
ETH Library

Design and implementation of a
parallel queue-based traffic flow
simulation

Working Paper

Author(s):
Dobler, Christoph; Axhausen, Kay W.

Publication date:
2011

Permanent link:
https://doi.org/10.3929/ethz-b-000040273

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
Arbeitsberichte Verkehrs- und Raumplanung 732

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://orcid.org/0000-0003-3331-1318
https://doi.org/10.3929/ethz-b-000040273
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Design and Implementation of a Parallel Queue-Based Traffic Flow Simulation1

Date of submission: 2010-jul-282

Christoph Dobler
IVT, ETH Zurich, CH-8093 Zurich
phone: +41-44-633 65 29
fax: +41-44-633 10 57
dobler@ivt.baug.ethz.ch

3

Kay W. Axhausen
IVT, ETH Zurich, CH-8093 Zurich
phone: +41-44-633 39 43
fax: +41-44-633 10 57
axhausen@ivt.baug.ethz.ch

4

Words: 6032, Figures: 55

Dobler, C. and Axhausen, K.W. 1

ABSTRACT

Today, agent based micro-simulations are widely used in the field of transport planning and6

traffic management. One important requirement is the ability to simulate large scale scenarios7

in reasonable time. An obvious approach to reduce the computation time of such scenarios is8

to use multiple CPU cores.9

This paper presents the implementation of a parallel queue simulation for MATSim written10

in Java. Existing parallel traffic micro-simulations are reviewed concerning their paralleliza-11

tion approaches as well as the reached performance gains. Various concepts how to model12

the progress of time and how to distribute computational workload among multiple CPU cores13

are discussed. Based on an analysis of the MATSim framework regarding its structure, per-14

formance and extensibility the concepts for the parallel queue simulation are selected and im-15

plemented. Performance tests with different sized scenarios are conducted. An analysis of the16

results shows that especially for large scale scenarios a significant performance gain is reach-17

able.18

Dobler, C. and Axhausen, K.W. 2

INTRODUCTION AND RELATED WORK

Today, agent based micro-simulations are widely used in the field of transport planning and19

traffic management. One important requirement is the ability to simulate large scale scenarios20

in reasonable time. Until the end of the last millennium, the main focus in CPU development21

was to increase the computing power of a single CPU core. As a result, a simulation could be22

simply sped up by using a faster CPU.23

Within the last years, the development focus has changed dramatically. Today, it can be24

assumed that in the near future computers with multi core CPUs will become state of the art.25

Increasing the computing power of a CPU is mainly based on the usage of multiple cores where26

each core for itself will not have a significantly better performance than an old single core CPU.27

As a result, existing program code has to be adapted to be able to benefit from this new28

multi-core architecture. Typically, this makes considerable changes in the program structure29

necessary because the program logic has to be switched from sequential to parallel. This paper30

presents the implementation of a parallel queue simulation which results in a major speedup31

and therefore reduces the simulation time of large scale scenarios significantly.32

Here, existing work in the field parallel transport simulations is determined. This includes33

an overview of existing parallel simulations tools as well as the techniques which they use for34

the parallelization. Additionally commonly used approaches to model the progress of time35

within a simulation are described and analyzed regarding their suitability for a parallel im-36

plementation. Moreover it is discussed how the computation effort of a simulation can be37

distributed among multiple CPU cores. Subsequently, MATSim, a framework for iterative,38

agent-based micro-simulations, is described with a special focus on its simulation modules.39

Based on the findings from the previous sections, in the implementation section the selection40

and implementation of a parallelization approach is described. Afterwards the performance of41

the implementation is measured and evaluated using various real world scenarios. The paper42

closes with some conclusions and the outlook on further work.43

Parallel Traffic Flow Micro-Simulations44

In this section we present a selection of previous work related to parallel traffic flow micro-45

simulations. An overview on traffic flow simulations in general is for example given by (1).46

(2, 3, 4, 5) give a detailed overview on the topics of (multi-)agent-systems and simulations.47

Various existing micro-simulations have been ported to parallel computers. As described48

by (6) AIMSUN2 uses a shared memory approach based on a parallel threads. Each of these49

threads is a sequence of instructions executed within the context of a process. If a process hosts50

multiple threads they can access the same data at the same time which may lead to inconsisten-51

cies or deadlocks. Therefore, it has to be ensured that changes on the data are only allowed by52

one thread at a time. The distribution of the calculation effort is done by introducing a system53

with so called blocks and layers. A block contains objects which interact with each other in a54

simulation step. A layer groups blocks which do not influence each other and therefore can be55

simulated simultaneously. By using 8 parallel threads, they reach performance gains up to a56

factor of 3.5.57

A mesoscopic traffic simulation model is implemented by DYNEMO (7). A parallel imple-58

mentation for distributed multiprocessor systems with distributed memory has been developed.59

The parallelization is based on the usage of subnetworks which are created by splitting the net-60

work along intersections. As a result the split intersections are duplicated and exist in multiple61

