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Abstract: Ligand design in metal chemistry is a fundamental step when pursuing compounds
with specific reactivity. In this paper, the functionalization of the OH group in the lateral chain
of the N-heterocyclic-carbene (NHC) ligand bound to a bis-carbonyl cyclopentadienone NHC
ruthenium(0) complex allowed the decoration of five generations of poly(propyleneimine) (PPIs)
dendrimers with up to 64 organometallic moieties. The coupling was achieved by employing
carbonyldiimidazole and the formation of carbamate linkages between dendritic peripheral NH2

and lateral OH groups on ruthenium complexes. The synthetic procedure, chemical purification,
and spectroscopic characterization of the five generations of dendrimers (3g1–5) are here described.
The ruthenium-modified dendrimers were activated as catalysts in the transfer hydrogenation of
the model compound 4-fluoroacetophenone in the presence of cerium ammonium nitrate as their
mononuclear congeners. The catalytic activity, being similar for the five generations, shows a decrease
if compared to mononuclear complexes. This detrimental effect might be ascribed to the –CH2NH–
functionalization, largely present in dendrimer skeleton and that can compete with the hydrogen
transfer mechanism, but also partially to a dendritic effect caused by steric encumbrance.

Keywords: ruthenium; N-heterocyclic carbene; ligand functionalization; dendrimers; hydrogen
transfer

1. Introduction

Dendritic catalysts are functional macromolecules with precise and unambiguous structures,
which, thanks to their monodisperse nature, maintain the advantages of homogeneous catalysts
showing fast kinetic responses and easy tunability [1–12]. Furthermore, they can be removed from the
reaction mixture by membrane or nanofiltration techniques and precipitation, exploiting their bigger
sizes compared to products, and this confers the advantages of heterogeneous catalysts [13]. Catalytic
sites grafted on the periphery of dendrimers can give rise to active, multivalent species that might
result in high reaction rates. Several reviews report on the use of dendrimers in catalysis [1–11], but few
of them are specifically dedicated to the dendrimer effect [14–16]. The consequences of dendritic effects
are known to be like substrate activation and influence the reaction rate and selectivity. On one hand,
a dendrimer brings together a large number of catalytically active species in a nanoobject, while, on the
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other hand, limitation to the access of substrate molecules can lead to a negative effect, i.e., lowering of
reaction rates caused by bulk hindrance.

The majority of the reported dendritic catalysts for hydrogenation contain phosphines since
they have proved to be optimal ligands for grafting metal complexes, thanks to their ability to
firmly coordinate metal ions and lead to high catalytic performances [17–23]. Both negative [24]
and positive [25–27] dendritic effects have been observed when hydrogenation is carried out with
increasing sizes of dendrimers. On the contrary, less examples regarding transfer hydrogenation
are reported [13,28,29]. Worthy of note is the tetrabranched phosphoranyl-terminated carbosilane
ruthenium(II) derivative able to catalyze the transfer hydrogenation of cyclohexanone, where
cyclohexadiene or formic acid acts as stoichiometric hydrogen donor species. This first-generation
dendrimer, which contains the lowest number of peripheral ruthenium functionalities, namely four,
was found to be less active than the mononuclear complex [28]. There are also examples in which the
dendritic system is given by the surrounding part of the catalytic center [30,31], as in the case of the
“green” application of the fluorinated dendritic chiral mono-N-tosylated-1,2-diphenylethylenediamine
(FTsDPEN), which was employed in the asymmetric transfer hydrogenation of prochiral ketones in
aqueous media catalyzed by ruthenium(II) centers [32].

Within the field of transfer hydrogenation, our group has recently developed novel ruthenium
compounds for bifunctional catalysis [33,34] by combining cyclopentadienones, which cooperate with
the metal centers in catalytic redox reactions [35–38], and N-heterocyclic carbenes (NHCs) [39,40],
largely used and very versatile ligands due to their easy preparation and the tunability of their steric and
electronic properties [41–44]. In particular, the reduction of the model compound 4-fluoroacetophenone
catalyzed by complexes 1a–c (Figure 1) can be activated by addition of cerium ammonium nitrate
(CAN), which favors the release of CO [34].
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Figure 1. Cyclopentadienone NHC ruthenium(0) complexes 1a–c.

