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Signal Shaping:

Fundamentals, Potentials, and Techniques

Robert F.H. Fischer

Institut für Nachrichtentechnik, Universität Ulm, Ulm, Germany

Email: robert.fischer@uni-ulm.de

Abstract—Source coding and channel coding are well-estab-
lished fields providing various and flexible techniques for elim-
inating redundancy and protecting data against errors, respec-
tively. Nowadays transmission systems extensively utilize source
and channel coding techniques adapted as closely as possible
to the specific situations. Less common is the application of
signal shaping—in principle, the task of signal shaping is to
generate (transmit) signals which meet specific demands. The
most popular aim of signal shaping is to generate signals with
least average power. Without sacrificing performance, this is
possible by replacing uniformly distributed transmit symbols by
Gaussian ones.

Other shaping aims as, e.g., controlling the power spectral
density [3], limiting the dynamic range [6], or enhancing the per-
formance of schemes for physical-layer security [7] are possible,
too.

In some sense, source and channel coding are dual to each
other. Signal shaping can be seen as dual to both source and
channel coding—these three operations complement each other
and schemes from one field can be transferred to the other ones,
cf., e.g., the utilization of linear channel codes for source coding
[1].

In the talk, first the fundamentals and potentials of signal
shaping are explained. The possible gains and principle opera-
tions are derived from basic geometry. Based on the dualities,
specific signal-shaping techniques are classified and explained.
This includes the use of a source decoder as shaping encoder

[4] which currently is experiencing a renaissance via a so-called
distribution matcher [2], trellis shaping [5] as dual operation to
Ungerböcks trellis coding, and shell mapping which has a vector-
quantization counterpart.

Details on the fundamentals and schemes can be found in the
monography [3].
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1984.
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[7] J. Pfeiffer, R.F.H. Fischer. Multilevel Coding for Physical-Layer Security
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Probabilistic Shaping: A Random Coding Experiment
Georg Böcherer

Optical Communications Technology Lab
Huawei France Technologies S.A.S.U.
Boulogne-Billancourt 92100, France

Email: georg.boecherer@ieee.org

Patrick Schulte and Fabian Steiner
Technical University of Munich

Institute for Communications Engineering
80333 München, Germany

Email: {patrick.schulte, fabian.steiner}@tum.de

Abstract—A layered probabilistic shaping (PS) ensemble is
considered, which contains probabilistic amplitude shaping (PAS)
as a practical instance. Layered PS consists of an inner layer for
forward error correction (FEC) and an outer layer for PS. In the
PS layer, message bits are mapped to FEC encoder inputs that
map to channel input sequences in a shaping set. The shaping
set specifies desired properties, for instance, it may consist of
all sequences that have a capacity-achieving distribution for the
considered channel. By random coding arguments, the probability
of encoding failure and decoding failure is analyzed and it is
shown that the layered PS architecture is capacity-achieving for
a discrete input memoryless channel. Practical achievable spectral
efficiencies of the layered PS architecture are discussed.

I. INTRODUCTION

Probabilistic amplitude shaping (PAS) was proposed in [1]
to integrate non-uniform channel input distributions with off-
the-shelf linear forward error correction (FEC) codes. PAS
quickly found industrial application in transceivers for fiber-
optic transmission, e.g., [2]–[4]. Since PAS is not a sample
of the classical random code ensemble (see Remarks 1, 2,
and 3), the calculation of appropriate achievable rates for PAS
is intricate, and several attempts were taken [2, Sec. III.C],
[5], [6]. In [7] and [8, Chap. 10], achievable rates for PAS
are derived using random sign coding and partially systematic
FEC encoding. In this work, we discuss layered probabilistic
shaping (PS), a random code ensemble that was developed
in the line of work [8]–[11]. Layered PS contains PAS as a
practical instance, but is more general, e.g., it also covers the
probabilistic parity bit shaping proposed in [12].

In Sec. II, we define layered PS and derive a general channel
coding theorem. In Sec. III, we show that layered PS achieves
the capacity of discrete input memoryless channels and discuss
practical matched and mismatched decoding metrics.

II. LAYERED PROBABILISTIC SHAPING

Consider a channel with finite input alphabet X and define

m = log2 |X |. (1)

The channel output alphabet can be continuous or discrete.

A. Classical Random Code Ensemble

The classical random code ensemble [13, Ch. 5] for a
channel with input alphabet X and codeword length n symbols
in X is

C =
{
Cn(w), w = 1, 2, . . . , 2nmRfec

}
(2)

message
u0 ∈

{1, . . . , 2nSE}
shaping
encoder

index w0 =
(u0, v) ∈

{1, . . . , 2nRfec}
FEC

encoder
Cn(w0) = xn

∈ S ∩ C

Channel

decoded
message Û

shaping
decoder

decoded
index Ŵ

FEC
decoder

yn

shaping layer FEC layer

random code C
uniform on X

Fig. 1. The layered PS architecture discussed in Sec. II. In PAS [1], the FEC
encoder is systematic and the shaping encoder is realized by a DM [14]–[19]
that shapes the systematic symbols. The shaping encoder of PAS is zero error.

where the entries of the |C| = 2nmRfec codewords are in-
dependently and identically distributed according to PX on
the constellation X . We require 0 ≤ Rfec ≤ 1 so that
mRfec ≤ log2 |X |. By [13, Eq. (5.2.5)], the decoding rule for
a memoryless channel with transition density pY |X is

ŵ = argmax
w∈{1,...,|C|}

n∏

i=1

pY |X(yi|ci(w)) (3)

where yn is the sequence observed at the channel output. The
spectral efficiency (SE) in bits per channel use is SE = mRfec
and the classical random code ensemble achieves

SE∗ = I(X;Y ). (4)

In particular, it achieves the capacity maxPX
I(X;Y ) when

the optimal PX is used.

B. Layered Random Code Ensemble

The layered PS architecture is displayed in Fig. 1. We
consider the random code ensemble

C =
{
Cn(w), w = 1, 2, . . . , 2nmRfec

}
(5)

where the entries of the |C| = 2nmRfec codewords are cho-
sen independently and uniformly distributed on the constella-
tion X . As above, we require 0 ≤ Rfec ≤ 1.

Remark 1. Note that the classical random code ensemble
of Sec. II-A samples the codeword entries according to the
desired channel input distribution PX . In contrast, layered PS
always uses the uniform distribution.
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TABLE I
PS AND FEC OVERHEADS

FEC Shaping Set

Rate Rfec Rss =
log2 |S|

nm
Redundancy 1−Rfec 1−Rss

Overhead in % 100 ·
(

1
Rfec
− 1
)

100 ·
(

1
Rss
− 1
)

Total overhead in % 100 ·
(

1
Rss+Rfec−1

− 1
)

C. Encoding

We consider a general shaping set S ⊆ Xn. Define the
shaping set rate by

Rss =
log2 |S|
nm

. (6)

Note that by the definition of m in (1), 0 ≤ Rss ≤ 1. We
divide the FEC code into 2nSE partitions, so that the number
of codewords in each partition is

2nmRfec

2nSE = 2nm(Rfec− SE
m ). (7)

The PS encoder maps message u ∈ {1, 2, . . . , 2nSE} to a
codeword in the uth partition that is in S. By double indexing
C, the chosen codeword has index w = (u, v) for some
v ∈ {1, 2, . . . , 2nm(Rfec− SE

m )}. An encoding error occurs if the
PS encoder cannot find such a codeword.

Theorem 1 ([11, Theorem 1]). The probability that the PS
encoder cannot map its input to a codeword in S ∩C is upper
bounded by

Pr(PS encoding failure)

≤ exp
(
−2nm[1−(1−Rss)−(1−Rfec)− SE

m ]
)
. (8)

Remark 2. By the theorem, the SE is determined by two
overheads (see Table I), namely the PS overhead and the FEC
overhead. For a desired SE, the overhead allocation is a degree
of freedom that can be exploited in the transceiver design, for
example, a low FEC overhead may be desirable for complexity
reasons. Note that in the classical random coding experiment,
the SE is always equal to mRfec.

D. Decoding

We consider a generic FEC decoder with a decoding metric
q. For an observation yn, the metric assigns to each sequence
xn ∈ Xn a non-negative score q(xn, yn) (see [11, Sec. V.A]
for the definition and detailed discussion of non-negative
scores). The FEC encoder maps a message w to a codeword
cn(w). For an observed output yn, the decoder outputs as
its decision the message that maps to the codeword with the
maximum score, i.e,

ŵ = argmax
w∈{1,...,|C|}

q (cn(w), yn) . (9)

Theorem 2 ([11, Theorem 2]). Suppose the codeword
Cn(w0) = xn is transmitted, let yn be a channel output

sequence, and let q be a non-negative decoding metric. Define
the empirical cross-entropy

x(q, xn, yn) = − 1

n
log2

q(xn, yn)∑
an∈Xn q(an, yn)

. (10)

The probability that the decoder (9) does not recover the index
w0 from the sequence yn is bounded from above by

Pr(Ŵ 6= w0|Cn(w0) = xn, Y n = yn)

≤ 2
−nm

(
1−Rfec− x(q,xn,yn)

m

)
. (11)

Note that in Fig. 1, if the index decision Ŵ is correct, then
the shaping decoder can error-free recover the message u0
from Ŵ . That is, Pr(Ŵ 6= w0) upper bounds Pr(Û 6= u0).

E. Channel Coding Theorem

We now consider a memoryless channel

pY n|Xn(yn|xn) =
n∏

i=1

pY |X(yi|xi) (12)

and memoryless decoding metrics

q(xn, yn) =

n∏

i=1

q(xi, yi). (13)

Furthermore, we require that most sequences in the shaping
set S have the distribution PX , so that with high probability

x(q,Xn, Y n) ≈ E [x(q,X, Y )] =: X(q,X, Y ) (14)

where X(q,X, Y ) is a cross-entropy. By Theorems 1 and 2,
following the line of arguments in [20] (leaving out the εs and
δs) we arrive at the following channel coding theorem.

Corollary 1. For a shaping set with distribution PX , an
achievable spectral efficiency allowing for successful encoding
and decoding with high probability is

SE∗ = [mRss − X(q,X, Y )]
+ (15)

where [·]+ = max{0, ·} ensures non-negativity.

Note that (15) is the same as [11, Eq. (1)] with slightly
different notation.

III. DECODING METRICS

We now instantiate the achievable SE in (15) for vari-
ous shaping sets and decoding metrics. See Table II for an
overview.

A. Capacity-Achieving Symbol-Metric

We use as shaping set S all sequences with distribution PX .
For sufficiently large n, we have Rssm ≈ H(X). With the
decoding metric PX|Y , the achievable SE becomes equal to
the mutual information I(X;Y ), which shows that the layered
PS architecture is capacity-achieving.
Remark 3. Note that the classical random code ensemble
achieves capacity with a maximum likelihood (ML) rule on
a codebook of size 2nSE while layered PS achieves capacity
with a maximum a posteriori (MAP) rule on a codebook of
size 2n(SE+m(1−Rss)), which is larger.
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TABLE II
IMPORTANT DECODING METRICS

mRss q X∗(q,X, Y ) SE∗

symbol-metric mRss PX|Y H(X|Y ) [mRss − H(X|Y )]+

+ capacity-achieving H(X) PX|Y H(X|Y ) I(X;Y )

bit-metric mRss
∏m

i=1 PBi|Y
∑m

i=1 H(Bi|Y )
[
mRss −

∑m
i=1 H(Bi|Y )

]+

H(X)
∏m

i=1 PBi|Y
∑m

i=1 H(Bi|Y )
[
H(X)−∑m

i=1 H(Bi|Y )
]+

mismatched metric mRss q mins>0 X(qs, X, Y ) maxs>0 [mRss − X(qs, X, Y )]+

B. Bit-Metric

Bit metric decoding uses an m-bit label B = B1B2 . . . Bm
of the channel input alphabet and a bit-metric

q(b, y) =

m∏

i=1

qi(bi, y). (16)

Table II shows achievable SEs when qi = PBi|Y . By defining
the L-value Li = logPBi|Y (0|Y )/PBi|Y (1|Y ), the conditional
entropy sum can also be written as
m∑

i=1

H(Bi|Y )=
m∑

i=1

E [log2{1 + exp [−(1− 2Bi)Li]}] . (17)

C. Mismatched Metrics

For s > 0, the non-negative metric q and the metric qs

implement exactly the same decision rule. Consequently, their
error probability is the same. This allows us to tighten the
error bound in Theorem 2 and thereby the achievable SE in
Corollary 1. The tightened cross-entropy is

X∗(q,X, Y ) = min
s>0

X(qs, X, Y ). (18)

For uniform distributions PX , the mismatched achievable SE
recovers the generalized mutual information (GMI) in [21].
For non-uniform PX , it is different from the GMI, because
in [21], the classical random code ensemble of Sec. II-A is
considered.

IV. CONCLUSIONS

We defined layered probabilistic shaping (PS) and derived
achievable rates. In particular, we showed that layered PS
is capacity-achieving for a particular shaping sets and de-
coding metrics. Several differences between layered PS and
the classical random code ensemble were pointed out. The
achievable rates of layered PS are directly applicable for
probabilistic amplitude shaping (PAS). An interesting future
work is the study of finite length error exponents for layered
PS, accounting for the distribution spectrum of the sequences
in the shaping set.
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Abstract—Advanced amplitude shapers that improve upon the
conventional constant-composition distribution matching in terms
of rate loss and computational complexity are reviewed. In a
comprehensive comparison, we focus on energy considerations,
rate loss, and decoding performance. We further study the
mitigating effects of short-length probabilistic shaping on the
Kerr nonlinearities occurring during optical fiber transmission
and discuss the impact of interleavers on this effect.

In this invited contribution, we discuss probabilistic shaping
(PS) in the short-length regime where the block sizes are
at most a few hundred symbols. Focusing on probabilistic
amplitude shaping (PAS) as underlying coded modulation
framework to realize PS [1], we study in detail the amplitude
shaping block that maps a block of uniformly distributed data
bits into a shaped amplitude sequence. The first amplitude
shaper proposed for PAS is constant-composition distribution
matching (CCDM) [2], which, as its name suggests, outputs
sequences with identical compositions, i.e., they are permu-
tations of each other. While asymptotically lossless, CCDM
has suboptimal finite-length performance. Furthermore, the
conventional arithmetic coding method used for implementing
CCDM is inherently sequential, which introduces latency
and limits high-throughput application [3]. It is mainly this
combination of requiring long blocks and having a sequential
implementation that lead to a great deal of investigation into
advanced amplitude shapers. In this contribution, we review
such advanced shapers and present a comprehensive com-
parison. The investigated schemes include multiset-partition
distribution matching [4], enumerative sphere shaping [5], [6],
and Huffman coded sphere shaping [7]. A numerical analysis
of rate loss and performance after forward error correction
(FEC) decoding is supported by a study of the signal space
occupied by the respective amplitude shaping schemes and the
corresponding energy considerations.

In the second part of this contribution, we study the impact
that probabilistically shaped signaling has on the Kerr non-
linearities which are present in the optical fiber channel. It
has been shown theoretically and demonstrated in simulations
that for asymptotically long CCDM block lengths, the effective
signal-to-noise ratio (SNR) after fiber transmission and digital
signal processing is smaller for shaped signaling than for

uniform distributions, which is due to fiber nonlinearities being
exacerbated by PS [8]. Surprisingly, the inverse behavior is
observed for short CCDM sequences where fiber nonlinearities
are mitigated by shaping [9]. This inverse proportionality of
SNR with block length can for CCDM be attributed to the fact
that certain overall transmit sequences, such as those with long
runs of identical amplitudes, cannot occur when several short
CCDM blocks are concatenated and combined into a FEC
codeword [10]. For long CCDM sequences, on the other hand,
this restriction does not apply, and an SNR penalty due to the
fiber nonlinearities is observed. We investigate this behavior
numerically and show how the utilization of interleavers
affects the capability of mitigating fiber nonlinearities by PS.
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Hierarchical Distribution Matching with Massively
Parallel Interfaces for Fiber-Optic Communications

Tsuyoshi Yoshida, Erik Agrell, and Magnus Karlsson
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Abstract—The design of the distribution matching (DM)
encoder and decoder is essential in the implementation of
probabilistic shaping. Recently, techniques for low-complexity
implementation of DM have been studied. This work consists of
three contributions on this topic. Firstly, the mismatch between
required throughput and clock frequency in the electric circuitry
of fiber-optic transceivers is explained. The throughput of one
DM module determines the number of parallel DM modules
needed, which in turn determines the circuit size and power
consumption. Our previously proposed hierarchical DM (HiDM)
has massively parallel input/output interfaces and thus around
100 times fewer instances are required compared with run-
length-coding-based DM. Secondly, the HiDM construction is
exemplified and described in detail for a DM word length of
more than 100 symbols. Thirdly, the capability of HiDM to
shape probability mass functions suitable for nonlinear fiber-optic
channels is demonstrated, considering higher-order moments.

Index Terms—Coding, hierarchical distribution matching, im-
plementation, modulation, optical fiber communication, proba-
bilistic shaping, reverse concatenation, throughput.

I. INTRODUCTION

Constellation shaping has been deeply investigated over
several decades to approach the Shannon capacity over the
additive white Gaussian noise (AWGN) channel. The two
main types of shaping schemes are geometric shaping [1] and
probabilistic shaping (PS) [2], [3]. Fiber-optic communication
channels with optical amplifiers are suitable target applications
for PS. The first reason is the existence of the linear optical
amplifier. When the optical signal is shaped, the average
optical power inside an optical modulator is reduced, but the
power will soon be recovered by optical amplifiers, which
gives an almost linear gain without waveform degradation. The
second reason is the channel stability because of the confined
waveguide (fiber) transmission.

Probabilistic amplitude shaping (PAS) [4] provides an at-
tractive method to implement PS by using reverse concate-
nation, which means forward error correction (FEC) inside
the shaping. The PAS scheme was early examined in optical
fiber communications [5] and had a significant impact on the
community. The shaping encoding and decoding functions for
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Corporation, Kamakura, 247-8501, Japan. He also belongs to Graduate
School of Engineering, Osaka University, Suita, 505-0871, Japan (e-mail:
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Network (MAPLE),” the Commissioned Research of National Institute of In-
formation and Communications Technology (NICT), Japan (project no. 20401)
and by the Swedish Research Council (project no. 2017-03702).

PAS are called distribution matching (DM) and distribution
dematching (invDM), resp. DMs can be classified in terms of
symbolwise or bitwise operation, and further into computation-
based or LUT-based. The LUT-based DMs can be further
classified into fixed- or variable-length LUTs. A symbolwise
DM directly controls the probability mass function (PMF) of
the output symbols [6]–[16], whereas a bitwise DM [17]–[19]
controls the probability of the output bits in a bit tributary,
and the PMF of the symbol is controlled by multiple binary
bit tributaries, according to an architecture called bit-level DM
or product DM [20], [21]. LUT-based DMs, on the other hand,
provide lower computational complexity at the expense of
memory. LUT-based DMs with fixed-length interfaces include
[7], [10], [12], [17], while others use (virtually) variable-length
interfaces [8], [14], [16], [18].

In the original PAS scheme, constant-composition DM
(CCDM) [6] was employed, which is a symbolwise,
computation-based DM, similar to the arithmetic coding
scheme proposed in [22]. Our previous works include DM
based on run-length coding (RLC) [18], which is a bit-
wise, LUT-based, variable-length DM, and hierarchical DM
(HiDM) [12], [23], which is a symbolwise, LUT-based, fixed-
length DM. HiDM, having a unique tree structure of LUTs,
shows good performance, reasonable implementation com-
plexity leading to low power consumption, high throughput,
and small error rate increase in the invDM processing.

A main issue in the design of logic circuitry for optical
fiber communications is the mismatch between the required
throughput (several 100 Gb/s to a few Tb/s) and the clock
frequency of the electrical circuitry (several 100 MHz). Most
PS coding schemes operate in a highly sequential manner,
so that their numbers of input/output bits per clock cycle
(throughput) and their numbers of physical wirings (bus
widths) would be one or a few bits. To realize transmission
at 1 Tb/s using a 500 MHz clock, 2000 parallel instances
are required if the number of input/output bits is only one
bit per clock cycle. Even if one DM module operating at
500 MHz for 500 Mb/s is very small, the total required circuit
area would be 2000 times larger. On the other hand, HiDM
can input and output several 100 bits or even 1000 bits per
clock cycle because of its massively parallel interfaces. To
realize 1 Tb/s from a 500 MHz clock, we need just a few
instances. This is an important advantage in high-speed fiber-
optic communications.

In this work, we firstly raise important issues of through-
put and bus width by exemplifying two of our previously
proposed DMs [12], [18]. Next, we explain recommended
design principles of HiDM in detail to make our previous work
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TABLE I
PARAMETERS IN REVERSE CONCATENATION PS SYSTEMS.

Notation Description
m number of bits per QAM symbol
msb number of shaped bit tributaries per QAM symbol
Ns number of PAM symbols per DM word
Nin number of information bits per DM word

[12] more reproducible. Finally, we show that the DM word
choice in HiDM can be flexibly adapted to different PMFs of
the transmitted symbols by considering higher-order moments.
This was partly addressed in [24] to improve the performance
over nonlinear fiber links.

II. THROUGHPUT AND BUS WIDTH AT THE INTERFACES

In this section, we compare two previously proposed LUT-
based DMs in terms of throughput and bus width. Some
key parameters of reverse concatenation PS are defined in
Tab. I. For simplicity, nonshaped bits are excluded from the
explanation.

A. Run-length-coding-based bitwise DM

As a submodule for bit-level DM, we proposed a binary-
output DM with RLC (variable-length coding) [18]. The
encoder schematic is shown in Fig. 1. The incoming Nin bits
are first demultiplexed into K lanes. In each lane j, the input
bits are mapped into a binary word sj in which exactly half
of the bits are 1 using a uniformalizer (UFL), which employs
bit flipping and adjustment sequence insertion. Blocks of K
bits are converted into RLC words, having a length from 1
to 2K bits, using a variable-length LUT as in Tab. II. Finally,
the RLC words are stored in a first-input/first-output (FIFO)
buffer, where they are concatenated into a DM word and
output with some latency to account for the DM conversion
speed. As the RLC codebook is prefix-free, the codewords
are uniquely invertible at the receiver by reading the bits
from the beginning. The RLC word corresponding to input
111 in Tab. II is chosen to be 00000000 instead of the more
natural 0000000, since this makes the DM word length fixed
at (2K+1)Nin/(2K) for all inputs, at the expense of a slightly
higher rate loss. More details can be found in [18].

The key element in a hardware implementation of this
bitwise DM with RLC is the variable-length LUT. The number
of entries (addresses) is significantly smaller than that with
a fixed-length LUT to realize the same rate loss. On the
other hand, it is known that a variable-length LUT is not
straightforward [25], [26]. An available LUT element usually
has a fixed bus width at input/output interfaces. Thus how
to realize a virtual variable-length LUT with a fixed-length
LUT or other available elements is a critical issue for the
implementation. According to the exemplified RLC in Tab. II,
the bus width at the output interface can be 8 bits. For example,
in case that the output length is shorter than 8, arbitrary bits
should be padded. The address for writing into the FIFO buffer
is updated after writing the current RLC word based on its
effective (unpadded) length.

The throughputs for the bitwise DM with RLC in Fig. 1 are
K bits at the input interface and (2K +1)/2 bits at the output.

Fig. 1. Schematic for bitwise DM encoding with RLC and periodical
uniformalization.

TABLE II
AN EXAMPLE OF RLC (K = 3).

Input bits Input symbol RLC word Effective RLC
s1s2s3 word length

000 0 1 1
001 1 01 2
010 2 001 3
011 3 0001 4
100 4 00001 5
101 5 000001 6
110 6 0000001 7
111 7 00000000 8

Relevant values of K are from 3 to 6, so the throughputs range
from 3 to 6 bits at the input and from 4.5 to 32.5 bits at the
output. In these cases, the bus widths should be 6 and 33 bits at
input and output interfaces, resp. Since this is a bit-level DM,
msb instances are needed control the PMF of one quadrature
amplitude modulation (QAM) symbol. At a clock frequency
of 500 MHz, the minimum throughput at the encoding output
is 4.5·500 = 2.25 Gsymbol/s. To achieve a symbol rate of 100
Gsymbol/s, d2 ·100/2.25emsb = 89msb instances are required
for polarization-multiplexed PS-QAM signal generation. At
the same condition, the throughput of CCDM [6] is one
pulse amplitude modulation (PAM) symbol per clock cycle,
i.e., 500 Msymbol/s, and d2 · 100/0.5e = 400 instances are
required. This would be the same for other computation-based
symbolwise DMs. If msb is 4 (i.e., 64-QAM), the required
number of instances is comparable between CCDM and bit-
level DM with RLC, but CCDM needs complex arithmetic
coding [6], [12]. A drawback with bitwise DMs such as this
RLC-based scheme is that the obtained PMFs are usually
constrained to products of bit probabilities1, which is not the
case for symbolwise DMs.

B. Hierarchical DM

Fig. 2 shows the schematic of HiDM, which is a LUT-based
fixed-length-to-fixed-length conversion scheme [12]. The pa-
rameters in HiDM are defined in Tab. III. The Nin input
bits (excluding sign bits) are partitioned and input to LUTs,
hierarchically placed in L layers. In the top layer, an LUT
receives sL bits and outputs uL = tL−1rL−1 bits. In layer
` = L− 1, L− 2, . . . , 2, each LUT receives r` bits from layer
`+1 and s` bits from the input of the DM as information bits.
Totally v` = r` + s` bits are converted into u` = t`−1r`−1

bits. These bits are fed into t`−1 LUTs in layer `− 1, which
each receive r`−1 bits. In layer 1, each LUT receives r1 bits
from layer 2 and s1 bits from the input of the DM. Totally

1If a bitwise DM generates binary DM words with a fixed number of ones,
a parallel amplitude architecture [27] can approximate an arbitrary PMF.
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Fig. 2. Schematic of HiDM encoding.

TABLE III
KEY PARAMETERS IN HIDM.

Notation Description
` layer index
L number of layers
t` number of LUTs in layer ` connected to a single LUT

in layer `+ 1
T` number of LUTs in layer `
r` number of input bits in an LUT in layer ` from layer `+ 1
s` number of input information bits in an LUT in layer `
v` number of input bits in an LUT in layer ` (r` + s`)
u` number of output bits in an LUT in layer `

(mNs/2 if ` = 1 or t`−1r`−1 else)

v1 = r1+s1 bits are converted into u1 bits, which corresponds
to u1/msb QAM symbols. The number of DM output bits and
QAM symbols are msbNs/2 = T1u1 = (ΠL−1

`=1 t`)u1 and Ns/2,
resp.

HiDM has massively parallel input/output interfaces, which
are well suited for hardware implementation. The bus widths
are

∑L
`=1 T`s` and T1u1 at the input and the output of the

DM encoding, resp. If for example L = 7, T` = 27−`,
s1 = · · · = s6 = 5, and s7 = 10, then the bus widths are
640 bits at both the input and the output interfaces. At a
clock frequency of 500 MHz, the output throughput is 320
Gb/s or 320/msb Gsymbol/s. Under a symbol rate of 100
Gsymbol/s, d2 · 100/(320/msb)e = d(5/8)msbe instances are
required. Thus, the larger bus width supports around 100 times
larger throughput, which requires 100 times fewer instances
compared with the RLC-based DM in Sec. II-A.

III. DESIGN AND EVALUATION OF HIDM

A fiber-optic communication channel can be approximated
by the AWGN channel with an average power constraint if the
dominant impairment is amplified spontaneous emission noise
from optical amplifiers. The target PMF for such channel is the
discrete Gaussian, or Maxwell–Boltzmann (MB) distribution.
For simplicity, the shaped QAM symbols are obtained by
combining two shaped PAM symbols. In an example for PS-
256-QAM generation [12], the total number of bits per PAM
symbol m/2 is 4, and both the sign bit (the most significant
bit) and the least significant bit are not shaped. Only the second

TABLE IV
CHOSEN PARAMETERS USED IN [12, TAB. IV, FIG. 4].

` t` T` r` s` v` u`
7 1 5 5 12
6 2 2 6 5 11 12
5 2 4 6 5 11 12
4 2 8 6 5 11 12
3 2 16 6 5 11 12
2 2 32 6 5 11 12
1 2 64 6 3 9 10

and third significant bits are shaped in each dimension, so that
msb = 4. Tab. IV exemplifies the parameters used. The number
of DM input bits per DM word

∑L
`=1 T`s` is 507, and the

number of DM output bits per DM word msbNs/2 = T1u1
is 640. Thus the maximum spectral efficiency per 2D symbol
is β = 2(1 + mNin/Ns) = 2(2 + 507/320) = 7.169 bit per
channel use (bpcu). The entropy of a 2D symbol 2H(X) will
be larger than β, where X denotes a PAM symbol.

The values of T`, v`, and u` determine the accumulated
size of the LUTs, i.e.,

∑L
`=1 T`2

v`u` for DM. If a simple
mirror structure is employed for the invDM, its size will be2
∑L
`=1 T`2

u`v`. Thus, there would be practical constraints on
the values of v` and u`, which depend on the acceptable
hardware resource usage. Under such constraints, a binary tree
structure (t` = 2, ∀`) gives the best shaping performance.

The LUT contents are determined from layer 1 and up.
There are 2u1 output-word candidates for LUT1, of which
2v1 should be selected based on some criterion, e.g., mini-
mum average symbol energy E = E[X2]. Thus, the output-
word candidates are sorted by increasing E, assuming a
Gray-mapped PAM constellation. The top 2v1 candidates are
selected, and assigned input symbols in natural order (i.e.,
0 · · · 00, 0 · · · 01, . . ., 1 · · · 11), with 0 · · · 00 assigned to the
word with the smallest E. The process then continues with
layers ` = 2, . . . , L. There are 2u` output-word candidates for
the level-` LUT. For each candidate, E is computed based on
the selected contents for LUTs 1, . . . , `−1. The output words
are again sorted by increasing E, and the top 2v2 are selected.

We generated PS-256-QAM signals having a DM word
length of 320 16-PAM symbols by employing CCDM [6]
and HiDM [12]. The target PMF for CCDM was set to
the MB distribution with β = 7.169 bpcu. For HiDM, the
scheme exemplified above and in Tab. IV was used, which
also has β = 7.169 bpcu. In Tab. V [12], some key statistics
of the shaped PAM symbols X and QAM symbols Xc are
summarized, viz. the PMF PX , average QAM symbol energy
Ec = E[|Xc|2], QAM symbol entropy H(Xc) = 2H(X),
maximum spectral efficiency β, rate loss Rloss = H(Xc)− β,
and constellation gain G = (2β − 1)d2min/(6Ec), where dmin
denotes the minimum Euclidean distance. The rate loss of a
QAM symbol was 0.07 and 0.08 bpcu for CCDM and HiDM,
resp. In each case, the constellation gain G was more than
1 dB, while G is 0 dB for uniform square QAM. The gap
in G from the ideal Maxwell–Boltzmann (MB) distribution
was within 0.4 dB even though we did not shape the least

2There may exist techniques to reduce the LUT size without sacrificing
performance.
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TABLE V
STATISTICS OF THE SHAPED SYMBOLS [12].

CCDM HiDM MB
Ns (PAM symbols) 320 320 –

P|X|(1) 0.2453 0.2376 0.2628
P|X|(3) 0.2453 0.2376 0.2355
P|X|(5) 0.1625 0.1684 0.1891
P|X|(7) 0.1625 0.1684 0.1360
P|X|(9) 0.0719 0.0757 0.0877
P|X|(11) 0.0719 0.0757 0.0506
P|X|(13) 0.0203 0.0183 0.0262
P|X|(15) 0.0203 0.0183 0.0121

Ec 74.00 74.70 68.31
H(Xc) (bpcu) 7.242 7.252 7.169
β (bpcu) 7.169 7.169 7.169
Rloss (bpcu) 0.073 0.083 0
G (dB) 1.097 1.056 1.444

significant bit.3

IV. FLEXIBLE TUNING OF TWO-DIMENSIONAL PMFS

In fiber-optic links where AWGN is not the dominant
impairment, different PMFs than MB can give better perfor-
mance. The received signal-to-noise ratio (SNR) after prop-
agation through a nonlinear fiber-optic channel depends on
the transmitted PMF, especially for short links with negli-
gible chromatic and polarization-mode dispersion, where the
transmitted waveform shape is maintained. The nonlinear
self-channel interference increases with the excess kurtosis
Φ = E[|Xc|4]/E2[|Xc|2] − 2 [28], [29] of the QAM symbols
Xc, which equals 0 for a Gaussian distribution.

HiDM can shape PMFs in an arbitrary number of di-
mensions as long as the complexity is acceptable. Here, we
improve the tolerance to fiber nonlinearity by two-dimensional
shaping using HiDM. The LUTs are designed as in Sec. III,
except that the output-word candidates are sorted by increasing
E
[
|Xc|F/2

]
, for some F = 1, 2, . . . , 8, to reduce Φ.

As in [24], the base constellation is 64-QAM, 32-QAM, or
a 1:1 hybrid of 16-QAM and 32-QAM. The target number of
coded bits per QAM symbol is m = 4.25 bpcu. The assumed
FEC code rate is 5/6, so the target information rate is 3.542
bpcu. When we employ 64-QAM, 32-QAM, or hybrid 32/16-
QAM, the FEC throughput increases by 6/4.25− 1 = 41.1%,
5/4.25 − 1 = 17.6%, or 44.5/4.25 − 1 = 5.9%, resp.,
compared with uniform signaling. Fig. 3 shows the PMFs
generated by HiDM for different F values. The PMFs for
the linear AWGN channel have a relatively high peak at small
amplitudes, wheras the the PMFs for nonlinear channels are
more uniform.

Fig. 4 illustrates the tradeoff between linear and nonlinear
performance. The horizontal axis shows the normalized gen-
eralized mutual information (NGMI) [30], [31] or asymmetric
information (ASI) [32], [33] with matched bit-metric decoding
[4] over the AWGN channel with an SNR of 12 dB. The
vertical axis shows the excess kurtosis Φ, which approximately
quantifies the nonlinear interference. PS-64-QAM and PS-32-
QAM show comparable linear performance. They are almost

3If the least significant bit is shaped, the energy gap will be reduced to less
than 0.3 dB.

Fig. 3. Two-dimensional PMFs obtained by HiDM for (from top to bottom)
F = 2, 4, 6, 8.

Fig. 4. Tradeoff between linear and nonlinear performance. The top marker
on each curve corresponds to F = 1 and the bottom one to F = 8.

0.2 dB better in terms of required SNR than hybrid PS-
32/16-QAM. When the DM word lists in the LUTs are
adapted to nonlinear fiber-optic channels by increasing F , the
linear performance degrades, but the nonlinear performance
improves. For PS-64-QAM and PS-32-QAM with high F , Φ
becomes comparable with uniform 64-QAM, at the expense
of a linear performance reduction of about 0.2 dB.

The best linear performance was observed at F = 2, with
minimum Ec, for PS-64-QAM and PS-hybrid-32/16-QAM,
and F = 3 for PS-32-QAM. To investigate why the best F is 3
for PS-32-QAM, we computed the rate loss as shown in Fig. 5.
The rate loss decreases as F increases, i.e., as Φ decreases,
for PS-64-QAM and PS-32-QAM. The balance between Ec
and rate loss causes the peculiar performance of PS-32-QAM
in Fig. 4.

V. SUMMARY

Some aspects of low-complexity implementations of DM
PS in fiber-optic communications were studied, in terms of
throughput, bus width, and circuit area. HiDM has around
100 times larger throughput than a DM with RLC. A large-
scale HiDM example was given in detail, realizing a DM
word length of 160 256-QAM symbols using a 7-layer LUT
hierarchy. The resulting energy gap from the ideal MB distri-
bution is less than 0.4 dB, while keeping four bits per QAM
symbol uniformly distributed (nonshaped). A simple method
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Fig. 5. Rate loss as a function of the sorting parameter F .

to flexibly adapt HiDM to nonlinear channels with granular
base constellations was also described.

As shown in [34], this HiDM is useful also for a rudimentary
form of joint source–channel coding. This realizes simulta-
neous data compression and probabilistic shaping, which can
further reduce the required SNR or system power consumption
in future optical networks. Thanks to the high throughput by
massively parallel interfaces, both the encoding and decoding
of HiDM, including joint source–channel coding, was imple-
mented in a single field-programmable gate array chip [35].
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Abstract—We use prefix-free code distribution matching 

(PCDM) for rate matching (RM) in some 5G New Radio (NR) 

deployment scenarios, realizing a wide range of information rates 

from 1.4 to 6.0 bit/symbol in fine granularity of 0.2 bit/symbol. We 

study the performance and implementation of the PCDM-based 

RM, in comparison with the low-density parity-check (LDPC)-

based RM, as defined in the 5G NR standard. Simulations in the 

additive white Gaussian noise channel show that up to 2.16 dB gain 

in the signal-to-noise ratio can be obtained with the PCDM-based 

RM at a block error rate of 10-2 when compared to LDPC-based 

RM in the tested scenarios, potentially at a smaller hardware cost. 

I. INTRODUCTION 

n the 5th Generation (5G) New Radio (NR) mobile 

broadband standard, low-density parity-check (LDPC) codes 

have been adopted as the channel coding scheme for user data, 

as recently specified in the 3rd Generation Partnership Project 

(3GPP) Release 15 [1]. A notable feature of the 5G NR LDPC 

codes is the great flexibility to support a wide range of 

information block lengths 𝐾𝐶 , ranging from 40 to 8448 bits, and 

various code rates, ranging from 1/5 to 8/9 [2]–[4]. This ensures 

reliable transmission of user data in dynamically varying 

cellular channel conditions, and in various deployment 

scenarios where different amount of radio and hardware 

resources is available.  

Among the many available 5G NR LDPC code parameters, 

finding a set of parameters to maximize the information 

throughput under given channel conditions and resources is a 

task of rate matching (RM). The 5G NR standard performs RM 

in two steps: first, coarse-grained RM chooses one of the two 

base graphs (BGs) and a submatrix size to lift the BG, then fine-

grained RM shortens and punctures parts of the derived code in 

single-bit granularity. There are 51 different submatrix sizes 𝑍𝐶 

defined in the standard, in the form of 𝑍𝐶 = 𝐴 × 2𝑗  for 𝐴 ∈
{2, 3, 5, 7, 9, 11, 13, 15}  and 𝑗 = 0,1, … , within the range 2 ≤
𝑍𝐶 ≤ 384. Transmission begins with a high-rate LDPC code 

first, and in case the decoding fails at the receiver, incremental-

redundancy hybrid automatic repeat request (HARQ) is operated 

such that more parity bits are transmitted for the same data until 

the decoding succeeds. The BGs of the 5G NR LDPC codes are 

made to have a special structure such that a high-rate code is 

always a submatrix of a lower-rate code, in order to facilitate 

the incremental-redundancy HARQ. Overall, the coarse- and 

fine-grained RM with incremental-redundancy HARQ make 

the number of all possible codes in an order of thousands.  

Although essential to support the broad 5G NR deployment 

scenarios, the sheer number of LDPC codes poses a significant 

challenge in hardware implementation. In [5], for example, it 

was shown that a flexible decoder for only 12 LDPC codes 

(defined in the WiFi standard IEEE 802.11n/ac, with 3 different 

submatrix sizes and 4 code rates) consumes about 2.2× larger 

area than an inflexible decoder for a single code for the same 

throughput, when implemented on a field-programmable gate 

array (FPGA). In particular, multiple submatrix sizes add a 

greater implementation complexity than multiple code lengths, 

due to the intricacy associated with the design of a routing 

network [5]. It is therefore a daunting task to implement the 

whole set of 5G NR LDPC codes with as many as 51 different 

submatrix sizes. Moreover, this flexible coding scheme should 

attain up to 20 Gb/s of the downlink throughput, as required by 

the standard. 

While RM for user data is almost solely performed by LDPC 

in the 5G NR standard, recent optical communication systems 

use probabilistic constellation shaping (PCS) for RM, in 

conjunction with a single or a few forward error correction 

(FEC) codes [6]. PCS shapes the probability distribution of 

modulation symbols such that symbols with a low energy are 

sent more frequently than those with a high energy, thereby 

reducing the average symbol energy. This implies an increased 

Euclidean distance between modulation symbols for the same 

transmit power, hence probabilistically-shaped symbols better 

resist the channel impairments than symbols with uniform 

probability distribution. Since a non-uniform distribution has a 

lower entropy than the uniform distribution over the same 

support, PCS can intrinsically adjust the information rate (IR), 

i.e., it can realize RM. In optical communications, PCS-based 

RM served as a key technology to obtain record-high spectral-

efficiency transmission results in recent experiments and field 

trials, which led to rapid adoption in the commercial sector [6]. 

Motivated by the remarkable success of PCS in optical 

communications, we study in this work the application of PCS 

to mobile broadband services. We realize PCS in the 

probabilistic amplitude shaping (PAS) architecture [7] using 

prefix-free code distribution matching (PCDM) [8]. By 

transferring the role of RM to PCDM, while only a small subset 

of the 5G NR LDPC codes is used for FEC, we demonstrate up 

to 2.16 dB gain in the signal-to-noise ratio (SNR) for the same 

IR, at a block error rate (BLER) of 10-2. Importantly, this SNR 

gain may be achieved at a smaller hardware cost than the 

conventional LDPC-based RM, as recently shown by an FPGA 

implementation in optical communications scenarios [9].  
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II. RATE MATCHING WITH 5G NR LDPC 

When a rate-𝑅𝐶 LDPC code is used with 𝑀2-ary quadrature 

amplitude modulation (QAM) for 𝑀2 ∈ {4, 16, 64, 256} , as 

specified in the 5G NR standard, the achievable IR of the 

system is given by 

𝑅𝐼𝑛𝑓𝑜 = 2𝑚𝑅𝑐 (1) 

in bit/symbol, where 𝑚 ≔ log2𝑀 . This IR is said to be 

achieved if the decoding is error-free. For the 5G NR LDPC 

codes with incremental-redundancy HARQ, error-free 

decoding needs not be ensured in every transmission block, but 

rather a marginally low BLER (typically within the range of 

10−3 to 10−1) is set as the target error performance to avoid too 

frequent retransmission. In this case, RM involves finding a 

code-modulation pair that produces the greatest 𝑅𝐼𝑛𝑓𝑜 among 

all pairs defined in the standard such that the target BLER is 

fulfilled under the given channel condition. Also engaged in 

RM are the available radio and hardware resources in hand, and 

the practical requirements such as latency. 

In this work, three sets of codes are selected from the 5G NR 

LDPC codes to produce IRs ranging from 1.4 to 6.0 bit/symbol 

in 0.2 bit/symbol increments to cover a wide range of channel 

conditions. Each set of codes has a fixed code length 𝑁𝐶 ∈
{600, 1200, 4800}, which deals with a scenario with few to 

many resources, incurring short to long latency. For example, 

the extensive set of codes defined in the current 5G NR standard 

for the case of 𝑁𝐶 = 600  is shown in Table I, where 32 

different codes with 10 different submatrix sizes 𝑍𝐶 are needed 

to realize the target IRs, with three different QAM orders. To 

support all three 𝑁𝐶  for the target IRs, 96 different LDPC codes 

are needed in total, with 27 different submatrix sizes. 

III. RATE MATCHING WITH PCDM 

A. PCDM 

An essential component of PCS realized using the PAS 

architecture is the distribution matching (DM), which receives 

binary information bits of equal probabilities and produces 

modulation symbols of a target probability distribution. The 

transmitter of a PCS system, in the PAS architecture [7], first 

synthesizes a target distribution of positive real symbols using 

a DM, as shown in Fig. 1, then the binary representation of the 

positive real symbols is encoded by a binary systematic FEC 

code. The parity bits are then used as sign bits to produce real 

symbols that are symmetrically distributed around zero, while 

the systematic information bits preserve the symbol-domain 

probability distribution made by the DM. At the receiver side, 

as long as the FEC decoding recovers error-free systematic bits, 

the DM operation can be undone without error. 

PCDM is a method to implement DM by using prefix-free 

codes (often called Huffman codes [10, Ch. 5.6]). As shown in 

Table II, a PCDM code is constructed by concatenating two 

prefix-free codes, namely, binary prefix-free codewords in the 

left entries and non-binary (including binary) codewords in the 

right entries of a look-up table (LUT) in an order. A PCDM 

encoder reads information bits in a bit-by-bit manner until the 

first (hence shortest) matching bit sequence is found from the 

left entries of the LUT, then instantaneously produces a symbol 

sequence in the corresponding right entry. This variable-length 

bit-to-symbol encoding is repeated in an iterative manner, 

where each iteration starts from the first bit in the bit stream that 

has not been encoded yet. For example, the code in Table II 

(denoted by 𝒞2 throughout the paper) encodes a bit stream “0 

1100…” into the symbol stream “111111  1113…” Note that 

the right entries of 𝒞2  contain only the positive real part of 

complex-valued 16-QAM symbols 𝑋 + 𝑖𝑌  for 𝑋, 𝑌 ∈
{±1,±3}, which simplifies the description and implementation. 

The negative real part of the symbols can be produced by using 

the symmetry of a probabilistic distribution around zero, as 

typically done in PCS systems, allowing one more information 

bit to be encoded as a sign bit in a symmetrically distributed 

real symbol. Generating the imaginary component is trivial; we 

can, for instance, use the real symbols alternately for real and 

imaginary components of a complex-valued QAM symbol (this 

approach is taken in this work). PCDM decoding can be 

described in the same manner as PCDM encoding, by changing 

only the role of bits and symbols, thus the details of the 

decoding process are omitted. 

TABLE II 

PCDM CODE 𝒞2 

 

Input Bits Output Symbols

0

100

1010

1011

1100

1101

1110

111100

111101

1111100

1111101

1111110

11111110

111111110

111111111

111111

113

111113

11113

1113

1311

3111

133

3113

1313

3131

3311

3133

3313

3331

TABLE I 

RATE MATCHING WITH 5G LDPC CODES [1] OF LENGTH 𝑁𝐶 = 600 

 

QAM BG 𝑍𝐶 𝐾𝐶 IR

16 2 28 210 1.4

16 2 30 240 1.6

16 2 36 270 1.8

16 2 40 300 2.0

16 2 44 330 2.2

16 2 48 360 2.4

16 2 52 390 2.6

16 1 20 420 2.8

16 1 22 450 3.0

16 1 22 480 3.2

16 1 24 510 3.4

QAM BG 𝑍𝐶 𝐾𝐶 IR

64 2 36 280 2.8

64 2 40 300 3.0

64 2 40 320 3.2

64 2 44 340 3.4

64 2 48 360 3.6

64 2 48 380 3.8

64 2 52 400 4.0

64 1 20 420 4.2

64 1 20 440 4.4

64 1 22 460 4.6

64 1 22 480 4.8

64 1 24 500 5.0

QAM BG 𝑍𝐶 𝐾𝐶 IR

256 2 44 330 4.4

256 2 44 345 4.6

256 2 48 360 4.8

256 2 48 375 5.0

256 2 52 390 5.2

256 1 20 405 5.4

256 1 20 420 5.6

256 1 20 435 5.8

256 1 22 450 6.0

    

Fig. 1.  PCS based on the PAS architecture [7]. 
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The amount of information bits carried by each DM output 

symbol, called the DM rate, denoted by 𝑅𝐷 (in bits per positive 

real symbol), and the average energy 𝐸 of output symbols of 

PCDM can be easily calculated from the LUT in the limit of 

encoding iterations [8], assuming independent and identically 

distributed (IID) information bits with equal probabilities. For 

example, the code 𝒞2  realizes 𝑅𝐷 ≈ 0 504  with 𝐸 ≈ 1 904 

asymptotically. The performance of a DM can be quantified by 

the energy gap defined as 𝐸Δ ≔ 𝐸/𝐸∗ , which evaluates the 

additional energy consumed by the DM relative to the 

theoretical lower limit of energy 𝐸∗ to achieve the same rate 

𝑅𝐷. The limit 𝐸∗ to achieve 𝑅𝐷 is given by the average output 

energy of a stationary ergodic random process that generates 

letter 𝑋 from the same alphabet as the PCDM code, where 𝑋 

follows the IID Maxwell-Boltzmann distribution [11] and 

produces entropy 𝐻(𝑋) = 𝑅𝐷. The problem of constructing a 

good PCDM code is then to find a code that produces the 

smallest average energy 𝐸  (hence smallest 𝐸Δ ) among all 

possible codes subject to the rate constraint 𝑅𝐷 ≥ 𝑅𝐷
∗ , with 𝑅𝐷

∗  

being the target DM rate. If we restrict the cardinality of PCDM 

codes (i.e., the number of rows in the LUTs) to a small number, 

good PCDM codes can be found by exhaustive or algorithmic 

search [8]. 𝒞2 has indeed been found in such a way, and its 𝐸Δ 

is only ~0.03 dB. Note that, as per the aforementioned method 

in constructing a complex-valued symbol from positive real 

symbols, rate-𝑅𝐷  PCDM yields 1 + 𝑅𝐷  information bits per 

real symbol, and 2(1 + 𝑅𝐷)  information bits per complex-

valued symbol. 

The PCDM procedure is, however, not compliant with the 

5G NR standard in its current form, since it produces variable-

length output at each iteration; i.e., it cannot realize fixed-rate 

transmission in a block-by-block manner as required by the 

standard. This compliance issue can be circumvented in the 

following manner. Namely, we use the framing method 

presented in [8], which switches the encoding method from 

PCDM to typical bit-to-symbol mapping for uniform QAM 

during the successive process. The switching position is 

dynamically determined from the input bit values, such that the 

given fixed-length bit block can be contained in a fixed-length 

symbol block. Framing slightly increases 𝐸Δ in general; and the 

shorter the block length, the more 𝐸Δ  increases (see [8] for 

details). For example, the code 𝒞2  with 𝑅𝐷 ≈ 0 504 and 𝐸 ≈
1 904 can be framed to encode an input block of length 𝐾𝐷 =
150 bits in an output block of length 𝑁𝐷 = 300 positive real 

symbols, to realize a fixed 𝑅𝐷 = 0 5 in each block with a little 

greater average symbol energy than 1.904. 

There are other known DM methods such as the constant 

composition DM (CCDM) [12], shell mapping (SM) [13], and 

enumerative sphere shaping (ESS) [14]. The CCDM needs 

multiplications and divisions at each iteration, making its 

hardware implementation very costly. The complexity of SM 

and ESS is much lower than CCDM, but increases with the 

block length. Furthermore, due to the inherently limited 

parallelism [14, Table 3], it is unclear if the CCDM, SM, or ESS 

can support 20 Gb/s of downlink throughput. There are no 

published papers on hardware implementation of these methods 

to date. On the other hand, PCDM has a low complexity, 

independent of the block length, and was proven through an 

FPGA implementation to achieve a high throughput with a 

massive parallelism [9], as will be discussed in Sec. III-C in 

more detail. 

B. Rate Matching with PCDM 

We first note that the PCDM is characterized by the input and 

output block lengths 𝐾𝐷 and 𝑁𝐷, respectively, realizing the DM 

rate 𝑅𝐷 = 𝐾𝐷/𝑁𝐷 in each block, as if an LDPC code of input 

and output block lengths 𝐾𝐶  and 𝑁𝐶 , respectively, realizes the 

code rate 𝑅𝐶 = 𝐾𝐶/𝑁𝐶  in each block. This already illustrates 

that PCDM can be used for RM, instead of the LDPC. With 

reference to the PAS architecture in Fig. 1, it can easily be seen 

that the IR of a PCS system with rate-𝑅𝐷  DM and rate-𝑅𝐶 

coding is given by 

𝑅𝐼𝑛𝑓𝑜 = 2[1 + 𝑅𝐷 −𝑚(1 − 𝑅𝐶)] (2) 

(see [6], [7] for details). As a matter of fact, this shows exactly 

how the IR can be varied by adjusting either 𝑅𝐷 or 𝑅𝐶.  

In order to perform RM with PCDM, we construct PCDM 

codes 𝒞 for various 𝑅𝐷 ranging from 0.2 to 3.0 bits per positive 

real symbol, under the cardinality constraint |𝒞| = 24. There 

exist an enormous number of PCDM codes even with this small 

cardinality of 24, since the number of possible codes grows 

exponentially with the cardinality; e.g., for positive real symbols 

of 16-QAM, more than 3 4 × 1011  different cardinality-24 

codes can be constructed. Among all possible codes, the 

performance of the PCDM codes that have the smallest 𝐸𝛥 in 

each 𝑅𝐷 bin of width 0.005 is shown in Fig. 2, where small 𝐸𝛥 

below 0.4 dB are observed across a wide range of 𝑅𝐷.  

To compare PCDM- and LDPC-based RM in the considered 

5G deployment scenarios, we realize the same IRs as in Sec. II 

using PCDM codes, in conjunction with much fewer LDPC 

codes than in Table I. Fixed-length framing is applied to PCDM 

such that each PCDM output block is mapped to exactly one 

LDPC code of length 𝑁𝐶 ∈ {600, 1200, 4800} . This is 

achieved by making the PCDM output block length 𝑁𝐷 equal to 

𝑁𝐶/𝑚 for a given 𝑁𝐶 . The PCDM input block length 𝐾𝐷 is then 

determined to meet the target IR according to (2). Shown in 

Table III are such determined PCDM parameters for the case of 

𝑁𝐶 = 600, made to be compatible with the LDPC-based RM 

scenario of Table I. We use 28 PCDM codes and 3 LDPC codes 

of 3 different submatrix sizes in Table III, one LDPC code for 

each QAM order (cf. top of Table III). Note, however, that it is 

      
Fig. 2.  Performance of PCDM codes of cardinality |𝒞| = 24, with real positive 

symbols for 16-ary (pluses), 64-ary (triangles), and 256-ary (circles) QAM. 
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possible to use only one submatrix size 𝑍𝐶 for all QAM orders, 

if we design new LDPC codes by taking PCDM into account. 

More importantly, to further support the other code lengths 

𝑁𝐶 ∈ {1200, 4800}, we need more LDPC codes but no more 

PCDM codes, since the set of PCDM codes for 𝑁𝐶 = 600 can be 

used for an arbitrary integer 𝑁𝐶  with mere change in the framing 

constraint, causing virtually no additional hardware cost.  

Fig. 3 shows the performance of 28 PCDM codes chosen 

from Fig. 2, which produce the target IRs under the framing 

constraints to comply with the LDPC codes of 𝑁𝑐 ∈
{600, 1200, 4800} . With large PCDM block lengths 

𝑁𝐷 compatible with 𝑁𝑐 = 4800 (markers connected by lower 

solid lines), energy gap of approximately 0.1 to 0.4 dB is 

achieved. The energy gap increases as 𝑁𝐷 decreases, reaching 

almost 0.8 dB for the case of 𝑁𝑐 = 600 and 256-QAM. This 

large gap is attributed partly to the fixed-length constraint, and 

partly to the cardinality constraint that becomes more 

prominent as the QAM order grows. However, as will be shown 

in Sec. IV, PCDM-based RM provides significant SNR gain 

even with 0.8 dB of the energy gap.  

C. Implementation Aspects of PCDM-based RM 

Table IV summarizes the implementations required for 

LDPC- and PCDM-based RM in the 5G NR deployment 

scenarios with 𝑁𝐶 ∈ {600, 1200, 4800}, where the numbers in 

the parentheses show the possible numbers if a new LDPC 

design criterion is applied. The PCDM-based RM uses 28 

PCDM codes and 9 (3) LDPC codes of 9 (3) different submatrix 

sizes in total, whereas the LDPC-based RM uses 96 LDPC 

codes of 27 different submatrix sizes. A universal PCDM 

architecture is presented in [9] that can support all the 28 PCDM 

codes of Table IV. In this universal architecture [9], PCDM 

encoding is performed in a massively parallel manner, 

achieving 16.7 Gb/s of throughput on an FPGA platform. 

Moreover, to achieve the same throughput, PCDM uses 

substantially smaller hardware than LDPC, even with finer rate 

granularity [9, Sec. 4]. This shows that PCDM is a viable option 

to realize the fine-grained RM with the maximum throughput 

of 20 Gb/s, as per the 5G NR requirement.  

Another important aspect is that, when PCDM performs RM, 

the rate of LDPC codes can be made much higher than LDPC-

based RM; for example, PCDM-based RM needs 𝑅𝐶 ≥ 0.7 to 

realize all the target IRs (cf. Table III), whereas LDPC-based 

RM needs 𝑅𝐶 as low as 0.35 for the same IRs (cf. Table I). A 

higher code rate translates into a smaller number of rows in the 

parity-check matrix (PCM) for a fixed code length (i.e., for the 

same number of columns in the PCM). In case of 𝑅𝐼𝑛𝑓𝑜 = 1 4 

bit/symbol and  𝑁𝐶 = 600, the PCM for the PCDM-based RM 

has 44% fewer number of rows than the PCM for the LDPC-

based RM, which greatly reduces the hardware cost required to 

implement an LDPC decoder. 

IV. PERFORMANCE EVALUATION 

We evaluate the performance of the PCDM-based RM in the 

additive white Gaussian noise (AWGN) channel for the 5G NR 

deployment scenarios with 𝑁𝐶 =  600, 1200, 4800, in 

comparison with the LDPC-based RM. For each pair of PCDM 

and LDPC codes, we generate 104 blocks of 𝐾𝐷 IID random bits 

of equal probabilities, and perform PCDM encoding. Each 

PCDM output block is encoded into an LDPC codeword, then 

mapped to QAM symbols in the PAS architecture (cf. Fig. 1). 

After going through the AWGN channel, the received data is 

decoded by the belief propagation algorithm with 12 iterations. 

Due to the configuration of PCDM and LDPC chosen in this 

paper, a PCDM block error occurs if and only if an LDPC block 

error occurs, making the BLERs the same for the LDPC and the 

PCDM. 