Dobler, C. and Axhausen, K.W. 3

subnetworks. To simulate traffic between the subnetworks so called transit-storage links are62

introduced. They accumulate cars which want to proceed to links belonging to another subnet-63

work. After each simulation step the subnetworks exchange the cars on those transit-storage64

links. A speed-up of factor 15 using 19 processors is reported.65

The parallel implementation of TRANSIMS uses a cellular automata approach (8). The66

calculation effort is distributed among parallel distributed processors by splitting the network67

into domains. The cuts are performed in the middle of links. Each of the divided links is68

fully represented in both domains. The consistency between different processors is maintained69

by exchanging information about the divided links. TRANSIMS uses an iterative simulation70

approach to do adaptive load balancing. During each iteration the calculation times for all71

intersections and links are measured. By using this data the load balance is optimized from72

iteration to iteration.73

An event-driven parallel queue-based micro-simulation for MATSim is introduced by74

Charypar et al. (17). In contrast to the other described parallel simulations it can be run on75

shared memory computers utilizing multiple CPUs. The workload is distributed by an adaptive76

domain decomposition approach. A small test scenario is sped up by a factor of 53 when using77

64 CPU cores.78

There is a multiplicity of other parallel agent-based traffic micro-simulations that are not79

discussed here because they employ similar concepts (e.g. 9, 10).80

As can be seen, a major part of those parallel micro-simulations use the concept of dis-81

tributed computation. Distributed systems consist of multiple computers which are loosely82

coupled—e.g. through a computer network—where interactions between the computers are83

relatively slow. Parallel computing in contrast means parallel execution of calculations on84

multi-processor (and / or multi-core) computing platforms. Interactions between different pro-85

cessors are significantly faster than on distributed computers (11).86

When most of those micro-simulations were written distributed computation was a com-87

monly used technology. Multi-processor systems were expensive and possible scenarios sizes88

limited by the available amount of memory. However, today the situations has changed dramat-89

ically. Even typical workstations use multi-core CPUs and several GB of memory. Therefore90

parallel computing has gained an enormous amount of attractiveness. Especially large scale91

scenarios—as they are frequently used today—may profit from such a paradigm shift. E.g.92

applying a domain decomposition approach to a high resolution network will create a huge93

amount of shared links and / or nodes which again will result in many interactions between94

different processors. While those interactions can be handled in reasonable time by a parallel95

computing implementation, they may significantly slow down an approach based on distributed96

computing.97

Modelling the Progress of Time98

A common criterion to classify simulations is grouping them by the way they model the99

progress of time. The two mainly used approaches in the field of traffic flow simulations are100

time step based and event based.101

A simple method to model the progress of time is to divide the simulated period into equal102

sized time slices (time slice, time bin and time step are used synonymous in this context).103

For each of these time slices the state of the simulated system has to be evaluated—which104

is one major drawback of this approach. Even if nothing happens between two time steps—105

Dobler, C. and Axhausen, K.W. 4

and, therefore, the system state does not change—the state of the system has to be calculated.106

Another problem is determining the size of the time steps. On the one hand, using too short107

time slices results in unnecessary long calculation times. Too long time bins, on the other hand,108

may lead to poor or even wrong simulation results. In many simulated systems, the number of109

events occurring during a time step varies significantly. Thus, it is necessary to choose the time110

step size according to the peak times.111

Think of a road where on average every 60 seconds a car is driving along. During the peak112

hour, significantly more vehicles may pass that road, e.g. one every 10 seconds. Having a time113

step of 10 seconds seems to be appropriate when looking at the average flow rate but clearly is114

too large with respect to the rate during the peak hour. One obvious solution for this problem115

is to adapt the size of the time slices during the simulation, which can be done dynamically116

depending on the results of previous time steps or based on predefined rules resulting from117

existing knowledge (e.g. the peak hours of the call center are known). However, a problem118

that cannot be solved by adapting the size of the time bins is load balancing. Again, this can119

be illustrated with the simulation of roads. If not a single road but an entire road network is120

simulated, it is obvious that the traffic flow rate differs depending on the location of a road. As121

a result, the time step size has to be small during the whole simulation, which again results in122

a high computational effort.123

Typically, simulation software based on a time step approach can be parallelized quite sim-124

ply. The main requirement is that the events which occur within a time step can be separated125

into groups that are independent from each other. In the road network example, this could be126

e.g. a group for every road in the network. In a parallel implementation, each of those groups127

could be handled by a separate simulation thread which synchronizes its data with the other128

threads at the end of each time step.129

Another even more intuitive possibility to simulate time is an event driven approach. In a130

discrete-event simulation, the operations within a simulated system are represented as a chrono-131

logically ordered list of events. Each event occurs at a given point in time and causes a change132

of the system state (12). Using again a road as example, every car entering or leaving a road133

would create such an event.134

Classic event driven simulation modules use internally a list of events which have to be135

processed at their scheduled future point in time (13, 14). During the simulation the events are136

processed in chronological order—when the list is empty the simulation ends. The scheduled137

events can be predefined before the simulation starts and / or be created during a running simu-138

lation. In a distributed event driven simulation employing multiple threads leads to a situation139

where each simulation thread uses its own simulation clock. This clock is not linked to the140

clocks of the other threads. Combined with the different calculation efforts of the threads, this141

results in varying current simulation times. Thus, situations will occur where the events are not142

processed in a chronological order anymore.143

Several solutions to solve this problem have been proposed which can be divided into opti-144

mistic and conservative approaches (e.g. 13, 15, 14, 11, 16). Optimistic approaches assume that145

such timing problems will not occur very often. Therefore, the threads can process the events146

without checking whether other events should be handled before. However, if a timing problem147

appears, a roll back procedure has to be performed which turns the multiple simulation clocks148

back to the point in time where the events can be processed in the correct order. Another pos-149

sible solution is a conservative approach where each thread has to check whether its simulation150

time can be advanced or not. Doing so ensures on one hand that no roll back procedures have151

