.20 7.19 1.14 0.09 1.90 1.15
0.05 0.42 0.85 0.02 0.96 0.08 0.87 5.72 8.91 0.09 0.05 0.94 1.38

a/L KI KII KI KII KI KII KI KII KI KII KI KII

0.45 4.50 1.82 8.77 0.89 5.14 1.03 0.60 5.07 4.09 3.03 1.12 3.34
0.40 1.63 0.21 8.92 0.93 2.72 0.32 0.05 3.66 4.79 3.75 0.76 3.67
0.35 0.73 0.42 8.01 0.69 1.82 0.46 0.54 2.15 4.75 2.85 1.17 2.25
0.30 0.63 0.75 6.26 0.08 1.47 0.18 0.58 1.10 4.02 1.70 1.10 1.19
0.25 0.63 0.84 4.36 0.24 1.19 0.33 0.44 0.54 3.03 0.91 0.83 0.60
0.20 0.54 0.73 2.73 0.30 0.87 0.36 0.28 0.28 2.04 0.47 0.55 0.31
0.15 0.36 0.49 1.45 0.25 0.52 0.29 0.16 0.15 1.17 0.21 0.31 0.16
0.10 0.17 0.25 0.53 0.18 0.23 0.19 0.07 0.08 0.49 0.04 0.13 0.05
0.05 0.04 0.07 0.03 0.12 0.03 0.07 0.01 0.04 0.05 0.07 0.02 0.04

CM4
Linear Periodic Hybrid

CM8
Linear Periodic Hybrid

CM12 CM16
Linear Periodic Hybrid Linear Periodic Hybrid

Fig. 5.9: Percentage error in gSIFs including the proposed hybrid NBFs.

5.1.3 Masonry RVE with Embedded Crack Under Tension

Transitioning to RVEs comprising quadtree meshes, a square masonry domain consisting of both mortar
and brick (Fig. 5.10) is considered. At the base the RVE is clamped, while at the top surface both shear
and tension tractions with magnitude q = 0.1 are applied. Plane stress conditions are imposed. The side
length is given as L = 512, while the Young’s modulus for brick and mortar are 11 and 7 respectively.
The Poisson ratio is set for both materials to 0.25. A reference solution for the displacement field and
the gSIFs is obtained from the commercial software Abaqus. The SIFs are computed via contour integral
and quadratic, singular, quarter-point elements. The error in displacement norm is calculated according
to Eq. 5.1, which contrasts the numerically obtained displacements (see Fig. 5.11), {uh}, to those obtained
from the Abaqus reference solution {ure f }, with results given in Tbl. 5.1:

||{uh}− {ure f }||2
||{ure f }||2

(5.1)
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Fig. 5.10: Masonry RVE with embedded crack under tension. Definition of the RVE can be as simple as
processing an image. Then the domain is partitioned into blocks by quadtree decomposition. Each block
represents an SBFEM polygon element and is assembled in the finite element sense. Double nodes are
then inserted to create the crack seams. Blocks are merged to position the crack tip.

Fig. 5.11: Masonry RVE with embedded crack under tension. Comparison of displacement solution using
a multiscale representation to the SBFEM baseline. Mesh nodes in blue, SBFEM reference solution in red
and multiscale solution in yellow. Purple points denote CMX nodes. CM4 elements on top row and CM16
nodes on bottom row. On the left, linear NBFs and on the right periodic NBFs.

While the error for linear NBFs decreases as the amount of coarse nodes is increased, demonstrating
expected behavior, the same does not hold for the periodic NBFs. This is indicative of spurious oscillatory
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behavior, which violates the clamped boundary condition at the base between coarse nodes, as observed in
Fig. 5.11 for the CM16 element. Further, in the presence of discontinuities, periodic NBFs do not accurately
represent the underlying physics and thereby incur an accuracy penalty.

Tbl. 5.1: Error in L2 displacement norm.

Linear Periodic

CM4 3.31 ·10−4 3.24 ·10−4

CM8 1.18 ·10−4 1.02 ·10−4

CM12 0.38 ·10−4 1.70 ·10−4

CM16 0.16 ·10−4 1.92 ·10−4

SBFEM 4.28 ·10−6 -

2-N KI %Err KII %Err 2-N KI %Err KII %Err

CM4 0.925 55.7 1.716 51.9 CM4 0.971 53.5 2.245 37.1
CM8 1.296 37.9 2.605 27.0 CM8 1.584 24.1 2.518 29.4
CM12 1.692 19.0 3.251 8.9 CM12 1.762 15.6 3.284 8.0
CM16 1.864 10.7 3.281 8.1 CM16 1.830 12.4 3.336 6.5
SBFEM 1.982 5.1 3.356 6.0
Abaqus 2.088 - 3.569 -

3-N KI %Err KII %Err 3-N KI %Err KII %Err

CM4 0.956 54.2 1.803 49.5 CM4 1.008 51.7 2.364 33.7
CM8 1.345 35.6 2.735 23.4 CM8 1.649 21.0 2.655 25.6
CM12 1.760 15.7 3.424 4.1 CM12 1.837 12.0 3.464 2.9
CM16 1.944 6.9 3.456 3.2 CM16 1.907 8.7 3.518 1.4
SBFEM 2.069 0.9 3.539 0.9

Linear Periodic

Linear Periodic

Top crack

(a) gSIFs computed at top crack tip.

2-N KI %Err KII %Err 2-N KI %Err KII %Err

CM4 1.271 8.0 2.059 26.4 CM4 0.898 35.0 2.037 27.2
CM8 1.383 -0.1 1.941 30.6 CM8 0.745 46.1 2.461 12.0
CM12 1.149 16.9 2.334 16.6 CM12 0.623 54.9 2.848 -1.8
CM16 1.288 6.8 2.547 9.0 CM16 0.886 35.9 2.840 -1.5
SBFEM 1.306 5.5 2.633 5.9
Abaqus 1.382 - 2.797 -

3-N KI %Err KII %Err 3-N KI %Err KII %Err

CM4 1.327 4.0 2.153 23.0 CM4 0.941 31.9 2.145 23.3
CM8 1.456 -5.3 2.037 27.2 CM8 0.783 43.3 2.594 7.2
CM12 1.204 12.8 2.455 12.2 CM12 0.649 53.0 3.005 -7.4
CM16 1.352 2.1 2.682 4.1 CM16 0.927 33.0 2.997 -7.2
SBFEM 1.370 0.9 2.776 0.8

Linear Periodic

PeriodicLinear

Bottom crack

(b) gSIFs computed at top crack tip.

Fig. 5.12: Percentage error in the calculated gSIFs by multiscale method, compared to Abaqus reference
solution and SBFEM baseline. Direcretization of the SBFEM element containing the crack tip with eigher
linear (2-N) or quadratic (3-N) elements.

Considering the gSIFs, we investigate the influence of replacing the linear elements of the fine mesh
comprising the cracked element with cubic ones. In Fig. 5.12a the Abaqus reference solution is provided for
the top crack tip. The gSIFs obtained by pure SBFEM analysis employing linear elements underestimate
K1 and K I I by 5.1% and 6.0% respectively. The SBFEM analysis employing cubic elements only underes-



94 CHAPTER 5. MULTISCALE SBFEM

timates K1 and K I I by 0.9% and 0.9% respectively. Employing higher order elements locally on the fine
mesh reduces the error in gSIFs calculated by multiscale approach across all CMX elements. The same is
observed for the lower crack tip as well (Fig. 5.12b). However, the choice of periodic NBFs results in larger
errors in calculated K I , when contrasted to those obtained by linear NBFs. Nevertheless, all gSIFs calcu-
lated by multiscale approach differ from the SBFEM reference solution by more than 1% and do therefore
not meet the accuracy threshold.

5.1.4 Masonry Wall Under Shear

As depicted in Fig. 5.13, a masonry wall comprising a grid of 5x6 undamaged masonry RVEs, with proper-
ties previously detailed in sec. 5.1.3, is considered. The base is clamped and on the top edge, displacements
in vertical direction are prohibited (uy = 0). A shear traction q = 0.1 is applied on the top edge. Plane stress
conditions are imposed. The displacement field and the von Mises stress are considered. The SBFEM
reference solution of the displacement field (the maginitude of u) is depicted in Fig. 5.14. Visual inspec-
tion affirms that all CMX-based discretizations replicate the reference solution to sufficient accuracy, when
utilizing linear NBFs. However, this is not the case for the von Mises stress plots. The SBFEM reference
solution (Fig. 5.15) is accurately reconstructed using CM12-16 elements, sufficiently captured using CM8
elements and conceptually discernible when employing CM4 elements. Characteristic of insufficiently fine
discretization on the coarse scale is the discontinuity of the stresses across elements, which mimics con-
ventional FEM behavior.

4

8

4

248

248

124 8 248 8 124

4 248 8 248 4

Fig. 5.13: Masonry wall constructed by assembling RVEs in a 5x6 grid.

Fig. 5.16 contrasts the computational effort of conventional vs. multiscale analysis. It is observed
that sufficient levels of accuracy can be achieved using several orders of magnitude fewer DOF. This in
turn accelerates the analysis time significantly. For this specific example and code, the time required to
construct the NBFs exceeds the pure SBFEM simulation. This is due to a naive approach being employed:
High performance implementations would only decompose the stiffness matrix of the fine scale once and
then exploit the embarrassingly parallel nature of the problem. In any case, the NBFs are only dependent
on the geometry and material properties of the domain and therefore invariant. This necessitates them to
only be computed once prior to analysis and then stored for later retrieval as required.

5.1.5 Conclusions

In this section the SBFEM is successfully extended to multiscale problems by fusion with the EMsFEM.
Further, cracks have been incorporated on the micro-scale, such that the gSIFs are accurately reconstructed
using information stemming from the coarse scale solution. In the process, CM4-16 elements are evaluated
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(a) SBFEM reference solution for displacement magnitude.

(b) Displacement field calculated employing CM4 ele-
ments, with coarse nodes in black.

(c) Displacement field calculated employing CM8 ele-
ments, with coarse nodes in black.

(d) Displacement field calculated employing CM12 el-
ements, with coarse nodes in black.

(e) Displacement field calculated employing CM16 el-
ements, with coarse nodes in black.

Fig. 5.14: Undamaged masonry wall comprise 5x6 grid of undamaged RVEs. Plots comparing the magni-
tude of the displacement field calculated by CMX elements to a SBFEM reference solution.

utilizing both linear and periodic NBFs. Use of CM4-8 elements is not recommended, when crack are
present of the fine scale. Further, quadratic NBFs have been shown to offer no benefit, when compared
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(a) SBFEM reference solution for von Mises stress.

(b) Von Mises stress field calculated employing CM4
elements, with coarse nodes in black.

(c) Von Mises stress field calculated employing CM8
elements, with coarse nodes in black.

(d) Von Mises stress field calculated employing CM12
elements, with coarse nodes in black.

(e) Von Mises stress field calculated employing CM16
elements, with coarse nodes in black.

Fig. 5.15: Undamaged masonry wall comprise 5x6 grid of undamaged RVEs. Plots comparing the von Mises
stress field calculated by CMX elements to a SBFEM reference solution.

to their linear and periodic counterparts. Overall, CM12-16 elements deliver the best performance and
can accurately capture the gSIFs to within 1% accuracy for ratios of a/L ≤ 0.5. For larger ratios, the
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L P L P L P L P Units
DOF SBFEM -
DOF MSBFEM -
Ratio x
Time SBFEM [s]
Time MSBFEM [s]
Ratio x
Time NBF 0.667 0.700 1.027 1.325 1.537 1.894 1.862 2.534 [s]
Displ. Norm 34.54 28.83 3.65 65.06 1.86 46.57 1.31 43.37 [1e-4]

51036884 226
18862614425611451

CM4 CM8 CM12 CM16

96189 961899618996189

0.6247

131227243762
0.00480.00280.00260.0008

0.62470.62470.6247

Fig. 5.16: Masonry wall constructed by assembling RVEs in a 5x6 grid.

boundary effects are difficult to capture with just 12 or 16 coarse nodes and the conventional choice of
NBFs. Hence hybrid NBFs are introduced, which borrow from both linear and periodic variants to provide
more predictable performance and unburden the analyst having to chose the most suitable NBFs prior to
analysis.

5.2 Asymptotic Tip Enrichment

In this contribution, the unique properties of the SBFEM are exploited to improve the accuracy of computed
gSIFs on hybrid balanced quadtree-polygon (QT) meshes. The gSIFs are extracted by harnessing the
semi-analytical solution in radial direction. This is achieved by placing the scaling center of the element
containing the crack at the crack tip. Taking an analytic limit of this element’s stress field as it approaches
the crack tip, delivers an expression for the singular stress field. By applying the problem specific boundary
conditions, the geometry correction factor is obtained and the gSIFs are then evaluated based on their
formal definition.

Computation of the gSIFs by SBFEM permits exceptional accuracy, however, when combined with QT
meshes employing linear elements, this does not always hold. Nevertheless, it has been shown that crack
propagation schemes are highly effective even given very coarse discretizations, utilizing criteria than only
rely on the ratio of mode I to mode II gSIFs. The absolute values of the gSIFs may still be subject to
undesirable errors. Hence, we propose a post-processing scheme, which minimizes the error resulting from
the approximation space of the cracked element. Thus, the errors in the calculation of the gSIFs is only
limited to the discretization error of the quadtree mesh. This is achieved by h- and/or p-refinement of the
cracked element, which elevates the amount of modes present in the solution. The resulting numerical
description of the element is highly accurate, with the main error source now stemming from its boundary
displacement solution. Numerical examples show, that this post-processing procedure can significantly
improve the accuracy of the computed gSIFs with negligible computational cost even on coarse meshes
resulting from QT decompositions.

5.2.1 The Proposed Method

By inspecting the expression of the singular stresses (Eq. 2.54), the accuracy of the gSIFs (Eq. 2.61) can be
improved in two ways:

1. Finding a better approximation for the integration constants {c} stemming from the displacement
solution of the domain.

2. Enhancing the displacement and thus stress field approximation [Ψ] and [S] within the cracked
element by escalating the amount of DOFs present.

The contribution of the first source can be adjusted by h- or p-refinement on the mesh, either locally or
globally. However, this is a costly procedure due to, e.g., remeshing, reassembly followed by solution, in the
understanding that a significant amount of DOFs are newly introduced. Considering the convergence rate
of the linear elements employed, this is deemed a sub-optimal approach from a computational resources
standpoint. The second source allows for enhancement directly in post-processing and permits certain
insight into how close we might be to the exact solution, by contrasting the gSIFs calculated using the
traditional approach to those using the improved scheme.

The steps comprising the improved scheme are (Fig. 5.17):
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1. Perform analysis
A displacement solution for the given mesh is sought.

2. Create a high order cracked element
The existing cracked element is replaced by one elevated by h- and/or p-refinement. New nodes, lying
in-between existing QT mesh nodes, are introduced in the process.

3. Impose linearly interpolated displacements on all DOFs
To guarantee compatibility with the surrounding QT mesh, linear displacements are enforced be-
tween its nodes, on the boundary of the elevated cracked element.

4. Back calculate {c} for cracked element
Since the cracked element comprises one subdomain, with all DOFs situated on the boundary, where
the prescribed displacements are imposed, the calculation of the stiffness matrix is not necessary.
Only the block-diagonal Schur decomposition is required. The integration constants are obtained as
{c}= [Ψ(u)

neg]−1{u} [294]. Typically, refined crack elements comprising 100 DOFs have sufficiently con-
verged. Since the original already contains 10-30 DOFs, this does not noticeably impact computation
time.

5. Extract singular stress modes
The identification and extraction of the singular stress modes remains unchanged.

6. Calculate gSIFs
The gSIFs are calculated given Eq. 2.61, however, now based on the quantities originating from the
elevated cracked element.

7. Contrast original with improved gSIFs
By contrasting the values for the gSIFs calculated by both methods, we can gauge the quality of the
original analysis. If the discrepancy in gSIFs is deemed too large, refinement of the original mesh
may be warranted.

1. Mesh with crack

2. Conventional solution

3. Elevate & Constrain

4. Calculate gSIFs

5. Project new crack tip

{σs(ξ, η)} = [D](−λs[B1] + [B2])[φs]ξ
−[λ]−[I]{cs}

{
KI

KII

}
=
√
2πL0

{∑
{σsyy(ξ = 1, η = ηA)}{cs}∑
{σsxy(ξ = 1, η = ηA)}{cs}

}

Improved λs and [φs]

Fig. 5.17: Steps comprising the improved scheme.

5.2.2 Numerical Examples

5.2.2.1 Edge Cracked Square Plate in Mode II

An edge cracked square plate subjected to a plane stress state is examined (Fig. 7.1). Along the boundary,
the analytic solution [142] of the near-tip crack field is prescribed given K I I = 1 (Tbl. 5.2), imposing pure
mode II loading. The material properties are E = 200 [N/mm2], v = 0.3 and the side length is L = 1 [mm].

Three cracked element discretizations are considered, as they arise typically on QT meshes, prior to
the refinement and homogenization steps (Fig. 2.11c). The exact solution is applied to the QT mesh nodes
identified in Fig. 5.19. The remaining nodes resulting from internal element refinement are restricted to
move as a linear combination of their neighbouring QT mesh nodes, thereby enforcing compatibility.



5.2. ASYMPTOTIC TIP ENRICHMENT 99

KII = 1
E = 200 [N/mm2]
ν = 0.3

L

L

a = L/2

Fig. 5.18: Experimental setup for numerical example A.

Tbl. 5.2: Analytic solution of the near-tip crack field.

Exact displacement solution for mode II fracture

ux
KI I
2µ

p
r/(2π)sin θ

2
(
κ+1+2cos2 θ

2
)

uy −KI I
2µ

p
r/(2π)cos θ2

(
κ−1−2sin2 θ

2
)

QT mesh node
linear BC

CBA

Fig. 5.19: Typical element types A-C arising from QT meshes.

The convergence behaviour is investigated in Fig. 5.20. Due to the over-constraining of the boundary,
deviation in convergence behaviour is expected, i.e., by enforcing linearly dependant displacement bound-
ary conditions between QT mesh nodes, an effective stress state is imposed that differs mildly from the
exact solution. In this example, the gSIFs are therefore slightly overestimated, which is evident in the
asymptotic behaviour on all three meshes. Nevertheless, the error in K I I is significantly reduced for all
QT meshes, as can be seen in Tbl. 5.3. The diverging results for the case of 2-noded elements is explained
by the examination of the absolute values. While the higher order elements approach the asymptotic so-
lution from the high end, the two-noded elements approach from the lower end, thus crossing the imposed
K I I = 1 in the process. The obtainable accuracy is naturally limited by the artificially imposed boundary
conditions. Therefore, the expected convergence behaviour is disrupted accordingly. In this specific ex-
ample, the convergence behaviour of even-noded elements was observed to behave predictably, while the
odd-noded elements exhibited slight oscillatory behaviour.

It can be observed that the computed values for K I I remain practically stable when more than 100
DOFs are employed within the cracked element. Preference should be given to higher order elements due
to their enhanced convergence properties. On a contemporary laptop employing unoptimized Matlab code,
this entails calculations completing in less than 0.1s. Tbl. 5.3 provides the results for K I I calculated on the
original QT meshes and contrasts them to the asymptotic solutions for the refined crack elements, given a
high fidelity SBFEM solution.