NHCs are effective tools for the rational design of transition metal catalysts [45–52] in that their
skeleton can be provided with suitable substituents for heterogenization (e.g., –OH in 1c, Figure 1).
Despite the fact that NHCs can be considered ancillary ligands as outstanding as phosphines, examples
of NHC-decorated dendrimers reported in the literature are still contained [53–56]. These include
the NHC-rhodium dendrimer showing a positive dendrimer effect in hydrosilylation of ketones [54],
and an NHC-ruthenium derivative employed in olefin metathesis, in which the catalytic center is
bonded to the dendrimer through a Ru=C double bond involving the aromatic moiety without
exploiting the ancillary NHC ligand [53]. In order to evaluate a possible dendrimer effect and inspired
by previous works on dendritic systems [57], we report here on the development of an efficient method
for the straightforward synthesis, chemical purification, and spectroscopic characterization of five
generations of poly(propyleneimine) (PPIs) NHC-ruthenium(0) functionalized dendrimers with up to
64 organometallic moieties. Their catalytic activity in transfer hydrogenation has been tested for the
reduction of 4-fluoroacetophenone in iPrOH, and the results obtained will be compared with the ones
previously obtained for the mononuclear ruthenium complexes (Table 1) [34].
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Table 1. Catalytic transfer hydrogenation of 4-fluoroacetophenone with ruthenium catalysts [Ru].1
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Entry [Ru] Additive Conversion (%) 8 h Conversion (%) 24 h

1 1a CAN 25 61
2 1b CAN 10 87
3 1c CAN 10 25

1 General condition: ruthenium complex [Ru] (5 mol %), iPrOH (3 mL), reflux (82 ◦C); conversions were determined
by 19F NMR spectroscopy; 1 mol eq. of CAN per ruthenium center was added.

2. Results

2.1. Synthesis and Characterization of the Ruthenium-Decorated Dendrimers

The new ruthenium(0) complex 2 with CO2-imidazole (CO2Im) functionalized NHC ligand was
prepared in 84% yield by reacting 1c with a slight excess of carbonyldiimidazole (CDI:1c = 1.1:1) in
CH2Cl2 at room temperature for 2 h, as shown in Scheme 1. The compound 2 was then easily purified
by washing the imidazolium co-product with water.
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Scheme 1. Synthesis of the ruthenium(0) complex 2 with CO2Im-functionalized NHC ligand.

The off-white solid 2 is air stable and was characterized by analytical measurements (Figures S1–S4
in the Supplementary Materials, SM). The 1H and 13C NMR spectra were registered in CDCl3 and they
are comparable to the ones of the initial complex 1c for the unaltered structural parts [34]. In particular,
the downfield-shifted resonance of the coordinated carbon atom of the carbene (δ = 174.80 ppm)
appeared in the 13C NMR spectrum. In addition, the imidazole moiety displays signals at chemical
shifts (1H NMR: δ = 8.03, 7.33, 7.08 ppm; 13C NMR: δ = 136.95, 130.88, 116.97 ppm) close to those of the
starting material CDI, while the C=O group resonates at 147.89 ppm, typical for a carbamate moiety
(–OC(O)N–). In the infrared spectrum in CH2Cl2, CO stretching bands (νCO = 2007 and 1948 cm–1)
are consistent with those of 1c, and the stretching at 1768 cm–1 is ascribable to the carbamate group
formed during the reaction. Further evidences of the occurred functionalization reaction were given by
Electron-Spray Ionization mass spectrometry (MS-ESI) measurements, where the protonated molecular
ion [M + H]+ at m/z 823 could be detected.

The reaction in CH2Cl2 at room temperature for 2 h of a 4.8 fold excess of 2 with the dendrimer
DAB-dendr-(NH2)4 (g1) led to the formation of the dendrimer 3g1 decorated with four ruthenium(0)
moieties (Scheme 2). The CO2Im group of 2 easily reacted with DAB-dendr-(NH2)n (n = 8, 16, 32, 64, gn,
see Scheme S1 in the SM), up to the fifth generation, under the same experimental conditions yielding
the fully functionalized new dendritic organometallic dendrimers 3gn (Figure 2) in acceptable yields.
The excess of 2 and the side products could be easily removed from the crude product by extraction
with water and washing with Et2O. All five generation macromolecules 3gn were isolated as light
brown solids and were revealed to be stable to air and moisture.
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Figure 2. Structure of the second-to-fifth generation dendrimers functionalized with n ruthenium(0)
complexes: 3g2 (n = 8), 3g3 (n = 16), 3g4 (n = 32) and 3g5 (n = 64).