Figs. 4(a)-(c) show the IR and the SNR that is required to 

achieve a BLER of 10-2 with 𝑁𝑐 =  600, 1200, 4800, 

respectively. In case of the LDPC-based RM (markers 

connected by dotted lines), when an IR can be achieved by 

multiple code-modulation pairs, a high-rate code with a low-

TABLE IV 
IMPLEMENTATIONS REQUIRED FOR LDPC- AND PCDM-BASED RM WITH 

CODE LENGTH 𝑁𝐶 = 600, 1200, 4800 

 

𝑁𝐶 = 600 𝑁𝐶 = 1200 𝑁𝐶 = 4800 Total

LDPC-Based

RM

# LDPC submatrix 

sizes
10 7 10 27

PCDM-

Based

RM

# LDPC submatrix 

sizes
3 (1) 3 (1) 3 (1) 9 (3)

# PCDM codes 28 28 28 28

TABLE III 

RATE MATCHING WITH PCDM CODES AND 5G NR LDPC CODES OF LENGTH 

𝑁𝐶 = 600 

 

QAM 𝑁𝐷 𝐾𝐷 IR

16 300 90 1.4

16 300 120 1.6

16 300 150 1.8

16 300 180 2.0

16 300 210 2.2

16 300 240 2.4

16 300 270 2.6

QAM 𝑁𝐷 𝐾𝐷 IR

64 200 180 2.6

64 200 200 2.8

64 200 220 3.0

64 200 240 3.2

64 200 260 3.4

64 200 280 3.6

64 200 300 3.8

64 200 320 4.0

64 200 340 4.2

64 200 360 4.4

64 200 380 4.6

QAM 𝑁𝐷 𝐾𝐷 IR

256 150 255 4.2

256 150 270 4.4

256 150 285 4.6

256 150 300 4.8

256 150 315 5.0

256 150 330 5.2

256 150 345 5.4

256 150 360 5.6

256 150 375 5.8

256 150 390 6.0

BG = 1

𝑍𝐶 = 20
𝑁𝐶 = 600
𝐾𝐶 = 420

BG = 1

𝑍𝐶 = 22
𝑁𝐶 = 600
𝐾𝐶 = 480

BG = 1

𝑍𝐶 = 24
𝑁𝐶 = 600
𝐾𝐶 = 510

 

Fig. 3.  Performance of PCDM codes 𝒞  that realize 𝑅𝐼𝑛𝑓𝑜 = 1 4, 1 6, … , 6 0 

with cardinality |𝒞| = 24 using real positive symbols of 16-ary (pluses), 64-ary 

(triangles), and 256-ary (circles) QAM. The PCDM is compatible with 5G NR 

LDPC codes of lengths 𝑁𝐶 = 600 (upper solid lines), 1200 (middle sold lines), 

and 4800 (lower solid lines). Also shown is the performance without a fixed-

length constraint (dashed lines). 
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order QAM offers a greater IR than a low-rate code with a high-

order QAM. The gap to the AWGN capacity (dashed lines) 

generally increases as the QAM order grows, as an anticipated 

consequence of bit-interleaved coded-modulation (BICM) with 

equally probable modulation symbols [15]. By contrast, when 

PCDM performs RM (markers connected by solid lines), the IR 

smoothly increases as the QAM order increases, yielding more 

consistent gap to the capacity than LDPC-based RM. The actual 

SNR gain obtained from PCDM varies with the IR and 𝑁𝐶 , but 

significant gains are observed in a wide range of the IR, 

reaching up to 2.16 dB for a large 𝑁𝐶  and a large QAM order.  

V. CONCLUDING REMARKS 

We studied the performance and implementation aspects of 

the PCDM-based RM in some 5G NR deployment scenarios. 

We realize a wide range of IRs from 1.4 to 6.0 bit/symbol with 

fine granularity of 0.2 bit/symbol, using 28 PCDM codes and 

only a few 5G NR LDPC codes. AWGN simulations show that 

up to 2.16 dB of SNR gain can be obtained with PCDM at a 

working point of BLER=10-2. Furthermore, this SNR gain can 

potentially be achieved with a reduced hardware cost than the 

LDPC-based RM as currently defined in the 5G NR standard.  

Although not included in the reported simulation and results, 

incremental-redundancy HARQ can be incorporated with 

PCDM. We can, for instance, use the PCDM only for the initial 

transmission, and transmit additional parity bits via uniform 

QAM if the initial transmission fails. IRs lower than 1.4 

bit/symbol are not studied in this work, as it is difficult to realize 

them using the proposed method, but the lower IRs can be 

realized by using the incremental-redundancy HARQ. Full-

pledged 5G NR simulations of PCDM-based RM are left for 

future work, which include the evaluation of the throughput 

with incremental-redundancy HARQ in fading channels.  
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Fig. 4. IR and SNR to achieve BLER = 10-2 using LDPC- (dotted lines) and 

PCDM-based (solid lines) RM schemes, with (a) 𝑁𝐶 = 600, (b) 𝑁𝐶 = 1200, (c) 

𝑁𝐶 = 4800, and with 16-ary (pluses), 64-ary (triangles), and 256-ary (circles) 

QAM. Also shown is the AWGN channel capacity (dashed lines). 
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Abstract—This paper studies pliable index coding, in which
a sender broadcasts information to multiple receivers through
a shared broadcast medium, and the receivers each have some
message a priori and want any message they do not have. An
approach, based on receivers that are absent from the problem,
was previously proposed to find lower bounds on the optimal
broadcast rate. In this paper, we introduce new techniques to
obtained better lower bounds, and derive the optimal broadcast
rates for new classes of the problems, including all problems with
up to four absent receivers.

I. INTRODUCTION

This papers studies pliable index coding, where one trans-
mitter sends information to multiple receivers in a noiseless
broadcast setting. In the original index-coding setup [1, 2],
each receiver is described by the set of messages that it has,
referred to as side information, and the message that it wants
from the transmitter. In the pliable variant of the problem [3],
each receiver is described by only its side information, and
its decoding requirement is relaxed to any message not in the
side-information set.

The aim for both the original and the pliable problems
is to determine the minimum codelength normalised to the
message length, referred to as the optimal broadcast rate, that
the transmitter must broadcast to satisfy all receivers. As with
original index-coding problems, the optimal broadcast rate is
not known for pliable-index-coding problems in general.

Even though the two index-coding versions share many
similarities, their decoding requirements set them apart in
non-trivial ways. As a result, different techniques have been
attempted to solve each of them. To date, only a small number
of classes of pliable-index-coding problems have been solved.
In particular, two classes of symmetric problems have been
solved [4, 5]. These problems are symmetric in the sense that
if a receiver is present in the problem, every receiver with the
same cardinality of messages as side information as that of
the present receiver is also present. For asymmetric problems,
we derived the optimal broadcast rate for some classes of
problems based on the absent receivers [6]. We label a receiver
by its side-information set, for instance, receiver H has side-
information set H. With this notation, we lower bounded the
optimal broadcast rate by the longest chain of nested absent
receivers, that is, there exist absent receivers H1,H2, . . . ,HLmax

such that H1 ( H2 ( · · · ( HLmax . We characterised the optimal
broadcast rate when (i) there exists a message not in the side-
information set of any absent receiver, (ii) there is no nested

absent receiver pair, (iii) there is only one nested absent receiver
pair, and (iv) the absent receivers are formed by taking unions
of some message partitions.

However, with the existing results, even a simple problem
with three absent receivers remained unsolved (see problem P1
in Section III). In this paper, we strengthen our previous results
to obtain new lower bounds. As a result of the improved lower
bounds, we can solve all pliable-index-coding problems with
four or fewer absent receivers (which includes P1).

Our previous results [6] were derived based on our proposed
algorithm to construct a decoding chain. Fix a decoding choice
for each present receiver. The algorithm then iteratively adds
messages to the chain. When the current decoding chain
corresponds to a present receiver H, the message that receiver H
chooses to decode is added to the chain. If the current chain
does not correspond to any present receiver, we will arbitrarily
“skip” a message not in the chain and also add the same message
to the decoding chain. This continues till the chain equals to the
whole message set. The fewer the skipped messages, the tighter
the lower bound. In this paper, we propose two improvements.
First, we modify the algorithm such that even if receiver H
is absent, we may not need to skip a message, by looking at
receivers H− ( H, and the messages to be decoded by them.
Second, instead of arbitrarily skipping a message, we consider
the next absent receiver H ′ that the algorithm will encounter,
and skip a message in such a way that we will be able to avoid
skipping a message when the algorithm reaches H ′.

We will formally define pliable-index-coding problems in
Section II, after which we will use an example to illustrate the
above-mentioned two new ideas in Section III. These two ideas
will be formally presented in Sections IV and VI. In Section V,
we will also present a simpler lower bound. The results will
be combined to characterise the optimal broadcast rate for new
classes of pliable-index-coding problems in Section VII.

II. PROBLEM FORMULATION

We use the following notation: Z+ denotes the set of natural
numbers, [a : b] := {a,a + 1, . . . , b} for a, b ∈ Z+ such that
a < b, and XS = (Xi : i ∈ S) for some ordered set S.

Consider a sender having m ∈ Z+ messages, denoted by
X[1:m] = (X1, . . . ,Xm). Each message Xi ∈ Fq is independently
and uniformly distributed over a finite field of size q. There
are n receivers having distinct subsets of messages, which we
refer to as side information. Each receiver is labelled by its
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side information, i.e., the receiver that has messages XH , for
some H ( [1 : m], will be referred to as receiver H. The aim
of the pliable-index-coding problem is to devise an encoding
scheme for the sender and a decoding scheme for each receiver
satisfying pliable recovery of a message at each receiver.

Without loss of generality, the side-information sets of the
receivers are distinct; all receivers having the same side infor-
mation can be satisfied if and only if (iff) any one of them can
be satisfied. Also, no receiver has side information H = [1 : m]
because this receiver cannot be satisfied. So, there can be at
most 2m − 1 receivers present in the problem. A pliable index
coding problem is thus defined uniquely by m and the set
U ⊆ 2[1:m] \ {[1 : m]} of all present receivers. Any receiver that
is not present, i.e., receiver H ∈ 2[1:m] \ ({[1 : m]} ∪U) := Uabs,
is said to be absent.

Given a pliable-index-coding problem with m messages and
present receivers U, a pliable index code of length ` ∈ Z+
consists of
• an encoding function of the sender, E : Fmq → F`q; and
• for each receiver H ∈ U, a decoding function GH : F`q ×
F
|H |
q → Fq , such that GH (E(X[1:m]),XH ) = Xi , for some

i ∈ [1 : m] \ H.
Define decoding choice D as follows:

D : U→ [1 : m], such that D(H) ∈ [1 : m] \ H. (1)

Here, D(H) is the message decoded by receiver H.
The above formulation requires the decoding of only one

message at each receiver. Lastly, the aim is to find the optimal
broadcast rate for a particular message size q, denoted by
βq := minE, {G} ` and the optimal broadcast rate over all q,
denoted by β := infq βq .

III. A MOTIVATING EXAMPLE

We will now use an example to illustrate two ideas proposed
in this paper. Consider a pliable-index-coding problem P1 with
six messages and each receiver requires one new message.
All receivers are present except receivers H1 = {3}, H2 =
{1,2,3,4}, and H3 = {3,4,5,6}. P1 does not fall into any
category for which the optimal rate βq(P1) is known.

A. Existing lower bounds

We have previously established a lower bound [6]

βq ≥ m − Lmax, (2)

where Lmax is the maximum length of any nested chain of
absent receivers, that is, H1 ( H2 ( · · · ( HLmax , with each
Hi ∈ Uabs. In P1, Lmax = 2, which can be obtained from
H1 ( H2 or H1 ( H3. So, βq(P1) ≥ 6 − 2 = 4.

This lower bound can also be obtained by considering
another pliable-index-coding problem P−1 formed by removing
all receivers each having at least one and up to four messages.
It has been shown [4] that βq(P−1 ) = 4. Combined with the
result βq(P1) ≥ βq(P−1 ) [6], we get βq(P1) ≥ 4.

Another lower bound can be obtained by using our previously
proposed algorithm [6] to construct a decoding chain of
messages. Our previous algorithm is a restriction of our

Algorithm 1: A new and generalised algorithm to construct
a decoding chain with skipped messages

input :Pm,U,D
output : A decoding chain C (a totally ordered set with a total

order �) and a set of skipped messages S
1 C ← ∅; (initialise C)

2 S ← ∅; (initialise S)

3 while C , [1 : m] do
4 if C < U then (receiver C is absent)

5 Choose any of the following options:
6 Option 1: (skip a message)

7 Choose any a ∈ [1 : m] \ C; (skip a)

8 C ← C ∪ {a}; (expand C)

9 Define i � a, for all i ∈ C; (define order in C)

10 S ← S ∪ {a}; (expand S)

11 Option 2: (avoid skipping)

12 Choose any present receiver B ( C, such that
D(B) < C;

13 (look for a subset B, a present receiver)

14 C ← C ∪ {D(B)};
15 (add the message that receiver B decodes)

16 Define i � D(B), for all i ∈ C;
17 (define order in C)

18 else (receiver C is present)

19 C ← C ∪ {D(C) = x};
20 (add the message that receiver C decodes)

21 Define i � x, for all i ∈ C; (define order in C)

improved Algorithm 1 devised in this paper, in which we
have defined Pm,U,D as a pliable-index-coding problem with
m messages, receivers U, and decoding choice D. If in lines 4–
16 of Algorithm 1, we always choose Option 1 instead of
Option 2, we will retrieve our previous algorithm, which for
brevity we will refer to as Algorithm 2 in this paper. Using
Algorithm 2 on problem P1, the following lower bound has
been shown [6]:

βq(P1) ≥ m −max
D
|S |, (3)

where the maximisation is taken over all possible decoding
choices D of the receivers, and S is the set of skipped messages
obtained from any instance of Algorithm 2 for a specific D.

For Algorithms 1 and 2, we say that the algorithm “hits”
a (present or absent) receiver C if it constructs C upon the
execution of lines 8, 14, or 19.

For P1, there exists D for which Algorithm 2 will always
hit two absent receivers (either H1 and H2, or H1 and H3)
regardless of which messages we skip. This gives a lower bound
βq(P1) ≥ m−2 = 4. To see this, note that receiver ∅ is present.
Let D(∅) = 3. Executing line 19 of the algorithm, we hit
C = {D(∅)} = H1. Since receiver H1 is absent, we execute lines
6–10. Supposing that we skip message 1, we will hit C = {3,1}.
Let D({3,1}) = 2 and D({3,1,2}) = 4. Repeating lines 19–21,
we will hit the second absent receiver H2 = {3,1,2,4}. So, by
defining D in such a way that no matter which message we
choose to skip after hitting H1, the messages to be subsequently
added to C stay within H2 or within H3 (until we hit H2 or
H3 respectively), we will always hit H2 or H3.
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B. Two new ideas

We will explain the new ideas in this paper by juxtaposing
them with Algorithm 2. Since skipping fewer messages gives
a tighter lower bound, we introduce the following new ideas
to skip fewer messages compared to Algorithm 2:
(a) Avoid skipping messages: This is done by using the

subsets of C. Using Algorithm 2, when the algorithm
hits C, and if receiver C is absent, we skip a message.
In Algorithm 1, even if receiver C is absent, if there
exists a receiver B ( C such that D(B) < C, then the
decoding chain can continue by adding D(B) into the
chain C without skipping a message (via Option 2).

(b) Look ahead then skip messages: Instead of arbitrarily
selecting a message a ∈ [1 : m] \ C in Option 1, we
will base our choice of skipped messages on D. More
specifically, we skip a specially chosen message such
that the next absent receiver C to be hit will contain a
receiver B ( C whose decoding choice D(B) < C, and
using idea (a), we need not skip a message. This choice
will be detailed in Section VI.

C. A new lower bound

Using the above-mentioned ideas, we now construct a new
lower bound for P1. Note that for any D, if fewer than two
absent receivers are hit, then |S | ≤ 1, and this can only lead to
the right-hand side of (3) evaluated to 5 or more. So, we only
need to consider scenarios where two absent receivers are hit,
and in this case the first one must be H1.

To work out the appropriate choice of skipped message
upon hitting H1, we look ahead and consider D(H2 ∩ H3) =
D({3,4}) = x. It is necessary that x ∈ Hi \ Hj for some
i, j ∈ {2,3} and i , j. We then skip any message y ∈ Hj \ Hi ,
and update the decoding chain as C ← (C ∪ {y}). As y is in
C now, the only remaining absent receiver that can be hit is
Hj . If Hj is not hit, then the algorithm terminates with |S | = 1;
otherwise, it hits Hj .

When Hj is hit, we can avoid skipping a message by noting
that (i) there is a present receiver H2 ∩ H3 ( Hj , and (ii) it
decodes D(H2 ∩ H3) = x < Hj . The decoding chain continues
and terminates without hitting another absent receiver.

This means for any D, we can always choose S such that
|S | ≤ 1. This gives a lower bound of βq(P1) ≥ 6− 1 = 5. This
bounds can be shown to be tight by using a cyclic code for
achievability.

More generally, we have the following proposition (which
will be proven rigorously later):

Proposition 1: Consider a pliable-index-coding problem
Pm,U, where the set of absent receivers is Uabs = {H1,H2,H3},
such that H1 ( H2 ∩ H3, and H2 ∪ H3 = [1 : m]. We have
βq(Pm,U) = βq(Pm,U) = m − 1.

IV. A NEW AND GENERALISED ALGORITHM

Compared to Algorithm 2, the new Algorithm 1 has Option 2,
which implements the two new ideas in Section III-B. It allows
us to avoid skipping a message even when an absent receiver C
is hit, as long as a suitable present receiver B ( C can be found.

If Option 1 is always selected, we revert back to Algorithm 2
as a special case. Although choosing Option 1 may seem
counter-intuitive, we will see that later that choosing Option 1
simplifies the proof of our results as it avoids evaluating D(B)
required in Option 2.

The sketch of proof for the lower bound (3) for Algorithm 2
is as follows [6]: We started with a bipartite graph GD

that describes Pm,U,D . We showed that for each instance
of Algorithm 2, there is a series of pruning operations on
GD that yield an acyclic graph G′D with m − |S | remaining
messages. The graph GD is acyclic because, by construction,
all directed edges flow from message nodes that are larger to
message nodes that are smaller with respect to the order �.
As m − |S | is a lower bound on Pm,U,D [7, Lem. 1], and that
βq(Pm,U) = minD βq(Pm,U,D), we have (3).

We now show that the lower bound (3) is still valid using
Algorithm 1. Algorithm 1 differs from Algorithm 2 by having
Option 2. Using Option 2 on a present receiver B, this receiver
is preserved (that is, not removed during the pruning operation)
in the graph GD . With this additional receiver not removed
(compared to Algorithm 2), there are additional directed edges
flowing from the a larger message node to smaller message
nodes with respect to the order �, that is, from the message
node D(B) to message nodes {x ∈ B} through the receiver
node B. Clearly, all additional edges retained due to Option 2
in Algorithm 1 do not create any directed cycle. Hence, the
proof for the lower bound (3) for Algorithm 2 can be modified
accordingly to give the following:

Lemma 1: Consider a pliable-index-coding problem Pm,U.
For a specific D, let S be the set of skipped messages for an
instance of Algorithm 1. Then,

βq(Pm,U) ≥ m −max
D
|S |. (4)

The lower bound is obtained by maximising |S | over all
decoding choices D. By optimising the choice of skipped
messages for each D such that the minimum number of
messages is skipped, we obtain the following lower bound:

βq(Pm,U) ≥ m −max
D

min
S
|S | = m − L∗, (5)

where we define
L∗ := max

D
min
S
|S |. (6)

Remark 1: For any given D, although any instance of
Algorithm 1 gives a lower bound for βq(Pm,U,D), skipping as
few messages as possible gives tighter lower bounds.

Intuitively, Algorithm 1 says that the construction of decod-
ing chain C can continue even if receiver C is absent, because
if receiver B ( C can decode D(B) < C, then knowing C, one
is able to obtain D(B) to extend the decoding chain.

Before formally deriving the second idea of “look ahead
and skip” in Section VI, in the next section, we first improve
upon an existing lower bound that can be obtained by simply
looking at how the absent receivers are nested, that is, without
needing an algorithm that constructs decoding chains.
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Fig. 1: Pliable-index-coding problem P2 for Example 1

V. AN IMPROVED NESTED-CHAIN LOWER BOUND

From (5), we see that any upper bound on L∗ provides a
lower bound on βq . For instance, see lower bound (2), where
L∗ ≤ Lmax. The lower bound based on Lmax may be loose,
because we may be able to skip certain messages to avoid
hitting some absent receivers in the longest chain. In this paper,
we will prove a better∗ lower bound based on this idea. We
now prove the following theorem:

Theorem 1: L∗ ≤ L − 1 if the following condition holds:
For every chain of absent receivers of length at least L, say,
H1 ( · · · ( HL′ for some L ′ ≥ L, where Hi ∈ Uabs, there
exists Hk ∪ {a} (for some k ∈ [1 : L−1] and for some a < Hk)
such that there is no chain of absent receivers of length L − k
where (Hk ∪ {a}) ⊆ H ′1 ( · · · ( H ′L−k

absent-receiver chain

, with H ′i ∈ Uabs.

Proof of Theorem 1: Recall that each instance of
Algorithm 1 (or Algorithm 2) returns a decoding chain
C = {c1, c2, . . . , cm}, in the order ci � cj iff i ≤ j, and a
set of skipped messages S ⊆ C.

Let ci by the kth skipped message. This means the algorithm
must have hit an absent receiver H ∈ Uabs, where

H =

{
∅, if i = 1,
{c1, . . . , ci−1}, otherwise (i.e., i ∈ [2 : m]). (7)

Suppose that ` is the maximum number of absent receivers
that can form a chain (H ∪ {ci}) ⊆ H ′1 ( H ′2 ( · · · ( H ′` ,
with each H ′i ∈ Uabs. Then, at most ` more absent receivers
can be hit. Consequently, the algorithm must terminate with
|S | ≤ k + `.

Now, for all nested receiver chains of length L or larger,
suppose that the condition stated in the theorem is true, we
can always skip message a after hitting Hk , such that |S | <
k + (L − k). As |S | is an integer, |S | ≤ L − 1. Since this is true
for all nested receiver chains of length L or larger, we can
always avoid skipping L messages, giving L∗ ≤ L − 1.

We will show the utility of Theorem 1 using an example:
Example 1: Consider P2 with five messages and four absent

receivers H1 = {1,2},H2 = {1,2,4},H3 = {1,3}, and H4 =
{1,3,5}, as depicted in Figure 1. The length of the longest
nested absent-receiver chain is 2. Our previous lower bound
gives βq ≥ 3 (see (2)). Now, we invoke Theorem 1, and
consider all chains of length L ≥ 2, which are H1 ( H2 and
H3 ( H4.
• When H1 is hit, we skip message 3. {1,2,3} is not

contained in any absent receiver.

∗The new lower bound is strictly better for certain problems.

• When H3 is hit, we skip message 4. {1,3,4} is not
contained in any absent receiver.

So, we have L∗ ≤ 1. Noting (6) and (5), we get βq ≥ 5 −
1 = 4. This lower bound can be achieved by the code (X3 +
X5, X1, X2, X4).

While this new nested-chain lower bound improved on our
previous longest-chain lower bound, it is still insufficient to
solve P1 described in Section III. To solve P1, we will use the
“look ahead and skip” technique detailed in the next section.

VI. SKIPPING MESSAGES WITH LOOK AHEAD

In this section, when we hit an absent receiver H, we will
propose a method to skip a message in such a way to guarantee
that we will subsequently not need to skip any message when
we hit any absent receiver from a special subset, say A, of
absent receivers. This method is used in conjunction with
Algorithm 1. Note that due to the algorithm, all members in
A must be strict supersets of H. We now show a class of A:

Theorem 2: Let H ∈ Uabs by an absent receiver, and A ⊆
Uabs \ {H} be a subset of absent receivers that belongs to any
of the following cases, where H ( H ′ for all H ′ ∈ A. Running
Algorithms 1, suppose that H is hit. We can always choose to
skip a message such that, if any H ′ ∈ A is hit subsequently,
we can avoid skipping a message.

1)
⋃

H′∈A H ′ , [1 : m].
2) A is a minimal cover† of [1 : m], T :=

⋂
H′∈A H ′ ) H,

and T ∈ U.
3) A is a minimal cover of [1 : m], and

⋂
H′∈A H ′ = H;

furthermore, there exist‡ H1,H2 ∈ A such that T := H1 ∩
H2 ) H and T ∈ U.
Proof of Theorem 2: For case 1, by skipping any a ∈ [1 :

m] \ (⋃H′∈A H ′), we will not hit any absent receiver in A.
For case 2, we look ahead and check D(T). Since receiver T

is present, D(T) is defined. As T :=
⋂

H′∈A H ′ and D(T) <⋂
H′∈A H ′, there must exist an absent receiver H1 ∈ A that

does not contain D(T). As A is a minimal cover, there exists
some a ∈ H1 that is not in all other sets in A, that is, a <⋃

H′∈A\{H1 } H ′. We choose to skip a, and by doing so, we
will never hit any receiver in A \ {H1}. If we hit H1, we can
choose Option 2 in the algorithm without needing to skip any
message, since T ⊆ H1 and D(T) < H1.

For case 3, we look ahead and check D(T). As receiver T
is present, D(T) is defined. D(T) < T = H1 ∩ H2. Without loss
of generality, suppose D(T) < H1. When we follow the same
argument for case 2 by skipping some a ∈ H1 that is not in all
other sets in A. By doing so, will can always avoid skipping a
message due to hitting H1.

VII. APPLICATIONS OF RESULTS

A. Optimal rates for the slightly imperfect L-nested setting

We have previously defined a class of pliable-index-coding
problems as follows [6]:

†A family of sets A = {A` : ` ∈ L } is a minimal cover of B iff
⋃

`∈L A` =
B, and for any strict subset L′ ( L,

⋃
`∈L′ A` ( B.

‡If this is false, A ∪ {H } forms 1-truncated L-nested absent receivers,
which we will define in Definition 2 later.
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P0
<latexit sha1_base64="2783e/O+QIdDInOZDN7/EKfVaHQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lqQY8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD82BOyhX3Kq7AFknXk4qkKM5KH/1hzFLI66QSWpMz3MT9DOqUTDJZ6V+anhC2YSOeM9SRSNu/Gxx6oxcWGVIwljbUkgW6u+JjEbGTKPAdkYUx2bVm4v/eb0Uwxs/EypJkSu2XBSmkmBM5n+TodCcoZxaQpkW9lbCxlRThjadkg3BW315nbRrVe+qWruvVxr1PI4inME5XIIH19CAO2hCCxiM4Ble4c2Rzovz7nwsWwtOPnMKf+B8/gDKRY1t</latexit>

P0 [ P1
<latexit sha1_base64="vS5OJwmv6yhlLUNsX5drTIUs6os=">AAAB8nicbVBNS8NAEN34WetX1aOXxSJ4Kkkt6LHgxWME+wFpCJvtpl262Q27E6GE/gwvHhTx6q/x5r9x2+agrQ8GHu/NMDMvzgQ34Lrfzsbm1vbObmWvun9weHRcOzntGpVryjpUCaX7MTFMcMk6wEGwfqYZSWPBevHkbu73npg2XMlHmGYsTMlI8oRTAlYK/Mgd0DzDfuRFtbrbcBfA68QrSR2V8KPa12CoaJ4yCVQQYwLPzSAsiAZOBZtVB7lhGaETMmKBpZKkzITF4uQZvrTKECdK25KAF+rviYKkxkzT2HamBMZm1ZuL/3lBDsltWHCZ5cAkXS5KcoFB4fn/eMg1oyCmlhCqub0V0zHRhIJNqWpD8FZfXifdZsO7bjQfWvV2q4yjgs7RBbpCHrpBbXSPfNRBFCn0jF7RmwPOi/PufCxbN5xy5gz9gfP5AwPdkGE=</latexit>

H{2} ( P0 [ P2
<latexit sha1_base64="P0U31Ib6hAfpBLfJCg5v8ysNXJg=">AAACCHicbVDLSsNAFJ3UV62vqksXDhbBVUlqQZcFN11WsA9oQphMb9qhk0mcmQglZOnGX3HjQhG3foI7/8bpY6GtBy73cM69zNwTJJwpbdvfVmFtfWNzq7hd2tnd2z8oHx51VJxKCm0a81j2AqKAMwFtzTSHXiKBRAGHbjC+mfrdB5CKxeJOTxLwIjIULGSUaCP55dOmn7lZzc1zV6WBAi3gHrd826VpYnrNL1fsqj0DXiXOglTQAi2//OUOYppGIDTlRKm+Yyfay4jUjHLIS26qICF0TIbQN1SQCJSXzQ7J8blRBjiMpSmh8Uz9vZGRSKlJFJjJiOiRWvam4n9eP9XhtZcxkaQaBJ0/FKYc6xhPU8EDJoFqPjGEUMnMXzEdEUmoNtmVTAjO8smrpFOrOpfV2m290qgv4iiiE3SGLpCDrlADNVELtRFFj+gZvaI368l6sd6tj/lowVrsHKM/sD5/AOeemTI=</latexit>

P0 [ P3
<latexit sha1_base64="lP/F8eTpCzE/JUAZg8zpGVpatx4=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBU0nagh4LXjxGsB/QhrDZbtqlm92wuxFK6M/w4kERr/4ab/4bt20O2vpg4PHeDDPzopQzbVz32yltbe/s7pX3KweHR8cn1dOzrpaZIrRDJJeqH2FNORO0Y5jhtJ8qipOI0140vVv4vSeqNJPi0cxSGiR4LFjMCDZWGvihOyRZivywGVZrbt1dAm0SryA1KOCH1a/hSJIsocIQjrUeeG5qghwrwwin88ow0zTFZIrHdGCpwAnVQb48eY6urDJCsVS2hEFL9fdEjhOtZ0lkOxNsJnrdW4j/eYPMxLdBzkSaGSrIalGccWQkWvyPRkxRYvjMEkwUs7ciMsEKE2NTqtgQvPWXN0m3Ufea9cZDq9ZuFXGU4QIu4Ro8uIE23IMPHSAg4Rle4c0xzovz7nysWktOMXMOf+B8/gAG5ZBj</latexit>

P0 [ P1 [ P2
<latexit sha1_base64="HDkHas+W310DKlevIux4jAX0Bac=">AAAB/HicbVDLSsNAFL3xWesr2qWbwSK4Kkkt6LLgxmUE+4A2hMl00g6dTMLMRAih/oobF4q49UPc+TdO2yy09cDlHs65l7lzwpQzpR3n29rY3Nre2a3sVfcPDo+O7ZPTrkoySWiHJDyR/RArypmgHc00p/1UUhyHnPbC6e3c7z1SqVgiHnSeUj/GY8EiRrA2UmDXvMAZkixFXuCWvRnYdafhLIDWiVuSOpTwAvtrOEpIFlOhCcdKDVwn1X6BpWaE01l1mCmaYjLFYzowVOCYKr9YHD9DF0YZoSiRpoRGC/X3RoFjpfI4NJMx1hO16s3F/7xBpqMbv2AizTQVZPlQlHGkEzRPAo2YpETz3BBMJDO3IjLBEhNt8qqaENzVL6+TbrPhXjWa9616u1XGUYEzOIdLcOEa2nAHHnSAQA7P8Apv1pP1Yr1bH8vRDavcqcEfWJ8/zLuThw==</latexit>

P0 [ P1 [ P3
<latexit sha1_base64="nJrynGZS/1Ev6b9w8kGHEsvQNZE=">AAAB/HicbVDLSsNAFL2pr1pf0S7dDBbBVUnagi4LblxGsA9oQ5hMJ+3QySTMTIRQ6q+4caGIWz/EnX/jtM1CWw9c7uGce5k7J0w5U9pxvq3S1vbO7l55v3JweHR8Yp+edVWSSUI7JOGJ7IdYUc4E7WimOe2nkuI45LQXTm8Xfu+RSsUS8aDzlPoxHgsWMYK1kQK76gXOkGQp8gK36M3Arjl1Zwm0SdyC1KCAF9hfw1FCspgKTThWauA6qfZnWGpGOJ1XhpmiKSZTPKYDQwWOqfJny+Pn6NIoIxQl0pTQaKn+3pjhWKk8Ds1kjPVErXsL8T9vkOnoxp8xkWaaCrJ6KMo40glaJIFGTFKieW4IJpKZWxGZYImJNnlVTAju+pc3SbdRd5v1xn2r1m4VcZThHC7gCly4hjbcgQcdIJDDM7zCm/VkvVjv1sdqtGQVO1X4A+vzB84/k4g=</latexit>

P0 [ P2 [ P3
<latexit sha1_base64="XxISOVSaV+a+bmOcCBb8rg6KhPc=">AAAB/HicbVDLSsNAFL2pr1pf0S7dDBbBVUnagi4LblxGsA9oQ5hMp+3QySTMTIQQ6q+4caGIWz/EnX/jtM1CWw9c7uGce5k7J0w4U9pxvq3S1vbO7l55v3JweHR8Yp+edVWcSkI7JOax7IdYUc4E7WimOe0nkuIo5LQXzm4Xfu+RSsVi8aCzhPoRngg2ZgRrIwV21QucIUkT5AWNojcDu+bUnSXQJnELUoMCXmB/DUcxSSMqNOFYqYHrJNrPsdSMcDqvDFNFE0xmeEIHhgocUeXny+Pn6NIoIzSOpSmh0VL9vZHjSKksCs1khPVUrXsL8T9vkOrxjZ8zkaSaCrJ6aJxypGO0SAKNmKRE88wQTCQztyIyxRITbfKqmBDc9S9vkm6j7jbrjftWrd0q4ijDOVzAFbhwDW24Aw86QCCDZ3iFN+vJerHerY/VaMkqdqrwB9bnD8/Lk4k=</latexit>

⇥<latexit sha1_base64="P0YznAaoZOUtHSY7N8aJ2+fZjNM=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoCcpePFYwX5AG8pmu2nXbjZhdyKU0P/gxYMiXv0/3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrB5wk3I/oUIlQMIpWavVQRNz0yxW36s5BVomXkwrkaPTLX71BzNKIK2SSGtP13AT9jGoUTPJpqZcanlA2pkPetVRRu8TP5tdOyZlVBiSMtS2FZK7+nshoZMwkCmxnRHFklr2Z+J/XTTG89jOhkhS5YotFYSoJxmT2OhkIzRnKiSWUaWFvJWxENWVoAyrZELzll1dJq1b1Lqq1+8tK/SaPowgncArn4MEV1OEOGtAEBo/wDK/w5sTOi/PufCxaC04+cwx/4Hz+ALZFjzQ=</latexit>

Messages
<latexit sha1_base64="LMfM5peM0VIRjUriaLC6yqgIKsk=">AAAB73icbVA9SwNBEJ2LXzF+RS1tFoNgFe5ioWXAxkaIYD4gOcLeZi5Zsrd32d0TwpE/YWOhiK1/x85/4ya5QhMfLDzem5mdeUEiuDau++0UNja3tneKu6W9/YPDo/LxSUvHqWLYZLGIVSegGgWX2DTcCOwkCmkUCGwH49u5335CpXksH800QT+iQ8lDzqixUucetaZD1P1yxa26C5B14uWkAjka/fJXbxCzNEJpmKBadz03MX5GleFM4KzUSzUmlI3t8K6lkkao/Wyx74xcWGVAwljZJw1ZqL87MhppPY0CWxlRM9Kr3lz8z+umJrzxMy6T1KBky4/CVBATk/nxZMAVMiOmllCmuN2VsBFVlBkbUcmG4K2evE5atap3Va091Cp1N4+jCGdwDpfgwTXU4Q4a0AQGAp7hFd6cifPivDsfy9KCk/ecwh84nz8aF4/y</latexit>

Message Partitions
<latexit sha1_base64="YykIhY4Mpsv8SYUHuNBPnaa1/IY=">AAAB+3icbVDLSgNBEOyNrxhfazx6GQyCp7AbD3oMePEiRDAPSJYwO+lNhsw+mJkVw5Jf8eJBEa/+iDf/xtlkD5rYMFBUdXVPl58IrrTjfFuljc2t7Z3ybmVv/+DwyD6udlScSoZtFotY9nyqUPAI25prgb1EIg19gV1/epPr3UeUisfRg54l6IV0HPGAM6oNNbSrd6gUHSNpUWnshlNDu+bUnUWRdeAWoAZFtYb212AUszTESDNBleq7TqK9LB/IBM4rg1RhQtnUrOkbGNEQlZct/j4n54YZkSCW5kWaLNjfjoyGSs1C33SGVE/UqpaT/2n9VAfXXsajJNUYseWiIBVExyQPgoy4RKbFzADKpDmdETahkjJt4qqYENzVk9dBp1F3L+uN+0at6RRxlOEUzuACXLiCJtxCC9rA4Ame4RXerLn1Yr1bH8vWklV4TuBPWZ8/CduUYQ==</latexit>

Absent
Receivers

<latexit sha1_base64="1MFpldOmxPDZFRq7l7L5d2b/B5s=">AAACBnicbVC7TsMwFHXKq4RXgBEhWVRITFVSBhiLWBgLog+piSrHvWmtOk5kO0hV1YmFX2FhACFWvoGNv8FpM0DLkSwdnXOP7XvClDOlXffbKq2srq1vlDftre2d3T1n/6ClkkxSaNKEJ7ITEgWcCWhqpjl0UgkkDjm0w9F17rcfQCqWiHs9TiGIyUCwiFGijdRzjn0KQoNkYmBfhcpw37fvgALLUz2n4lbdGfAy8QpSQQUaPefL7yc0i809lBOlup6b6mBCpGaUw9T2MwUpoSMygK6hgsSggslsjSk+NUofR4k0R2g8U38nJiRWahyHZjImeqgWvVz8z+tmOroMJkykmQZB5w9FGcc6wXknuM8kUM3HhhAqmfkrpkMiCTXFKNuU4C2uvExatap3Xq3d1ip1t6ijjI7QCTpDHrpAdXSDGqiJKHpEz+gVvVlP1ov1bn3MR0tWkTlEf2B9/gDYIZip</latexit>

|
{z

}
<latexit sha1_base64="pXFm1Eq+w+W3Frd22RRo1OaEaXw=">AAACFHicdVDLSsNAFJ34rPUVdekmWAVBKEkVdFlw47KCfUATymRy2w6dTNJ5CCX0I9z4K25cKOLWhTv/xmmbhbZ64F4O59zLzD1hyqhUrvtlLS2vrK6tFzaKm1vbO7v23n5DJloQqJOEJaIVYgmMcqgrqhi0UgE4Dhk0w8H1xG/eg5A04XdqlEIQ4x6nXUqwMlLHPvM1j0CEAhPI/OFQ4+i/Pu7YJbfsTuEsEi8nJZSj1rE//SghOgauCMNStj03VUGGhaKEwbjoawkpJgPcg7ahHMcgg2x61Ng5MUrkdBNhiitnqv7cyHAs5SgOzWSMVV/OexPxL6+tVfcqyChPtQJOZg91NXNU4kwSciIqgCg2MgQTQc1fHdLHJiBlciyaELz5kxdJo1L2zsuV24tS9TiPo4AO0RE6RR66RFV0g2qojgh6QE/oBb1aj9az9Wa9z0aXrHznAP2C9fENHySgBg==</latexit>

z }| {
<latexit sha1_base64="JJI+vJh6sPaEHaAGXgiblHGWTiU=">AAACAXicbVDLSsNAFL2pr1pfUTeCm2AVXJWkCrosuHFZwT6gDWUymbRDJzPpzEQooW78FTcuFHHrX7jzb5y2WWjrgXs5nHMvM/cECaNKu+63VVhZXVvfKG6WtrZ3dvfs/YOmEqnEpIEFE7IdIEUY5aShqWaknUiC4oCRVjC8mfqtByIVFfxejxPix6jPaUQx0kbq2UddYexAIkyy7miUonDeJz277FbcGZxl4uWkDDnqPfurGwqcxoRrzJBSHc9NtJ8hqSlmZFLqpookCA9Rn3QM5Sgmys9mF0ycM6OETiSkKa6dmfp7I0OxUuM4MJMx0gO16E3F/7xOqqNrP6M8STXheP5QlDJHC2cahxNSSbBmY0MQltT81cEDZOLQJrSSCcFbPHmZNKsV76JSvbss107zOIpwDCdwDh5cQQ1uoQ4NwPAIz/AKb9aT9WK9Wx/z0YKV7xzCH1ifP4p+l34=</latexit>

z }| {
<latexit sha1_base64="JJI+vJh6sPaEHaAGXgiblHGWTiU=">AAACAXicbVDLSsNAFL2pr1pfUTeCm2AVXJWkCrosuHFZwT6gDWUymbRDJzPpzEQooW78FTcuFHHrX7jzb5y2WWjrgXs5nHMvM/cECaNKu+63VVhZXVvfKG6WtrZ3dvfs/YOmEqnEpIEFE7IdIEUY5aShqWaknUiC4oCRVjC8mfqtByIVFfxejxPix6jPaUQx0kbq2UddYexAIkyy7miUonDeJz277FbcGZxl4uWkDDnqPfurGwqcxoRrzJBSHc9NtJ8hqSlmZFLqpookCA9Rn3QM5Sgmys9mF0ycM6OETiSkKa6dmfp7I0OxUuM4MJMx0gO16E3F/7xOqqNrP6M8STXheP5QlDJHC2cahxNSSbBmY0MQltT81cEDZOLQJrSSCcFbPHmZNKsV76JSvbss107zOIpwDCdwDh5cQQ1uoQ4NwPAIz/AKb9aT9WK9Wx/z0YKV7xzCH1ifP4p+l34=</latexit>

z }| {
<latexit sha1_base64="JJI+vJh6sPaEHaAGXgiblHGWTiU=">AAACAXicbVDLSsNAFL2pr1pfUTeCm2AVXJWkCrosuHFZwT6gDWUymbRDJzPpzEQooW78FTcuFHHrX7jzb5y2WWjrgXs5nHMvM/cECaNKu+63VVhZXVvfKG6WtrZ3dvfs/YOmEqnEpIEFE7IdIEUY5aShqWaknUiC4oCRVjC8mfqtByIVFfxejxPix6jPaUQx0kbq2UddYexAIkyy7miUonDeJz277FbcGZxl4uWkDDnqPfurGwqcxoRrzJBSHc9NtJ8hqSlmZFLqpookCA9Rn3QM5Sgmys9mF0ycM6OETiSkKa6dmfp7I0OxUuM4MJMx0gO16E3F/7xOqqNrP6M8STXheP5QlDJHC2cahxNSSbBmY0MQltT81cEDZOLQJrSSCcFbPHmZNKsV76JSvbss107zOIpwDCdwDh5cQQ1uoQ4NwPAIz/AKb9aT9WK9Wx/z0YKV7xzCH1ifP4p+l34=</latexit>

P0
<latexit sha1_base64="2783e/O+QIdDInOZDN7/EKfVaHQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lqQY8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD82BOyhX3Kq7AFknXk4qkKM5KH/1hzFLI66QSWpMz3MT9DOqUTDJZ6V+anhC2YSOeM9SRSNu/Gxx6oxcWGVIwljbUkgW6u+JjEbGTKPAdkYUx2bVm4v/eb0Uwxs/EypJkSu2XBSmkmBM5n+TodCcoZxaQpkW9lbCxlRThjadkg3BW315nbRrVe+qWruvVxr1PI4inME5XIIH19CAO2hCCxiM4Ble4c2Rzovz7nwsWwtOPnMKf+B8/gDKRY1t</latexit>

P1
<latexit sha1_base64="Aqxz17B7SqhajItYkfoen3MuyCA=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lqQY8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD82BNyhX3Kq7AFknXk4qkKM5KH/1hzFLI66QSWpMz3MT9DOqUTDJZ6V+anhC2YSOeM9SRSNu/Gxx6oxcWGVIwljbUkgW6u+JjEbGTKPAdkYUx2bVm4v/eb0Uwxs/EypJkSu2XBSmkmBM5n+TodCcoZxaQpkW9lbCxlRThjadkg3BW315nbRrVe+qWruvVxr1PI4inME5XIIH19CAO2hCCxiM4Ble4c2Rzovz7nwsWwtOPnMKf+B8/gDLyY1u</latexit>

P2
<latexit sha1_base64="5lm7T/X4oAoXwNeHXdn1LnO5Ut0=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lqQY8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD81BbVCuuFV3AbJOvJxUIEdzUP7qD2OWRlwhk9SYnucm6GdUo2CSz0r91PCEsgkd8Z6likbc+Nni1Bm5sMqQhLG2pZAs1N8TGY2MmUaB7Ywojs2qNxf/83ophjd+JlSSIldsuShMJcGYzP8mQ6E5Qzm1hDIt7K2EjammDG06JRuCt/ryOmnXqt5VtXZfrzTqeRxFOINzuAQPrqEBd9CEFjAYwTO8wpsjnRfn3flYthacfOYU/sD5/AHNTY1v</latexit>

P3
<latexit sha1_base64="JyIVHohh37UjwvfC0a04Jyog2HA=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0nagh4LXjxWtLXQhrLZbtqlm03YnQgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgobm1vbO8Xd0t7+weFR+fikY+JUM95msYx1N6CGS6F4GwVK3k00p1Eg+WMwuZn7j09cGxGrB5wm3I/oSIlQMIpWum8N6oNyxa26C5B14uWkAjlag/JXfxizNOIKmaTG9Dw3QT+jGgWTfFbqp4YnlE3oiPcsVTTixs8Wp87IhVWGJIy1LYVkof6eyGhkzDQKbGdEcWxWvbn4n9dLMbz2M6GSFLliy0VhKgnGZP43GQrNGcqpJZRpYW8lbEw1ZWjTKdkQvNWX10mnVvXq1dpdo9Js5HEU4QzO4RI8uIIm3EIL2sBgBM/wCm+OdF6cd+dj2Vpw8plT+APn8wfO0Y1w</latexit>z }| {

<latexit sha1_base64="JJI+vJh6sPaEHaAGXgiblHGWTiU=">AAACAXicbVDLSsNAFL2pr1pfUTeCm2AVXJWkCrosuHFZwT6gDWUymbRDJzPpzEQooW78FTcuFHHrX7jzb5y2WWjrgXs5nHMvM/cECaNKu+63VVhZXVvfKG6WtrZ3dvfs/YOmEqnEpIEFE7IdIEUY5aShqWaknUiC4oCRVjC8mfqtByIVFfxejxPix6jPaUQx0kbq2UddYexAIkyy7miUonDeJz277FbcGZxl4uWkDDnqPfurGwqcxoRrzJBSHc9NtJ8hqSlmZFLqpookCA9Rn3QM5Sgmys9mF0ycM6OETiSkKa6dmfp7I0OxUuM4MJMx0gO16E3F/7xOqqNrP6M8STXheP5QlDJHC2cahxNSSbBmY0MQltT81cEDZOLQJrSSCcFbPHmZNKsV76JSvbss107zOIpwDCdwDh5cQQ1uoQ4NwPAIz/AKb9aT9WK9Wx/z0YKV7xzCH1ifP4p+l34=</latexit>

Fig. 2: Slightly imperfect 3-nested absent receivers, formed
by shrinking the side-information set of one receiver among
perfect 3-nested absent receivers.

Definition 1: A pliable-index-coding problem is said to have
perfect L-nested absent receivers iff the messages [1 : m] can
be partitioned into L + 1 ∈ [2 : m] subsets P0,P1, . . . ,PL (that
is,

⋃L
i=0 Pi = [1 : m] and Pi ∩ Pj = ∅ for all i , j), such that

only P0 can be an empty set, and there are exactly 2L − 1
absent receivers, which are defined as

HQ := P0 ∪
(⋃

i∈Q Pi

)
, for each Q ( [1 : L]. (8)

For any pliable-index-coding problem Pm,U with perfect
L-nested absent receivers, βq(Pm,U) = m − L [6].

With Theorem 2, we can determine the optimal rate of
problems deviating from the perfect L-nested setting. We now
prove the optimal rate for pliable-index-coding problems with
slightly imperfect L-nested absent receivers. Figure 2 depicts
a example of slightly imperfect 3-nested absent receivers.

Theorem 3: Consider a pliable-index-coding problem Pm,U

that comprises perfect L-nested absent receivers with the
following change: one absent receiver HQ = P0 ∪

(⋃
i∈Q Pi

)
,

for some Q ( [1 : L], is changed to the absent receiver
HQ ( P0 ∪

(⋃
i∈Q Pi

)
. Then, βq(Pm,U) = m − L + 1.

Proof of Thm 3: See the extended version of this paper [8].
We can now prove Proposition 1 that we stated earlier.

Proof of Proposition 1: Pm,U is formed by having perfect
2-nested absent receivers with P0 = H2 ∩ H3, P1 = H2 \ H3,
P2 = H3 \ H2, and then replacing absent receiver P0 with
H1 ( P0. Using Theorem 3, we have βq(Pm,U) = m − 1.

B. Optimal rates for T-truncated L-nested absent receivers

We define another variation of perfect L-nested absent
receivers.

Definition 2: A pliable-index-coding problem is said to have
T-truncated L-nested absent receivers iff the messages [1 : m]
can be partitioned into L + 1 ∈ [2 : m] subsets P0,P1, . . . ,PL

(that is,
⋃L

i=0 Pi = [1 : m] and Pi ∩ Pj = ∅ for all i , j), such
that only P0 can be an empty set, and there are

∑T
i=0

(L
i

)
absent

receivers, which are defined as

HQ = P0 ∪
(⋃

i∈Q Pi

)
, ∀Q ( [1 : L], with |Q | ∈ [0 : T], (9)

for some T ∈ [0 : L − 1].
Note that (L − 1)-truncated L-nested absent receivers are

equivalent to perfect L-nested absent receivers. Figure 3 depicts
an example of 1-truncated 3-nested absent receivers.

P0
<latexit sha1_base64="2783e/O+QIdDInOZDN7/EKfVaHQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lqQY8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD82BOyhX3Kq7AFknXk4qkKM5KH/1hzFLI66QSWpMz3MT9DOqUTDJZ6V+anhC2YSOeM9SRSNu/Gxx6oxcWGVIwljbUkgW6u+JjEbGTKPAdkYUx2bVm4v/eb0Uwxs/EypJkSu2XBSmkmBM5n+TodCcoZxaQpkW9lbCxlRThjadkg3BW315nbRrVe+qWruvVxr1PI4inME5XIIH19CAO2hCCxiM4Ble4c2Rzovz7nwsWwtOPnMKf+B8/gDKRY1t</latexit>

P0 [ P1
<latexit sha1_base64="vS5OJwmv6yhlLUNsX5drTIUs6os=">AAAB8nicbVBNS8NAEN34WetX1aOXxSJ4Kkkt6LHgxWME+wFpCJvtpl262Q27E6GE/gwvHhTx6q/x5r9x2+agrQ8GHu/NMDMvzgQ34Lrfzsbm1vbObmWvun9weHRcOzntGpVryjpUCaX7MTFMcMk6wEGwfqYZSWPBevHkbu73npg2XMlHmGYsTMlI8oRTAlYK/Mgd0DzDfuRFtbrbcBfA68QrSR2V8KPa12CoaJ4yCVQQYwLPzSAsiAZOBZtVB7lhGaETMmKBpZKkzITF4uQZvrTKECdK25KAF+rviYKkxkzT2HamBMZm1ZuL/3lBDsltWHCZ5cAkXS5KcoFB4fn/eMg1oyCmlhCqub0V0zHRhIJNqWpD8FZfXifdZsO7bjQfWvV2q4yjgs7RBbpCHrpBbXSPfNRBFCn0jF7RmwPOi/PufCxbN5xy5gz9gfP5AwPdkGE=</latexit>

P0 [ P3
<latexit sha1_base64="lP/F8eTpCzE/JUAZg8zpGVpatx4=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBU0nagh4LXjxGsB/QhrDZbtqlm92wuxFK6M/w4kERr/4ab/4bt20O2vpg4PHeDDPzopQzbVz32yltbe/s7pX3KweHR8cn1dOzrpaZIrRDJJeqH2FNORO0Y5jhtJ8qipOI0140vVv4vSeqNJPi0cxSGiR4LFjMCDZWGvihOyRZivywGVZrbt1dAm0SryA1KOCH1a/hSJIsocIQjrUeeG5qghwrwwin88ow0zTFZIrHdGCpwAnVQb48eY6urDJCsVS2hEFL9fdEjhOtZ0lkOxNsJnrdW4j/eYPMxLdBzkSaGSrIalGccWQkWvyPRkxRYvjMEkwUs7ciMsEKE2NTqtgQvPWXN0m3Ufea9cZDq9ZuFXGU4QIu4Ro8uIE23IMPHSAg4Rle4c0xzovz7nysWktOMXMOf+B8/gAG5ZBj</latexit>

P0 [ P2
<latexit sha1_base64="K+FEZSbN39mCwdLCGczcecp23rc=">AAAB8nicbVBNS8NAEN34WetX1aOXxSJ4Kkkt6LHgxWME+wFpCJvtpl262Q27E6GE/gwvHhTx6q/x5r9x2+agrQ8GHu/NMDMvzgQ34Lrfzsbm1vbObmWvun9weHRcOzntGpVryjpUCaX7MTFMcMk6wEGwfqYZSWPBevHkbu73npg2XMlHmGYsTMlI8oRTAlYK/Mgd0DzDftSManW34S6A14lXkjoq4Ue1r8FQ0TxlEqggxgSem0FYEA2cCjarDnLDMkInZMQCSyVJmQmLxckzfGmVIU6UtiUBL9TfEwVJjZmmse1MCYzNqjcX//OCHJLbsOAyy4FJulyU5AKDwvP/8ZBrRkFMLSFUc3srpmOiCQWbUtWG4K2+vE66zYZ33Wg+tOrtVhlHBZ2jC3SFPHSD2uge+aiDKFLoGb2iNwecF+fd+Vi2bjjlzBn6A+fzBwVhkGI=</latexit>

Messages
<latexit sha1_base64="LMfM5peM0VIRjUriaLC6yqgIKsk=">AAAB73icbVA9SwNBEJ2LXzF+RS1tFoNgFe5ioWXAxkaIYD4gOcLeZi5Zsrd32d0TwpE/YWOhiK1/x85/4ya5QhMfLDzem5mdeUEiuDau++0UNja3tneKu6W9/YPDo/LxSUvHqWLYZLGIVSegGgWX2DTcCOwkCmkUCGwH49u5335CpXksH800QT+iQ8lDzqixUucetaZD1P1yxa26C5B14uWkAjka/fJXbxCzNEJpmKBadz03MX5GleFM4KzUSzUmlI3t8K6lkkao/Wyx74xcWGVAwljZJw1ZqL87MhppPY0CWxlRM9Kr3lz8z+umJrzxMy6T1KBky4/CVBATk/nxZMAVMiOmllCmuN2VsBFVlBkbUcmG4K2evE5atap3Va091Cp1N4+jCGdwDpfgwTXU4Q4a0AQGAp7hFd6cifPivDsfy9KCk/ecwh84nz8aF4/y</latexit>

Message Partitions
<latexit sha1_base64="YykIhY4Mpsv8SYUHuNBPnaa1/IY=">AAAB+3icbVDLSgNBEOyNrxhfazx6GQyCp7AbD3oMePEiRDAPSJYwO+lNhsw+mJkVw5Jf8eJBEa/+iDf/xtlkD5rYMFBUdXVPl58IrrTjfFuljc2t7Z3ybmVv/+DwyD6udlScSoZtFotY9nyqUPAI25prgb1EIg19gV1/epPr3UeUisfRg54l6IV0HPGAM6oNNbSrd6gUHSNpUWnshlNDu+bUnUWRdeAWoAZFtYb212AUszTESDNBleq7TqK9LB/IBM4rg1RhQtnUrOkbGNEQlZct/j4n54YZkSCW5kWaLNjfjoyGSs1C33SGVE/UqpaT/2n9VAfXXsajJNUYseWiIBVExyQPgoy4RKbFzADKpDmdETahkjJt4qqYENzVk9dBp1F3L+uN+0at6RRxlOEUzuACXLiCJtxCC9rA4Ame4RXerLn1Yr1bH8vWklV4TuBPWZ8/CduUYQ==</latexit>

Absent
Receivers

<latexit sha1_base64="1MFpldOmxPDZFRq7l7L5d2b/B5s=">AAACBnicbVC7TsMwFHXKq4RXgBEhWVRITFVSBhiLWBgLog+piSrHvWmtOk5kO0hV1YmFX2FhACFWvoGNv8FpM0DLkSwdnXOP7XvClDOlXffbKq2srq1vlDftre2d3T1n/6ClkkxSaNKEJ7ITEgWcCWhqpjl0UgkkDjm0w9F17rcfQCqWiHs9TiGIyUCwiFGijdRzjn0KQoNkYmBfhcpw37fvgALLUz2n4lbdGfAy8QpSQQUaPefL7yc0i809lBOlup6b6mBCpGaUw9T2MwUpoSMygK6hgsSggslsjSk+NUofR4k0R2g8U38nJiRWahyHZjImeqgWvVz8z+tmOroMJkykmQZB5w9FGcc6wXknuM8kUM3HhhAqmfkrpkMiCTXFKNuU4C2uvExatap3Xq3d1ip1t6ijjI7QCTpDHrpAdXSDGqiJKHpEz+gVvVlP1ov1bn3MR0tWkTlEf2B9/gDYIZip</latexit>

|
{z

}
<latexit sha1_base64="pXFm1Eq+w+W3Frd22RRo1OaEaXw=">AAACFHicdVDLSsNAFJ34rPUVdekmWAVBKEkVdFlw47KCfUATymRy2w6dTNJ5CCX0I9z4K25cKOLWhTv/xmmbhbZ64F4O59zLzD1hyqhUrvtlLS2vrK6tFzaKm1vbO7v23n5DJloQqJOEJaIVYgmMcqgrqhi0UgE4Dhk0w8H1xG/eg5A04XdqlEIQ4x6nXUqwMlLHPvM1j0CEAhPI/OFQ4+i/Pu7YJbfsTuEsEi8nJZSj1rE//SghOgauCMNStj03VUGGhaKEwbjoawkpJgPcg7ahHMcgg2x61Ng5MUrkdBNhiitnqv7cyHAs5SgOzWSMVV/OexPxL6+tVfcqyChPtQJOZg91NXNU4kwSciIqgCg2MgQTQc1fHdLHJiBlciyaELz5kxdJo1L2zsuV24tS9TiPo4AO0RE6RR66RFV0g2qojgh6QE/oBb1aj9az9Wa9z0aXrHznAP2C9fENHySgBg==</latexit>

z }| {
<latexit sha1_base64="JJI+vJh6sPaEHaAGXgiblHGWTiU=">AAACAXicbVDLSsNAFL2pr1pfUTeCm2AVXJWkCrosuHFZwT6gDWUymbRDJzPpzEQooW78FTcuFHHrX7jzb5y2WWjrgXs5nHMvM/cECaNKu+63VVhZXVvfKG6WtrZ3dvfs/YOmEqnEpIEFE7IdIEUY5aShqWaknUiC4oCRVjC8mfqtByIVFfxejxPix6jPaUQx0kbq2UddYexAIkyy7miUonDeJz277FbcGZxl4uWkDDnqPfurGwqcxoRrzJBSHc9NtJ8hqSlmZFLqpookCA9Rn3QM5Sgmys9mF0ycM6OETiSkKa6dmfp7I0OxUuM4MJMx0gO16E3F/7xOqqNrP6M8STXheP5QlDJHC2cahxNSSbBmY0MQltT81cEDZOLQJrSSCcFbPHmZNKsV76JSvbss107zOIpwDCdwDh5cQQ1uoQ4NwPAIz/AKb9aT9WK9Wx/z0YKV7xzCH1ifP4p+l34=</latexit>

z }| {
<latexit sha1_base64="JJI+vJh6sPaEHaAGXgiblHGWTiU=">AAACAXicbVDLSsNAFL2pr1pfUTeCm2AVXJWkCrosuHFZwT6gDWUymbRDJzPpzEQooW78FTcuFHHrX7jzb5y2WWjrgXs5nHMvM/cECaNKu+63VVhZXVvfKG6WtrZ3dvfs/YOmEqnEpIEFE7IdIEUY5aShqWaknUiC4oCRVjC8mfqtByIVFfxejxPix6jPaUQx0kbq2UddYexAIkyy7miUonDeJz277FbcGZxl4uWkDDnqPfurGwqcxoRrzJBSHc9NtJ8hqSlmZFLqpookCA9Rn3QM5Sgmys9mF0ycM6OETiSkKa6dmfp7I0OxUuM4MJMx0gO16E3F/7xOqqNrP6M8STXheP5QlDJHC2cahxNSSbBmY0MQltT81cEDZOLQJrSSCcFbPHmZNKsV76JSvbss107zOIpwDCdwDh5cQQ1uoQ4NwPAIz/AKb9aT9WK9Wx/z0YKV7xzCH1ifP4p+l34=</latexit>

z }| {
<latexit sha1_base64="JJI+vJh6sPaEHaAGXgiblHGWTiU=">AAACAXicbVDLSsNAFL2pr1pfUTeCm2AVXJWkCrosuHFZwT6gDWUymbRDJzPpzEQooW78FTcuFHHrX7jzb5y2WWjrgXs5nHMvM/cECaNKu+63VVhZXVvfKG6WtrZ3dvfs/YOmEqnEpIEFE7IdIEUY5aShqWaknUiC4oCRVjC8mfqtByIVFfxejxPix6jPaUQx0kbq2UddYexAIkyy7miUonDeJz277FbcGZxl4uWkDDnqPfurGwqcxoRrzJBSHc9NtJ8hqSlmZFLqpookCA9Rn3QM5Sgmys9mF0ycM6OETiSkKa6dmfp7I0OxUuM4MJMx0gO16E3F/7xOqqNrP6M8STXheP5QlDJHC2cahxNSSbBmY0MQltT81cEDZOLQJrSSCcFbPHmZNKsV76JSvbss107zOIpwDCdwDh5cQQ1uoQ4NwPAIz/AKb9aT9WK9Wx/z0YKV7xzCH1ifP4p+l34=</latexit>

P0
<latexit sha1_base64="2783e/O+QIdDInOZDN7/EKfVaHQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lqQY8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD82BOyhX3Kq7AFknXk4qkKM5KH/1hzFLI66QSWpMz3MT9DOqUTDJZ6V+anhC2YSOeM9SRSNu/Gxx6oxcWGVIwljbUkgW6u+JjEbGTKPAdkYUx2bVm4v/eb0Uwxs/EypJkSu2XBSmkmBM5n+TodCcoZxaQpkW9lbCxlRThjadkg3BW315nbRrVe+qWruvVxr1PI4inME5XIIH19CAO2hCCxiM4Ble4c2Rzovz7nwsWwtOPnMKf+B8/gDKRY1t</latexit>

P1
<latexit sha1_base64="Aqxz17B7SqhajItYkfoen3MuyCA=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lqQY8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD82BNyhX3Kq7AFknXk4qkKM5KH/1hzFLI66QSWpMz3MT9DOqUTDJZ6V+anhC2YSOeM9SRSNu/Gxx6oxcWGVIwljbUkgW6u+JjEbGTKPAdkYUx2bVm4v/eb0Uwxs/EypJkSu2XBSmkmBM5n+TodCcoZxaQpkW9lbCxlRThjadkg3BW315nbRrVe+qWruvVxr1PI4inME5XIIH19CAO2hCCxiM4Ble4c2Rzovz7nwsWwtOPnMKf+B8/gDLyY1u</latexit>

P2
<latexit sha1_base64="5lm7T/X4oAoXwNeHXdn1LnO5Ut0=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lqQY8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD81BbVCuuFV3AbJOvJxUIEdzUP7qD2OWRlwhk9SYnucm6GdUo2CSz0r91PCEsgkd8Z6likbc+Nni1Bm5sMqQhLG2pZAs1N8TGY2MmUaB7Ywojs2qNxf/83ophjd+JlSSIldsuShMJcGYzP8mQ6E5Qzm1hDIt7K2EjammDG06JRuCt/ryOmnXqt5VtXZfrzTqeRxFOINzuAQPrqEBd9CEFjAYwTO8wpsjnRfn3flYthacfOYU/sD5/AHNTY1v</latexit>

P3
<latexit sha1_base64="JyIVHohh37UjwvfC0a04Jyog2HA=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0nagh4LXjxWtLXQhrLZbtqlm03YnQgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgobm1vbO8Xd0t7+weFR+fikY+JUM95msYx1N6CGS6F4GwVK3k00p1Eg+WMwuZn7j09cGxGrB5wm3I/oSIlQMIpWum8N6oNyxa26C5B14uWkAjlag/JXfxizNOIKmaTG9Dw3QT+jGgWTfFbqp4YnlE3oiPcsVTTixs8Wp87IhVWGJIy1LYVkof6eyGhkzDQKbGdEcWxWvbn4n9dLMbz2M6GSFLliy0VhKgnGZP43GQrNGcqpJZRpYW8lbEw1ZWjTKdkQvNWX10mnVvXq1dpdo9Js5HEU4QzO4RI8uIIm3EIL2sBgBM/wCm+OdF6cd+dj2Vpw8plT+APn8wfO0Y1w</latexit>z }| {

<latexit sha1_base64="JJI+vJh6sPaEHaAGXgiblHGWTiU=">AAACAXicbVDLSsNAFL2pr1pfUTeCm2AVXJWkCrosuHFZwT6gDWUymbRDJzPpzEQooW78FTcuFHHrX7jzb5y2WWjrgXs5nHMvM/cECaNKu+63VVhZXVvfKG6WtrZ3dvfs/YOmEqnEpIEFE7IdIEUY5aShqWaknUiC4oCRVjC8mfqtByIVFfxejxPix6jPaUQx0kbq2UddYexAIkyy7miUonDeJz277FbcGZxl4uWkDDnqPfurGwqcxoRrzJBSHc9NtJ8hqSlmZFLqpookCA9Rn3QM5Sgmys9mF0ycM6OETiSkKa6dmfp7I0OxUuM4MJMx0gO16E3F/7xOqqNrP6M8STXheP5QlDJHC2cahxNSSbBmY0MQltT81cEDZOLQJrSSCcFbPHmZNKsV76JSvbss107zOIpwDCdwDh5cQQ1uoQ4NwPAIz/AKb9aT9WK9Wx/z0YKV7xzCH1ifP4p+l34=</latexit>

Fig. 3: 1-truncated 3-nested absent receivers, formed by keeping
the top few groups of perfect 3-nested absent receivers

Theorem 4: For any pliable-index-coding problem P with T-
truncated L-nested absent receivers, β(P) = βq(P) = m−T −1,
for sufficiently large q.