Dobler, C. and Axhausen, K.W. 5

to be performed but on the other hand causes additional calculation effort for the consistency152

checks.153

Depending on the simulated problem the one or the other approach performs better. How-154

ever, experiments with real world scenarios in the field of traffic flow simulations show that155

event driven approaches tend to perform better than time step based ones. In such scenarios156

the traffic volumes and their distribution in the network varies significantly in space and time157

which results in a large computational overhead for time step based simulations (17).158

Distribution of the Workload159

The computational power of parallel computers can be utilized by one of two fundamentally160

different approaches. On the one hand, new simulation software can be developed which in-161

corporates algorithms that are designed to be run on parallel computers. On the other hand,162

existing software can be adapted to be able to do parallel simulations (e.g. 18). Regardless of163

the approach pursued a parallel simulation has to split up the total computational effort into164

small packages which can be handled by the parallel executed modules of the simulation.165

In a functional decomposition, the tasks that have to be performed are assigned to different166

simulation modules. In a traffic flow simulation, one module could do the routing while an-167

other one could execute the movement of the vehicles. Such a decomposition is often easy to168

implement but the achievable speed-up is limited by the number of tasks that can be performed169

simultaneously (8).170

Another approach commonly used in the field of parallel traffic flow simulation (e.g. 9, 10,171

8, 7) is domain decomposition. The aim is to divide the simulation problem into pieces with172

approximately equal computational effort. Each of those pieces is handled by one CPU core.173

Such an approach performs best if the domains do not interact with each other. Then, almost174

linear performance gains can be realized. However, in typical traffic simulation interactions175

between domains occur quite frequently. Thus, their influence on the overall performance176

cannot be ignored. Each time such interactions take place a certain amount of calculation177

overhead—overhead in this context are calculations that would not be necessary in a non-178

parallel simulation—is created. Depending on that overhead the reachable performance gain is179

limited.180

Another factor that can significantly influence performance is the load balance between the181

domains. The domain with the highest calculation effort affects the total duration of a simula-182

tion run. Depending on the kind of simulated problem various solutions can be used to reach183

an approximately even balance. Using static domains is often sufficient for simple and well184

known problems where the calculation effort can be predicted with high accuracy. If the prob-185

lem gets more complex adapting the size of the domains dynamically is an obvious possibility186

to keep the calculation effort balanced. Various different dynamic load balancing strategies are187

for example discussed by (19). However, adapting the domain sizes again produces additional188

overhead. Hence, accepting a certain amount of imbalance between the calculation efforts may189

be preferable.190

When applying domain decomposition to a traffic flow simulation it is feasible to create the191

domains based on the simulated network structure. The infrastructure objects like links, nodes192

and traffic lights are assigned to the domains. The agents are dynamically assigned to the thread193

that handles the infrastructure object on which they are physically present.194

Selecting the objects that belong to a domain again can be done in different ways. Using195

Dobler, C. and Axhausen, K.W. 6

a random assignment typically results in a good load balance between the domains and there-196

fore no further mechanisms to check and adapt the balance are needed. Another advantage197

of a random approach is that it is simple to implement and no problem specific knowledge is198

necessary. A clear drawback is that the amount of interactions between different domains is199

extremely high.200

Another approach is to create the domains based on the network structure. Areas with high201

connectivity are consolidated into domains and domain boarders are placed in areas with only202

low connectivity. A significant advantage of such an approach is that the level of communi-203

cation between different domains is minimized because most simulated actions only involve204

objects which belong to the same domain. However, creating such domains with comparable205

computational workloads is very complicated for typical simulation problems. In a traffic flow206

simulation, the computational effort typically depends more on the traffic volume than on the207

number of network links. Accordingly, the domain sizes should be chosen based on traffic208

flow information. Yet, the load balance may fluctuate significantly during a simulation—e.g. a209

domain that contains only housing zones has high traffic volumes in the morning and evening210

but only low ones in between.211

MATSIM

Overview212

MATSim (Multi Agent Transport Simulation) is a framework for iterative, agent-based micro-213

simulations of transport systems that is currently developed by teams at ETH Zurich and TU214

Berlin. It consists of several modules that can be used independently or as part of the frame-215

work. It is also possible to extend the modules or replace them with new implementations.216

Balmer (20) and Balmer et al. (21) give a detailed description of the framework, its capabilities217

and its structure. Because of its agent-based approach, every person in the system is modeled218

as an individual agent in the simulated scenario. Each agent has personalized parameters such219

as age, sex, available transport modes and scheduled activities. Due to the modular structure220

of the simulation framework, the agent’s parameterset can be easily extended my new parame-221

ters, for example for the routing strategy that should be used or areas of the road network that222

the agent knows. The application of MATSim to a large scale scenario of Switzerland (over223