Assuming a user-specified accuracy tolerance, the improved method of calculating the gSIFs facilitates
a decision criterion on whether global mesh refinement is required. The difference in achieved accuracy for
each QT mesh is primarily attributed to the manner in which the enforced displacements on the bound-
ary conform to the exact field solution. Deviations therein are reflected in the integration constants {c}
(Eq. 2.42) and comprise the remaining error in the asymptotic solution. In a practical application of this
method, the displacement solution on the QT mesh nodes results from the FEM solution of the global QT
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Fig. 5.20: Convergence behaviour of K I I on QT meshes employing n-noded elements as boundary dis-
cretization.

mesh. Since the method proposed to improve the calculation of gSIFs does not increase the amount of global
DOFs, the overall analysis does not differ. Solely on the cracked element that is refined, “virtual” nodes
are introduced that, however, never manifest in calculation of system displacements as their values are
predetermined due to the linearized BCs. In principle, a more accurate representation of the displacement
modes and eigenvalues is achieved inside the cracked element, while the boundary constraints remain un-
changed. This explains the counter intuitive results of the asymptotic error for QT mesh type A for which
smaller errors are observed than for the QT mesh type B: For this specific loading, i.e., mode II excitation,
on average, the enforced displacement field on the boundary results in a closer approximation of the exact
stress field. If mode I excitation where, however, considered, for which the right boundary of the cracked
element exhibits concave behaviour, QT mesh Type A results in a 15% error, since it is not able to reproduce
such displacement behaviour. Between QT meshes type B and C we observe convergence as expected, as
QT mesh C can represent all displacement modes of QT mesh B, while also introducing additional ones.

Tbl. 5.3: Convergence of gSIFs to imposed solution.

Method KI I error [-] error [%]

imposed 1 - -

(v) hi-fi 1.00000000524414 ≈ 0 ≈ 0

(iii) QT mesh A 1.01547261490198 0.0155 1.55
B 0.80116357970950 0.1988 19.88
C 0.92998436271287 0.0700 7.00

(iv) asympt. A 1.01124862611779 0.0113 1.12
B 1.02286467268900 0.0287 2.29
C 1.00598223218854 0.0060 0.60
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5.2.2.2 Edge Cracked Square Plate in Mode I

An edge cracked square plate subject to a plane stress state is examined (Fig. 7.4). The bottom edge of
the plate is fully clamped, while on the top edge forced displacements uy = 1 and ux = 0 are applied. The
Young’s modulus, Poisson’s ratio, fracture energy, crack propagation increment and side length are given
as E = 200 [N/mm2], v = 0.3, Gc = 2.7 [N/mm2], ∆a = 0.025 [mm] and L = 1 [mm] respectively.

First, the load-deflection curves obtained from several methods are compared: (i) XFEM, (ii) traditional
QT SBFEM, (iii) SBFEM on QT mesh types A-C, (iv) the newly proposed SBFEM method and (v) a high
fidelity SBFEM solution comprising one subdomain with h- and p-refinement. The load-deflection curves
(Fig. 5.22) are constructed using the following procedure:

1. Calculate the critical stress intensity factor Kc from the E-modulus and the critical energy release
rate Gc:

Kc =
√

EGc for plane stress (5.2)

2. Formulate the equivalent stress intensity factor Keq:

Keq =
√

K2
I +K2

I I (5.3)

This implies that the crack propagates as soon as Keq ≤ Kc. Hence, the gSIFs and the sum of the
reaction forces are stored at each iteration.

3. Determine the load factor such that crack propagation initiates, i.e., as the ratio Kc/Keq = 1. The
effective displacements and loads at each crack increment step are calculated by scaling the initially
imposed values by the load factor.

4. Employ the minimum strain energy density criterion (or equivalent) to calculate the crack propaga-
tion angle [285]:

θc = 2tan−1

[
−2K I /K I I

1+
√

1+8(K I /K I I )2

]
(5.4)

uy = 1

E = 200 [N/mm2]
ν = 0.3

L

L

a = L/2

uy
ux

ux = 0

Fig. 5.21: Experimental setup for numerical example A.

For this simple example, the crack paths for all methods coincide, i.e., they propagate in direct extension
of the imposed crack. Investigating the load-deflection behaviour (Fig. 5.22), two reference solutions are
constructed: a high fidelity SBFEM solution (v) employing 568 DOFs and an XFEM solution (i) employing
a domain discretization of 161x161 element (52’488 DOFs). As expected, the traditional approach (ii)
utilizing 1024 DOFs mirrors the reference XFEM solution. Similarly, the correct load-deflection response
is obtained by the novel approach (iv), however, employing only 880 DOFs, i.e., on the same mesh as the
deficient method (iii). The difference in DOFs is attributed to the balancing operation following refinement
around the crack tip, which propagates across the domain.

Given this specific geometry, an exact solution for the crack tip singularity is available, i.e., a square
root singularity, which we exploit for benchmarking purposes. By inspection of Eq. 2.59, this is the case
when all eigenvalues contained in [S(s)] are equal to 0.5. Since the singular eigenvalues depend only on
the boundary discretization, a SBFEs ability to reproduce the exact solution is purely a reflection of its
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Fig. 5.22: Load deflection curves for methods (i) - (v).

approximation space. Hence, by leveraging hp-elements, the error in calculated gSIFs, due to the choice
of approximation space, can be minimized so that the remaining error stems only from the surrounding
mesh discretization. Tbl. 5.4 summarizes the results for the SBFEM based methods given different levels
of refinement. As expected, the hi-fi (v) solution is able to approximate the exact solution to nearly machine

Tbl. 5.4: Convergence of eigenvalues to square root singularity.

Method DOFs λ1 λ2

exact - 0.5 0.5

(ii) trad. 2 34 0.502106496308655 0.502106496308665
3 66 0.500547555626861 0.500547555626900
6 162 0.500088619101087 0.500088619101087

12 322 0.500022191325667 0.500022191325716

(iii) QT mesh A 12 0.543331260622274 0.487073508787698
B 18 0.506300843546734 0.506300843547260
C 34 0.501432879576478 0.501432879577241

(iv) asympt. 3n 66 0.499993111156218 0.499991972174270
3n 98 0.499998547338467 0.499998547338467
3n 130 0.499999524753473 0.499999524753473
5n 42 0.500958236174165 0.500555777249317
5n 68 0.500001822342609 0.500001760606780
5n 106 0.500000389900685 0.500000214938575

(v) hi-fi 578 0.499999999998063 0.500000000000369

precision even with very few DOFs. Both the proposed method (iv) and traditional (ii) approaches deliver
approximations accurate to several significant figures. For method (iv) 3- and 5-noded elements, denoted by
3n and 5n respectively are considered. For method (ii), studies were conducted using either {2,3,6,12} linear
elements per long side of the cracked domain. It can be observed that the proposed method (iv) significantly
outperforms the traditional (ii) approach at similar internal discretization levels. The elements, as they
are employed in method (iii), perform poorly and report significantly fewer accurate digits.

We compare K I obtained by our proposed method (iv) and method (iii) to the hi-fi reference solution (v)
(Tbl. 5.5). Since both methods employ the same mesh, we isolate the gains of the proposed method (iv).
Indeed, for mesh types A and B we observe an improvement in accuracy of the calculated gSIFs by approxi-



5.3. THE MULTISCALE CRACK PROPAGATION SCHEME 103

mately and order of magnitude. For mesh C, however, we approach a limit given by the discretization error
of the underlying mesh and therefore the error cannot be reduced to such a degrees as with the previous
meshes. Nevertheless, accuracy < 1% is readily achieved, indicating a sufficiently accurate solution for
most SIF-based applications.

Tbl. 5.5: Convergence of gSIFs to high-fidelity solution.

Method KI error [-] error [%]

(iii) QT mesh A 18.824826991544300 3.4427 22.38
B 17.144699325716516 1.7626 11.46
C 15.767196554450349 0.3851 2.50

(iv) asympt. A 15.714940415023673 0.3328 2.16
B 15.629945166079814 0.2478 1.61
C 15.457607616329554 0.0755 0.49

(v) hi-fi 15.382113483624098 - -

5.2.3 Conclusions

This contribution demonstrates that the accuracy of gSIFs calculated on hierarchical meshes can be signifi-
cantly enhanced by implementing local refinement of the cracked element, while constraining the boundary
displacements to conform with the surrounding mesh. The error stemming from the element’s ability to
accurately represent the singular stress field is alleviated and the remaining deviation is attributed to the
discretization error introduced by the mesh. The proposed method permits the use of significantly coarse
discretizations of the domain without the need for artificial refinement about the crack tip to obtain com-
parable accuracy of the gSIFs. This benefit is compounded, since the balancing operation employed on the
hierarchical mesh, to arrive at a finite number of precomputable element realizations, is eliminated. Nu-
merical examples have demonstrated that the use of higher order elements and approximately 100 DOFs
in the refined element produce accurate results, while retaining high computational efficiency. The lim-
itations of this approach stem from the linear boundary discretization, imposing artificial constraints on
the solution. The use of higher order elements, such as cubic line elements on hierarchical meshes could
minimize this issue and require the development of targeted implementations for more involved domain
geometries.

5.3 The Multiscale Crack Propagation Scheme

In this contribution, we fuse the SBFEM on balanced hybrid quadtree-polygon meshes with EMsFEM to
accelerate crack propagation simulations. This scaled boundary multiscale approach to crack propagation
employs SBFEM in a fully resolved region immediately surrounding the crack tip and coarse elements,
i.e., EMsFEM unit cells, in the remaining domain. As the crack propagates across the domain, unit cells
within the immediate crack path are resolved. Once the crack completely transitions a resolved unit cell
it is replaced by two newly constructed, coarse unit cells. This approach limits computational effort to the
crack tip region, primarily replacing the fine mesh on the domain by a coarse one, on which the governing
equations are solved. Early results indicate that this method results in a reduction of required DOFs by at
least an order of magnitude for simple domains. Further the techniques introduced in the previous section
are exploited to enrich the crack tip element and further reduce the amount of refinement necessary about
the crack tip. The latter traditionally negatively affects the QT mesh due to the balancing operation.
Via fusion of these two techniques, the amount of DOFs during simulations of crack propagation remains
tractable.

5.3.1 The Proposed Method

The proposed method is split into two distinct phases: online and offline calculations. The offline phase
comprises the identification and precomputation of the coarse elements. The computational burden associ-
ated with the repeated solution of the Dirichlet boundary value problem is minimized by first condensing
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Fig. 5.23: Scaled boundary multiscale approach to crack propagation (MSBFEM).

the internal DOF and then constructing [N], or by decomposing the stiffness matrix by direct methods. The
online phase comprises the crack propagation scheme. To this end, the unit cells in vicinity of the crack tip
are fully resolved, meshed and their elements assembled in the finite element sense. In parallel, the coarse
elements comprising the remaining domain are also assembled and the coarse and fine meshes are tied
together by penalty method (Fig. 5.23, blue lines), to not introduce further DOF in the process. The linear
boundary conditions employed during construction of the unit cells imply linear displacements between
coarse nodes (Fig. 5.23, red dots), defining the tie constraint behaviour. The system is then solved for and
the crack is propagated according to a prescribed crack increment ∆a and computed crack propagation
angle [285]:

θc = 2tan−1

[
−2K I /K I I

1+
√

1+8(K I /K I I )2

]
(5.5)

The accurate calculation of the gSIFs is paramount. However, sufficient angular resolution of the
singular stress field is required. Typically, this is achieved by homogenizing a region around the crack tip
(Fig. 2.11c) at the expense of introducing a significant number of DOF due to the balancing requirement.

5.3.2 Numerical Examples

5.3.2.1 Variant of Plate with Two Holes and Edge Cracks

We consider a variant of the plate with two holes and edge cracks (PwHC) (Fig. 5.24). Notches of length A =
1 [mm] are introduced at a distance L = 4 [mm] from the top and bottom respectively. Displacements are
prescribed on both sides such that [ux,uy]= [0,±0.1]. The material properties are E = 200 [N/mm2], v = 0.3,
K Ic = 1500 [N/mm3/2]. The height and width of the plate are H = 10 [mm] and W = 20 [mm] respectively.
Plane stress conditions are assumed. In a first step, we consider the conventional approach to SBFEM
crack propagation [239]. Fig. 5.25 depicts four snapshots of such an analysis. For this numerical example,
we exploit symmetry, by first averaging the gSIFs and then projecting the new crack tips simultaneously.
This circumvents the necessity for a stability analysis in the presence of multiple propagating cracks. Due
to legibility concerns a significantly coarser representative mesh is presented than is employed for the
actual MSBFEM simulation. Even at this level of discretization it is immediately apparent that:

1. The crack does not interact equally strongly with all regions.
2. Large regions exist, whose properties and topology remain unchanged during analysis.
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Fig. 5.24: Experimental setup for numerical example 1.

Fig. 5.25: Conventional approach to crack propagation employing SBFEM. (Matlab code courtesy of C. Song
at UNSW)

3. Incorporating specific geometric features such as circles and crack paths greatly increase the amount
of DOF present.

4. Homogenizing large regions at the crack tip with subsequent balancing of the quadtree significantly
increases the amount of DOF present.

Therefore, the MSBFEM approach to crack propagation aims at reducing the computational effort required
to perform a crack propagation analysis by:

1. exploiting the unchanged and repetitive portions of the mesh.
2. excepting a slight decrease in accuracy in the predicted crack propagation path in favor of signifi-

cantly accelerating the analysis.

To this end, several possible levels of discretization by CMX elements are investigated (Fig. 5.26).
In a first approach a grid of 4x8 possible conventional CM4 elements was considered. Only two unique
coarse elements have to be constructed, denoted by 1 and 2 respectively in Fig. 5.26. The inclusion can be
treated by rotating the stiffness matrix of coarse element 1 using conventional approaches. However, this
discretization does not result in an accurate reconstruction of the crack path, as is evident by inspection
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Fig. 5.26: Several possible domain discretizations employing CMX elements (red), the fine grid (green),
tie-constraints (blue) and coarse nodes (black dots). All NBFs are constructed subject to linear boundary
conditions. The final crack propagation snapshot is depicted.

of Fig. 5.27. The stress field in crack propagation direction is heavily influenced by the surrounding CM4
element, which enforce a linear displacement field on their boundaries. Relaxing this requirement at
similar coarse discretization levels is the second approach employing a 2x4 grid of CM8 elements. Since
CMX elements are replaced with their fine grid as they are approached by the crack tip, larger elements
do permit more accurate crack path prediction, however, at the cost of significantly greater DOF. Although
a crack path affine to the conventional SBFEM approach is observed, the CM8 element containing the
inclusion impacts the accuracy of the stress field during early iterations and therefore prompts the crack
path to deviate. Two further discretization levels were considered: 4x8 grids of CM8 and mixed CM8
& CM16 coarse elements. Effectively, the amount of coarse nodes was doubled with respect to the two
previous variants. Both variants manage to accurately reproduce the conventional SBFEM crack path,
while only resolving a narrow band of the domain. The mixed variant is preferred due to the following
reasons and will therefore be further discussed in the subsequent numerical example:

• It accurately captures the inclusion with a CM16 element, without having to exploit rotation symme-
try. Further, it could also treat the inclusion if it where not centered with respect to the element.

• Given that the MSBFEM could be employed across an arbitrary number of scales, we demonstrate
here that the CMX elements can be employed to treat hanging nodes in an adaptive setting.

• Additionally, the CMX elements are not constrained to rectangular geometries. The ability to con-
struct polygonal coarse elements is highly beneficial in complex meshing applications.

5.3.2.2 Notched Perforated Plate

A perforated plate as depicted in Fig. 7.4 is considered. A notch of length A = 1 [mm] is introduced at a
distance L = 18 [mm] from the bottom right corner. Displacements are prescribed on both sides such that
[ux,uy]= [±0.1,0]. The material properties are E = 200 [N/mm2], v = 0.3, K Ic = 1500 [N/mm3/2]. The height
and width of the perforated plate are H = 24 [mm] and W = 60 [mm] respectively. Plane stress conditions
are assumed.

Fig. 5.29 depicts various snapshots of the various crack propagation phases. During phase 1, the ini-
tial discretization is employed, i.e., a fine mesh (green) immediately surrounding the crack front (orange),
encased by CM8 and CM16 homogenized elements (red) and tied together by penalty method along the
interface (blue). While the conventional SBFEM requires approx. 52’000 DOF, the scaled boundary mul-
tiscale approach (MSBFEM) employs 2268 DOF, reducing the amount of DOF by a factor of 22, without
perceivable altering the crack path (Fig. 5.30). Once the crack tip falls within a user specified distance to
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Fig. 5.28: Experimental setup for numerical example 2.

the adjacent CMX elements, here chosen as one fifth of a CM8 element side length, these are fully resolved
as well, resulting in phase 2 (Fig. 5.29). Analysis by conventional SBFEM results in approx. 58’000 DOF,
while MSBFEM employs 4318 DOF, a reduction by a factor of 13. However, the crack paths calculated by
the two methods starts to deviate slightly. This is the effect of the linearized boundary conditions, which
result from the method with which the multiscale NBF are computed, prescribed on the fully resolved re-
gion (green). The imposed linear boundary conditions artificially over-constrain the unit cell, resulting in
a stiffer response on the coarse scale, thus impacting the accuracy of the calculated stress field on the fine
scale.

In phase 3 (Fig. 5.29) the crack has transitioned all fully resolved blocks from phase 2. Hence, this re-
gion can be replaced by corresponding CMX elements (purple) without incurring a loss in accuracy. To this
end, the crack path is smoothed into linear segments joined by the CMX coarse nodes. The computational
effort expended in constructing these CMX (purple) elements online is expected to be recuperated over few
subsequent crack propagation steps. Indeed, while SBFEM requires approx. 65’000 DOF for analysis, the
proposed MSBFEM scheme makes due with 2436 DOF, a reduction by a factor of 26. If the online phase
where to be forgone, the MSBFEM approach would require 6386 DOF and only result in a reduction by a
factor of 10. The crack paths do continue to diverge slightly with the effects becoming more visible. First,
small deviations are compounded across all crack propagation steps. Second, linearized boundary condi-
tions in the narrow, fully resolved band (phase 3, green) affect the stress state to a greater degree than in
the previous phases. By inspection of the two crack paths it seems as if the MSBFEM approach is more
resistant to local stress concentrations influencing the gSIFs and thus the crack path incorporates fewer
sharp changes in direction as seen in points A, B and C in Fig. 5.30.

5.3.3 Conclusions

MSBFEM is an effective scheme to focus the computational burden of crack propagation analysis on select
regions. This is achieved by substituting regions characterized by weak interaction with coarse elements
constructed by EMsFEM. To this end, the amount of DOF present is reduced by more than an order of
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magnitude as demonstrated by the crack propagation analysis of a notched, perforated plate. Further,
exploiting SBFEM’s unique feature set to enhance the quality of calculated gSIFs in post-processing is
shown to further reduce the required number of DOFs for standard crack propagation analysis in the fully
resolved region. This reduction in the set of active DOFs does not hinder accuracy; the resulting MSBFEM
crack path closely resembles the SBFEM reference case.
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Accelerating the Inverse Problem

111





6 Damage Localization

The solution to the inverse problem as stated in sec. 2.5.1 is achieved by minimizing a fitness function
using global optimization algorithms. This process entails the repeated evaluation of the forward problem
for different realizations of the design variables, e.g., number of flaws, shapes, sizes and locations, each
resulting in a fitness score. Hence, the method by which the forward problem is solved must be parametric,
robust and preferably computationally efficient. The present work marks the first time that SBFEM is
harnessed to solve the associated forward LEFM problem. It is especially suited for this task, among others,
due to the simplified meshing, precomputation potential and the ability to naturally capture singularities,
with each detailed in the following subsections.

6.1 The Damage Localization Scheme

In this thesis, an accelerated optimization scheme is proposed, which is largely independent of the cho-
sen global optimization algorithm. In the forward problem, precomputation and reanalysis are exploited,
whereas in the inverse problem, techniques to parameterize and constrain the inverse problem are treated.