Proof of Thm 4: See the extended version of this paper [8].

C. Optimal rates for a small number of absent receivers
We have established that βq = m if and only if there is no

absent receiver, that is |Uabs | = 0.
Corollary 1: If 1 ≤ |Uabs | ≤ 2, then βq = m − 1.

Proof: For |Uabs | = 1, by definition, the absent receiver
H ( [1 : m], and hence

⋃
H ∈Uabs H , [1 : m]. So, the result

follows from [6, Thm. 1]. For |Uabs | = 2, there can be either
no nested pair or one nested pair of absent receivers. The result
follows from [6, Thm. 3].

While the optimal rate for up to two absent receivers can be
determined using our previous results, we need the new results
presented in this paper for more absent receivers.

Theorem 5: Suppose |Uabs | = 3. Then

βq =

{
m − 2, if the absent receivers are perfect 2-nested,
m − 1, otherwise.

Theorem 6: Suppose |Uabs | = 4. Then

βq =




m − 2, if a subset of absent receivers is either
perfect 2-nested or 1-truncated 3-nested,

m − 1, otherwise.

Proofs of Thms 5 and 6: See the extended version [8].
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Abstract—In this work, we consider private monomial
computation (PMC) for replicated noncolluding databases. In
PMC, a user wishes to privately retrieve an arbitrary multivariate
monomial from a candidate set of monomials in f messages over
a finite field Fq , where q = pk is a power of a prime p and
k ≥ 1, replicated over n databases. We derive the PMC capacity
under a technical condition on p and for asymptotically large q.
The condition on p is satisfied, e.g., for large enough p. Also, we
present a novel PMC scheme for arbitrary q that is capacity-
achieving in the asymptotic case above. Moreover, we present
formulas for the entropy of a multivariate monomial and for a
set of monomials in uniformly distributed random variables over
a finite field, which are used in the derivation of the capacity
expression.

I. INTRODUCTION

The concept of private computation (PC) was introduced
independently by Sun and Jafar [1] and Mirmohseni and
Maddah-Ali [2]. In PC, a user wishes to compute a function
of the messages stored in a set of databases without revealing
any information about the function to any of the databases. PC
can be seen as a generalization of private information retrieval
(PIR). In PIR, a user wants to retrieve a single message from
the set of databases privately. Applications of PC include, in
principle, all scenarios where insights about certain actions of
the user should be kept private. One practical motivation for
considering arbitrary functions is that of algorithmic privacy,
as protecting the identity of an algorithm running in the
cloud could be even more critical than data privacy in some
scenarios. Not only could the algorithm be valuable, but also in
some cases, parameters of the algorithm carry lifetime secrets
such as biological information of individuals [2].

The capacity in the linear case, i.e., the computation of
arbitrary linear combinations of the stored messages, has been
settled for both replicated [1] and coded [3], [4] databases.
In the coded databases scenario, the messages are encoded
by a linear code before being distributed and stored in a set
of databases. Interestingly, the capacity in the linear case is
equal to the corresponding PIR capacity for both replicated and
coded databases. The monomial case was recently considered
in [5], [6]. However, the presented achievable schemes have a
PC rate, defined here as the ratio between the smallest desired
amount of information and the total amount of downloaded
information, that in general is strictly lower than the best
known converse bound for a finite number of messages. PC
schemes in the coded case for arbitrary polynomials were
considered by Karpuk and Raviv in [7], [8], and recently
improved in [5] when the number of messages is small.

The capacity of private polynomial computation for coded
databases remains open.

In this work, we first derive formulas for the entropy of a
multivariate monomial and a set of monomials in uniformly
distributed random variables over a finite field. We then present
a novel PC scheme for multivariate monomials in the messages
stored in a set of replicated noncolluding databases. The key
ingredient of the scheme is the use of discrete logarithms. The
discrete logarithm in the multiplicative group of a finite field
of order q = pk (p is a prime and k ≥ 1) is a bijection to the
integer ring of size q − 1, mapping multiplication to addition.
Hence, the discrete logarithm maps multivariate monomial
retrieval to linear function retrieval, given that none of the
messages is the zero element. The latter holds with probability
approaching one as q becomes large. The corresponding PC
rate in this limiting case is derived using the entropy formulas
from the first part of the paper. When the candidate set of
multivariate monomials is fixed (i.e., independent of q), the PC
rate converges to the PIR capacity for any number of messages
stored in the databases, under a technical condition on p and as
q goes to infinity. The condition on p is satisfied, e.g., for large
enough p. Also, the presented monomial computation scheme
is capacity-achieving in this asymptotic case.

II. PRELIMINARIES

A. General Definitions and Notation
Throughout the paper, vectors are denoted by bold font and

matrices are written as sans-serif capitals.
We work with different algebraic structures: the ring of

integers Z, rings of residuals Zm for integers m > 1, and finite
fields Fq , where q = pk is a power of a prime p and k ≥ 1.
Occasionally, R denotes any of these structures. We often use
the connection between Z and Zm. In principle, any element in
Z can be considered as an element of Zm, with correspondence
of addition and multiplication. If an expression consists of both
integers and elements of Zm, we assume all operations are
over Zm. When we need to stress that an element is in Zm,
we write a〈m〉 ∈ Zm for a ∈ Z. The same notation is used for
matrices, e.g., A〈m〉 has entries a〈m〉ij ∈ Zm for aij ∈ Z.

Any a ∈ Z can be viewed as a〈p〉 ∈ Zp = Fp ⊆ Fq .
Operations on such elements of Fq are modulo p, as p is the
characteristic of Fq , i.e., the minimum positive integer l such
that l · α = 0 for all α ∈ Fq . Analogously, A ∈ Zs×t can be
viewed as A〈p〉 ∈ Fs×tq . Note the difference between A〈p〉 ∈
Fs×tq and A〈q〉 ∈ Zs×tq for q = pk and k > 1.

The multiplicative group F∗q = Fq \ {0} is cyclic (cf. [9,
Thm. 2.18]), and it is possible to define a discrete logarithm
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function1 dlog : F∗q → Zq−1, which is an isomorphism
between (F∗q ,×) and (Zq−1,+).

We write [a] , {1, . . . , a} for a positive integer a. The
greatest common divisor (gcd) of a1, . . . , as ∈ Z is denoted
by gcd(a1, . . . , as), with the convention gcd(0, . . . , 0) , 0

and gcd(a
〈m〉
1 , . . . , a

〈m〉
s ,m) , gcd(a1, . . . , as,m). We write

a | b when a divides b, and a - b otherwise. The binomial
coefficient of a over b (both nonnegative integers) is denoted
by
(
a
b

)
where

(
a
b

)
= 0 if a < b. The transpose of A is denoted

by Aᵀ.
A k × k minor in R of a matrix A ∈ Rs×t, for a positive

integer k, is the determinant of a k×k submatrix of A obtained
by removing s−k rows and t−k columns from A. The largest
integer r such that there is a nonzero r × r minor of A is
called the rank of A in R and denoted by rankR A. A matrix
A ∈ Rs×s is invertible in R if and only if the determinant of
A is invertible as an element of R (cf. [9, Thm. 2.1]).

For A ∈ Zs×t, we denote the gcd of all k × k minors of
A by gk(A). If δ ∈ Z is some minor of A, the corresponding
minor of A〈m〉 is δ〈m〉. Hence, rankZm A = rankZ A for all
m - gr(A), where r = rankZ A.2 Also,

rankFq A = rankZ A ⇔ p - gr(A). (1)

It is known [10, Cor. 1.13, Cor. 1.20] that there exists a unique
diagonal matrix D = diag(d1, . . . , dmin(s,t)) ∈ Zs×t called the
Smith normal form of A, with the following properties.

1) D = PAQ for some matrices P ∈ Zs×s and Q ∈ Zt×t
invertible in Z,

2) di | di+1 for i ∈ [min(s, t)− 1],
3) d1d2 · · · di = gi(A) for i ∈ [min(s, t)].
The diagonal elements d1, . . . , dmin(s,t) are invariant

factors, and di = 0 if and only if i > rankZ A. While D
is unique, the matrices P and Q are not unique in the general
case. It is also important to mention that the Smith normal form
is defined for matrices over principal ideal domains (PIDs).
For example, Z is a PID while Zm is not (in general).

Random variables are labeled by capital roman letters and
we write X ∼ Y to indicate that X and Y are identically
distributed. Moreover, X ∼ U(S) means that X is uniformly
distributed over the set S. We use log to denote logarithm
base-2, although most statements hold for an arbitrary constant
base. We denote the entropy in bits and q-ary units by H(·)
and Hq(·), respectively, and I(·; ·) denotes mutual information.
The binary entropy function is denoted by h(·).

The notation O(φ(x)) stands for any function ψ(x) in x
such that |ψ(x)/φ(x)| < B for all large enough x and some
constant B > 0 independent of x. Also, o(φ(x)) represents any
ψ(x) such that limx→∞ ψ(x)/φ(x) = 0. In particular, O(1) is
any bounded function and o(1) is any function that converges
to zero as x→∞.

B. Private Computation
Suppose we have n noncommunicating databases, each

storing duplicated data: f messages subpacketized into λ parts,

1Strictly speaking, dlog requires fixing a particular generator of F∗
q .

2In particular, the requirement a - b is satisfied if a > b.

each part denoted as X(j)
i ∈ Fq for i ∈ [f ] and j ∈ [λ]. The

subpackets are considered mutually independent and uniformly
drawn from Fq . There are µ public functions ϕ1, . . . , ϕµ,
where ϕi : Ffq → Fq for i ∈ [µ]. The user randomly chooses
a secret index V ∼ U([µ]) and wants to retrieve

FV =
(
ϕV (X(1)), . . . , ϕV (X(λ))

)
∈ Fλq ,

where X(j) , (X
(j)
1 , . . . , X

(j)
f ), j ∈ [λ], without revealing

any information about V . To achieve that, the user and the
databases employ the following scheme.

1) The user generates secret randomness R, computes
queries Qj = Qj(V,R), j ∈ [n], and sends the j-th query
to the j-th database.

2) Based on Qj and all the messages, the j-th database
computes the response Aj = Aj

(
Qj ,X

(1), . . . ,X(λ)
)

and sends it back to the user.
3) Using all available information, the user can recover FV .
Formally, we require the scheme to satisfy

Privacy: I(V ;Qj) = 0, for all j ∈ [n],
Recovery: H(FV | V,R,A1, . . . , An) = 0.

Definition 1. The download rate of a PC scheme over the
field Fq , referred to as the PC rate, is defined as

R = R(n, f, µ, {ϕi}, λ, {Qj}, {Aj}, q) ,
minv∈[µ] H(Fv)

∆
,

where ∆ is the expected total number of downloaded bits,
referred to as the download cost. The supremum of all
achievable rates for all choices of λ, {Qj}, and {Aj} is the
PC capacity over Fq , CPC(n, f, µ, {ϕi}, q).

In case µ = f and ϕi(x1, . . . , xf ) = xi for i ∈ [f ], PC
reduces to PIR with capacity CPIR(n, f) , (1+1/n+1/n2 +
· · ·+ 1/nf−1)−1 [11]. Note that CPIR is independent of q.

The case when ϕ1, . . . , ϕµ are linear functions described
by a matrix of coefficients A ∈ Fµ×fq without zero rows, is
referred to as private linear computation (PLC). Its capacity
CPLC only depends on n and r = rankFq A, and it holds that
CPLC(n, r) = CPIR(n, r) [1].3

In this work, we consider private monomial computation
(PMC), i.e., the case when ϕi(x1, . . . , xf ) = xai11 xai22 · · ·x

aif
f ,

i ∈ [µ], where aij ∈ Z. The monomials can be described by a
matrix of degrees A = (aij) ∈ Zµ×f , and we assume there are
no constant functions, i.e., no zero rows in A. The capacity of
PMC is denoted by CPMC(n, f, µ,A, q).

III. ENTROPIES OF LINEAR FUNCTIONS AND MONOMIALS

Lemma 1. Let a ∈ Z and Y ∼ U(Zm). Then,

H(aY ) = H(a〈m〉Y ) = logm− log gcd(a,m).

Proof: From the theory of linear congruences [12, Sec. 5,
Thm. 1], the equation ay = b has d = gcd(a,m) solutions in

3In [1], the authors assume the messages are among the functions, e.g.,
ϕi(x1, . . . , xf ) = xi for i ∈ [f ]. However, this is not required as we
can define linearly independent functions as new variables and express other
functions in these variables.

International Zurich Seminar on Information and Communication (IZS), February 26 – 28, 2020

32



Zm if d | b and no solutions otherwise. Therefore, the random
variable aY takes m/d different values from Zm equiprobably,
and the required statement follows.

Lemma 2. Let A ∈ Zs×t be a fixed matrix whose invariant
factors are d1, . . . , dmin(s,t). Let Y = (Y1, . . . , Yt) ∼ U(Ztm),
r = rankZ A, and r′ = rankZm A〈m〉. Then,

H(AY ) = r logm−
r∑

i=1

log gcd(di,m) (2)

= r′ logm−
r′∑

i=1

log gcd(di,m). (3)

Proof: Recall that, since Y is defined over Ztm, the
operations in AY are over Zm. In other words, AY is a
shorthand for A〈m〉Y .

Let D = PAQ be the Smith normal form of A, where
both P ∈ Zs×s and Q ∈ Zt×t are invertible over Z (i.e.,
their determinants are ±1) and D = diag(d1, . . . , dr, 0, . . . , 0).
After taking modulo m from both sides, we obtain D〈m〉 =
P〈m〉A〈m〉Q〈m〉, where P〈m〉 and Q〈m〉 are both invertible
over Zm (their determinants are ±1 in Zm too) and D〈m〉 =
diag(d

〈m〉
1 , . . . , d

〈m〉
r , 0, . . . , 0). Therefore,

H(D〈m〉Y ) = H(P〈m〉(A〈m〉Q〈m〉Y )) = H(A〈m〉Q〈m〉Y )

= H(A〈m〉(Q〈m〉Y )) = H(A〈m〉Y ) = H(AY ),

because P〈m〉 and Q〈m〉 are invertible over Zm, and
multiplication from the left by an invertible matrix is a
bijection. Thus, we can consider H(D〈m〉Y ) instead of
H(AY ). But D〈m〉Y = (d

〈m〉
1 Y1, . . . , d

〈m〉
r Yr, 0, . . . , 0) with

mutually independent entries. Hence,

H(D〈m〉Y ) =

r∑

i=1

H(d
〈m〉
i Yi)

Lem. 1
= r logm−

r∑

i=1

log gcd(di,m).

Finally, (3) holds because m | di for i > r′ and hence
gcd(di,m) = m.

Corollary 1. In the setting of Lemma 2, H(AY ) = r logm+
O(1), as m→∞, where r = rankZ A.

Proof: For all m > dr and all i ∈ [min(s, t)], it holds
that d〈m〉i = di. In this case, r′ = r and

H(AY ) = r logm−
r∑

i=1

log gcd(di,m)

≥ r logm− log

r∏

i=1

di = r logm− log gr(A).

(4)

On the other hand,

H(AY ) = r logm−
r∑

i=1

log gcd(di,m) ≤ r logm. (5)

We note that both (4) and (5) are attained for infinitely many
values of m, e.g., for m = ugr(A) and m = 1 + ugr(A),
respectively (for any positive integer u). In other words,
H(AY ) does not converge as m→∞.

Finally, as log gr(A) does not depend on m, we have

H(AY ) = r logm+O(1), as m→∞.

Next, we present some results on entropies of monomials
over finite fields. The key idea is to use the bijection of dlog
and treat a special case of zero separately.

Lemma 3. Let a1, . . . , at ∈ Z, X1, . . . , Xt ∼ U(Fq) be
mutually independent, τ be the number of nonzeros among
a1, . . . , at, and π = (1− 1/q)

τ . Then,

H(Xa1
1 Xa2

2 · · ·Xat
t ) = h(π) + π log

q − 1

gcd(a1, . . . , at, q − 1)
.

Moreover, if not all a1, . . . , at are zeros,

Hq(X
a1
1 Xa2

2 · · ·Xat
t ) −−−→

q→∞
1.

Proof: If ai = 0, the variable Xi is not present in the
monomial. Hence, we can exclude such variables and assume
a1, . . . , aτ ∈ Z \ {0}. Dropping zero arguments of the gcd
above does not change its value either.

Let M = Xa1
1 Xa2

2 · · ·Xaτ
τ . Define Z = 0 if M = 0 and

Z = 1 otherwise. Then, π = P {M 6= 0} = P {Z = 1} and

H(M) = H(Z) + H(M | Z)−H(Z |M)

= h(π) + H(M | Z = 0)(1− π) + H(M | Z = 1)π

= h(π) + πH(M |M 6= 0).

Now, M 6= 0 if and only if none of X1, . . . , Xτ is zero.
In this case, all X1, . . . , Xτ ∈ F∗q and we can define Yj =
dlogXj ∈ Zq−1 for j ∈ [τ ] and L′ = dlogM = a1Y1 + · · ·+
aτYτ ∈ Zq−1. Since dlog is bijective, Y1, . . . , Yτ ∼ U(Zq−1)
and H(M | M 6= 0) = H(L′). By applying Lemma 2 with
m = q − 1, s = 1, r = 1, and d1 = gcd(a1, . . . , aτ ), we get

H(L′) = log
q − 1

gcd(a1, . . . , aτ , q − 1)
.

Further, as q → ∞, π → 1 and therefore h(π) → 0.
Additionally, gcd(a1, . . . , aτ , q − 1) ≤ min(|a1|, . . . , |aτ |) =
O(1), as q →∞. Finally,

Hq(X
a1
1 Xa2

2 · · ·Xat
t ) =

H(Xa1
1 Xa2

2 · · ·Xat
t )

log q
−−−→
q→∞

1.

Theorem 1. Let A ∈ Zs×t be a fixed matrix of coefficients
with rank r = rankZ A. Let X1, . . . , Xt ∼ U(Fq) be mutually
independent. For i ∈ [s], define Mi = Xai1

1 Xai2
2 · · ·Xait

t ∈ Fq
and M = (M1, . . . ,Ms). Then,

H(M) = r log q +O(1), as q →∞.

Proof: First, if there is a zero column in A, we can drop
the corresponding variable, as it does not influence either the
values of any of the monomials or rankZ A. Thus, for the
remainder of the proof, we assume there are no zero columns
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in A, and we also consider values of q large enough so that
there are no zero columns in A〈q−1〉 as well.

Define Z = 0 if X1X2 · · ·Xt = 0 and Z = 1 otherwise. It
holds that π = P {Z = 1} = (1 − 1/q)t. Moreover, Z = 0 if
and only if any of the monomials M1, . . . ,Ms is zero. Hence,
H(Z |M) = 0 and we have

H(M) = H(Z) + H(M | Z)−H(Z |M)

= h(π) + (1− π) H(M | Z = 0) + πH(M | Z = 1).

Next, Z = 1 if and only if none of X1, . . . , Xt is zero,
i.e., all X1, . . . , Xt ∈ F∗q . In this case, we can define Yj =
dlogXj ∈ Zq−1, for j ∈ [t], L′i = dlogMi = ai1Y1 + · · · +
aitYt ∈ Zq−1, for i ∈ [s], and L′ = (L′1, . . . , L

′
s). Then,

H(L′) = H(M | Z = 1) and

|H(M)−H(L′)| = |H(M)−H(M | Z = 1)|
= |h(π) + (1− π) H(M |Z = 0) + (π − 1) H(M | Z = 1)|
≤ h(π) + (1− π)|H(M |Z = 0)−H(M |Z = 1)|
≤ h(π) + s(1− π) log q = o(1), as q →∞.
From Corollary 1 with m = q − 1, we have H(L′) =

r log(q − 1) +O(1) = r log q +O(1), as q →∞. Finally,

H(M) = H(L′) + o(1) = r log q +O(1), as q →∞.
Corollary 2. In the setting of Theorem 1, consider q = pk

with p - gr(A). Then,

|Hq(M)−Hq(L)| = o(1), as q →∞,
where Li = ai1X1 + · · · + aitXt ∈ Fq for i ∈ [s], and L =
(L1, . . . , Ls).4

Proof: As A defines a linear transformation of a vector
space over Fq , H(L) = rankFq A · log q. From (1) and since
p - gr(A), we obtain rankFq A = rankZ A = r. Next, from
Theorem 1, as q →∞,

|Hq(M)−Hq(L)| = |H(M)−H(L)|
log q

=
O(1)

log q
= o(1).

Note that we do not require p to be either fixed or infinitely
large. However, all primes p > gr(A) satisfy the requirement
p - gr(A). Corollary 2 states that the entropy of any fixed set of
monomials is equal to the entropy of the corresponding set of
linear functions (i.e., defined by the same matrix A), both over
Fq , when p - gr(A) and as q approaches infinity. Moreover, this
also holds for conditional entropies consisting of various sets
of monomials because they can be expressed as a difference
of two unconditional entropies. This key observation is further
used in Section IV-B.

IV. ACHIEVABLE SCHEME

A. Sun–Jafar Scheme for Private Linear Computation

We build our PMC achievable scheme based on the Sun–
Jafar scheme for PLC ([1, Alg. 1], referred to as PC there).
Due to lack of space, we do not present their scheme in all

4In contrast to Lemma 2 and Corollary 1, L is defined over the field.

details and refer the reader to [1] for a full description and
analysis. Here, we briefly repeat the facts (in our notation)
essential for further discussion.

The Sun–Jafar scheme uses λ = nµ subpackets. From each
of the n databases, the user downloads symbols in µ blocks.
The b-th block, b ∈ [µ], of each database consists of (n −
1)b−1

(
µ
b

)
symbols, and each symbol is a linear combination

(using only coefficients ±1) of b judiciously chosen pieces
ϕu(X(j)) for different values of u ∈ [µ] and j ∈ [λ]. Since all
ϕu are linear combinations, each symbol the user downloads
is some linear combination of {X(j)

i }. The user’s randomized
queries define which linear combinations the databases will
reply with. The queries enforce symmetry across databases
and function evaluation symmetry within symbols downloaded
from each database. This ensures privacy of the user.

A crucial observation is that (n−1)b−1
(
µ−r
b

)
of the symbols

in block b of each database are redundant based on side
information downloaded from other databases. More precisely,
these redundant symbols are linear combinations of other
symbols in block b from the same database as well as symbols
downloaded from other databases. Hence, they need not to
be downloaded, as the user can reconstruct them offline. This
preserves the user’s privacy while reducing the download cost
to the value corresponding to the PLC capacity. A distinctive
property of the Sun–Jafar scheme is that it is oblivious to the
coefficients of the linear functions ϕv . It is only the number
of them, µ, that matters. Furthermore, the scheme can be used
for PIR if µ = f and the linear functions are the messages,
i.e., ϕi(x1, . . . , xf ) = xi for i ∈ [f ]. In this case, there are no
redundant symbols in any block.

B. Private Monomial Computation

Let λ = nµ and suppose that none of {X(j)
i } equals

zero. Then we can construct a multiplicative scheme by
substituting each linear combination of {ϕv} in the Sun–
Jafar scheme with a corresponding multiplicative combination.
For example, if at some step the user downloads the
symbol ϕ1(X(j1)) + ϕ2(X(j2)) − ϕ3(X(j3)), j1, j2, j3 ∈
[λ], then the corresponding multiplicative combination is
ϕ1(X(j1))ϕ2(X(j2))

(
ϕ3(X(j3))

)−1
, where the functions ϕv

now denote the corresponding monomials. Since there are
no zeros among {X(j)

i }, all operations are valid and ensure
correct reconstruction of the monomial of interest. Moreover,
from Corollary 2, when p - gr(A) and as q → ∞, the
entropies of all the symbols as well as the entropy of each
block b conditioned on the side information received from
other databases converge to those of the Sun–Jafar scheme.
This means that in the multiplicative scheme above, a database
can also encode the whole b-th block into no more than
(n−1)b−1

((
µ
b

)
−
(
µ−r
b

))
q-ary symbols, resulting in the same

download cost as in the Sun–Jafar scheme. Since there is
only a finite number of entropies involved, we can satisfy
the requirement on p from Corollary 2 for all of them
simultaneously, e.g., by requiring p to be large enough (but
not necessarily approaching infinity).
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Now, in case any of {X(j)
i } equals zero, we can ignore

dependencies between the monomials and run a PIR scheme,
for example, the same Sun–Jafar scheme in PIR mode for µ
messages. Altogether, our scheme is as follows.

Algorithm 1: PMC Scheme

1 if there are no zeros among {X(j)
i } and µ > r then

2 Each database replies according to the
multiplicative scheme.

3 else
4 Each database replies according to the Sun–Jafar

scheme in PIR mode oblivious to the
dependencies between the monomials.

Note that the queries of both schemes need to be uploaded
since the user does not know if there are zeros among {X(j)

i }.
Moreover, the user can determine which scheme is used
(Line 2 or Line 4) from (r, µ) and the size of the responses (the
size is smaller for the multiplicative scheme provided r < µ).

We note that privacy of the user in the suggested PMC
scheme is inherited from the privacy of the Sun–Jafar scheme.

Theorem 2. For PMC with n databases, f messages, and
µ monomials defined by a degree matrix A ∈ Zµ×f of rank
r = rankZ A, for p - gr(A) and as q →∞, the PMC capacity
converges to that of PIR: CPMC(n, f, µ,A, q)→ CPIR(n, r).

Proof: First, we show that the PC rate CPIR(n, r) is
achievable by Algorithm 1. For Line 2, for p - gr(A) and as
q →∞, the download cost measured in q-ary units converges
to nµ/CPLC(n, r) = nµ/CPIR(n, r). The download cost at
Line 4 is nµ/CPIR(n, µ).

The probability that none of {X(j)
i } equals zero is π =

(1−1/q)n
µf → 1, as q →∞. Therefore, the average download

cost of Algorithm 1 becomes

nµ
(

π

CPIR(n, r)
+

1− π
CPIR(n, µ)

)
−−−→
q→∞

nµ

CPIR(n, r)
.

On the other hand, from Lemma 3, it follows that

min
v∈[µ]

Hq(Fv) = nµ · min
v∈[µ]

Hq(ϕv(X
(1))) −−−→

q→∞
nµ.

Altogether, we have that the download rate of our PMC scheme
converges to the PIR capacity for r messages.

It remains to prove the converse, i.e., showing that
CPIR(n, r) is an upper (or outer) bound on the PC capacity. For
that, we consider the general converse in [6, Thm. 1] and show
that, for q →∞ and provided p - gr(A), the upper bounds from
[6, Thm. 1] coincide for the monomial and linear cases with the
same matrix A. Note that [6, Thm. 1] gives µ! upper bounds on
the PC capacity (according to the number of permutations of µ
functions). For the linear case, the outer bounds in [6, Thm. 1]
reduce to CPIR(n, r), independent of q. In general, for a fixed
permutation, the bound depends on minv∈[µ] Hq(ϕv(X

(1)))
and joint entropies of different subsets of function evaluations.
Then, it follows from the key observation in Section III that

this bound is coinciding for the monomial and linear cases as
q →∞, provided p - gr(A) (details omitted for brevity).

Corollary 3. In the setting of Theorem 2, the scheme in
Algorithm 1 is capacity-achieving for p - gr(A) and as q →∞.

Note that we prove that the scheme in Algorithm 1 is
capacity-achieving only for asymptotic q and provided p -
gr(A). As an example, take µ = f = 2, n = 2, ϕ1(x1, x2) =
x21x2, and ϕ2(x1, x2) = x1x

2
2. Then the asymptotic PC rate

of Corollary 3 is CPIR(2, 2) = 2/3, since r = rankZ A = 2.
On the other hand, the PC capacity CPC for two arbitrary
functions for any finite field is known [1, Sec. VII, Eq. (82)].
For this example, CPC = 2 H /(H(X2

1X2, X1X
2
2 )+H), where

H , H(X2
1X2) = H(X1X

2
2 ) and the superscripts on the X’s

have been suppressed for brevity. Finally, Algorithm 1 defaults
to PIR mode and achieves the PC rate 2 H/3, which can be
shown to be smaller than CPC for any finite q.

V. CONCLUSION

We derived the PMC capacity for replicated noncolluding
databases, by considering the case of an arbitrary large field
and under a technical condition on the size p of the base field,
which is satisfied, e.g., for p large enough. A PMC scheme that
is capacity-achieving in the above asymptotic case was also
outlined. Furthermore, we presented formulas for the entropy
of a multivariate monomial and for a set of monomials in
uniformly distributed random variables over a finite field.
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Abstract—The normalized logarithmic asymptotic distribution
of elementary and general absorbing sets for irregular low-
density parity-check (LDPC) code ensembles is derived and
evaluated. The method is based on enumerating binary matrices
with specified column and row weight vectors and solving a
system of equations.

I. INTRODUCTION

The performance under iterative decoding of LDPC codes
[1] is frequently dominated, in the error floor region, by
the presence of specific graphical configurations in the code
Tanner graphs [2], [3], [4]. Such structures are typically
referred to as stopping sets over the binary erasure channel
(BEC) [2], and as trapping sets [3], [4] over more general
channel models. As pointed out in [5], not all trapping sets
may cause decoding failures. Nevertheless, a characterization
(e.g., enumeration) of trapping sets for LDPC code ensembles
is of paramount importance to gain a deeper understanding
of the error floor phenomenon. This is especially relevant to
applications demanding very low error floors [6], [7], where a
Monte Carlo simulation approach to the error floor estimation
is impractical. A sub-class of trapping sets that is particularly
harmful is the one of absorbing sets [8].

With some notable exceptions (see, e.g., [9], [10], [11]),
the impact of stopping/trapping/absorbing sets on the per-
formance of a code has been often addressed from a code
ensemble perspective. In [2] the average stopping set enumer-
ators for finite-length LDPC code ensembles were introduced.
An asymptotic analysis of the stopping set distribution for
unstructured irregular LDPC code ensembles was devised in
[12]. The analysis was later extended to protograph-based
LDPC and generalized LDPC code ensembles [13] and to
unstructured doubly-generalized LDPC code ensembles. An
elegant derivation of the asymptotic trapping set enumerators
for regular/irregular LDPC code ensembles was provided in
[14] and is based on random matrix enumeration methods.
The approach was adopted in [5] to obtain the asymptotic
absorbing set enumerators of regular LDPC code ensem-
bles. Trapping set enumerators for protograph-based LDPC
codes were derived in [15], whereas pseudocodeword weight
enumerators for protograph-based generalized LDPC code

ensembles were introduced in [13].1

In this work, we follow the code ensemble perspective to
analyze absorbing set enumerators of LDPC code ensembles.
In particular, we extend the analysis of [5] to unstructured
irregular LDPC code ensembles. The paper is organized as
follows. In Section II, we review the main definitions and
known results. Section III provides the derivation of the
asymptotic absorbing sets enumerators for irregular LDPC
code ensembles. Numerical results are presented and discussed
in Section IV. Conclusions follow in Section V.

II. PRELIMINARIES

A. LDPC Codes

Binary LDPC codes are binary linear block codes defined by
an m×n sparse parity-check matrix H . The code dimension
is k ≥ n − m. The Tanner graph of an LDPC code is a
bipartite graph G = (V ∪ C,E ) consisting of n variable
nodes (VNs) and m check nodes (CNs). The set E of edges
contains the elements eij , where eij is an edge between VN
vj ∈ V and CN ci ∈ C. Note that eij belongs to the set E
if and only if the parity-check matrix element hij is equal to
1. The sets N (vj) and N (ci) denote the neighbors of VN
vj and CN ci, respectively. The degree of a VN vj (CN
ci) is the cardinality of the set N (vj) (N (ci)). The node-
oriented degree distribution polynomials of an LDPC code
graph are given by Λ(x) =

∑
i Λix

i and P (x) =
∑
i Pix

i,
where Λi corresponds to the fraction of VNs with degree i
and Pi corresponds to the fraction of CNs with degree i.
We further define by dmax

v (dmax
c ) is the maximum VN (CN)

degree. We denote by d̄v =
∑
i iΛi the average VN degree.

An unstructured irregular LDPC code ensemble C Λ,P
n is the

set of all LDPC codes with block length n and node-oriented
degree distributions Λ (x) and P (x).

B. Absorbing Sets

For a set S ⊆ V of VNs, we denote by N (S) the set of its
neighboring CNs. Further, we denote by O(S) the set of CNs
in N (S) that are connected to S an odd number of times and
E(S) the set of CNs in N (S) that are connected to S an even
number of times.

1Recently, a notion of absorbing sets for generalized LDPC codes has been
introduced, together with an initial absorbing set enumeration analysis [16].
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Definition 1. An (a, b) trapping set (TS) Ta,b is set S of a
VNs such that O(S) contains b CNs [14].

Definition 2. An (a, b) absorbing set (AS) Aa,b is a trapping
set with the additional property that each VN v ∈ S has strictly
fewer neighboring CNs from O(S) than from E(S) [5].

Moreover, an elementary absorbing set (EAS) AE
a,b is an

AS where each CN c ∈ E(S) is connected to two VNs in S
and each CN c ∈ O(S) is connected to exactly one VN in S.

C. Random Matrix Enumeration

Definition 3. Let x(n) and y(n) be two real-valued se-
quences, where y(n) 6= 0 ∀n. The sequence x(n) is called
exponentially equivalent to y(n) as n → ∞ if and only if
lim
n→∞

1
n ln

(
x(n)
y(n)

)
= 0. We will use the notation x(n)=̇y(n)

to specify that x(n) is exponentially equivalent to y(n).

Lemma 1. It holds for every sequence y(w)
∑

w

exp(ny(w))=̇ exp(nmax
w

y(w)). (1)

Theorem 1. Let HR,Lm,n be the set of all m×n binary matrices
with row weight vector R = (R1, . . . , Rm) and column
weight vector L = (L1, . . . , Ln), where Ri, 1 ≤ i ≤ m,
is the weight of the i-th row and Lj , 1 ≤ j ≤ n, is the weight
of the j-th column. The cardinality of HR,Lm,n for constant ratio
ξ = m/n and max{maxiRi,maxj Lj} ≤ (ln(n))1/4−ε, ε >
0, as n→∞ is given by [17]

|HR,Lm,n |=
f !

n∏
j=1

Lj !
m∏
i=1

Ri!
.(1 + o(n−1+δ))×

exp


− 1

2f2

(
m∑

i=1

Ri(Ri − 1)

)


n∑

j=1

Lj(Lj − 1)






and for δ > 0, with f =
n∑
j=1

Lj =
m∑
i=1

Ri.

III. ASYMPTOTIC DISTRIBUTION OF ABSORBING SETS

In this section, we derive the asymptotic distribution of ASs
and EASs for the ensemble C Λ,P

n for a = θn and b = γn. We
write the transpose of the parity-check matrix as

HT =

[
M1 |M2

M3

]
(2)

where M1 is a a × (m − b) binary matrix representing the
subgraph of the Tanner graph containing the VNs in Aa,b
(AE

a,b) and the CNs that are connected to Aa,b (AE
a,b) an even

number of times (including zero), M2 is a a×b binary matrix
corresponding to the subgraph of the Tanner graph containing
the VNs in Aa,b (AE

a,b) and the CNs that are connected to
Aa,b (AE

a,b) an odd number of times, and M3 is a (n−a)×m
binary matrix representing the remainder of the Tanner graph
[5]. Note that the columns of M1 have even weights and the
ones of M2 have odd weights.

The parity-check matrix of each code from C Λ,P
n contains

Λjn columns of weight j and Pim rows of weight i. The
cardinality of the set containing all m × n binary matrices
with these row and column weights is given by

|HR,Lm,n |=
N !

dmax
c∏
i=1

(i!)Pim
dmax
v∏
j=1

(j!)Λjn

(1 + o(n−1+δ))×

exp


−

mn
dmax
c∑
i=1

i(i− 1)Pi
dmax
v∑
j=1

j(j − 1)Λj

2N2




(3)

for δ > 0, with N = nd̄v.
We denote by α(i)

k the number of columns in HT of weight
i whose first a entries sum to k, where k ∈ {0, 1, 2} for
AE
a,b and k ∈ {0, . . . , i} for Aa,b. Similarly, β(j)

k represents
the number of rows in HT of weight j whose first m − b
entries sum to k ∈ {b j2c + 1, . . . , j}. Further, we introduce
θ = (θ1, . . . , θdmax

v
), where nθj represents the number of VNs

of degree j in Aa,b (AE
a,b), i.e., the number of rows of weight

j in the submatrix [M1 |M2]. Note that
∑
j θj = θ. We define

Ml as the set of binary matrices with the same weight vectors
asMl for l = 1, 2, 3 and the setM containing all n×m binary
matrices with the structure shown in (2) and where Ml ∈Ml

for l = 1, 2, 3.

A. Elementary Absorbing Sets

Consider the matrix M1. It contains, for each j ∈
{1, . . . , dmax

v }, β(j)
k rows of weight k ∈ {b j2c+ 1, . . . , j} and,

for each i ∈ {1, . . . , dmax
c }, α(i)

0 columns of weight 0 and α(i)
2

columns of weight 2. The number of ones in the matrix M1

is f1 =
dmax
v∑
j=1

j∑
k=b j2 c+1

kβ
(j)
k =

dmax
c∑
i=1

2α
(i)
2 . From Theorem 1, the

cardinality of M1, for δ1 > 0, is given by

|M1|=
f1!

dmax
c∏
i=1

(2!)α
(i)
2

dmax
v∏
j=1

j∏
k=b j2 c+1

(k!)β
(j)
k

×

(1 + o(n−1+δ1))×

exp


− 1

2f1



dmax
v∑

j=1

j∑

k=b j2 c+1

(k − 1)kβ
(j)
k




 .

Consider now the matrix M2. For each j ∈ {1, . . . , dmax
v },

there are β
(j)
k rows of weight j − k and all columns have

weight 1. The number of ones in M2 is given by f2 =
dmax
v∑
j=1

j∑
k=b j2 c+1

(j − k)β
(j)
k =

dmax
c∑
i=1

α
(i)
1 = γn. The cardinality of

M2, for δ2 > 0, is then

|M2|=
(γn)!

dmax
v∏
j=1

j∏
k=b j2 c+1

((j − k)!)β
(j)
k

(1 + o(n−1+δ2)).
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Note that f1 + f2 is the total number of ones in the submatrix
[M1 |M2], which is equal to nθ̃, where θ̃ =

∑
j jθj . Thus,we

have
dmax
c∑
i=1

2∑
k=0

kα
(i)
k = nθ̃.

The matrix M3, has n(Λj − θj) rows of weight j for each
j ∈ {1, . . . , dmax

v } and α
(i)
k columns of weight i − k, where

k ∈ {0, 1, 2} and i ∈ {1, . . . , dmax
c }. The number of ones in

M3 is given by f3 = n
dmax
v∑
j=1

j(Λj−θj) =
dmax
c∑
i=1

2∑
k=0

α
(i)
k (i−k) =

N −nθ̃. From Theorem 1, the cardinality of M3 is shown in
(4) for δ3 > 0.

We define for i = 1, . . . , dmax
c , α̃(i) = α(i)/n and for j =

1, . . . , dmax
v , β̃(j) = β(j)/n, where α(i) = (α

(i)
0 , α

(i)
1 , α

(i)
2 )

and β(j) = (β
(j)

b j2 c+1
, . . . , β

(j)
j ). The cardinality of M can be

expressed as in (5)

|M| =
∑

α̃,β̃

dmax
c∏

i=1

(
nξPi

nα̃
(i)
0 , nα̃

(i)
1 , nα̃

(i)
2

)
×

dmax
v∏

j=1

(
nθj

nβ̃
(j)

b j2 c+1
, . . . , nβ̃

(j)
j

)
|M1||M2||M3|

(5)

where ξ = m/n and the sum is over the vectors α̃ =
(α̃(1), . . . , α̃(dmax

c )) and β̃ = (β̃(1), . . . , β̃(dmax
v )) that satisfy

2∑

k=0

α̃
(i)
k = ξPi, i = 1, . . . , dmax

c (7)

dmax
c∑

i=1

α̃
(i)
1 = γ,

dmax
c∑

i=1

2∑

k=0

kα̃
(i)
k = θ̃, (8)

j∑

k=b j2 c+1

β̃
(j)
k = θj , j = 1, . . . , dmax

v , (9)

dmax
v∑

j=1

j∑

k=b j2 c+1

kβ̃
(j)
k = 2

dmax
c∑

i=1

α̃
(i)
2 . (10)

For each i ∈ {1, . . . , dmax
c } and for each j ∈ {1, . . . , dmax

v },
we define the probability vectors p(i) = (p

(i)
0 , p

(i)
1 , p

(i)
2 ) and

z(j) = (z
(j)

b j2 c+1
, . . . , z

(j)
j ) with

p
(i)
k =

1

Ui

(
i

k

)
,

z
(j)
k =

1

U ′j

(
j

k

)
,

Ui =

2∑

k=0

(
i

k

)
,

U ′j =

j∑

k=b j2 c+1

(
j

k

)
.

(11)

The normalized logarithmic asymptotic distribution of AE
a,b

for a = θn and b = γn for C Λ,P
n is defined as

GΛ,P
E (θ, γ) := lim

n→∞
1

n
ln
(
PΛ,P

E (θn, γn)
)

(12)

where PΛ,P
E (a, b) is the average number of size (a, b) EASs in

the Tanner graph of a code drawn randomly from the ensemble
C Λ,P
n . We have

PΛ,P
E (θn, γn) =

∑

θ

dmax
v∏

j=1

(
nΛj
nθj

) |M|
|HR,Lm,n |

=̇
∑

θ,α̃,β̃

exp(nT (θ, α̃, β̃))

(13)

where |HR,Lm,n | and |M| are given in (3) and (5) and T (θ, α̃, β̃)
is defined in (6). From Lemma 1 and by using the Lagrangian
multiplier method, it can be shown that the normalized log-
arithmic asymptotic distribution GΛ,P

E (θ, γ) can be expressed
as shown in (14), where A1, A2, A3, A4, θ̃

? satisfy

A1A2

dmax
c∑

i=1

iPi

1 + iA1A2 +
(
i
2

)
A2

2

=
γ

ξ
,

dmax
v∑

j=1

θ?j = θ

dmax
c∑

i=1

Pi(iA1A2 + i(i− 1)A2
2)

1 + iA1A2 +
(
i
2

)
A2

2

=
θ̃?

ξ
,

dmax
v∑

j=1

jθ?j = θ̃?

dmax
v∑

j=1

θj

j∑
k=b j2 c+1

(
j
k

)
kAk3

j∑
k′=b j2 c+1

(
j
k′
)
Ak
′

3

= θ̃? − γ

|M3| =
(N − nθ̃)!

dmax
c∏
i=1

2∏
k=0

((i− k)!)α
(i)
k

dmax
v∏
j=1

(j!)n(Λj−θj)
exp


− n

2f2
3



dmax
v∑

j=1

(Λj − θj)j(j − 1)





dmax
c∑

i=1

2∑

k=0

(i− k)(i− k − 1)α
(i)
k




×

(1 + o(n−1+δ3)).
(4)

T (θ, α̃, β̃) =
1

n
ln




dmax
v∏
j=1

(
nΛj
nθj

)

(
N
nθ̃

)(
nθ̃
nγ

)
dmax
c∏

i=1

UPiξn
i

(
Piξn

nα̃
(i)
0 , nα̃

(i)
1 , nα̃

(i)
2

) 2∏

k=0

(p
(i)
k )nα̃

(i)
k

dmax
v∏

j=1

U
′nθj
j

(
nθj

nβ̃
(i)

b j2 c+1
, . . . , nβ̃

(j)
j

) j∏

k=b j2 c+1

(z
(j)
k )nβ̃

(j)
k




(6)
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GΛ,P
E (θ, γ) = − d̄vH

(
θ̃?

d̄v
, 1 − θ̃?

d̄v

)
− θ̃?H

(
γ

θ̃?
, 1 − γ

θ̃?

)
+

dmax
v∑

j=1

θ?j ln




j∑

k=b j
2
c+1

(j
k

)
Ak3


+

dmax
c∑

i=1

ξPi ln

(
1 + iA1A2 +

(i
2

)
A2

2

)

− γ ln(A1/A3) − θ̃? ln(A2A3) +

dmax
v∑

j=1

ΛjH

(
θj

Λj
, 1 − θj

Λj

)
.

(14)

with

θ?j =

Λj
j∑

k=b j2 c+1

(
j
k

)
Ak3

j∑
k=b j2 c+1

(
j
k

)
Ak3 +A4

(
A2A3

d̄v−θ̃?
θ̃?−γ

)j

and H(p1, . . . , pN ) = −∑i pi ln(pi), with
∑
i pi = 1,

denotes the entropy function.

B. General Absorbing Sets

We use the same notation of subsection III-A. The asymp-
totic cardinalities of Ml for l = 1, 2, 3 are given in (15), (16)
and (17), where we omit the exponential terms in Theorem 1.

We have q̃ = 1
n

dmax
c∑
i=1

i∑
k=0
k even

kα
(i)
k = 1

n

dmax
v∑
j=1

j∑
k=b j2 c+1

kβ
(j)
k

|M1|=̇
(nq̃)!

dmax
c∏
i=1

i∏
k=0
k even

(k!)α
(i)
k

dmax
v∏
j=1

j∏
k=b j2 c+1

(k!)β
(j)
k

(15)

|M2|=̇
(nθ̃ − nq̃)!

dmax
c∏
i=1

i∏
k=0
k odd

(k!)α
(i)
k

dmax
v∏
j=1

j∏
k=b j2 c+1

((j − k)!)β
(j)
k

(16)

|M3|=̇
(N − nθ̃)!

dmax
c∏
i=1

i∏
k=0

((i− k)!)α
(i)
k

dmax
v∏
j=1

(j!)n(Λj−θj)
.

(17)

We extend the probability vector defined in (11) to p(i) =

(p
(i)
0 , . . . , p

(i)
i ) with p

(i)
k =

(
i
k

)
/Ui where Ui =

i∑
k=0

(
i
k

)
. The

normalized logarithmic asymptotic distribution ofAa,b for a =
θn and b = γn for C Λ,P

n is defined as

GΛ,P(θ, γ) := lim
n→∞

1

n
ln
(
PΛ,P(θn, γn)

)
(18)

where PΛ,P(a, b) is the average number of size (a, b) ASs in
the Tanner graph of a code drawn randomly from the ensemble
C Λ,P
n . We proceed in the same manner as in subsection III-A

and get the expression in (19).

IV. NUMERICAL RESULTS

In this section, we evaluate the expressions of the nor-
malized logarithmic asymptotic distribution of AE

a,b and Aa,b
derived in the previous section. In Fig 1 and 2, we fix the
ratio ∆ = γ/θ and compute GΛ,P

E (θ,∆θ), GΛ,P(θ,∆θ) for the
rate 1/2 ensembles C Λ(1),P(1)

n and C Λ(2),P(2)

n with Λ(1)(x) =

0.5x3 + 0.5x4, P(1)(x) = x7, Λ(2)(x) = 0.5x4 + 0.5x5,
P(2)(x) = x9 and ∆ ∈ {0.005, 0.05, 0.1, 0.5, 1}. Following
[15], for a fixed ∆, the second zero crossing of (GΛ,P

E (θ,∆θ))
GΛ,P(θ,∆θ) (the first one is zero), if it exists, is called the
typical ∆-(elementary) absorbing set number. We denote by
(dEAS

min ) dAS
min the ∆-(elementary) absorbing set number, which

is the size of the smallest (elementary) absorbing set with
∆ = b/a. Having a strictly positive typical ∆-(elementary)
absorbing set number is a desired property of the LDPC code
ensemble. We can observe that the typical ∆-(elementary)
absorbing set numbers decrease as ∆ increases. We also
remark that C Λ(2),P(2)

n has better absorbing set properties than
C Λ(1),P(1)

n .
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Fig. 1. Normalized logarithmic asymptotic distribution of elementary ( ,
, , , ) and general absorbing sets ( , , ,
, ) for Λ(1)(x) = 0.5x3 + 0.5x4, P(1)(x) = x7 and ∆ = 1

( ), ∆ = 0.5 ( ), ∆ = 0.1 ( ), ∆ = 0.05 ( ), ∆ = 0.005
( ).

V. CONCLUSION

We derived asymptotic distributions of elementary and
general absorbing sets for unstructured LDPC code ensembles.
The method is similar to the approaches for the trapping sets
proposed in [14] and for absorbing sets in [5], but [5] does not
consider irregular LDPC ensembles. Moreover, the simplified
expressions derived in [5] are valid only for regular LDPC
code ensembles with VN degree 3 and 4. Following [15],
we defined the typical ∆-(elementary) absorbing set number,
which can be used to evaluate the absorbing set properties of
an LDPC code ensemble.
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GΛ,P(θ, γ) =
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Fig. 2. Normalized logarithmic asymptotic distribution of elementary ( ,
, , , ) and general absorbing sets ( , , ,
, ) for Λ(2)(x) = 0.5x4 + 0.5x5, P(2)(x) = x9 and ∆ = 1

( ), ∆ = 0.5 ( ), ∆ = 0.1 ( ), ∆ = 0.05 ( ), ∆ = 0.005
( ).
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Abstract—The quantization of the outputs of a binary-input
discrete memoryless channel is considered. A new recursive
method for finding all optimal quantizers for all output cardinal-
ities is proposed. Two different versions of the newly proposed
method for top-down and bottom-up approaches are developed
which provide an improved understanding of the quantization
problem under consideration. Also, an efficient algorithm based
on dynamic programing is proposed and shown to have a
comparable complexity with the state of the art.

I. INTRODUCTION

Quantization has practical applications in hardware im-
plementations of communication systems, e.g., from channel
output quantization to message passing decoders [1] and
polar code construction [2]. In such applications, there is a
trade-off between performance and complexity of the system
represented by the number of quantization levels. Therefore, it
is of interest to use as few quantization levels as possible while
maintaining reliable communication with a given transmission
rate.

Recently we studied channel output quantization from a
mismatched-decoding perspective [3]. This study showed that
the best mismatched decoder coincides with maximum like-
lihood decoding for the channel between the channel input
and the quantizer output. This result supports the approach of
optimizing the quantizer based on a performance metric for
the quantized channel, e.g., mutual information [4] or error
exponent [5].

Consider a discrete memoryless channel (DMC) followed by
a quantizer at the output, as shown in Fig. 1. The channel input
X takes values in X = {1, . . . , J} with probability distribution
px = Pr(X = x), and the channel output Y takes values
in Y = {1, . . . ,M}, with channel transition probabilities
Wy|x = Pr(Y = y|X = x). The channel output is quantized
to Z(K), which takes values in Z(K) = {z(K)

1 , . . . , z
(K)
K }, by

a possibly stochastic quantizer Qz|y = Pr(Z(K) = z|Y = y).
The conditional probability distribution of the quantizer output
given the channel input is Tz|x = Pr(Z(K) = z|X = x) =∑
y∈Y Qz|yWy|x.
The mutual information between X and Z(K) is

I(X;Z(K)) =
∑

z∈Z(K)

∑

x∈X
pxTz|x log

Tz|x∑
x′ px′Tz|x′

. (1)

This work has been funded in part by the European Research Council under
grant 725411, and by the Spanish Ministry of Economy and Competitiveness
under grant TEC2016-78434-C3-1-R.

Wy|x Qz|y
YX Z(K)

Tz|x

Fig. 1: A discrete memoryless channel followed by a quantizer.

Let us denote the set of all possible quantizers Q with
K outputs, including stochastic quantizers, with Q(K). We
formulate the quantizer optimization as follows: for a given
constant 0 ≤ α ≤ 1, we want to find an optimal quantizer Q∗α
with the smallest cardinality K from the set S defined as

S , {Q ∈ QK : 1 ≤ K ≤M, I(X;Z(K)) ≥ αI(X;Y )}.
(2)

The optimal quantizer Q∗α preserves at least an α-portion
of the original mutual information with the smallest number
of quantization levels K.

II. BACKGROUND AND CONTRIBUTION

For a fixed output cardinality K, Kurkoski and Yagi showed
that there is a deterministic quantizer that maximizes the
mutual information (1) between channel input and quan-
tized output [4]. Therefore, considering only deterministic
quantizers is sufficient to find the optimal quantizer Q∗α. A
deterministic quantizer Q maps each output y to only one
quantized output z(K)

k , Q : {1, . . . ,M} → {z(K)
1 , . . . , z

(K)
K },

therefore, the corresponding probabilistic map Qz|y takes only
values 0 or 1. We define the pre-image of z(K)

k as

A(z
(K)
k ) =

{
y ∈ Y : Q−1(z

(K)
k ) = y

}
(3)

which is the set of channel outputs that are mapped to z(K)
k .

Hence, the deterministic quantizer Qz|y partitions Y to K

subsets {A(z
(K)
1 ), . . . ,A(z

(K)
K )}.

Let Px|y = Pr(X = x|Y = y) be the posterior conditional
probability distribution on the channel input which depends
on the input distribution px and the channel conditional
distribution Wy|x. For each channel output y, we define a
vector vy

vy =
[
P1|y, P2|y, . . . , PJ−1|y

]
(4)

with vy ∈ U = [0, 1]
J−1. Define an equivalent quantizer

Q̃ on the vectors {v1, . . . , vM} as Q̃(vy) = Q(y) = z.
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Kurkoski and Yagi in [4, Lemma 2], using the results of
[6], study a condition to find an optimal quantizer Q̃∗. They
show the existence of an optimal quantizer Q̃∗ for which two
distinct preimages Q̃∗−1(z) and Q̃∗−1(z′) are separated by a
hyperplane in Euclidean space U . Unfortunately, this condition
does not offer a practical search method for quantizer design
problem in general; however, as suggested in [4], it simplifies
the problem for binary-input case.