The dendritic compounds are soluble in THF and CH2Cl2, sparingly soluble in Et2O, and totally
insoluble in hexane, toluene as well as aqueous solvents. They were characterized by 1H and 13C NMR,
IR spectroscopy and mass spectrometry, when feasible (Figures S5–S21 in the SM). Considering the
NMR spectra registered in CDCl3, they show the signals due to the diaminobutane-based PPIs skeleton
(1H: four broad multiplets in the range 3.8–1.3 ppm; 13C: four resonances in the range 63–25 ppm) and
those given by the anchored peripheral NHC ruthenium moieties (see Materials and Methods section).
Even if all the proton signals appear as broad peaks typical of a polymer-like structure, it is clearly
detectable that the resonances of the two methylene groups belonging to the –NHCCH2CH2OC(O)NH–
unit of the organometallic moieties are at 3.77 and 3.59 ppm, which are more shielded than those
of 2 (4.05 and 3.99 ppm in –NHCCH2CH2OC(O)Im). The signal of the NH proton of the carbamate
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linkers close to the surface of the PPIs dendrimer moves along the whole spectrum and it is often
not clearly detected due to either that it can resonate in the same region of aromatic signals or that
it could be engaged in hydrogen bonds like –NH· · · (O)CO– or –NH· · · cyclopentadienone, fact that
becomes more relevant upon increasing the dendritic generation where the interacting groups get in
closer contact. The IR spectra of all five dendritic species in CH2Cl2 solution show a strong absorption
at 1718 cm−1 attributable to both C=O and –O2CNH– stretching bands. The structure of the first
generation dendrimer 3g1 (Scheme 2) could be also confirmed by MS-ESI, which shows the molecular
ion with sodium [M + Na]+ at m/z 3355. The high molecular weights of the upper generations 3g2–5
prevented the use of MS-ESI technique for mass detection.

2.2. Catalytic Transfer Hydrogenation

The five generations of functionalized dendrimers 3g1–5 were tested as precursors under catalytic
transfer hydrogenation conditions employing 4-fluoroacetophenone as model substrate in refluxing
iPrOH (hydrogen source). Catalytic runs were performed in order to investigate the stability of the
peripheral organometallic moieties on the PPIs dendrimers and to detect any possible dendritic effect.
Results obtained are reported in Table 2, and in all cases, selectivity is complete and conversion
corresponds to yield.

Table 2. Catalytic transfer hydrogenation of 4-fluoroacetophenone with ruthenium dendrimers 3g1–5
as catalyst [Ru].1.
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Entry [Ru] Additive Conversion (%) 8 h Conversion (%) 24 h

1 3g1 CAN 2 9 17
2 3g2 CAN 2 9 17
3 3g3 CAN 2 7 15
4 3g4 CAN 2 4 15
5 3g5 CAN 2 6 16
6 3g1 pyridine 3 0 20

1 General conditions: ruthenium complex [Ru] (5 mol %), iPrOH (3 mL), reflux (82 ◦C); conversions were determined
by 19F NMR spectroscopy; 2 1 mol eq. of CAN per ruthenium center; 3 10 mol eq. of pyridine per ruthenium center.

3g1–5 did not show any catalytic activity in the absence of additives, as already observed in
the case of the mononuclear congeners [34]. Addition of 1 equivalent of CAN, with respect to Ru
loading, promotes CO release [34,35] and leads to the pre-catalyst activation [58] resulting in some
catalytic activity. Nevertheless, only 15–17% conversion could be reached after 24 h for all the five
generations, which allow us to discard any positive dendritic effect. These conversions are lower than
those obtained with the mononuclear alkyl-substituted NHC complexes 1a and 1b but similar to 1c
(see Table 1). This peculiar behavior could be then ascribed to –CH2NH– dendrimer functionalization,
which might compete with the hydrogen transfer mechanism as indeed depicted previously for the
–CH2OH group in 1c [34].