6 million agents simulated on a high resolution network with 1 million links) is presented by224

Meister et al. (22).225

Figure 1 shows the structure of a typical, iterative MATSim simulation run. After the cre-226

ation of the initial demand, the plans of the agents are modified and optimized in an iterative227

process until a relaxed state of the system has been found. The analysis of the results can be228

performed afterwards.229

FIGURE 1 Iterative MATSim Loop

scoring
initial

demand

execution

(simulation)
analyses

replanning

Dobler, C. and Axhausen, K.W. 7

The loop contains the elements execution (simulation), scoring and replanning. Within230

the simulation module, the plans of the agents are executed. Afterwards, the scoring module231

uses a utility function to calculate the quality of the executed plans. The utility function for232

MATSim is described by Charypar and Nagel (23). Based on the results by scoring module,233

the replanning module creates new plans by varying start times and durations of activities as234

well as the routes to travel from one activity to another. Replanning modules currently under235

development will additionally allow to change order of the planned activities (24) as well as236

the locations where they are performed (25).237

Simulation of the traffic behavior is also part of the iterative loop. Currently, four different238

simulation modules are available. Their task is to execute the plans of the agents within the239

simulated scenario. The following section describes these four simulation modules.240

Simulation Modules241

QueueSimulation242

The QueueSimulation is a deterministic, Java based re-implementation of Cetin’s SQSim (26,243

20). The simulation is based on a queue model and uses a time step based approach with a244

step size of one second. Within each time step, the state of the queues is considered. As a245

result the duration of a simulation run increases proportionally to the number of links in the246

network and is independent of the number of simulated agents. A major disadvantage of the247

QueueSimulation is its single core architecture. While other tasks in an iteration of MATSim248

can be executed in parallel threads (for example the replanning), the QueueSimulation still only249

uses one CPU core. The QueueSimulation offers some benefits like well documented code and250

its simulation listener concept which allows additional modules to interact with the simulation251

while it is running.252

QSim253

Basically the QSim can be described as an extended version of the QueueSimulation. It con-254

tains several additional recently developed features like traffic signals (27) or simulated public255

transport (28). While the QueueSimulation can be seen as a default implementation of a traffic256

simulation module with a stable state, the QSim is still under development. Some new features257

like a redesigned Within Day Replanning Framework (based on 29) will be fully implemented258

in the near future.259

DEQSim260

Another implementation is the DEQSim, which implements an extended queue model and is261

described in detail by Charypar et al. (1) and Charypar et al. (17). In addition to the FIFO262

(first in, first out) behavior of the queues, a gap is simulated that moves backwards through263

the queues which allows to simulate congestion more realistically. Two major attributes of this264

implementation are its multi-threaded architecture and its event based approach. As a result265

the calculation effort scales with the number of agents. Compared with the time step based266

approach of the QueueSimulation the event based implementation of the DEQSim achieves sig-267

nificantly shorter calculation time. A disadvantage of the DEQSim is that it is implemented in268

C++ whereas MATSim is written in Java. Therefore the communication between them is done269

using a time consuming file input/output interface which produces noticeable longer computa-270

tion times.271

Dobler, C. and Axhausen, K.W. 8

JDEQSim272

The JDEQSim is the fourth simulation module currently available in MATSim. It is a re-273

designed re-implementation of the DEQSim in Java that is described in detail by Waraich et al.274

(30). Due to conceptual differences between C++ and Java it was not possible to reach per-275

formance gains by implementing the multi-threaded architecture of the DEQSim. Therefore,276

the JDEQSim uses only a single CPU core. However, due to its event based approach the277

calculation effort is significant lower compared to the QueueSimulation and the QSim.278

IMPLEMENTATION

General Conditions of the Parallelization Approach279

The first decision that has to be made is whether a new simulation module should be written280

from scratch or if an existing one should be adapted. As presented, already multiple different281

simulation modules for MATSim are available. They offer a wide range of functionality and282

have already been used for various projects. Additionally, several simulations are documented283

which can be used for performance comparisons. Therefore, reusing one of those simulations284

is preferred.285

As second step, it has to be decided whether the parallel simulation should base on a dis-286

tributed or a parallel computing approach. Using the second one is preferred for two reasons.287

On the one hand, the implementation in the existing MATSim framework should possible with288

less effort and higher performance due to the fast data exchange between multiple threads. On289

the other hand, the performance of desktop computers has increased significantly within the290

last years—concerning computational power as well as available memory.291

The next decision to be made concerns the workload distribution. A first implementation292

of a functional decomposition for the MATSim simulation modules has already been presented293

(30). By handling the events occurring in a separated thread, a remarkable reduction of compu-294

tation times is reached. However, the remaining computational effort of the simulation cannot295

be divided into further functional blocks. Thus, implementing a domain decomposition ap-296

proach is necessary to reach further performance improvements.297

Finally, it has to be decided whether a simulation with a time step based or a event driven298

approach should be used for the implementation. While event driven approaches tend to per-299

form better in the field of traffic flow simulations time step based approaches seem to be easier300

to parallelize. There, the time steps can be used as fixed synchronization points which should301

reduce the communication overhead between multiple threads dramatically. The consideration302

of above factors and additional analysis of the source codes leads to the conclusion that the303

time step based QSim is best basis for the implementation of a parallel micro-simulation.304