The problem of finding Q∗α can be tackled by either a
bottom-up or top-down approach. The former starts with trivial
partition into K = M subsets, where each subset A(z

(K)
k ),

1 ≤ k ≤ K contains exactly one element of Y . At each
step, we decrease the cardinality K by one and design a
quantizer with output size K. We stop when the corresponding
mutual information goes below the desired threshold. The
latter approach starts with the other trivial solution with single
partition containing all the elements, i.e., A(z

(1)
1 ) = Y . At

each step, we increment the cardinality K by one and design a
quantizer with output size K. We stop when the corresponding
mutual information reaches (or exceeds) the desired threshold.
In both approaches, the quantizer design at each step can
be performed either recursively, namely by starting from the
result of previous step, or independently, which means that the
design is performed independent of the previous step result.

An example of a recursive bottom-up approach is the
agglomerative information bottleneck [7] which has been
rediscovered multiple times in the literature with different
names such as greedy merging or greedy combining [1], [2].
This algorithm iteratively reduces the cardinality by merging
two outputs into a new single output. At each iteration, the
greedy algorithm evaluates all the possible pairwise merges
and selects the one that minimizes the mutual information
loss. Although this algorithm finds the optimal pairwise merge
at each step, it is globally suboptimal, since it fixes all the
previously performed merges. This algorithm has complexity
O(M2) for a bottom-up design, resulting in a quantizer for
each cardinality 1 ≤ K ≤M .

As for the independent approach, several quantizer design
algorithms from the literature can be utilized. For binary-
input DMCs, Kurkoski and Yagi developed an algorithm based
on dynamic programming that finds an optimal quantizer
with time complexity O(K(M −K)2) [4]. Iwata and Ozawa
[8] improved the complexity to O(K(M − K)) using the
SMAWK algorithm. For the non-binary-input case, finding
the optimal quantizer is an NP-hard problem [9], however
several suboptimal algorithms are proposed in the literature.
An example is KL-means quantizer [10] which is a variation
of the K-means clustering algorithm by replacing Euclidean
distance metric with Kullback-Leibler divergence. This algo-
rithm has complexity O(KMT ) where T is the number of
iterations that algorithm is run to converge to a local optimum.
The complexity of top-down (or bottom-up) approach with
independent design at each step is K (or M −K) times the
complexity of a single-step run, respectively.

In this paper, we focus on the binary-input case and we
propose a recursive method for quantization of binary-input

DMCs that finds all the optimal quantizers. We develop
two versions of the new method, one for top-down and the
other for bottom-up approach. In addition, we propose an
algorithm based on dynamic programming that has comparable
complexity to the best known algorithm from the literature.

III. OPTIMAL RECURSIVE QUANTIZER

For the binary-input case, the posterior conditional proba-
bilities vy = P (1|y) are in one-dimensional space U = [0, 1].
Denote the output probabilities by πi = Pr(Y = i). We assume
that the outputs are relabelled to satisfy

P (1|1) < P (1|2) < · · · < P (1|M). (5)

According to the [4, Lemma 3], there is an optimal quantizer
Q∗ such that preimages of the quantizer outputs consist of
contiguous set of integers,

A∗(z(K)
k ) = {a∗k−1 + 1, . . . , a∗k} (6)

for z(K)
k ∈ Z(K), with a∗0 = 0 and a∗k−1 < a∗k and a∗K = M .

The a∗k’s are optimal quantizer boundaries which satisfy

0 < a∗1 < a∗2 < · · · < a∗K−1 < M. (7)

Here we show that this condition is necessary for any
optimal quantizer. Denote the mutual information loss cor-
responding to merging outputs j and l with ∆ı(j, l) which is
given by

∆ı(j, l) =
∑

x∈{1,2}
πjΦ(P (x|j)) + πlΦ(P (x|l))

− (πj + πl)Φ(P (x|yjl)), (8)

where Φ(x) = x log(x).

Lemma 1. For binary-input DMC, assuming that the outputs
are relabelled to satisfy (5), then for any choice of 1 ≤ j <
k < l ≤M at least one of the following is true,

{
∆ı(j, k) < ∆ı(j, l) if πj

πl
≤ vl−vk

vk−vj ,

∆ı(k, l) < ∆ı(j, l) if πj

πl
≥ vl−vk

vk−vj .
(9)

The proof is in the Appendix. Lemma 1 shows that for
any quantizer that does not satisfy the condition in (6),
there is another quantizer satisfying this condition that has a
higher mutual information. Therefore, based on this necessary
condition, the quantizer design reduces to searching for the
optimal boundaries a∗k as in (7).

A. Modified Greedy Merging

The greedy merging algorithm [1], [2] reduces the output
cardinality by performing the best pairwise merge at each step.
It finds the optimal single-step quantizer by a greedy search,
i.e.,

Q(i)
m = arg min

Q∈Q(i)
m

I(X;Z(i+1))− I(X;Z(i)), (10)

where Q(i)
m is set of all possible single-step deterministic

quantizers (pairwise merges) from Z(i+1) to Z(i).
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In this section, we propose a new greedy algorithm which
considers all pairwise merges and also another set of single-
step quantizers which we denote them as contractions. A
contraction is a single-step quantizer that consists of splits and
merges. Next, we denote the definitions of split and merge and
afterwards we define a contraction.

Definition 1 (Splitting an output). A quantizer output zk with
preimage A(zk) = {ak−1 +1, . . . , ak} of size bk = |A(zk)| ≥
2, splits into two non-empty parts zkL (left) and zkR (right)
with preimages A(zkL) = {ak−1 + 1, . . . , s} and A(zkR) =
{s+1, . . . , ak}. This split can be done in bk−1 different ways,
ak−1 + 1 ≤ s ≤ ak − 1.

Definition 2 (Merging an split output). An split output zk with
two non-empty parts zkL (left) and zkR (right) is merged as:
1- zkL merges with zk−1 (or z(k−1)R if it has been split too)
2- zkR merges with zk+1 (or z(k+1)L)

Contraction from K-level to (K − 1)-level:

1) Input: a K-level quantizer with output boundaries
{a1, a2, . . . , aK−1}

2) Select a set of consecutive non-boundary outputs
{zj , zj+1, . . . , zl} with j > 1, l < K and bk =
|A(zk)| ≥ 2 for all j ≤ k ≤ l.

3) Split each zk according to Definition 1. This step can
be done in

∏l
k=j(bk − 1) different ways.

4) Merge zkR with z(k+1)L for all j ≤ k ≤ l−1, also merge
zj−1 with zjL and zlR with zl+1.

5) Output: a (K−1)-level quantizer with output boundaries
{a′1, . . . , a′K−2} for which ak−1 < a′k−1 < ak for all
j ≤ k ≤ l − 1.

Let us denote the set of all quantizers obtained by contrac-
tion as Q(K−1)

c .
As an example to illustrate contraction, consider a quantizer

with 3 outputs with preimages A(z1) = {1, . . . , a1}, A(z2) =
{a1 + 1, . . . , a2} and A(z3) = {a2 + 1, . . . ,M}. According
to step 2 of contraction, the only possibility for a set of
consecutive non-boundary outputs is {z2} if b2 = |A(z2)| ≥ 2.
In step 3, we split z2 into two parts A(z2L) = {a1 +1, . . . , s}
and A(z2R) = {s+1, . . . , a2} where a1 +1 ≤ s ≤ a2−1. We
merge z2L with z1 and z2R with z3 according to step 4. The
output of this contraction is a quantizer with 2 outputs that has
the boundary a′1 = s. The set of all b2−1 possible contractions
for this example are specified by a1 + 1 ≤ s ≤ a2 − 1.

Modified greedy merging starts from the trivial solution with
M outputs and at each step performs a greedy search over
all possible contractions Q(i)

c and all pairwise merges Q(i)
m ,

selecting the one with lowest mutual information loss. At each
step it keeps all the quantizers that have the highest mutual
information and uses them as a seed for the next step.

Theorem 1. For the binary-input DMC, the modified greedy
merging algorithm finds all optimal quantizers Q∗ for all
output cardinalities 1 ≤ K ≤M .

Due to space limitations, we omit the proof.

B. Modified Greedy Splitting

Modified greedy splitting is a top-down algorithm that is
the dual of modified greedy merging. It starts from the trivial
solution with a single output and at each step it increases the
output cardinality by one, performing a greedy search over all
possible expansions. It keeps all the quantizers that have the
highest mutual information at each step and uses them as a
seed for next step. In the following we define an expansion
which consists of splits and merges.

Assume that we have a K-level quantizer which is specified
by its boundaries {a1, a2, . . . , aK}, we obtain a (K+1)-level
quantizer by set of splits and merges according to following
steps.

Expansion from K-level to (K + 1)-level:
1) Input: a K-level quantizer with output boundaries
{a1, a2, . . . , aK−1}

2) Select a set of consecutive outputs {zj , zj+1, . . . , zl}
with j ≥ 1, l ≤ K and bk = |A(zk)| ≥ 2 for all
j ≤ k ≤ l.

3) Split each zk according to Definition 1. This step can
be done in

∏l
k=j(bk − 1) different ways.

4) If the size of selected set in Step 2 is one, omit this
otherwise merge zkR with z(k+1)L for all j ≤ k ≤ l− 1.

5) Output: a (K+1)-level quantizer with output boundaries
{a′1, . . . , a′K} for which ak−1 < a′k < ak for all j ≤
k ≤ l.

Let us denote the set of all quantizers obtained by expan-
sions as Q(K+1)

e .
As an example to illustrate expansion, consider a quan-

tizer with 2 outputs with preimages A(z1) = {1, . . . , a1},
A(z2) = {a1 +1, . . . ,M}. An expansion for this example can
be obtained in two different ways. The first one is simply by
splitting one of the outputs z1 or z2 which can be performed
in b1 − 1 and b2 − 1 different ways. The second one is by
splitting both z1 and z2 and merging z1R with z2L. The latter
can be performed in (b1−1)(b2−1) different ways. The output
of any such expansion is a quantizer with 3 outputs that has
the boundaries {a′1, a′2}.
Theorem 2. For the binary-input DMC, the modified greedy
splitting finds all optimal quantizers Q∗ for all output cardi-
nalities 1 ≤ K ≤M .

This theorem can be easily proved by showing the duality
between expansions and contractions plus pairwise merges.

Note that the number of possible contractions and ex-
pansions increases polynomially as the number of outputs
with large preimages increase. Therefore, the complexity of
the modified greedy algorithms also grows polynomially. In
the following we provide an algorithm based on dynamic
programming which has quadratic complexity in the worst
case.

C. Dynamic Programming Based Algorithm

This algorithm is a modified version of the Quantizer Design
Algorithm [4] which is an instance of dynamic programming.
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The assumption for this algorithm is that we already know the
optimal K-level quantizer (which is specified by its boundaries
{ai}Ki=0) and we want to find the optimal (K + 1)-level
quantizer employing the constraints imposed by expansion
procedure on the resulting boundaries {a′i}K+1

i=0 . The algorithm
has a state value Sz(y), which is the maximum partial mutual
information when channel outputs 1 to y are quantized to
quantizer outputs 1 to z. This can be computed recursively
by conditioning on the state value at time index z − 1:

Sz(a) = max
a′

(
Sz−1(a′) + ı(a′ → a)

)
, (11)

where ı(a′ → a) is the contribution that the quantizer output
z = {a′ → a} makes to the mutual information. It is called
partial mutual information and is given by

ı(a′ → a) =
∑

x∈X
Px

a∑

y=a′+1

Py|x log

∑a
y′=a′+1 Py′|x∑

x′
∑a
y′=a′+1 Py′|x′

.

(12)
There are constraints imposed by the expansion procedure
on the set of states a′ that needs to be considered in the
maximization in (11). These constraints have a key role in
simplifying the original Quantizer Design Algorithm [4].

Splitting Algorithm
1) Inputs

• Binary-input discrete memoryless channel Py|x re-
labelled to satisfy (5).

• Input distribution Px.
• Set of boundaries {ai}Ki=0 corresponding to the

optimal K-level quantizer.
2) Precompute the partial mutual information. For each 0 ≤

i ≤ K − 1,
• For a′ = ai + 1 and for each a ∈ ai + 1, . . . , ai+1,

compute ı(a′ → a) according to (12).
• For each a′ ∈ {ai + 2, . . . , ai+1} and for each a ∈
{ai+1, . . . , t}, (where t = M for i = K−1 and t =
ai+2 − 1 otherwise) compute ı(a′ → a) according
to (12).

3) Recursion
• S1(a) = ı(1→ a) for a ∈ {1, . . . , a1}.
• Store the local decision h1(a) = 0 for a ∈
{1, . . . , a1}.

• For each 1 ≤ i ≤ K − 1,
– Compute

Si+1(ai) = max
a′

Si(a
′) + ı(a′ → ai),

hi+1(ai) = arg max
a′

Si(a
′) + ı(a′ → ai),

where the maximization is over a′ ∈ {ai−1 +
1, . . . , ai − 1}.

– For each a ∈ {ai + 1, . . . , ai+1 − 1} compute

Si+1(a) = max
a′

Si(a
′) + ı(a′ → a),

hi+1(a) = arg max
a′

Si(a
′) + ı(a′ → a),

where the maximization is over a′ ∈ {ai−1 +
1, . . . , ai}.

– Compute

Si+1(ai+1) = Si(ai) + ı(ai → ai+1),

hi+1(ai+1) = ai.

4) Find the optimal quantizer by traceback. Let a∗K+1 =
M . For each i ∈ {K,K − 1, . . . , 1},

a∗i = hi+1(a∗i+1).

Theorem 2 guarantees finding all the optimal quantizers at
each step provided that the algorithm is run with all seeds from
the previous step and that a tie-preserving implementation
collects all locally optimal decisions and tracebacks.

Note that the dual of this algorithm can be developed for
the bottom-up approach, based on the contraction procedure.
Namely, with the assumption of already knowing the optimal
K-level quantizer, all the optimal (K−1)-level quantizers are
found using similar dynamic programming approach.

D. Complexity

The splitting algorithm developed here has complexity
O(M2) in the worst case, and more generally it has com-
plexity O(

∑K
i=1 bibi+1) where

∑K
i=1 bi = M . The worst case

complexity is in the same order as the best known state of the
art algorithm in [8].

E. Example: Additive White Gaussian Noise (AWGN) Channel

We consider a binary-input AWGN channel with equally
likely ±1 inputs and noise variance of σ2 = 0.5. We first uni-
formly quantize the output of the AWGN channel y between
-2 and 2 with M = 1000 levels. The natural order of the
outputs of the resulting DMC satisfies (5). Later we apply the
splitting algorithm to find a quantizer with minimum output
levels which preserves α = 0.99 of the mutual information of
the original AWGN. Fig. 2 shows the quantization boundaries
for the optimal quantizers (of underlying DMC) with 2 to
8 outputs. The results match with those obtained by the
algorithm in [4]. We observe that the optimal quantizer with
K = 8 outputs satisfies the mutual information constraint (Fig.
3).

APPENDIX A
PROOF OF LEMMA 1

Let us denote the new output resulting from merging j and
l as y′jl and its conditional posterior probability as vjl

vjl = P1|y′jl =
(πjvj + πlvl)

πj + πl
→ πj

πl
=
vl − vjl
vjl − vj

(13)

v̄jl = P2|y′jl = 1− vjl →
πj
πl

=
v̄jl − v̄l
v̄j − v̄jl

. (14)

Now let us assume that
πj
πl

=
vl − vjl
vjl − vj

≥ vl − vk
vk − vj

, (15)

therefore, vjl ≤ vk.
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Fig. 2: Optimal quantization of a DMC derived from a finely
quantized AWGN channel with M = 1000 to K = 2 to K = 8
levels using the top-down splitting algorithm.
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Fig. 3: Normalized mutual information of the Optimal quan-
tizers with K = 2 to K = 8 levels.

With this assumption, we will show that both terms of the
summation in (8) is larger for a (j, l) merge than for a (k, l)
merge.

∆ı1(j, l) = πjΦ(vj)+πlΦ(vl)− (πj +πl)Φ(vjl) > ∆ı1(k, l),
(16)

∆ı2(j, l) = πjΦ(v̄j)+πlΦ(v̄l)− (πj +πl)Φ(v̄jl) > ∆ı2(k, l).
(17)

Fig. 4 illustrates (16) where,

δ1 =
∆ı1(j, l)

πj + πl
, δ2 =

∆ı1(k, l)

πk + πl
. (18)

We have the following relations on the triangles in Fig. 4,

δ1
∆1 + ∆2

=
vjl − vj
vl − vj

=
πl

πj + πl
, (19)

δ2
∆2

=
vkl − vk
vl − vk

=
πl

πk + πl
, (20)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

Fig. 4: Illustration of ∆ı1(j, l) and ∆ı1(k, l).

where the second equality comes from (13). Notice that ∆1 >
0, since vjl ≤ vk and Φ(·) is a strictly convex function. Using
(19) and (20) in (18) we have

∆ı1(j, l) = πl(∆1 + ∆2) > πl∆2 = ∆ı1(k, l), (21)

which proves (16). We can prove (17) in a similar way since
from the assumption in (15) we have v̄jl ≥ v̄k.

If we assume other side of inequality from (15), namely
πj
πl

=
vl − vjl
vjl − vj

≤ vl − vk
vk − vj

, (22)

we can similarly prove that ∆ı(j, l) > ∆ı(j, k). This com-
pletes the proof.
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An Upgrading Algorithm with Optimal Power Law
Or Ordentlich, Ido Tal

Abstract—Consider a channel W along with a given input
distribution PX . In certain settings, such as in the construction
of polar codes, the output alphabet of W is often ‘too large’, and
hence we replace W by a channel Q having a smaller output
alphabet. We say that Q is upgraded with respect to W if W is
obtained from Q by processing its output. In this case, the mutual
information I(PX ,W ) between the input and output of W is
upper-bounded by the mutual information I(PX , Q) between the
input and output of Q. In this paper, we present an algorithm
that produces an upgraded channel Q from W , as a function
of PX and the required output alphabet size of Q, denoted L.
We show that the difference in mutual informations is ‘small’.
Namely, it is O(L−2/(|X|−1)), where |X | is the size of the input
alphabet. This power law of L is optimal.

I. INTRODUCTION

In his seminal paper on polar codes, Arıkan introduced
synthetic channels [1, equation (5)], also called bit-channels.
These synthetic channels have a binary input alphabet and an
intractably large output alphabet. Namely, the output alphabet
size of such a channel is at least 2N , where N is the length of
the polar code. When constructing a polar code, the vast size
of the output alphabet is very much an issue. We note that in
many settings more general than the seminal one, we search
for channels that are ‘very noisy’. A crucial observation is
that instead of considering the original synthetic channel, one
may approximate it by another channel having a much smaller
output alphabet size [2]. Specifically, if the approximating
channel is upgraded with respect to the original channel and
shown to be ‘very noisy’, then this must also be the case for
the original channel.

II. SETTING

We are given a channel W : X → Y along with an input
distribution PX . We denote the mutual information between
the input and output of W as I(PX ,W ) , I(X;Y ), where
X and Y are random variables with joint distribution

PX,Y (x, y) = PX(x)W (y|x) . (1)

Let Q : X → Z be a channel with the same input alphabet
as W : X → Y . We say that Q is upgraded with respect to
W if we can obtain W by processing the output of Q. That
is, if there exists a third channel Φ : Z → Y such that, for
every x ∈ X and y ∈ Y ,

W (y|x) =
∑

z∈Z
Q(z|x)Φ(y|z) .

Put another way, we want X , Z, and Y to form a Markov
chain, in that order.

O. Ordentlich is with the School of Computer Science and Engineering,
Hebrew University of Jerusalem, Israel (email: or.ordentlich@mail.huji.ac.il).

I. Tal is with the Department of Electrical Engineering, Technion, Haifa
32000, Israel (email: idotal@ee.technion.ac.il).

Our goal in this paper, given a fixed input alphabet size
|X |, an input distribution PX , a channel W : X → Y , and
a parameter L, is to construct a channel Q : X → Z that is
upgraded with respect to W and whose output alphabet size
satisfies |Z| ≤ L. Our method produces such a Q for which

I(PX , Q)− I(PX ,W ) = O(L−2/(|X |−1)) . (2)

By [3, Section IV], the above power law of L is optimal.

III. THE ALGORITHM

Similarly to the method in [4], we use the ‘one-hot’ repre-
sentation of x ∈ X to affect a reduction from the non-binary
alphabet X to the binary alphabet X ′. Namely, w.l.o.g. let us
assume that X = {1, 2, . . . , q}. We will replace x ∈ X by a
length q − 1 vector f(x) = (x1, x2, . . . , xq−1), such that

xi =

{
1 if x = i

0 otherwise

For each 1 ≤ i ≤ q − 1, we apply the binary-input upgrading
algorithm in [3, Section VI] to PXiY |Xi−1

1 =0i−1
1

, and require
that the output alphabet size of the upgrading channel satisfy
|Z(i)| ≤ Λ, where Λ =

⌊
L1/(q−1)⌋. Denote the resulting joint

distribution β(i)
Xi,Zi,Y

(x′, z′, y). From these q−1 distributions,
we define our final distribution on (X,Z, Y ). The output
alphabet is

Z = Z(1) ×Z(2) × · · · × Z(q−1) ,

and the joint distribution is

P ∗X,Z,Y (x, z, y) = PY (y) ·
(
q−1∏

i=1

β
(i)
Zi|Y (zi|y)

)

·
(
q−1∏

i=1

γ
(i)

Xi|Zi,X
i−1
1

(xi|zi, xi−11 )

)
, (3)

where, for 1 ≤ i ≤ q,

γ
(i)

Xi|Zi,X
i−1
1

(xi|zi, xi−11 )

=





β
(i)
Xi|Zi

(xi|zi) if xi−11 = 0i−11 ,

1 if xi−11 6= 0i−11 and xi = 0 ,

0 otherwise .

(4)
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Abstract—In a distributed information application an encoder
compresses an arbitrary vector while a similar reference vector is
available to the decoder as side information. For the Hamming-
distance similarity measure, and when guaranteed perfect recon-
struction is required, we present two contributions to the solution
of this problem. One potential application of the results is the
compression of DNA sequences, where similar (but not identical)
reference vectors are shared among senders and receivers.

I. INTRODUCTION

This paper1 continues the line of work on guaranteed-
success compression with Hamming-bounded side informa-
tion [1]. In the first part of the paper (Section II), we study
the case where the encoder as usual does not know the
decoder’s reference vector z, but it does have a set Z of
vectors that contains z (among many other vectors). Our
results in this part show that if the vectors in Z have a
certain well-defined “clustering” property, then it is possible
to reduce the compression rate below the best known. This
can be achieved without any probabilistic assumptions on the
set Z, and without directly enforcing a bound on its size.
Our results in this part are for guaranteed-decoding average
compression rate, where the average is taken over the random
hash function used, and not over the input y (which has no
probability distribution). For the same model our results also
include a lower bound on compression rate for any scheme
that uses random hashing. In the second part of the paper
(Section III), we return to the classical model of [1] (no Z in
the encoder), and propose coding schemes with low complexity
of encoding and decoding. For guaranteed decoding of length-
n vectors with a constant fractional distance bound p, existing
schemes require decoding complexity that is exponential in n
due to the complexity of decoding an error-correcting code.
Our proposed schemes have O(n

√
n) decoding complexity,

which is low enough for practical implementation even for
long input sequences. For low distance fractions p, our scheme
has low compression rates, although not as low as the prior
schemes that do not consider the decoding complexity. We use
codes with structure similar to generalized concatenation (GC)
codes [2].

1A full version of this paper is currently under review for the IEEE
Transactions on Information Theory.

II. STRUCTURED SIDE INFORMATION

Let Z = {z1, . . . ,zM} be a set of vectors, where each
vector zi is a binary vector of length n. The set Z is known
to the encoder, and it contains the reference vector z available
at the decoder (but the encoder does not know which one
it is). The structure of Z is defined through the p-spread
parameter: p′(Z, p) , Dp(Z)

2n , where Dp(Z) is the maximal
distance between a pair of vectors in Z whose distance is at
most 2pn. Given those definitions, we have an achievability
result

Theorem 1. Let Z be a set of reference vectors with p-spread
parameter p′. Then there exists a coding scheme where for any
input vector y,

|ENC(y)| ≤ n [H(p) +H(p′) + ε] , (1)

as n→∞ and on average over the random hash functions.

H(·) is the entropy function. We also have the converse

Theorem 2. Given the parameters p and p′, any compression
scheme that encodes y as u(y), where u : {0, 1}n → {0, 1}m
is a random hash function, requires asymptotically for any y,
on average over the random hash functions

|ENC(y)| ≥ n [H(p′ + p)] . (2)

III. UNSTRUCTURED SIDE INFORMATION

For the case of unstructured side information that only
assumes that the Hamming distance between y and z is at
most pn, we propose a deterministic (guaranteed success)
compression scheme built on a GC code construction with the
following compression rate

Theorem 3. For any constant integer l the compression rate
of the GC-based construction is

H

(
3p+

1

l

(
1

2
− 3p

))
+

l∑

i=2

[
H

(
3p+

i

l

(
1

2
− 3p

))
−

H

(
3p+

i− 1

l

(
1

2
− 3p

))]
· 3p

3p+ i−1
l

(
1
2 − 3p

) . (3)
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Abstract—Locally repairable codes (LRCs) are considered with
equal or unequal localities, local distances, and local field sizes.
An explicit two-layer architecture with a sum-rank outer code
is obtained, having disjoint local groups and achieving maximal
recoverability (MR) for all families of local linear codes (MDS
or not) simultaneously, up to a specified maximum locality r.
Furthermore, the local linear codes (thus the localities, local
distances, and local fields) can be efficiently and dynamically
modified without global recoding or changes in architecture or
outer code, while preserving the MR property, easily adapting
to new configurations in storage or new hot and cold data. In
addition, local groups and file components can be added, removed
or updated without global recoding. The construction requires
global fields of size roughly gr , for g local groups and maximum
or specified locality r. For equal localities, these global fields are
smaller than those of previous MR-LRCs when r ≤ h (global
parities). For unequal localities, they provide an exponential field
size reduction on all previous best known MR-LRCs. For bounded

localities and a large number of local groups, the global erasure-
correction complexity of the given construction is comparable
to that of Tamo–Barg codes or Reed–Solomon codes with local
replication, while local repair is as efficient as for the Cartesian
product of the local codes. Reed–Solomon codes with local
replication and Cartesian products are recovered from the given
construction when r = 1 and h = 0, respectively. The given con-
struction can also be adapted to provide hierarchical MR-LRCs
for all types of hierarchies and parameters. Finally, subextension
subcodes and sum-rank alternant codes are introduced to obtain
further exponential field size reductions, at the expense of lower
information rates. This work is reported in [1].
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Abstract—The normalized logarithmic asymptotic distribution
of elementary and general trapping sets for irregular low-density
parity-check code ensembles is derived based on the generating
functions approach. A numerical technique for its evaluation is
presented that requires solving a system of equations.

I. INTRODUCTION

Trapping sets [1], [2] and absorbing sets [3] play a fun-
damental role in the error floor performance (under iterative
decoding) of low-density parity-check (LDPC) codes [4]. An
enumeration of the trapping sets present within a specific
LDPC code graph is a formidable problem (see, e.g., [5]–[7]).
The difficulty can be circumvented by analyzing the average
trapping set enumerators of an LDPC code ensemble, rather
than analyzing a specific code. This path was followed in
[8] where a characterization of the (asmptotic) trapping set
properties of regular/irregular unstructured LDPC ensembles
was obtained based on random matrix enumeration methods.

In this paper, we provide an alternative derivation of the
normalized logarithmic asymptotic distribution of elementary
and general trapping sets for irregular LDPC code ensembles.
The derivation relies on the generating function approach,
already adopted for the analysis of weight and stopping set
enumerators of unstructured (generalized) LDPC ensembles
[9]–[13], and it requires solving a system of equations.

The paper is organized as follows. In Section II, we review
definitions and known results. Section III provides the deriva-
tion of the asymptotic trapping set enumerators for irregular
LDPC code ensembles. Numerical results are presented and
discussed in Section IV. Conclusions follow in Section V.

II. PRELIMINARIES

A. LDPC Codes

Binary LDPC codes are binary linear block codes defined by
an m×n sparse parity-check matrix H . The code dimension
is k ≥ n − m. The Tanner graph of an LDPC code is a
bipartite graph G = (V ∪C,E ) consisting of n variable nodes
(VNs) and m check nodes (CNs). The set E of edges contains
the elements eij , where eij is an edge between VN vj ∈ V
and CN ci ∈ C. Note that eij belongs to the set E if and
only if the parity-check matrix element hij is equal to 1.
The sets N (vj) and N (ci) denote the neighbors of VN vj
and CN ci, respectively. The degree of a VN vj (CN ci) is

the cardinality of the set N (vj) (N (ci)). The node-oriented
degree distribution polynomials of an LDPC code graph are

Λ(x) =
∑

i

Λix
i, P (x) =

∑

i

Pix
i (1)

where Λi,Pi correspond, respectively, to the fraction of VNs
and CNs with degree i. We further define by dmax

v (dmax
c ) the

maximum VN (CN) degree. We denote by

d̄v =
∑

i

iΛi, d̄c =
∑

i

iPi (2)

the average VN and CN degrees, respectively. Note that nd̄v =
md̄c represents the total number of edges. We define ξ as

ξ =
m

n
=

d̄v
d̄c
. (3)

An unstructured irregular LDPC code ensemble C Λ,P
n is the

set of all LDPC codes with block length n defined by a
bipartite graph with degree distributions Λ (x) and P (x).

B. Trapping Sets

For a set S ⊆ V of VNs , we denote by N (S) the set of its
neighboring CNs. Further, we denote by O(S) the set of CNs
in N (S) that are connected to S an odd number of times and
E(S) the set of CNs in N (S) that are connected to S an even
number of times.

Definition 1. An (a, b) trapping set (TS) Ta,b is set S of a
VNs such that O(S) contains b CNs [8].

Definition 2. An elementary trapping set (ETS) T E
a,b is a TS

where each CN c ∈ E(S) is connected to two VNs in S and
each CN c ∈ O(S) is connected to exactly one VN in S.

C. Useful Results

Definition 3. Let x(n) and y(n) be two real-valued sequences,
where y(n) 6= 0 ∀n, x(n) is exponentially equivalent to y(n)
as n→∞ if and only if

lim
n→∞

1

n
ln

(
x(n)

y(n)

)
= 0.

We will use the notation x(n)=̇y(n) to specify that x(n) is
exponentially equivalent to y(n).
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Lemma 1. We have
(
αn

βn

)
=̇ exp

{
nαH

(
β

α

)}
(4)

where H (p) = −p ln(p) − (1 − p) ln(1 − p) is the entropy
function.

Lemma 2. For every sequence y(w), we have
∑

w

exp(ny(w))=̇ exp
(
nmax

w
y(w)

)
. (5)

For z = (z1, z2, . . . , zd) and α = (α1, α2, . . . , αd), we
define

zα =

d∏

t=1

zαt
t . (6)

Lemma 3. [Hayman Formula for Multivariate Polynomials]
Let z = (z1, z2, . . . , zd) and let p(z) be a multivariate
polynomial with p(0) 6= 0. Let α = (α1, α2, . . . , αd) where
0 ≤ αt ≤ 1 and αtn is an integer for all t ∈ {1, 2, . . . , d}.
Then we have [14, Appendix A.2]

coeff(p(z)n, znα) =̇ exp

{
n

[
ln (p(x))−

d∑

t=1

αt ln (xt)

]}

(7)
where coeff (p(z)n, znα) represents the coefficient of znα

in the polynomial p(z)n, x = (x1, x2, . . . , xd) and
x1, x2, . . . , xd are the unique positive solutions to

xt
∂p(x)

∂xt
= αtp(x), ∀t ∈ {1, 2, . . . , d} . (8)

III. ASYMPTOTIC DISTRIBUTION OF TRAPPING SETS

The average number of size (a, b) TSs in the Tanner graph
of a code drawn randomly from the ensemble C Λ,P

n is

EΛ,P
TS (a, b) =

∑

w

coeff
(
g(x, y)n, xwyb

)
(
nd̄v
w

) coeff (f(t, s)n, tasw)

(9)

where we introduced the generating functions

f(t, s) =

dmax
v∏

j=1

(1 + tsj)Λj (10)

and

g(x, y)=

dmax
c∏

i=1

[
(1+x)i+(1−x)i

2
+y

(1+x)i−(1−x)i

2

]ξPi

.

(11)

Proof. Consider the Tanner graph of a code drawn randomly
from the ensemble C Λ,P

n . The number of ways to choose a
VNs such that exactly w edges emanate from them is

coeff (f(t, s)n, tasw) .

Moreover, the number of ways to choose w check sockets such
that exactly b CNs each have an odd number of sockets and

the other CNs each have an even number of check sockets is
given by

coeff
(
g(x, y)n, xwyb

)
.

We randomly choose a set S of a VNs with a uniform
distribution over all

(
n
a

)
possibilities. Let Z1 be a random

variable (RV) indicating the number of edges emanating from
the set S. Further, let Z2 be a RV that is equal to 1 if there
are exactly b CNs each connected an odd number of times to
S and the other CNs each have an even number (including
zero) of connections to S, and to 0 otherwise. Thus

EΛ,P
TS (a, b) =

(
n

a

)
Pr{Z2 = 1} (12)

and

Pr{Z2 =1}=
∑

w

Pr{Z1 = w}Pr{Z2 = 1|Z1 = w}

=
∑

w

coeff(f(t, s)n, tasw)(
n
a

) coeff
(
g(x, y)n, xwyb

)
(
nd̄v
w

) ,
(13)

The normalized logarithmic asymptotic distributions of TSs
for the ensemble C Λ,P

n for a = θn and b = γn is defined by

GΛ,P
TS (θ, γ) := lim

n→∞
1

n
ln
(
EΛ,P

TS (θn, γn)
)

(14)

where EΛ,P
TS (θn, γn) is the average number of (θn, γn) TSs in

the Tanner graph of a random code in C Λ,P
n .

Theorem 1. The normalized asymptotic distribution of
(θn, γn) TSs is given by

GΛ,P
TS (θ, γ) =− d̄v ln(1 + xs)− θ ln(t)− γ ln(y)

+ ln (f(t, s)) + ln (g(x, y))
(15)

where t, s, x, y are the unique positive solutions of

t
∂f(t, s)

∂t
= θf(t, s) (16)

s
∂f(t, s)

∂s
= w̃?f(t, s) (17)

x
∂g(x, y)

∂x
= w̃?g(x, y) (18)

y
∂g(x, y)

∂y
= γg(x, y) (19)

where f(t, s) and g(x, y) are defined in (10) and (11) respec-
tively and

w̃? = d̄v
xs

1 + xs
. (20)

The proof can be found in Appendix A. Note that to
compute the normalized asymptotic distribution of ETSs, we
simply need to replace g(x, y) given in (11) with

g(x, y) =

dmax
c∏

i=1

(
1 +

(
i

2

)
x2 + ixy

)ξPi

. (21)

Definition 4. For fixed ratio ∆ = b/a, the second zero
crossing of GΛ,P

TS (θ,∆θ) (the first one is zero), if it exists, is
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called the typical minimum ∆-trapping set size that we denote
by θ?TS [15].

To determine θ?TS we add another equation to the system of
equations of Theorem 1, namely

GΛ,P
TS (θ,∆θ) = 0 (22)

with θ > 0.

Lemma 4. For fixed ∆ = γ/θ and θ → 0 the derivative of
GΛ,P

TS (θ,∆θ) is given by

∂GΛ,P
TS (θ,∆θ)

∂θ
= − ln(t)−∆ ln(y). (23)

Proof. The solutions of the system of equations in (16)–(19)
are implicit functions of θ. From (15) and (20) we get the
expression in (24). The terms in the brackets are equal to zero
due to (16)-(19). This yields the result of Lemma 4.

Note that for a fixed ∆ a positive θ?TS exists whenever the
derivative of GΛ,P

TS (θ,∆θ) is negative as θ → 0.

IV. NUMERICAL RESULTS

Example 1. Consider a rate 1/2 ensemble C Λ,P
n with Λ(x) =

0.8x3 + 0.2x4, P(x) = 0.6x6 + 0.4x7. The normalized
logarithmic asymptotic distribution of ETSs and TSs of this
ensemble are depicted in Fig. 1 for fixed ratio ∆ = γ/θ ∈
{0.005, 0.05, 0.1, 0.3, 0.5}. Observe that the gap between TSs
and ETS is very small for small θ.

Example 2. Consider a rate 1/2 ensemble C Λ,P
n with Λ(x) =

0.8x4+0.2x5, P(x) = 0.6x8+0.4x9. The normalized logarith-
mic asymptotic distribution of (elementary) TSs of this ensem-
ble are depicted in Fig. 2 for ∆ ∈ {0.005, 0.05, 0.1, 0.3, 0.5}.
We remark that this ensemble has better trapping set properties
than the one in Example 1.

V. CONCLUSION

Expressions of the asymptotic distributions of elementary
and general trapping sets for unstructured LDPC code en-
sembles have been derived. The evaluation of the expressions
requires solving a system of equations. Using the proposed
method, we reproduced the results in [8], where the derivation
of the asymptotic TS distribution is based on asymptotic
enumeration techniques for matrices with specified column
and row weight vectors.

APPENDIX A
PROOF OF THEOREM 1

From Lemma 3, we have

coeff
(
f(t, s)n, tnθsnw̃

)
=̇ exp {n [ln(f(t, s))− θ ln(t)

−w̃ ln(s)]} (25)

0.00 0.02 0.04 0.06 0.08

0

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

θ

G
Λ
,P

E
T

S
(θ
,∆
θ
),
G

Λ
,P

T
S

(θ
,∆
θ
)

0 4

·10−30

2
·10−3

Fig. 1. Normalized logarithmic asymptotic distribution of elementary ( ,
, , , ) and general trapping sets ( , , ,
, ) of the ensemble in Example 1 for ∆ = 0.005 ( ), ∆ = 0.05

( ), ∆ = 0.1 ( ), ∆ = 0.3 ( ), ∆ = 0.5 ( ).
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Fig. 2. Normalized logarithmic asymptotic distribution of elementary ( ,
, , , ) and general trapping sets ( , , ,
, ) of the ensemble in Example 2 for ∆ = 0.005 ( ), ∆ = 0.05

( ), ∆ = 0.1 ( ), ∆ = 0.3 ( ), ∆ = 0.5 ( ).

and

coeff
(
g(x, y)n, xnw̃ynγ

)
=̇ exp {n [ln(g(x, y))

−γ ln(y)− w̃ ln(x)]} (26)

where w̃ = w/n and t, s, x, y are the unique positive solutions
of

t
∂f(t, s)

∂t
= θf(t, s)

s
∂f(t, s)

∂s
= w̃f(t, s)

x
∂g(x, y)

∂x
= w̃g(x, y)

y
∂g(x, y)

∂y
= γg(x, y).

(27)

dGΛ,P
TS (θ,∆θ)

dθ
= − ln(t)−∆ ln(y) +

dt

dθ

[
− θ
t

+

∂f(t,s)
∂t

f(t, s)

]
+

ds

dθ

[
− w̃

?

s
+

∂f(t,s)
∂s

f(t, s)

]
+

dx

dθ

[
− w̃

?

x
+

∂g(x,y)
∂x

g(x, y)

]
+

dy

dθ


−∆θ

y
+

∂g(x,y)
∂y

g(x, y)


 (24)
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Lemma 1 gives
(
nd̄v
nw̃

)
=̇ exp

{
nd̄vH

(
w̃

d̄v

)}
(28)

and from (25), (26) and (28), we have

EΛ,P
TS (θ, γ)=̇

∑

w̃

exp(nS(w̃)) (29)

with

S(w̃) =− d̄vH

(
w̃

d̄v

)
+ ln(f(t, s))− θ ln(t)

− w̃ ln(xs) + ln(g(x, y))− γ ln(y).

(30)

Thus, we have

GΛ,P
TS (θ, γ) = max

w̃
S(w̃). (31)

It can be shown that

w̃? = argmax
w̃

S(w̃) = d̄v
xs

1 + xs
. (32)

By substituting (32) in (30) and (27), we obtain (15)-(19), as
desired.
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Abstract—An improved decoder for low-density parity-check
(LDPC) codes and for probabilistic amplitude shaping with con-
stant composition distribution matching (CCDM) is presented.
The decoder combines standard LDPC belief propagation with
a soft-input soft-output processor that exploits the constraints
imposed by CCDM and it gains up to 0.5 dB at a frame error
rate of 10−4 for a block-length n = 192 5G code.

I. INTRODUCTION

Probabilistic amplitude shaping (PAS) [1] is a block based
probabilistic shaping (PS) technique that induces a non-
uniform distribution on a signal constellation. A distribution
matcher (DM) encodes a message into a non-linear set that
satisfies a constraint on the average symbol distribution. A
systematic forward error correction (FEC) encoder preserves
the distribution in the systematic part.

A constant composition distribution matcher (CCDM) [2]
is a DM that imposes a common empirical distribution on the
constellation points’ amplitudes within a block. The CCDM
thus introduces dependencies over all symbols in a block.
For very long blocks, the PAS rate is not affected by these
dependencies, but systems with short length DMs suffer in
transmission rate [3]. In [4]–[8], DMs with smaller rate-
loss are proposed. In [9] the dependencies introduced by
an extremely short 4-D shell mapping (SMDM) [4]–[6] are
resolved by a 4-D demodulator. The authors of [10] use polar
codes with list decoding and check if the codeword candidates
fulfill the constant composition (CC) constraint.

PAS uses a systematic FEC encoder in a manner similar
to the Bliss scheme [11] for constrained sequence coding. To
improve the Bliss scheme’s performance, [12] and [13] use
a supplementary soft input soft output (SISO) decoder and
iterate with the usual FEC decoder. We adopt this approach
for PAS and let a low-density parity-check (LDPC) decoder
iterate with a SISO CC code decoder based on the forward
backward (BCJR) algorithm to improve performance. For this
purpose, we introduce the trellis of a CC code. The resulting
decoder is a generalized LDPC (GLDPC) decoder [14] with
a non-linear constraint.

This paper is structured as follows. In Sec. II we introduce
notation and the basic components of PAS. In Sec. III we
introduce the interface of the BCJR algorithm and construct
a trellis for CC codes. In Sec. IV we show combinations of
BCJR and LDPC-belief propagation (BP) decoders. Simula-
tion results are presented in Sec. V. We draw conclusions in
Sec. VI.

II. PRELIMINARIES AND NOTATION

A. Notation

We write matrices in capital bold letters L, random variables
with uppercase sans-serif letters X, and their realizations with
lowercase letters x. Let A be a discrete random variable with
probability mass function (pmf) PA defined on the set A. The
entropy of a random variable A is

H (A) =
∑

a∈supp(PA)

−PA(a) log2 (PA(a)) (1)

where supp(PA) ⊆ A is the support of PA, i.e., the subset of
a in A with positive probability. We denote a length n vector
of random variables as An = A1A2 · · ·An with realization
an = a1a2 · · · an, and the number of occurrences of letter
α ∈ A in an as nα(an). Next, we describe the channel model
and the components of the PAS transceiver.

B. Channel Model

For transmission we consider M -amplitude shift keying
(ASK), i.e., transmission symbols X take on values in X =
{−M + 1,−M + 3, · · · ,M −3,M −1}. Each symbol can be
factored into a sign and amplitude

X = A · S. (2)

The corresponding amplitude set is

A = {α1, α2, · · · , αM/2} = {1, 3, · · · ,M − 1}. (3)

We consider additive white Gaussian noise (AWGN), i.e., the
output symbols of the channel are obtained via

Y = X + Z (4)

where Z is a Gaussian random variable with zero mean and
variance σ2. The signal-to-noise ratio (SNR) is

SNR =
E
[
X2
]

σ2
. (5)

C. Probabilistic Amplitude Shaping

PAS [1] is a coded modulation scheme that can approach
the Shannon capacity for the AWGN channel [15], [16] and is
rate adaptive. An important building block is the DM which
encodes messages into sequences of amplitudes with a desired
average distribution. One can use any DM, and common
choices are CCDM and SMDM [6]. A systematic LDPC
encoder generates parity bits from a binary representation of
the amplitudes. The parities serve as signs for the amplitudes.
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For high rate codes, additional source bits are encoded without
distribution matching. We refer to [1] for a detailed review of
PAS.

D. Labeling Function

An invertible labeling function β converts m bits to an M =
2m-ary symbol x ∈ X :

β(b1, · · · , bm) = x. (6)

The inverse function is

β−1(x) = [b1, · · · , bm]. (7)

We refer to the j-th bit of the label by β−1j (x). We use a
binary reflected Gray code (BRGC) [17] where b1 decides the
symbol’s sign, i.e., we have

βA(b2, · · · , bm) = |β(0, b2, · · · , bm)| = |β(1, b2, · · · , bm)|.
(8)

The notation bi,j refers to the j-th bit of the i-th symbol xi.
We write B to refer to all bits bi,j , i = 1, 2, . . . , n, j =
1, 2, . . . ,m.

E. Demodulation

We consider a symbol-wise demodulator that is aware of
the signal statistics PA, PBj

. The log-likelihoods (LLs) L̃i(x)
of the i-th transmitted symbol are

L̃i(x) = log(pY|X(Yi|Xi = x) · PX(x)),∀x ∈ X . (9)

The demodulator calculates the bit-wise LLs

L̃i,j(b) = log(pY|Bj
(Yi|Bi,j = b) ·PBj

(b)),∀b ∈ {0, 1}. (10)

Thus, one symbol-channel splits into m parallel bit-
channels [1]. The log-likelihood ratio (LLR) of the j-th bit
in the i-th transmitted symbol is

Li,j = L̃i,j(0)− L̃i,j(1). (11)

For convenience, we collect LLs and LLRs in the matrices L̃
and L, respectively. The (i, j)-th entry of the LLR matrix L
corresponds to Li,j . The (i, j)-th entry of the LL matrix L̃
corresponds to L̃i(ξj), ξj ∈ X .

F. LDPC Codes and BP Decoding

A (n, k) LDPC code [18] is a binary linear block code
described by an r × n parity-check matrix H with entries
hi,j , i = 1, 2, . . . , r, j = 1, 2, . . . , n, where r ≥ n − k.
LDPC codes can be visualized through a bipartite graph
also known as the Tanner graph G. This graph consists of
a set V = {V1, V2, · · · , Vn} of n variable nodes, a set
C = {C1, C2, · · · , Cr} of r check nodes and a set E = {ej,i}
of edges. The check node Cj is connected to the variable node
Vi through the edge ej,i if the entry hi,j of the parity-check
matrix is one.

An LDPC BP decoder operates on LLRs [1]. Based on the
channel observations LCH, the LDPC decoder outputs the APP
LLRs:

LAPP = LCH + LE,LDPC (12)

where LE,LDPC denotes the extrinsic information.

G. Constant Composition Distribution Matching

The type t of a sequences an expresses how many times
each letter α ∈ A appears in an, i.e., we have

t = (nα1
(an), nα2

(an), · · · , nα|A|(an)). (13)

The set of sequences of type t is

Tt = {an ∈ An |nαi(a
n) = ti , i = 1, · · · , |A|} (14)

where ti is the i-th entry of t. The cardinality is

|Tt| =
n!

∏|A|
i=1 ti!

. (15)

The CCDM is a function

fccdm,t : {0, 1}k → Cccdm (16)

where Cccdm is a subset of Tt. Thus, all codewords of the
CCDM have the same type and therefore the same empirical
distribution. The dematcher f−1ccdm,t implements the inverse
operation. For large n, the CCDM rate

Rccdm = k/n (17)

tends to H (PA) with PA(i) = ti
n [2], where H (PA) is the

entropy of a discrete memoryless source (DMS) with symbol
probabilities PA. The difference

Rloss = H (PA)−Rccdm (18)

is called the rate-loss Rloss [3]. In [19, Sec. IV] the CCDM
rate-loss is upper and lower bounded by O(log(n)/n) where
n is the block length. The rate-loss of a CCDM is negligible
for large blocks, but for short blocks the CC constraint adds
substantial redundancy. Consider a sequence an with a type
constraint. If we know all symbols except for one, we can
recover its value by counting how often each letter appears.
This holds for any constraint length n. We want to exploit the
redundancy of a CC code at the decoder.

III. FORWARD-BACKWARD ALGORITHM FOR CONSTANT
COMPOSITION CODES

The BCJR algorithm [20], also known as the forward-
backward algorithm, is a SISO algorithm that calculates the a
posteriori symbol probabilities

PAPP(ai) = P (ai|L̃) (19)

where L̃ are LLs and ai is the i-th transmitted symbol. From
these probabilities, we can compute the extrinsic LLs L̃E [20].
For binary codes, the input interface may be LLRs, because
we can convert easily from LLRs to LLs and vice versa.
The constant composition BCJR (CCBCJR) decoder builds
the code trellis from the type vector t, i.e. it is a function

CCBCJR : L̃× t 7→ L̃E. (20)

International Zurich Seminar on Information and Communication (IZS), February 26 – 28, 2020

54



3

α1

α2

α1
α3

α1

(0, 0, 0) (1, 0, 0)

(1, 1, 0)

(2, 1, 0)

(2, 1, 1) (3, 1, 1)

α1

α2 α3

Fig. 1. Constant composition code trellis for type t = (3, 1, 1). This
trellis consists of 16 states and 28 branches and represents 20 different CC
codewords, thus paths.

CCBCJR λ LDPC

λ−1

LCHt

LE,k LAPP,k
L̃APP,k

Fig. 2. Symbol-based decoder.

A. CC Code Trellis

The construction of the CC trellis borrows ideas from [21].
The trellis states are tuples

S = {0, 1, · · · , nα1}×{0, 1, · · · , nα2}×· · · {0, 1, · · · , nα|A|}.
(21)

The number of states in the trellis is

|S| =
∏

α∈A
(nα + 1) (22)

and the number of edges is

E =
∑

α∈A
nα

∏

α′ 6=α
(nα′ + 1). (23)

The initial and final states are (0, · · · , 0) and
(nα1 , · · · , nα|A|), respectively. State s ∈ S is connected
to an earlier state s′ ∈ S via symbol αq if all entries are
identical except for the q-th entry of s that is augmented by
one.

Example 1. Consider a CC code on the alphabet A =
{α1, α2, α3} and with type t = (3, 1, 1). The trellis is depicted
in Fig. 1. It consists of |{0, 1, 2, 3}| · |{0, 1}| · |{0, 1}| =
16 states. The colored path corresponds to the sequence
(α1α2α1α3α1). It includes three increment-steps of α1, one
increment-step of α2, and one increment-step of α3, and
therefore matches the sequence type.

Note that an CCBCJR decoder assumes that that we may use
the complete set Tt of sequences of type t, however Cccdm is
usually only a subset [2].

IV. JOINT DECODING

We study how the decoder can exploit CC code properties
to decrease the error probability.

amplitude
bits

sign bits

+ + + + + +

CCBCJR2 CCBCJR3 CCBCJR4

Fig. 3. Tanner graph of a naive bit-based decoder for m = 4 and n = 3.
The amplitude bit variable nodes are connected to the respective BCJR node.
The sign bit variable nodes are not connected to a BCJR node.

A. Symbol-Based Decoder

The symbol-based decoder consists of a CCBCJR decoder
and a LDPC decoder that exchange messages iteratively, see
Fig. 2. The BCJR decoder has a symbol based interface, while
the LDPC decoder has a bit based interface. The demodulator
provides the LLs of the symbols and bit levels. The symbol-
wise LLs are passed to the CCBCJR decoder. The LDPC
decoder and the CCBCJR decoder iterate extrinsic information
LE. We use functions λ and λ−1 to convert from symbol based
to bit based and vice versa. The function λ converts LL into
LLRs via

Li,j = ln




∑
x:β−1

j (x)=0

exp
(
L̃i(x)

)

∑
x:β−1

j (x)=1

exp
(
L̃i(x)

)


 . (24)

The function λ−1 converts from bit-level to symbol-level.
For simplicity, we assume for a fixed i that the Bi,j , j =
1, 2, . . . ,m, are pairwise independent given Yi. The conver-
sion is then

L̃i(x) = log




m∏

j=2

exp(Li,j · (1− 2β−1A,j(x)))

1 + exp(Li,j · (1− 2β−1A,j(x)))


 . (25)

Note that 1− 2β−1A,j(x) is 1 for the bit 0 and -1 for the bit 1.

B. Bit-Based Decoder

The number of states and edges of the CCBCJR decoder in-
creases exponentially with the alphabet size and polynomially
in n. One idea to decrease complexity is to replace one |A|-
ary CCBCJR decoder by log2 |A| binary CCBCJR decoders.
Additionally, the conversion functions λ, λ−1 become obso-
lete.

Consider a transmission sequence xn with type constraint
t on the amplitudes and its binary representation B ∈
{0, 1}n×m according to the labeling function β, where the
entry bi,j corresponds to the j-th bit of the i-th symbol. Let
b
|
j = b1,j , b2,j , · · · bn,j be the j-th column of B, i.e., the j-th

bit-level of the binary representation of the symbol sequence.
Since xn has a type t constraint on the amplitudes only, the
sign bits are unconstrained. All other bit levels j, 2 ≤ j ≤ m
are constrained. We derive the type constraint for each bit-level
depending on the type t of the sequence xn and the labeling
function β. The number of zeros in bit-level j is equal to
the number of amplitudes in the sequence xn whose binary
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representation is zero in the j-th position, i.e., we have

nb(b
|
j) =

∑

α∈A, β−1
j (α)=b

nα(amp(xn)) (26)

where amp(xn) is the element-wise absolute value of xn, b ∈
{0, 1}, and 2 ≤ j ≤ m. Thus for one amplitude type constraint
t, we obtain m−1 bit constraints t2, · · · , tm, where the index
denotes the respective bit-level with

tj =
[
n0(b

|
j), n1(b

|
j)
]
. (27)

Example 2. Consider a sequence xn with amplitude constraint
t = [37, 20, 6, 1] , i.e., 37 ones, 20 threes, 6 fives and 1 sevens,
and the BRGC labeling β shown below.

β(x)

x

111

-7

110

-5

100

-3

101

-1

001

1

000

3

010

5

011

7

We find n1(b
|
2) = 7 because the second bit of the labeling

β is ’1’ for amplitudes 5 and 7 and they appear 6 times and
once, respectively. The corresponding bit types t2 and t3 are

t2 = [57, 7] (28)
t3 = [26, 38] . (29)

For decoding, we add m−1 BCJR nodes into the Tanner graph,
as shown in Fig. 3. Note that the bit-based CCBCJR decoders
run independently. Their combined trellises allow sequences
that do not fulfill the type constraint t.

C. Improved Bit-Based Decoder
Each of the m−1 BCJR nodes is connected to n/m nodes.

This suggests that the girth, i.e., the shortest cycle in the graph,
is small. Loopy BP for small-girth was investigated in [22]
and leads to oscillations. There are two basic approaches to
deal with this issue. Firstly, we may filter the beliefs and thus
attenuate oscillations. Second, we could introduce multiple
short length CC constraints on a bit-level, i.e., introduce lower
degree CCBCJR nodes which increases both the girth and the
rate-loss. We consider only the first approach in this paper.

The LDPC decoder outputs the a posteriori LLRs LAPP
j .

Based on the channel observation, the type vector tj and
a posteriori information, the j-th BCJR decoder CCBCJRj
generates the extrinsic information LE

j . The outputs of the
m − 1 CCBCJRs are collected in the matrix LE. L and LE

are then processed by the function

g
(
LCH,LE,LAPP, k

)
≈ LCH+

(
µ · LE,k−1 + (1− µ) · LE,k

)

︸ ︷︷ ︸
prior information

(30)
with k ≥ 1 and µ ∈ [0, 1]. After a number of iterations, the
LDPC decoder outputs new a posteriori information, which is
sent back to the CCBCJR decoders. The optimal parameter µ
is found by grid search.

D. Computational Complexity Comparison
For the computational complexity analysis, we focus on

the number of edges E in the code trellises, since the BCJR
complexity is Θ(E) [23]. This analysis depends on the trellis
representation of the CC code.

101 102 103

102

105

108

× 12.64

Codeword Length

N
um

be
r

of
E

dg
es

symbol based BCJR
binary based BCJRs

(192,96)5G LPDC code

Fig. 4. Number of branches to compute for the bit-based and symbol-based
BCJR algorithms. The empirical distribution is [37, 20, 6, 1]/64. We interpret
(31) and (32) as continuous functions. At output length 64 symbols, the
symbol-based BCJR algorithm needs about 12.5 times more states than the
binary-based BCJR algorithm. We compare with the number of branches of
an iterative LDPC decoder using the BCJR algorithm.

1) Symbol-Based Decoder: For a type t = [n1, · · · , nM/2]
constraint, we have

Esymb =

M/2∑

i=1

ni
∏

j 6=i
(nj + 1) (31)

branches. An increasing alphabet size even for the same
block-length may result in a large increase in the number
of states and therefore the computational complexity. For a
given empirical distribution, the number of states scales with
the power of the support of the empirical distribution.

2) Bit-Based Decoder: For the bit-based decoder, we split
one amplitude type constraint t into m − 1 bit constraints
t2, · · · , tm. The number of edges is then

Ebit =

m∑

j=2

2n0(b
|
j)n1(b

|
j) + n0(b

|
j) + n1(b

|
j). (32)

In Fig. 4 we show the number of branches vs. the codeword
length for the empirical distribution [37, 20, 6, 1]/64. We also
add the number of branches that are evaluated during one iter-
ation of LDPC decoding of an (192,96) 5G LDPC code, i.e.,
we compute the number of branches of all single parity check
and repetition nodes. Single parity check and repetition nodes
have 4 times and 2 times their degree edges, respectively.

V. SIMULATION RESULTS

We compare the performance of PAS with the bit-level
decoder proposed in [1] with the symbol-based and the heuris-
tically improved bit-based decoder with supplementary CC
constrained nodes. We target a spectral efficiency of 1.5 bits
per channel use with 8-ASK constellation.

For encoding, we use a DM with type t = [37, 20, 6, 1]
from Example 2 and a rate 3/4 code from the 5G eMBB
standard [25] with block length 192. The reference LDPC
decoder [1] is biased with the empirical distribution of the
FEC input. The symbol-based decoder uses t and the bit-based
decoder has two CCBCJRs with t2 = [7, 57] and t3 = [38, 26].

Simulation results in Fig. 5 show that the LDPC decoder
with a linear combination of LE,LDPC,k−1 and LE,k outper-
forms the LDPC decoder with LE,k as prior information only.
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Fig. 5. FER of the different strategies for 24 outer-iterations and 100
inner-iterations. We collected 100 erroneous frames per simulation point. The
scheme is implemented by using 8−ASK with code rate 3/4 and block-length
n = 192. The rate-loss Rloss is about 0.145 bit/symbol.

We include the performance of a (192,96) 5G LDPC code
with an optimized interleaver as a non-shaped baseline with
the same spectral efficiency. The bit-based decoding strategy
gains 0.5 dB in the simulation setup as compared to the LDPC
decoder in [1].