A similar outcome was found by adding 10 eq. of pyridine for each ruthenium(0) center to 3g1
(entry 6 of Table 2), confirming the activation effect of the latter additive stated for pyridyl functionalized
NHC ligands [58]. Although the pre-catalyst activation could be achieved also by pyridine, this was
not used to test the following generations of dendrimer due to the high amount of additive required
compared to CAN and the limited enhancement in the conversion (20% vs 17%).
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3. Materials and Methods

3.1. General Information

Solvents dichloromethane (CH2Cl2), diethyl ether (Et2O), acetonitrile (CH3CN) and toluene
were dried and distilled prior to use. Acetone was degassed and stored under inert atmosphere on
molecular sieves. The other solvents iPrOH, heptane, hexane, CDCl3, D2O and toluene-d8 (Sigma
Aldrich) were employed without further purification. DAB-dendr-(NH2)n g1–5 (n = 4, 8, 16, 32 and 64),
4-fluoroacetophenone, CDI and CAN (Merck KGaA, Darmstadt, Germany: Sigma-Aldrich Products
sold through Sigma-Aldrich, Italy) were employed as purchased. 1c [39] was prepared as previously
reported. The NMR spectra were recorded using Varian Inova 300 (Palo Alto, California - US) (1H: 300.1
MHz, 13C: 75.5 MHz), Varian Mercury Plus VX 400 (Oxford, UK) (1H: 399.9 MHz; 13C: 100.6 MHz, 19F:
376.5 MHz), Varian Inova 600 (Oxford, UK) (1H: 599.7 MHz, 13C: 150.8 MHz) spectrometers at 298 K;
chemical shifts were referenced internally to residual solvent peaks. Full 1H and 13C NMR assignments
were done, when necessary, by gHSQC and gHMBC NMR experiments using standard Varian pulse
sequences. Infrared spectra were recorded at 298 K on a Perkin-Elmer (Llantrisant, UK) Spectrum Two
spectrophotometer. MS-ESI+ spectra were recorded with Waters (Milford, MA, USA) Micromass ZQ
4000 spectrometer with samples dissolved in MeOH or CH3CN. Elemental analyses were performed
with the Thermo Scientific Flash 2000 with CHNS analyser (Bremen, Germany) instrument.

3.2. Synthesis of Dicarbonyl(η4-3,4-bis(4-methoxyphenyl)-2,5-diphenylcyclopenta-2,4-dienone)
(1-methyl-3-(2-CO2Im-ethyl)imidazol-ylidene)ruthenium (2)

1c (1.44 g, 1.98 mmol) and CDI (0.97 g, 5.99 mmol) were dissolved in anhydrous CH2Cl2 under nitrogen
atmosphere and the reaction mixture was stirred at room temperature for 2 h. The solution was then
extracted with water (3 × 20 mL), and traces of water were removed from organic phase with Na2SO4.
The solvent was then removed under reduced pressure and the white/brown product, identified as 2,
was obtained with an 84% yield. 1H NMR (399.9 MHz, 298 K, CDCl3): δ 8.03 (s, 1H, Im); 7.78 (m, 4H,
CHaryl), 7.33 (m, 1H, Im), 7.16–7.12 (m, 8H, CHaryl), 7.08 (m, 1H, Im), 7.06 (m, 2H, CHaryl), 6.96 (d, J =

2.0 Hz, 1H, CHNHC), 6.85 (d, J = 2.0 Hz, 1H, CHNHC), 6.65 (m, 4H, CHaryl), 4.05 (m, 2H, –CH2–), 3.99
(m, 2H, –CH2–), 3.72 (s, 6H, –OCH3), 3.14 (s, 3H, –NCH3) ppm. 13C NMR (100.6 MHz, 298 K, CDCl3): δ
202.15 (CO), 174.80 (Ccarbene), 169.41 (C=O, Cp), 158.64 (–COCH3), 147.89 (–OC(O)N–), 136.95 (CH, Im),
134.91 (Cqaryl), 133.55 (CHaryl), 130.88 (CH, Im), 129.36 (CHaryl), 127.63 (CHaryl), 125.63 (Cqaryl), 124.70
(CHNHC), 124.37 (CHaryl), 121.76 (CHNHC), 116.97 (CH, Im), 112.96 (CHaryl), 104.09 (C2,5, Cp), 78.88
(C3,4, Cp), 67.02 (–CH2–), 55.00 (–OCH3), 49.20 (–CH2–), 38.41 (CH3, NHC). IR (CH2Cl2): ν(carbonyl
CO): 2007 and 1948, ν(C=O, –O2CIm): 1768 cm–1. MS-ESI+ (MeOH): m/z 823 [M + H]+, 845 [M + Na]+.
Anal. Calcd (%) for C43H36N4O7Ru: C, 62, 84; H, 4, 42; N, 6, 82. Found: C, 62, 81; H, 4, 43; N, 6, 83. 1H
and 13C NMR, IR and MS-ESI spectra of 2 are reported in Figures S1–S4 in the SM.