6.1.1 Precomputation

The introduction of a flaw in the analysis domain only affects select cells of the quadtree (Fig. 6.1, red). The
properties of unaffected cells as well as the imposed boundary conditions and loading remain unchanged.
Owing to the hierarchical nature of the quadtree decomposition, any alterations resulting from the intro-
duction of a flaw can be condensed out to the original configuration. Hence, only the treatment of a much
smaller problem is necessary. To this end, a forward analysis of the undamaged system is performed prior
to the global optimization loop, establishing the structures stiffness matrix, load vector and displacement
solution. Further, this serves as a baseline for the strain readings. The affected cells are treated in the stan-
dard SBFEM sense by modifying the quadtree, balancing it, introducing polygonal elements as required
and finally computing the associated element properties. A condensation step applied to the modified cells
reduces the problem statement to the original mesh, however, with rank one updates corresponding to the
DOF of each updated cell. The treatment of rank one updates in linear static analysis is well researched
and commonly classified as reanalysis techniques.

6.1.2 Reanalysis Technique

In this work, the reanalysis techniques described in [151] are implemented and stated here for complete-
ness. Such techniques are commonly employed to accelerate iterative simulations on marginally varying
structures. They derive their expedience by considering the effect of an introduced stiffness perturbation
on the resulting displacement field. If the perturbation effects are highly localized, the associated com-
putational effort is marginal. The incremental stiffness matrix [∆K] containing the perturbed quantities
is compressed by pre- and post multiplying by boolean matrix [b], resulting in the reduced incremental
stiffness matrix [KR] of size equal to the rows and columns affected by the perturbation.

[∆K]= [b]T [∆KR][b] (6.1)

Hence, by exploiting the Woodbury matrix identity, the inversion of the stiffness matrix [K] subject to a
perturbation [∆K], is stated as:

[K]−1 = ([K0]+ [b]T [∆KR][b])−1 = [K0]−1 − [K0]−1[b]T ([I]+ [∆KR][b][K0]−1[b]T )−1[∆KR][b][K0]−1 (6.2)

113
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where [I] is the identity matrix of size([∆KR]) and [K0] the initial stiffness matrix available as [K0] =
[U0]T [U0], e.g., from a previous Cholesky decomposition, with [U0] an upper triangular matrix. The re-
sulting displacements follow as the superposition of the initial displacements {r0} and the displacement
increments {∆r}:

{r}= {r0}+ {∆r} (6.3)

Post multiplying Eq. 6.2 by {F0}, the initial force vector, substituting the initial equilibrium equation
[K0]{r0}= [F0] results in:

{∆r}=−[K0]−1[b]T ([I]+ [∆KR][b][K0]−1[b]T )−1[∆KR][b]{r0} (6.4)

Therefore, the computational toll of updating the displacement field is primarily attributed to the inversion
of the reduced unsymmetrical matrix ([I]+ [∆KR][b][K0]−1[b]T )−1. Two substitutions are performed to
permit a positive-definite expression. To this end, the symmetric influence matrix of unit changes [Q] and
an associated rectangular matrix [Z] are introduced:

[Q]= [b][K0]−1[b]T = [b][U0]−1([U0]T )−1[b]T = [Z]T [Z] (6.5)

resulting in the final expression for the update of the displacement field:

{∆r}=−[U0]−1[Z][Q]−1([Q]−1 + [∆KR])−1[∆KR][b]{r0} (6.6)

6.1.3 Design of Experiment

The convergence behaviour and rate of the selected global optimization algorithm is highly dependent of
the choice of fitness function. Ideally, a fitness function should exhibit the following criteria:

• Permit a simple evaluation with physically interpretable results
• Result in a smooth response surface, not too shallow or too steep as to become ill-posed.
• Feature as few local minima as possible

The strategy with which the corresponding response surface is explored, depends on the global algorithm
of choice. As is demonstrated in sec. 6.2 different families of global optimization algorithms can obtain
convergence with significantly fewer function evaluations. Similarly, it is apparent that by increasing the
number of function evaluations, any global optimization algorithm is empirically capable of converging.

In select cases, commonly associated with an irregular analysis domains, candidate flaws must be re-
jected. Accepted procedure for such instances entails assigning a penalty factor, which leads to a loss of
information. First, all design variables comprising the candidate flaw are rejected, though the rejection
might have only been triggered by a subgroup of design variables. Second, it is highly likely that the
admissible design variables were selected to improve the flaw’s localization. However, these will not be
evaluated. Third, some implementations of global optimization algorithms do not resample a candidate
flaw once one has been rejected via penalty. Hence, especially for algorithms where few candidates are
spawned for each iteration, a significant portion of information is lost. Further, a resampling when can-
didates were previously selected to be as independent as possible, may not yield new insight. In order to
avoid most issues presented above, and thus accelerate the convergence and analysis, special care is given
to the parametrization of the introduced flaw. Using the example of straight cracks, two approaches arise.
In the first approach the x-/y-coordinates of the two crack tips constitute the design variables.

The second approach requires the specification of the crack center, the crack angle and the crack length.
Both approaches require the optimization of four design variables. The first approach, however, dictates a
symmetric solution, since the same crack is introduced regardless of crack tip order. Hence, the solution
space contains two global and twice the amount of local minima, which encumbers the optimization process.
The second approach requires special treatment when transitioning from edge to embedded cracks. Since
the information provided by the design variables is not sufficient to prevent unphysical cracks or splitting of
the analysis domain, an increased amount of candidate flaws must be rejected. Identical for both methods
is the difficulty and computational toll to treat an arbitrary amount of flaws. Typically, a handful of cracks
are introduced and de-/activated as required. Provided the analysis concludes with the maximum amount
of cracks active then further analysis must be conducted with a higher upper limit. Since locating the
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global minimum by global optimization algorithms is not guaranteed, it is advised to perform multiple
detection runs to avoid reporting local minima instead.

Within a structural health monitoring context, localization of flaws to within extreme accuracy is usu-
ally not necessary: Identifying the correct component or part as well as general flaw location and orienta-
tion is sufficient in order to target subsequent inspections effectively. Owing to this relaxation of require-
ments, a discrete representation of the design variables (e.g., crack center, length and angle) is introduced
to substantially reduce the search space. The dis-/advantages are discussed by means of the GA-bitstring
variant (sec. 6.2). Ideally, the user-specified mapping between discrete variables defined by a set of bits
and corresponding physical representation:

• minimizes the amount of rejected candidate flaws.
• uniquely discretizes the search space of each physical design variable (e.g., number and stepping of

possible realizations) subject to upper and lower bounds.
• permits de-/activation of flaws

However, issues arise, since the global optimization algorithm is not aware and therefore cannot take full
advantage of the user-specified mapping:

• Mapping adds an additional transformation between bitstring input and the physical representa-
tion of the design variable, which impedes the development of efficient exploratory and exploitative
behaviour.

• Cyclic design variables, e.g., crack angle, encounter wrap-around issues, which can limit their real-
ization to either the upper or lower bound.

Although most of the described issues only complicate analysis and implementation, some issues re-
main: Behaviour associated with crack overclosure can result in unphysical symmetry conditions. Fa-
voring an expedient analysis, such behaviour is permitted and left for the engineer to catch during the
interpretation of results.

6.1.4 The Implemented Steps

The proposed scheme focuses on the forward problem to accelerate the optimization, the effects of which
can be quantified prior to analysis and have been shown to increase computational efficiency. The most
suited fitness function definition, parametrization and constraining of the design variables is rarely known
in advance, owing to its problem dependency. Hence, these effects are studied in sec. 6.2 for fracture
mechanics problems.

The proposed scheme incorporates four steps (Fig. 6.1):

1. Precompute uncracked domain
In the first step, the system is analyzed in its undamaged state. This entails the quadtree decomposi-
tion, polygon clipping and the assembly of the system-level quantities followed by one linear solution
step to obtain the displacements.

2. Update crack region
With the second step, the global optimization algorithm commences. A flaw is introduced into the
domain. The blocks containing the crack are located. Only these effect the computational toll. If
refinement is necessary (each block can only contain one crack tip), it is performed accordingly. The
stiffness matrices for the crack tip elements are updated. Split blocks receive similar treatment.

3. Solution
Changes to precomputed blocks are condensed out so that only the DOF and blocks of the original,
undamaged state remain. Modifications in the stiffness properties of those blocks affected by the
introduced crack are gathered and form the basis for the reanalysis technique introduced in sec. 6.1.2.

4. Post-processing
Once the updated displacements are obtained, the strains are back-calculated at the sensor locations,
permitting the evaluation of the fitness score.

As a reference and to better understand the reporting in the numerical examples section, an early
variant of the acceleration scheme is described in Fig. 6.2. In it, reanalysis techniques are not leveraged
yet. Instead of condensing out the changes due to the presence of the crack, thus potentially working



116 CHAPTER 6. DAMAGE LOCALIZATION

Precompute uncracked domain

Quadtree

Split blocks

Stiffness matrix & force vector

Blocks

Polygons

Update crack region

Append Quadtree

Split blocks

calculate split element
stiffness matrices

Condense

Solve

Reanalysis

Post-process

Strains at sensors

fitness score

Start Inverse Analysis

Finish Inverse Analysis

Global Optimization Algorithm

Fig. 6.1: Proposed accelerated damage localization scheme leveraging reanalysis. System comprising re-
computed quantities on the right with split quadtree blocks in blue. System with region affected by crack
in red and identified crack in green. For the proposed acceleration scheme only the DOF of the red blocks
contribute to the overall computational effort.

with a small subdomain, the few pertinent positions of the precomputed sparse matrix assembly vectors
are overwritten and appended where necessary. Hence, large portions of a conventional FEM analysis
are omitted. However, the full system must still be assembled, have the appropriate boundary conditions
applied to it and then be solved.
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Fig. 6.2: Intermediate acceleration scheme referenced in sec. 6.2 for comparison purposes.

6.2 Numerical Examples

Unless otherwise mentioned (as in sec. 6.2.4), the “measured system response” stems from a fine mesh
reference solution obtained by the commercial Software Abaqus, with the intent of avoiding the so-called
inverse crime. However, in practice this is increasingly difficult, due to the high convergence rates asso-
ciated with SBFEM on adaptive QT meshes: The norm, calculated by Matlab’s built-in norm function, for
example, considering the difference in strains between the fine mesh reference solution (Fig. 6.3a) and an
SBFEM solution employing QT meshes (Fig. 6.3b), differs only by ||{ε(m)}− {ε(h)}|| = 0.009859. This calcula-
tion is based on the 16 sensors (Fig. 6.3, red), each containing three strain components.
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(a) (b)

Fig. 6.3: Example of reference and QT mesh. Sensor locations depicted in red. Elements affected by
treatment of edge crack highlighted in blue.

6.2.1 Edge Crack in Square Plate

This first numerical example considers the detection of an edge crack in a square plate. To this end, the
star-convex domain can be represented by one SBFEM subdomain, facilitating the algorithmic implemen-
tation. The Young’s modulus E, Poisson ration ν and side length L are given as 200 [N/mm2], 0.3 and 1
[mm] respectively. The crack length a, crack angle α, the number of sensors per edge and the loading con-
ditions are considered as analysis parameters and treated in separate cases. GA is chosen as the optimizer
and the fitness function considers displacements, i.e., f (θ) = ||{um}− {uh}||/||{um}||. The base of the square
plate is clamped, while the top edge is subjected to loading. For this example the GA population type is
specified as a bitstring, in which the design variables can only take on the discrete values of 0 and 1. Hence
portions of the vector of design variables are grouped and function as a basis for the discretization of the
feasible search space. The location of the associated crack tips results from a mapping of the binary digits
to corresponding discrete Cartesian coordinates.

To this end, lower and upper bounds do not need to be specified explicitly, but are enforced by the un-
derlying mapping. For this numerical example, a bitstring containing 13 entries is employed, of which 7
discretize the region outside the square plate into a grid of 64x64 feasible crack tip locations (Fig. 6.4, or-
ange), while the remaining 6 define a 32x32 grid inside the domain (Fig. 6.4, blue). The resulting crack line
is then clipped at the boundary resulting in the effectively introduced edge crack (Fig. 6.4, green). Results
are reported by the following measure of detectability, which considers the distance between imposed (m)
and identified (h) crack tip locations:

D =
√

(xm
1 − xh

1 )2 + (ym
1 − yh

1 )2 + (xm
2 − xh

2 )2 + (ym
2 − yh

2 )2 (6.7)

where x and y refer to the Cartesian crack tip locations and the subscripts 1 and 2 denote the individual
crack tips. It follows that lower detectability scores equate to improved identification.

6.2.1.1 Case 1: Varying Crack Angles

For this case, the detection of cracks angled at α = {−30,0,30,60,90◦} is considered. To this end, two load
cases are treated. In the first setup, the specimen is loaded purely in tension, while in the second setup
two orthogonal loads are considered by the addition of a shear loading (Fig. 6.5). The detectability scores
are provided in Fig. 6.6 for single and double load cases respectively. For each test, 15 individual runs were
performed with the results reported as box-plots.

Using both loading conditions significantly improved detectability is observed for vertical cracks. Since
for pure tension loads, any vertical crack will minimize the fitness function, the problem is severely ill-
conditioned. The addition of a second, orthogonal load, i.e., the shear load, significantly improves upon the
detectability, though 6/15 of the runs converge to a local minimum.
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Fig. 6.4: Edge crack, case 1. Discretization of the domain into feasible crack tip locations by employing
bitstrings. Points associated with the crack tip 1 in orange, crack tip 2 in blue and resulting edge crack in
green.

α

Fig. 6.5: Edge crack, case 1. Domain with investigated crack angles, loading and sensors per edge (black
nodes).

(a) (b)

Fig. 6.6: Edge crack, case 1. Detectability scores for varying crack angles and load cases.

For the case of α= 0, the outcome of 30 runs is plotted in Fig. 6.7a. While the crack tip location within
the domain is well captured, the one outside is subject to large variability, bounded by the neighboring
sensor locations. This becomes apparent when considering the associated response surface of the fitness
function (Fig. 6.7b): Sharp transitions between plateaus are observed. While identification of the proper
plateau is readily achieved, optimization within is not.
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(a) (b)

Fig. 6.7: Edge crack, case 1. Effects of ill-posedness of the inverse problem on the accuracy of crack tip
identification.

6.2.1.2 Case 2: Varying Amount of Sensors

In this case (Fig. 6.8), the effect of varying the amount of equally spaced sensors along with its influence
on permitting the accurate detection of crack tips is studied. 15 runs are performed per test. Fig. 6.10
summarizes the detectability results, while Fig. 6.9 depicts the identified cracks. Although 200 generations
and a population size of 50 seem sufficient to determine the crack tip locations using four or more sensors
per edge, several non-converged results are observed when using 3 sensors per edge. In the case of 2
sensors per edge, the ill-posedness of the problem additionally suggests a strong local minimum. It is
demonstrated that the amount of sensors plays a key role in the detection of damage. For the case of
real-world structures, where sparse sensing networks are common, this imposes severe limitation.

Fig. 6.8: Edge crack, case 2. Specimen geometry with imposed crack and sample sensor placement as black
nodes.

Fig. 6.9: Edge crack, case 2. Identified crack tip locations when employing a variable amount of sensors
per edge.
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Fig. 6.10: Edge crack, case 2. Detectability score for variable amount of sensors.

6.2.1.3 Case 3: Varying Crack Length

In this case (Fig. 6.11), we study the effect of crack size on detectability. To this end, crack lengths with
a/L = {0.33,0.25,0.2,0.15,0.1} are studied. Crack lengths as small as a/L = 0.15 are accurately detected by
the proposed scheme. However, due to the shallow characteristics of the response surface, the identified
crack tips are scattered about the imposed crack. This is in part also attributed to the GA bitstring ap-
proach: The GA is exceptionally versatile in exploring a domain, at the expense of exploitability. Hence,
it tends to identify depressions in the response surface, yet cannot efficiently determine its minimum. Al-
though this may be alleviated by tuning the analysis parameters, a problem specific solution would be
obtained. As is observed in Fig. 6.12b the use of four sensors per side admits outliers, i.e., unconverged
runs, when specifying 200 generations. This is reflected in erroneous crack tip identifications. The use of
a greater number of sensors per edge, e.g., six (Fig. 6.13) alleviates this issue and provides a tighter bound
for the scattering of results.

L

Fig. 6.11: Edge crack, case 3. Specimen geometry with imposed cracks of variable length.

6.2.2 Embedded Crack in Square Plate

This numerical example considers the detection of an embedded crack within a square plate. Such prob-
lems could be tackled with a similar approach to the one demonstrated in the first example, i.e., using two
large subdomains, each containing one crack tip, to simulate the forward problem. Since this approach,
however, breaks down in the presence of multiple flaws, the QT decomposition is employed for all remaining
examples. The material properties and the domain description remain unchanged. Varying crack angles
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(a) (b)

Fig. 6.12: Edge crack, case 3. Detectability and resulting realizations for varying crack lengths and 4
sensors per edge.

(a) (b)

Fig. 6.13: Edge crack, case 3. Detectability and resulting realizations for varying crack lengths and 6
sensors per edge.

α, crack length and number of sensors per edge are investigated. Four optimization algorithms are con-
trasted, GA, particle swarm optimization (PSO), covariance matrix adaptation evolution strategy (CMA-
ES) and pattern search (PS). Further, the acceleration scheme proposed in sec. 6.1.4 is implemented and
contrasted to the intermediate acceleration scheme (Fig. 6.2) and the conventional approach. The amount
of design variables is limited to four continuous real numbers corresponding to the (x,y)-coordinates of the
two crack tips. Their lower and upper bounds are chosen as [-0.05,1.05]. Initial analysis runs employing
1000 generations and 100 individuals per generation, where applicable, 1 indicated that 100 generations
à 50 individuals are sufficient in order to arrive at converged results. The fitness function adopted for all
following numerical examples is based on strains (Eq. 2.88), since the displacement-based response surface
exhibited undesirable plateau characteristics, aggravating the ill-posedness of the inverse problem.

6.2.2.1 Case 1: Varying Crack Angles

This case study investigates the proposed scheme’s ability to effectively identify cracks at varying orienta-
tions, as depicted in Fig. 6.14. The crack center is chosen slightly off-center with (x,y)-coordinates (0.6,0.6).
Four sensors per edge are considered. 15 runs of each GA, PSO, CMA-ES and PS were performed and
the detectability scores are summarized in Fig. 6.15. Both GA and PSO converge to within 1.5% of the
imposed crack tip locations. However, both exhibit one run at crack angle α = 0, i.e., the outlier, which
converges towards a local minimum instead. Comparing to the previous numerical example implementing
a displacement-based fitness function, the utilization of strain data results in tighter detectability bounds.
The PS, however, suffers from convergence issues, often diverging towards a local minimum for crack an-
gles of -30 and 0◦, with outliers also present for crack angles of 60 and 90◦. Convergence plots for α=−30◦

and a = 0.3 averaged over 15 runs are provided in Fig. 6.16a across iterations and Fig. 6.16b across function
evaluations. The convergence issues of PS are apparent considering the values for the mean fitness func-
tion, where 4/15 runs diverge to a local minimum. The number of function evaluations required to reach
a converged solution is directly proportional to the computational effort involved in an inverse analysis.
Both GA and PSO, in their most basic form, require the specification of the amount of generations and

1This analysis performed with GA, traditionally the weakest of the methods compared, completed in just under 2 hours on a
4-core Intel Xeon E3-1225v3 @ 3.2 Ghz.
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the associated population size. CMA-ES and PS contain inherent mechanisms to autonomously regulate
the population size, thereby typically requiring fewer function evaluations. A representative analysis em-
ploying a conventional GA approach require 27 minutes, while the intermediate and proposed acceleration
schemes conclude in 5.4 and 2.2 minutes respectively, manifesting a reduction in computational time by
over an order of magnitude. Analyses by CMA-ES and PS typically complete at least twice as fast.