VI. CONCLUSIONS AND OUTLOOK

A trellis structure for CC codes is introduced. Different
decoding strategies based on the combination of BCJR and
LDPC decoders are proposed that gain 0.5 dB in the considered
short length scenario at a frame error rate of 10−4. In future
work, we plan to investigate the design of LDPC codes
with CCBCJR nodes. This way long LDPC codes could be
combined with short block length DMs that run in parallel
during encoding and decoding.

VII. ACKNOWLEDGEMENTS

We would like to thank Georg Böcherer and Fabian Steiner
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Abstract

The maximal correlation between a pair of jointly distributed random variables X and Y is a commonly
used measure of dependency, often participating in bounds on the fundamental limits of various problems. One
well-known example is Witsenhausen’s lower bound on the probability that two Boolean functions of X and Y
disagree, given their biases. Witsenhausen’s lower bound trivially holds in a stronger form when replacing the
maximal correlation between X and Y with the maximal correlation between one-bit functions of X and Y . This
provides impetus to study the quantized maximal correlation, namely the behavior of maximal correlation under
functions of finite bounded cardinality. In this paper, we derive various fundamental properties of the quantized
maximal correlation, as well as of a closely related quantity corresponding to the χ2-mutual information between
quantized versions of X and Y .
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Abstract

This talk shows how computational lower bounds in learning, which allow to show
failure at learning certain function classes due to computational constraints, can be derived
using information-theoretic arguments and inequalities. In particular, it is shown that GD-
based deep learning cannot learn with polynomial parameters certain function classes that
can be learned efficiently with other non-GD based algorithms.

Joint work with C. Sandon (MIT).
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Abstract—One of the most commonly used techniques for
proving statistical lower bounds, Le Cam’s method, has been
the method of choice for functional estimation. This papers
aims at explaining the effectiveness of Le Cam’s method from
an optimization perspective. Under a variety of settings it is
shown that the maximization problem that searches for the best
lower bound provided by Le Cam’s method, upon dualizing,
becomes a minimization problem that optimizes the bias-variance
tradeoff among a family of estimators. While Le Cam’s method
can be used with arbitrary distance, our duality result applies
specifically to the χ2-divergence, thus singling it out as a natural
choice for quadratic risk. For estimating linear functionals of
a distribution our work strengthens prior results of Dohono-Liu
[DL91] (for quadratic loss) by dropping the Hölderian assumption
on the modulus of continuity. For exponential families our results
improve those of Juditsky-Nemirovski [JN09] by characterizing
the minimax risk for the quadratic loss under weaker assumptions
on the exponential family.

We also provide an extension to the high-dimensional setting
for estimating separable functionals. Notably, coupled with tools
from complex analysis, this method is particularly effective for
characterizing the “elbow effect” – the phase transition from
parametric to nonparametric rates. As the main application of
our methodology, we consider three problems in the area of
“estimating the unseens”, recovering the prior result of [PSW17]
on population recovery and, in addition, obtaining two new ones:
• Distinct elements problem: Randomly sampling a fraction p

of colored balls from an urn containing d balls in total,
the optimal normalized estimation error of the number of
distinct colors in the urn is within logarithmic factors of
d
− 1

2
min{ p

1−p
,1}, exhibiting an elbow at p = 1

2
;

• Fisher’s species problem: Given n independent samples
drawn from an unknown distribution, the optimal normal-
ized prediction error of the number of unseen symbols in
the next (unobserved) r · n samples is within logarithmic
factors of n−min{ 1

r+1
, 1
2
}, exhibiting an elbow at r = 1.
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Abstract

The optimal transport problem studies how to transport one measure to another in the
most cost-effective way and has wide range of applications from economics to machine
learning. In this paper, we introduce and study an information constrained variation of this
problem. Our study yields a strengthening and generalization of Talagrand’s celebrated
transportation-cost inequality. Following Marton, we show that our new transportation cost
inequality can be used to recover old and new concentration of measure results. Finally, we
provide an application of our transportation-cost inequality in network information theory.
We show that it can be used to recover our recent solution to Cover’s capacity problem
of the relay channel.

Joint work with Yikun Bai and Xiugang Wu.
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Abstract—The Wasserstein distance has seen a surge of in-
terest and applications in machine learning. Its popularity is
driven by many advantageous properties it possesses, such as
metric structure (metrization of weak convergence), robustness to
support mismatch, compatibility to gradient-based optimization,
and rich geometric properties. However, empirical approximation
under the Wasserstein distance suffers from a severe curse of
dimensionality, rendering it impractical in high dimensions. We
propose a novel Gaussian-smoothed Wasserstein distance, that
achieves the best of both worlds: preserving the Wasserstein
metric structure while alleviating the empirical approximation
curse of dimensionality. Furthermore, as the smoothing param-
eter shrinks to zero, smooth Wasserstein converges towards the
classic metric (with convergence of optimizers), thus serving
as a natural extension. These theoretic properties establish the
smooth Wasserstein distance as favorable alternative to its classic
counterpart for high-dimensional analysis and applications.

I. EXTENDED ABSTRACT

The 1-Wasserstein distance (W1) between two probability
measures P and Q, with finite first moments, is

W1(P,Q) := inf
π∈Π(P,Q)

∫
‖x− y‖ dπ(x, y),

where Π(P,Q) is the set of couplings of P and Q. This dis-
tance has many appealing properties, such as: (i) robustness to
mismatched supports of P and Q (crucial for generative mod-
eling applications); (ii) metrization of weak convergence of
probability measures; (iii) defining a constant speed geodesic
in the space of probability measures (giving rise to a natural
interpolation between measures). These advantages, however,
come at a price of slow empirical convergence rates, known
as the ‘curse of dimensionality’.

Suppose (Xi)
n
i=1 are i.i.d. samples from a Borel prob-

ability measure P on Rd. Consider the rate at which the
empirical measure Pn , 1

n

∑n
i=1 δXi

approaches P in the
1-Wasserstein distance, i.e., the EW1(Pn, P ) rate of decay.
Since W1 metrizes narrow convergence, the Glivenko-Cantelli
theorem implies W1(Pn, P ) → 0 as n → ∞. Unfortunately,
the convergence rate drastically deteriorates with dimension,
scaling as n−

1
d for any P absolutely continuous w.r.t. the

Lebesgue measure [1]. This rate is sharp for all d > 2. Thus,
empirical approximation under W1 is effectively infeasible
in high dimensions – a disappointing shortcoming given the
dimensionality of data in modern ML tasks.

To alleviate this impasse, we propose a novel framework,
termed Gaussian-smooth Wasserstein distance that inherits the
metric structure of W1 while attaining much stronger statistical

guarantees. The smooth Wasserstein distance of parameter σ ≥
0 between two d-dimensional probability measures P and Q is

W
(σ)
1 (P,Q) , W1(P ∗ Nσ, Q ∗ Nσ),

where ∗ stands for convolution and Nσ , N (0, σ2Id) is the
isotropic Gaussian measure of parameter σ. In other words,
W

(σ)
1 (P,Q) is simply the W1 distance between P and Q after

each is smoothed by an isotropic Gaussian kernel.
Theorem 1 of [2] shows that just like W1, for any

σ ∈ [0,+∞), W
(σ)
1 is a metric on the space of probability

measures that metrizes weak topology. Namely, a sequence
of probability measures (Pk)k∈N converges weakly to P if
and only if W

(σ)
1 (Pk, P ) → 0. This further implies that

convergence to zero of W1 and W
(σ)
1 are equivalent (see

[2, Theorem 2]). We next explore properties of W
(σ)
1 (P,Q)

as a function of σ for fixed P and Q. Theorem 3 in [2]
establishes continuity and non-increasing monotonicity of
W

(σ)
1 (P,Q) in σ ∈ [0,+∞). These, in particular, imply

that limσ→0 W
(σ)
1 (P,Q) = W1(P,Q). Additionally, using the

notion of Γ-convergence, Theorem 4 of the aforementioned
work establishes convergence of optimal couplings. Namely,
if (πk)k∈N is sequence of optimal couplings for W(σk)

1 (P,Q),
where σk → 0, then (πk)k∈N converges weakly to an optimal
coupling for W1(P,Q).

Lastly, consider empirical approximation under smooth
Wasserstein, i.e., the convergence rate of EW(σ)

1 (Pn, P ). It
was shown in [3, Proposition 1] that Gaussian smoothing
alleviates the curse of dimensionality, with EW(σ)

1 (Pn, P )

converging as n−
1
2 in all dimensions. Although W

(σ)
1 is

specialized to Gaussian noise, Theorem 5 of [2] generalizes
the empirical approximation result to account for subgaussian
noise densities. The expected value analysis is followed by
a concentration inequality for W

(σ)
1 (Pn, P ) derived through

McDiarmid’s inequality [2, Theorem 6].
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Abstract—In this work we study the arbitrarily varying phys-
ically degraded broadcast channel with cooperating decoders,
with high degree of uncertainty in the network model: the channel
statistics is arbitrarily varying, and the cooperation link is not
reliable, as its existence is not guaranteed a priori. We construct a
coding scheme that can cope with the arbitrarily varying nature
of the channel, and with the cooperation link uncertainty. Inner
and outer bounds are developed on the capacity region of this
channel, and conditions are suggested under which the bounds
coincide, thus characterising the capacity region of this model.

Index Terms - Arbitrarily varying channel, broadcast channel,
conference, cooperation, random codes, symmetrizabily, unreli-
able cooperation.

I. INTRODUCTION

The broadcast channel (BC) is one of the main building
blocks of modern communication networks, and as such has
been the subject of extensive research in multiuser commu-
nication for the last few decades. The BC with cooperating
decoders was introduced in [7], [8], and a closely related
model which presents the cooperation link as a relay channel,
was suggested in [15], [16]. In this work, we study the BC with
cooperating decoders where the model involves high degree
of uncertainty: the channel statistics is arbitrarily varying over
time, and the cooperation link is unreliable, as its existence is
not guaranteed a priori. Our goal is to study network scenarios
with the highest degree of uncertainty that can still yield
meaningful models and results.

The arbitrarily varying channel (AVC), introduced by Black-
well et al. [5], is a channel whose statistics varies over
time in an unknown manner, possibly without obeying any
specific rule. In practice, such variations can represent physical
effects whose statistics is unknown, or irrelevant in short
transmission frames, like fading phenomena in wireless com-
munications, defective cells in memory devices, malicious
attacks on authentication and identification systems, and more.
It is especially relevant to describe a classical communication
system where a hostile user, referred to as jammer, interferes
with the transmitted signals in order to disrupt communica-
tion. The arbitrarily varying broadcast channel (AVBC) was
examined by Jahn [14], who derived inner bounds on the

This research was supported by the Israel Science Foundation (grant No.
1285/16).

random code capacity of the AVBC. Jahn further showed
that the deterministic code capacity region either coincides
with the random code capacity region, or else its interior is
empty - a reminiscent of the dichotomy property of single
user AVCs, pointed out by Ahlswede [1]. Thus, in order to
apply Jahn’s inner bounds one first has to verify that the
interior of the capacity region is nonempty. Hof and Bross [10]
used observations and results by Ericson [9] and Csiszár
and Narayan [6] to resolve this dichotomy, and showed that
a necessary and sufficient condition for the capacity region
to have a non-empty interior is that both marginal channels
are non-symmetrizable. In [17], the AVBC with causal side
information at the encoder is presented. Inner and outer
bounds on the random code capacity region are developed,
and sufficient conditions are suggested under which the bounds
coincide, thus characterising the random code capacity region.
The conditions can be viewed as a set- extension of the
minimax theorem in convex optimisation. Similar results are
obtained also for the (deterministic code) capacity region. As
in [14] and [10], a dichotomy property applies also for the
case of causal side information. A symmetrizability condition
for channels with causal side information is developed, and it
is shown that a sufficient condition for the channel capacity
to have a non-empty interior is that both marginals are non
symmetrizable.

In the classical approach to AVCs, we seek the maximal
communication rate that the channel can support with any
sequence of channel statistics which the jammer can choose. It
thus pertains to a worst case design. In a cooperative setting, if
the cooperation link is unreliable, a worst case approach would
lead to coding schemes and achievable rates that ignore the
cooperation altogether. A less stringent approach, explored in
previous works, is to construct coding schemes that are robust
in the following sense: the decoders exploit the cooperation
link when it is present, but can still operate when it is
absent, possibly leading to lower decoding rates. This robust
approach to cooperation schemes was suggested in [18] and
extensively studied in [11], [12] and [13]. It can be viewed
as a compound channel model, where the channel has two
possible realisations, one with cooperation link present, and
one where it is absent.

In this work we study the physically degraded AVBC with
conferencing decoders, where the conference link is unreliable,
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as in [18], [11] and [12]. The main motivation is to provide
insights to the role of cooperation in networks with high
degree of uncertainty. As observed by Wiese [19] and Wiese
and Boche [20] in the context of the multiple access channel,
a small amount of cooperation can make a substantial change
in the behaviour of an AVC network, as it can be used to
apply Ahlswede’s Elimination Technique in cases where the
channels of part of the users are symmetrizable.

II. PROBLEM FORMULATION

A. Notation and general definitions

Let X ,S,Y1 and Y2 be finite sets. Denote by P(S) the
collection of all probability mass functions (PMFs) over S ,
and similarly for Sn, X , Xn, etc. We are given a dis-
crete memoryless state-dependent broadcast channel (BC)
(X ,S,WY1,Y2|X,S ,Y1,Y2), where X and S are the input and
state alphabets, respectively, WY1,Y2|X,S is the channel transi-
tion probability matrix, and Y1 and Y2 are the output alphabets
of user 1 and user 2, respectively. We will often denote the
channel by WY1,Y2|X,S . The channel is assumed memoryless
and without feedback. Let q ∈ P(Sn) stand for a generic
distribution of the state sequence sn, we will be more specific
about the choices of q later. The arbitrarily varying broadcast
channel (AVBC) is a BC where the distribution of the state
sequence is unknown. In particular, it need not be memoryless
nor stationary, and can give mass 1 to a specific sequence sn.
We denote the AVBC by B. The compound broadcast channel
(CBC) BQ is a BC with discrete memoryless (iid) state, whose
single-letter state distribution q is unknown, but belongs to a
given set Q ⊆ P(S). With a slight abuse of notation, we use q
to denote a member of P(Sn) or P(S), the exact choice will
be clear from the context. In our model, there is a (unreliable)
conference link, of capacity C1, from user 1 to user 2. Fix
the transmission length n, an integer ν1, and a conference
index set N1 = {1, 2, . . . , ν1}. Let M1 = {1, 2, . . . , µ1} and
M2 = {1, 2, . . . , µ2} stand for the message sets intended to
user 1 and user 2, respectively, and let M′2 = {1, 2, . . . , µ′2}
be the set of residual messages, that user 2 can decode if
the conference link is present. Throughout, µ1, µ2 and µ′2
are integers. The conference rate Rc and transmission rates
(R1, R2, R

′
2) are defined as

Rc =
1

n
log ν1, Rk =

1

n
logµk, R′2 =

1

n
logµ′2

where k = 1, 2.
Definition 1 (A code, achievable rates, and capacity region):

A (2nRc , 2nR1 , 2nR2 , 2nR
′
2 , n) code for the AVBC B with un-

reliable conference link of capacity C1 is an encoder mapping

f : M1 ×M2 ×M′2 → Xn

a conference mapping

φ : Yn1 −→ N1

and three decoder mappings

g1 : Yn1 −→M1

g2 : Yn2 −→M2

g′2 : Yn2 ×N1 −→M′2
with the restriction Rc ≤ C1. We denote the code by C =
(f, φ, g1, g2, g

′
2). The conditional probabilities of error given

a state sequence sn ∈ Sn, for the two cases where the link is
absent and when it is present, are given by

Pe|sn(C ) =
1

µ1µ2µ′2

µ1∑

m1=1

µ2∑

m2=1

µ′2∑

,m′2=1

WY n
1 ,Y

n
2 |Xn,Sn(Dc(m1,m2)|f(m1,m2,m

′
2), sn)

P ′e|sn(C ) =
1

µ1µ2µ′2

µ1∑

m1=1

µ2∑

m2=1

µ′2∑

,m′2=1

WY n
1 ,Y

n
2 |Xn,Sn(Dc(m1,m2,m

′
2)|f(m1,m2,m

′
2), sn)

where the decoding sets D(m1,m2) and D(m1,m2,m
′
2) are

defined as

D(m1,m2) = {(yn1 , yn2 ) : g1(yn1 ) = m1, g2(yn2 ) = m2} (1a)
D(m1,m2,m

′
2) = D(m1,m2) ∩ {yn2 : g′2(yn2 ) = m′2} (1b)

The average probabilities of error of the code C given a state
PMF q ∈ P(Sn) are

Pe(q,C ) =
∑

sn∈Sn

q(sn)Pe|sn(C ) (2)

and similarly for P ′e(q,C ). We say that C is
(2nRc , 2nR1 , 2nR2 , 2nR

′
2 , n, ε) code for the AVBC B if

it further satisfies

Pe(q,C ) ≤ ε and P ′e(q,C ) ≤ ε ∀q ∈ P(Sn) (3)

A rate triplet (R1, R2, R
′
2) is said to be achievable with unre-

liable conference link of capacity C1 if for any ε > 0 and suf-
ficiently large n there exists a (2nRc , 2nR1 , 2nR2 , 2nR

′
2 , n, ε)

code for the AVBC B, with Rc ≤ C1. The capacity region is
the closure of the set of all achievable rates, and is denoted
by C(B).

Based on Definition 1, we can define now random
codes. A (2nRc , 2nR1 , 2nR2 , 2nR

′
2 , n) random code for the

channel B consists of a collection of (deterministic)
(2nRc , 2nR1 , 2nR2 , 2nR

′
2 , n) codes {Cγ}γ∈Γ with a prob-

ability distribution µ(γ) over the set Γ. It is denoted
by C Γ = (µ,Γ, {Cγ}γ∈Γ). We say that C Γ is a
(2nRc , 2nR1 , 2nR2 , 2nR

′
2 , n, ε) random code for B if

Pe(q,C
Γ) ,

∑

γ∈Γ

µ(γ)Pe(q,Cγ) ≤ ε ∀q ∈ P(Sn) (4a)

P ′e(q,C
Γ) ,

∑

γ∈Γ

µ(γ)P ′e(q,Cγ) ≤ ε ∀q ∈ P(Sn) (4b)

Achievable rates for B with random coding are defined as
usual. The random code capacity region is the closure of all
rates achievable with random codes, and is denoted by C?(B).
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The capacity region of the CBC BQ, denoted by C(BQ), is
defined similarly with the exception that the state distribution
q in (3) is memoryless and restricted to reside in Q.

Note that when Q = {q}, i.e. contains a single element,
the CBC reduces to the channel studied in [18] and [11]. We
denote this channel by Bq .

B. Channel properties

We denote by WY1|X,S and WY2|X,S the marginal channels.
The AVBC B is said to be physically degraded if for any
q ∈ P(S) we can write:
∑

s∈S
q(s)WY1,Y2|X,S(y1, y2|x, s) = WY1|X(y1|x)WY2|Y1

(y2|y1)

(5)

where the conditional distributions WY1|X , WY2|Y1
may de-

pend on q. This requirement holds if

WY1,Y2|X,S = WY1|X,SWY2|Y1
(6a)

or

WY1,Y2|X,S = WY1|XWY2|Y1,S (6b)

In the sequel we will assume that the channel WY1,Y2|X,S is
either of the form (6a) or (6b). We turn now to the definition
of symmetrizability, which plays a central role in the relations
between C?(B) and C(B).

Definition 2: ([9],[6]) A discrete memoryless state depen-
dent channel WY |X,S is said to be symmetrizable if there exists
a channel J(s|x) such that
∑

s∈S
WY |X,S(y|x1, s)J(s|x2) =

∑

s∈S
WY |X,S(y|x2, s)J(s|x1)

∀x1, x2, y.

In [9] Ericson stated that if a single user AVC is sym-
metrizable, then its capacity is zero. Csiszár and Narayan [6]
showed that non-symmetrizability is a sufficient condition
for the capacity to coincide with the random code capacity,
when no constraints are imposed. Hof and Bross [10] showed
that for the AVBC with degraded message sets and without
conferencing, the interior of the capacity region is non-empty
if and only if the marginals WY1|X,S and WY2|X,S are non-
symmetrizable.

Remark 1 (symmetrizability and physical degradedness):
If the AVBC B is physically degraded in the form (6a),
then symmetrizability of WY1|X,S implies symmetrizability
of WY1,Y2|X,S and consequently also that of WY2|X,S . How-
ever, symmetrizability of WY2|X,S does not imply that of
WY1|X,S , and therefore neither it implies symmetrizability
of WY1,Y2|X,S . If the AVBC is physically degraded in the
form (6b), WY1|X,S is not symmetrizable by definition, except
for the case where Y1 is independent of X . WY2|X,S may or
may not be symmetrizable.

III. MAIN RESULTS

A. The compound channel

We start by stating the results for the compound channel
model. Define the sets

Rin(BQ) ,

⋃

PU,V,X

⋂

q∈Q





(R1, R2, R
′
2) : R2 ≤ Iq(U ;Y2)

R′2 ≤ Iq(V ;Y2|U) + C1

R′2 ≤ Iq(V ;Y1|U)
R1 ≤ Iq(X;Y1|U, V )





(7)

where U, V are external random variables with alphabets U ,V ,
respectively, PU,V,X is an arbitrary distribution on U ×V×X ,
Iq(U ;Y2) stands for the mutual information between U and
Y2 when the state is iid and distributed according to q, and
the union is over P(U × V × X ). Next, define

Rout(BQ) ,

⋂

q∈Q

⋃

PU,V,X





(R1, R2, R
′
2) : R2 ≤ Iq(U ;Y2)

R′2 ≤ Iq(V ;Y2|U) + C1

R′2 ≤ Iq(V ;Y1|U)
R1 ≤ Iq(X;Y1|U, V )





(8)

Since in (7) the intersection is the inner operation, it can be
expressed as

Rin(BQ) ,

⋃

PU,V,X





(R1, R2, R
′
2) : R2 ≤ inf

q∈Q
Iq(U ;Y2)

R′2 ≤ inf
q∈Q

Iq(V ;Y2|U) + C1

R′2 ≤ inf
q∈Q

Iq(V ;Y1|U)

R1 ≤ inf
q∈Q

Iq(X;Y1|U, V )





(9)

The next lemma states that these are inner and outer bounds
on the capacity of the CBC.

Lemma 1: For any physically degraded CBC BQ with
unreliable conference link of capacity C1,

Rin(BQ) ⊆ C(BQ) ⊆ Rout(BQ)

Moreover, if (R1, R2, R
′
2) ∈ Rin(BQ), then for some

a > 0 and sufficiently large n, there exists a
(2nRc , 2nR1 , 2nR2 , 2nR

′
2 , n, e−an) code for BQ, with Rc ≤

C1.
The exponential error estimate is needed in the proofs of
Theorem 2 and Theorem 3. Proof of Lemma1: The proof of
the inner bound in Lemma 1 uses a coding scheme similar
to the scheme used in [18], [11] for the classical (non-
AVC) physically degraded BC with unreliable conference. The
decoder performs classical joint typicality technique with a
search over a fine (but finite) quantization of the set Q, as
in [17, Lemma 5]. The proof of the outer bound resembles
that of [18], [11]. Due to lack of space, the details are omitted.
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When Q = {q} the bounds coincide with the capacity
region derived in [18] and [11]. Observe that the difference
between the inner and outer bounds is the order of union and
intersection. The next definitions provide conditions, in the
spirit of [17], under which the order can be interchanged. We
say that D ⊆ P(U × V × X ) achieves both Rin(BQ) and
Rout(BQ) if the union operations in (7) and (8) can be taken
over D instead of the whole collection P(U×V×X ). Clearly,
if D ⊆ P(U×V×X ) achieves Rin(BQ) and Rout(BQ), then
so does any D′ that contains D. Thus using D can be beneficial
only if we can minimise it in some sense; in particular, the
following property may hold for D but not for D′.

Definition 3: Let Q ⊆ P(S) be a compact set of state
distributions, and let D be a set that achieves Rin(BQ) and
Rout(BQ). We say that Condition IQ holds if there exists
q∗ ∈ Q that simultaneously minimises the functions Iq(U ;Y2),
min{Iq(V ;Y2|U) +C1, Iq(V ;Y1|U)} and Iq(X;Y2|U, V ) for
all PU,V,X ∈ D.
The operational meaning of Condition IQ is that there exists
a state strategy q∗ that is the worst strategy for both users,
under both conditions of the link - present or absent. We have
the following result.

Theorem 1: Let BQ be a physically degraded CBC with
unreliable cooperation link of capacity C1. If Condition IQ

holds, then

C(BQ) = Rin(BQ) = Rout(BQ)

Proof of Theorem1: We only have to show that under Condi-
tion IQ, Rin(BQ) ⊇ Rout(BQ). Since D achieves Rin(BQ)
and Rout(BQ), we can write

Rin(BQ) =

⋃

PU,V,X∈D





(R1, R2, R
′
2) : R2 ≤ inf

q∈Q
Iq(U ;Y2)

R′2 ≤ inf
q∈Q

Iq(V ;Y2|U) + C1

R′2 ≤ inf
q∈Q

Iq(V ;Y1|U)

R1 ≤ inf
q∈Q

Iq(X;Y1|U, V )





(10)

and

Rout(BQ) =

⋂

q∈Q

⋃

PU,V,X∈D





(R1, R2, R
′
2) : R2 ≤ Iq(U ;Y2)

R′2 ≤ Iq(V ;Y2|U) + C1

R′2 ≤ Iq(V ;Y1|U)
R1 ≤ Iq(X;Y1|U, V )





(11)

Since Condition IQ holds, there exists q∗ ∈ Q such that

Rin(BQ) =

⋃

PU,V,X∈D





(R1, R2, R
′
2) : R2 ≤ Iq∗(U ;Y2)

R′2 ≤ Iq∗(V ;Y2|U) + C1

R′2 ≤ Iq∗(V ;Y1|U)
R1 ≤ Iq∗(X;Y1|U, V )





⊇Rout(BQ) (12)

where the last inclusion is due to the intersection in (11).

B. The arbitrarily varying channel

We proceed to state the results for the physically degraded
AVBC B. Define the sets

R?in(B) = Rin(BQ)
∣∣
Q=P(S)

(13a)

R?out(B) = Rout(BQ)
∣∣
Q=P(S)

(13b)

I = IQ
∣∣∣
Q=P(S)

(13c)

We will need also the projections of R?in(B) and R?out(B) on
the hyperplane R2 = 0. Specifically, define

R̃in(B) = R?in(B)
∣∣
R2=0

(14a)

R̃out(B) = R?out(B)
∣∣
R2=0

(14b)

The regions R̃in(B) and R̃out(B) correspond to the case
where we wish to transmit to user 2 only messages that can
be decoded without the cooperation link. Thus the focus is
entirely on the scenario where the conference link of capacity
C1 is active. Note that we can write

R̃in(B) =

⋃

PV,X

⋂

q∈P(S)





(R1, 0, R
′
2) : R′2 ≤ Iq(V ;Y2) + C1

R′2 ≤ Iq(V ;Y1)
R1 ≤ Iq(X;Y1|V )



 (15)

and similarly for R̃out(B)

R̃out(B) =

⋂

q∈P(S)

⋃

PV,X





(R1, 0, R
′
2) : R′2 ≤ Iq(V ;Y2) + C1

R′2 ≤ Iq(V ;Y1)
R1 ≤ Iq(X;Y1|V )



 (16)

As in Definition 3, we can provide conditions under which
the bounds coincide with R2 = 0. Thus, we say that D̃ ⊆
P(V × X ) achieves both R̃in(B) and R̃out(B) if the union
operations in (15) and (16) can be taken over D̃ instead of
P(V × X ).

Definition 4: Let D̃ be a set that achieves both R̃in(B)
and R̃out(B). We say that Condition Ĩ holds if there exists
q∗ ∈ P(S) that simultaneously minimises min{Iq(V ;Y2) +
C1, Iq(V ;Y1)} and Iq(X;Y2|V ) for all PV,X ∈ P(V × X ).
Note that Condition Ĩ is milder than Condition I as it
involves less constraints.

We proceed to state our results on the capacity region under
random coding.

1) Random codes:
Theorem 2: Let B be a physically degraded AVBC with

unreliable conference link of capacity C1. Then
1) R?in(B) ⊆ C?(B) ⊆ R?out(B)
2) If Condition I holds, then

R?in(B) = C?(B) = R?out(B)

Proof of Theorem 2: Part 1: The proof of the inner bound
uses Ahlswede’s Robustification Technique (RT) [2], [3] (see
also [4]). It makes use of the exponential error result in
Lemma 1. The outer bound follows quite closely the proof
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of the converse in [18] and [11], taking into account also the
common randomness. The details are omitted. The proof of
Part 2 is similar to the proof of Theorem 1.

The symmetrizability conditions, the sets R̃in(B) and
R̃out(B), and Condition Ĩ play a role in the characterisation
of the capacity region with deterministic codes, stated next.

2) Deterministic codes:
Theorem 3: For any physically degraded AVBC with unre-

liable cooperation link, the following hold
1) If WY1|X,S is symmetrizable, then

C(B) = (0, 0, 0)

2) If WY1|X,S and WY2|X,S are non-symmetrizable, then

C(B) = C?(B)

3) If WY1|X,S is non-symmetrizable and WY2|X,S is sym-
metrizable, then

R̃in(B) ⊆ C(B) ⊆ R̃out(B)

4) If WY1|X,S is non-symmetrizable, WY2|X,S is sym-
metrizable and Condition Ĩ holds, then

C(B) = R̃in(B) = R̃out(B)

Note that if the marginal channels WY1|X,S and WY2|X,S are
non-symmetrizable, Part 2 of Theorem 3 characterises the
capacity region for the case that Condition I holds, by Part 2
of Theorem 2.

Proof of Theorem3: For the proof of Part 1, observe that if
WY1|X,S is symmetrizable, then the channel is in the form
of (6a), WY1,Y2|X,S is symmetrizable, and Part 1 follows
from previous results. Part 2 follows classical arguments,
using Ahlswede’s Elimination Technique and transferring the
residual common randomness to both users. For the proof
of Part 3, note that if WY2|X,S is symmetrizable, there is
no point in transmitting to user 2 messages that cannot be
decoded without the conference link. Thus all the transmission
to user 2 is delegated to the case where the cooperation link
is active. In that case, the residual common randomness (after
applying the Elimination Technique) can be transferred to
user 2 via the conference link, from user 1 (whose channel
is not symmetrizable). With this approach, applying classical
arguments (Robustification and Elimination) yield the inner
bound. As for the outer bound, note that random coding outer
bounds apply also to deterministic codes. The restriction to
R2 = 0 in the definition of R̃out(B) follows from the same
argument as in the inner bound. The proof of Part 4 follows
the same lines as that of Theorem 1.
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Abstract—The capacity of finite-state channels (FSCs) with
feedback is considered. We derive a simple upper bound on the
feedback capacity. The upper bound is based on an extension of
the known duality upper bound on mutual information to the
case of directed information. The upper bound is a function of
test distributions on the channel outputs ensemble. We show that
if the test distribution is structured on a Q-graph, and the FSC is
unifilar, the upper bound can be formulated as a Markov decision
process (MDP). The resulted MDP has finite states, actions
and disturbances and, therefore, can be solved analytically with
standard MDP tools. We illustrate the simplicity of computing
the bounds for the dicode erasure and the Ising channels. The
resulted upper bounds are tight and their derivation serves
as an alternative and simple converse proof. The developed
methodology is capable of solving channels with large alphabets
of the channel states, inputs and outputs.

I. INTRODUCTION
1 Finite-state channels (FSCs) are commonly used to model

scenarios in which the channel or the system have memory.
In this paper, we focus on unifilar FSCs with feedback (Fig.
1). A useful approach for computing the feedback capacity
of such channels is via a Markov decision processes (MDPs)
formulation of the capacity expression [1]–[3]. In many cases,
applying dynamic programming methods or reinforcement
learning algorithms lead to a solution that is conjectured to
be optimal. However, to conclude its optimality, a solution for
the involved Bellman equation is needed.

In a recent paper, we proposed a simple upper bound on the
feedback capacity of unifilar FSCs [4]. The upper bound is a
single-letter expression and holds for any choice of a Q-graph,
an auxiliary structure to map channel outputs sequences. It was
further shown that the bound is a standard convex optimization
problem [5], [6]. The bound led to new capacity results, but
is still challenging to analytically compute when the channel
parameters have large alphabets. The recent development of
reinforcement learning algorithms to (numerically) compute
and conjecture optimal solution on feedback capacity for large
alphabets [7] motivated the current paper.

In this paper, we derive a new bound that fits a framework
of channels with large alphabets. Its derivation is based on the

1The work was supported in part by the Deutsche Forschungsgemeinschaft
(DFG) via the Deutsch-lsraelische Projektkooperation (DIP), in part by the
Israel Science Foundation, and in part by the Cyber Center and at Ben-Gurion
University of the Negev. The work of O. sabag was supported by the ISEF
international fellowship.

Encoder Decoder
PY |X,S(yt|xt, st−1)

st=f(yt, xt, st−1)

Unit-Delay

m

yt

yt m̂

yt−1

xt

Fig. 1. Unifilar FSC with feedback. The new channel state, st, is a function
of (yt, xt, st−1).

dual upper bounding technique [8]–[10], but for directed in-
formation. The resulted duality bound is a multi-letter formula
that holds for any choice of a test distribution on the channel
outputs ensemble. The main contribution is a formulation of
the upper bound as an MDP. Specifically, we present an MDP
formulation that for any unifilar FSC and test distributions
that are chosen on a Q-graph. Due to the finite alphabets in
the MDP formulation, simple numerical and analytical MDP
tools can be applied.

The remainder of this paper is organized as follows. Section
II introduces the notation and the model definition. Section III
introduces the dual capacity upper bound, Q-graphs and our
main result. Section IV contains the MDP formulation of the
upper bounds. In Section V, we illustrate the simplicity of
computing the upper bound for two examples via solutions to
the Bellman equation. Finally, proofs are given in Section VI.

II. THE SETTING

In this section, we present the notation and the setting.

A. Notation
Random variables, realizations and alphabets are denoted by

upper-case letters (e.g., X), lower-case letters (e.g., x) and cal-
ligraphic letters (e.g., X ), respectively. All vectors follow the
above notation with superscripts, e,g., xn = (x1, x2, . . . , xn).
The probability mass function (pmf) of a random variable X
is denoted by PX , and conditional and joint pmfs are denoted
by PY |X and PX,Y , respectively; when the random variables
are clear from the context we omit the random variable, i.e.,
P (x), P (y|x) and P (x, y). We use the standard notation of
directed information, as in [11],

I(Xn → Y n) =

n∑

i=1

I(Xi; Yi|Y i−1)
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and causal conditioning

P (Xn||Y n) =

n∏

i=1

P (Xi|Xi−1, Y i−1).

When the causal conditioning is particularized for determinis-
tic functions we write f(xn||yn).

B. Finite-state channels

A finite state channel is defined by the triplet (X ×
S, P (s, y|x, s′), Y × S) where X is the channel input, Y is
the channel output, S′ is the channel state at the beginning
of the transmission and S is the channel state at the end of
the transmission. The cardinalities of X, Y, S are assumed to
be finite. At each time t, the channel has a time-invariant
probabilistic characterization

P (st, yt|xt, st−1, yt−1) = P (st, yt|xt, st−1).

The FSC is called unifilar is the state evolution is given
by a time-invariant and deterministic function. That is,
P (st|yt, xt, st−1) = 1{st = f(yt, xt, st−1)}. The capacity
of a strongly connected FSC with feedback is given by the
following theorem:

Theorem 1 ( [1, Th. 3 ]). The feedback capacity of a strongly
connected FSC is

Cfb = lim
n→∞

1

n
max

p(xn||yn−1)
I(Xn → Y n).

III. MAIN RESULT - COMPUTABLE UPPER BOUND

In this section, we present the duality upper bound and its
extension to the directed information. Then, we simplify the
general bound for the case of unifilar FSCs and graph-based
test distributions. Finally, its computability will be shown via
a novel MDP formulation.

A. The duality upper bound

For a memoryless channel, the following upper bound is
well known:

Theorem 2 ( [12, Th. 8.4]). For any test distribution TY and
a memoryless channel, the capacity is bounded by

C ≤ max
x

D(PY |X=x||TY ).

The bound follows from the non-negativity of the KL diver-
gence D(PY ||TY ). It is called the duality upper bound since
it can be simply deduced from the dual capacity expression
[13]. If the test distribution is equal to the optimal outputs
distribution, the bound is tight. Therefore, one should aim at
choosing TY as close as possible to the optimal P ∗

Y .
For the directed information, the same methodology gives

the following result.

Theorem 3 (Duality UB for Directed Information). For a fixed
channel P (yn||xn) and any test distribution T (yn),

Cn , 1

n
I(Xn → Y n)

≤ 1

n
max D(P (Y n||Xn = xn)||T (Y n)),

where the maximum is over f(Xn||Y n−1).

Note that the theorem holds for any channel. The optimal
output distribution for channels with memory is not i.i.d..
Therefore, in order to minimize the upper bound, one needs to
choose a test distribution with memory. Markov test distribu-
tions are standard choice in the literature, but it can be shown
that the optimal outputs distribution for certain channels do not
admit a Markovian structure (of any finite order). In this paper,
we choose the test distribution as an extension of the Markov
model to be a variable-order Markov model on a Q-graph.

B. The Q-graph

The Q-graph is defined as a directed graph with edges that
are labelled with symbols from the channel outputs alphabet
Y . It also has the property that the outgoing edges from each
node are disjointly labelled with all possible labels from Y
(See Fig. 2). Thus, the Q-graph can be used as a mapping of
(any-length) output sequences into the graph nodes by walking
along the labelled edges. For a fixed graph, we denote the
induced mapping with

Φ : Q × Y → Q,

where Q denotes the set of graph nodes.

Remark 1 (Variable-order Markov model). A special case of
the variable-order Markov model on a Q-graph is a Markov
model of order k. This can be seen by choosing a graph with
Yk nodes, where each node represents a tuple of k channel
outputs and the edges are connected accordingly.

C. Main result

The following is the duality upper bound in Theorem 3 when
simplified to Q-graph test distributions and unifilar FSCs.

Theorem 4 (Duality UB for FSCs using Q-graphs). For any
Q-graph test distribution, the feedback capacity of a strongly
connected unifilar FSC is bounded by

Cfb ≤ lim
n→∞

max
f(xn||yn−1)

min
s0,q0

1

n

n∑

i=1

EY i−1||Xi−1 [D(P (·|xi, Si−1)||T (·|Qi−1))]. (1)

The notation f(xn||yn−1) stands for causal conditioning of
deterministic functions:

f(xn||yn−1) =
∏

i

1{xi = fi(x
i−1, yi−1)}.

The following is our main result that shows the simple com-
putation required in order to evaluate the RHS of (1).

Theorem 5 (MDP formulation). The upper bound (1) is equal
to the optimal average reward of an MDP with finite states,
actions and disturbances.

Theorem 5 is a computational result. MDPs are well-
investigated in the optimization and control literatures (e.g.,

International Zurich Seminar on Information and Communication (IZS), February 26 – 28, 2020

69



[14]–[16]). When the MDP states, actions and disturbances
have finite spaces, the MDP can be solved using standard
dynamic programming methods such as the value and policy
iterations. Moreover, the Bellman equation can be used to
simplify the involved upper bound in (1) to very simple
expressions. It will be shown in Section V that the Bellman
equation provides tight and simple upper bounds if the test
distribution is chosen correctly.

The next section concerns with the MDP formulation.

IV. MDP FORMULATION

Markov decision processes are common models for sequen-
tial decisions making. In this paper, we focus on the class of
average-reward infinite horizon MDPs. It will be shown that
their optimal average rewards are equal to the upper bound in
Theorem 3.

The MDP state at time t is defined as the pair zt−1 ,
(qt−1, st−1). The action is xt, the disturbance is yt, and the
reward is

R(zt−1, xt) = D
(
PY |X,S(·|xt, st−1)||TY |Q(·|qt−1)

)
(2)

Before we proceed to the connection between the optimal
average reward of the defined MDP and the upper bound on
the capacity, we technically show that this is a valid MDP.

Lemma 1 (MDP formulation). For the MDP in Table I:

1) The MDP state, zt, is a function of zt−1, yt, xt.
2) The MDP reward is time-invariant function of zt−1, xt.
3) The MDP disturbance, yt, is conditionally independent

of the past, given zt−1, xt.

Proof. Straightforward computations using the Markov chain
Yt−(Xt, St−1)−Ψ(Xt−1, Y t−1, St−1) for any function Ψ(·).

Following Lemma 1, one can define the MDP average
reward in the infinite horizon regime as

J∗ = sup lim inf
N→∞

1

N

N∑

i=1

E
[
D

(
PY |X,S(·|xt, St−1)||TY |Q(·|Qt−1)

)]
, (3)

where the supremum is over all deterministic functions {fi :
X i−1 × Yi−1 → X}i≥1. Indeed, the MDP formulation in
Lemma 1 provides a powerful conclusion on the maximization
domain:

Corollary 1. It is sufficient to evaluate the supremum in (3)
over {fi : S × Q → X}i≥1.

The following theorem relates the upper bound in (1) to the
average reward of the defined MDP.

Theorem 6. The optimal average reward of the MDP is an
upper bound to the capacity. That is, Cfb ≤ J∗.

TABLE I
SUMMARY OF THE MDP FORMULATION

MDP
State (qt−1, st−1)

Action xt

Disturbance yt

Reward D(PY |X,S(·|xt, st−1)||TY |Q(·|qt−1))

A. The Bellman equation

An alternative characterization for the optimal average
reward in MDPs is offered by the Bellman equation. The
following theorem is a simplification of the Bellman equation
for our formulation.

Theorem 7 (Bellman equation, [14]). If ρ ∈ R and a bounded
function h : X × Q → R satisfies

ρ + h(s, q) = max
x

R(z, x) + E[h(S+, Φ(Y, q)|S = s, X = x],

for all (s, q), then ρ = ρ∗.

V. EXAMPLES

In this section, we study two known examples, the DEC
and the Ising channels. The main objective here is to provide
simple proofs for tight upper bounds. For both channels, we
establish their tight upper bounds via an explicit solution of
the Bellman equation.

The MDP formulation: For both channels, the channel
state is the previous channel input xt−1. The MDP for-
mulation in this case is the following: the MDP state at
time t is (xt−1, qt−1), the MDP action is xt, the reward is
D(PY |X,X−(·|xt, xt−1)||TY |Q(·|qt−1) and the disturbance is
yt.

For convenience, we define the MDP operator on a function
h : X × Q → R as:

(Th)(x−, q) = max
x

D(PY |X,X−(·|x, x−)||TY |Q(·|q))
+ E[h(x, Φ(Y, q))|X = x, X− = x−]. (4)

A. The DEC

The dicode erasure channel (DEC) is a binary-input channel
whose characterization is given by:

Yi =

{
Xi − Xi−1 , w.p.1 − ǫ

? , w.p. ǫ.

The channel outputs can take values from Y = {0, ±1, ?}. The
channel was introduced as a simplified version of the known
dicode channel (with Gaussian noise). Its feedback capacity
was investigated in [17], [18], but only a lower bound could
be deduced. In [4], we developed a new framework that is
called the Q-graph upper bounds and showed that the lower
bound is indeed tight:

Theorem 8 (DEC capacity, [4]). The feedback capacity of the
DEC is:

CDEC = max
0≤p≤1

(1 − ǫ)
p + ǫH2(p)

ǫ + (1 − ǫ)p
. (5)
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Y = −1

Y = −1

Y = −1
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Y =?

Y = 0

Y = 0Y = 0

Fig. 2. The optimal Q-graph for the DEC.

In the following, we provide our new result, an alternative
and simple converse proof for the above capacity result.

Theorem 9 (Upper bound for the DEC). The feedback capac-
ity of the DEC satisfies

CDEC ≤ ǭ(1 − ǫ log p), (6)

where p is the unique solution for xǫ = 2(1 − x).

It can be shown that (6) is equal to the feedback capacity
in Theorem 8, so that the upper bound is tight.

Solution for the MDP: Recall that in order to compute the
upper bound, one needs a graph-based test distribution on a Q-
graph. Consider the Q-graph in Fig. 2 and the test distribution
TY |Q that is parameterized with p ∈ [0, 1]:

Y =? Y = −1 Y = 0 Y = 1
Q = 1 ǫ 0 0.5ǭ 0.5ǭ
Q = 2 ǫ 0.5ǭ 0.5ǭ 0
Q = 3 ǫ 0.5pǭ (1 − p)ǭ 0.5pǭ

By iterating the value iteration algorithm, one can deduce a
conjectured solution2: define the constant

ρ∗ = ǭ(1 − ǫ log p), (7)

where p is the unique solution for xǫ = 2(1−x). Also, define
the function h : X × Q → R:

h(0, 1) = h(1, 2) = ǭǭ log p

h(0, 3) = h(1, 3) = −ǭǭ log p. (8)

The value function at h(0, 2) and h(1, 1) are not defined since
they have zero probability for any choice of actions when
choosing the initial state to be Q = 3.

The following technical result concludes Theorem 9.

Lemma 2. The constant ρ∗ and the function h solve the
Bellman equation. Consequently, CDEC ≤ ρ∗.

Proof of Lemma 2. We compute explicitly the MDP operator
in (4) with (8).

2Further reading on the numerical evaluation can be found in [1], [19]

For the MDP state (x− = 0, q = 1), the MDP operator is a
maximum over

x = 0 :D([ǫ, 0, ǭ, 0]||[ǫ, 0, 0.5ǭ, 0.5ǭ]) + 0.5h(1, 1) + 0.5h(0, 3)

x = 1 :D([ǫ, 0, 0, ǭ]||[ǫ, 0, 0.5ǭ, 0.5ǭ]) + 0.5h(1, 2) + 0.5h(1, 3).

Both equations simplify to ǭ, so that ρ∗ + h(0, 1) = ǭ.
For the state x− = 0 and q = 3, the MDP operator is the

maximum on

x = 0 :D([ǫ, 0, ǭ, 0]||[ǫ, 0.5pǭ, (1 − p)ǭ, 0.5pǭ]) + h(0, 3)

x = 1 :D([ǫ, 0, 0, ǭ]||[ǫ, 0.5pǭ, (1 − p)ǭ, 0.5pǭ])

+ 0.5h(1, 2) + 0.5h(1, 3)

For x = 0, we have −ǭ log(1 − p) − ǭǭ log p and for x = 1
we have ǭ(1 − log p). When we choose the optimal parameter
these equations are equal. The computations for the other MDP
states are similar.

B. The Ising channel

The Ising channel, introduced in [20], is given by:

Yi =

{
Xi , w.p. 0.5

Xi−1 , w.p. 0.5.

Its feedback capacity for the binary-input case is:

Theorem 10 (Ising capacity, [21]). The feedback capacity of
the Ising channel is:

CISING = max
0≤p≤1

H2(p)

2 + p
. (9)

In the following, we provide an alternative and simple
converse proof for the Ising channel with the binary alphabet.

Theorem 11 (Upper bound for the Ising channel). The feed-
back capacity of the Ising channel satisfies

CISING ≤ −0.5 log p, (10)

where p is the unique solution for (1 − x)4 = x3.

It can be shown that the feedback capacity in Theorem 10
is equal to the upper bound in Theorem 11.

Remark 2 (Ising channel with larger alphabet). In a recent
advancement to the RL algorithms in [7], the capacity of the
Ising channel with alphabet size |X | ≤ 8 has been established.
The duality bound, derived in the current paper, used to prove
the converse, and its computation is still very simple despite
the large alphabets.

Solution for the MDP: The Q-graph consists of four nodes,
and its evolution function is given by the vectors representation
Φ(y = 0, q) = [2, 1, 1, 1] and Φ(y = 1, q) = [3, 3, 4, 3].

For some p, define the test distribution

T (y = 0|q) =

[
1 + p

2
,

2p

1 + p
,
1 − p

2
,
1 − p

1 + p

]
.

Define the constant:

ρ∗ =
D(1|| 2p

1+p ) + D(1|| 1+p
2 )

2
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= −0.5 log p, (11)

where p solves (1 − x)4 = x3.
Define the value function:

h(0, 1) = h(1, 3) = ρ∗

h(0, 2) = h(1, 4) = log(1 + p) + 2ρ∗ − 1

h(0, 3) = h(1, 1) = 1 − log(1 − p)

h(0, 4) = h(1, 2) = log
1 + p

1 − p
. (12)

The following technical lemma concludes the proof of Theo-
rem 11.

Lemma 3. The constant ρ∗ in (11) and the value function in
(12) solve the Bellman equation.

The proof of the Lemma 3 is omitted due to space limi-
tations and follows from explicit computations as in Lemma
2.

VI. PROOFS

In this section, we provide the proofs of Theorems 3 and 4.

Proof of Theorem 3. Consider the following chain of inequal-
ities

I(Xn → Y n)

=
∑

xn,yn

P (xn||yn−1)P (yn||xn) log
P (yn||xn)

P (yn)

≤
∑

xn,yn

P (xn||yn−1)P (yn||xn) log
P (yn||xn)

T (yn)

≤ max D(PY n||Xn=xn ||T (Y n)), (13)

where the maximum is taken over sequences of deterministic
functions fi : X i−1 × Yi−1 → X for i = 1, . . . , n.

Proof of Theorem 4. Here, we simplify (13) when the channel
is unifilar and the test distribution is defined on a Q-graph.
Consider the following chain of inequalities,

D(PY n||Xn=xn ||T (Y n))

=
∑

yn

P (yn||xn) log
P (yn||xn)

T (yn)

=
∑

yn

P (yn||xn) log
n∏

i=1

(
p(yi|yi−1, xi)

T (yi|yi−1)

)

(a)
=

∑

i

∑

yi

P (yi||xi) log
PY |X,S(yi|xi, si−1)

TY |Q(yi|qi−1)

=
∑

i

∑

yi−1

P (yi−1||xi−1)D(PY |X,S(·|xi, si−1)||T (·|qi−1))

≤ max
f(xn||yn−1)

∑

i

E[D(PY |X,S(·|xi, Si−1)||T (·|Qi−1)]

where (a) follows by summing over yn
i+1 and the fact that

qi−1 is a function of yi−1. The limits existence follows from
the super-additivity of the sequence (proof is omitted):

Cn , max
f(xn||yn−1)

min
s0,q0

∑

i

E[D(PY |X,S(·|xi, Si−1)||T (·|Qi−1)].

Proof of Theorem 6. The exchange of the limit and the maxi-
mization follows from standard arguments (e.g., [19, Theorem
3]) that are based on the super-additivity property of Cn.
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Abstract—This paper focuses on variants of the bottleneck
problem taking an information theoretic perspective. The inti-
mate connections of this setting to: remote source-coding, infor-
mation combining, common reconstruction, the Wyner-Ahlswede-
Korner problem, the efficiency of investment information, CEO
source coding under logarithmic-loss distortion measure and
others are highlighted. We discuss the distributed information
bottleneck problem with emphasis on the Gaussian model.
For this model, the optimal tradeoffs between relevance (i.e.,
information) and complexity (i.e., rates) in the discrete and vector
Gaussian frameworks is determined.

I. STATISTICAL INFERENCE

Let a measurable variable X ∈ X and a target variable Y ∈ Y
with unknown joint distribution PX,Y be given. In the classic prob-
lem of statistical learning, one wishes to infer an accurate predictor
of the target variable Y ∈ Y based on observed realizations of
X ∈ X . That is, for a given class F of admissible predictors
ψ ∶ X → Ŷ and a loss function ` ∶ Y → Ŷ that measures
discrepancies between true values and their estimated fits, one
aims at finding the mapping ψ ∈ F that minimizes the expected
(population) risk

CPX,Y
(ψ, `) = EPX,Y

[`(Y,ψ(X))]. (1)

An abstract inference model is shown in Figure 1.

PX|YY ∈ Y ψ Ŷ ∈ Y
X ∈ X

Fig. 1. An abstract inference model for learning.

The choice of a “good” loss function `(⋅) is often controversial in
statistical learning theory. There is however numerical evidence that
models that are trained to minimize the error’s entropy often outper-
form ones that are trained using other criteria such as mean-square
error (MSE) and higher-order statistics [1], [2]. This corresponds to
choosing the loss function given by the logarithmic loss, which is
defined as

`log(y, ŷ) ∶= log
1

ŷ(y) (2)

for y ∈ Y and ŷ ∈ P(Y) designates here a probability distribution
on Y and ŷ(y) is the value of that distribution evaluated at the
outcome y ∈ Y . Although a complete and rigorous justification of
the usage of the logarithmic loss as distortion measure in learning
is still awaited, recently a partial explanation appeared in [3] where

Painsky and Wornell show that, for binary classification problems,
by minimizing the logarithmic-loss one actually minimizes an
upper bound to any choice of loss function that is smooth, proper
(i.e., unbiased and Fisher consistent) and convex. Along the same
line of work, the authors of [4] show that under some natural
data processing property Shannon’s mutual information uniquely
quantifies the reduction of prediction risk due to side information.
Perhaps, this justifies partially why the logarithmic-loss fidelity
measure is widely used in learning theory and has already been
adopted in many algorithms in practice such as the infomax cri-
terion [5]. The logarithmic loss measure also plays a central role
in the theory of prediction [6, Ch. 09], where it is often referred
to as the self-information loss function, as well as in Bayesian
modeling [7] where priors are usually designed so as to maximize
the mutual information between the parameter to be estimated and
the observations.
Let for every x ∈ X , ψ(x) = Q(⋅∣x) ∈ P(Y). It is easy to see that

EPX,Y
[`log(Y,Q)] = ∑

x∈X , y∈Y PX,Y (x, y) log ( 1

Q(y∣x)) (3a)

= H(Y ∣X) +D(PY ∣X∥Q) (3b)≥ H(Y ∣X) (3c)

with equality iff ψ(X) = PY ∣X . That is,

min
ψ
CPX,Y

(ψ, `log) = H(Y ∣X). (4)

If the joint distribution PX,Y is unknown, which is most often
the case in practice, the population risk as given by (1) cannot
be computed directly; and, in the standard approach, one usually
resorts to choosing the predictor with minimal risk on a training
dataset consisting of n labeled samples {(xi, yi)}ni=1 that are drawn
independently from the unknown joint distribution PX,Y . In this
case, it is important to restrict the set F of admissible predictors
to a low-complexity class to prevent overfitting. One way to reduce
the model’s complexity is by restricting the range of the predic-
tion function as shown in Figure 2. Here, the stochastic mapping
φ ∶ X Ð→ U is a compressor with

∥φ∥ ≤ R (5)

for some prescribed ’input-complexity’ value R.
Let U = φ(X). The expected logarithmic loss is now given by

CPX,Y
(φ,ψ; `log) = EPX,Y

[`log(Y,ψ(U))] (6)

and takes its minimum value with the choice ψ(U) = PY ∣U ,

min
ψ
CPX,Y

(φ,ψ; `log) = H(Y ∣U) (7)
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PX|YY ∈ Y φ ψ Ŷ ∈ Y
X ∈ X U = φ(X)

Fig. 2. Inference problem with constrained model’s complexity.

where the choice of U is subjected to the input constraint (5).
Noting that the right-hand-side (RHS) of (7) is larger for small
values of R, it is clear that a good predictor φ should strike a right
balance between reducing the model’s complexity and reducing the
error’s entropy, or, equivalently, maximizing the mutual information
I(U ;Y ) about the target variable Y .

A. Remote Source Coding under Logarithmic Loss

The aforementioned inference problem is a one-shot coding
problem, in the sense that the prediction and estimation operations
are performed letter-wise. Consider now the (asymptotic) remote
source coding problem shown in Figure 3 in which the coding
operations are performed over blocks of size n, with n assumed
to be large. Here, Y designates a memoryless remote source; andX
a noisy version of it that is observed at the encoder. The range of the
encoder map is allowed to grow with the size of the input sequence
as ∥φ(n)∥ ≤ nR. (8)

That is, the encoder uses at most R bits per sample to describe its
observation to a decoder which is interested in reconstructing the
remote source Y n to within an average distortion level D, i.e.,

E[`(n)log (y, ŷ)] ≤ D (9)

where the incurred distortion between two vectors y and ŷ is given
by

`
(n)
log (y, ŷ) = 1

n

n∑
i=1 `log(yi, ŷi) (10)

with the per-letter distortion defined as specified by (2).

PXn|Y nY n ∈ Yn φ(n) ψ(n) Ŷ n ∈ Yn
Xn ∈ Xn Un = φ(n)(Xn)

Fig. 3. A remote source coding problem.

The rate distortion region of this model is given by the union of all
pairs (R,D) that satisfy [8], [9]

R ≥ I(U ;X) (11a)
D ≥ H(Y ∣U) (11b)

where the union is over all auxiliary random variables U that satisfy
that U −
− X −
− Y forms a Markov Chain in this order. Invoking
the support lemma [10, p. 310], it is easy to see that this region is
not altered if one restricts U to satisfy ∣U ∣ ≤ ∣X ∣+ 1. Also, using the
substitution ∆ ∶= H(Y )−D, the region can be written equivalently
as the union of all pairs (R,H(Y ) −∆) that satisfy

R ≥ I(U ;X) (12a)
∆ ≤ I(U ;Y ) (12b)

where the union is over all U ’s that satisfy U −
− X −
− Y , with∣U ∣ ≤ ∣X ∣ + 1.

B. Information Bottleneck
The Information Bottleneck (IB) method has been introduced by

Tishby et al. in [11] as a method for extracting the information
that some variable X ∈ X provides about another one Y ∈ Y
that is of interest. Specifically, IB finds a representation U that
is maximally informative about Y , i.e., large mutual information
I(U ;Y ), while being minimally informative about X, i.e., small
mutual information I(U ;X) 1. The auxiliary random variable U
satisfies that U −
− X −
− Y is a Markov chain in this order; and
is chosen so a to strike a suitable balance between the degree
of relevance of the representation as measured by the mutual
information I(U ;Y ) and its degree of complexity as measured by
the mutual information I(U ;X). For example,U can be determined
so as to minimize the IB-Lagrangian

L ∶ I(U ;X) − βI(U ;Y ) (13)

over all mappings that satisfy U −
−X −
−Y . The tradeoff parameter
β is a positive Lagrange multiplier associated with the constraint
on I(U ;Y ). The solution of this constrained optimization problem
is determined by the following self-consistent equations, for all(u, x, y) ∈ U ×X ×Y ,

PU ∣X(u∣x) = PU(u)
Z(β, x) exp ( − βD(PY ∣X(⋅∣x)∥PY ∣U(⋅∣u)))

(14a)

PU(u) = ∑
x∈X PX(x)PU ∣X(u∣x) (14b)

PY ∣U(y∣u) = ∑
x∈X PY ∣X(y∣x)PX ∣U(x∣u) (14c)

where PX ∣U(x∣u) = PU ∣X(u∣x)PX(x)/PU(u) and Z(β, x) is a
normalization term. It is shown in [11] that alternating iterations of
these equations converges to a solution of the problem for any initial
PU ∣X . However, by opposition to the standard Blahut-Arimoto
algorithm [13], [14] which is classically used in the computation of
rate-distortion functions of discrete memoryless sources for which
convergence to the optimal solution is guaranteed, convergence here
may be to a local optimum only. If β = 0 the optimization is non-
constrained and one can set U = ∅, which yields minimal relevance
and complexity levels. Increasing the value of β steers towards more
accurate and more complex representations, untilU = X in the limit
of very large (infinite) values of β for which the relevance reaches
its maximal value I(X;Y ).