3.3. Synthesis of Functionalized Dendrimers 3g1–5

g1 (0.021 g, 0.06 mmol) and 2 (0.260 g, 0.31 mmol) were dissolved in anhydrous CH2Cl2 (10 mL) under
inert atmosphere and the reaction mixture was stirred at room temperature for two days. The solution
was then extracted with water (3 × 20 mL) and traces of water were removed from organic phase with
MgSO4. Organic solvent was removed under reduced pressure and the solid crude was washed with
Et2O (3 × 15 mL). The final yellow solid was identified as 3g1 (n = 4) and obtained with 42% yield. 1H
NMR (399.9 MHz, 298 K, CDCl3): δ 7.72–6.60 (CHaryl), 6.81 (m, 4H, CHNHC), 6.62 (m, 4H, CHNHC),
3.77 (m, 8H, –CH2–), 3.68 (s, 24H, –OCH3), 3.59 (m, 8H, –CH2–), 3.09 (s, 12H, –NCH3), 3.07, 2.97, 2.36,
1.57, 1.36 (br, 32H, CH2, DAB-dendr) ppm. 13C NMR (100.6 MHz, 298 K, CDCl3): δ 202.06 (C=O), 172.67
(Ccarbene), 169.56 (C=O, Cp), 158.53 (–COCH3), 156.00 (–OC(O)N–), 135.04 (Cqaryl), 133.55 (CHaryl),
129.40 (CHaryl), 127.45 (CHaryl), 125.50 (Cqaryl), 124.44 (CHaryl), 124.36 (CHNHC), 121.80 (CHNHC),
112.85 (CHaryl), 103.73 (C2,5, Cp), 78.97 (C3,4, Cp), 63.29 (–CH2–), 54.96 (–OCH3), 49.75 (–CH2–), 38.25
(CH3, NHC), 53.73, 51.65, 39.51, 26.99, 24.88 (CH2, DAB-dendr) ppm. IR (CH2Cl2): ν(carbonyl CO):
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2006 and 1947, ν(C=O, –NHC(O)O–): 1718, ν(C=C): 1601 and 1518, ν(C=O, Cp): 1582 cm–1. MS-ESI+

(CH3CN): m/z 3355 [M + Na]+. Anal. Calcd (%) for C176H168N14O28Ru4: C, 63, 45; H, 5, 08; N, 5, 89.
Found: C, 63, 46; H, 5, 08; N, 5, 88. 1H and 13C NMR, IR and MS-ESI spectra of 3g1 are reported in
Figures S5–S9 in the SM.

The upper generations of dendrimers, peripherally decorated with n ruthenium(0) moieties, 3g2–5
with n = 8, 16, 32 and 64, respectively, were prepared by applying the same procedure, but they required
seven days of reaction time. 1H and 13C NMR spectra are reported in Figures S10–S21 in the SM.

3g2, prepared from g2 (0.020 g, 0.03 mmol) and 2 (0.26 g, 0.31 mmol), yield of 25%. 1H NMR (399.9 MHz,
298 K, CDCl3): δ 7.75–6.61 (CHaryl), 6.96 (m, 8H, CHNHC), 6.79 (m, 8H, CHNHC), 3.77 (m, 16H, –CH2–),
3.70 (s, 48H, –OCH3), 3.59 (m, 16H, –CH2–), 3.10 (s, 24H, –NCH3), 3.20–2.80, 2.60–2.20, 1.96–1.42 (br,
80H, CH2, DAB-dendr) ppm. 13C NMR (100.6 MHz, 298 K, CDCl3): δ 202.18 (C=O), 173.96 (Ccarbene),
169.52 (C=O, Cp), 158.61 (–COCH3), 156.14 (–OC(O)N–), 135.00 (Cqaryl), 133.58 (CHaryl), 129.49 (CHaryl),
127.59 (CHaryl), 125.78 (Cqaryl), 124.55 (CHaryl), 124.30 (CHNHC), 122.43 (CHNHC), 112.95 (CHaryl),
103.65 (C2,5, Cp), 78.68 (C3,4, Cp), 63.29 (–CH2–), 55.02 (–OCH3), 50.00 (–CH2–), 38.31 (CH3, NHC),
53.47, 51.54, 39.51, 26.84, 23.63 (CH2, DAB-dendr) ppm. IR (CH2Cl2): ν(carbonyl CO): 2008 and 1948;
ν(C=O, –NHC(O)O–): 1719; ν(C=C): 1603 and 1518; ν(C=O, Cp): 1577 cm–1. Anal. Calcd (%) for
C360H352N30O56Ru8: C, 63, 55; H, 5, 21; N, 6, 18. Found: C, 63, 54; H, 5, 19; N, 6, 19.