α

α = var., a = 0.3L

Fig. 6.14: Embedded crack, case 1. Specimen geometry with imposed crack at varying angles. Sensor
placement at black nodes.
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Fig. 6.15: Embedded crack, case 1. Detectability scores for global optimization algorithms across varying
crack angles.

6.2.2.2 Case 2: Varying Crack Lengths

In this case study (Fig. 6.17), the proposed scheme’s ability to localize cracks of varying lengths is investi-
gated, with a/L = {0.5,0.3,0.2,0.15,0.1}. Four sensors per edge are considered. The resulting detectability
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Fig. 6.16: Embedded crack, case 1. Convergence plots for the global optimization schemes under consider-
ation. In yellow the average of all PS-based runs. Purple only considers the converged subset.

scores are summarized in Fig. 6.18. Again GA, PSO and CMA-ES perform well and manage to accurately
localize crack of various lengths. However, for crack lengths of 0.15 and 0.1, GA admits select outliers,
which correspond to divergence towards local minima. Further, all methods demonstrate increased dif-
ficulty for the smallest imposed crack length. The mean crack localization by PS is of similar accuracy,
however the frequent occurrence of diverging runs excludes its application to damage localization schemes.
In Fig. 6.19 an outtake of the fitness function evolution vs. function evaluations is plotted for the case of
a = 0.15. Therein, the rapid convergence of the CMA-ES is depicted as is evident by the slope of its curve.
While GA admits a gradual convergence behavior, PSO tends to explore the entire domain in a first step
(exploratory criterion) and then proceed with rapid convergence (exploitative criterion). In order to justify
the use of global optimization algorithms over gradient based methods, a proxy fitness function response
surface is plotted in Fig. 6.20. It is obtained by keeping one crack tip constant and varying the second
across a grid. The resulting response surface is of a multi-nodal nature with areas of high boundary noise:
Although the depression of the global minimum occupies a significant portion of the domain, the presence
of select local minima warrant the adoption of global optimization methods.

a

α = −30◦, a = var.

Fig. 6.17: Embedded crack, case 2. Specimen geometry with imposed crack of varying length. Sensor
placement at black nodes.

6.2.2.3 Case 3: Varying Amount of Sensors

In this last case, the effect of the amount of sensors present during analysis is revisited. For the domain
with geometry depicted in Fig. 6.21, between two to seven sensors per edge are considered. The detectabil-
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Fig. 6.18: Embedded crack, case 2. Detectability scores for global optimization algorithms across varying
crack angles.
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Fig. 6.19: Embedded crack, case 2. Convergence plots for the global optimization schemes under consider-
ation. In yellow the average of all PS-based runs. Purple only considers the converged subset.

ity scores across 15 runs are given in Fig. 6.22. The PSO achieves best detection rates, whereas the GA
admits outliers when only two or three sensors are present. PS does not converge reliably, mirroring the
outcome of previous tests. CMA-ES manages to replicate the excellent detectability score of the PSO, how-
ever, it exhibits difficulty to converge towards a consistent result when only two sensors are present per
side. This is mainly attributed to the difference in amount of function evaluations: While PSO obtains
domain information though 5000 function evaluations, CMA-ES only relies on slightly over 800.
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Fig. 6.20: Embedded crack, case 2. Response surface of the fitness function, given the impose crack in pink.
The location of crack tip 1 is held constant, while for crack tip 2 it is variable.

α

α = var., a = 0.3L

Fig. 6.21: Embedded crack, case 3. Specimen geometry with imposed crack and variable amount of sensors.
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Fig. 6.22: Embedded crack, case 3. Detectability scores for global optimization algorithms across varying
crack angles.
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6.2.3 Multiple Inclusions in Square Plate

In this numerical example, the detection of multiple inclusions in a square plate is investigated (Fig. 6.23).
The identical material parameters and geometric description of the domain from the previous two numer-
ical examples is adopted.
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x1 = 0.200
y1 = 0.300
r1 = 0.150

x2 = 0.350
y2 = 0.350
r2 = 0.100

x3 = 0.550
y3 = 0.250
r3 = 0.075

Fig. 6.23: Multiple inclusions. Specimen geometry with imposed inclusions.

The inclusions are incorporated by assigning a secondary material with Young’s modulus three orders
of magnitude smaller than its surroundings. Four sensors are utilized per edge. Only circular inclusions
are considered, each described by three design parameters, i.e., the (x,y)-coordinates of its center and
radius. Up to three inclusions are treated, each associated with a topological variable, which governs its
de-/activation. Hence a total of 12 real, continuous design variables is considered. The design variables
associated with the inclusion’s center are prescribed an upper and lower bounds within the domain, while
the inclusion’s radius r is constrained to 0.05L ≤ r ≤ 0.6L. Within the span [0,1], topological variables are
seen to deactivate an inclusion for realizations less then 0.5. Only GA and PSO are considered. Fig. 6.24
depicts the best candidate solution after a given number of generations.

initial guess 20 Generations

60 generations 80 generations

40 Generations

final localization

GA
PSO

Fig. 6.24: Multiple inclusions. Evolution of the best candidate solution for the identified inclusions across
generations for GA (blue) and PSO (red). The impose inclusions are in black.

Tbl. 6.1 lists the associated output data for the final identification for both the GA and PSO. In Fig. 6.25,
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the convergence behavior of the GA and PSO is illustrated. Both optimizers manage to accurately capture
all three inclusions accurately. The candidate inclusions predicted by the PSO are slightly closer to those
imposed. At times the GA struggles to identify all inclusions and can return a local minimum, where the
cluster of two small inclusions is replaced by a single, large one, as depicted in Fig. 6.26.
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Fig. 6.25: Multiple inclusions. Convergence of the GA and PSO across generations.

GA

Fig. 6.26: Multiple inclusions. Example of divergence towards a local minima.

Tbl. 6.1: Multiple inclusions. Imposed and identified values describing the crack geometry.

Parameter Imposed PSO GA

x1 0.200 0.198 0.204
y1 0.300 0.304 0.308
r1 0.150 0.137 0.156
x2 0.350 0.355 0.341
y2 0.350 0.352 0.338
r2 0.100 0.097 0.082
x3 0.550 0.542 0.561
y3 0.250 0.243 0.237
r3 0.075 0.081 0.088
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6.2.4 Embedded Crack in Rectangular Plate Employing Real-world Strain Measurements

In this numerical example, the proposed damage localization scheme is applied to real-world measurement
data. The setup proposed and detailed in [66] is adopted (Fig. 6.27). The measured vertical and horizontal
strain components are plotted against simulation results obtained by SBFEM (Fig. 6.28). While the overall
response is captured, several sensors display readings, which do not match the numerical simulations
well (both components of sensor 7 and one component of sensor 4). These components are disregarded
and do not contribute to the fitness function. In [66], additional calibration of the model was performed
after conducting the baseline strain reading to achieve a satisfactory fit between numerical prediction and
measurement. This is omitted here with the intent of incorporating noise into the simulation. To permit
a fair comparison, a GA optimizer is employed across 250 generations with population size 7. The upper
and lower bounds imposed on the design variables are [1-11] inches for the x-component of the crack tips
x1 and x2 as well as [1-23] inches for the y-component of the crack tips y1 and y2. The uncertainty in the
measurement data manifests as a shift in global minimum of the response surface. A representative run
is illustrated in Fig. 6.29. Although the general crack tip region is identified the precise location cannot.
Tbl. 6.2 summarizes this finding.
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Fig. 6.27: Rectangular plate. Plate geometry, loading and sensor placement. Imposed crack in red.
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Fig. 6.28: Rectangular plate. Comparison of measured and simulated strain for both horizontal and vertical
directions.
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initial guess generation 75

final localizationgeneration 150

GA

Fig. 6.29: Rectangular plate. Evolution of the best candidate solution for the identified crack across gener-
ations. Imposed crack in red, candidate crack in blue. One half of the domain is modeled.

Tbl. 6.2: Rectangular plate. Imposed [66] and identified values describing the crack geometry.

Parameter Imposed Identified

x1 6.3976 5.92
y1 14.6457 14.31
x2 6.9882 6.76
y2 14.6457 14.74

6.2.5 Embedded Crack in Wing

In this numerical example, the proposed damage localization scheme is extended to non-regular geome-
tries. A wing-like structure with loading and boundary conditions as depicted in Fig. 6.30 is considered.
The aim is to accurately localize one imposed crack. A reference solution is obtained from a high fidelity
SBFEM analysis, with elements four times as fine as permitted in the inverse analysis. Sensors (Fig. 6.31,
red) are placed about the perimeter and at specific QT nodes, known to exist across all simulation runs.
Due to the non-regular geometry, specification of upper and lower bounds proves intricate for the design
variables describing the candidate crack, i.e., the (x,y)-coordinates of the crack tips. Therefore, the bounds
are specified spanning a unit square, combined with a mapping function that projects the design variables
onto the wing span using conventional translation, rotation and stretch matrices. The CMA-ES is adopted
for efficiency reasons. 100 generations are found to be sufficient in obtaining converged results. CMA-ES
autonomously determines the amount of individuals required per generation. Fig. 6.32 depicts the evo-
lution of the best candidate solution across function evaluations. In Tbl. 6.3 the identified values for the
individual design variables are contrasted to the those imposed and the convergence graph of the fitness
function is plotted in Fig. 6.33. The crack parameters are very well identified. This can be attributed to
two factors: The use of an SBFEM-based reference solution and the increased amount of sensors avail-
able. Future studies should therefore include noise in simulation data in order to combat the former. The
analysis comprises 801 function evaluations across 100 generations. The intermediate acceleration scheme
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requires 186 seconds to complete, whereas the proposed acceleration scheme requires 114 seconds. In the
process, the initial candidate crack, starts off as an and arbitrarily oriented edge crack and after several
function evaluations aligns itself with the imposed crack direction. After a period of predominant trans-
latory movement towards the imposed crack, the candidate crack’s length estimate is refined. In a final
phase, small adjustments to the design variables fine tune the identified crack parameters, although after
approximately 400 function evaluations the crack is localized to sufficient accuracy for subsequent SHM
applications.

Fig. 6.30: Cracked wing. Specimen geometry with imposed crack (green), clamped boundary conditions on
right edge and loading at wing tip.

Fig. 6.31: Cracked wing. Sensor locations on wing boundary and within domain encircled in red.

Tbl. 6.3: Airplane wing. Imposed and identified values describing the crack geometry.

Parameter Imposed Identified

x1 0.600 0.591
y1 0.475 0.484
x2 0.635 0.636
y2 0.545 0.542
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Fig. 6.32: Cracked wing. Evolution of the best candidate solution (red) for the identified crack across
function evaluations. The impose crack is in green.
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Fig. 6.33: Cracked wing. Convergence of the CMA-ES across function evaluations.

6.3 Conclusions

A methodology for localizing damage in 2D structures by fusion of SBFEM with global optimization algo-
rithms is presented. Several numerical examples demonstrate its capability to detect the location of a crack
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and multiple inclusions present in a domain, even when the geometry is non-regular. Further, sensing data
extracted from real-world tests was successfully employed to accurately determine a crack’s location within
a metal plate. Moreover, parallel programming techniques combined with precomputation and reanalysis
are exploited to accelerate conventional damage localization schemes by close to an order of magnitude for
the presented numerical examples, enabling near real-time analyses.

However, in select instances, the detected cracks are physically meaningless due to insufficient loading
case orthogonality, symmetry issues and crack overclosure. The latter two are closely related and can be
effectively combated by enforcing contact during the forward solution phase; a direction of investigation for
future work. A multitude of sensors are required to dampen the ill-posed nature of the inverse problem,
though the application of strain gauges to structures is laborious, error-prone and for complex geometries
often unfeasible. Hence the adoption of emerging sensor technologies utilizing piezoelectric materials, fiber
optics and contactless imaging techniques, e.g, digital image correlation (DIC), should be explored. Due to
the expedience of the proposed scheme, future studies towards optimal sensor placement constitute an
interesting application within the framework of SHM.



7 Topology Optimization

With this contribution, we aim at accelerating TO by recasting the forward problem into a form that directly
interacts with the structural solver: The polytope nature of SBFEM elements is exploited on quad-/octree
meshes to alleviate issues associated with hanging nodes. Furthermore, a balancing operation applied to
the mesh results in a manageable number of precomputable element configurations, which significantly ac-
celerates the forward analysis. The analysis mesh for each optimization iteration is obtained via automated
image-based decomposition of the design variables.

A number of benefits arise from this combination of methods. The ease with which higher-order el-
ements may be incorporated, coupled with the use of unstructured meshes, combats the formation of
checker-boarding [44]. Second, computational effort only arises where required by the problem definition,
since adaptivity is automatically provided. Third, numerical examples in both 2D and 3D indicate that the
amount of degrees of freedom present during analysis is reduced by more than an order or magnitude.

This work is motivated by the adoption of numerical methods capable of treating polytope-elements to
alleviate issues commonly associated with hanging nodes. The proposed scheme is suited for fusion with,
but not limited to, the boundary element method [177], polygonal finite element method [316], conforming
shape functions [123] or virtual element method [36]. Here, we employ the SBFEM [294], a semi-analytical
numerical method that permits the treatment of star-convex hp-polytopes. Although a mixed SBFEM has
been employed for solving TO problems of incompressible materials [168], it follows the conventional fine-
grid approach to TO and limits its treatment to linear elements and 2D applications.

The SBFEM has proven itself as a remarkably versatile tool in automatic image-based stress analy-
sis [276, 187]. Such hierarchical meshes arising from tree-like image decompositions drastically reduce
the amount of DOFs present, which accelerates the solution of the forward problem by alleviating com-
putational effort and memory requirements. Image decomposition techniques, within the context of TO,
produce fewer DOFs when material transition zones are eliminated. Hence, the BESO [138], SERA [21],
SIMP combined with grayscale filters [20, 175] and level-set methods [244], for example, represent suitable
algorithms. Since image decomposition operates on the design variables to produce analysis-ready meshes
at each iteration, this family of techniques only requires interchanging the solver of the forward problem.
Hence, incorporation into existing code bases requires minimal modification. Furthermore, as tree-like im-
age decomposition techniques [47] utilize the uniformity of an element as a criterion for subdivision, multi-
material TO [275] may be incorporated through extension to color-aware tree-like decompositions [161].

Subsequently, the proposed scheme is introduced in detail. Its novelty is i) the fusion of TO with
automated image segmenting schemes, ii) the use of polytope-elements constructed by SBFEM to alleviate
issues associated with hanging nodes, iii) color-encoding of domain and analysis parameters into the input
images and iv) the extension to SBFEM-powered 3D TO. To this end, the SBFEM in 3D elastostatics is
briefly treated. Based on three numerical examples, the proposed scheme is then verified, showcased and
discussed.

7.1 Proposed Scheme

The proposed scheme primarily entails a drop-in replacement for calculating the displacement field. By
exploiting hierarchical image decomposition techniques, regions with homogeneous material properties are
identified and represented by a single element, such that coarser, adaptive meshes result with significantly
fewer DOFs than with conventional grid approaches. Although remeshing is required for each iteration,
the implemented decomposition techniques are economical and the resulting computational toll is easily
recuperated by solving a forward problem with significantly fewer DOFs, even on modestly sized example
domains. The steps differ slightly between 2D and 3D, since in 3D the precomputation procedure employed

133
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for 2D would result in 4096 unique element realizations, whose construction requires building a substantial
library and accompanying algorithmic logic. Instead, the unique element realizations for each 3D mesh are
determined, which are computed once and subsequently cloned for the remaining mesh. Empirically, only
a fraction of possible element realizations exist simultaneously on a mesh.

The proposed scheme comprises the following steps:

1. Precompute
For the 2D case, the 16 possible element realizations are precomputed with Young’s modulus equal
to one.

2. Initialize and begin TO loop
Only the filter must be prepared. Conversely to conventional approaches, remeshing at each iteration
is required, rendering the preparation of sparse stiffness matrix assembly vectors [20] obsolete.

3. Calculate displacement field
The grid of design variables is fed as a gray-scale image to the decomposition algorithm, which out-
puts an analysis-ready hierarchical mesh. Color-encoded regions are automatically recognized and
resolved. Their inscribed operations are then applied. Once the stiffness properties of each element
are identified, the displacement field is calculated analogous to the conventional FEM.

4. Determine compliance
The compliance at each iteration is calculated as the product of the system displacement field and
the force vector.

5. Determine sensitivities
The sensitivities of the design variables are evaluated element-wise, by iterating over each subdo-
main. Since the subdomains are of variable size, the calculated sensitivities must be normalized per
unit volume.

6. Filter sensitivities
Standard mesh-independency filtering techniques may be applied as necessary.

7. Design variable pro-/demotion
Solving the optimization problem, for example by OC approach, identifies, which design variables to
promote or demote, i.e., assign or subtract material. While B/ESO, SERA and level-set approaches
result in black-and-white outputs, SIMP-based approaches introduce intermediate material distri-
butions. This is rectified by either employing a Heavyside projection [20] or a gray-scale filter [175,
284]. The updated design variables form the input for the subsequent iteration.

8. Export of results
Upon completing the analysis, the hierarchical mesh is thresholded to yield the optimized system
geometry. Simple methods permit exporting the hierarchical mesh to stereolithography (STL) format
for subsequent additive manufacturing.

In order to further accelerate the analysis procedure, which is constrained by the solution of the forward
problem, so-called hard-kill variants have been proposed. These differ from standard soft-kill approaches
in how they treat void elements: Soft-kill approaches assign a very small stiffness, typically 10−9, which
impacts the conditioning of the numerical problem, while hard-kill approaches disregard such elements en-
tirely. Not all problems, however, are amenable to this approach, since multiple independent substructures
potentially arise during analysis, leading to numerical instabilities.

7.2 Numerical Examples

Three numerical examples are examined in this paper:

1. A thick cantilever subject to a point load at mid-height.
2. An L-shaped bracket with prescribed material distributions and multiple load cases.
3. The 3D wheel.

The first example verifies the proposed method, while the second showcases the extended capabilities, by
color-encoding system and analysis information directly into the input image. Having thoroughly discussed
the 2D behaviour, we extend the analysis to the 3D wheel problem. For each of the numerical examples,
we couple the proposed method with a different TO variant, e.g., B/ESO, SERA and SIMP. One could have
equally chosen to employ a level-set based method as an alternative to the ones listed prior.
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7.2.1 Thick Cantilever

A thick cantilever subject to a point load at mid-height (Fig. 7.1) is considered. The width and height
are discretized by 512 and 256 pixels respectively. The prescribed volume fraction f is chosen as 0.4.
The penalty exponent of both SIMP and BESO approaches is equal to 3. Following [20], a filter utilizing
Matlab’s built-in conv2 function is implemented with a radius of 16 pixels. For the BESO, the evolutionary
volume ratio parameter is set to 0.1. Elements arising during quadtree decompositon are limited in size to
≤ 32 pixels. For the first iteration the discretization of the conventional grid is adopted. This is necessary,
since the initial homogeneous material distribution would lead to a too coarse discretization, biasing the
calculated sensitivities.

Fig. 7.1: From left to right: Thick cantilever setup, SIMP reference solution and BESO baseline.

Fig. 7.2: BESO+QT optimized topology with evolution of DOFs and compliance across iterations.