Analysis of QSim305

A simplified picture of the structure of QSim is shown in Figure 2. At first the simulation mod-306

ule has to be prepared, for example to create the simulated agents. Afterwards the simulation307

itself is started. In a loop the state of the simulated scenario is calculated for each time step.308

When no further time steps have to be simulated, some data structures, which were only used309

by QSim, are removed from memory.310

A performance analysis shows that the doSimStep method in the QSimEngine consumes311

over 90% of the computation time of a simulation run. In this context, only the computation312

Dobler, C. and Axhausen, K.W. 9

FIGURE 2 Simplified structure of QSim

QSim - run

while Simulation is running do another SimStep

prepare Simulation

clean up Simulation

actions to do before SimStep

actions to do after SimStep

QSimEngine – do SimStep

move Nodes

move Links

time of the simulation itself is considered, efforts for the scoring and replanning modules are313

ignored. Thus, the main focus is on the parallelization of that method. Within doSimStep two314

methods with comparable computational effort are called—moveNodes and moveLinks.315

The moveNodes method handles vehicles that leave one link and enter another one. Typi-316

cally a Random object is used to select in which order the ingoing links are handled (If all nodes317

are controlled by light signals, the Random object is never used). Therefore the result of a sim-318

ulation is influenced by the order in which the nodes are processed. This can be avoided by319

assigning a Random object to each node. Doing so will create deterministic simulation results320

that will slightly differ from results calculated with QSim because other sets of random num-321

bers will be used. When using multiple Random objects on parallel threads it is necessary to322

guarantee that the random numbers are independent from each other. This for example would323

not be the case if each Random object is initialized with the same initial value.324

moveLinks simulates the actions (e.g. agents which start and end activities) on the links as325

each link can be treated independently from the other ones. Therefore the links can be simu-326

lated on multiple threads without concerning about race conditions with one exception (Race327

conditions occur in situations where the result of an operation depends on the timing of events328

that are created concurrently on parallel running threads, which leads to an indeterministic be-329

havior of the system). QSim can teleport vehicles from one link to another one. If within one330

time step multiple vehicles are teleported from different threads to one link, their order may331

vary. In that case they have to be ordered by their agent Id to ensure that the simulation result332

Dobler, C. and Axhausen, K.W. 10

is deterministic.333

At some points within moveNodes and moveLinks calls to methods in global objects (QSim,334

QSimEngine and Simulation) are executed. If multiple threads performs such method calls335

concurrently this may result in an unpredictable behavior of the simulation. This can be avoided336

by using one of two strategies. A simple but slow approach is to allow only one thread at a time337

to call such a method. Especially if many concurrent calls from multiple threads occur this338

will be a performance bottleneck. The second strategy is more complex and requires more339

changes in the code but results in better performance. The method is moved from the global340

object to one which exists once per parallel thread. Additionally it may be necessary to create341

an additional, supervising method that is executed from the main thread.342

This can be illustrated with a simple example. Links that do not contain active vehicles are343

deactivated by QSim to reduce the calculation effort. When a vehicles enters the link, the link344

has to be reactivated which is done by calling a method in the QSimEngine. There the link345

is added to a list which is processed at a later point in time. In a parallel QSim each thread346

could contain such a list. Finally the additional supervising method can instruct all threads347

concurrently to reactivate the links which they have marked before.348

Structure of ParallelQSim349

If the current design of QSim that contains a single QSimEngine would be used in a parallel im-350

plementation, a lot of method calls in the QSimEngine would have to be synchronized to avoid351

problems with indeterministic behavior. This would result in a poor performance. This prob-352

lem can be avoided by using one QSimEngine per thread. The ParallelQSim introduces a code353

structure where a single MultiThreadQSimEngine manages an array of QSimEngineThreads354

that extend the Java Thread class and can act as QSimEngines. This results in the structure355

shown in Figure 3(a).356

The MultiThreadQSimEngine is a wrapper class that manages the communication between357

the ParallelQSim and the QSimEngineThreads. As a result of that structure, the ParallelQSim358

sees only the MultiThreadQSimEngine and is not involved in the handling of the threads—it359

does not even recognize that there are multiple threads involved in the simulation.360

The QSimEngineThreads are created once per iteration of the simulation and reused in every361

sim step which is considerably faster than creating new threads in each sim step. As shown in362

Figure 3(b) this is realized by two CyclicBarriers (StartBarrier and EndBarrier) that are part of363

the Java concurrent package. A third CyclicBarrier (SeparationBarrier) is used to synchronize364

the moveNodes and moveLinks actions. The threads must have handled all their nodes before365

they can continue with the links. When the doSimStep method of the MultiThreadQSimEngine366

is called, it starts the threads by triggering the StartBarrier and then waits until all threads have367

reached the EndBarrier.368

PERFORMANCE MEASUREMENTS

Hardware369

The experiments employed to compare the performance of the ParallelQSim with the existing370