C. Variational Inference
Recall the IB goal of finding a representation U of X that is

maximally informative about Y while being concise enough (i.e.,
bounded I(U ;X)). This corresponds to the Lagrangian formulation

L ∶ max I(U ;Y ) − βI(U ;X) (15)

where the maximization is over all stochastic mappings PU ∣X such
that U −
− X −
− Y and ∣U ∣ ≤ ∣X ∣ + 1. The main drawback of
the IB principle is that in the exception of small-sized discrete(X,Y ) for which iterating (14) converges to an (at least local)
solution and jointly Gaussian (X,Y ) for which an explicit analytic
solution was found, solving (15) is generally computationally costly

1As such, the usage of Shannon’s mutual information seems to be motivated
by the intuition that such a measure provides a natural quantitative approach
to the questions of meaning, relevance and common-information, rather than
the solution of a well-posed information-theoretic problem – a connection
with source coding under logarithmic loss measure appeared later on in [12].
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especially for high-dimensional data since it requires computation
of mutual information terms. Another important barrier in solv-
ing (15) directly is that IB necessitates knowledge of the joint
distribution PX,Y . A major step ahead, which widened up the
range of applications of IB inference for various learning problems,
appeared in [15] where the authors use variational inference to
derive a lower bound on (15) and show that its optimization can
be done through the classic and widely used stochastic gradient
descendent (SGD). This has allowed to use deep neural networks
to parametrize the involved distributions (including the test channel
PU ∣X ); and, thus, to handle high-dimensional, possibly continuous,
data.

II. CONNECTIONS

A. Common Reconstruction

Consider the problem of source coding with side information at
the decoder, i.e., the well known Wyner-Ziv setting [16], with the
distortion measured under logarithmic-loss. Specifically, a mem-
oryless source X is to be conveyed lossily to a decoder that
observes a statistically correlated side information Y . The encoder
uses R bits per sample to describe its observation to the decoder
which wants to reconstruct an estimate of X to within an average
distortion level D, where the distortion is evaluated under the log-
loss distortion measure. The rate distortion region of this problem
is given by the set of all pairs (R,D) that satisfy

R +D ≥ H(X ∣Y ). (16)

The optimal coding scheme utilizes standard Wyner-Ziv compres-
sion at the encoder and the decoder map ψ ∶ U × Y → X̂ is given
by

ψ(U,Y ) = Pr[X = x∣U,Y ] (17)

for which it is easy to see that

E[`log(X,ψ(U,Y ))] = H(X ∣U,Y ). (18)

Now, assume that we constrain the coding in a manner that the
encoder be able to produce an exact copy of the compressed source
constructed by the decoder. This requirement, termed common re-
construction constraint (CR), was introduced and studied by Stein-
berg in [17] for various source coding models, including the Wyner-
Ziv setup, in the context of a ”general distortion measure. For the
Wyner-Ziv problem under log-loss measure that is considered in
this section, such a CR constraint causes some rate loss because the
reproduction rule (17) is no longer possible. In fact, it is not difficult
to see that under the CR constraint the above region reduces to the
set of pairs (R,D) that satisfy

R ≤ I(U ;X ∣Y ) (19a)
D ≥ H(X ∣U) (19b)

for some auxiliary random variable for which U −
−X −
− Y holds.
Observe that (19b) is equivalent to I(U ;X) ≥ H(X) −D and that,
for a given prescribed fidelity levelD, the minimum rate is obtained
for a description U that achieves the inequality (19b) with equality,
i.e.,

R(D) = min
PU ∣X ∶ I(U ;X)=H(X)−D I(U ;X ∣Y ). (20)

Because U −
−X −
− Y , we have

I(U ;Y ) = I(U ;X) − I(U ;X ∣Y ). (21)

Under the constraint I(U ;X) = H(X) − D it is easy to see that
minimizing I(U ;X ∣Y ) amounts to maximizing I(U ;Y ), an aspect
which bridges the problem at hand with the IB problem.
In the above, the side information Y is used for binning but not for
the estimation at the decoder. If the encoder ignores whether Y is
present or not at the decoder side, the benefit of binning is reduced –
see the Heegard-Berger model with common reconstruction studied
in [18], [19].

B. Information Combining
Consider again the IB problem. Say one wishes the find the

representation U that maximizes the relevance I(U ;Y ) for a given
prescribed complexity level, e.g., I(U ;X) = R. For this setup,

I(X;U,Y ) = I(U ;X) + I(Y ;X) − I(U ;Y ) (22)= R + I(Y ;X) − I(U ;Y ) (23)

where the first equality holds since U −
−X −
−Y is a Markov chain.
Maximizing I(U ;Y ) is then equivalent to minimizing I(X;U,Y ).
This is reminiscent of the problem of information combining [20],
whereX can be interpreted as a source information that is conveyed
through two channels: the channel PY ∣X and the channel PU ∣X .
The outputs of these two channels are conditionally independent
given X; and they should be processed in a manner such that, when
combined, they preserve as much information as possible about X.

C. Wyner-Ahlswede-Korner Problem
Here, the two memoryless sources X and Y are encoded sep-

arately at rates RX and RY respectively. A decoder gets the two
compressed streams and aims at recovering Y losslessly. This
problem was studied and solved separately by Wyner [21] and
Ahlswede and Körner [22]. For given RX = R, the minimum rate
RY that is needed to recover Y losslessly is

R
⋆
Y (R) = min

PU ∣X ∶ I(U ;X) ≤RH(Y ∣U). (24)

So, we get

max
PU ∣X ∶ I(U ;X)≤R I(U ;Y ) = H(Y ) −R⋆Y (R).

D. The Privacy Funnel
Consider again the setting of Figure 3; and let us assume that

the pair (Y,X) models data that a user possesses and which has
the following properties: the data Y is some sensitive (private) data
that is not meant to be revealed at all, or else not beyond some level
∆; and the data X is non-private and is meant to be shared with
another user (analyst). Because X and Y are correlated, sharing the
non-private data X with the analyst possibly reveals information
about Y . For this reason, there is a tradeoff between the amount
of information that the user shares about X and the information
that he keeps private about Y . The data X is passed through a
randomized mapping φ whose purpose is to make U = φ(X)
maximally informative about X while being minimally informative
about Y .
The analyst performs an inference attack on the private data Y
based on the disclosed information U . Let ` ∶ Y × Ŷ Ð→ R̄ be an
arbitrary loss function with reconstruction alphabet Ŷ that measures
the cost of inferring Y after observing U . Given (X,Y ) ∼ PX,Y
and under the given loss function `, it is natural to quantify the
difference between the prediction losses in predicting Y ∈ Y prior
and after observing U = φ(X). Let

C(`, P) = inf
ŷ∈Ŷ EP [`(Y, ŷ)] − inf

Ŷ (φ(X))EP [`(Y, Ŷ )] (25)
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PX1,...,XK |YY ∈ Y ·
·
·

φ1

φk

ψ Ŷ ∈ Y

XK

X1 U1

UK

Fig. 4. A model for distributed, e.g., multi-view, learning.

where ŷ ∈ Ŷ is deterministic and Ŷ (φ(X)) is any measurable func-
tion of U = φ(X). The quantity C(`, P) quantifies the reduction in
the prediction loss under the loss function ` that is due to observing
U = φ(X), i.e., the inference cost gain. In [23] (see also [24]) it is
shown that that under some mild conditions the inference cost gain
C(`, P) as defined by (25) is upper-bounded as

C(`, P) ≤ 2
√

2L
√
I(U ;Y ) (26)

where L is a constant. The inequality (26) holds irrespective to the
choice of the loss function `; and this justifies the usage of the
logarithmic loss function as given by (2) in the context of finding a
suitable tradeoff between utility and privacy, since

I(U ;Y ) = H(Y ) − inf
Ŷ (U)EP [`log(Y, Ŷ )]. (27)

Under the logarithmic loss function, the design of the mapping
U = φ(X) should strike a right balance between the utility for
inferring the non-private data X as measured by the mutual infor-
mation I(U ;X) and the privacy metric about the private date Y as
measured by the mutual information I(U ;Y ).

E. Efficiency of Investment Information
Let Y model a stock market data andX some correlated informa-

tion. In [25], Erkip and Cover investigated how the description of
the correlated information X improves the investment in the stock
market Y . Specifically, let ∆(C) denote the maximum increase in
growth rate when X is described to the investor at rate C. Erkip
and Cover found a single-letter characterization of the incremental
growth rate ∆(C). When specialized to the horse race market, this
problem is related to the aforementioned source coding with side
information of Wyner [21] and Ahlswede-Körner [22]; and, so,
also to the IB problem. The work [25] provides explicit analytic
solutions for two horce race examples, jointly binary and jointly
Gaussian horce races.

III. DISTRIBUTED LEARNING

Consider now a generalization of the IB problem in which the
prediction is to be performed in a distributed manner. The model is
shown in Figure 4. Here, the prediction of the target variable Y ∈ Y
is to be performed on the basis of samples of statistically correlated
random variables (X1,⋯,XK) that are observed each at a distinct
predictor. Throughout, we assume that the following Markov chain
holds for all k ∈ K ∶= {1,⋯,K},

Xk −
− Y −
−XK/k. (28)

The variable Y is a target variable and we seek to characterize
how accurate it can be predicted from a measurable random vector(X1,⋯,XK) when the components of this vector are processed
separately, each by a distinct encoder.

A. Optimal relevance-complexity tradeoff region
The distributed IB problem of Figure 4 is studied in [26], [27]

from information-theoretic grounds. For both discrete memoryless
(DM) and memoryless vector Gaussian models, the authors estab-
lish fundamental limits of learning in terms of optimal tradeoffs
between relevance and complexity. The following theorem [26],
[27] states the result for the case of discrete memoryless sources.

Theorem 1. The relevance-complexity region IRDIB of the dis-
tributed learning problem is given by the union of all non-negative
tuples (∆,R1, . . . ,RK) ∈ RK+1+ that satisfy

∆ ≤ ∑
k∈S[Rk−I(Xk;Uk ∣Y, T)] + I(Y ;USc ∣T), ∀S ⊆ K (29)

for some joint distribution of the form
PTPY ∏Kk=1 PXk ∣Y ∏Kk=1 PUk ∣Xk,T .

B. A Variational Bound
Let us consider the problem of maximizing the relevance under

a sum-complexity constraint. Let Rsum = ∑Kk=1Rk and

RIsumDIB ∶= {(∆,Rsum) ∈ R2+ ∶ ∃(R1, . . . ,RK) ∈ RK+ s.t.

K∑
k=1Rk = Rsum and (∆,R1, . . . ,RK) ∈RIDIB}. (30)

It is easy to see that the regionRIsumDIB is composed of all the pairs(∆,Rsum) ∈ R2+ for which ∆ ≤ ∆(Rsum, PXK,Y ), with

∆(Rsum, PXK,Y ) = max
P

min{I(Y ;UK),Rsum − K∑
k=1 I(Xk;Uk ∣Y )} ,

(31)
where the maximization is over joint distributions that factorize as
PY ∏Kk=1 PXk ∣Y ∏Kk=1 PUk ∣Xk

. The pairs (∆,Rsum) that lie on the
boundary ofRIsumDIB can be characterized as given in the following
proposition [27, Section 7.3].

Proposition 1. For every pair (∆,Rsum) ∈ R2+ that lies on the
boundary of the regionRIsumDIB there exists a parameter s ≥ 0 such
that (∆,Rsum) = (∆s,Rs), with

∆s = 1(1 + s) [(1 + sK)H(Y ) + sRs +max
P
Ls(P)] , (32)

Rs = I(Y ;U
∗K) + K∑

k=1[I(Xk;U
∗
k ) − I(Y ;U

∗
k )], (33)

where P∗ is the set of conditional pmfs P = {PU1∣X1
,⋯, PUK ∣XK

}
that maximize the cost function

Ls(P) ∶=−H(Y ∣UK)− s K∑
k=1[H(Y ∣Uk) + I(Xk;Uk)]. (34)

The optimization of (34) generally requires to compute marginal
distributions that involve the descriptions U1,⋯, UK , which might
not be possible in practice. In what follows, we derive a variational
lower bound on Ls(P) on the DIB cost function in terms of fami-
lies of stochastic mappings QY ∣U1,...,UK

(a decoder), {QY ∣Uk
}Kk=1

and priors {QUk
}Kk=1. For the simplicity of the notation, we let

Q ∶= {QY ∣U1,...,UK
,QY ∣U1

, . . . ,QY ∣UK
,QU1

, . . . ,QUK
}. (35)

Let

LVB
s (P,Q) ∶= E[logQY ∣UK(Y ∣UK)]´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

av. logarithmic-loss

International Zurich Seminar on Information and Communication (IZS), February 26 – 28, 2020

76



+ s K∑
k=1 (E[logQY ∣Uk

(Y ∣Uk)] −DKL(PUk ∣Xk
∥QUk

))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

regularizer

. (36)

Lemma 1. ( [27, Section 7.4]) For fixed P, we have

Ls(P) ≥ LVB
s (P,Q), for all pmfs Q. (37)

In addition, there exists a unique Q that achieves the maximum
maxQLVB

s (P,Q) = Ls(P), and is given by, ∀k ∈ K,

Q
∗
Uk

= PUk
(38a)

Q
∗
Y ∣Uk

= PY ∣Uk
(38b)

Q
∗
Y ∣U1,...,Uk

= PY ∣U1,...,UK
, (38c)

where the marginals PUk
and the conditional marginals PY ∣Uk

and
PY ∣U1,...,UK

are computed from P.

C. Vector Gaussian Model

In this section, we show that for the jointly vector Gaussian data
model it is enough to restrict to Gaussian auxiliaries (U1,⋯,UK)
in order to exhaust the entire relevance-complexity region. Also,
we provide an explicit analytical expression of this region. Let(X1, . . . ,XK ,Y) be a jointly vector Gaussian vector that satisfies
the Markov chain (28). Without loss of generality, let the target
variable be a complex-valued, zero-mean multivariate Gaussian
Y ∈ Cny with covariance matrix Σy, i.e., Y ∼ CN (y; 0,Σy),
and Xk ∈ Cnk given by

Xk = HkY +Nk, (39)

where Hk ∈ Cnk×ny models the linear model connecting Y to
the observation at encoder k, and Nk ∈ Cnk is the noise vector at
encoder k, assumed to be Gaussian with zero-mean and covariance
matrix Σk, and independent from all other noises and Y.
The following theorem [27, Section 7.5] characterizes the
relevance-complexity region of the model (39), which we denote
hereafter as RIGDIB. The theorem also shows that in order to
exhaust this region it is enough to restrict to no time sharing, i.e.,
T = ∅ and multivariate Gaussian test channels

Uk = AkXk +Zk ∼ CN (uk; AkXk,Σz,k), (40)

where Ak ∈ Cnk×nk projects the observation Xk and Zk is a zero-
mean Gaussian noise with covariance Σz,k.

Theorem 2. For the model (39) the region RIGDIB is given by the
union of all tuples (∆,R1, . . . ,RL) that satisfy ∀S ⊆ K
∆ ≤ ∑

k∈S (Rk + log ∣I −Σ
1/2
k ΩkΣ

1/2
k ∣)+log ∣I + ∑

k∈Sc

Σ
1/2
y H

†
kΩkHkΣ

1/2
y ∣

for some matrices 0 ⪯ Ωk ⪯ Σ−1
k .
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Abstract—We consider communication over a state-dependent
discrete memoryless channel subject to a constraint that requires
that the output sequence be nearly independent of the state. We
consider three scenarios for the transmitter: where it knows
the state, where it does not know the state and can use a
stochastic encoder, and where it does not know the state and
must use a deterministic encoder. For the state, we assume
it to be either independent and identically distributed across
channel uses or randomly generated but constant over all channel
uses. We present single-letter capacity formulas for all except
one combination of the above scenarios, and also solve some
illustrative examples.

I. INTRODUCTION

State-dependent channels have been extensively studied in
Information Theory [1]–[3]. The current work considers com-
munication over a state-dependent channel, with an additional
requirement that the channel state should remain unknown to
the receiver. A potential application for such a model is a
scenario where the transmitter wishes to conceal its physical
location: its location may affect the statistics of the channel
to the receiver, hence can be modeled as a channel state.

The problem we study is closely related to “state masking”
and, to a lesser extent, “state amplification” [4]–[8]. Consider
a state-dependent discrete memoryless channel (DMC) where,
given input X = x and state S = s, the probability for the
output Y to equal y is given by W (y|x, s). Assume that the
state is independent and identically distributed (IID) across
channel uses according to a known distribution. The state-
masking constraint considered in [4] is

lim
n→∞

1

n
I(Sn;Y n) ≤ E (1)

for some parameter E, where n denotes the number of
times the channel is used. When channel-state information
(CSI) is available noncausally to the transmitter (meaning the
transmitter knows the realization of Sn before sending any
input to the channel), a communication rate R is achievable
under the above constraint if, and only if [4, Theorem 2]

R ≤ I(U ;Y )− I(U ;S) (2)

for some auxiliary random variable U such that U (−−
(X,S) (−− Y form a Markov chain, and that

I(S;U, Y ) ≤ E. (3)

Note that (2) is the Gel’fand-Pinsker rate expression [2], while
the condition (3) concerns I(S;U, Y ) and not I(S;Y ).

In the current paper we are interested in problems where the
states must be almost completely concealed from the receiver,

namely, where the limit in (1) must equal zero. Our result when
CSI is available to the transmitter then follows almost imme-
diately from [4]. We also consider situations where CSI is not
available and derive similar capacity formulas. Interestingly,
capacity differs between the cases where the transmitter must
use a deterministic encoder and where it may use a stochastic
encoder (that is not known to the receiver). Furthermore,
keeping in mind that the state may be used to model the
transmitter’s physical location, we study models where the
state remains constant during the entire transmission, instead
of being IID. When CSI is available to the transmitter, or
when CSI is not available and the transmitter must use a
deterministic encoder, the capacity turns out to be the same as
in the IID-state case. When CSI is not available and transmitter
may use a stochastic encoder, however, capacity is different.

We consider IID states in Section II and constant states in
Section III, and then conclude with some remarks.

II. IID STATES

Consider a DMC with input alphabet X and output alphabet
Y that is affected by a random state S which takes value in
the set S. The sets X , Y , and S are all assumed to be finite.
The channel law is, given the input x ∈ X and state s ∈ S,
the probability of the output being y ∈ Y is W (y|x, s).

In this section, we assume that the states are drawn IID
across channel uses according to a probability mass func-
tion PS .

The message to be communicated is drawn from the set
{1, . . . , b2nRc}, where n denotes the total number of channel
uses, and R the rate of communication in bits per channel use.
The message is fed to an encoder, which in turn produces the
channel input sequence xn. We consider both cases where the
state realizations are known and unknown to the transmitter,
respectively. When the states are unknown to the transmitter,
we further distinguish between deterministic and stochastic
encoders; details are provided below. In all cases, the receiver
tries to guess the message based on its observations yn.

The state-obfuscation constraint we impose is

lim
n→∞

1

n
I(Sn;Y n) = 0, (4)

where the mutual information is computed for the joint distri-
bution induced by the encoder and a uniformly drawn message.
As will become clear via our achievability proofs, all results
in this section will continue to hold when we replace (4) by
the stronger condition

I(Sn;Y n) = 0 for every n. (5)
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In each of the following cases, we define capacity as the
supremum over all rates R for which a sequence of encoder-
decoder pairs can be constructed such that the probability of
a guessing error by the decoder tends to zero as n grows to
infinity, and such that (4) is satisfied.

A. With CSI

Assume that the state realizations are available to the en-
coder. In the case of noncausal CSI, the encoder is a (possibly
random) mapping from the message m and the state sequence
sn to the input sequence xn. In the case of causal CSI, the
encoder is a sequence of (possibly random) mappings from m
and si to xi, with i ∈ {1, . . . , n}.

Theorem 1: When the transmitter has either noncausal or
causal CSI, the capacity is

C IID
CSI = sup I(U ;Y ), (6)

where the supremum is taken over joint probability distribu-
tions of the form

PS(s)PU (u)PX|US(x|u, s)W (y|x, s) (7)

subject to
I(S;U, Y ) = 0. (8)

Proof: The noncausal case follows from [4, Theorem 2]
by noting that (8) requires that U be independent of S. It thus
remains only to prove the achievability part for the causal
case. To this end, fix any joint distribution of the form (7).
For each message m ∈ {1, . . . , b2nRc}, randomly generate a
vector un(m) by choosing each entry IID according to PU . To
send m, the encoder randomly picks its input at time i to be
xi with probability PX|US(xi|ui(m), si). Each vector un(m)
is reveaed to the receiver, but the transmitter’s choice of xi is
not revealed to the receiver. A standard argument shows that
the probability of decoding error can be made arbitrarily close
to zero as n grows large provided that R < I(U ;Y ).

We next examine the constraint (4). Note that (8) implies

PY |US(y|u, s) = PY |U (y|u) for all s, u, y. (9)

When the code is used to transmit a uniformly chosen mes-
sage, the probability of Y n = yn and Sn = sn, for any yn

and sn, can be written as

PSnY n(sn, yn) =

b2nRc∑

m=1

1

b2nRc
n∏

i=1

PS(si)PY |US(y|ui(m), si)

=
n∏

i=1

PS(si)

b2nRc∑

m=1

PY |U (yi|ui(m))

b2nRc . (10)

Clearly, we have I(Sn;Y n) = 0 for every n.

B. No CSI, Deterministic Encoder

We next consider the case where no CSI is available to the
encoder, and where the encoder must be deterministic. Thus,
the transmitted sequence xn is a deterministic function of the
message m.

Theorem 2: When the transmitter has no CSI and cannot
use a stochastic encoder, the capacity is

C IID
det = sup I(X;Y ), (11)

where the supremum is taken over joint distributions of the
form

PS(s)PX(x)W (y|x, s) (12)

subject to
I(S;X,Y ) = 0. (13)

Proof: For achievability, we generate each codeword IID
according to PX . The analysis is essentially identical to that
in the proof of Theorem 1 and hence omitted.

For converse, by the fact that Xn is a deterministic function
of the message M , and by Fano’s inequality, we have

H(Xn|Y n) ≤ H(M |Y n) ≤ nεn, (14)

for some εn ↓ 0 as n→∞. We thus have

I(Sn;Xn, Y n) = I(Sn;Xn|Y n) + I(Sn;Y n)

≤ H(Xn|Y n) + I(Sn;Y n)

≤ 2nεn, (15)

where the last step follows by the constraint (4). We also have

I(Sn;Xn, Y n) = H(Sn)−H(Sn|Xn, Y n)

=
n∑

i=1

H(Si)−H(Si|Xn, Y n, Si−1)

≥
n∑

i=1

I(Si;Xi, Yi)

≥ nI(S; X̄, Ȳ ), (16)

where X̄ denotes a random variable whose distribution is
the average of the marginal distributions for every Xi, i =
1, . . . , n, and Ȳ is the output corresponding to X̄ . Here, the
last step follows because the distributions for Si are identical,
and by the convexity of mutual information in the conditional
distribution of (Xi, Yi) given Si. Combining (15) and (16) we
obtain

I(S; X̄, Ȳ ) ≤ 2εn. (17)

On the other hand, by the standard converse proof procedure
(see, e.g., [9]),

R ≤ I(X̄, Ȳ ) + εn. (18)

Combining (17) and (18) we obtain that

C IID
det ≤ lim inf

n→∞
sup
Pn

I(X;Y ) (19)

where the mutual information is computed according to a
distribution of the form

PS(s)PX(x)W (y|x, s) (20)

subject to
lim
n→∞

I(S;X,Y ) = 0. (21)
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The converse to the theorem follows by invoking continuity
properties of mutual information.

Remark 1: Theorem 2 is equivalent to saying that the trans-
mitter can only use those input symbols that are not affected
by S, namely, it can only use x if W (·|x, s1) = W (·|x, s2)
for all s1, s2 ∈ S.

C. No CSI, Stochastic Encoder

Next we consider the case where the transmitter has no CSI,
but is allowed to use a stochastic encoder. The receiver knows
the distribution according to which the codebook is chosen,
but not the actual choice by the transmitter. Thus, the encoder
is a random mapping from message m to input sequence xn,
while the decoder is, as before, a mapping from yn to its guess
of m.

Theorem 3: When the transmitter has no CSI but can use a
stochastic encoder, the capacity is

C IID
sto = sup I(U ;Y ), (22)

where the supremum is taken over joint distributions of the
form

PS(s)PU (u)PX|U (x|u)W (y|x, s) (23)

subject to
I(S;U, Y ) = 0. (24)

Proof: The achievability part is similar to the previous
cases and is omitted. To prove the converse part, we first use
Fano’s inequality to obtain

n(R− εn) ≤ I(M ;Y n)

≤
n∑

i=1

I(M,Y i−1;Yi). (25)

We also have

I(Sn;M,Y n) = I(Sn;M |Y n) + I(Sn;Y n)

≤ H(M |Y n) + I(Sn;Y n)

≤ 2nεn, (26)

where the last step follows by Fano’s inequality and the
constraint (4). On the other hand,

I(Sn;M,Y n) =
n∑

i=1

I(Si;M,Y n, Si−1)

≥
n∑

i=1

I(Si;M,Y i−1, Yi). (27)

Let Ui , (M,Y i−1), i = 1, . . . , n. We have shown
n∑

i=1

I(Ui;Yi) ≥ n(R− εn) (28)

n∑

i=1

I(S;Ui, Yi) ≤ 2nεn, (29)

where εn ↓ 0 as n → ∞. Note that Ui is independent of Si
because Sn is IID. The rest of the proof is similar to that for
Theorem 2.

The next example shows that C IID
sto can be larger than C IID

det .
Example 1: Consider a channel where X = Y = {0, 1, 2}

and S = {0, 1}. The channel law is, when S = 0, Y = X
with probability one; when S = 1, Y = 0 if X = 0, but
the other two symbols are reversed: Y = 2 if X = 1 and
Y = 1 if X = 2 (all with probability one). A deterministic
encoder can only use the input symbol 0, hence it cannot send
any information. A stochastic encoder can choose U ∈ {0, 1}
uniformly, X = 0 if U = 0, and X = 1 or 2 equally likely if
U = 1. This achieves one bit per channel use. One can verify
that this is in fact optimal.

D. A Consequence

A simple consequence to the above results is that the
capacity in every case is upper-bounded by the worst-state
capacity over all s ∈ S.

Corollary 4: In all settings above, capacity is upper-bounded
by

min
s

sup
PX

I(X;Y |S = s). (30)

Proof: It suffices to consider the CSI case, since clearly

C IID
CSI ≥ C IID

sto ≥ C IID
det . (31)

Recall that, in the formula (6), S must be independent of the
pair (U, Y ). It follows that

I(U ;Y ) = I(U ;Y |S = s) (32)

for every s ∈ S. Hence

C IID
CSI ≤ sup

PU ,PX|US

min
s
I(U ;Y |S = s)

≤ min
s

sup
PU ,PX |U

I(U ;Y |S = s)

≤ min
s

sup
PX

I(X;Y |S = s), (33)

where the last step follows because U (−− (X,S) (−− Y
form a Markov chain.

Example 2: Consider a channel where X = Y = S =
{0, 1}. Assume that PS is uniform. When S = 0, the channel
is a perfect bit pipe: Y = X with probability one; when S =
1, it is a Z-channel with 1 → 0 cross-over probability p ∈
(0, 1) (see [9]). Corollary 4 implies that C IID

CSI cannot exceed
the capacity of the Z-channel. We show that they are equal.
Let U be a binary random variable with the capacity-achieving
input distribution of the Z-channel. Let PX|US be such that

PX|US(1|0, s) = 0, s = 1, 2 (34a)
PX|US(1|1, 0) = 1− p (34b)
PX|US(1|1, 1) = 1, (34c)

namely, when S = 1, we choose X = U with probability one;
when S = 0, X is produced by passing U through the above
Z-channel. By this choice, we have the same Z-channel from
U to Y irrespectively of the value of S, hence I(S;U, Y ) = 0,
whereas I(U ;Y ) equals the capacity of the Z-channel.

One can show that C IID
sto = C IID

det = 0. We delay the proof to
the end of the next section, when we return to this example.
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III. CONSTANT STATES

Consider the same DMC as described in the first paragraph
of Section II. We now assume the state to be constant instead
of IID. This means the state is generated randomly according
to PS before communication starts, and remains the same
throughout the n channel uses when transmission takes place.
The decoder is, as in Section II, a mapping from yn to a guess
of the message. For state obfuscation, we now require

lim
n→∞

I(S;Y n) = 0. (35)

All our claims in this section will continue to hold under the
stronger condition that removes the limit in (35). In all cases
below, capacity is defined as the supremum over all rates for
which one can find a sequence of encoder-decoder pairs such
that (35) is satisfied while the decoding error probability will
approach zero when n grows large.1

A. With CSI
When CSI is available to the transmitter, the encoder is a

possibly random mapping from (s,m) to xn, where m denotes
the message and xn the input sequence. The capacity in this
case is the same for constant and IID states.

Theorem 5: For any DMC described by transition law
W (·|·, ·) and state distribution PS , the capacity when S is
constant and when CSI is available to the transmitter is

Cconst
CSI = C IID

CSI, (36)

where C IID
CSI is given by Theorem 1.

Proof: The achievability proof is essentially the same as
that for Theorem 1. We note that, since by the choice of joint
distribution, the pair (U, Y ) is independent of S, we can use
typicality to treat (un, yn), even though the state is constant
and not ergodic.

To prove the converse, we define auxiliary random variables

Ui ,M,Y i−1, i = 1, . . . , n. (37)

Using Fano’s inequality and the chain rule, we have

n(R− εn) ≤ I(M ;Y n)

≤
n∑

i=1

I(M,Y i−1;Yi)

=
n∑

i=1

I(Ui;Yi). (38)

We next show that I(S;Ui, Yi) must be close to zero for
every i. Clearly, it is enough to show that I(S;M,Y n) must
approach zero as n grows large. To this end, define a binary
random variable F that equals 0 when decoding is correct and
equals 1 when decoding is incorrect. Then we have

I(S;M,Y n) = I(S;Y n) + I(S;M |Y n)

≤ I(S;Y n) + I(S;M,F |Y n)

= I(S;Y n) + I(S;F |Y n) + I(S;M |Y n, F )

≤ I(S;Y n) +H(F ) + I(S;M |Y n, F ). (39)

1Since the state remains constant during communication, our definition
requires that the error probability be small for every possible realization of S.

The first two terms on the right-hand side of (39) both tend
to zero as n grows large, the first by (35), and the second
because the probability of a decoding error must tend to zero.
For the last term, let ε denote the probability of a decoding
error, then we have

I(S;M |Y n, F )

= (1− ε)
∑

yn

Pr(Y n = yn|F = 0)I(S;M |Y n = yn, F = 0)

+ ε
∑

yn

Pr(Y n = yn|F = 1)I(S;M |Y n = yn, F = 1)

≤ (1− ε) · 0 + ε · log |S|
= ε · log |S|, (40)

which also must tend to zero as n grows large. Hence we have
shown that, as n grows large, the right-hand side of (39) must
tend to zero, and consequently I(S;Ui, Yi) must tend to zero
for every i. This, together with (38) and a continuity argument,
completes the converse proof.

B. No CSI, Deterministic Encoder

Assume that the encoder must be a deterministic mapping
that maps the message m to an input sequence xn. The
capacity is again the same as in the IID-state case.

Theorem 6: For any W (·|·, ·) and PS , the capacity in the
current setting is

Cconst
det = C IID

det . (41)

Proof: The achievability is essentially the same as before.
For converse, we have, for every i ∈ {1, . . . , n},

I(S;Xi, Yi) ≤ I(S;Xi, Y
n)

= I(S;Y n) + I(S;Xi|Y n)

≤ I(S;Y n) +H(Xi|Y n). (42)

Since the encoder is deterministic, the decoder should be able
to correctly guess every Xi from Y n (by first guessing M ).
By Fano’s inequality, H(Xi|Y n) must vanish together with
the error probability. Hence, for every i,

lim
n→∞

I(S;Xi, Yi) = 0. (43)

Next consider the communication rate R. For some vanish-
ing εn,

n(R− εn) ≤ I(Xn;Y n)

≤ I(Xn, S;Y n)

≤
n∑

i=1

I(Xi, S;Yi)

≤
n∑

i=1

I(Xi;Yi) + I(S;Xi, Yi). (44)

Combining (43) and (44) completes the converse.
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C. No CSI, Stochastic Encoder

When the transmitter has no CSI, a stochastic encoder is
a random mapping that maps m to xn. The decoder knows
the distribution used by the stochastic encoder, but not which
codebook is chosen. Denote the capacity in this case subject
to (35) by Cconst

sto . We have not been able to find a single-letter
expression for Cconst

sto . One can verify that the achievability part
of Theorem 3 is still valid. We can thus order the capacities
in various cases as

C IID
det = Cconst

det ≤ C IID
sto ≤ Cconst

sto ≤ C IID
CSI = Cconst

CSI . (45)

That the first inequality above can be strict was demonstrated
by Example 1. The other two inequalities can also be strict,
as we show via the next two examples.

Example 3: Let X = Y = S = {0, 1}. When S = 0 the
channel is a noiseless bit pipe; when S = 1 the bit is flipped
at the output with probability one.

We have C IID
sto = 0 because, without CSI and when the

states are IID, it is impossible for the transmitter to send any
information, even without the constraint (4). We show that

Cconst
sto = 1 bit. (46)

Consider the following simple scheme. The transmitter gen-
erates a random variable B uniformly over {0, 1}. To send
(n − 1) information bits over n channel uses, it sends B
followed by the XOR of each information bit and B. The
output string is then IID and uniform irrespectively of the
value of S. To decode, the receiver obtains B ⊕ S from the
first bit, and computes its XOR with the next (n−1) received
bits to recover the information bits.

Example 4: Consider the same channel as in Example 2,
except now the state remains the same for all n channel uses.
Recall that C IID

CSI equals the capacity of the Z-channel; by
Theorem 5, so does Cconst

CSI . We shall show that

Cconst
sto = 0. (47)

Together with (45), this will imply C IID
det = Cconst

det = C IID
sto = 0.

To show (47), consider any sequence of encoder-decoder pairs,
and define

An ,
n∑

i=1

Xi (48)

Bn ,
n∑

i=1

Yi. (49)

Further define
α , P - lim sup

n→∞

An
n
, (50)

where P - lim sup denotes the limit-supremum in probability:
α is the smallest real number for which the probability that
An

n > α tends to zero as n → ∞. Assume that α > 0. Note
that, when S = 0, Bn = An with probability one. Thus we
have

lim sup
n→∞

Pr

(
Bn
n
≥
(

1− p

2

)
α

∣∣∣∣S = 0

)
> 0. (51)

When S = 1, Bn is conditionally a binomial distribution with
parameters An and p, so its limit-supremum in probability
given S = 1 must equal (1− p)α, therefore

lim
n→∞

Pr

(
Bn
n
≥
(

1− p

2

)
α

∣∣∣∣S = 1

)
= 0. (52)

It follows from (51) and (52) that the total variation distance
between the conditional distributions of Bn conditional on
S = 0 and S = 1, respectively, cannot approach zero as n
grows large. By Pinsker’s Inequality [9], this further implies
that I(S;Bn) cannot approach zero, and therefore I(S;Y n)
cannot approach zero either. Thus the assumption that α > 0
is incompatible with the requirement (35). But having α = 0
clearly does not permit communication at a positive rate. We
have thus proven (47).

IV. CONCLUDING REMARKS

We have presented information-theoretic capacity expres-
sions for several instances of communication subject to state
obfuscation. The case where the state remains constant during
transmission time and is unknown to the transmitter, and where
the transmitter can use a stochastic encoder, is yet unsolved.
We have demonstrated via examples that the capacity in this
case differs from both the IID-state no-CSI stochastic-encoder
case and the constant-state with-CSI case.

To analyze real-life scenarios where the transmitter wishes
to guarantee a low probability of geolocation by the receiver,
one may replace the abstract models considered in the current
paper by specific channel models. For example, in line-of-
sight multiple-antenna wireless communication, the state S
may correspond to the phase difference between observation
at receive antennas. For free-space optical communication,
S may correspond to attenuation of the transmitted signal.
Examples 2 and 4 may be considered a first step along the
latter direction.
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ITENE: Intrinsic Transfer Entropy Neural Estimator
Jingjing Zhang, Osvaldo Simeone, Zoran Cvetkovic, Eugenio Abela, and Mark Richardson

Abstract—Quantifying the directionality of information flow
is instrumental in understanding, and possibly controlling, the
operation of many complex systems, such as transportation, so-
cial, neural, or gene-regulatory networks. The standard Transfer
Entropy (TE) metric follows Granger’s causality principle by
measuring the Mutual Information (MI) between the past states
of a source signal X and the future state of a target signal Y
while conditioning on past states of Y . Hence, the TE quantifies
the improvement, as measured by the log-loss, in the prediction
of the target sequence Y that can be accrued when, in addition
to the past of Y , one also has available past samples from X .
However, by conditioning on the past of Y , the TE also measures
information that can be synergistically extracted by observing
both the past of X and Y , and not solely the past of X . Building
on a private key agreement formulation, the Intrinsic TE (ITE)
aims to discount such synergistic information to quantify the
degree to which X is individually predictive of Y , independent of
Y ’s past. In this paper, an estimator of the ITE is proposed that
is inspired by the recently proposed Mutual Information Neural
Estimation (MINE). The estimator is based on variational bound
on the KL divergence, two-sample neural network classifiers, and
the pathwise estimator of Monte Carlo gradients.

Index Terms—Transfer entropy, neural networks, machine
learning, intrinsic transfer entropy.

I. INTRODUCTION

A. Context and Key Definitions

Quantifying the causal flow of information between dif-
ferent components of a system is an important task for
many natural and engineered systems, such as neural, genetic,
transportation and social networks. A well-established metric
that has been widely applied to this problem is the information-
theoretic measure of Transfer Entropy (TE) [1], [2]. To define
it mathematically, consider two jointly stationary random pro-
cesses {Xt, Yt} with t = 1, 2, . . . The TE from process {Xt}
to process {Yt} with memory parameters (m,n) is defined as
the conditional Mutual Information (MI) [1], [3]

TEX→Y (m,n), I(Xt−1
t−m;Yt|Y t−1

t−n ), (1)

where Xt−1
t−m = (Xt−m, . . . , Xt−1) and Y t−1

t−n =
(Yt−n, . . . , Yt−1) denote the past m and n samples of time
sequences {Xt} and {Yt}. By definition (1), the TE measures
the MI between the past m samples of process {Xt} and the
current sample Yt of process {Yt} when conditioning on the
past n samples Y t−1

t−n of the same process. Therefore, the TE
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mark.richardson@kcl.ac.uk). J. Zhang and O. Simeone have received funding
from the European Research Council (ERC) under the European Union’s
Horizon 2020 Research and Innovation Programme (Grant Agreement No.
725731). J. Zhang has also been supported by a King’s Together award. Code
can be found at https://github.com/kclip/ITENE.

quantifies the amount by which the prediction of the sample Yt
can be improved, in terms of average log-loss in bits, through
the knowledge of m samples of process {Xt} when the past n
samples of the same process {Yt} are also available. While not
further considered in this paper, we note for reference that a
related information-theoretic measure that originates from the
analysis of communication channels with feedback [4], [5] is
the Directed Information (DI). The DI is defined as

DIX→Y ,
1

T

T∑

t=1

I(Xt−1
1 ;Yt|Y t−1

1 ), (2)

where we have normalized by the number T of samples to
facilitate comparison with TE. For jointly Markov processes1

{Xt}, {Yt} with memory parameters m and n, the TE (1) is
an upper bound on the DI (2) [6].

The TE, and the DI, have limitations as measures of
intrinsic, or exclusive, information flow from {Xt} to {Yt}.
This is due to the fact that conditioning on past samples of
{Yt} does not discount the information that the past samples
of {Yt} contain about its current sample Yt: Conditioning also
captures the information that can be synergistically obtained
by observing both past samples Xt−1

t−m and Y t−1
t−n . In fact, there

may be information about Yt that can be extracted from Xt−1
t−m

only if this is observed jointly with Y t−1
t−n . This may not be

considered as part of the intrinsic information flow from {Xt}
to {Yt}.

Example [7]: Assume that the variables are binary, and that
the joint distribution of the variables (Xt−1, Yt−1, Yt) is given
as p(0, 0, 0) = p(0, 1, 1) = p(1, 0, 1) = p(1, 1, 0) = 1/4. It
can be seen that observing both Xt−1 and Yt−1 allows the
future state Yt to be determined with certainty, while Xt−1

alone is not predictive of Yt, since Xt−1 and Yt are statistically
independent. The TE with memory parameter m = n = 1
is given as TEX→Y (1, 1) = I(Xt−1;Yt|Yt−1) = 1 bit,
although there is no intrinsic information flow between the
two sequences but only a synergistic mechanism relating both
Yt−1 and Xt−1 to Yt. �

In order to distinguish intrinsic and synergistic information
flows, reference [7] proposed to decompose the TE into Intrin-
sic Transfer Entropy (ITE) and Synergistic Transfer Entropy
(STE). The ITE aims to capture the amount of information on
Yt that is contained in the past of {Xt} in addition to that
already present in the past of {Yt}; while the STE measures
the information about Yt that is obtained only when combining
the past of both {Xt} and {Yt}. Formally, the ITE from

1This implies the Markov chain Yt − (Xt−1
t−m, Y

t−1
t−n ) −

(Xt−m−1
1 , Y t−n−1

1 ).
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process {Xt} to process {Yt} with memory parameters (m,n)
is defined as [7]

ITEX→Y (m,n), inf
p(ȳt−1

t−n|y
t−1
t−n)

I(Xt−1
t−m;Yt|Ȳ t−1

t−n ). (3)

In definition (3), auxiliary variables Ȳ t−1
t−n can take values

without loss of generality in the same alphabet as the corre-
sponding variables Y t−1

t−n [8], and are obtained by optimising
the conditional distribution p(ȳt−1

t−n|yt−1
t−n). The quantity (3) can

be shown to be an upper bound on the size (in bits) of a
secret key that can be generated by two parties, one holding
Xt−1
t−m and the other Yt, via public communication when the

adversary has Y t−1
t−n [9]. This intuitively justifies its use as a

measure of intrinsic information flow. The STE is then defined
as the residual

STEX→Y (m,n),TEX→Y (m,n)− ITEX→Y (m,n). (4)

B. TE and DI Estimation

The TE can be estimated using tools akin to the estima-
tion of MI, including plug-in methods [10], non-parametric
techniques based on kernel [1] or k-nearest-neighbor (k-NN)
methods [11], [12], and parametric techniques, such as Max-
imum Likelihood [13] or Bayesian estimators [14]. Popular
implementations of some of these standard methods can be
found in the Java Information Dynamics Toolkit (JIDT) [15]
and TRENTOOL toolbox [16]. For the DI, estimators have
been designed that rely on parametric and non-parametric
techniques, making use also of universal compressors [17]–
[19]. In order to enable scaling over large data sets and/or
data dimensions, MI estimators that leverage neural networks
have been recently the subject of numerous studies. Notably,
reference [20] introduced the Mutual Information Neural Esti-
mator (MINE), which reduces the problem of estimating MI to
that of classifying dependent vs. independent pairs of samples
via the Donsker-Varadhan (DV) variational equality. Specif-
ically, reference [20] proposes to train a neural network to
approximate the solution of the optimization problem defined
by the DV equality. The follow-up paper [21] proposes to train
a two-sample neural network classifier, which is then used as
an approximation of the likelihood ratio in the DV equality.
Theoretical limitations of general variational MI estimators
were derived in [22], which also proposes a variational MI
estimator with reduced variance. We note that reference [21]
also considers the estimation of the conditional MI, which
applies directly to the estimate of the TE as discussed in
Section II.

C. Main Contributions, Paper Organization, and Notation

This work proposes an estimator, referred to as ITE Neural
Estimator (ITENE), of the ITE that is based on two-sample
classifier and on the pathwise estimator of Monte Carlo
gradients, also known as reparameterization trick [23]. We
also present numerical results to illustrate the performance
of the proposed estimator. The paper is organized as fol-
lows. In Section II, we review the classifier-based MINE
approach proposed in reference [21]. Based on this approach,

we introduce the proposed ITENE method in Section III.
Section IV presents experimental results. Throughout this
paper, we use uppercase letters to denote random variables and
corresponding lowercase letters to denote their realizations.
log represents the natural logarithm. ∇xf(x) represents the
gradient of scalar function f(x) and Jxf(x) the Jacobian
matrix of vector function f(x).

II. BACKGROUND: CLASSIFIER-BASED MUTUAL
INFORMATION NEURAL ESTIMATOR (MINE)

In this section, we review the classifier-based MINE for
the estimation of the MI I(U ;V ) between jointly distributed
continuous random variables U and V . The MI satisfies the
DV variational representation [24]

I(U ;V )

= sup
f(u,v)

Ep(u,v)[f(U, V )]− log(Ep(u)p(v)[e
f(U,V )])

= sup
r(u,v)

Ep(u,v)

[
log
( r(U, V )

Ep(u)p(v)[r(U, V )]

)]
,

(5a)

(5b)

where the supremum is taken over all functions f(U, V ) in (5a)
and r(U, V ) = ef(U,V ) in (5b) such that the two expectations
in (5a) are finite. Note that (5) contains expectations both
over the joint distribution p(u, v) of U and V and over
the product of the marginals p(u) and p(v). Intuitively, the
functions f(u, v) and r(u, v) act as classifiers of a sample
(u, v) being either generated by the joint distribution p(u, v) or
by the product distribution p(u)p(v). This is done by functions
f(u, v) and r(u, v) ideally outputing a larger value in the
former case than in the latter [25, Chapter 6]. More precisely,
following [22], we can interpret function r(u, v) as an unnor-
malized estimate of the likelihood ratio p(u, v)/

(
p(u)p(v)

)
,

with r̃(U, V ) = r(U, V )/Ep(u)p(v)[r(U, V )] being its nor-
malized version. This normalization ensures the condition
Ep(u)p(v)[r̃(U, V )] = 1, which is satisfied by the true likeli-
hood ratio p(u, v)/(p(u)p(v)) [22]. Mathematically, the supre-
mum in (5b) is achieved when r(u, v) is equal to the likelihood
ratio [22, Theorem 1], i.e.,

r∗(u, v) =
p(u, v)

p(u)p(v)
. (6)

This observation motivates the classifier-based estimator
introduced in [21]. To elaborate, given a data set D =
{(ut, vt)}Tt=1 of T data points from the joint distribution
p(u, v), we label the samples with a target value a = 1.
Furthermore, we construct a data set D0 approximately dis-
tributed according to the product distribution p(u)p(v) by
randomly resampling the values of vt (see line 3 in Algorithm
1). These samples are labeled as a = 0. We use notation
p(a = 1|u, v) to represent the posterior probability that a
sample is generated from the distribution p(u, v) when the
hypotheses a = 1 and a = 0 are a priori equally likely. An
estimate of the probability p(a = 1|u, v) can be obtained by
training a function pθ(a = 1|u, v) parametrized as a neural
network with input u and v, target output a, and weight vector
θ. This is done via the minimization of the empirical cross-
entropy loss evaluated on the described data sets (see lines
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Algorithm 1 Classifier Based MINE [20], [21]

1: Input:
D1 = {(ut, vt)}Tt=1: observed data samples

2: Output:
Î(U ;V ): mutual information estimate

3: obtain data set D0 = {(un, vπ(n))}Tn=1, where π(n) is
sampled i.i.d. from set {1, . . . , T}

4: label samples i ∈ D1 as a = 1 and j ∈ D0 as a = 0 to
create labeled data sets D̄1 and D̄0

5: θ ← initialize neural network parameters
6: α← set learning rate
7: τ ← set hyperparameter
8: split D̄1 into two subsets D̄1,t (training) and D̄1,e (esti-

mation)
9: split D̄0 into two subsets D̄0,t (training) and D̄0,e (esti-

mation)
10: train binary classifier using training set {D̄1,t, D̄0,t}
11: output: Î(U ;V ) = 1

|D̄1,e|
∑
i∈D̄1,e

log pθ(a=1|i)
1−pθ(a=1|i) −

log
(

1
|D̄0,e|

∑
j∈D̄0,e

clipτ ( pθ(a=1|j)
1−pθ(a=1|j) )

)

8-10 in Algorithm 1) via Stochastic Gradient Descent (SGD)
(see, e.g., [25, Chapter 6]). Having completed training, the
likelihood ratio can be estimated as

r̂θ(u, v) =
pθ(a = 1|u, v)

1− pθ(a = 1|u, v)
. (7)

This follows since, at convergence, if training is successful,
the following equality holds approximately

pθ(a = 1|u, v)

=
p(a = 1)p(u, v|a = 1)

p(a = 1)p(u, v|a = 1) + p(a = 0)p(u, v|a = 0)

=
p(u, v)

p(u, v) + p(u)p(v)
. (8)

Finally, the estimate (7) can be plugged into an empirical
approximation of (5b) as

Î(U ;V ) = Ep̂(u,v)

[
log
( r̂θ(U, V )

Ep̂(u)p̂(v)[clipτ (r̂θ(U, V ))]

)]
, (9)

where p̂(u, v) represents the empirical distribution of the
observed data sample pairs in an held-out part of data set D1,
while p̂(u) and p̂(v) are the corresponding empirical marginal
distributions for U and V (see line 11 in Algorithm 1); and the
clip function is defined as clipτ (v) = max{min{v, eτ}, e−τ}
with some constant τ ≥ 0 [22]. Clipping was suggested in [22]
in order to reduce variance of the estimate (9), and a similar
approach is also used in [21]. The estimator (9) is known to
be consistent but biased [20], and an analysis of the variance
can be found in [22] (see also Lemma 1 below). Details are
presented in Algorithm 1.

III. INTRINSIC TRANSFER ENTROPY NEURAL ESTIMATOR
ITENE

In this section, inspired by the classifier-based MINE, we in-
troduce an estimator for the ITE, which we refer to as ITENE.
Throughout this section, we assume the availability of data in

the form of time series D = {(xt, yt) : t = 1, 2, . . . , T} gen-
erated as a realization of jointly stationary random processes
{Xt, Yt}t≥1. We use the notations X−t ,Xt−1

t−m, Y −t ,Y t−1
t−n

and Y 0
t ,Yt and we also drop the subscript t when no

confusion may arise.

A. TENE

We start by noting that, using the chain rule [26], the TE
in (1) can be written as the difference

TEX→Y (m,n) = I(X−;Y 0, Y −)− I(X−;Y −). (10)

Therefore, the TE can be estimated by applying the classifier-
based MINE in Algorithm 1 to both terms in (10) separately.
This approach was proposed in [21] and found empirically to
outperform other estimates of the conditional MI. Accordingly,
we have the estimate

T̂EX→Y (m,n) = Î(X−;Y 0, Y −)− Î(X−;Y −), (11)

where the MINE estimates in (9) are obtained by applying Al-
gorithm 1 to the data sets DA1 = {ut = x−t , vt = (y0

t , y
−
t )}Tt=1

and DB1 = {ut = x−t , vt = y−t }Tt=1, respectively (zero padding
is used for out-of-range indices). We refer to the resulting
estimator (11) as TENE. Following [21], TENE is consistent
but biased. Furthermore, without using clipping, i.e., when
τ →∞, we have that the following lemma holds.

Lemma 1: Assume that the estimates r̂θ(x−, y0, y−) and
r̂θ(x

−, y−) equal their respective true likelihood ratios,
i.e., r̂θ(x−, y0, y−) = p(x−, y0, y−)/(p(x−)p(y0, y−)) and
r̂θ(x

−, y−) = p(x−, y−)/(p(y−)p(y−)). Then, under the
randomness of the sampling procedure generating the data set
D, we have

lim
T→∞

TVar[T̂EX→Y (m,n)] ≥ eI(X−;Y 0,Y −) + eI(X
−;Y −) − 2.

(12)
The proof follows directly from [22, Theorem 1]. Lemma

1 demonstrates that, without clipping, the variance of TENE
in (11) can grow exponentially with the maximum of the true
values of I(X−;Y 0, Y −) and I(X−;Y −). Note that a similar
result applies to MINE [22]. Setting a suitable value for τ is
hence important in order to obtain reliable estimates.

B. ITENE

We now move on to the estimator of the ITE (3). To this
end, we first parameterize the distribution pφ(ȳ−|y−) under
optimization as

ȳ−φ = µφ(y−) + σφ(y−)� ε, (13)

where µφ(y−) and log σφ(y−) are disjoint sets of outputs
of a neural network with weights φ; � is the element-wise
product; and ε ∼ N (0, I) is a Gaussian vector independent of
all other variables. Parameterization (13) follows the so-called
reparameterization trick popularized by the variational auto-
encoder [27]. An estimator of the ITE (3) can be defined by
optimizing over φ the ITE (10) as

ÎTEX→Y (m,n)=inf
φ

(
Îφ(X−;Y 0, Ȳ −)−Îφ(X−; Ȳ −)

)
, (14)
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Algorithm 2 ITENE

1: Input:
D = {(xt, yt)}Tt=1: observed data samples from the

random process {Xt, Yt}
2: Output:

ÎTEX→Y (m,n): ITE estimate

3: (φ, θ, θ′)← initialize network parameters
4: α← set learning rate
5: τ ← set hyperparameter
6: repeat
7: randomly generate T samples {εt}Tt=1 from distribution

N (0, I)
8: for each t = 1, . . . , T :
9: compute ȳ−φ,t = µφ(y−t ) + σφ(y−t )� εt

10: define data set DA = {uAt , vAt }Tt=1, with
uAt = x−t , v

A
t = {y0

t , ȳ
−
φ,t}

11: apply Algorithm 1 to output
Îφ(X−;Y 0, Y −) = Î(UA;V A)

12: define data set DB = {uBt , vBt }Tt=1, with
uBt = x−t , v

B
t = ȳ−φ,t

13: apply Algorithm 1 to output Îφ(X−;Y −) = Î(UB ;V B)
14: update the network parameters using the pathwise

gradient estimators (17)-(19)
15: φ← φ− α∇φ

(
Îφ(X−;Y 0, Y −)− Îφ(X−;Y −)

)

16: until convergence
17: output:

ÎTEX→Y (m,n) = Îφ(X−;Y 0, Y −)− Îφ(X−;Y −)

where we have made explicit the dependence of estimates
Îφ(X−;Y 0, Ȳ −) and Îφ(X−; Ȳ −) on φ. In particular, using
(10), the first MINE estimate in (11) can be written as a
function of φ as

Îφ(X−;Y 0, Ȳ −)=Ep̂(x−,y0,y−)

[
Ep(ε)[log(r̂θ(X

−, Y 0, Ȳ −φ ))]
]

− log(Ep̂(x−)p̂(y0,y−)

[
Ep(ε)[clipτ (r̂θ(X

−, Y 0, Ȳ −φ ))]
]
, (15)

where parameter θ is obtained from Algorithm 1 by con-
sidering as input the data set DAφ,1 = {ut = x−t , vt =

(y0
t , ȳ
−
φ,t)}Tt=1, where samples ȳ−φ,t are generated using (13)

as ȳ−φ,t = µφ(ȳt)+σφ(ȳt)� εt for i.i.d. samples εt ∼ N (0, I).
Furthermore, the empirical distributions p̂(·) in (15) are ob-
tained from the held-out (estimation) data set in Algorithm
1. In a similar manner, the second MINE estimate in (14) is
given as

Îφ(X−; Ȳ −) = Ep̂(x−,y−)

[
Ep(ε)[log(r̂θ′(X

−, Ȳ −φ ))]
]

− log(Ep̂(x−)p̂(y−)

[
Ep(ε)[clipτ (r̂θ′(X

−, Ȳ −φ ))]
]
, (16)

where parameter θ′ is obtained from Algorithm 1 by consid-
ering as input the data set DBφ,1 = {ut = x−t , vt = ȳ−φ,t)}Tt=1.

We propose to tackle problem (14) in a block coordinate
fashion by iterating between SGD steps with respect to φ and
updates of parameters (θ, θ′) using Algorithm 1. To this end,
when fixing (θ, θ′), the optimization over parameter φ requires
the gradient

∇φÎφ(X−;Y 0, Ȳ −) = Ep̂(x−,y0,y−)

[
Ep(ε)

[∇ȳ−φ r̂θ
r̂θ

× Jφȳ−φ

]]

−
Ep̂(x−)p̂(y0,y−)

[
Ep(ε)[∇ȳ−φ r̂θ × Jφȳ−φ ]

]

Ep̂(x−)p̂(y0,y−)

[
Ep(ε)[r̂θ]

] , (17)

where, from (7), we have the gradient

∇ȳ−φ r̂θ =
∇ȳ−φ pθ(a = 1|x0, y−, ȳ−φ )

(1− pθ(a = 1|x0, y−, ȳ−φ ))2
; (18)

and, from (13), we have the Jacobian Jφȳ−φ = Jφµφ(Y −) +(
Jφ(σφ(Y −)

)
� ε. It also requires the gradient

∇φÎφ(X−; Ȳ −) = Ep̂(x−,y−)

[
Ep(ε)

[∇ȳ−φ r̂θ′
r̂θ′

× Jφȳ−φ

]]

−
Ep̂(x−)p̂(y−)

[
Ep(ε)[∇ȳ−φ r̂θ′ × Jφȳ−φ ]

]

Ep̂(x−)p̂(y−)

[
Ep(ε)[r̂θ′ ]

] , (19)

where we have

∇ȳ−φ r̂θ′ =
∇ȳ−φ pθ′(a = 1|x0, ȳ−φ )

(1− pθ′(a = 1|x0, ȳ−φ ))2
. (20)

We note that the gradients (17)-(19) are instances of pathwise
gradient estimators [23]. The resulting ITENE is summarized
in Algorithm 2. Due to the consistency of TENE, ITENE is
also consistent if the capacity of the model pφ is large enough.

IV. EXPERIMENTS

In this section, we provide some results to illustrate the type
of insights that can be obtained by decomposing the TE into
ITE and STE as in (4). To this end, consider first the following
simple example. The joint processes {Xt, Yt}t≥1 are generated
according to

Yt =

{
Zt, if Yt−1 < λ

ρXt−1 +
√

1− ρ2Zt, if Yt−1 ≥ λ,
(21)

for some threshold λ, where variables {Xt, Yt} are inde-
pendent and identically distributed as N (0, 1). Intuitively,
for large values of the threshold λ, there is no information
flow between {Xt} and {Yt}, while for small values, there
is a purely intrinsic flow of information. For intermediate
values of λ, the information flow is partly synergistic, since
knowing both Yt−1 and Xt−1 is instrumental in obtaining
information about Yt. To quantify the intuition above, we apply
the discussed estimators with m = n = 1. To this end, for
all two-sample neural network classifiers, we consider two
hidden layers with 100 hidden neurons with ELU activation
functions, while for the probability pφ(ȳ−|y−), we adopt a
neural network with hidden layer of 200 neurons with ELU
activation functions and outputs µφ(y−) and log(σφ(y−)).
The data set size T is split into a 75%-fraction for classifier
training and a 25%-fraction for estimation. We set learning
rate α = 0.001 and clipping parameter τ = 0.9.