In order to verify the proposed scheme, we investigate an elementary case: TO schemes, which result
in black-and-white output, i.e., do not posses noticeable transitions in material distributions, permit the
adaptive meshing algorithm to develop its full potential and minimize the DOFs required for analysis.
Therefore, we contrast our scheme, which we term BESO+QT, to a BESO baseline [138]. Since, BESO
follows a heuristic approach to TO, and it can therefore be mislead to local minima under certain circum-
stances [270], we first supply a SIMP reference solution [20]. Both the reference solution and the baseline
depict the same resulting topology (Fig. 7.1). The BESO+QT (Fig. 7.2) is indistinguishable from the BESO
baseline. The difference in compliance (Tab. 7.1) resulting from the SIMP and BESO approaches stems
from the presence of transition material in the SIMP, leading to a slightly more flexible structure and
therefore higher compliance. Given a higher value for the penalization parameter, this difference dimin-
ishes. The discrepancy in compliance between BESO and BESO+QT is attributed to the discretization: A
coarse discretization results in a stiffer structure and therefore lower compliance. This is evident, since
the amount of DOFs present during analysis is reduced by more than one order of magnitude. This in turn
significantly alleviates the computational burden and associated memory requirements (Fig. 7.2, DOFs
evolution). Employing higher order elements, e.g., quadratic or cubic elements, instead of conventional
linear ones elevates the compliance to levels resembling the baseline BESO approach. Additional DOFs do
not manifest during analysis, since these are condensed during the precomputation phase prior to analy-
sis. The 1-2 additional iterations required to reach the stopping criterion, i.e., a 5% increase, represents a
negligible difference to the base line case. In this contrived example, in which all three methods share a
common implementation, differing only in the method of solving the forward problem, a glimpse of the com-
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putational potential of the proposed scheme is possible: For this specific numerical example, an analysis
concludes almost 5x faster, when employing the proposed scheme.

Tbl. 7.1: A comparison of results for SIMP reference solution, BESO baseline and proposed BESO+QT.

Method nIt. Compliance DOFs time [s]

SIMP 49 87.6 263’682 110
BESO 40 75.6 263’682 98
BESO+QT (linear elements) 42 74.8 23’846 20
BESO+QT (quadratic elements) 41 75.3 23’846 20
BESO+QT (cubic elements) 42 75.5 23’846 20

Further, behavior across problem sizes is investigated.
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Fig. 7.3: Variant study of wall clock time spent per iteration at given discretization levels, comparing the
convention BESO approach to the proposed BESO+QT.

Tbl. 7.2: Speedup in wall clock time compared to baseline BESO implementation at various discretization
levels.

Discretization 128 256 512 1024

Speedup 1.08x 2.68x 4.27x 8.23x

Tbl. 7.3: Fraction of total wall clock time spent on key tasks.

Discretization 256 512 1024 2048
[%] [%] [%] [%]

Initialize 0.44 0.11 0.32 0.99
SBFEM 60.52 61.59 55.21 31.38
Sensitivity 35.54 34.94 30.10 16.29
Filter 0.58 2.34 12.17 49.27
Update 0.64 0.80 1.97 1.93

Table 7.2 and Fig. 7.3 demonstrate that the proposed method manifest larger speedups as the dis-
cretization level is increased. The results reported are obtained after having invoke Matlab’s clear all
command and therefore do not take fully advantage of just-in-time compilation. Further, a shift in bottle-
neck from simulation to filtering is observed, when increasing the discretization level (Table 7.3). Hence,
it would be worthwhile to investigate alternate filtering methods than Matlab’s built-in conv2 function.
Considering the preliminary, unoptimized nature of the implementation, greater speedups are expected
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in the future, when the implementation of the proposed method adopts vectorization, which is currently
pervasive to the baseline implementation.

7.2.2 Modified L-bracket

A modified L-bracket setup is considered (Fig. 7.4). In this example the SERA is employed, which remedies
the drawbacks of the BESO scheme [21], while maintaining black-and-white solutions. For this analysis,
only a color-encoded input image is provided. The proposed scheme automatically recognizes significant
regions and their associated operations during the automated decomposition phase. The colors blue, red,
green, white and gray correspond to boundary conditions, loadings, solid, void and domain pixels respec-
tively. Input images are easily constructed by small scripts or obtained from, e.g., medical imaging applica-
tions. Especially from the user perspective, manipulating analysis parameters by color-encoding simplifies
the overall process and permits direct visual verification of the input prior to analysis. Further, it facil-
itates testing of variants. In this example, the domain is discretized by 512 pixels in each direction. A
volume fraction of 0.3 is specified. The conv2-type filter is employed with radius equal 12 pixels. The
SERA parameters PR, SR and B are chosen as 0.03, 1.3 and 0.003 respectively. All quadtree elements are
of size ≤ 128.

Fig. 7.4: Topology optimization of an L-bracket via automated image-based analysis. Input image (left) and
resulting topology (right).

For more involved geometries, gratuitous discretization may arise due to slight misalignment with
respect to the optimal quadtree meshing strategy. This is apparent surrounding the blue and red regions
(Fig. 7.4), where a pertubation by 1 pixel triggers excessive refinement to accurately capture the domain’s
geometry. To demonstrate this general case, the L-bracket is treated as is by the quadtree decomposition,
which results in 32’694 DOFs, while a shifted, scaled and therefore better aligned domain geometry results
in 26’554 DOFs respectively. The conventional method employing the fine grid discretization treats 526’338
DOFs. In this example, the required DOFs are reduced by over an order of magnitude. For such small
examples, a typical forward analysis completes in ≤ 0.6 seconds on a modest desktop computer running in
serial.

7.2.3 3D Topology Optimization

7.2.3.1 The Scaled Boundary Finite Element Method in 3D Elastostatics

In order to treat 3D TO, a brief summary of the scaled boundary finite element method in 3D is given. For
a more elaborate derivation and detailed explanations, the readers may consult references [297, 294].
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The salient features of an SBFEM analysis are illustrated on the problem domain described by the
volume V depicted in Fig. 7.5. V comprises the volume spanned by the scaling center O and the 2D surface
element, describing the boundary. One minor constraint is required: The domain must remain star-convex,
i.e., the entire surface must be visible from the scaling center. The introduction of this scaling center is
accompanied by a transition from a Cartesian reference system into one resembling polar coordinates. In
radial direction the analytic variable ξ is introduced, while for each tangential direction, η respectively
ζ represent the local coordinates on the boundary. Therefore, each surface element may be described by
2D interpolation shape functions [N

(
η,ζ

)
] formulated in natural coordinates −1 ≤ η ≤ 1 and −1 ≤ ζ ≤ 1.

The interior of the domain is constructed by scaling the boundary (x, y, z) along the dimensionless radial
coordinate 0 ≤ ξ ≤ 1, which originates at the scaling center and ends on the boundary. The mapping of
points employing the newly introduced scaled boundary coordinate system is therefore given as:

x̂
(
ξ,η,ζ

)= ξx
(
η,ζ

)= ξ[N (
η,ζ

)
]{x}, (7.1a)

ŷ
(
ξ,η,ζ

)= ξy
(
η,ζ

)= ξ[N (
η,ζ

)
]{y}, (7.1b)

ẑ
(
ξ,η,ζ

)= ξz
(
η,ζ

)= ξ[N (
η,ζ

)
]{z}. (7.1c)

We denote the vectors of nodal coordinates of a surface element by {x}, {y}, {z} respectively. The set
(
ξ,η,ζ

)
is termed the scaled boundary coordinates in the three-dimensional domain.
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Fig. 7.5: Three-dimensional coordinates for a scaled boundary finite element.

Similarly, the iso-parametric mapping of the displacements {u
(
ξ,η,ζ

)
} at a point

(
ξ,η,ζ

)
comprises an

analytic (ξ) and interpolatory (η,ζ) component:

{u
(
ξ,η,ζ

)
}= {ux

(
ξ,η,ζ

)
,uy

(
ξ,η,ζ

)
,uz

(
ξ,η,ζ

)
}T = [Nu (

η,ζ
)
]{u (ξ)}, (7.2)

where {u (ξ)} represents an analytic displacement function along ξ, unique to each node on the boundary.
These displacements functions are determined during the SBFEM solution. The interpolation shape func-
tion [Nu (

η,ζ
)
] in Eq. (7.2) are defined analogously to the conventional FEM:

[Nu (
η,ζ

)
]= [

N1
(
η,ζ

)
[I], N2

(
η,ζ

)
[I], . . . , Nn

(
η,ζ

)
[I]

]
, (7.3)

where n denotes the amount of nodes of the surface element and [I] is the 3×3 identity matrix. Expressing
the strains in scaled boundary coordinates requires splitting the linear differential operator into compo-
nents [B1] and [B2], whose combined effect mimics the original transformation:

{ε
(
ξ,η,ζ

)
}= [B1

(
η,ζ

)
]{u (ξ) ,ξ }+ 1

ξ
[B2 (

η,ζ
)
]{u (ξ)}, (7.4)

The stresses are obtained conventionally by pre-multiplying the strains by the constitute matrix:

{σ
(
ξ,η,ζ

)
}= [D]

(
[B1

(
η,ζ

)
]{u (ξ) ,ξ }+ 1

ξ
[B2 (

η,ζ
)
]{u (ξ)}

)
. (7.5)
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The weak form for each subdomain may be derived by applying several methods [342, 82, 136]. Ne-
glecting body loads and surface tractions, two equations arise (Eqs. 7.6 and 7.7):

[E0]ξ2{u (ξ) ,ξξ }+
(
2[E0]− [E1]+ [E1]T

)
ξ{u (ξ) ,ξ }+

(
[E1]T − [E2]

)
{u (ξ)}= 0, (7.6)

The coefficient matrices [E0], [E1], [E2] bare a striking similarity to conventional FEM stiffness matri-
ces, both in their structure and in that they are calculated for each element individually, with subsequent
assembly for each subdomain. The internal nodal forces modes at the boundary {q (ξ)} are derived as:

{q (ξ)}= ξ
(
[E0]ξ{u (ξ) ,ξ }+ [E1]T{u (ξ)}

)
. (7.7)

The scaled boundary finite element equation is solved by the matrix function solution proposed by Song
[291]. Therein, the quadratic eigen-problem is recast into a system of first-order differential equations in
ξ, at the expense of doubling the amount of unknowns:

ξ

{
ξ0.5{u (ξ)}
ξ−0.5{q (ξ)}

}
,ξ
=−[Z]

{
ξ0.5{u (ξ)}
ξ−0.5{q (ξ)}

}
, (7.8)

with the Hamiltonian coefficient matrix [Z] defined as:

[Z]=
[

[E0]−1[E1]T −0.5[I] −[E0]−1

−[E2]+ [E1][E0]−1[E1]T −(
[E1][E0]−1 −0.5[I]

) ]
. (7.9)

The Schur decomposition with subsequent block-diagonalization is employed to avoid numerical deficien-
cies in the solution and decompose Z to satisfy:

[Z][V ]= [V ][S], (7.10)

where [S] and [V ] are the real Schur form and the transformation matrix, respectively. In order to strip
the bounded from the unbounded response, the diagonal blocks containing the eigen-values of [S] are
sorted in ascending order and the columns of [V ], which contain the associated eigen-modes, are reordered
accordingly. The following partitioning is devised:

[S]=
[

S11 0
0 S22

]
, (7.11a)

[V ]=
[

V11 V12
V21 V22

]
. (7.11b)

[S11] contains all eigenvalues with negative sign, i.e., real (λ([S11]))< 0, which can be shown to correspond
to the bounded domain solution. The general solutions for the displacements and internal nodal forces for
the bounded domain is sought in the form of a power series and can be expressed as:

{u (ξ)}=[V11]ξ−[S11]−0.5[I]{c}, (7.12a)

{q (ξ)}=[V21]ξ−[S11]−0.5[I]{c}. (7.12b)

The integration constants {c}, whose values are determined in post-processing, follow from the effective
boundary conditions of the problem. Formulating Eq. (7.12) at the boundary (ξ= 1), the nodal displace-
ments {u}= {u (ξ= 1)} and the nodal forces {q}= {q (ξ= 1)} can be expressed as:

{u}=[V11]{c}, (7.13a)

{q}=[V21]{c}. (7.13b)

Since the static stiffness matrix [K] is defined as {q}= [K]{u}, [K] of a subdomain is determined by substi-
tuting Eq. (7.13):

[K]= [V21][V11]−1. (7.14)

Upon assembly of all individual subdomain stiffness matrices into a global stiffness matrix, the displace-
ment solution is sought according to conventional FEM procedures.
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The natural extension of 2D quadtree decompositions in 3D is termed octree decomposition. Therein the
identical procedure is performed, with the addition of a third dimension, i.e., the vertical axis. Hence the
criterion for subdivision now considers the contents of cubes. If the homogeneity criterion is not met, the
parent cube is bisected in all three dimensions and therefore replaced by eight children, thus warranting
the prefix “oc”.

7.2.3.2 3D-Wheel

In this example we extend SBFEM-powered TO to 3D problems. The established 3D wheel problem is
studied (Fig. 7.6): The width, depth and height are discretized by 80, 80 and 40 pixels respectively. All
four corners at the bottom edge are fully restrained. A point load is applied in downward direction in the
middle of the bottom surface. A volume fraction of 0.075 is sought. The penalty parameters for SIMP and
gray-scale filter are chosen as 3 and 2 respectively. The filter radius is given as 3 pixels. All octree elements
are ≤ 16 pixels in size. A sensitivity filter is employed. A Young’s modulus of E = 10−9 denotes material
voids. The analysis concludes after 200 iterations.

x
y

z

nelx = 80
nelz = 80
nely = 40

p = 3
q = 2
rmin = 3

f = 0.075Fig. 7.6: Problem domain of the 3D wheel benchmark.

The SIMP with gray-scale filter is utilized. The addition of the gray-scale filter is crucial to obtaining
computational efficiency, since regions of transitional material distributions, which impact the proposed
hierarchical meshing techniques, are minimized. The preconditioned conjugate gradients method (pcg) is
employed to obtain the solution of the forward problem. Scaling is performed to combat the conditioning
issues due to the treatment of void elements [336] with secondary preconditioning by incomplete Cholesky
decomposition. This significantly reduced the amount of iterations required for convergence. A strict
convergence tolerance of 10−9 was specified to contain any divergence from the reference solution to the
adaptive discretization choice. In Fig. 7.7 the final topology is depicted along with a sample of the octree
mesh.

It is demonstrated, that the amount of DOFs and number of non-zero entries in the stiffness matrix
(nnz) is significantly reduced (Fig. 7.8) by employing the proposed scheme, especially after the initial phase
in the TO process. Although up to 4096 unique element realization are possible on the octree, only a handful
exist at each iteration (Fig. 7.8). Computational effort is alleviated by only computing the element stiffness
matrices for the unique elements and cloning the remainder. However, the overwhelming computational
burden still resides in the solution of the forward problem.

The final topology is readily exported to STL format by operating on the octree, greatly facilitating
subsequent additive manufacturing procedures.

7.3 Conclusions

This contribution advances the current state-of-the-art in TO by employing hierarchical meshes coupled
with polytope-based numerical methods, which alleviate issues commonly associated with hanging nodes.
Enforcing a balancing operation on the mesh further limits the amount of feasible element realizations,
which is exploited through precomputation of element stiffness matrices and cloning of element properties.
Moreover, we propose a novel and intuitive scheme for interacting with the analysis parameters by color-
encoding input images, which the decomposition techniques automatically translate into analysis-ready
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Fig. 7.7: Resulting topology for 3D wheel benchmark in blue with sample octree mesh in red.
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Fig. 7.8: Evolution of hierarchical mesh quantities across iterations.

meshes. Further, we extend SBFEM-powered TO to 3D problems and demonstrate an effective means for
exporting results to STL format for subsequent additive manufacturing (3D printing).

TO relying on hierarchical meshes is shown to require only a fraction of the DOFs demanded by tra-
ditional grid approaches, significantly reducing the computational toll. The three investigated numerical
examples consistently demonstrate a remarkable reduction in required DOFs and memory requirements,
without incurring a perceivable loss of accuracy. Considering the generality of this approach in handling
color-coded input, an extension to multi-material TO presents an intriguing direction for future work.
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8 Conclusions

8.1 Overview of Contributions

This thesis starts with providing a critical discussion on the capabilities and merits of numerical methods
employing discrete and diffuse crack representations within the context of LEFM by proxy of SBFEM/XFEM
and PFM. While the PFM’s generality enables it to treat a wide range of complex problems that discrete
methods cannot, it comes at the price of a comparatively severe computational toll.

The novel contributions towards accelerating forward problems are the following:

• The Hamiltonian Schur decomposition is adopted for the solution process of SBFEM. By preserv-
ing Hamiltonian symmetry, enhanced accuracy is obtained along near optimal convergence rates.
Further, the doubling of system equations due to the linearization of the underlying quadratic eigen-
problem is reversed, which is shown to reduce the approximate flops count of the method by close to
an order of magnitude for larger problems. The SPR method of stress recovery is proposed within
the computation of the gSIFs, which not only permits greater accuracy, but also admits an effective
and efficient error estimator thereof. Numerical benchmark problems are solved with reference to
XFEM, permitting a performance comparison.

• SBFEM based simulations are extended to multiscale analyses by fusion with the EMsFEM. Various
types of h-refined CMX elements containing flaws on the fine scale are considered. Hybrid NBFs
based on empirical observations are introduced, which aim at unburdening the analyst from having
to chose a priori the type of NBFs. Further a scheme to improve the accuracy of the gSIFs calculated
by SBFEM on coarse meshes is proposed, by internally elevating the approximation space of the
crack tip element. These two finding are employed in the novel MSBFEM crack propagation scheme
which only resolves the mesh locally about the crack front, resulting in a highly efficient method.

The novel contribution towards accelerating inverse problems comprise:

• Quadtree based approaches, are naturally complemented by polytope-based numerical methods, such
as the SBFEM, since they can treat hanging nodes. Hence, the represent powerful means to provide
adaptivity. Thus the computational toll suffered from the repeated solution of the forward problem
can be efficiently dealt with. The proposed damage localization scheme, on the basis of SBFEM is
accelerated by adopting precomputation, reanalysis and parallel programming techniques, to reduce
the wall clock time of an analysis to near real time.

• Further, a drop-in replacement for the solver of TO problems is proposed. It significantly accelerates
an analysis, by leveraging automated image compression techniques to arrive at adaptive analysis-
ready meshes. This technique is exploited to permit a novel way of interacting with the problem:
color-encoding of analysis information directly into an input image. Further, SBFEM-powered TO is
extended to 3D problems.

Due to the generality and minimal invasiveness of the two methods proposed to accelerate the inverse
problems, they can be freely combined with a multitude of algorithms, significantly increasing their range
of application and significance.

8.2 Summary

In chapter 3, the merits of three alternative approaches, namely the XFEM/GFEM, SBFEM and PFMs,
are surveyed and compared in the context of LEFM. The purpose of the study is to provide a critical liter-
ature review, emphasizing on the mathematical, conceptual and implementation particularities that lead
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to the specific advantages and disadvantages of each method, as well as to offer numerical examples that
help illustrate these features. SBFEM, the method of interest in this thesis occupies the same domain
as the XFEM. SBFEM circumvents XFEM’s shortcoming of having to specify enriched nodes and element
sets, which pose potential conditioning problems, increase the DOFs present during analysis and require
more involved numerical integration techniques at the cost of introducing a Hamiltonian eigen-problem,
due to an analytic solution in radial direction. This permits SBFEM-based analysis to reduce the problem
dimensionality and construct arbitrary star-convex hp-elements, which admit significantly relaxed mesh-
ing requirements. In the process no a priori assumptions must be made pertaining to the calculation of
gSIFs. Unfortunately, incorporation of features with radial componenst are cumbersome, since they must
be treated in the analytic formulation. During crack propagation, SBFEM, as apposed to XFEM, explicitly
introduced double nodes which changes the topology of the mesh. Slicing of elements may induce unwanted
artefacts, which must be corrected by further repositioning nodes. In the PFM, however, a crack is never
explicitly propagated, but associated with the evolution of the phase field. The treatment of a second field,
greatly increases the computational toll as it does the generality of the method, enabling the simultaneous
incorporation of nucleation, branching, merging and coalescence of cracks, even in 3D applications where
SBFEM/XFEM break down, confined to the limits of LEFM.