QSim are run on a computer with two quad core CPUs (each a AMD Opteron 2380) and 24 GB371

of shared memory. A maximum of 7 cores is used for the ParallelQSim. The remaining core is372

used for (parallel-)events handling and some background processes.373

Dobler, C. and Axhausen, K.W. 11

FIGURE 3 Structure of the Implementation

(a) Comparison of QSim and ParallelQSim

QSim

QSimEngine

ParallelQSim

MultiThreadQSimEngine

QSimEngineThread[]

(b) Structure of a QSimEngineThread

QSimEngineThread - run

StartBarrier

If Simulation is still running

moveNodes

SeparationBarrier

else

moveLinks

end

EndBarrier

Scenarios374

As a first scenario, a 1% example of Berlin is used which is a basic example scenario used by375

MATSim. It contains about 16K agents who perform 28K trips and is simulated on a network376

with about 11k nodes and 28K links. During a simulation run 1M events are created.377

For the second and third scenario a model of Canton Zurich is used—once as 25% sample378

with 400K agents and 1.3M performed trips and once as 100% sample with 1.6M agents and379

5.1M performed trips. The network contains 73K nodes and 163K links. A simulation run380

creates 47M and 158M events, respectively.381

These are real world scenarios that are typically simulated with MATSim. It is assumed, that382

the results of the performance measurements can be reached on other, comparable, scenarios383

as well.384

Results385

The ParallelQSim uses the same simulation logic as QSim. However, simulation results pro-386

duced by the ParallelQSim are slightly different from the ones created by QSim, which is a387

result of using multiple Random objects instead of a single one. From a traffic planning point388

of view the results are absolutely comparable and therefore the results of the simulations runs389

in this section are only analyzed regarding the performance of the used simulation setup (queue390

simulation and events handling strategy). Conclusions concerning the results from a traffic391

planning view have already been drawn (21, 22).392

Figure 4 shows the calculation effort for the events handling in the three scenarios. The393

results show that the effort constitutes 25% of the total calculation effort and is not influenced394

by the size of the scenario. According to Amdahl’s Law (31), which describes the maximum395

achievable speedup of a programm with partially parallelized code, this affects significantly the396

performance gain reachable. The influence of the non-parallel code can be illustrated with a397

simple example. If code that consumes 5% of the computation time of a program cannot be398

parallelized, the total calculation time cannot be reduced by more than a factor twenty—even399

Dobler, C. and Axhausen, K.W. 12

if the remaining code could be handled in zero seconds. As a result, the events handling limits400

the possible speed gain to a factor four of the calculation time of QSim with non-parallel events401

handling. Relative to the runs of QSim with parallel events handling, a performance gain of402

factor three is possible.403

FIGURE 4 Performance of different Events Handling Strategies

1% Berlin 25% Canton Zurich 100% Canton Zurich
0%

25%

50%

75%

100%

Scenario

N
or

m
al

iz
ed

 C
al

cu
la

tio
n

E
ffo

rt
w

ith
 d

iff
er

en
t E

ve
nt

s
H

an
dl

in
g

S
tr

at
eg

ie
s

default Events Handling
parallel Events Handling
no Events Handling

Another important finding, that is also depicted in Figure 4, is the high efficiency of Paral-404

lelEventsManager in combination with QSim. Almost the entire calculation effort of the events405

handling is moved from the main thread to a separate thread. As a result, the simulation is406

nearly as fast as it would be without any events handling.407

Figures 5(a) to 5(c) show the results of the runs with the three test scenarios. Each figure408

contains the results of runs employing ParallelQSim using one to seven cores and different409

event handling strategies. Additionally the same scenarios have been run with the non-parallel410

QSim.411

When the computation times of the QSim and the ParallelQSim using only one thread are412

compared, the difference between the calculation times is the overhead caused by the paral-413

lelization such as distributing and synchronizing data between the threads. In the Berlin sce-414

nario, a significant overhead of over 50% is found. As a result, the ParallelQSim cannot reduce415

the calculation time significantly compared to the QSim. However, the ParallelQSim itself per-416

forms quite well. The calculation time decreases by 50% if three threads are used instead of417

a single one. The Canton Zurich scenarios show that the calculation overhead is less signif-418

icant if the scenario gets more complex. The overhead reduces to 30% (25% scenario, using419

5 threads) and 20% (100% scenario, using 6 threads). Therefore, the performance gains rise420

up to the—according to Amdahl’s Law—highest reachable value of a factor three when using421

parallel events handling.422

The comparison of the results of Canton Zurich runs with parallel events handling and runs423

without events handling shows that there is still only a small difference in computation time.424

Hence, we can assume that the computation times of the events handling and the ParallelQSim425

are almost alike in these scenarios. The runs without events handling would have a notice-426

able shorter computation time if the events handling had become a bottleneck. However, if427

the simulated scenarios get even bigger events handling could clearly become a performance428