3g3, prepared from g3 (0.021 g, 0.01 mmol) and 3 (0.17 g, 0.21 mmol), yield of 32%. 1H NMR (399.9 MHz,
298 K, CDCl3): δ 7.76–6.61 (CHaryl), 6.96 (m, 16H, CHNHC), 6.78 (m, 16H, CHNHC), 3.77 (m, 32H, –CH2–),
3.71 (s, 96H, –OCH3), 3.67 (m, 32H, –CH2–), 3.10 (s, 48H, –NCH3), 3.20–1.50 (br, 176H, CH2, DAB-dendr)
ppm. 13C NMR (100.6 MHz, 298 K, CDCl3): δ 202.17 (C=O), 173.94 (Ccarbene), 169.46 (C=O, Cp), 158.60
(–COCH3), 153.57 (–OC(O)N–), 135.00 (Cqaryl), 133.57 (CHaryl), 129.29 (CHaryl), 127.59 (CHaryl), 125.52
(Cqaryl), 124.54 (CHaryl), 124.29 (CHNHC), 122.38 (CHNHC), 112.95 (CHaryl), 103.98 (C2,5, Cp), 78.67
(C3,4, Cp), 63.69 (–CH2–), 55.01 (–OCH3), 50.01 (–CH2–), 38.30 (CH3, NHC), 53.39, 51.39, 38.41, 26.78,
24.02 (CH2, DAB-dendr) ppm. IR (CH2Cl2): ν(carbonyl CO): 2008 and 1949, ν(C=O, –NHC(O)O–): 1718,
ν(C=C): 1602 and 1517, ν(C=O, Cp): 1577 cm–1. Anal. Calcd (%) for C728H720N62O112Ru16: C, 63, 61;
H, 5, 28; N, 6, 32. Found: C, 63, 60; H, 5, 30; N, 6, 33.

3g4, prepared from g4 (0.020 g, 6.00 µmol) and 3 (0.20 g, 0.25 mmol), yield of 41%. 1H NMR (399.9
MHz, 298 K, CDCl3): δ 7.75–6.60 (CHaryl), 6.96 (m, 32H, CHNHC), 6.79 (m, 32H, CHNHC), 3.77 (m,
64H, –CH2–), 3.71 (s, 192H, –OCH3), 3.67 (m, 64H, –CH2–), 3.10 (s, 96H, –NCH3), 3.20–1.50 (br, 368H,
CH2, DAB-dendr) ppm. 13C NMR (100.6 MHz, 298 K, CDCl3): δ 202.16 (C=O), 173.88 (Ccarbene), 169.38
(C=O, Cp), 158.60 (–COCH3), 153.58 (–OC(O)N–), 134.97 (Cqaryl), 133.57 (CHaryl), 129.31 (CHaryl),
127.59 (CHaryl), 125.54 (Cqaryl), 124.53 (CHaryl), 124.30 (CHNHC), 122.38 (CHNHC), 112.95 (CHaryl),
103.96 (C2,5, Cp), 78.75 (C3,4, Cp), 63.68 (–CH2–), 55.02 (–OCH3), 49.99 (–CH2–), 38.32 (CH3, NHC),
52.47, 51.22, 38.43, 24.10, 19.73 (CH2, DAB-dendr) ppm. IR (CH2Cl2): ν(carbonyl CO): 2009 and 1947,
ν(C=O, –NHC(O)O–): 1718, ν(C=C): 1603 and 1518, ν(C=O, Cp): 1576 cm–1. Anal. Calcd (%) for
C1464H1456N126O224Ru32: C, 63, 63; H, 5, 31; N, 6, 39. Found: C, 63, 61; H, 5, 31 N, 6, 39.