In chapter 4, the Hamiltonian Schur decomposition is adopted within the SBFEM context to reverse
doubling the problem size incurred due to the linearization of the underlying quadratic eigen-problem. It
is found to enhance the convergence properties of the SBFEM to near optimal rates, by respecting Hamil-
tonian symmetry and eliminating the need for a stabilization parameter during the solution process of the
Hamiltonian eigen-problem, paving the way for applications to inverse problems. A comparison with the
XFEM shows SBFEM to be highly competitive and outperform it for conventional LEFM applications, due
to the ease with which hp-elements may be employed. One contributing factor is the novel recovery scheme
for gSIFs, which permit an effective error estimator.

In chapter 5, SBFEM is extended towards multiscale analysis, by proposal of the MSBFEM: Exploiting
SBFEM on the fine scale to account for fracture and the EMsFEM to map the fine scale information to a
coarse one, where the governing equations are solved at significantly reduced computational cost. Simula-
tion of a mock masonry wall indicates the accurate reconstruction of von Mises stresses using three orders
of magnitudes fewer DOFs thereby reducing the wall clock time for analysis by over two orders of magni-
tude. The extension to a multiscale crack propagation scheme prompted a novel method to enhance the
gSIFs computed on highly coarse QT meshes, which by virtue of elevating the crack tip element’s approxi-
mation space, can reduce the error in recovered gSIFs by over an order of magnitude. Subsequent adoption
in the MSBFEM crack propagation scheme, wherein only the RVE containing the crack tip is resolved and
the remaining domain accounted for by coarse h-adaptive macro-elements, permits a significant reduction
in DOFs required for analysis. For a sample problem solve, this equated to a 13-26x reduction of unknowns.

Starting with chapter 6, the proposed advancements pertaining to the solution of forward problems
are applied to accelerating inverse analyses. The proposed scheme, which fuses concepts from parallel
programming, precomputation and reanalysis to significantly accelerate damage localization, is verified,
then validated with 5 numerical examples treating cracks, multiple inclusions, non-regular geometry and
real-world sensing data. Early approaches employing a displacement-based fitness function are shown to
be severely ill-posed, forcing frequent divergence toward local minima, given a sparse sensing network.
The subsequent adoption of a strain-based fitness function, which is significantly more sensitive to varia-
tions of the candidate crack’s design variables, permits their accurate identification. The effects of crack
orientation, crack length and amount of sensors on the scheme’s ability to accurately localize damage is
examined. Of the four global optimization algorithms investigated, CMA-ES performs the best, followed by
PSO and then GAs. PS is observed to frequently diverge and is thus not recommended for use in damage
localization applications. Topological variables are employed to effectively study the detection of multiple
inclusions. The incorporation of non-regular geometry is achieved by a function, mapping the lower and
upper bounds of the design variables to the problem domain. On the basis of a simplified wing geometry,
CMA-ES is shown to correctly and accurately identify the imposed crack location. The acceleration scheme
permits the analysis to complete in less that two minutes on a conventional workstation. The use of real-
world data still proves challenging due to the a priori unknown signal to noise ratio. Typically, the general
location of the crack tip may still be inferred, which is sufficient for subsequent SHM applications.

In chapter 7, the current state-of-the-art in TO is extended by a drop-in replacement for the forward
solver, which implements automated image compression techniques in conjunction with SBFEM to arrive
at analysis-ready adaptive meshes at each iteration, with elements that are precomputable. By fusion with
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multiple TO methods, the new approach is validated and shown to reduce the computational toll by over an
order of magnitude without negatively affecting the structural layout. Any artifacts introduced due to the
adaptive nature of the scheme are readily removed by the use of precomputed higher order elements. An
unoptimized Matlab implementation manages to outperform existing schemes in terms of wall clock time
required for analysis, by 5-8x on medium size problems. Further, this scheme extends SBFEM-powered
TO to 3D problems. Even on a compact test case, where the adaptivity scheme cannot be deployed to its
fullest potential, a reduction in DOF by over 75% is observed.

8.3 Limitations

Although the adoption of the Hamiltonian Schur decomposition in the SBFEM solution process admits
many benefits, it does not resolve all issues. In select cases, where accuracy is of utmost importance, the
rigid body translational modes should still be overwritten. Due to the recent discovery of the underlying
method, user-friendly, high performance codes do not exist. Currently, a mixture of Fortran and Matlab
codes, including mex-files requiring Matlab 7.3 (2006), exists. This unfortunate combination consumes any
real world performance gains alluded to by the theoretical reduction in flops count.

The MSBFEM inherits all limitations of its parent method, the EMsFEM, i.e., it is limited by the
choice of NBF typ. Further, it is not clear a priori, what level of coarse discretization induces how much
error, especially in the presence of strong discontinuities on the fine mesh. This follows from the observed
difficulty of accurately recovering the gSIFs when large crack are present or strong interactions with the
boundary occur. The crack tip element enrichment scheme requires the addition of internal nodes, in
order to construct the elevated approximation space, which are subsequently restrained to the surrounding
mesh. In such cases, the use of higher order elements on the quadtree mesh is highly advantageous, but
induces a considerable algorithmic burden to track and restrain the internal nodes. The MSBFEM crack
propagation scheme is highly dependent on alterations to the strain field due to the introduction of CMX
elements. Imprudent use can force erroneous crack paths. This is a consequence of the use of linear NBFs,
to avoid iterations, and the absence of a clear criterion on when to resolve RVEs surrounding the crack tip.
Though in principle this could be overcome to a certain degree by permitting periodic and oversampling
based NBFs this would require an iterative process during each crack propagation step in order to enforce
compatibility between fine and coarse meshes.

Within the context of LEFM, SBFEM and XFEM are similarly capable, yet current schemes for crack
propagation using SBFEM on quadtree meshes limit themselves to linear elements, preventing SBFEM
from making use of higher order elements. Further, they introduce spurious DOFs and require double
nodes, i.e., topological changes to the mesh, to account for strong discontinuities. Crack tips contained
within elements are limited to straight lines. Polytopes constructed by SBFEM must be star-convex.

The challenges inherent to the accelerated damage localization scheme stem primarily from the overall
approach of tackling the inverse problem and are not directly SBFEM specific: Even the use of few de-
sign variables claims a considerable computational burden. Typically, the greater the amount of design
variables, the more generations are required to reach the global minimum. The fact that no mathemat-
ical proof of convergence exists coupled with the lack of evidence that calculations have converged after
the user-specified amount of generations have passed, implies having to perform multiple analysis runs.
Although this considerably increases the computational burden, it helps detect symmetry issues or cases,
where design variables are limited by their respective upper/lower bounds. For the case of more involved
domains, specifying meaningful bounds can become involved and incur a considerable algorithmic bur-
den. These combined issues pose significant challenges when trying to apply such damage localization
techniques to real world structures, with the aspiration of near real time results.

The adaptivity criterion implemented for the drop-in replacement TO solver, is based purely on the
geometric description of the problem domain. Special cases can be contrived, where perfect alignment
with the underlying quadtree grid could result in very coarse discretizations. Due to the convergence
properties inherent to the FEM-based methods, this forces the solution to overestimate the stiffness of
the system, which the optimization scheme will interpret as a more desirable layout. Further the use of
the SIMP approach introduces non-convexities and therefore local minima into the analysis. Although for
most applications, the filtering techniques remedies this issue, adoption of a level-set approach would be
advantageous. Even though significant reductions in wall clock time are reported when employing the
proposed drop-in replacement for the forward solver, the unoptimized nature of the source code prohibits
an accurate assessment of the methods potential.
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8.4 Outlook

Popularizing SBFEM as a competitive alternative within the context of LEFM, requires convenient access
to its underlying methods. With SBFEM finding increased application in 3D problems, due to its ability to
treat complex meshing requirements, the need for robust and efficient numerical methods of performing
Schur decompositions is of elevated importance. Rehabilitating the existing code-base for use with HPC
libraries constitute a worthy direction of future work.

The tip enrichment scheme could be investigated on CMX elements containing discontinuities. Al-
though it is expected to offer an increase in accuracy, it will most likely be overpowered by the use of NBFs.
Indeed the pursuit of novel boundary conditions could prove quite fruitful within EMsFEM, e.g., prescrib-
ing a flux-based criterion across edges instead of displacements. Nevertheless, the use of hierarchical shape
function for the tip enrichment scheme instead of internal nodes should provide similar levels of accuracy
without the need to construct and treat a new crack tip element topology. The incorporation of plasticity
into the the current MSBFEM formulation would provide a valuable contribution towards extending the
methods capabilities, since, in this early stage, quasi-static crack propagation was researched within the
context of LEFM. Extending SBFEM to more involved plasticity models such as Bouc-Wen or shape mem-
ory alloy material models would open up a new direction of exciting applications for the method and the
proposed multiscale scheme.

Although several publications exist on damage localization techniques, few incorporate data from real-
world measurements. Typically isotropic materials are considered. With the aspiration of successfully
applying damage localization techniques to real-world problems, performance given inhomogeneous, e.g.,
functionally graded materials, could be investigated. Unfortunately, the applicability of most damage lo-
calization schemes is limited to the accuracy with which the forward problem can be solved. It would
therefore be highly beneficial to construct a data set containing a suite of benchmark examples with mea-
surements obtained from well documented testing campaigns. Further, different types of measurement
instrumentation should be concurrently deployed to assess their adequacy for such problems.

Conventional TO requires a fine grid to overcome pixelated results and obtain a sufficiently accurate
forward simulation. Specifically for TO implementing a stress-based approach, these step-like results can
invoke spurious localizations. By combining level-set based TO with the featured based hybrid quadtree-
polygon meshing, the domain boundary may be expressed continuously by clipping along the zero level-set.
Further, stress-based TO could additionally benefit from the use of higher order polytope elements. At
this point, the proposed adaptivity criterion, which is based on geometry might provide insufficient, such
that alternatives should be explored. One possibility presents itself in a newly proposed, inexpensive er-
ror estimator specifically developed for SBFEM [298]. Unfortunately, only the forward analysis currently
benefits from the reduced computational toll associated with the adaptive mesh, such that for higher dis-
cretization levels, the filtering technique dominates the computational effort. One intriguing possibility is
to explore the effectiveness of PDE-based filters applied to the adaptive mesh. In an effort to tackle various
structural optimization problems such as TO and shape optimization, the merits of higher order quadtree
meshes must be considered. Two directions present themselves: First fusion of level-set TO and higher
order polytope-based QT meshes. Second, shape optimization facilitated by isogeometric representations
of QT meshes harnessing the scaled boundary isogeometric approach.

The combination of the proposed methods provides the basis for intriguing extensions, e.g., in SHM, a
rapidly emerging field in engineering. Specifically the recent adoption of composite materials commonly
encountered in fuselages, helicopter rotor and wind turbine blades, to name a few, has reinforced the
need for accurate structural monitoring and assessment methods. Often, inspection of such structures by
specialists is accompanied by long downtime, significant manual labor costs and procedures permitting only
limited penetration depth at best, rendering it not only expensive, but potentially ineffective and prone to
human error. This thesis provides the prospect of an automated near real-time damage localization scheme
to accurately localize damage as it occurs in a structure during operation without the need for human
intervention. Leveraging the MSBFEM component, the severity of the localized damage is determined
and its affects on continued operation can be assessed. Deviation between measurements and MSBFEM
simulation could be employed to update the numerical model as required. The ability to determine not only
the failed component through damage localization, but also the damage path by MSBFEM, enables the TO
process to automate the design of a more resilient component, which could be 3D printed on demand. Over
time this combination of proposed methods will lead to safer structures and revolutionize the way in which
maintenance is conducted.
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A.1 The eXtended/Generalized Finite Element Methods (XFEM/GFEM)

One of the main difficulties associated with the modeling of fracture by means of conventional finite el-
ement methods lies in the fact that a new mesh is needed at each propagation step. This, apart from
increasing the computational cost, significantly limits the degree of automation that can be achieved in
such simulations. The introduction of the partition of unity method (PUM) [27, 28, 194] has provided the
background for the subsequent development of a suite of methods, including the extended [205] and gen-
eralized [304] finite element methods that have managed to overcome, to a large extent, this difficulty.
In the following subsections, we provide a brief overview of these methods with the focus shed onto the
methodological and implementational aspects relating to crack propagation problems. For a more detailed
exposition of the methods and their applications we refer the reader to the several review papers avail-
able in existing literature, as for instance References [1, 39, 105] and more recently [306], as well as the
references therein.

A.1.0.1 Partition of unity enrichment

Partition of unity enrichment, in general, allows the incorporation of known features of the solution in the
numerical approximation in the form of enrichment functions. If finite elements are used as the basis for
the numerical approximation, then partition of unity enrichment can be realized as follows:

u (x)=
∑
∀I

NI (x)uI︸ ︷︷ ︸
FE approximation

+
∑
∀I

N∗
I (x)Φ (x)bI︸ ︷︷ ︸

enriched part

(A.1)

where NI (x) are the FE interpolation functions, uI are FE degrees of freedom (dofs), N∗
I (x) is a basis of

functions that form a partition of unity, Φ (x) is the enrichment function and bI are the enriched degrees of
freedom.

Most commonly, finite element shape functions are employed to form the partition of unity basis:

N∗
I (x)≡ NI (x) (A.2)

Alternative PU bases have can also be found in the literature Zhang, Banerjee, and Babuška [359], Griebel
and Schweitzer [119], and Hong and Lee [133], aiming mostly at improving specific aspects of the method,
such as conditioning of the resulting system matrices.

A.1.0.2 XFEM/GFEM enrichment functions for LEFM

In the original partition of unity finite element method (PU-FEM) [194], enrichment functions were used as
a means of improving the overall accuracy of the approximation, thus enrichment was applied globally, i.e.
for all nodes of the FE mesh. For problems involving localized phenomena, such as fracture, enrichment
functions are only needed locally, thus, in the XFEM [38, 205] only a subset of the nodes is enriched to
increase the efficiency of the method. This type of enrichment was subsequently also adopted in the GFEM
rendering the two methods almost identical. In fact, in more recent publications [105] almost no distinction
is made between the two methods.

For LEFM problems, two types of enrichment functions, i.e. specializations of function Φ (x), are most
commonly used to represent the discontinuities and singularities introduced in the solution by the crack.
In the following, these enrichment functions are presented along with possible alternatives from the litera-
ture. Furthermore, some common problems, associated with their use, are identified and possible remedies
discussed.

A.1.0.3 Jump enrichment

The first type of enrichment functions consists of modified Heaviside step functions, usually referred to as
jump enrichment functions, which allow to represent the displacement jump along the crack surface:

H(x)=
{

1 above the crack
− 1 below the crack (A.3)
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These functions were introduced in the work of Moës, Dolbow, and Belytschko [205], and constitute perhaps
the most distinctive feature of XFEM. Enrichment with these functions is realized locally, only for nodes
whose nodal support is completely split in two by the crack.

Other types of discontinuous enrichment include the alternative formulation of Hansbo and Hansbo
[127] and higher order discontinuous enrichment functions found both in the XFEM [189, 69, 4] and
GFEM [87] literature. In the context of fracture mechanics, special discontinuous functions have also
been proposed to handle branched and intersecting cracks [81].

A.1.0.4 Tip enrichment

The second type of enrichment functions is a set of asymptotic functions, also referred to as tip enrichment
functions, that allow to represent the discontinuity at the crack tip or front:

F j (r,θ)=
{p

rsin
θ

2
,
p

r cos
θ

2
,
p

rsin
θ

2
sinθ,

p
r cos

θ

2
sinθ

}
(A.4)

where r, θ are spatial coordinates of a polar system with its origin at the crack tip/front. These functions
were introduced by Belytschko and Black [38] and form a basis that can exactly represent the analytical
solution of the Westergaard problem.

Initially [205], the use of asymptotic enrichment was limited to elements containing the crack tip/front,
however in the works of Stazi et al. [302] and Laborde et al. [160] it was shown that this would lead to
suboptimal convergence rates. In order to obtain the same rate of convergence as for smooth problems, the
use of asymptotic enrichment in a domain of fixed size around the crack front is necessary [160, 34]. This
alternative enrichment scheme was termed “geometrical enrichment” while the initial scheme is referred
to as “topological enrichment”. Usually, the domain where asymptotic enrichment is used is defined as
the set of points whose distance from the crack tip/front is smaller that a predefined length re, called the
enrichment radius.

An alternative to the enrichment functions of Eq. (A.4) consists of using the displacement expression
of the Westergaard solution directly as an enrichment function. This approach was introduced by Duarte,
Babuška, and Oden [86] and subsequently adopted in several works in the XFEM [350, 176, 356] and
GFEM [124, 125] literature. This kind of enrichment results in different enrichment functions in each
spatial dimension, thus in some works [231, 71] it was termed “vector enrichment” as opposed to “scalar
enrichment” where the same enrichment functions are used in all spatial dimensions. As a disadvantage
of this approach it is mentioned that it could complicate the implementation, especially in existing codes.
On the other hand it leads to a decreased number of degrees of freedom compared to scalar enrichment
and it can allow the direct estimation of stress intensity factors. Typically, to increase the accuracy of this
estimation, higher order terms of the asymptotic expansion are also used as enrichment.

A.1.0.5 Kronecker delta property

From Eq. (A.1) it can be easily deduced that, for enriched nodes, the FE degrees of freedom will no longer
correspond to displacements at the nodes. To restore this desirable property, enrichment functions can me
modified such that they vanish at nodal points. A simple way to accomplish that, is through enrichment
function “shifting” [365], which consists of subtracting from the enrichment functions, their values at the
nodal points:

ΦI (x)=Φ (x)−Φ (xI ) (A.5)

where ΦI (x) is the modified enrichment function and xI are the spatial coordinates of nodal point I.
From the above, it becomes clear that shifting results in a different enrichment function for each node.

Furthermore, when applied to the jump enrichment functions of Eq. (A.3), it causes the functions to vanish
for elements that do not contain the crack, thus simplifying the implementation.

The Kronecker delta property can also be preserved by employing the stable GFEM [26, 124, 125], a
technique where the FE interpolant of the enrichment functions is subtracted from the enrichment func-
tions themselves. The main advantage of this technique however, lies in the fact that it can considerably
improve the conditioning of the resulting stiffness matrices.
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A.1.0.6 Blending

As already mentioned, enrichment in the XFEM and GFEM is mostly performed locally to increase effi-
ciency. This leads to situations where only some of the nodes of an element are enriched with a specific
enrichment function and the remaining nodes are either not enriched at all or enriched with a different
enrichment function. In these elements, the shape functions pre-multiplying the enrichment functions no
longer form a partition of unity leading to increased errors, also called “blending” errors. For the enrich-
ment functions used in LEFM, these errors only result in some loss of accuracy, leaving the convergence
rates unaffected. For other types of enrichment functions however, the convergence rate can also be affected
[70].

Due to the above reasons, the “blending” problem has been extensively studied and several solutions
have been proposed involving a variety of techniques such as assumed/enhanced strain formulations [70,
117, 319], directly matching displacements between the enriched and non enriched part of the approxi-
mation [160, 65, 5] and the use of weight functions [103, 64, 329] to smoothly blend different parts of the
approximation. The later approach, also known as the corrected XFEM, is likely the most successful due
to its relative simplicity and effectiveness.