Dobler, C. and Axhausen, K.W. 13

FIGURE 5 Results of the Sample Scenarios

(a) Results 1% Berlin Scenario

1 (non parallel QSim) 1 2 3 4 5 6 7
0%

25%

50%

75%

100%

125%

150%

Number of QSim Threads

C
al

cu
la

tio
n

T
im

e
co

m
pa

re
d

to
 n

on
 p

ar
al

le
l Q

S
im

default Events Handling
parallel Events Handling
no Events Handling

0

10

20

30

40

50

60

70

80

D
ur

at
io

n
of

 a
 S

im
ul

at
io

n
R

un
 [S

ec
on

ds
]

(b) Results 25% Canton Zurich Scenario

1 (non parallel QSim) 1 2 3 4 5 6 7
0%

25%

50%

75%

100%

125%

Number of QSim Threads

C
al

cu
la

tio
n

T
im

e
co

m
pa

re
d

to
 n

on
 p

ar
al

le
l Q

S
im

default Events Handling
parallel Events Handling
no Events Handling

0

200

400

600

800

1000

1200

1400

1600

1800

D
ur

at
io

n
of

 a
 S

im
ul

at
io

n
R

un
 [S

ec
on

ds
]

(c) Results 100% Canton Zurich Scenario

1 (non parallel QSim) 1 2 3 4 5 6 7
0%

25%

50%

75%

100%

Number of QSim Threads

C
al

cu
la

tio
n

T
im

e
co

m
pa

re
d

to
 n

on
 p

ar
al

le
l Q

S
im

default Events Handling
parallel Events Handling
no Events Handling

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

D
ur

at
io

n
of

 a
 S

im
ul

at
io

n
R

un
 [S

ec
on

ds
]

bottleneck.429

Considering only the results of the ParallelQSim, the number of cores used which results430

Dobler, C. and Axhausen, K.W. 14

in the lowest calculation times rises with the total calculation effort for the scenario. While the431

Berlin scenario performs best with only three cores, the 25% Canton Zurich scenario should432

be run with five cores and the 100% Canton Zurich scenario benefits from up to six cores. An433

important detail is that using too many cores results in increased computation times which is a434

consequence of the synchronization effort that increases with the number of used cores.435

CONCLUSION AND OUTLOOK

This paper describes the the development and implementation of a new simulation module in436

MATSim that reaches short calculation times by using multiple CPU cores. An adaption of437

the QSim was chosen because its time steps can be used to synchronize the data between the438

parallel calculation threads. Distributing the workload is done by a simple approach where the439

assignment of the network’s links and nodes to the threads is done randomly.440

The results of the performance tests show that—depending on the scenario size—the cal-441

culation time can be reduced by a factor of four. Based on Amdahl’s Law it is shown that the442

events handling could become a bottleneck when simulating large scale scenarios. A speedup443

of more than a factor of four is not possible. However, it is shown that the existing parallel444

events handling reduces the calculation effort in the main thread very efficiently. Moving the445

events that are created in the main thread to another thread where they are handled is done446

within negligible time.447

Another important results of the performance tests concerns the number of CPU cores used.448

Depending on the complexity and size of the scenario the number of cores resulting in the best449

simulation performance varies. Hence, a user should keep the results of the sample scenarios450

in mind when choosing the number of cores for another scenario. Comparing the scenario with451

the given samples in this paper should lead to a reasonable choice.452

Although the results are already very satisfying there are still some further performance453

optimizations possible and desirable. One major point concerns the synchronization effort454

between the threads. Especially in smaller scenarios, this performance bottleneck reduces the455

attractiveness of using the ParallelQSim. Another topic for further developments is the events456

handling. Having a setup where each thread has its own set of events handlers would reduce457

the amount of synchronized method calls significantly and therefore should results in further458

performance gains.459

REFERENCES

1. Charypar, D., K. W. Axhausen and K. Nagel (2007) An event-driven queue-based traffic460

flow microsimulation, Transportation Research Record, 2003, 35–40.461

2. Ferber, J. (1999) Multi-Agent Systems: An Introduction to Distributed Artificial Intelli-462

gence, Addison-Wesley, Boston.463

3. Wooldridge, M. (2000) Reasoning about Rational Agents, MIT Press, Cambridge.464

4. Klügl, F. (2001) Multiagentensimulation - Konzepte, Werkzeuge, Anwendung, Addison-465

Wesley, Munich.466

5. Eymann, T. (2003) Digitale Geschäftsagenten - Softwareagenten im Einsatz, Springer,467

Berlin.468

Dobler, C. and Axhausen, K.W. 15

6. Barceló, J., J. L. Ferrer, D. Garcia, M. Florian and E. Le Saux (1998) Microscopic traffic469

simulation, in P. Marcotte and S. Nguyen (eds.) Equilibrium and Advanced Transportation470

Modelling, chap. 1, 1–26, Kluwer, Dordrecht.471

7. Nökel, K. and M. Schmidt (2002) Parallel DYNEMO: Meso-scopic traffic flow simulation472

on large networks, Networks and Spatial Economics, 2 (4) 387–403.473

8. Nagel, K. and M. Rickert (2001) Parallel implementation of the TRANSIMS micro-474

simulation, Parallel Computing, 58 (2) 1611–1639.475

9. Niedringhaus, W. P., J. M. Opper, L. Rhodes and B. L. Hughes (1994) Ivhs traffic modeling476

using parallel computing: Performance results, in H. J. Siegel (ed.) Proceedings of the477