The computed estimates T̂EX→Y (1, 1), ÎTEX→Y (1, 1),
ŜTEX→Y (1, 1) are plotted in Fig. 1 as a function of the
threshold λ, along with the true TE. The latter can be com-
puted in closed form as TEX→Y (m,n) = TEX→Y (1, 1) =
−0.5Q(λ) log(1 − ρ2) (nats), where Q(·) is the standard
complementary cumulative distribution function of a standard
Gaussian variable. In a manner consistent with the intuition
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Figure 1: TENE, ITENE, STENE (obtained as the difference
(4)) and true TE versus threshold λ with ρ = 0.9 for the
example (21). Dashed areas represent the range of observed
estimates within 10 trials.
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Figure 2: TENE and ITENE between the DJIA, denoted as
"D", and the HSI, denoted as "H".

provided above, when λ is either small, i.e., λ ≤ −2, or large,
i.e., λ ≥ 2, the ITE is seen in Fig. 1 to be close to the TE,
yielding nearly zero STE. This is not the case for intermediate
values of λ, in which regime a non-negligible STE is observed.

For a real-world example, we apply the estimators at hand
to historic data of the values of the Hang Seng Index (HSI) and
of the Dow Jones Index (DJIA) between 1990 and 2011. As
done in [17], for each stock, we classify its values into three
levels, namely 1, 0, and −1, where 1 indicates an increase in
the stock price by more than 0.8% in one day, −1 indicates a
drop by more than −0.8%, and 0 indicates all other cases. As
illustrated in Fig. 2, and in line with the results in [17], both
the TE and ITE from the DJIA to the HSI are much larger
than in the reverse direction, implying that the DJIA influenced
the HSI more significantly than the other way around for the
given time range. Furthermore, we observe that not all the
information flow is estimated to be intrinsic, and hence the
joint observation of the history of the DJIA and of the HSI is
partly responsible for the predictability of the HSI from the
DJIA.

REFERENCES

[1] T. Schreiber, “Measuring information transfer,” Phys. Rev. Lett., vol. 85,
pp. 461–464, Jul. 2000.

[2] R. Vicente, M. Wibral, and G. Lindner, Michaeland Pipa, “Transfer
entropy—a model-free measure of effective connectivity for the neu-
rosciences,” Journal of Computational Neuroscience, vol. 30, no. 1, pp.
45–67, Feb. 2011.

[3] M. Wibral, N. Pampu, V. Priesemann, F. Siebenhühner, H. Seiwert,
M. Lindner, J. T. Lizier, and R. Vicente, “Measuring information-transfer
delays,” PLOS ONE, vol. 8, pp. 1–19, Feb. 2013.

[4] J. L. Massey, “Causality, feedback and directed information,” in Proc.
Int. Symp. Information Theory Applications (ISITA), Waikiki, Hawaii,
Nov. 1990.

[5] H. H. Permuter, Y. Kim, and T. Weissman, “Interpretations of directed
information in portfolio theory, data compression, and hypothesis test-
ing,” IEEE Trans. Inf. Theory, vol. 57, no. 6, pp. 3248–3259, Jun. 2011.

[6] Y. Liu and S. Aviyente, “The relationship between transfer entropy and
directed information,” in Proc. of Statistical Signal Process. Workshop
(SSP), Michigan, USA, Aug. 2012, pp. 73–76.

[7] R. G. James, B. D. M. Ayala, B. Zakirov, and J. P. Crutchfield, “Modes of
information flow.” [Online]. Available: https://arxiv.org/abs/1808.06723

[8] J. P. Crutchfield and D. P. Feldman, “Regularities unseen, randomness
observed: levels of entropy convergence,” Chaos, vol. 13, no. 1, p.
25–54, 2003.

[9] U. M. Maurer and S. Wolf, “Unconditionally secure key agreement and
the intrinsic conditional information,” IEEE Trans. Inf. Theory, vol. 45,
no. 2, pp. 499–514, Mar. 1999.

[10] D. Freedman and P. Diaconis, “On the histogram as a density estimator:
L2 theory,” Probability Theory and Related Fields, vol. 57, no. 4, pp.
453–476, Dec. 1981.

[11] A. Kraskov, H. Stögbauer, and P. Grassberger, “Estimating mutual
information,” Phys. Rev. E, vol. 69, Jun. 2004.

[12] S. Frenzel and B. Pompe, “Partial mutual information for coupling
analysis of multivariate time series,” Phys. Rev. Lett., vol. 99, p.
204101(4), Nov. 2007.

[13] T. Suzuki, M. Sugiyama, J. Sese, and T. Kanamori, “Approximating
mutual information by maximum likelihood density ratio estimation,”
in Proc. of the Int. Conf. on New Challenges for Feature Selection in
Data Min. and Knowledge Discovery, 2008, pp. 5–20.

[14] D. H. Wolpert and D. R. Wolf, “Estimating functions of probability
distributions from a finite set of samples,” Phys. Rev. E, vol. 52, pp.
6841–6854, Dec. 1995.

[15] J. T. Lizier, “JIDT: An information-theoretic toolkit for studying the
dynamics of complex systems,” Frontiers in Robotics and AI, vol. 1,
p. 11, Dec. 2014.

[16] M. Lindner, R. Vicente, V. Priesemann, and M. Wibral, “TRENTOOL:
A matlab open source toolbox to analyse information flow in time series
data with transfer entropy,” BMC Neuroscience 12, 119, Nov. 2011.

[17] J. Jiao, H. H. Permuter, L. Zhao, Y. Kim, and T. Weissman, “Universal
estimation of directed information,” IEEE Trans. Inf. Theory, vol. 59,
no. 10, pp. 6220–6242, Oct. 2013.

[18] C. J. Quinn, T. P. Coleman, N. Kiyavash, and N. G. Hatsopoulos,
“Estimating the directed information to infer causal relationships in
ensemble neural spike train recordings,” Journal of Computational
Neuroscience, vol. 30, no. 1, pp. 17–44, Feb. 2011.

[19] R. Malladi, G. Kalamangalam, N. Tandon, and B. Aazhang, “Identifying
seizure onset zone from the causal connectivity inferred using directed
information,” IEEE Journal of Selected Topics in Signal Process.,
vol. 10, no. 7, pp. 1267–1283, Oct. 2016.

[20] M. I. Belghazi, A. Baratin, S. Rajeshwar, S. Ozair, Y. Bengio,
A. Courville, and R. D. Hjelm, “Mutual information neural estimation,”
in Proc. Int. Conf. on Machine Learning, Stockholm, Sweden, Jul. 2018.

[21] S. Mukherjee, H. Asnani, and S. Kannan, “CCMI: Classifier based
conditional mutual information estimation,” in Proc. the Conference on
Uncertainty in Artificial Intelligence (UAI), Tel Aviv, Israel, Jul. 2019.

[22] J. Song and S. Ermon, “Understanding the limitations of
variational mutual information estimators,” 2019. [Online]. Available:
https://arxiv.org/abs/1910.06222

[23] S. Mohamed, M. Rosca, M. Figurnov, and A. Mnih, “Monte
carlo gradient estimation in machine learning.” [Online]. Available:
https://arxiv.org/abs/1906.10652

[24] M. D. Donsker and S. R. S. Varadhan, “Asymptotic evaluation of certain
markov process expectations for large time,” Communications on Pure
and Applied Mathematics, vol. 36, pp. 183–212, 1983.

[25] O. Simeone, A Brief Introduction to Machine Learning for Engineers.
Foundations and Trends in Signal Processing, 2018. [Online]. Available:
http://arxiv.org/abs/1709.02840

[26] T. M. Cover and J. A. Thomas, Elements of Information Theory. New
York, USA: Wiley-Interscience, 1991.

[27] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” in
Proc. Int. Conf. on Learning Representations (ICLR), Scottsdale, USA,
May 2013.

International Zurich Seminar on Information and Communication (IZS), February 26 – 28, 2020

87



Sampling for Faster
Neural Estimation

Chung Chan
City University of Hong Kong

Hong Kong
Email: chung.chan@cityu.edu.hk

Abstract

In training a neural network by gradient descent, the loss is estimated based only on
a limited number of sample outputs of the neural network. Therefore, if more samples
can be placed in regions where the neural network is different from the optimal solution,
the neural network should converge faster to the optimal solution. We demonstrate that
a better sampling distribution could significantly speed up the convergence rate of a
recent promising neural estimation of mutual information proposed by Belgahzi et al.
The method, called the mutual information neural estimation (MINE), trains the neural
network to maximize a tractable lower bound of the divergence in terms of its Fenchel–
Legendre transform. In particular, we discover a limitation of MINE where the network
has slow staircase convergence when estimating the mutual information of a simple mixed
Gaussian distribution with overlapping modes. To solve this problem, we propose a faster
method called the mutual information neural entropic estimation (MI-NEE). Our solution
first generalizes MINE to estimate the entropy using a custom reference distribution. The
entropy estimate can then be used to estimate the mutual information. The seemingly
unnecessary intermediate step of entropy estimation allows one to improve the convergence
by an appropriate reference distribution that samples the neural network around regions of
interest. This idea may be further generalized to adaptive sampling and cross-training with
different loss functions at different training phases. It can also be applied to the problems
of classification and clustering where a discrete target variable is involved.
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Abstract—We discuss the application of reinforcement learning
(RL) to problems associated with decoding binary linear codes.
In particular, we consider two different iterative decoding algo-
rithms that involve sequential decisions and apply RL to optimize
those decisions. For the first example, we consider bit-flipping
(BF) decoders and observe that learned BF decoders can offer
a range of performance–complexity trade-offs and achieve near-
optimal performance in some cases. For the second example, we
consider protograph low-density parity-check (LDPC) codes and
use RL to optimize the decoding schedule. Our results show that,
the comparison with the flooding schedule, a fixed error rate can
be achieved with fewer update operations.

I. OVERVIEW

The decoding of error-correcting codes can be seen as a
classification problem and solved using methods introduced
for supervised machine learning. The general idea is to treat
the decoder as a parameterized function (e.g., a neural net-
work) and learn good parameter configurations with data-
driven optimization [1]–[4]. Without further restrictions on
the code and decoder, these methods do not work well if
the codes have moderate length or if they are unstructured.
For linear codes, the problem simplifies considerably because
one has to learn only a single decision region instead of one
region per codeword. One can take advantage of linearity by
using message-passing [2] or syndromes [3], [4]. Still, the
problem remains challenging because good codes typically
have complicated decision regions due to the large number
of neighboring codewords.

This talk focuses on applications of reinforcement learning
(RL) [5] to problems in channel coding. Despite impressive
results in other fields, RL has yet to received significant
attention in this area. In fact, with the exception [10] and
recent work by the authors [6], no references were found that
discuss RL for channel coding. For a general survey of RL in
the general context of communications, see [11].

The unifying idea behind this work is that iterative decoding
algorithms can adjust their behavior based on their current
state. Thus, they can be modeled as sequential decision pro-
cesses and RL can be used to optimize their behavior.

The bit-flipping (BF) decoder was introduced in [7], [8]
and has been studied extensively in the literature. In [6], a
subset of the authors apply RL to optimize a sequential BF
decoder where, based on the syndrome, one bit is flipped in
each step [6]. Rather than learning a direct mapping from
observations to estimated codewords (or bits) in a supervised
fashion, decoding is done in steps and the problem is mapped

to a Markov decision process (MDP). Then, RL is applied to
optimize the choice of which bit to flip. Following [3], [4], this
approach is syndrome-based and the state space of the MDP is
formed by all possible binary syndromes. This also decouples
the decoding problem from the transmitted codeword. We also
consider a parallel BF algorithm where the decision to flip a
bit is based on the local neighborhood of that bit.

For the second example, we consider the belief-propagation
decoding of protograph low-density parity-check (LDPC)
codes. For these codes, the standard decoding schedule can
be inefficient. In particular, windowed decoding is known to
improve the performance–complexity trade-off of spatially-
coupled codes [9]. Thus, we employ RL to optimize the
decoding schedule and show that the optimized schedule can
achieve good performance with significantly fewer operations.

In summary, we believe that RL is a promising technique
for optimizing sequential decisions in decoding algorithms.
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Abstract—Almost all wireless communication sys-
tems today are designed based on essentially the same
digital approach, that separately optimizes the com-
pression and channel coding stages. Using machine
learning techniques, we investigate whether end-to-
end transmission can be learned from scratch, thus
using joint source-channel coding (JSCC) rather than
the separation approach. This paper reviews and ad-
vances recent developments on our proposed tech-
nique, deep-JSCC, an autoencoder-based solution for
generating robust and compact codes directly from
images pixels, being comparable or even superior in
performance to state-of-the-art (SoA) separation-based
schemes (BPG+LDPC). Additionally, we show that
deep-JSCC can be expanded to exploit a series of
important features, such as graceful degradation, ver-
satility to different channels and domains, variable
transmission rate through successive refinement, and
its capability to exploit channel output feedback.

I. Introduction
Wireless communication systems have traditionally fol-

lowed a modular model-based design approach, in which
highly specialized blocks are designed separately based on
expert knowledge accumulated over decades of research.
This approach is partly motivated by Shannon’s separation
theorem [1], which gives theoretical guarantees that the
separate optimization of source compression and channel
coding can, in the asymptotic limit, approach the optimal
performance. In this way, we have available today highly
specialized source codes, e.g., JPEG2000/BPG for images,
MPEG-4/WMA for audio, or H.264 for video, to be used
in conjunction with near-capacity-achieving channel codes,
e.g., Turbo, LDPC, polar codes.

However, despite its huge impact, optimality of sepa-
ration holds only under unlimited delay and complexity
assumptions; and, even under these assumptions, it breaks
down in multi-user scenarios [2], [3], or non-ergodic source
or channel distributions [4], [5]. Moreover, unconventional
communication paradigms have been emerging, demand-
ing extreme end-to-end low latency and low power (e.g.,
IoT, autonomous driving, tactile Internet), and operating
under more challenging environments that might not fol-
low the traditional models (e.g., channels under bursty
interference).

In light of above, our goal is to rethink the problem
of wireless communication of lossy sources by using ma-

This work was supported by the European Research Council (ERC)
through project BEACON (No. 677854).
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Fig. 1. Machine learning based communication system.

chine learning techniques, focusing particularly on image
transmission. For this, we replace the modular separation-
based design with a single neural network component for
encoder and decoder (see Fig.1 for an illustrative diagram),
thus performing JSCC, whose parameters are trained from
data, rather than being designed. Our solution, the deep-
JSCC, is applied to the problem of image transmission
and can learn strictly from data in an unsupervised man-
ner, as we model our system as an autoencoder [6], [7]
with the communication channel incorporated as a non-
trainable layer. This approach is motivated by the recent
developments in machine learning through the use of
deep learning (DL) techniques, and their applications to
communication systems in recent years [8]. Autoencoders,
in particular, due to the similarity between its architecture
and digital communication systems [9], [10] have been
used in related problems and pushing the boundaries of
communications [11]–[16]. The use of DL for the separate
problems of channel coding and image compression have
been showing promising results, achieving performance in
some cases superior to handcrafted algorithms [17], [18].
We show, however, that by performing JSCC, we can
further improve the end-to-end performance.

This paper reviews different features that were shown
to be achieved with deep-JSCC, namely (a) performance
comparable or superior to SoA separation-based schemes;
(b) graceful degradation upon deterioration of channel
conditions [19]; (c) versatility to adapt to different channels
and domains [19]; (d) capacity of successive refinement [20]
and (e) ability to exploit channel output feedback in order
to improve the communication [21]. Thus, deep-JSCC
presents itself as a powerful solution for the transmission
of images, enabling communications with excellent per-
formance while achieving low-delay and low-energy, being
robust to channel changes, and allowing small and flexible
bandwidth transmissions, thus advancing the field of com-
munications by improving existing JSCC and separation-
based methods.
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Fig. 2. Encoder and decoder architectures used in experiments.

II. Problem Formulation and Model Description
Consider an input image with height H, widthW and C

color channels, represented as a vector of pixel intensities
x ∈ Rn; n = H ×W × C to be transmitted over k uses
of a noisy channel, where k/n is the bandwidth ratio. An
encoder fθi

: Rn → Cki maps x into channel input symbols
zi ∈ Cki in L blocks, where

∑L
i=1 ki = k. These symbols

are transmitted over a noisy channel, characterized by a
random transformation η : Cki → Cki , which may model
physical impairments such as noise, fading or interference,
resulting in the corrupted channel output ẑi = η(zi). We
consider L distinct decoders, where the channel outputs
for the first i blocks are decoded using gφi

: CkI → Rn
(where I =

∑i
j=0 kj), creating reconstructions x̂i =

gφi(ẑ1, . . . , ẑi) ∈ Rn, for i ∈ 1, . . . , L.
The encoder and decoder(s) are modelled as fully convo-

lutional networks, using generalized normalization trans-
formations (GDN/IGDN) [22], followed by a parametric
ReLU (PReLU) [23] activation function (or a sigmoid, in
the last decoder block). The channel is incorporated into
the model as a non-trainable layer. Fig. 2 presents the
architecture and the hyperparameters used in the experi-
ments. Before transmission, the latent vector z′i generated
at the encoder’s last convolutional layer is normalized to
enforce an average power constraint so that 1

ki
E[z∗i zi] ≤ P ,

by setting zi =
√
kiP

z′i√
z
′∗
i

z′
i

. The model can be optimized
to minimize the average distortion between input x and its
reconstructions x̂i at each layer i:

(θ∗i , φ∗i ) = arg min
θi,φi

Ep(x,x̂)[d(x, x̂i)], (1)

where d(x, x̂i) is a specified distortion measure, usually
the mean squared error (MSE), although other metrics are
also considered. When L > 1, we have a multi-objective
problem. However, we simplify it so that the optimization
of multiple layers is done either jointly, by considering a
weighted combination of losses, or greedily, by optimizing
(θi, φi) successively. Please see [20], [21] for more details.

0 5 10 15 20 25
SNR (dB)

25.0

27.5

30.0

32.5

35.0

37.5

40.0

42.5

45.0

PS
N

R
 (d

B
)

AWGN channel - Kodak - k/n = 1/6

Deep-JSCC
BPG+LDPC
JPEG2000+LDPC
WEBP+LDPC
JPEG+LDPC

Fig. 3. Deep-JSCC performance compared to digital schemes.

III. Deep-JSCC
Our first set of results demonstrate the base case when,

an image x is encoded by a single encoder and a single
decoder, thus L = 1. We consider a complex AWGN
channel with transfer function given by:

ηn(z) = z + n, (2)

where n ∈ Ck is independent and identically distributed
(i.i.d.) with n ∼ CN (0, σ2I), where σ2 is the average
noise power. We measure the quality of the channel by
the average signal-to-noise ratio (SNR) given by SNR =
10 log10

1
σ2 (dB) when P = 1 and the systems’ perfor-

mance by the peak SNR (PSNR), given by PSNR =
10 log10

2552

||x−x̂i||2 (dB).
Fig. 3 compares deep-JSCC with other well estab-

lished codecs (BPG, JPEG2000, WebP, JPEG) followed by
LDPC channel coding (see [19], [24] for more information
on the experimental setup, dataset and alternative schemes
considered). We see that the performance of deep-JSCC is
either above or comparable to the performance of the SoA
schemes, for a wide range of channel SNRs.

These results are obtained by training a different en-
coder/decoder model for each SNR value evaluated in the
case of deep-JSCC, and considering the best performance
achieved by the separation-based scheme at each SNR. In
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Fig. 4. (a) effects of graceful degradation for deep-JSCC compared to cliff effect in separation-based scheme; (b) performance of deep-JSCC
on a bursty interference channel (c) performance of deep-JSCC trained with MS-SSIM as objective function.

Fig. 4a, we experiment training models at a specific chan-
nel SNR, but evaluating it on several SNRtest values, also
for the separation-based schemes. It can be clearly seen
that deep-JSCC presents graceful degradation, that is, the
performance gradually decreases as channel deteriorates,
while the digital scheme presents a cliff-effect when the
quality of the channel goes below the capacity for which
the code was designed, losing all transmission output.
Thus, we can see that deep-JSCC not only produces high
performing transmissions, but also analog behavior, being
more robust to non-ergodic channels.

A. Versatility
A big advantage of deep-JSCC being data-driven is

the possibility of training for different channel models,
objective functions, or specific domains. Previous work
[19] show deep-JSCC is able to learn how to operate
on a Rayleigh fading channel, which models variations
in channel quality over time, due to physical changes in
the environment. Remarkably, the model could learn to
operate in a fading channel without the need of channel
estimation or feedback, which are both common practice
in separation-based systems.

We can also consider a channel with ‘bursty’ noise,
which can model the presence of a high variance noise
with probability p in addition to the AWGN noise n,
modeling in practice, an occasional random interference
from a nearby transmitter. Formally, this is a Bernoulli-
Gaussian noise channel with transfer function:

ηw(z) = z + n +B(k, p)w, (3)
where B(k, p) is the binomial distribution, and w ∼
CN (0, σ2

b I) the high variance noise component (σ2
b >> 0).

Fig. 4b shows the effect of the probability p on the
performance when the AWGN component’s SNR is 10dB.
We consider both a low-power (σb = 0.5) and a high-
power (σb = 3.5) burst, and compare the performance
with a digital scheme with BPG+LDPC. As expected, the
performance degrades as p increases, but deep-JSCC is
much more robust against the increasing power of the burst

noise. A high-power burst degrades the performance of the
digital scheme very quickly, even if the burst probability
is very low, completely destroying the signal when p >
0.15. Deep-JSCC exhibits graceful degradation even in the
presence of bursty noise, another important advantages in
practical scenarios, particularly for communications over
unlicensed bands, where occasional burst noise is common.

We also experimented training our model to a domain
specific task, namely the transmission of satellite image
data [25], a plausible application of our model. Here we use
the distortion measure of multi-scale structural similarity
(MS-SSIM) [26] – a widely accepted image quality measure
that better represents human visual perception than pixel-
wise differences. Our results, shown in Fig. 4c show that,
when considering more specific domains, our model can
better adapt to it, significantly increasing the performance
gap between deep-JSCC and separation-based schemes.

B. Successive Refinement
Yet another advantage of deep-JSCC is the flexibility

to adapt the transmission to different paths or stages.
Consider a model with L > 1, in which a same image is
transmitted progressively in blocks of size ki, i = 1, . . . L
and

∑L
i=1 ki = k. We aim to be able to reconstruct the

complete image after each transmission, with increasing
quality, thus performing successive refinement [27]–[29].
Progressive transmission can be applied to scenarios in
which communication is either expensive or urgent. For
example, in surveillance applications, it may be beneficial
to quickly send a low-resolution image to detect a poten-
tial threat as soon as possible, while a higher resolution
description can be later received for further evaluation
or archival purposes. Or, in a multi-user communication
setting, one could send different number of component for
different users, depending on the available bandwidth.

We therefore expand our system, by creating L encoder
and decoder pairs, each responsible for a partial transmis-
sion zi and trained jointly (see [20] for implementation
details and alternative architectures). Fig. 5a presents
results for the case L = 2, for k1/n = k2/n = 1/12 and
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Fig. 5. (a) Successive refinement with L = 2; (b) Layered transmission with channel output feedback, for L = 4; (c) Comparison between
simulated and hardware performance.

shows the performance of each layer for different channel
SNRs, for the AWGN channel. Results show that the loss
of dividing the transmission into multiple stages is not
significant; when compared to a single transmission with
k/n = 1/6 (dotted black curve in Fig. 5a), the model
performs with approximately the same quality for most
channel conditions. Moreover, we observe that every layer
of the layered transmission scheme preserves all features of
the single transmission, such as graceful degradation and
adaptability to different channel models.

C. Channel Output Feedback
Another interesting direction to be explored by deep-

JSCC is the use of channel output feedback, when it is
available. Suppose that alongside the forward communi-
cation channel considered so far, there is also a feedback
channel, able to send back to the transmitter an estimation
of the channel output z̃i after its realization. In a multi-
layered transmission, this information can be used to
inform subsequent layers and enhance the reconstruction
at the receiver. Thus, a transmission of a source x is done
sequentially in L steps, in which each step i a channel
input zi is generated from input x and feedback z̃i−1 (for
i > 1), transmitted and decoded to generate successively
refined representations x̂i (see [21] for specific architecture
and implementation details). There has also been recent
advances in the use of channel output feedback to improve
the performance of channel coding [30]; however, the de-
sign is for a specific blocklength and code rate, whereas the
proposed deep-JSCC scheme can transmit large content,
such as images.

Fig. 5b shows the results for a scenario considering
noiseless feedback (i.e. z̃i = ẑi) and three uses of the
feedback channel (L = 4), for channel inputs with size
ki/n = 1/12, i = 1, . . . , 4. We see that by exploiting the
feedback information, deep-JSCC can further increase its
performance, establishing its superiority to other schemes.
Note that we compare deep-JSCC with feedback with a
theoretical capacity achieving channel code, and can still
outperform the separation-based scheme.

This architecture enables other communication strate-
gies, such as variable length coding, in which a minimum
number of layers zi are transmitted and the quality of
the reconstruction is estimated through feedback, until a
target quality is achieved and the further transmission
is interrupted. This scheme can provide gains of over
50% in bandwidth, when compared to separation-based
approaches [21]. Further experiments also demonstrate
that our model successfully operates under noisy feedback
channels, and even present graceful degradation when the
feedback channel changes between training and evaluation.

D. Hardware Implementation
Finally, to validate the real world performance of the

proposed architecture, we implemented our basic deep-
JSCC on software defined radio platform. We used models
trained on the AWGN model, with different SNRs. Results
can be seen in Fig. 5c and show that the simulated
performance closely matches the hardware performance,
especially in higher SNRs.

We also analyzed the execution time of our model. We
observed that the average encoding and decoding time
per image with deep-JSCC is 6.40ms on GPU, or 15.4ms
on CPU, while a scheme with JPEG2000+LDPC and
BPG+LDPC takes on average 4.53 and 69.9ms respec-
tively. This shows that, although our model can be further
optimized for speed, it already presents competitive times,
given its outstanding performance.

IV. Conclusion
This paper reviewed and explored different features of

a DL-based architecture for JSCC of images over wireless
channels, the deep-JSCC. We have shown that our archi-
tecture is extremely versatile to channel models, objective
functions and even transmission configurations, being able
to perform multi-layered transmission and exploit channel
feedback. When compared to traditional digital schemes
of transmission, deep-JSCC has shown outstanding perfor-
mance in different metrics and scenarios, therefore present-
ing itself as a viable and superior alternative, particularly
for low-latency and low-power applications.
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Abstract

One of the classic problems in information theory is solving the feedback capacity of noisy channels with memory. The
capacity is expressed analytically by an optimization problem over a multi-letter objective. This is the main obstacle to directly
solving the feedback capacity analytically. In the last decade, some channels with memory where solved by formulating the
capacity objective as a Markov decision process, and then applying dynamic programming algorithms. However, those solutions
were restricted by the channel cardinality and were computationally tractable only for channels with binary alphabet. In this paper,
we propose a novel method to compute the feedback capacity of channels with memory using reinforcement learning (RL). The
main advantage of this approach is its computational efficiency, even for channels with with large cardinality. The outcome of
the RL algorithm sheds light on the properties of the optimal solution, which in our case, is the optimal input distribution of
the channel. These insights can be converted into analytic, single-letter capacity objectives by solving corresponding lower and
upper bounds. We demonstrate the efficiency of this method by analytically solving the feedback capacity of the well-known Ising
channel with cardinality smaller than 9. The proposed method is used to extract the structure of the optimal input distribution,
which is followed by an analytic solution for the feedback capacity and a capacity achieving coding scheme. However, we can
show that the coding scheme derived for small cardinality is no longer optimal for cardinality larger or equal to 9. Insights on
the solution are supplied by a new upper-bound for large cardinality. Also, we present an optimal coding scheme for asymptotic
alphabet size. The proposed methodology is a step in the course of developing strong numerical tools for channels with large
cardinality. Furthermore, the insights obtained by the analysis of large cardinality sheds light on the behaviour of the optimal
solution as the cardinality increases.
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Abstract—The aim of this work is to provide bounds connecting
two probability measures of the same event using Rényi α-
Divergences and Sibson’s α-Mutual Information, a generalization
of respectively the Kullback-Leibler Divergence and Shannon’s
Mutual Information. A particular case of interest can be found
when the two probability measures considered are a joint distri-
bution and the corresponding product of marginals (representing
the statistically independent scenario). In this case a bound using
Sibson’s α−Mutual Information is retrieved, extending a result
involving Maximal Leakage to general alphabets. These results
have broad applications, from bounding the generalization error
of learning algorithms to the more general framework of adaptive
data analysis, provided that the divergences and/or information
measures used are amenable to such an analysis (i.e., are robust
to post-processing and compose adaptively). The generalization
error bounds are derived with respect to high-probability events
but a corresponding bound on expected generalization error is
also retrieved.

Index Terms—Rényi-Divergence, Sibson’s Mutual Information,
Maximal Leakage, Adaptive Data Analysis

I. INTRODUCTION

Let us consider two probability spaces (Ω,F ,P), (Ω,F ,Q)
and let E ∈ F be a measurable event. Given some divergence
between the two distributions D̂(P,Q) (e.g., KL, Rényi’s
α−Divergence, ...) our aim is to provide bounds of the
following shape:

P(E) ≤ f(Q(E)) · g(D̂(P,Q)), (1)

for some functions f, g. E represents some “undesirable” event
(e.g., large generalization error), whose measure under Q is
known and whose measure under P we wish to bound. To
that end, we use some notion of “distance” between P and
Q. Of particular interest is the case where Ω = X × Y ,
P = PXY (the joint distribution), and Q = PXPY (product
of the marginals). This allows us to bound the likelihood
of E ⊆ X × Y when two random variables X and Y are
dependent as a function of the likelihood of E when X and
Y are independent (typically easier to analyze). Indeed, an
immediate application can be found in bounding the gener-
alization error of a learning algorithm and, when the proper
measure is chosen, in adaptive data analysis. In order to be
used in adaptive data analysis, such measure needs to be
robust to post-processing and to compose adaptively (meaning
that we can bound the measure between input and output
of the composition of a sequence of algorithms if each of
them has bounded measure). Results of this form involving
mutual information can be found in [1]–[3]. More recently, a

different measure satisfying these properties, maximal leakage
[4], has been used in [5], [6]. More specifically, it was
shown that Equation (1) holds for the following choice of
f(PXPY (E)) = maxy(PX(Ey)) and g(D̂(PXY ||PXPY )) =
exp(L (X→Y )) = EY D∞(PX|Y ||PX) = I∞(X;Y ),
where I∞(X;Y ) is the Sibson mutual information of order
infinity. In this work, we derive a general bound in the form
of (1) and focus on two interesting special cases. In particular,
one specialization of the bound leads to a family of bounds
in terms of α-divergences. The other specialization leads to a
family of bounds in terms of Sibson’s α-mutual information,
thus generalizing the previous maximal leakage bound (which
corresponds to α→∞).

II. BACKGROUND AND DEFINITIONS

A. Sibson’s α−Mutual Information

Introduced by Rényi as a generalization of entropy and
KL-divergence, α-divergence has found many applications
ranging from hypothesis testing to guessing and several other
statistical inference problems [7]. Indeed, it has several useful
operational interpretations (e.g., the number of bits by which
a mixture of two codes can be compressed, the cut-off rate in
block coding and hypothesis testing [8], [9] [10, p. 649]). It
can be defined as follows [8].

Definition 1. Let (Ω,F ,P), (Ω,F ,Q) be two probability
spaces. Let α > 0 be a positive real number different from
1. Consider a measure µ such that P µ and Q µ (such a
measure always exists, e.g. µ = (P +Q)/2)) and denote with
p, q the densities of P,Q with respect to µ. The α−Divergence
of P from Q is defined as follows:

Dα(PkQ) =
1

α− 1
ln

Z
pαq1−αdµ. (2)

Remark 1. The definition is independent of the chosen mea-
sure µ. It is indeed possible to show that

R
pαq1−αdµ =

R
q
p

1−α
dP , and that whenever P Q or 0 < α < 1,

we have
R
pαq1−αdµ =

R
p
q

α

dQ, see [8].

It can be shown that if α > 1 and P 6 Q then
Dα(PkQ) = ∞. The behaviour of the measure for α ∈
{0, 1,∞} can be defined by continuity. In general, one has that
D1(PkQ) = D(PkQ) but if D(PkQ) =∞ or there exists β
such that Dβ(PkQ) <∞ then limα↓1Dα(PkkQ) = D(PkQ)
[8, Theorem 5]. For an extensive treatment of α-divergences
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and their properties we refer the reader to [8]. Starting from
the concept of α−divergence, Sibson built a generalization of
mutual information that retains many interesting properties.
The definition is the following [7]:

Definition 2. Let X and Y be two random variables jointly
distributed according to PXY , and with marginal distributions
PX and PY , respectively. For α > 0, the Sibson’s mutual
information of order α between X and Y is defined as:

Iα(X;Y ) = min
QY

Dα(PXY kPXQY ). (3)

Moreover, limα→1 Iα(X;Y ) = I(X;Y ). On the other hand
when α→∞, we get:

I∞(X;Y ) = logEPY

"
sup

x:PX(x)>0

PXY ({x, Y })
PX({x})PY ({Y })

#
.

For more details on Sibson’s α-MI we refer the reader to [7].

B. Learning Theory

In this section, we provide some basic background knowl-
edge on learning algorithms and concepts like generalization
error. We are mainly interested in supervised learning, where
the algorithm learns a classifier by looking at points in a proper
space and the corresponding labels.

More formally, suppose we have an instance space Z and
a hypothesis space H. The hypothesis space is a set of
functions that, given a data-point s ∈ Z give as an output the
corresponding label Y . Suppose we are given a training data set
Zn 3 S = {z1, . . . , zn} made of n points sampled in an i.i.d
fashion from some distribution P . Given some n ∈ N, a learn-
ing algorithm is a (possibly stochastic) mapping A : Zn → H
that given as an input a finite sequence of points S ∈ Zn
outputs some classifier h = A(S) ∈ H. In the simplest setting
we can think of Z as a product between the space of data-
points and the space of labels, i.e., Z = X×Y and suppose that
A is fed with n data-label pairs (x, y) ∈ Z . In this work we
will view A as a family of conditional distributions PH|S and
provide a stochastic analysis of its generalization capabilities
using the information measures introduced above. The goal is
to generate a hypothesis h : X → Y that has good performance
on both the training set and newly sampled points from X . In
order to ensure such property the concept of generalization
error is introduced.

Definition 3. Let P be some distribution over Z . Let ‘ : H×
Z → R be a loss function. The error (or risk) of a prediction
rule h with respect to P is defined as

LP(h) = EZ∼P [‘(h, Z)], (4)

while, given a sample S = (z1, . . . , zn), the empirical error of
h with respect to S is defined as

LS(h) =
1

n

nX

i=1

‘(h, zi). (5)

Moreover, given a learning algorithm A : Zn → H, its
generalization error with respect to S is defined as:

gen-errP(A, S) = |LP(A(S))− LS(A(S))|. (6)

The definition above considers general loss functions. An
important instance for the case of supervised learning is the
0 − 1 loss. Suppose again that Z = X × Y and that H =
{h|h : X → Y}; given a pair (x, y) ∈ Z and a hypothesis
h : X → Y the loss is defined as follows:

‘(h, (x, y)) = ✶h(x) 6=y, (7)

where ✶ is the indicator function. The corresponding errors
become:

LP(h) = E(x,y)∼P [✶h(x)6=y] = P({(x, y) : h(x) 6= y}) (8)

and

LS(h) =
1

n

nX

i=1

✶h(xi)6=yi . (9)

Another fundamental concept we will need is the sample
complexity of a learning algorithm.

Definition 4. Fix , δ ∈ (0, 1). Let H be a hypothesis class.
The sample complexity of H with respect to ( , δ), denoted
by mH( , δ), is defined as the smallest m ∈ N for which there
exists a learning algorithmA such that, for every distribution P
over the domain X we have that P(gen-errP(A, S) > ) ≤ δ.
If there is no such m then mH( , δ) =∞.

For more details we refer the reader to [11].

III. MAIN RESULTS

Our main theorem is a general bound on PXY (E) in terms
of PXPY (E), parameterized by two real numbers α and α0.
For particular choices of α and α0, we demonstrate bounds in
terms of α-divergence, as well as α-mutual information. The
latter is a generalization of the maximal leakage bound in [6].

Theorem 1. Let (X ×Y,F ,PXY ), (X ×Y,F ,PXPY ) be two
probability spaces, and assume that PXY PXPY . Given
E ∈ F , let Ey := {x : (x, y) ∈ E}, i.e., the “fibers” of E
with respect to y. Then for any E ∈ F ,

PXY (E) ≤ EPY
h
PX(EY )γ

0/γ
i 1/γ0

·

EPY Eα
0/α

PX
dPXY
dPXPY

α 1/α0

,

(10)

where γ, α, γ0, α0 are such that 1 = 1
α + 1

γ = 1
α0 + 1

γ0 , and
α, γ, α0, γ0 ≥ 1.
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Proof. We have that:

PXY (E) = EPXY [✶E ] (11)

= EPXPY ✶E
dPXY
dPXPY

(12)

= EPY EPX ✶{X∈EY }
dPXY
dPXPY

(13)

≤ EPY EPX
h
✶
γ
{X∈EY }

i 1/γ

·

EPX
dPXY
dPXPY

α 1/α (14)

= EPY

"
PX(EY )1/γ EPX

dPXY
dPXPY

α 1/α
#

(15)

≤ EPY
h
PX(EY )γ

0/γ
i 1/γ0

·

EPY Eα
0/α

PX
dPXY
dPXPY

α 1/α0

,

(16)

where (14) and (16) follow from Holder’s inequality, given
that γ, α, γ0, α0 ≥ 1 and 1

γ + 1
α = 1

γ0 + 1
α0 = 1.

Remark 2. It is clear from the proof that one can similarly
bound E[g(X,Y )] for any positive function g(X,Y ) such that
g(X,Y ) is PXPY -integrable. But the shape of the bound
becomes more complex as one in general does not have that
g(X,Y )γ = g(X,Y ) for every γ ≥ 1.

Based on the choices of α, α0, one can derive different
bounds. Two are of particular interests to us and rely on
different choices of α0. Choosing α0 = α and thus γ0 = γ
in Theorem 1, we retrieve:

Corollary 1. Let (X × Y,F ,PXY ), (X × Y,F ,PXPY ) be
two probability spaces, and assume that PXY PXPY . Let
E ∈ F we have that:

PXY (E) ≤(PXPY (E))
α−1
α ·

exp
α− 1

α
Dα(PXY kPXPY ) . (17)

Choosing α0 → 1, which implies γ0 → +∞, we retrieve:

Corollary 2. Let (X×Y,F ,PXY ), (X×Y,F ,PXPY ) be two
probability spaces, and assume that PXY PXPY . Given
E ∈ F , we have that:

PXY (E) ≤ ess sup
PY

PX(EY )
1/γ

· (18)

EPY E1/α
PX

dPXY
dPY PX

α

(19)

= ess sup
PY

PX(EY )

α−1
α

exp
α− 1

α
Iα(X;Y ) ,

(20)

where Iα(X;Y ) is the Sibson’s mutual information of order
α [7].

Remark 3. An in-depth study of α−mutual information ap-
pears in [7], where a slightly different notation is used. For
reference, we can restate Eq. (19) in the notation of [7] to
obtain:

PXY (E) ≤ ess sup
PY

PX(EY )
1/γ

·

EPY E1/α
PX

dPY |X
dPY

α

Y .

(21)

Moreover, for a fixed α due to the property that Holder’s
conjugates need to satisfy, we have that 1

γ = α−1
α and the

bound in (20) can also be rewritten as:

PXY (E) ≤ exp
α− 1

α
Iα(X;Y ) + log ess sup

PY
PX(EY ) .

(22)
Considering the right hand side of (22), because of the non-
decreasability of Sibson’s α−Mutual Information with respect
to α [7] we have that, for 1 ≤ α1 ≤ α2:

α1 − 1

α1
Iα1

(X;Y ) ≤ α2 − 1

α2
Iα2

(X;Y ). (23)

Thus, choosing a smaller α yields a better dependence on
Iα(X;Y ) in the bound, but given that 1

γ = α−1
α we also have

that 1
γ1
≤ 1

γ2
and being ess supPY PX(EY ) ≤ 1 it implies that

ess sup
PY

PX(EY )

1
γ1

≥ ess sup
PY

PX(EY )

1
γ2

, (24)

with a worse dependence on ess supPY P(EY )
1
γ on the

bound. This leads to a trade-off between the two quantities.
If we focus on Corollary 2, letting α → ∞ we recover a
result involving maximal leakage [5], [6], but extending it to
general alphabets:

Corollary 3. Let (X × Y,F ,PXY ), (X × Y,F ,PXPY ) be
two probability spaces, and assume that PXY PXPY . Let
E ∈ F we have that:

PXY (E) ≤ ess sup
PY

PX(EY ) exp (L (X→Y )) , (25)

where L (X→Y ) is the maximal leakage [4].

The bound follows from the fact that L (X→Y ) =
I∞(X;Y ) [12]. A comparison between the bound for maximal
leakage and some analogous result obtained for mutual infor-
mation (through a different approach [1], [2]) can be found in
[6].

IV. APPLICATIONS

In this section, we consider some applications of the above
bounds in the context of the generalization error. In the bounds
of interest PX(Ey) is typically exponentially decaying with
the number of samples and the trade-off between α and γ
can be explicitly seen in the sample complexity of a learning
algorithm:

Corollary 4. Let X ×Y be the sample space and H be the set
of hypotheses. Let A : Xn×Yn → H be a learning algorithm
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that, given a sequence S of n points, returns a hypothesis h ∈
H. Suppose S is sampled i.i.d according to some distribution
P over X ×Y , i.e., S ∼ Pn. Let ‘ be the 0− 1 loss function
as defined in (7). Given η ∈ (0, 1), let E = {(S, h) : |LP(h)−
LS(h)| > η}. Fix α ≥ 1. Then,

P(E) ≤ exp
α− 1

α
Iα(S;A(S)) + log 2− 2nη2 . (26)

Proof. Fix η ∈ (0, 1) and α ≥ 1. Let 1
γ = α−1

α . Let us denote
with Eh the fiber of E over h for some h ∈ H, i.e., Eh = {S :
|LP(h)−LS(h)| > η}. Consider S, Ŝ ∈ {X×Y}n, where S =
((x1, y1), . . . , (xn, yn)) and Ŝ = ((x̂1, ŷ1), . . . , (x̂n, ŷn)). If
S, Ŝ differ only in one position j, i.e., (xi, yi) = (x̂i, ŷi)∀i ∈
[n]\{j} and (xj , yj) 6= (x̂j , ŷj) we have that for every h ∈ H,

|LS(h)− LŜ(h)| ≤ 1

n
. (27)

By McDiarmid’s inequality [13][Sec. 1.1] and Ineq. (27) we
have that for every hypothesis h ∈ H,

PS(Eh) ≤ 2 · exp(−2nη2). (28)

Then it follows from Corollary 2 and Ineq. (28) that:

P(E) ≤ exp
α− 1

α
Iα(S;A(S)) (2 exp(−2nη2))

α−1
α .

(29)

Corollary 5. Let X ×Y be the sample space and H be the set
of hypotheses. Let A : Xn×Yn → H be a learning algorithm
that, given a sequence S of n points, returns a hypothesis h ∈
H. Suppose S is sampled i.i.d according to some distribution
P over X ×Y , i.e., S ∼ Pn. Let ‘ be the 0− 1 loss function.
Given η ∈ (0, 1), let E = {(S, h) : |LP(h) − LS(h)| > η}.
Fix α ≥ 1 then, in order to ensure a confidence of δ ∈ (0, 1),
i.e., P(E) ≤ δ, we need a number of samples m satisfying:

m ≥ Iα(S;A(S)) + log 2 + γ log 1
δ

2η2
. (30)

Proof. From Corollary 4 we have that

P(E) ≤ exp
α− 1

α
Iα(S;A(S)) + log 2− 2nη2 .

Fix δ ∈ (0, 1), our aim is to have that:

exp
α− 1

α
Iα(S;A(S)) + log 2− 2nη2 ≤ δ, (31)

solving the inequality wrt n gives us Equation (30).

Smaller α means that Iα(S;A(S)) will be smaller, but it will
imply a larger value for γ = α

α−1 and thus a worse dependency
on log(1/δ) in the sample complexity. Let Z be the sample
space and H be the set of hypotheses. An immediate gener-
alization of Corollary 4 follows by considering loss functions
such that for every fixed h ∈ H, the random variable l(h, Z)
(induced by Z) is σ2−sub Gaussian1 for some σ > 0.

1Given a random variable X we say that it is σ2-sub-Gaussian if for every

λ ∈ R: E[eλX ] ≤ eλ
2σ2

2 .

Corollary 6. Let A : Zn → H be a learning algorithm that,
given a sequence S of n points, returns a hypothesis h ∈ H.
Suppose S is sampled i.i.d according to some distribution P
over Z . Let ‘ : H × Z → R be a loss function such that
‘(h, Z) is σ-sub Gaussian random variable for every h ∈ H.
Given η ∈ (0, 1), let E = {(S, h) : |LP(h) − LS(h)| > η}.
Fix α ≥ 1. Then,

P(E) ≤ exp
1

γ
Iα(S;A(S)) + log 2− n η2

2σ2
. (32)

Proof. Fix η ∈ (0, 1). Let us denote with Eh the fiber of E
over h for some h ∈ H, i.e., Eh = {S : |LP(h)−LS(h)| > η}.
By assumption we have that l(h, Z) is σ−sub Gaussian for
every h. We can thus use Hoeffding’s inequality for every
hypothesis h ∈ H, and retrieve that for every h ∈ H :

PS(Eh) ≤ 2 · exp −n η2

2σ2
. (33)

Then it follows from Corollary 2 and Ineq. (33) that:

P(E) ≤ exp
α− 1

α
Iα(S;A(S)) 2 exp −n η2

2σ2

α−1
α

.

(34)

One important characteristic of these bounds is that they
involve information-measures satisfying the data processing
inequality [7]. This means that all these results about gener-
alization are robust to post-processing, i.e., if the outcome
of any learning algorithm with bounded Iα is processed
further, the value of the information measure cannot increase.
Another desirable property that would render the usage of such
measures appealing in Adaptive Data Analysis is the Adaptive
Composition property [14]. Alas, the lack of a definition of
conditional Sibson’s MI does not allows us, for the moment, to
fully address the issue and verify whether or not the measure
composes adaptively (like Mutual Information and Maximal
Leakage [2], [6]). Moreover, a comparison between this and
other well-known results in the literature can be found in Table
I. One can immediately see that the Sibson’s MI bound and, in
particular, the Maximal Leakage one, are the ones that most
resemble the VC-Dimension bound both in terms of excess
probability decay and sample complexity.

V. BOUNDS ON EXPECTED GENERALIZATION ERROR

So far, when analyzing the generalization error, we have
only considered high probability bounds, what can these results
tell us about the expected generalization error? In order to
provide a meaningful bound, some assumptions on the quantity
maxh PS(|LS(h) − E[L(h)]| > η) are needed (where S is a
random vector of length n, sampled in an iid fashion from
some distribution D). More precisely, we will assume this
probability to be exponentially decreasing with the number
of samples n, as it often happens in the literature [13], [15].
The following result is inspired by [11, p. 419] with a slightly
different proof.
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TABLE I
COMPARISON BETWEEN BOUNDS

Robust Adaptive Bound Sample Complexity

β−Stability [15] No No exp. decay in n f(β, η)× log 2
δ

-DP [14] Yes Yes 1
4
exp −nη2

12
, ≤ η/2 12·log(1/4δ)

η2

MI [1] Yes Yes (I(X;Y ) + 1)/(2nη2 − 1) I(X;Y )/η2δ

Maximal Leakage [6] Yes Yes 2 · exp(L(X → Y )− 2nη2) (L (X→Y ) + log 2
δ

)/2η2

α-Sibson’s MI Yes Unknown exp(α−1
α

(Iα(S;A(S)) + log 2− 2nη2)) (Iα(X;Y ) + log 2 + γ log 1
δ

)/2η2

VC-Dim. K [11] 2 · exp(log(K)− 2nη2) (log(K) + log 2
δ

)/2η2

Lemma 1. Let X be a random variable and let x̂ ∈ R.
Suppose that exist a ≥ 0 and b ≥ e such that for every η > 0
PX(|X − x̂| ≥ η) ≤ 2b exp −η2/a2 then E [|X − x̂|] ≤
a
√

log 2b+ 1
2
√
log 2b

.

Proof.

E [|X − x̂|] =

Z +∞

0

PX(|X − x̂| ≥ η)dη (35)

≤
Z +∞

0

min 1, 2b exp −η2/a2 dη (36)

=

Z √a2 log 2b

0

dη +

Z +∞
√
a2 log 2b

2b exp(−η
2

a2
)dη

(37)

≤ a
p

log 2b+
1

2
√

log 2b
. (38)

Theorem 2. Let A : Zn → H be a learning algorithm
and let Iα(S;A(S)) be the dependence measure chosen.
Suppose that the loss function l : Z × H → R is such that
∀hPS∼Dn(|LS(h) − E[L(h)]| > η) ≤ 2 exp − η2

2σ2n for
some σ > 0 (e.g. l(h, Z) is σ2-sub-Gaussian), then:

E [|LS(H)− E[L(H)]|] ≤ (39)
r

2σ2γ

n



s

log(2) + Iα(S;A(S))

γ
+

1

2
q

log 2+Iα(S;A(S))
γ


 .

(40)

Proof. The proof is a simple application of Lemma 1
and Corollary 6 with a =

p
2γσ2/

√
n and with b =

2
1
γ−1 exp Iα(A(S);S)

γ .

An interesting application of Theorem 2 can be found by
considering L (S→A(S)) and the 0− 1 loss (hence, 1/4-sub-
Gaussian).

Corollary 7. Let A : Zn → H. Consider the 0− 1 loss, then
∀hPS∼Dn(|LS(h)− E[L(h)]| > η) ≤ 2 exp −2η2n , and:

E [|LS(H)− E[L(H)]|] ≤ (41)

1√
2n

 
p

log 2 + L (S→A(S)) +
1

2
p

log 2 + L (S→A(S))

!
.

(42)
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Abstract—This work introduces new strong data-processing
and majorization inequalities for f -divergences, and it studies
some of their applications in information theory and statistics.
The full paper version [16] will be published soon in the Entropy
journal, including all proofs and further results, discussions,
and information-theoretic applications. One application refers to
the performance analysis of list decoding with either fixed or
variable list sizes. Another application is related to a study of
the quality of approximating a probability mass function, induced
by the leaves of a Tunstall tree, by an equiprobable distribution.
The compression rates of finite-length Tunstall codes are further
analyzed for asserting their closeness to the Shannon entropy of
a memoryless and stationary discrete source.

Index Terms – Contraction coefficient, data-processing inequal-
ities, f -divergences, hypothesis testing, list decoding, majorization,
Rényi information measures, Tsallis entropy, Tunstall trees.

I. INTRODUCTION

Divergences are non-negative measures of the dissimilarity
between pairs of probability measures which are defined on
the same measurable space. They play a key role in the
development of information theory, probability theory, statis-
tics, learning, signal processing, and other related fields. One
important class of divergence measures is defined by means of
convex functions f , and it is called the class of f -divergences.
It unifies fundamental and independently-introduced concepts
in several branches of mathematics such as the chi-squared test
for the goodness of fit in statistics, the total variation distance
in functional analysis, the relative entropy in information
theory and statistics, and it is also closely related to the Rényi
divergence which generalizes the relative entropy. The class of
f -divergences was independently introduced in the sixties by
Ali and Silvey [2], and Csiszár [5]. This class satisfies pleasing
features such as the data-processing inequality, convexity,
continuity and duality properties, and it finds nice applications
in information theory and statistics (see, e.g., [6], [7], [8], [17],
[19], [20], [21]).

The full paper version of this work [16] is a research paper
which is focused on the derivation of data-processing and
majorization inequalities for f -divergences, and a study of
some of their potential applications in information theory and
statistics. Preliminaries are next provided.

II. PRELIMINARIES

A. Preliminaries and Related Works

We provide here definitions which serve as a background
to the presentation in this paper. We first provide a definition

for the family of f -divergences.
Definition 1: [9, p. 4398] Let P and Q be probability

measures, let µ be a dominating measure of P and Q (i.e.,
P,Q � µ), and let p := dP

dµ and q := dQ
dµ . The f -divergence

from P to Q is given, independently of µ, by

Df (P‖Q) :=

∫
q f
(p
q

)
dµ, (1)

where

f(0) := lim
t→0+

f(t), (2)

0f

(
0

0

)
:= 0, (3)

0f

(
a

0

)
:= lim

t→0+
tf

(
a

t

)
= a lim

u→∞
f(u)

u
, a > 0. (4)

Definition 2: Let QX be a probability distribution which
is defined on a set X , and that is not a point mass, and
let WY |X : X → Y be a stochastic transformation. The
contraction coefficient for f -divergences is defined as

µf (QX ,WY |X) := sup
PX :Df (PX‖QX)∈(0,∞)

Df (PY ‖QY )

Df (PX‖QX)
, (5)

where, for all y ∈ Y ,

PY (y) = (PXWY |X) (y) :=

∫

X
dPX(x)WY |X(y|x), (6)

QY (y) = (QXWY |X) (y) :=

∫

X
dQX(x)WY |X(y|x). (7)

Contraction coefficients for f -divergences play a key role
in strong data-processing inequalities (see [1], [12], [13]).

Definition 3: Pearson’s χ2-divergence from P to Q is de-
fined to be the f -divergence from P to Q (see Definition 1)
with f(t) = (t− 1)2 or f(t) = t2 − 1 for all t > 0,

χ2(P‖Q) := Df (P‖Q) (8)

=

∫
(p− q)2

q
dµ (9)

=

∫
p2

q
dµ− 1 (10)

independently of the dominating measure µ (i.e., P,Q � µ,
e.g., µ = P +Q).
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Neyman’s χ2-divergence from P to Q is the Pearson’s χ2-
divergence from Q to P , i.e., it is equal to

χ2(Q‖P ) = Dg(P‖Q) (11)

with g(t) = (t−1)2

t or g(t) = 1
t − t for all t > 0.

For the presentation of our majorization inequalities for f -
divergences and related entropy bounds, essential definitions
and basic results are next provided (see, e.g., [11]). Let P be
a probability mass function defined on a finite set X , let pmax

be the maximal mass of P , and let GP (k) be the sum of the
k largest masses of P for k ∈ {1, . . . , |X |} (hence, it follows
that GP (1) = pmax and GP (|X |) = 1).

Definition 4: Consider discrete probability mass functions
P and Q defined on a finite set X . It is said that P is
majorized by Q (or Q majorizes P ), and it is denoted by
P ≺ Q, if GP (k) ≤ GQ(k) for all k ∈ {1, . . . , |X |} (recall
that GP (|X |) = GQ(|X |) = 1).

A unit mass majorizes any other distribution; on the other
hand, the equiprobable distribution on a finite set is majorized
by any other distribution defined on the same set.

Definition 5: Let Pn denote the set of all the probability
mass functions that are defined on An := {1, . . . , n}. A
function f : Pn → R is said to be Schur-convex if for every
P,Q ∈ Pn such that P ≺ Q, we have f(P ) ≤ f(Q).
Likewise, f is said to be Schur-concave if −f is Schur-convex,
i.e., P,Q ∈ Pn and P ≺ Q imply that f(P ) ≥ f(Q).

Finally, what is the connection between data processing
and majorization, and why these types of inequalities are
both considered in the same manuscript ? This connection is
provided in the following fundamental well-known result (see,
e.g., [11, Theorem B.2]):

Proposition 1: Let P and Q be probability mass functions
defined on a finite set A. Then, P ≺ Q if and only if there
exists a doubly-stochastic transformation WY |X : A → A (i.e.,∑
x∈A

WY |X(y|x) = 1 for all y ∈ A, and
∑
y∈A

WY |X(y|x) = 1

for all x ∈ A with WY |X(·|·) ≥ 0) such that

Q→WY |X → P.

In other words, P ≺ Q if and only if in their representation
as column vectors, there exists a doubly-stochastic matrix W
(i.e., a square matrix with non-negative entries such that the
sum of each column or each row in W is equal to 1) such
that P = WQ.

B. Contributions

This work (see the full paper version in [16]) is focused on
the derivation of data-processing and majorization inequalities
for f -divergences, and it applies these inequalities to informa-
tion theory and statistics.

The starting point for obtaining strong data-processing in-
equalities in this paper relies on the derivation of lower and
upper bounds on the difference Df (PX‖QX)−Df (PY ‖QY )
where (PX , QX) and (PY , QY ) denote, respectively, pairs
of input and output probability distributions with a given

stochastic transformation WY |X (i.e., PX → WY |X →
PY , QX → WY |X → QY ). These bounds are expressed
in terms of the respective difference in the Pearson’s or
Neyman’s χ2-divergence, and they hold for all f -divergences
(see Theorem 1).

This paper also derives majorization inequalities for f -
divergences where part of these inequalities rely on the earlier
data-processing inequalities (see Theorem 3). A different ap-
proach, which relies on the concept of majorization, serves to
derive tight bounds on the maximal value of an f -divergence
from a probability mass function P to an equiprobable dis-
tribution; the maximization is carried over all P with a fixed
finite support where the ratio of their maximal to minimal
probability masses does not exceed a given value (see The-
orem 4). These bounds lead to accurate asymptotic results
which apply to general f -divergences, and they strengthen and
generalize recent results of this type with respect to the relative
entropy [4], and the Rényi divergence [15].

As an application of the data-processing inequalities for f -
divergences, the setup of list decoding is further studied in
[16], reproducing in a unified way some known bounds on
the list decoding error probability, and deriving new bounds
for fixed and variable list sizes.

As an application of the majorization inequalities in this
paper, we study in [16] properties of a measure which is
used to quantify the quality of approximating probability
mass functions, induced by the leaves of a Tunstall tree, by
an equiprobable distribution. An application of majorization
inequalities for the relative entropy is used to derive a sufficient
condition, expressed in terms of the principal and secondary
real branches of the Lambert W function, for asserting the
proximity of compression rates of finite-length (lossless and
variable-to-fixed) Tunstall codes to the Shannon entropy of a
memoryless and stationary discrete source.

III. MAIN RESULTS ON f -DIVERGENCES

A. Data-processing inequalities for f -divergences

Strong data-processing inequalities are provided in the fol-
lowing, bounding the difference Df (PX‖QX)−Df (PY ‖QY )

and ratio Df (PY ‖QY )
Df (PX‖QX) where (PX , QX) and (PY , QY ) denote,

respectively, pairs of input and output probability distributions
with a given stochastic transformation.