3g5, prepared from g5 (0.021 g, 3.00 µmol) and 3 (0.20 g, 0.25 mmol), yield of 43%. 1H NMR (399.9
MHz, 298 K, CDCl3): δ 7.75–6.58 (CHaryl), 6.96 (m, 64H, CHNHC), 6.78 (m, 64H, CHNHC), 3.77 (m, 128H,
–CH2–), 3.71 (s, 384H, –OCH3), 3.66 (m, 128H, –CH2–), 3.10 (s, 192H, –NCH3), 3.20–1.50 (br, 752H, CH2,
DAB-dendr). 13C NMR (100.6 MHz, 298 K, CDCl3): δ 202.16 (C=O), 173.91 (Ccarbene), 169.43 (C=O, Cp),
158.60 (–COCH3), 153.57 (–OC(O)N–), 134.98 (Cqaryl), 133.57 (CHaryl), 129.30 (CHaryl), 127.59 (CHaryl),
125.53 (Cqaryl), 124.54 (CHaryl), 124.30 (CHNHC), 122.38 (CHNHC), 112.95 (CHaryl), 103.97 (C2,5, Cp),
78.70 (C3,4, Cp), 63.80 (–CH2–), 55.02 (–OCH3), 49.92 (–CH2–), 38.31 (CH3, NHC), 52.46, 51.35, 38.39,
26.70, 24.09 (CH2, DAB-dendr). IR (CH2Cl2): ν(carbonyl CO): 2006 and 1950, ν(C=O, –NHC(O)O–):
1717, ν(C=C): 1602 and 1518, ν(C=O, Cp): 1577 cm–1. Anal. Calcd (%) for C2936H2928N254O448Ru64: C,
63, 64; H, 5, 33; N, 6, 42. Found: C, 63, 64; H, 5, 35; N, 6, 41.
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3.4. General Procedure for Transfer Hydrogenation

Functionalized dendrimer (5 mol % [Ru]), CAN (1 eq.) or pyridine (10 eq.) and iPrOH (3 mL) were
stirred at reflux for 15 min. Then 4-fluoroacetophenone (36 µL, 300 µmol) was added and sampling was
done at regular intervals by withdrawing aliquots (about 0.05 mL) of the reaction mixture and diluting
them with addition of CDCl3 (0.5 mL). Conversions were determined by 19F NMR spectroscopy by
monitoring signals at δ = −105.35 (4-fluoroacetophenone) and −115.70 ppm (1-(4-fluorophenyl)ethanol).
Further details are given in Figures S22–S23 and Tables S1–S2 in the SM.

4. Conclusions

Five generations of novel cyclopentadienone-NHC-ruthenium(0)-functionalized PPIs dendrimers
3g1–5 with up to 64 organometallic peripheral moieties have been here successfully prepared and
provide a precious route for the immobilization of hydroxy-functionalized NHC complexes onto
organic and inorganic amino-decorated supports. The dendrimers 3g1–5 also represent one of the
few examples in which NHC ligands are exploited as ancillary ligands for the functionalization
of high-generation dendrimers. The stability shown by these dendrimers highlights a significant
opportunity to obtain nanosized multinuclear systems, which have the potential to work in between
homogeneous and heterogeneous catalytic regimes.

Dendrimers 3g1–5, thanks to the ruthenium(0) centers present at the periphery, are active in the
transfer hydrogenation of 4-fluoroacetophenone in the presence of additives like CAN or pyridine.
In line with what previously observed for the corresponding mononuclear species 1c, the limited
catalytic activity is more likely due to dendrimer –CH2NH– functionalization rather than ascribable to
a sterically induced detrimental dendrimer effect. Nevertheless, taking advantage of the synthetic
strategy here described, further studies will be devoted in the future to improve the catalytic activity,
for example by modifying the dendritic linker.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/10/2/264/s1,
Scheme S1: Poly(propyleneimine) (PPIs) dendrimers used as support for ruthenium complexes in this work; Figures
S1–S4: 1H and 13C NMR, IR and MS-ESI spectra of 2; Figures S5–S21: 1H and 13C NMR, IR and MS-ESI spectra of
3g1–5; Figures S22 and S23: 19F NMR spectra for catalytic transfer hydrogenation of 4-fluoroacetophenone with
3g1–5; Tables S1 and S2: 19F NMR conversion data for catalytic transfer hydrogenation of 4-fluoroacetophenone
with 3g1–5.
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