8th International Symposium on Parallel Processing, 688–693, IEEE Computer Society,478

Washington, D.C.479

10. Cameron, G. D. B. and G. I. D. Duncan (1996) Dynamic process and equilibrium in trans-480

portation network: Towards a unifying theory, Journal of Supercomputing, 10 (1) 25–53.481

11. Fujimoto, R. M. (2001) Parallel and distributed simulation systems, in B. A. Peter, J. S.482

Smith, D. J. Medeiros and M. W. Rohrer (eds.) WSC ’01: Proceedings of the 33nd confer-483

ence on Winter simulation, 147–157, IEEE Computer Society, Washington, D.C.484

12. Robinson, S. (2004) Simulation: The Practice of Model Development and Use, John Wiley485

& Sons, Chichester.486

13. Hartrum, T. C. and B. J. Donlan (1988) HYPERSIM: Distributed discrete-event simulation487

on an iPSC, in G. Fox (ed.) Proceedings of the third conference on Hypercube concurrent488

computers and applications: Architecture, software, computer systems, and general issues,489

vol. 1, 745–747, Association for Computing Machinery, New York.490

14. Ferscha, A. (1996) Parallel and distributed simulation of discrete event systems, in A. Y. H.491

Zomaya (ed.) Parallel and Distributed Computing Handbook, 1003–1041, McGraw-Hill,492

New York.493

15. Fujimoto, R. M. (1989) Parallel discrete event simulation, in E. A. MacNair, K. J. Mus-494

selman and P. Heidelberger (eds.) WSC ’89: Proceedings of the 21st conference on Winter495

simulation, 19–28, Association for Computing Machinery, New York.496

16. Logan, B. and G. Theodoropoulos (2001) The distributed simulation of multi-agent sys-497

tems, Proceedings of the IEEE, 89 (2) 174–186.498

17. Charypar, D., K. W. Axhausen and K. Nagel (2007) An event-driven parallel queue-based499

microsimulation for large scale traffic scenarios, paper presented at the 11th World Confer-500

ence on Transportation Research, Berkeley, June 2007.501

18. Hanebutte, U. R. and A. M. Tentner (1995) Traffic simulations on parallel computers using502

domain decomposition techniques, paper presented at the 2nd World Congress on Intelli-503

gent Transport Systems, Yokohama, November 1995.504

19. Willebeek-LeMair, M. H. and A. P. Reeves (1993) Strategies for dynamic load balancing505

on highly parallel computers, IEEE Transactions on Parallel and Distributed Systems, 4 (9)506

979–993.507

Dobler, C. and Axhausen, K.W. 16

20. Balmer, M. (2007) Travel demand modeling for multi-agent traffic simulations: Algo-508

rithms and systems, Ph.D. Thesis, ETH Zurich, Zurich, May 2007.509

21. Balmer, M., M. Rieser, K. Meister, D. Charypar, N. Lefebvre, K. Nagel and K. W. Ax-510

hausen (2008) MATSim-T: Architektur und Rechenzeiten, paper presented at the Heureka511

’08, Stuttgart, March 2008.512

22. Meister, K., M. Balmer, F. Ciari, A. Horni, M. Rieser, R. A. Waraich and K. W. Axhausen513

(2010) Large-scale agent-based travel demand optimization applied to Switzerland, in-514

cluding mode choice, paper presented at the 12th World Conference on Transportation515

Research, Lisbon, July 2010.516

23. Charypar, D. and K. Nagel (2005) Generating complete all-day activity plans with genetic517

algorithms, Transportation, 32 (4) 369–397.518

24. Feil, M. (2010) Choosing the daily schedule: Expanding activity-based travel demand519

modelling, Ph.D. Thesis, ETH Zurich, Zurich.520

25. Horni, A., D. M. Scott, M. Balmer and K. W. Axhausen (2009) Location choice modeling521

for shopping and leisure activities with MATSim: Combining micro-simulation and time522

geography, Transportation Research Record, 2135, 87–95.523

26. Cetin, N. (2005) Large-scale parallel graph-based simulations, Ph.D. Thesis, ETH Zurich,524

Zurich.525

27. Neumann, A. (2008) Modellierung und Evaluation von Lichtsignalanlagen in Queue-526

Simulationen, Master Thesis, Technical University Berlin, Berlin.527

28. Rieser, M. (2010) Adding transit to an agent-based transportation simulation, Ph.D. Thesis,528

Technical University Berlin, Berlin.529

29. Dobler, C. (2009) Implementations of within day replanning in MATSim-T, Working Pa-530

per, 598, IVT, ETH Zurich, Zurich.531

30. Waraich, R. A., D. Charypar, M. Balmer and K. W. Axhausen (2009) Performance im-532

provements for large scale traffic simulation in MATSim, paper presented at the 9th Swiss533

Transport Research Conference, Ascona, September 2009.534

31. Amdahl, G. M. (1967) Validity of the single processor approach to achieving large scale535

computing capabilities, paper presented at the Spring Joint Computer Conference, New536

York, April 1967.537