A.1.0.7 Ill-conditioning

An additional problem related to enrichment is the linear dependence between the enriched and standard
part of the approximation. As far as jump enrichment is concerned, linear dependence may arise if the
crack either intersects, or lies very close to a node. Then, the enriched shape function of this node is iden-
tical or very close to its standard FE shape function leading to linear dependence problems. A commonly
used technique to avoid this problem is “snapping”, which consists of not enriching nodes if they are very
close to the crack surface [81]. Other approaches involve pre-conditioning [195, 164] and stabilization in
the element [178] or global equilibrium equations [330] level.

With respect to tip enrichment, ill-conditioning can arise when geometrical enrichment is used due to
the fact that away from the singularity the tip enrichment functions tend to become linearly dependent
both with respect to the FE part of the approximation and each other [3, 4]. To overcome this issue several
alternatives have been proposed such as altering the partition of unity basis used to pre-multiply the tip
enrichment functions [160, 6, 5], preconditioners [34, 195], stabilization [178] and enrichment function
orthogonalization [3, 4]. Moreover, vector enrichment functions have been shown to lead to improved
conditioning [71], and if further combined to the stable GFEM [124, 125] they can lead to optimal growth
rates of the scaled condition number.

A.1.0.8 Displacement approximation

Using the enrichment functions of the previous subsection, the XFEM/GFEM displacement approximation
can be obtained:

u (x)=
∑

I∈N

NI (x)uI︸ ︷︷ ︸
FE approximation

+
∑

J∈N j
NJ (x)H (x)bJ︸ ︷︷ ︸

jump enriched part

+
∑

T∈N t

∑
j

NT (x)F j (x)cT j︸ ︷︷ ︸
tip enriched part

(A.6)

where bJ , cTJ are enriched degrees of freedom.
The nodal sets of Eq. (A.6) are defined as follows:

N is the set of all nodes in the FE mesh.
N j is the set of jump enriched nodes. This nodal set includes all nodes whose support is split in two by

the crack.
N t is the set of tip enriched nodes. This nodal set includes all nodes whose support includes the crack

front.

The method resulting from the above approximation does not involve any modifications, for instance
dealing with blending or conditioning issues, and is thus often referred to as the “standard XFEM”.
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A.1.0.9 Weak form and discretised equilibrium equations

For LEFM problems, the standard weak formulation for linear elasticity is typically used:

Find u ∈U such that ∀v ∈ V 0 ∫
Ω
σ(u) : ε(v) dΩ=

∫
Ω

b ·v dΩ+
∫
Γt

t̄ ·v dΓ (A.7)

where :

U =
{
u|u ∈ (

H1 (Ω)
)3

,u = ū on Γu

}
(A.8)

and

V 0 =
{
v|v ∈ (

H1 (Ω)
)3

,v= 0 on Γu

}
(A.9)

Functions of H1 (Ω) are implicitly discontinuous along the crack surface.
By introducing the constitutive relationship of Eq. (2.3), the problem can be written as:

Find u ∈U such that ∀v ∈ V 0: ∫
Ω
ε(u) : D : ε(v) dΩ=

∫
Ω

b ·v dΩ+
∫
Γt

t̄ ·v dΓ (A.10)

The above equation can be discretised using the approximation of Eq. (A.6) to produce the discretised
equilibrium equations.

A.1.0.10 Crack representation

To allow the evaluation of the enrichment functions as well as the definition of the nodal sets involved in the
enriched approximation, some kind of geometrical representation of the crack is necessary. In early XFEM
works, as well as some GFEM publications, crack surfaces were explicitly represented as a series of linear
segments (2D) or triangles (3D) [205, 88, 308]. However, the combination of this kind of representation
to the XFEM can render the implementation quite involved by requiring for instance the computation of
intersections of the crack with elements of the FE mesh.

A.1.0.11 The level set method

An approach that is much better suited for combination to the XFEM, is the implicit representation of
cracks using the level set method [243, 280]. Due to this fact, the method has been extensively used in the
XFEM framework in 2D [303] and 3D [206, 118, 309] applications.

To implicitly represent closed surfaces, such as cracks, two level set functions are needed:

• The normal level set φ, defined as the signed distance from the crack surface.

• The tangent level set ψ, defined as the signed distance from a surface that is normal to the crack
surface and intersects the crack surface at the crack tip/front.

The crack surface is then defined as the set of points for which the normal level set is equal to zero and the
tangent level set assumes negative values.

Typically, these level set functions are only computed at nodal points and interpolated for the rest of
the domain using the FE shape functions:

φ=φ (x)=
∑
∀I

NI (x)φI , ψ=ψ (x)=
∑
∀I

NI (x)ψI (A.11)

where φI ,ψI are the nodal values of the level set functions.
From the above expressions, spatial derivatives of the level set functions can be conveniently obtained

through the spatial derivatives of the FE shape functions. Also evaluation of the enrichment functions
can be significantly simplified. More specifically, jump enrichment functions can be directly computed
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as functions of the first level set, while the polar coordinates of Eq. (A.4), needed for the tip enrichment
functions, can be computed as:

r =
√
φ2 +ψ2, θ = arctan

(
φ

ψ

)
(A.12)

For the general case of evolving surfaces, level sets are usually updated based on some velocity field
by integrating the Hamilton-Jacobi equation. The case of propagating cracks however, requires several
additional steps due to the nature of the problem and the fact that cracks are closed surfaces. Firstly, the
velocity field, needed to update the crack, is only known at the crack tip/front, thus an additional step is
required to extend the field to the whole domain. Then, the crack surface that has already formed should
remain unaffected by the level set update, thus the velocity field should be appropriately modified. Finally,
an orthogonalization step is necessary to ensure that the two level sets are normal after the update. To
simplify the above procedure, several approaches were proposed in the work of Duflot [89] that allowed
the update of level set descriptions for cracks without requiring the integration of evolution equations.
In Elguedj et al. [98] a similar approach was proposed and applied to dynamic 3D crack propagation. It
should be noted that, both of these simplified methods rely on some geometric operations and are in fact
very similar to methods from the category of the following paragraph.

A.1.0.12 Hybrid implicit/explicit methods

As an alternative, aiming at combining advantages of both explicit and implicit representations, Fries and
Baydoun [104] proposed a method where level set functions were directly computed from explicit crack
representations using linear segments (2D) or triangles (3D). Similarly, in the vector level set method [328,
7, 8] linear segments (2D) or quadrilaterals (3D) are used to update the level set description of the crack
and are subsequently discarded. Another instance of a method combining elements from both types of
representations is the method of Sadeghirad et al. [272], where an explicit representation is constructed in
order to correct the level set representation by removing disconnected parts of the crack.

A.1.0.13 Numerical integration

Another challenge, associated with the use of discontinuous and singular enrichment functions, lies in the
numerical integration of the weak form of Eq. (A.10). Since the functions to be integrated are not smooth,
standard Gauss quadrature cannot be used and more sophisticated tools need to be employed.

For the discontinuous jump enrichment functions, the most common approach would be element parti-
tioning where elements are divided into integration sub-cells based on the crack geometry [205, 308]. Ex-
tensions of this technique have also been proposed for higher order elements [69, 106, 250]. Alternatively,
other works completely avoid the use of element partitioning by employing either equivalent polynomials
[327, 331], or the Schwarz–Christoffel conformal mapping [219].

As far as asymptotic enrichment functions are concerned, the most widely used solution would involve
element partitioning combined with some transformation aiming at removing the singularity. Several such
transformations have been proposed, e.g., the almost polar mapping of Laborde et al. [160], the parabolic
transformation of Béchet et al. [34], and the Duffy transformation by Mousavi and Sukumar [211]. Ele-
ment partitioning is used to divide the element containing the crack tip in triangles with one node lying
on the singularity, thus also accounting for the discontinuity present in this element. Subsequently, the
transformation is used to map quadrilateral elements to the constructed triangles leading to an accumula-
tion of Gauss points around the crack tip and additionally removing the singularity. A promising solution,
also including the above steps, is the algorithm introduced in Chevaugeon, Moës, and Minnebo [71], where
a mapping is used for all asymptotically enriched elements, rather than just the ones containing the crack
tip, and an adaptive strategy is devised to determine the number of Gauss points required for each element.
Similar element partitioning algorithms [179] and mappings [202] have also been introduced for the three
dimensional case.

A.1.0.14 Crack propagation

The methods presented so far in this section mainly deal with discretising cracked domains using fixed
meshes. For propagating cracks, principles of classic linear elastic fracture mechanics can be applied.
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Within this framework, stress intensity factors (SIFs) are the main tool used to both indicate the occurrence
and determine the direction of crack propagation under certain loading conditions.

A.1.0.15 Stress intensity factors

One of the most widely used techniques for the extraction of SIFs in extended, generalized or standard
finite element simulations, involves the use of the interaction integral. This can be derived by initially
converting the J integral in a domain form and subsequently evaluating it for a stress state resulting from
the superposition of an auxiliary stress state and the computed numerical solution. Then the interaction
term of the integral, for two dimensional problems, assumes the form:

I =−
∫

V
q, j

(
σklε

aux
kl δ1 j −σaux

k j uk,1 −σk juaux
k,1

)
dV (A.13)

where εaux, σaux and uaux are the auxiliary stress, strain and displacement fields respectively which can be
defined as in Moës et al. [205] and q is a virtual velocity field. Typically, q is chosen to assume a value of
one for nodes within a disc of radius rd around the crack tip and a value of zero for the remaining nodes.

In the interior of the elements, the values of q are interpolated using the FE basis functions. As a
result, the expression of Eq. (A.13) needs to be evaluated only in a “ring” or layer of elements around the
crack tip. The components of the tensors of Eq. (A.13), refer to a basis aligned with the crack, which for
implicit crack representations can be conveniently defined using the level sets [206, 118]. By considering
the relation between the J integral and the SIFs it is straightforward to show that with an appropriate
selection of the SIF values of the auxiliary state, the SIFs can be directly obtained from the interaction
integral.

It should be noted that in the derivation of Eq. (A.13) it has been assumed that the crack is straight. Of
course, the expression can also be used for curved cracks, perhaps with some loss of accuracy, provided that
the curvature of the crack is not very pronounced within the interaction integral domain. Alternatively, a
more complicated formulation can be used [113], leading to more accurate results.

For three dimensional problems a more complicated expression for the interaction integral needs to be
used as, for instance, in Gosz and Moran [116]. Furthermore, different alternatives exist for the definition
of the virtual velocity field and the domain of integration [308, 114, 5] as well as the basis on which the
tensor components refer to [113, 114].

Alternative methods of SIF extraction, employed in the XFEM/GFEM context, include direct extraction
based on the enriched degree of freedom values [350, 176, 356, 71], Irwin’s integral [162, 163, 299, 339, 338],
and extraction through crack opening displacements [277]. The former technique relies on the fact that
when vector enrichment is used, the physical meaning of the enriched degrees of freedom corresponding to
the tip enriched nodes is by definition equivalent to the SIFs.

In several works [350, 176, 356], the technique is combined to degree of freedom gathering and the use
of higher order terms of the Williams expansion to increase the accuracy of the extracted SIFs. Similarly,
extraction using Irwin’s integral also requires higher order enrichment. A relative advantage of both of
these methods is their low computational cost and the fact that they do not require the use of auxiliary
fields as in the interaction integral method. Extraction through crack opening displacements [277] does not
require the use of higher order enrichment functions and is computationally inexpensive, it does however
employ auxiliary fields. Finally, it should be mentioned that even though some of the above methods might
be advantageous for certain problems, the interaction integral method is in general more accurate and has
in general a wider field of applicability since domain integral formulations are available also for problems
outside the LEFM domain.

A.1.0.16 Determination of the crack propagation increment

While the direction of crack propagation can be obtained using the SIFs through one of the available
criteria, the length of the propagation increment is typically predefined and constant during the simulation.
Nevertheless, this length is probably the parameter with the more pronounced effect on the crack paths
obtained and should be set as small as possible. On the other hand, the length of this increment ∆a is
subject to the following constraint [307, 137]:

∆a > rd > 1.5h (A.14)
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where h is the mesh size. This constraint is necessary to ensure that the crack will be indeed straight
within the domain of integration, whose radius in turn needs to be larger than 1.5h in order to include a
ring of elements around the crack tip. Thus, the length of the crack increment is essentially determined by
the mesh size. Nonetheless, if an alternative interaction integral formulation or extraction method is used,
as discussed in the previous section, the constraint could be removed or at least relaxed allowing to reduce
the length of the crack increments without refining the mesh.

For the case of multiple cracks [61], a stability analysis is usually conducted to determine active cracks
at each step, while in the three dimensional case, Paris’s law is a common choice [118] for determining the
propagation increment for different points along the crack front.

A.1.0.17 Applications in fracture mechanics and extensions

As a result of the extensive research conducted in almost two decades, the method has reached a level of
maturity that allows its application in a wide range of problems of both academic and industrial interest.
Some representative applications would include damage tolerance assessment of aerospace structures [49]
and hydraulic fracturing [165]. Significant research effort has also been devoted in implementing the
method both in a procedural [307, 314] and object oriented framework [50, 186]. Thus, implementations of
the method can be found in several open source libraries and commercial software packages such as Ansys
and Abaqus.

The range of possible applications includes problems far more challenging than two-dimensional linear
elastic crack propagation. For instance, the method can be extended to three dimensions in a straightfor-
ward way [308, 206, 118], while the treatment of problems involving multiple cracks [61, 314, 313, 315] is
also possible. The extension to dynamic crack propagation can be challenging, it is however possible and
has been studied in several works, for instance references [42, 268, 196]. The method’s flexibility also al-
lows for application to problems involving different types of material models, for instance orthotropic [22],
or in the nonlinear domain hyperelastic [166] and elastic-plastic [257]. Finally, other models for fracture,
such as the cohesive zone model [204, 365], can also be incorporated with relative ease.
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A.2 Phase Field Methods

PFM emerged as an alternative to discrete fracture aiming to address some of the challenges of compu-
tational fracture mechanics, e.g., automatic crack initiation, robust resolution of branching and merging
and also the treatment of curved crack paths. The PFM diffusive crack interface is represented by a scalar
variable, i.e., the phase field. The latter evolves according to a set of governing equations arising from a
robust variational structure. As a result, the method does not require numerical tracking of the evolving
discrete crack topologies and complex problems as in the case of 3D crack paths [see, e.g., 52, 174, 197, 122]
and dynamic fragmentation are naturally resolved [278].

PFM emerged from the pioneering work of Francfort and Marigo [101] who proposed a variational the-
ory of fracture based on energy minimization principles. Bourdin, Francfort, and Marigo [58] provided a
regularised formulation by introducing a length scale parameter that rendered the approach more suitable
for numerical approximations. The variational formulation was further modified and extended to multi-
dimensional mixed-mode dynamic brittle fractures [198, 197, 155] also targeting the response of high per-
formance composites [258, 220, 128]. The PFM for brittle fracture has been implemented in the commercial
software Abaqus [290] via a User Element subroutine by Msekh et al. [214], which was later extended by
Liu et al. [174]. Li, Zhang, and Zheng [170] (see, also, [167]) combined the variational phase field model
of brittle fracture with an extended Cahn-Hilliard model [2, 322], and formulated a fourth-order phase
field model suitable resolving crack propagation in anisotropic materials. Rate-dependent PFM models for
modelling fracture in visco-elastic solids [282] have also been established.

The phase field representation of fracture has been extended to the ductile regime [14, 15, 53, 157]
also within the context finite strains. The PFM has found application in the simulation of fractures in
plates and shells [12, 149, 265], which involve a 3-D degradation of induced stresses whereas the element
kinematics and damage are defined at the mid-surface. Attempts to experimentally validate the method
have also been provided [see, e.g., 15].

Verhoosel and Borst [332] attempted to model cohesive fractures in composite materials using PFM by
casting the cohesive zone approach in an energetic framework and introducing an auxillary field in addition
to the displacement and phase field which represents the jump in displacement across the cracked domain.
The motivation to use an auxillary field is to define the crack opening in cohesive fracture as a properly
defined kinematic quantity, rather than an internal discontinuity as in the case of brittle fracture. Vignollet
et al. [333] further extended the phase field based cohesive fracture formulation for the case of propagating
cracks. This approach succeeds in achieving convergence with lesser number of elements and in contrast
to brittle fracture, confines the length scale parameter only to topological approximations hence rendering
it uninfluential for the mechanical behaviour of the structure. Nguyen et al. [225] proposed a new phase
field formulation which could model the interaction between interfacial damage and bulk brittle damage
for complex topologies arising from voxel-based models of microtomography images. The formulation used
a level-set method to describe the diffused jump in displacement field and used the phase field variable,
instead of an additional internal variable as in [332], to model crack opening and reclosure during cohesive
fractures.

There have been several recent efforts emphasizing the requirement of a generalized cohesive descrip-
tion of fracture using the phase field method [107, 346], see, also Lorentz [181]. More specifically, Wu
and Nguyen [346] proposed a unified phase field theory, namely the PF-CZM, for brittle and quasi-brittle
fractures which converges to a cohesive zone model within the limits of a vanishing length-scale param-
eter. More importantly, the authors provided a method for the precise fitting of linear, exponential, and
hyperbolic softening laws. PF-CZM was compared to the XFEM in [347] and further extended to the case
of dynamic fracture in [227]. Furthermore, Geelen et al. [107] extended the work introduced in [183] to a
dynamic cohesive fracture model incorporating phase field formulations.

The fundamental features of the phase field method are discussed in the following section.

A.2.0.1 PFM variational formulation

Griffith [121] postulated that the total potential energy Π of an elastic body undergoing elastic fracture
comprises the contributions of the elastic strain energy Ψe and the fracture energy Ψ f

Π (u,Γ)=Πe +Π f =
∫
Ω

ψedΩ+
∫
Γ

G cdΓ (A.15)
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where ψe is the elastic energy density and G c is the critical fracture energy density. The elastic energy
density for the case of an isotropic medium is defined as

ψe (ε)= 1
2
λ[Tr(ε)]2 +µ

[
Tr

(
ε2)]

(A.16)

where λ and µ are the Lamé constants.
Phase field modelling of fracture approximates the fracture surface integral expression introduced in

Eq. (A.15) with a volume integral defined over the entire deformable domain Ω according to Eq. (A.17)
below. ∫

Γ

G cdΓ≈
∫
Ω

G cFΓ (c,∇c)dΩ (A.17)

where c = c (x) ∈ [0,1] ∀x ∈Ω is the scalar phase field representing crack.
Using Eq. (A.17), the expression of the potential energy of the elastic deformable body introduced in

Eq. (A.15) can be modified into the following form

Π≈
∫
Ω

ψedΩ+

Fracture Energy Approximation︷ ︸︸ ︷∫
Ω

G cFΓdΩ −

∫
Ω

uibidΩ+
∫
∂Ωt̄

ui t̄idΩt̄

 (A.18)

The functional FΓ assumes the following generic form

FΓ =
1
cw

(
1

2l0
ω(c)+2l0|∇c|2

)
, (A.19)

where l0 ∈ R is a length scale parameter and ω(c) and cw are the generic crack geometric function and
associated constant; these assume different expressions based on the type of fracture surface energy ap-
proximation used.

With the introduction of the crack surface density function in Eq. (A.19), the discrete description of a
sharp crack Γc in Fig. 2.1 is transformed onto a diffused crack description as shown in Fig. A.1 via the
regularized crack functional Γl0 (c) which is scaled by the length-scale parameter l0 (A.20).

Γl0 (c)=
∫
Ω

FΓ (c,∇c)dΩ (A.20)

The length scale parameter l0 is the regularisation length over which damage diffuses as shown in Fig. A.1.
In the conventional phase field formulation, originally presented in Bourdin, Francfort, and Marigo [58],
the peak force reached before the onset of fracture depends on the value of length-scale parameter l0.
Higher values of the length-scale parameter lead to lower peak forces and vice versa. In recent formula-
tions, see, e.g., Wu and Nguyen [346] and Geelen et al. [107] this is alleviated, hence providing a significant
advantage in enhancing the critical-stress predicting capabilities of the phase field method. In Miehe,
Schaenzel, and Ulmer [201], generalized crack-driving forces with a failure criteria based on the maximum
principal stress were introduced which also succeeded in predicting critical fracture loads unaffected by
the length-scale parameter. However in notched structures, a crack nucleation principle based purely on
the maximum principal stress criteria suffers from the curse of stress singularity at the notch-tip as also
highlighted in [318].

Providing different expressions for ω(c) and cw results in variants of the phase field approximation;
key variants, i.e., the second and fourth order quadratic approximations and the second order linear phase
field approximation are discussed in sections A.2.0.2, A.2.0.3 , and A.2.0.4, respectively. A schematic of
the variation of the phase field c in the direction normal to the crack surface for all phase field variants
considered as compared to the discrete fracture case is provided in Fig. A.2. In all cases, the phase field
value c = 1 corresponds to an un-cracked region, whereas c = 0 corresponds to a cracked region.

Remark. From a geometric standpoint, the length scale parameter regularises the width of the crack as
shown in Figure A.1 in accordance with [58], see, also Borden et al. [52]. It is of interest to note that the
length scale considered in Miehe, Hofacker, and Welschinger [198] (see, also, [197, 200]) is double the size of
the one adopted in [58, 52]. Of course, both implementations are equivalent; one however should be careful
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Fig. A.1: Description of diffused crack scaled by the length-scale parameter l0 and boundary conditions.

(a) (b) (c) (d)

Fig. A.2: 1-D spatial variation of phase-field c(x) for a) Discrete crack b) Diffused crack with second-order
quadratic approximation c) Diffused crack with fourth-order quadratic approximation, and d) Diffused
crack with second-order linear approximation.

to appropriately adapt the length scale parameter when comparing between the two. In this work, we comply
with the former definitions.

A.2.0.2 Second-order quadratic approximation

For the second-order quadratic approximation, the 1-D spatial variation of phase-field variable c(x) can be
expressed as (Fig. A.2b):

c(x)= 1− e−|x|/2l0 (A.21)

It is straight-forward to show that the width of diffusion zone decreases with decreasing the value of
length-scale parameter l0, which can also be seen in Fig. A.3.
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Fig. A.3: Second-order quadratic approximation: Effect on length-scale parameter l0 on the width of diffu-
sion

The specific second order functional proposed in Bourdin, Francfort, and Marigo [58] can be retrieved
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by modifying the general form of Eqs. (A.17)-(A.19) and considering the following definitions in Eq. (A.22)

cw = 2

ω(c)= (c−1)2
. (A.22)

Hence, the crack surface energy approximation assumes the following form

FΓ =
[

(c−1)2

4l0
+ l0|∇c|2

]
∫
Γ

G cdΓ≈
∫
Ω

G c

[
(c−1)2

4l0
+ l0|∇c|2

]
dΩ

(A.23)

A.2.0.3 Fourth-order quadratic approximation

A fourth-order quadratic approximation is established considering the definition introduced in [51], i.e.,∫
Γ

G cdΓ≈
∫
Ω

G c

[
(c−1)2

4l0
+ l0

2
|∇c|2 +

l3
0

4
(∆c)2

]
dΩ (A.24)

The expression for c(x) for the fourth-order quadratic approximation can be given as (also shown in Fig. A.2c):

c(x)= 1− e−|x|/l0

(
1+ |x|

l0

)
(A.25)

The effect of the length-scale parameter on the diffusion width is illustrated in Fig. A.4. The higher-
order term introduced in Eq. (A.24) leads to greater regularity of the phase-field solution, and improves
its convergence rate and accuracy. However due to increased continuity requirements of the solution, the
basis functions used for numerical interpolation must be at least (C1) continuous, for e.g. hierarchically
refined B-splines used within an isogeometric analysis framework [51]. It should also be noted that the
use of 4th-order model leads to a more accurate approximation of stresses, which in turn facilitates higher
rates of crack growth. More applications of higher-order phase-field models can be found in [51, 85, 102].
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Fig. A.4: Fourth-order quadratic approximation: Effect of the length-scale parameter l0 on the width of
diffusion

A.2.0.4 Linear approximation

In the quadratic approximations shown in sections A.2.0.2 and A.2.0.3, the phase field variable and there-
fore the degradation function evolve as soon as the structure is loaded. This is clearly not the case in purely
elastic brittle materials that demonstrate a linear elastic behavior until a crack initiates.
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Pham et al. [255] addressed this issue by employing a linear approximation of the surface energy inte-
gral to achieve a diffused localization band and a purely elastic global response until the onset of damage.
The 1-D expression for c(x) in this case can be given as in Eq. (A.26), which is also illustrated in Fig. A.2d
(See also Fig. A.5).

c(x)= 1−
( |x|

2l0
−1

)2
(A.26)
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Fig. A.5: Second-order linear approximation: Effect of the length-scale parameter l0 on the width of diffu-
sion.

More recently, Geelen et al. [107] provided an analogous linear approximation based on the following
expressions for cw and ω(c)

cw = 16
3

ω(c)= 4(1− c)
, (A.27)

which result in the following definition of the crack functional

FΓ =
3

8l0

[
1− c+ l2

0|∇c|2
]
. (A.28)

In view of Eq. (A.29), the approximation of the surface energy integral in Eq. (A.17) assumes the following
form ∫

Γ

G cdΓ≈
∫
Ω

3G c

8l0

[
1− c+ l2

0|∇c|2
]
dΩ (A.29)

The linear approximation in Eq. (A.29) differs from the corresponding formulation in [107] in the sense
that a fully cracked-state in the current study is represented by c = 0 in the current study, as opposed to
c = 1 in [107]. In addition, the total diffusion width in the current model [Eq. (A.29) and Fig. A.2d] is twice
the diffusion width in [107] to maintain consistency with other models.

It is of interest to note that the quadratic form (Eqs. (A.23)-(A.24)) implicitly guarantees the bound-
edness of the phase field variable c within the limits [0,1]. However, the solution obtained by Eq. (A.28)
is not intrinsically bounded within this interval, and additional constraints must be imposed to ensure
boundedness.

This is achieved by employing a Penalty [see, e.g., 110] or a Lagrange multiplier method [see, e.g, 107].
In both methods, a staggered iterative scheme is required for the solution of the resulting constrained
system of governing phase-field equation. To guarantee both the boundedness and irreversibility of the
phase field variable, Gerasimov and De Lorenzis [110] proposed a method to choose the value of an optimal
or lower bound of the penalty parameter beyond which adequate constraint enforcement can be ensured.
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A.2.0.5 Material Degradation

The expression of the potential energy introduced in Eq. (A.15) implies that in a given conservative system,
any increase in the fracture energy due to a unit increase in the fracture surface has to be compensated
by a corresponding decrease in the elastic strain energy. Hence, the expression of the elastic energy must
be coupled to the evolution of the phase field c as the latter dictates the value of the fracture energy. In
physical terms, the phase field has to account for the gradual degradation of material stiffness as cracks
propagate through the medium.

Mathematically, this has been expressed through the definition of a degradation function, g (c), which is
then used to reduce the value material elastic energy density giving rise to the so called isotropic phase field
methods. Driven from the fact that such an approach led to unrealistic and in cases erroneous results, e.g.,
cracks initiating and propagating due to pure compression later attempts postulated material degradation
on the basis of an energy split, i.e.,

ψe = g (c)ψ+
e +ψ−

e (A.30)

where ψ+
e and ψ−

e are the elastic strain energy densities whose expressions are specific to the type of
energy split adopted, see, e.g., Miehe, Welschinger, and Hofacker [197] for an energy decomposition based
on the spectral decomposition of the strain tensor and Amor, Marigo, and Maurini [17] for a volumetric/
deviatoric decomposition giving rise to the so called anisotropic degradation models. It is of interest to note
that although anisotropic models mitigated the unrealistic crack patterns derived from the isotropic ones
for most typical stress states, the problem is not yet fully resolved. The volumetric split defined in [17] may
still result in degradation under a pure compressive stress state. The spectral decomposition model defined
in [197] leads to a strongly non-linear stress-strain relation that has been shown to be computationally
taxing (see e.g. [13] for a detailed comparison of these two models).

The expression of the degradation function g(c) is not unique see, e.g., [345, 107, 57, 147, 53, 158, 183,
182, 11]. A widely used definition for the degradation function that is compatible with the first and second
order quadratic approximations provided in Eq. (A.23) and (A.24), respectively is

g (c)=
[
(1−k) c2 +k

]
(A.31)

where k in Eq. (A.31) is a model parameter utilized in several applications, see, e.g., [17, 37] as a way to
avoid ill-posedness. Geelen et al. [107] introduced an quasi-quadratic definition of g(c) to be employed in
conjuction with the linear approximation defined in Eq. (A.28) that is defined as

g(c)= c2

c2 +m(1− c)[1+ p(1− c)]
with p ≥ 1 and l0 <

3EG c

4(p+2)σ2
c

(A.32)

where m = (3G c)/(8l0ψc) = g′(c0) is the initial slope of the degradation function g(c) and p provides the
initial slope and shape parameters for the softening curve assuming c0 = 1 as the initial phase-field. Here,
ψc = (σ2

c)/(2E) is the critical fracture energy per unit volume of the material, in which σc and E represent
the critical tensile strength and Young’s modulus of the material respectively. This definition, however,
comes with an additional upper bound restriction on the value of length-scale parameter l0 which is nec-
essary to achieve optimal convergence. The upper bound on the regularization length is related to the
characteristic length of the fracture process zone lFPZ = (EG c)/(σ2

c), see [131, 107] for details.

Substituting Eq. (A.30) in Eq. (A.18), the expression for the brittle fracture potential energy assumes
the following form

Π≈
∫
Ω

g(c)ψ+
e dΩ+

∫
Ω

ψ−
e dΩ+

∫
Ω

G cFΓdΩ−

∫
Ω

uibidΩ+
∫
∂Ωt̄

ui t̄idΩt̄

 (A.33)

where definitions of ψ+
e and ψ−

e are specific to the energy split adopted and g(c), FΓ may be chosen based
on the table below.
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g(c) FΓ Reference[
(1−k) c2 +k

]
Eq. (A.31)

[
(c−1)2

4l0
+ l0|∇c|2

]
Eq. (A.23) Borden et al. [52]

c2

c2 +m(1− c)[1+ p(1− c)]
Eq. (A.32)

3
8l0

[
1− c+ l2

0|∇c|2
]

Eq. (A.28) Geelen et al. [107]

A.2.0.6 PFM strong form

The Euler-Lagrange equations of the displacement u (x, t) and phase field c (x, t) coupled formulation of
the Lagrangian functional are employed to derive the strong form of the quasi-static brittle-fracture phase
field formulation. The latter assumes the following general form:

∇σ+b= 0 , on Ω (A.34)

G cδc(FΓ)=−g′(c)D̃ , on Ω (A.35)

where δc(FΓ) denotes the derivative of surface energy approximation function FΓ with respect to the phase
field variable c, and D̃ is the energetic crack-driving force which depends on the phase field formulation
used. A detailed description on the different crack-driving forces that can be employed in conjuction with
Eq. (A.35) is provided in Miehe, Schaenzel, and Ulmer [201].

The coupled field Eqs. (A.34) and (A.34) are subject to boundary conditions introduced in Eq. (2.1)
supplemented by

∂c
∂xi

ni = 0 on Γt
c. (A.36)

where ni, i = 1 . . . r is the outward-pointing normal vector to the crack boundary. The Cauchy stress tensor
σ ∈ Rr×r is defined as

σi j,e =
∂ψe

∂εi j
(A.37)

Hence, substituting Eq. (A.30) into Eq. (A.37) gives rise to the degraded Cauchy stress tensor

σ=σi j = g(c)
∂ψ+

e
∂εi j

+ ∂ψ−
e

∂εi j
= g(c)σ++σ− (A.38)

where g(c) takes one of the forms shown in Eqs. (A.31) and (A.32) depending upon the formulation.

A.2.0.7 Derivation of phase field evolution equation in Borden et al. [52] from the general form

The phase field evolution equation employed in Borden et al. [52] can be obtained from the general expres-
sion of the strong form (Eqs. (A.34) and (A.35)), considering the expressions for FΓ and g(c) from Eq. (A.23)
and (A.31), i.e.,

FΓ =
[

(c−1)2

4l0
+ l0|∇c|2

]
; δc(FΓ)=

[
(c−1)

2l0
−2l0∆c

]
g(c)= (1−k)c2 +k ; g′(c)= 2(1−k)c

(A.39)

In the original formulations of Miehe, Hofacker, and Welschinger [198], which is later also adopted in [52],
the crack driving force D̃ was the positive part of the elastic strain energy density, i.e.,

D̃ =ψ+
e (A.40)

where ψ+
e is the tensile part of strain energy density taken from [197].

Substituting Eq.(A.40) in Eq. (A.35) and considering also Eqs. (A.39) the following evolution equation is
derived, i.e., (

4l0 (1−k)ψ+
e

G c
+1

)
c−4l2

0∆c = 1, on Ω (A.41)

which is a linear differential equation with respect to c. It is of interest to note that the Laplacian of
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the phase field in Eq. (A.41) is scaled by the squared value of the length scale parameter hence it rapidly
vanishes for small values of l0 compared to the c.

A.2.0.8 Derivation of cohesive phase field evolution equation in Geelen et al. [107] from general form

The phase field evolution equation presented in Geelen et al. [107] can be obtained from the general ex-
pression of the coupled strong form considering the following expressions for FΓ, δc(FΓ), and g(c)

FΓ =
3

8l0

[
1− c+ l2

0|∇c|2
]

; δc(FΓ)= 3
8l0

[
−1−2l2

0∆c
]

g(c)= c2

c2 +m(1− c)[1+ p(1− c)]
with p ≥ 1 and l0 <

3EG c

4(p+2)σ2
c

(A.42)

Substituting Eqs. (A.42) into Eq. (A.35) and performing the necessary algebraic manipulations results in
the following expression Geelen et al. [107].

3G c

8l0

[
2l2

0∆c+1
]
− g′(c)D̃ = 0, on Ω (A.43)

where
D̃ =max(ψc,ψ+

e ) (A.44)

and ψc =σ2
c /2E. Specific to this formulation, an additional augmented Lagrange constraint is incorporated

to ensure the smooth monotonic evolution of the phase field variable c, such that ċ ≤ 0. In view of this,
Eq. (A.43) transforms into the following expression:

3G c

8l0

[
2l2

0
∂2c
∂x2

i
+1

]
− g′(c)D̃+〈λ+γ(c− cn−1)〉+ = 0, on Ω (A.45)

where λ ∈ L2(Ω) are Lagrange multipliers and γ ∈ R>0 is the penalty kernel. cn−1 is the value of phase field
at preceding (n−1)th time-increment.

A.2.0.9 Irreversibility Conditions

The expression of the potential energy defined in Eq. (A.33) implies that regardless of the value of the
degradation function, the fracture energy would need to further increase in the case of unloading to com-
pensate for the corresponding elastic energy decrease. This is also derived on the basis of Eqs. (A.41), i.e.,
the strong form of the coupled system. In particular, the second of Eqs. (A.41) would result in an increasing
value of the phase field for decreasing values of the elastic energy potential in the case of unloading. This
would correspond to a reduction in the crack length, thus negating the irreversibility condition

Γ(t+∆t) ⊇Γ(t) (A.46)

Amongst the various irreversibility constraints proposed within the phase field literature, the history vari-
able approach given by Miehe, Hofacker, and Welschinger [198] is most widely applied. Based on the the-
oretical arguments provided in [198], irreversibility is enforced by introducing a so-called history variable
such that the following Kuhn-Tucker conditions hold

ψ+
e −H ≤ 0 Ḣ ≥ 0 Ḣ

(
ψ+

e −H
)= 0 (A.47)

where H is a history field.
Some other recent works have also proposed penalty and augmented Lagrange methods for imposing

the irreversibility constraints on the phase field equations, see for e.g. [110, 107], so that the monotonicity
of the phase field variable constantly holds. It is to be noted that these methods provide a more natural way
of imposing the constraints, and do not disrupt the original variational nature of the phase field equations.
Eq. (A.45) employs such an augmented Lagrange constraint to ensure the monotonic evolution of phase
field variable.



A.2. PHASE FIELD METHODS 167

A.2.0.10 Effective critical energy release-rate

In the original variational formulation proposed by Bourdin, Francfort, and Marigo [58], it was shown
that the fracture energy is slightly overestimated during simulations and the amount of this amplification
depends upon the size of elements in the overall finite-element discretization. This amplification effect
must be compensated by defining an effective critical energy release rate Ge f f

c for the purpose of phase-
field simulation (see also [254]).

Ge f f
c = Gactual

c
1+ (h/4l0)

(A.48)

where Gactual
c and Ge f f

c are the actual and effective critical energy release rates respectively. It must be
emphasized that using the amplified value of material fracture energy Gactual

c leads to overestimation of
critical fracture loads in comparison to discrete fracture methods, and hence for all practical purposes Ge f f

c
must be used while solving the phase-field evolution equation. This would also be highlighted in detail in
the numerical examples section.

A.2.0.11 Galerkin approximation

The strong form of the coupled governing Eqs. (A.41) and (A.45) are set in a discrete form following
standard Galerkin approximation. In this setting, the trial solution spaces are defined as

Su =
{

u ∈ (
H1 (Ω)

)d
∣∣∣u= ū on ∂Ωb

}
(A.49)

and
Sc =

{
c ∈ H1 (Ω)

}
(A.50)

for the displacement field and the phase field respectively. Corresponding weighting functions spaces are
further defined as

Wu =
{

wu ∈ (
H1 (Ω)

)d
∣∣∣wu = w̄u on ∂Ωb

}
(A.51)

and
Wc =

{
wc ∈ H1 (Ω)

}
(A.52)

Multiplying Eq. (A.34) with the weighting functions (A.51) and performing the necessary integration by
parts leads to the standard weak form of the equilibrium equation∫

Ω

σ ·∇wudΩ−
∫
Ω

b ·wudΩ−
∫
∂Ωt̄

t̄ ·wud∂Ωt̄ = 0 (A.53)

Multiplying Eq. (A.41) with the weighting functions (A.52) and performing the necessary algebraic manip-
ulation gives rise to the phase field weak form employed in [52]∫

Ω

([
4l0 (1−k)H

G c
+1

]
c,wc

)
dΩ+

∫
Ω

(
4l2

0∇c,∇wc)dΩ−
∫
Ω

(
1,wc)dΩ= 0 (A.54)

Similarly, the cohesive phase field weak form derived from Eq. (A.45) assumes the following form

∫
Ω

(g′(c)D̃,wc)dΩ+
∫
Ω

3G c

8l0

[
− (1,wc)+

(
2l2

0∇c,∇wc
)]

dΩ

+
∫
Ω

(〈λ+γ(c− cn−1)〉+,wc)dΩ= 0 (A.55)

The weak forms introduced in Eqs.(A.54) or (A.55) can be further discretised employing either mesh-based,
i.e., the FEM, mesh-less methods, see, e.g., [281] or MPM [143]. The resulting discrete equations are then
solved in an incremental fashion. Due to the nonlinear nature of g(c), the resulting discrete problem is a
nonlinear one, even for the case of elastic fracture, hence necessitating the use of iterative solvers.
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