Theorem 1: Let X and Y be finite or countably infinite
sets, let PX and QX be probability mass functions that are
supported on X , and let

ξ1 := inf
x∈X

PX(x)

QX(x)
∈ [0, 1], (12)

ξ2 := sup
x∈X

PX(x)

QX(x)
∈ [1,∞]. (13)

Let WY |X : X → Y be a stochastic transformation such that
for every y ∈ Y , there exists x ∈ X with WY |X(y|x) > 0,
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and let (see (6) and (7))

PY := PXWY |X , (14)
QY := QXWY |X . (15)

Furthermore, let f : (0,∞) → R be a convex function with
f(1) = 0, and let the non-negative constant cf := cf (ξ1, ξ2)
satisfy

f ′+(v)− f ′+(u) ≥ 2cf (v − u), ∀u, v ∈ I, u < v (16)

where f ′+ denotes the right-side derivative of f , and

I := I(ξ1, ξ2) = [ξ1, ξ2] ∩ (0,∞). (17)

Then,
a)

Df (PX‖QX)−Df (PY ‖QY )

≥ cf (ξ1, ξ2)
[
χ2(PX‖QX)− χ2(PY ‖QY )

]
(18)

≥ 0, (19)

where equality holds in (18) if Df (·‖·) is Pearson’s χ2-
divergence with cf ≡ 1.

b) If f is twice differentiable on I, then the largest possible
coefficient in the right side of (16) is given by

cf (ξ1, ξ2) = 1
2 inf
t∈I(ξ1,ξ2)

f ′′(t). (20)

c) Under the assumption in Item b), the following dual
inequality also holds:

Df (PX‖QX)−Df (PY ‖QY )

≥ cf∗
(

1
ξ2
, 1
ξ1

) [
χ2(QX‖PX)− χ2(QY ‖PY )

]
(21)

≥ 0, (22)

where f∗ : (0,∞)→ R is the dual convex function which
is given by

f∗(t) := t f

(
1

t

)
, ∀ t > 0, (23)

and the coefficient in the right side of (21) satisfies

cf∗
(

1
ξ2
, 1
ξ1

)
= 1

2 inf
t∈I(ξ1,ξ2)

{t3 f ′′(t)} (24)

with the convention that 1
ξ1

= ∞ if ξ1 = 0. Equality
holds in (21) if Df (·‖·) is Neyman’s χ2-divergence (i.e.,
Df (P‖Q) := χ2(Q‖P ) for all P and Q) with cf∗ ≡ 1.

d) Under the assumption in Item b), if

ef (ξ1, ξ2) := 1
2 sup
t∈I(ξ1,ξ2)

f ′′(t) <∞, (25)

then,

Df (PX‖QX)−Df (PY ‖QY )

≤ ef (ξ1, ξ2)
[
χ2(PX‖QX)− χ2(PY ‖QY )

]
. (26)

Furthermore,

Df (PX‖QX)−Df (PY ‖QY )

≤ ef∗
(

1
ξ2
, 1
ξ1

) [
χ2(QX‖PX)− χ2(QY ‖PY )

]
(27)

where the coefficient in the right side of (27) satisfies

ef∗
(

1
ξ2
, 1
ξ1

)
= 1

2 sup
t∈I(ξ1,ξ2)

{t3 f ′′(t)}, (28)

which is assumed to be finite. Equalities hold in (26) and
(27) if Df (·‖·) is Pearson’s or Neyman’s χ2-divergence
with ef ≡ 1 or ef∗ ≡ 1, respectively.

e) The lower and upper bounds in (18), (21), (26) and (27)
are locally tight. More precisely, let {P (n)

X } be a sequence
of probability mass functions defined on X and pointwise
converging to QX which is supported on X , and let P (n)

Y

and QY be the probability mass functions defined on Y
via (14) and (15) with inputs P (n)

X and QX , respectively.
Suppose that

lim
n→∞

inf
x∈X

P
(n)
X (x)

QX(x)
= 1, (29)

lim
n→∞

sup
x∈X

P
(n)
X (x)

QX(x)
= 1. (30)

If f has a continuous second derivative at unity, then

lim
n→∞

Df (P
(n)
X ‖QX)−Df (P

(n)
Y ‖QY )

χ2(P
(n)
X ‖QX)− χ2(P

(n)
Y ‖QY )

= 1
2f
′′(1), (31)

lim
n→∞

Df (P
(n)
X ‖QX)−Df (P

(n)
Y ‖QY )

χ2(QX‖P (n)
X )− χ2(QY ‖P (n)

Y )
= 1

2f
′′(1), (32)

and these limits indicate the local tightness of the lower
and upper bounds in Items a)–d).

Proof: See [16].
In continuation to [10, Theorem 8], we next provide an

upper bound on the contraction coefficient for another subclass
of f -divergences. Although the first part of the next result
is stated for finite or countably infinite alphabets, it is clear
from its proof that it also holds in the general alphabet setting.
Connections to the literature are provided in [16].

Theorem 2: Let f : (0,∞)→ R satisfy the conditions:
• f is a convex function, differentiable at 1, f(1) = 0, and
f(0) := lim

t→0+
f(t) <∞;

• The function g : (0,∞) → R, defined by g(t) :=
f(t)−f(0)

t for all t > 0, is convex.
Let

κ(ξ1, ξ2) := sup
t∈(ξ1,1)∪(1,ξ2)

f(t) + f ′(1) (1− t)
(t− 1)2

(33)

where, for PX and QX which are non-identical probability
mass functions, ξ1 ∈ [0, 1) and ξ2 ∈ (1,∞] are given in (12)
and (13). Then, in the setting of (14) and (15),

Df (PY ‖QY )

Df (PX‖QX)
≤ κ(ξ1, ξ2)

f(0) + f ′(1)
· χ

2(PY ‖QY )

χ2(PX‖QX)
. (34)
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Consequently, if QX is finitely supported on X ,

µf (QX ,WY |X) (35)

≤ 1

f(0) + f ′(1)
· κ
(

0,
1

min
x∈X

QX(x)

)
· µχ2(QX ,WY |X).

Proof: See [16].
We refer the reader to a parametric subclass of f -

divergences with interesting properties which is introduced in
[16], and which satisfies the conditions of Theorem 2.

B. f -divergence Inequalities via Majorization

Let Un denote an equiprobable probability mass function
on {1, . . . , n} with n ∈ N, i.e., Un(i) := 1

n for all
i ∈ {1, . . . , n}. By majorization theory and Theorem 1, the
next result strengthens the Schur-convexity property of the f -
divergence Df (·‖Un) (see [3, Lemma 1]).

Theorem 3: Let P and Q be probability mass functions
which are supported on {1, . . . , n}, and suppose that P ≺ Q.
Let f : (0,∞) → R be twice differentiable and convex with
f(1) = 0, and let qmax and qmin be, respectively, the maximal
and minimal positive masses of Q. Then,
a)

nef (nqmin, nqmax)
(
‖Q‖22 − ‖P‖22

)

≥ Df (Q‖Un)−Df (P‖Un) (36)

≥ ncf (nqmin, nqmax)
(
‖Q‖22 − ‖P‖22

)
≥ 0, (37)

where cf (·, ·) and ef (·, ·) are given in (20) and (25), respec-
tively, and ‖ · ‖2 denotes the Euclidean norm. Furthermore,
(36) and (37) hold with equality if Df (·‖·) = χ2(·‖·).

b) If P ≺ Q and qmax

qmin
≤ ρ for an arbitrary ρ ≥ 1, then

0 ≤ ‖Q‖22 − ‖P‖22 ≤
(ρ− 1)2

4ρn
. (38)

Proof: See [16].

The next result provides upper and lower bounds on
f -divergences from any probability mass function to an
equiprobable distribution. It relies on majorization theory, and
it follows in part from Theorem 3.

Theorem 4: Let Pn denote the set of all the probability
mass functions that are defined on An := {1, . . . , n}. For
ρ ≥ 1, let Pn(ρ) be the set of all Q ∈ Pn which are supported
on An with qmax

qmin
≤ ρ, and let f : (0,∞) → R be a convex

function with f(1) = 0. Then,
a) The set Pn(ρ), for any ρ ≥ 1, is a non-empty, convex and

compact set.
b) For a given Q ∈ Pn, which is supported on An, the f -

divergences Df (·‖Q) and Df (Q‖·) attain their maximal
values over the set Pn(ρ).

c) For ρ ≥ 1 and an integer n ≥ 2, let

uf (n, ρ) := max
Q∈Pn(ρ)

Df (Q‖Un), (39)

vf (n, ρ) := max
Q∈Pn(ρ)

Df (Un‖Q), (40)

let

Γn(ρ) :=

[
1

1 + (n− 1)ρ
,

1

n

]
, (41)

and let the probability mass function Qβ ∈ Pn(ρ) be
defined on the set An as follows:

Qβ(j) :=





ρβ, j ∈ {1, . . . , iβ},
1−

(
n+ iβ(ρ− 1)− 1

)
β, j = iβ + 1,

β, iβ + 2 ≤ j ≤ n
(42)

where

iβ :=

⌊
1− nβ

(ρ− 1)β

⌋
. (43)

Then,

uf (n, ρ) = max
β∈Γn(ρ)

Df (Qβ‖Un), (44)

vf (n, ρ) = max
β∈Γn(ρ)

Df (Un‖Qβ). (45)

d) For ρ ≥ 1 and an integer n ≥ 2, let the non-negative
function g(ρ)

f : [0, 1]→ R+ be given by

g
(ρ)
f (x)

:= xf

(
ρ

1 + (ρ− 1)x

)
+ (1− x)f

(
1

1 + (ρ− 1)x

)
,

(46)

for all x ∈ [0, 1]. Then,

max
m∈{0,...,n}

g
(ρ)
f

(
m
n

)
≤ uf (n, ρ) ≤ max

x∈[0,1]
g

(ρ)
f (x), (47)

max
m∈{0,...,n}

g
(ρ)
f∗
(
m
n

)
≤ vf (n, ρ) ≤ max

x∈[0,1]
g

(ρ)
f∗ (x) (48)

with the convex function f∗ : (0,∞)→ R in (23).
e) The right-side inequalities in (47) and (48) are asymptoti-

cally tight (n→∞). Namely,

lim
n→∞

uf (n, ρ) = max
x∈[0,1]

g
(ρ)
f (x), (49)

lim
n→∞

vf (n, ρ) = max
x∈[0,1]

g
(ρ)
f∗ (x). (50)

f) If g(ρ)
f (·) in (46) is differentiable on (0, 1) and its derivative

is upper bounded by Kf (ρ) ≥ 0, then for every integer
n ≥ 2

0 ≤ lim
n′→∞

{
uf (n′, ρ)

}
− uf (n, ρ) ≤ Kf (ρ)

n
. (51)

g) Let f(0) := lim
t→0

f(t) ∈ (−∞,+∞], and let n ≥ 2 be an
integer. Then,

lim
ρ→∞

uf (n, ρ) =

(
1− 1

n

)
f(0) +

f(n)

n
. (52)
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Furthermore, if f(0) < ∞, f is differentiable on (0, n),
and Kn := sup

t∈(0,n)

∣∣f ′(t)
∣∣ <∞, then, for every ρ ≥ 1,

0 ≤ lim
ρ′→∞

{
uf (n, ρ′)

}
− uf (n, ρ) ≤ 2Kn (n− 1)

n+ ρ− 1
. (53)

h) For ρ ≥ 1, let the function f be also twice differentiable,
and let M and m be constants such that the following
condition holds:

0 ≤ m ≤ f ′′(t) ≤M, ∀ t ∈
[

1
ρ , ρ
]
. (54)

Then, for all Q ∈ Pn(ρ),

0 ≤ 1
2m
(
n‖Q‖22 − 1

)
(55)

≤ Df (Q‖Un) (56)

≤ 1
2M

(
n‖Q‖22 − 1

)
(57)

≤ M(ρ− 1)2

8ρ
(58)

with equalities in (56) and (57) for the χ2 divergence (with
M = m = 2).

i) Let d > 0. If f ′′(t) ≤ Mf ∈ (0,∞) for all t > 0, then
Df (Q‖Un) ≤ d for all Q ∈ Pn(ρ), if

ρ ≤ 1 +
4d

Mf
+

√
8d

Mf
+

16d2

M2
f

. (59)

Proof: See [16].
Tsallis entropy was introduced in [18] as a generalization

of the Shannon entropy (similarly to the Rényi entropy [14]),
and it was applied to statistical physics in [18].

Definition 6: [18] Let PX be a probability mass function
defined on a discrete set X . The Tsallis entropy of order α ∈
(0, 1) ∪ (1,∞) of X , denoted by Sα(X) or Sα(PX), is

Sα(X) =
‖PX‖αα − 1

1− α , (60)

where ‖PX‖α :=

( ∑
x∈X

PαX(x)

) 1
α

. The Tsallis entropy is

continuously extended at orders 0, 1, and ∞; at order 1, it
coincides with the Shannon entropy in nats.

Theorem 3 enables to strengthen the Schur-concavity prop-
erty of the Tsallis entropy (see [11, Theorem 13.F.3.a.]).

Theorem 5: Let P and Q be probability mass functions
which are supported on a finite set, and let P ≺ Q. Then,
for all α > 0,
a)

0 ≤ L(α, P,Q) ≤ Sα(P )− Sα(Q) ≤ U(α, P,Q), (61)

where

L(α, P,Q) :=

{
1
2 αq

α−2
max

(
‖Q‖22 − ‖P‖22

)
, if α ∈ (0, 2],

1
2 αq

α−2
min

(
‖Q‖22 − ‖P‖22

)
, α ∈ (2,∞),

(62)

U(α, P,Q) :=

{
1
2 αq

α−2
min

(
‖Q‖22 − ‖P‖22

)
, if α ∈ (0, 2],

1
2 αq

α−2
max

(
‖Q‖22 − ‖P‖22

)
, α ∈ (2,∞),

(63)

and the bounds in (62) and (63) are attained at α = 2.
b)

inf
P≺Q

Sα(P )− Sα(Q)

L(α, P,Q)
= sup
P≺Q

Sα(P )− Sα(Q)

U(α, P,Q)
= 1,

where the inf. and sup. in (b) can be restricted to PMFs P
and Q (P 6= Q) supported on a binary alphabet.
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Entanglement-Assisted Capacity of Quantum
Channels with Side Information

Uzi Pereg

Abstract—Entanglement-assisted communication over a
random-parameter quantum channel with either causal or
non-causal channel side information (CSI) at the encoder
is considered. This describes a scenario where the quantum
channel depends on the quantum state of the input environment.
While Bob, the decoder, has no access to this state, Alice, the
transmitter, performs a sequence of projective measurements
on her environment to encode her message. Dupuis [10, 9]
established the entanglement-assisted capacity with non-causal
CSI. Here, we establish characterization in the causal setting,
and also give an alternative proof technique and further
observations for the non-causal setting.

Index Terms—Quantum information, Shannon theory, quan-
tum communication, channel capacity, state information, entan-
glement assistance.

I. INTRODUCTION

A fundamental task in classical information theory is to
determine the ultimate transmission rate of communication.
Shannon’s channel coding theorem [25] states that for a given
channel pY |X , the optimal transmission rate is the channel
capacity, given by C(pY |X) = maxpX I(X;Y ). Various
classical settings of practical significance can be described by
a channel pY |X,S that depends on a random parameter S when
channel side information (CSI) is available at the encoder (see
e.g. [18, 6] and references therein). The capacity with causal
CSI is given by [26]

Ccaus(pY |X,S) = max
pT

I(T ;Y ) (1)

with X = T (S), where T : S → X is called a Shannon
strategy (see also [18, 6]). Whereas, the capacity with non-
causal CSI is given by [12]

Cn-c(pY |X,S) = max
pU,X|S

[I(U ;Y )− I(U ;S)] (2)

where U is an auxiliary random variable.
The field of quantum information is rapidly evolving in

both practice and theory (see e.g. [8, 1, 31]). Communication
through quantum channels can be separated into different cat-
egories. In particular, one may consider a setting where Alice
and Bob are provided with entanglement resources [22]. The
entanglement-assisted capacity for transmission of classical
information over a quantum channel was fully characterized
by Bennet et al. [2, 3]. As for classical communication
without entanglement between the encoder and the decoder,
the Holevo-Schumacher-Westmoreland Theorem provides an
asymptotic (“multi-letter”) formula for the capacity [15, 24],
though calculation of such a formula is intractable in general.
This is because the Holevo information is not necessarily

additive [13], with some exceptions such as entanglement-
breaking channels [27].

The entanglement-assisted capacity of a quantum chan-
nel with non-causal CSI was determined by Dupuis [10,
9]. Furthermore, Boche, Cai, and Nötzel [4] addressed the
classical-quantum channel with CSI at the encoder without
entanglement. The classical capacity was determined given
causal CSI, and a multi-letter formula was provided given non-
causal CSI. Warsi and Coon [28] derived multi-letter bounds
for a similar setting, where the side information has a limited
rate. Luo and Devetak [21] considered channel simulation with
source side information (SSI) at the decoder, and also solved
the quantum generalization of the Wyner-Ziv problem [30].
Quantum data compression with SSI is also studied in [7, 5],
and with entanglement assistance in [19, 20].

In this paper, we consider a quantum channel with either
causal or non-causal CSI. The motivation is as follows.
Suppose that Alice wishes to send classical information to
Bob through a (fully) quantum channel NSA→B , where A
is the transmitter system, B is the receiver system, and S
is the transmitter’s environment, which affects the channel as
well. Furthermore, suppose that Alice performs a sequence
of projective measurements of the environment system S,
hence the system is projected onto a particular vector |s〉 with
probability q(s). Using the measurement results, Alice encodes
her message and sends her transmission through the channel.
Whereas, Bob, who does not have access to the measurement
results, “sees” the average channel

∑
s q(s)N

(s)
A→B , where

N (s)
A→B is the projection of the channel onto |s〉. Assuming

Alice’s measurement projects onto orthogonal vectors, the
environment system can be thought of as a classical random
parameter S ∼ q(s). Therefore, we treat the quantum counter-
part of the models in [12] and [26], i.e. a random-parameter
quantum channel NS,A→B with CSI at the encoder.

We give a full characterization of the entanglement-assisted
classical capacity and quantum capacity with causal CSI, and
also give an alternative proof technique and further observa-
tions for the non-causal setting. While Dupuis’ analysis with
non-causal CSI in is based on the decoupling approach for the
transmission of qubits [10, 9], we take a more direct approach.
In our analysis, we incorporate the classical binning technique
[14] into the quantum packing lemma [16]. Essentially, in the
achievability proof, Alice performs classical compression of
the parameter sequence, and then transmits both the classical
message and the compressed representation using a random
phase variation of the superdense coding protocol (see e.g. [16,
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Fig. 1. Coding for a quantum channel NSA→B with causal side information
at the encoder. The quantum systems of Alice and Bob are marked in red
and blue, respectively. The systems inside the dashed-line rectangle are only
available at the encoder.

29]). The results are analogous to those in the classical case,
although, as usual, the quantum analysis is more involved.
As observed in [12, 14], the classical optimization (2) can be
restricted to mappings from (U, S) to X that are deterministic.
In analogy, we observe that optimization over isometric maps
suffices for our problem. With causal CSI, quantum operations
are applied in a reversed order, and the Shannon strategy in
(1) is replaced with a quantum channel. The full manuscript
with proofs can be found in [23].

II. DEFINITIONS AND RELATED WORK

We begin with basic definitions.

A. States and Information Measures

The state of a quantum system A is given by a density
operator ρ on the Hilbert space HA. A density operator is
an Hermitian, positive semidefinite operator, with unit trace,
i.e. ρ† = ρ, ρ � 0, and Tr(ρ) = 1. A measurement is a set
of operators {Λj} forming a positive operator-valued measure
(POVM), i.e. Λj � 0 and

∑
j Λj = 1, where 1 is the identity

operator. The probability of the measurement outcome j is
then pA(j) = Tr(Λjρ).

Define the quantum entropy of the density operator ρ as
H(ρ) , −Tr[ρ log(ρ)]. Given a bipartite state σAB , define
the quantum mutual information by

I(A;B)σ = H(σA) +H(σB)−H(σAB) . (3)

Furthermore, define conditional quantum entropy by
H(A|B)σ = H(σAB)−H(σB).

B. Quantum Channel

A random-parameter quantum channel is defined as a
linear, completely positive, trace preserving map NSA→B ,
corresponding to a quantum physical evolution. The channel

parameter S can also be thought of as a classical system at
state

ρS =
∑

s∈S
q(s)|s〉〈s| (4)

where {|s〉}s∈S is an orthonormal basis of the Hilbert space
HS . A quantum channel has a Kraus representation

NSA→B(ρ) =
∑

j

NjρSAN
†
j (5)

for all ρSA, where the operators Nj satisfy
∑
j N
†
jNj = 1.

The projection on |s〉 is then given by

N (s)
A→B(ρ) =

∑

j

N
(s)
j ρN

(s) †
j (6)

where N (s)
j ≡ 〈s|Nj |s〉. A quantum channel is called isomet-

ric if it can be expressed as NSA→B(ρ) = NρSAN
†, . where

the operator N is an isometry, i.e. N†N = 1 [29, Section
4.6.3]. We assume that both the random parameter state and
the quantum channel have a product form. That is, ρSn = ρ⊗nS ,
and NSnAn→Bn ≡ N⊗nSA→B .

C. Coding

We define a code to transmit classical information provided
that the encoder and the decoder share unlimited entanglement.
The entangled system pairs are denoted by (TnA, T

n
B).

Definition 1. A (2nR, n) entanglement-assisted classical code
with causal CSI at the encoder consists of the following: a
message set [1 : 2nR], where 2nR is assumed to be an integer,
a pure entangled state ΨTn

A ,T
n
B

, a sequence of n encoding maps
(channels) Em,s

i

TA,i→Ai
, m ∈ [1 : 2nR], si ∈ Si, for i ∈ [1 :

n], and a decoding POVM {ΛmBnTn
B
}m∈[1:2nR]. We denote the

code by (E ,Ψ,Λ).
The communication scheme is depicted in Figure 1. The

sender Alice has the systems TnA, A
n and the receiver Bob

has the systems TnB , B
n, where TnA and TnB are entangled.

Alice chooses a classical message m ∈ [1 : 2nR]. At time
i ∈ [1 : n], given the sequence of past and present parameters
si ∈ Si, she applies the encoding channel Em,s

i

TA→Ai
to her

share of the entangled state ΨTA,i,TB,i
, and then transmits the

system Ai over the channel. In other words, Alice uses an
encoding channel Em,s

n

Tn
A→An of the following form,

Em,s
n

, Em,s1 ⊗ Em,s1,s2 ⊗ · · · ⊗ Em,sn , (7)

and then transmits the systems An over n channel uses of
NSA→B .

Bob receives the channel output systems Bn, combines
them with the entangled system TnB , and performs the POVM
{ΛmBnTn

B
}m∈[1:2nR]. The conditional probability of error, given

that the message m was sent, is given by

P
(n)
e|m(E ,Ψ,Λ) =

∑

sn∈Sn

qn(sn)Tr
[
(1− ΛmBnTB

)

(N (sn)
An→Bn ⊗ 1)(Em,s

n

⊗ 1)(ΨTn
A ,T

n
B

)
]
. (8)
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A (2nR, n, ε) entanglement-assisted classical code satisfies
P

(n)
e|m(E ,Ψ,Λ) ≤ ε for all m ∈ [1 : 2nR]. A rate R > 0

is called achievable if for every ε > 0 and sufficiently large
n, there exists a (2nR, n, ε) code. The entanglement-assisted
classical capacity Ccaus(N ) is defined as the supremum of
achievable rates.

The entanglement-assisted quantum capacity is denoted by
Qcaus(N ). We skip the definition due to lack of space.

With non-causal CSI, Alice is aware of the entire se-
quence Sn a priori, hence, she may use any encoding chan-
nel Em,s

n

Tn
A→An . The entanglement-assisted classical capacity

Cn-c(N ) and quantum capacity Qn-c(N ) with non-causal CSI
are defined accordingly.

D. Related Work

We briefly review known results for a quantum channel that
does not depend on a random parameter, i.e. N (s)

A→B = N (0)
A→B

for s ∈ S. Define

C(N (0)) , max
|φ〉AA′

I(A;B)ρ (9)

with ρAB ≡ (1⊗N (0))(|φ〉〈φ|AA′).

Theorem 1 (see [2, 3]). The entanglement-assisted classical
capacity of a quantum channel N (0)

A→B is given by

C(N (0)) = C(N (0)) . (10)

Given an unlimited supply of entanglement, the teleporta-
tion protocol can send a qubit using two classical bits, while
the super-dense coding protocol can send two classical bits
using one qubit [22]. This implies the following.

Corollary 2 (see [2, 3]). The entanglement-assisted quantum
capacity of a quantum channel N (0)

A→B is given by

Q(N (0)) =
1

2
C(N (0)) . (11)

III. MAIN RESULTS

We give our results on the random-parameter quantum
channel NSA→B with causal or non-causal CSI at the encoder.

A. Causal CSI

We begin with our main result for the causal case. Define

Ccaus(N ) , max
θKA′ , F(s)

K→A

I(K;B)ω (12)

where the maximization is over the quantum state θKA′ and
the set of quantum channels {F (s)

K→A}s∈S , with

ωsAA′ = (F (s) ⊗ 1)(θKA′) (13)

ωASA′ =
∑

s∈S
q(s)|s〉〈s| ⊗ ωsAA′ (14)

ωAB = (1⊗N )(ωASA′) . (15)

Before we state the capacity theorem, we give the following
lemma.

Lemma 3. The maximization in (12) can be restricted to
pure states θKA′ = |ξKA′〉〈ξKA′ | and isometric channels
F (s)
K→A(ρA) = F (s)ρAF

(s) †.
The proof of Lemma 3 is given in [23], using state purifica-

tion and isomeric channel extension. Now, we give our main
result.
Theorem 4. The entanglement-assisted classical capacity and
quantum capacity of the random-parameter quantum channel
NSA→B with causal CSI at the encoder are given by

Ccaus(N ) = Ccaus(N ) and Qcaus(N ) =
1

2
Ccaus(N ) (16)

respectively.
To prove achievability, we apply the random coding tech-

niques from [2, 3] to the virtual channel MK→B , defined by

M(ρK) =
∑

s∈S
q(s)N (s)

(
F (s)(ρK)

)
. (17)

To prove the converse part, we bound the classical
randomness-distribution rate of a correlated pair M,M ′. Us-
ing the Alicki-Fannes-Winter inequality [29], we show that
R − εn ≤ 1

n

∑n
i=1 I(Ki;Bi)ω ≤ max

θKA′ , F(s)
K→A

I(K;B)ω ,
with Ki = (M,M ′, Si−1, A′i−1, TA, TB). The details are
given in [23].

B. Non-Causal CSI

The entanglement-assisted capacity of a quantum channel
with non-causal CSI was determined by Dupuis [10, 9].
Here, we use an alternative proof approach, which yields an
equivalent formulation and further observations. Define

Cn-c(N ) , max
θKA′ , F(s)

K→A

[I(A;B)ω − I(A;S)ω] (18)

where the maximization is as in (13). Before we state the
capacity theorem, we note that the property in Lemma 3 holds
for (18) as well. Not only this property simplifies calculation
of the capacity formula, but it is also useful in our proof for
the theorem below.
Theorem 5 (also in [10, 9]). The entanglement-assisted clas-
sical capacity and quantum capacity of the random-parameter
quantum channel NSA→B with non-causal CSI at the encoder
are given by

Cn-c(N ) = Cn-c(N ) and Qn-c(N ) =
1

2
Cn-c(N ) (19)

respectively.
In Section IV, we give the outline of our alternative proof for

the direct part. The full proof for both the direct and converse
parts is given in [23].

C. Discussion

We give a few remarks on the results above. There is clear
similarity between the capacity formulas (2) and (18) given
non-causal CSI. In particular, it can be seen that the classical
variables U and X in (2) are replaced by the quantum systems
A and A′ in (18), respectively. For the classical formula (2),
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Fig. 2. Coding scheme with non-causal CSI, combining classical compression and generalized super-dense coding. The quantum systems of Alice and Bob
are marked in red and blue, respectively. The blocks inside the dashed-line rectangle correspond to Alice’s operations.

as shown in [12, 14], the maximization can be restricted to
distributions pU,X|S = pU |SpX|U,S such that pX|U,S is a 0-
1 probability law, based on simple convexity arguments. The
property stated in Lemma 3 can thus be viewed as the quantum
counterpart.

As for causal CSI, the capacity formula (1) for a classical
channel can also be expressed as in (2), constrained such that
U and S are statistically independent [17], and the direct part
can be proved by modifying the proof for non-causal CSI
accordingly. In analogy, for a quantum channel, the classical
variable U is replaced with the quantum system K in (12),
where K and S are in a product state. Nonetheless, we observe
that in the analysis, the causality requirement also dictates that
Alice applies the encoding operations in a different order.

IV. PROOF OUTLINE FOR THEOREM 5
We present the coding scheme with non-causal CSI and

describe the proof in broad strokes. The details are given in
[23]. Using the non-causal counterpart of Lemma 3 (see [23,
Lemma 8]), it suffices to consider a pure entangled state |ξAB〉
and a set of isometric channels, F (s)

K→A(ρK) = F (s)ρKF
(s) †,

s ∈ S. Then, suppose that Alice and Bob share the joint state
|ξAB〉⊗n. Define |ϕsAB〉 = (F (s) ⊗ 1)|ξAB〉, and consider the
Schmidt decomposition of the state,

|ϕsA,B〉 =
∑

x∈X

√
pX|S(x|s)|x〉 ⊗ |ψx,s〉 (20)

where pX|S is a conditional probability distribution, {|x〉}
is an orthonormal basis of HA, and |ψx,s〉 are orthonormal
vectors in HB .

1) Code Construction: Encoding is performed in two
stages, first classical compression of the parameter sequence
Sn, and then, application of quantum operators depending on
the result in the first stage.

(i) Classical Compression: Let R̃ > R. For every message
m ∈ [1 : 2nR], generate a sub-codebook B(m) =

{xn(`) : ` ∈ [(m − 1)2n(R̃−R) + 1 : m2n(R̃−R)]}
independently at random, with xn(`) ∼∏n

i=1 pX(xi).

(ii) Quantum Operators: Using the Heisenberg-Weyl oper-
ators {Σ(a, b) = X(a)Z(b)} of dimension D (see
[29, Subsection 3.7.2]), we define for every sn ∈ Sn
and every conditional type class Tn(t|sn) in Xn, the
operators

U(γ) =
⊕

t

(−1)ctΣ(at, bt) ,

at, bt ∈ {0, 1, . . . , Dt − 1} , ct = 0, 1 . (21)

with Dt = |Tn(t|sn)| and γ = ((at, bt, ct)t). Then,
choose 2nR̃ vectors γ(`), ` ∈ [1 : 2nR̃], uniformly at
random.

2) Encoding and Decoding: The coding scheme is depicted
in Figure 2. To send a message m ∈ [1 : 2nR], given a
parameter sequence sn ∈ Sn, Alice performs the following.

(i) Find a sequence xn(`) ∈ B(m) such that sn and xn(`)
are jointly typical. If there is none, choose arbitrarily.

(ii) Apply the operators F (s1), F (s2), . . . , F (sn), and
U(γ(`)).

(iii) Send the systems An through the channel.
Bob receives the systems B′n at state ωB′nBn and applies

a POVM. We use the quantum packing lemma [16, Lemma
2] to show that there exsits a POVM {Λ`}`∈[1:2nR̃] that
decodes ` reliably, provided that R̃ < I(B′;B)ω − ε′. Once
Bob has a measurement result ˆ̀, he decodes the message as
the corresponding sub-codebook. That is, Bob declares the
message to be m̂ ∈ [1 : 2nR] such that xn(ˆ̀) ∈ B(m̂).

Then, by the classical covering lemma (see e.g. [11, Lemma
3.3]), we have that the probability of error tends to zero as
n→∞, provided that

R < I(B;B′)ω − I(B;S)ω − ε1 . (22)

Following similar analysis as in [29, Sec. 21.4], we use
the ricochet property to show that Alice’s unitary operations
can be reflected to Bob’s side. That is, there exist systems
A1, A

′
1, B1 at state ωA1,A′

1,B1
as in (13), and such that

I(B;B′)ω = I(A1;B1)ω and I(B;S)ω = I(A1;S)ω .
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Abstract—We study the problem of mismatched likelihood
ratio test. We analyze the type-I and II error exponents when the
actual distributions generating the observation are different from
the distributions used in the test. We derive the worst-case error
exponents when the actual distributions generating the data are
within a relative entropy ball of the test distributions. In addition,
we study the sensitivity of the test for small relative entropy balls.

I. INTRODUCTION AND PRELIMENARIES

Consider the binary hypothesis testing problem [1] where
an observation x = (x1, . . . , xn) is generated from two
possible distributions Pn1 and Pn2 defined on the probability
simplex P(Xn). We assume that Pn1 and Pn2 are product
distributions, i.e., Pn1 (x) =

∏n
i=1 P1(xi), and similarly for

Pn2 . For simplicity, we assume that both P1(x) > 0 and
P2(x) > 0 for each x ∈ X .

Let φ : Xn → {1, 2} be a hypothesis test that decides
which distribution generated the observation x. We consider
deterministic tests φ that decide in favor of Pn1 if x ∈ A1,
where A1 ⊂ Xn is the decision region for the first hypothesis.
We define A2 = Xn \ A1 to be the decision region for the
second hypothesis. The test performance is measured by the
two possible pairwise error probabilities. The type-I and type-
II error probabilities are defined as

ε1(φ) =
∑

x∈A2

Pn1 (x), ε2(φ) =
∑

x∈A1

Pn2 (x). (1)

A hypothesis test is said to be optimal whenever it achieves
the optimal error probability tradeoff given by

αβ = min
φ:ε2(φ)≤β

ε1(φ). (2)

The likelihood ratio test defined as

φγ(x) = 1

{
Pn2 (x)

Pn1 (x)
≥ enγ

}
+ 1. (3)

was shown in [2] to attain the optimal tradeoff (2) for every γ.
The type of a sequence x = (x1, . . . , xn) is T̂x(a) = N(a|x)

n ,
where N(a|x) is the number of occurrences of the symbol
a ∈ X in the string. The likelihood ratio test can also be

This work was supported in part by the European Research Council under
Grant 725411, and by the Spanish Ministry of Economy and Competitiveness
under Grant TEC2016-78434-C3-1-R.

expressed as a function of the type of the observation T̂x as
[3]

φγ(T̂x) = 1
{
D(T̂x‖P1)−D(T̂x‖P2) ≥ γ

}
+ 1. (4)

where D(P‖Q) =
∑
X P (x) log P (x)

Q(x) is the relative entropy
between distributions P and Q.

In this paper, we are interested in the asymptotic exponential
decay of the pairwise error probabilities. Therefore, it is
sufficient to consider deterministic tests. The optimal error
exponent tradeoff (E1, E2) is defined as

E2(E1) , sup
{
E2 ∈ R+ : ∃φ, ∃n0 ∈ Z+ s.t. ∀n > n0

ε1(φ) ≤ e−nE1 and ε2(φ) ≤ e−nE2
}
. (5)

By using the Sanov’s Theorem [3], [4], the optimal error
exponent tradeoff (E1, E2), attained by the likelihood ratio
test, can be shown to be [5], [6]

E1(φγ) = min
Q∈Q1(γ)

D(Q‖P1), (6)

E2(φγ) = min
Q∈Q2(γ)

D(Q‖P2), (7)

where

Q1(γ) =
{
Q ∈ P(X ) : D(Q‖P1)−D(Q‖P2) ≥ γ

}
, (8)

Q2(γ) =
{
Q ∈ P(X ) : D(Q‖P1)−D(Q‖P2) ≤ γ

}
. (9)

The minimizing distribution in (6), (7) is the tilted distribution

Qλ(x) =
P 1−λ
1 (x)Pλ2 (x)∑

a∈X P
1−λ
1 (a)Pλ2 (a)

, 0 ≤ λ ≤ 1 (10)

whenever γ satisfies −D(P1‖P2) ≤ γ ≤ D(P2‖P1). In this
case, λ is the solution of

D(Qλ‖P1)−D(Qλ‖P2) = γ. (11)

Instead, if γ < −D(P1‖P2), the optimal distribution in (6) is
Qλ(x) = P1(x) and E1(φγ) = 0, and if γ > D(P2‖P1), the
optimal distribution in (7) is Qλ(x) = P2(x) and E2(φγ) = 0.

Equivalently, the dual expressions of (6) and (7) can be
derived by substituting the minimizing distribution (10) into
the Lagrangian yielding [4], [5]

E1(φγ) = max
λ≥0

λγ − log
(∑

x∈X
P 1−λ
1 (x)Pλ2 (x)

)
, (12)

E2(φγ) = max
λ≥0
−λγ − log

(∑

x∈X
Pλ1 (x)P 1−λ

2 (x)
)
. (13)
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The Stein regime is defined as the highest error exponent
under one hypothesis when the error probability under the
other hypothesis is at most some fixed ε ∈ (0, 12 ) [3]

E
(ε)
2 , sup

{
E2 ∈ R+ : ∃φ, ∃n0 ∈ Z+ s.t. ∀n > n0

ε1(φ) ≤ ε and ε2(φ) ≤ e−nE2
}
. (14)

The optimal E(ε)
2 , given by [3]

E
(ε)
2 = D(P1‖P2), (15)

can be achieved by setting the threshold in (4) to be γ =
−D(P1‖P2) + C2√

n
, where C2 is a constant that depends on

distributions P1, P2 and ε.
In this work, we revisit the above results in the case where

the distributions used by the likelihood ratio test are not
known precisely, and instead, fixed distributions P̂1 and P̂2

are used for testing. In particular, we find the error exponent
tradeoff for fixed P̂1 and P̂2 and we study the worst-case
tradeoff when the true distributions generating the observation
are within a certain distance of the test distributions. The
literature in robust hypothesis testing is vast (see e.g., [7]–
[9] and references therein). Robust hypothesis testing consists
of designing tests that are robust to the inaccuracy of the
distributions generating the observation. Instead, we study the
error exponent tradeoff performance of the likelihood ratio test
for fixed test distributions. The proofs of our results can be
found in [10].

II. MISMATCHED LIKELIHOOD RATIO TESTING

Let P̂1(x) and P̂2(x) be the test distributions used in the
likelihood ratio test with threshold γ̂ given by

φ̂γ̂(T̂x) = 1
{
D(T̂x‖P̂1)−D(T̂x‖P̂2) ≥ γ̂

}
+ 1. (16)

For simplicity, we assume that both P̂1(x) > 0 and P̂2(x) > 0
for each x ∈ X . We are interested in the achievable error
exponent of the mismatched likelihood ratio test, i.e.,

Ê2(Ê1) , sup
{
Ê2 ∈ R+ : ∃γ̂,∃n0 ∈ Z+ s.t. ∀n > n0

ε1(φ̂γ̂) ≤ e−nÊ1 and ε2(φ̂γ̂) ≤ e−nÊ2
}
. (17)

Theorem 1. For fixed P̂1, P̂2 ∈ P(X) the optimal error
exponent tradeoff in (17) is given by

Ê1(φ̂γ̂) = min
Q∈Q̂1(γ̂)

D(Q‖P1) (18)

Ê2(φ̂γ̂) = min
Q∈Q̂2(γ̂)

D(Q‖P2) (19)

where

Q̂1(γ̂) =
{
Q ∈ P(X ) : D(Q‖P̂1)−D(Q‖P̂2) ≥ γ̂

}
, (20)

Q̂2(γ̂) =
{
Q ∈ P(X ) : D(Q‖P̂1)−D(Q‖P̂2) ≤ γ̂

}
. (21)

The minimizing distributions in (18) and (19) are

Q̂λ1(x) =
P1(x)P̂−λ1

1 (x)P̂λ1
2 (x)∑

a∈X P1(a)P̂−λ1
1 (a)P̂λ1

2 (a)
, λ1 ≥ 0, (22)

Q̂λ2(x) =
P2(x)P̂−λ2

2 (x)P̂λ2
1 (x)∑

a∈X P2(a)P̂−λ2
2 (a)P̂λ2

1 (a)
, λ2 ≥ 0 (23)

respectively, where λ1 is chosen so that

D(Q̂λ1
‖P̂1)−D(Q̂λ1

‖P̂2) = γ̂, (24)

whenever D(P1‖P̂1) − D(P1‖P̂2) ≤ γ̂, and otherwise,
Q̂λ1

(x) = P1(x) and Ê1(φ̂γ̂) = 0. Similarly, λ2 ≥ 0 is chosen
so that

D(Q̂λ2‖P̂1)−D(Q̂λ2‖P̂2) = γ̂, (25)

whenever D(P2‖P̂1) − D(P2‖P̂2) ≥ γ̂, and otherwise,
Q̂λ2(x) = P2(x) and Ê2(φ̂γ̂) = 0. Furthermore, the dual
expressions for the type-I and type-II error exponents are

Ê1(φ̂γ̂) = max
λ≥0

λγ̂ − log
(∑

x∈X
P1(x)P̂−λ1 (x)Pλ2 (x)

)
, (26)

Ê2(φ̂γ̂) = max
λ≥0
−λγ̂ − log

(∑

x∈X
Pλ1 (x)P2(x)P̂−λ2 (x)

)
.

(27)

Remark 1: For mismatched likelihood ratio testing, the
optimizing distributions Q̂λ1

, Q̂λ2
can be different, since the

decision regions only depend on the mismatched distributions.
However, if P̂1, P̂2 are tilted with respect to P1 and P2, then
both Q̂λ1

, Q̂λ2
are also tilted respect to P1 and P2. This

implies the result in [11], where for any set of mismatched
distributions P̂1, P̂2 that are tilted with respect to generating
distributions, the mismatched likelihood ratio test achieves the
optimal error exponent tradeoff in (5).

Theorem 2. In the Stein regime, the mismatched likelihood
ratio test achieves

Ê
(ε)
2 = min

Q∈Q̂2(γ̂)
D(Q‖P2), (28)

with threshold

γ̂ = D(P1‖P̂1)−D(P1‖P̂2) +
Ĉ2√
n
, (29)

and Ĉ2 is a constant that depends on distributions P1, P̂1, P̂2,
and ε.

Remark 2: Note that since P1 satisfies the constraint in (28)
then Ê(ε)

2 ≤ E(ε)
2 . In fact, if P̂1, P̂2 are tilted respect to P1, P2

then this inequality is met with equality. Moreover, it is easy
to find a set of data and test distributions where Ê(ε)

2 < E
(ε)
2 .

III. MISMATCHED LIKELIHOOD RATIO
TESTING WITH UNCERTAINTY

In this section, we analyze the worst-case error exponents
tradeoff when the actual distributions P1, P2 are close to the
mismatched test distributions P̂1 and P̂2. More specifically,

P1 ∈ B(P̂1, R1), P2 ∈ B(P̂2, R2) (30)

where the D-ball

B(Q,R) =
{
P ∈ P(X ) : D(Q‖P ) ≤ R

}
(31)
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is a ball centered at distribution Q containing all distributions
whose relative entropy is smaller or equal than radius R. This
model was used in robust hypothesis testing in [12]. Figure
1 depicts the mismatched probability distributions and the
mismatched likelihood ratio test as a hyperplane dividing the
probability space into the two decision regions.

D(Q‖P̂1)−D(Q‖P̂2) = γ̂

P̂1

P̂2

P(X )

R1

R2

Q̂λ1

Q̂λ2

Ê1

Ê2

P1

P2

A1

A2

B(P̂1, R1)

B(P̂2, R2)

Fig. 1. Mismatched likelihood ratio test over distributions in D-balls.

We study the worst-case error-exponent performance of
mismatched likelihood ratio testing when the distributions
generating the observation fulfill (30). In particular, we are
interested in the least favorable distributions PL1 , P

L
2 in

B(P̂1, R1),B(P̂2, R2), i.e., the distributions achieving the low-
est error exponents ÊL1 (R1), ÊL2 (R2).

Theorem 3. For every R1, R2 ≥ 0 let the least favorable
exponents ÊL1 (R1), ÊL2 (R2) defined as

ÊL1 (R1) = min
P1∈B(P̂1,R1)

min
Q∈Q̂1(γ̂)

D(Q‖P1), (32)

ÊL2 (R2) = min
P2∈B(P̂2,R2)

min
Q∈Q̂2(γ̂)

D(Q‖P2), (33)

where Q̂1(γ̂), Q̂2(γ̂) are defined in (20), (21). Then, for
any distribution pair P1 ∈ B(P̂1, R1), P2 ∈ B(P̂2, R2), the
corresponding error exponent pair (Ê1, Ê2) satisfies

ÊL1 (R1) ≤ Ê1(φ̂γ̂), ÊL2 (R2) ≤ Ê2(φ̂γ̂). (34)

Furthermore, the optimization problem in (32) is convex with
optimizing distributions

QLλ1
(x) =

PL1 (x)P̂−λ1
1 (x)P̂λ1

2 (x)∑
a∈X P

L
1 (a)P̂−λ1

1 (a)P̂λ1
2 (a)

, (35)

PL1 (x) = β1Q
L
λ1

(x) + (1− β1)P̂1(x), (36)

where λ1 ≥ 0, 0 ≤ β1 ≤ 1 are chosen such that

D(QLλ1
‖P̂1)−D(QLλ1

‖P̂2) = γ̂, (37)

D(P̂1‖PL1 ) = R1, (38)

when
max

P1∈B(P̂1,R1)
D(P1‖P̂1)−D(P1‖P̂2) ≤ γ̂. (39)

Otherwise, we can find a least favorable distribution PL1 ∈
B(P̂1, R1) such that Ê1(φ̂γ̂) for this distribution is Ê1(φ̂γ̂) =
0. Similarly, the optimization (33) is convex with optimizing
distributions

QLλ2
(x) =

PL2 (x)P̂−λ2
2 (x)P̂λ2

1 (x)∑
a∈X P

L
2 (a)P̂−λ2

2 (a)P̂λ2
1 (a)

, (40)

PL2 (x) = β2Q
L
λ2

(x) + (1− β2)P̂2(x), (41)

where λ2 ≥ 0, 0 ≤ β2 ≤ 1 are chosen such that

D(QLλ2
‖P̂2)−DQLλ2

‖P̂1) = γ̂, (42)

D(P̂2‖PL2 ) = R2, (43)

whenever,

min
P2∈B(P̂2,R2)

D(P2‖P̂1)−D(P2‖P̂2) ≥ γ̂. (44)

Otherwise, we can find a distribution PL2 ∈ B(P̂2, R2) such
that Ê2(φ̂γ̂) for this distribution is Ê2(φ̂γ̂) = 0.

The worst-case achievable error exponents of mismatched
likelihood ratio testing for data distributions in a D-ball are
essentially the minimum relative entropy between two sets of
probability distributions. Specifically, the minimum relative
entropy B(P̂1, R1) and Q̂2(γ̂) gives ÊL1 (R1), and similarly
for ÊL2 (R2).

IV. MISMATCHED LIKELIHOOD RATIO
TESTING SENSITIVITY

In this section, we study how the worst-case error exponents
(ÊL1 , Ê

L
2 ) behave when the D-ball radii R1, R2 are small.

In particular, we derive a Taylor series expansion of the
worst-case error exponent. This approximation can also be
interpreted as the worst-case sensitivity of the test, i.e., how
does the test perform when actual distributions are very close
to the mismatched distributions.

Theorem 4. For every Ri ≥ 0, P̂i ∈ P(X ) for i = 1, 2, and

−D(P̂1‖P̂2) ≤ γ̂ ≤ D(P̂2‖P̂1), (45)

we have

ÊLi (Ri) = Ei(φ̂γ̂)− Si(P̂1, P̂2, γ̂)
√
Ri + o

(√
Ri
)
, (46)

where

S2
i (P̂1, P̂2, γ̂) = 2VarP̂i

(
Q̂λ(X)

P̂i(X)

)
(47)

and Q̂λ(X) is the minimizing distribution in (10) for test φ̂γ̂ .

Lemma 5. For every P̂1, P̂2 ∈ P(X ), and γ̂ satisfying (45)

∂

∂γ̂
S1(P̂1, P̂2, γ̂) ≥ 0,

∂

∂γ̂
S2(P̂1, P̂2, γ̂) ≤ 0. (48)

This lemma shows that S1(P̂1, P̂2, γ̂) is a non-decreasing
function of γ̂, i.e., as γ̂ increases from −D(P̂1‖P̂2) to
D(P̂2‖P̂1), the worst-case exponent ÊL1 (R1) becomes more
sensitive to mismatch with likelihood ratio testing. Conversely,
S2(P̂1, P̂2, γ̂) is a non-increasing function of γ̂, i.e., as γ̂
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increases from −D(P̂1‖P̂2) to D(P̂2‖P̂1), the worst-case
exponent ÊL2 (R2) becomes less sensitive (more robust) to
mismatch with likelihood ratio testing. Moreover, when λ = 1

2 ,
we have

Q̂ 1
2
(x) =

√
P̂1(x)P̂2(x)

∑
a∈X

√
P̂1(a)P̂2(a)

, (49)

and then S1(P̂1, P̂2, γ̂) = S2(P̂1, P̂2, γ̂). In addition, Q̂ 1
2

minimizes E1(φ̂γ̂) + E2(φ̂γ̂) yielding [13]

E1(φ̂γ̂) + E2(φ̂γ̂) = min
Q∈P(X )

D(Q‖P̂1) +D(Q‖P̂2) (50)

= 2B(P̂1, P̂2) (51)

where B(P̂1, P̂2) is the Bhattacharyya distance between the
mismatched distributions P̂1 and P̂2. This suggests that having
equal sensitivity (or robustness) for both hypotheses minimizes
the sum of the exponents.

Example 1. When γ = 0 the likelihood ratio test becomes
the maximum-likelihood test, which is known to achieve the
lowest average probability of error in the Bayes setting for
equal priors. For fixed priors π1, π2, the error probability in
the Bayes setting is ε̄ = π1ε1+π2ε2, resulting in the following
error exponent [3]

Ē = lim
n→∞

1

n
log ε̄ = min{E1, E2}. (52)

Consider P̂1 = Bern(0.1) , P̂2 = Bern(0.8). Also, assume
R1 = R2 = R. Figure 2 shows the worst-case error exponent
in the Bayes setting given by min{ÊL1 , ÊL2 } by solving (32)
and (33) as well as min{ẼL1 , ẼL2 } using the approximation
in (46). We can see that the approximation is good for small
R. Moreover, it can be seen that error exponents are very
sensitive to mismatch for small R, i.e., the slope of the worst-
case exponent goes to infinity as R approaches to zero.
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0.18

0.2
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0.26

0.28

0.3

0.32

0.34
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Fig. 2. Worst-case achievable Bayes error exponent.
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Abstract—We study several properties of the upper bound on
the mismatch capacity problem we recently proposed. In partic-
ular, we show that the bound can be cast as a convex-concave
saddlepoint problem enabling efficient computation. Moreover,
as opposed to multiple achievability bounds in the literature, we
show that the multiletter version of this bound does not yield any
improvement. In addition, for binary-input channels, we show
a necessary condition for the mismatch capacity to be strictly
smaller than the channel capacity.

I. INTRODUCTION AND PRELIMINARIES

We consider reliable communication over a discrete mem-
oryless channel (DMC) W with a given decoding metric [1],
[2]. This problem arises when the decoder uses a suboptimal
decoding rule due to limited computational resources, or
imperfect channel estimation. Moreover, it is shown in [2]
that important problems in information theory, like zero-error
capacity of a channel can be cast as instances of mismatched
decoding. Multiple achievability results have been reported in
the literature [1]–[4] (see also [5]). These results are derived
by random-coding techniques, i.e. analyzing the average prob-
ability of error of mismatched decoder over an ensemble of
codebooks. On the other hand, the only single-letter converse
was given in [6], where it was claimed that for binary-input
DMCs, the mismatch capacity was the achievable rate derived
in [3], [4]. Reference [7] provided a counterexample to this
converse invalidating its claim. Multiletter converse results
were proposed in [8].

We assume that the input and output alphabets are X =
{1, 2, · · · , J} and Y = {1, 2, · · · ,K}, respectively, with
J,K < ∞. We denote the channel transition probability
by W (k|j), k ∈ Y, j ∈ X . A codebook Cn is defined
as a set of M sequences Cn =

{
x(1),x(2), · · · ,x(M)

}
,

where x(m) =
(
x1(m), x2(m), · · · , xn(m)

)
∈ Xn, for

m ∈ {1, 2, · · · ,M}. A message m ∈ {1, 2, · · · ,M} is chosen
equiprobably and x(m) is sent over the channel. The channel
produces a noisy observation y = (y1, y2, · · · , yn) ∈ Yn
according to Wn(y|x) =

∏n
i=1W (yi|xi). Upon observing

y ∈ Yn the decoder produces an estimate of the transmitted
message m̂ ∈ {1, 2, · · · ,M}. The decoder that minimizes the

This work was supported in part by the European Research Council under
Grant 725411, and by the Spanish Ministry of Economy and Competitiveness
under Grant TEC2016-78434-C3-1-R.

error probability is the maximum-likelihood (ML) decoder,
that produces the message estimate m̂ according to

m̂ = arg max
i∈{1,2,··· ,M}

Wn
(
y|x(i)

)
. (1)

Rate R > 0 is achievable if for any ε > 0 there exists a
sequence of length-n codebooks {Cn}∞n=1 such that |Cn| ≥
2n(R−ε), and lim infn→∞ Pe(Cn) = 0. The capacity of W ,
denoted by C(W ), is defined as the largest achievable rate.

In multiple practical scenarios, it is not possible to use a
decoder based on Wn and instead, the decoder produces the
message estimate m̂ as

m̂ = arg max
i∈{1,2,··· ,M}

d
(
x(i),y

)
, (2)

where,

d
(
x(i),y

)
=

n∑

`=1

d
(
x`(i), y`

)
(3)

The mismatch capacity Cd(W ) is defined as the largest
achievable rate with decoder (2). Recently, we have shown
that Cd(W ) is upper bounded by the following quantity,

R̄d(W ) = max
PX

min
PY Ŷ |X∈Mmax(d)

PY |X=W

I(PX , PŶ |X) (4)

where I(PX , PŶ |X)
∆
= I(X; Ŷ ) and the setMmax(d) is given

in the following definition.
Definition 1: Let PY Ŷ |X be a joint conditional distri-

bution and define the set S(k1, k2)
∆
=

{
i ∈ X |i =

arg maxi′∈X d(i′, k2) − d(i′, k1)
}

. We say that PY Ŷ |X is a
maximal joint conditional distribution if for all (j, k1, k2) ∈
X × Y × Y ,

PY Ŷ |X(k1, k2|j) = 0 if j /∈ S(k1, k2). (5)

For a given decoding metric d, we define the set of maximal
joint conditional distributions to be Mmax(d).

In this paper we study some properties of the upper bound
(4). Specifically, in Section II, we show that computing our
upper bound is a convex-concave saddlepoint problem and
we derive the optimality KKT conditions. In Section III, we
show that the multiletter version of the upper bound coincides
with the single-letter one. In Section IV, we derive a sufficient
condition for Cd(W ) < C(W ) for binary-input channels.
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II. CONVEXITY ANALYSIS

In this section, we show that the optimization (4) is a
convex-concave saddlepoint problem. First, we argue that the
constraints induce a convex set.

Lemma 1: For any channel W and metric d, the set of
joint conditional distributions PY Ŷ |X satisfying both PY Ŷ |X ∈
Mmax(d) and PY |X = W , is a convex set.

Proof: Let PY Ŷ |X and P ′
Y Ŷ |X both satisfy the above

constraints. Now for any 0 < λ < 1 we have,

λPY |X + (1− λ)P ′Y |X = W. (6)

In addition, if for some k1, k2 we have j /∈ S(k1, k2), both
PY Ŷ |X(k1, k2|j) and P ′

Y Ŷ |X(k1, k2|j) are equal to zero, and
so is any linear combination of them. Therefore,

λPY Ŷ |X + (1− λ)P ′
Y Ŷ |X ∈Mmax(d). (7)

Moreover, I(PX , PŶ |X) is convex in terms of PŶ |X , and
concave in terms of PX . Since PŶ |X is a linear function
of PY Ŷ |X , we get that I(PX , PŶ |X) is convex in terms of
PY Ŷ |X . Therefore from the minimax theorem [9] we get,

R̄d(W ) = max
PX

min
PY Ŷ |X∈Mmax(d)

PY |X=W

I(PX , PŶ |X) (8)

= min
PY Ŷ |X∈Mmax(d)

PY |X=W

max
PX

I(PX , PŶ |X) (9)

= min
PY Ŷ |X∈Mmax(d)

PY |X=W

C(PŶ |X). (10)

The rest of this section is devoted to deriving the KKT
conditions for the optimization problem in (4). Given that
I(PX , PŶ |X) is convex in PY Ŷ |X , and concave in PX , then
the KKT conditions are sufficient for global optimality. For
convenience, we define f(PX , PY Ŷ |X) , I(PX , PŶ |X) and
rewrite the optimization problem in (4) as,

R̄d(W ) = max
PX

min
PY Ŷ |X∈Mmax(d)

PY |X=W

f(PX , PY Ŷ |X). (11)

Let P̂X , P̂Y Ŷ |X be the optimal input and joint conditional
distributions in (11) and q̂Ŷ be the output distribution induced
by P̂X and P̂Ŷ |X . Then for P̂X we have the following
constraints:

P̂X(j) ≥ 0, ∀j ∈ X (12)
∑

j∈X
P̂X(j) = 1. (13)

Let µj , j = 1, 2, · · · , J be the Lagrange multipliers cor-
responding the inequalities in (12) and ρ be the Lagrange
multiplier corresponding to (13). Therefore, from stationarity
we have,

∂

∂PX(j)
f(PX , P̂Y Ŷ |X)

∣∣∣∣
PX=P̂X

= ρ+ µj (14)

and from the complementary slackness [10] we have
µj P̂X(j) = 0 and from the dual feasibility we have µj ≥ 0
which leads to the separation of the equations of in two cases.
If P̂X(j) > 0

∂

∂PX(j)
f(PX , P̂Y Ŷ |X)

∣∣∣∣
PX=P̂X

= ρ, (15)

while when P̂X(j) = 0 we have

∂

∂PX(j)
f(PX , P̂Y Ŷ |X)

∣∣∣∣
PX=P̂X

≤ ρ. (16)

Note that, because there is no other constraint on µj , all of the
KKT conditions are summarized in (16) and (15). Moreover,
computing the derivatives in (15) and (16) gives

∂

∂PX(j)
f(PX , P̂Y Ŷ |X)

∣∣∣∣
PX=P̂X

=
∑

k∈Y
P̂Ŷ |X(k|j) log

P̂Ŷ |X(k|j)
q̂Ŷ (k)

− 1. (17)

As for P̂Y Ŷ |X , we have the following constraints. For all
j, k1, k2 ∈ X × Y × Y ,

P̂Y Ŷ |X(k1, k2|j) ≥ 0, (18)

P̂Y Ŷ |X(k1, k2|j) = 0, if j /∈ S(k1, k2) (19)

where (18) corresponds to P̂Y Ŷ |X(k1, k2|j) being a distribu-
tion and (19) corresponds to P̂Y Ŷ |X(k1, k2|j) ∈ Mmax(d).
Moreover from the constraint PY |X = W we get for all
j, k1 ∈ X × Y

∑

k2

P̂Y Ŷ |X(k1, k2|j) = W (k1|j). (20)

For the ease of notation, we skip the step of explicitly
considering a Lagrange multiplier for (18). However, after
simplification, The following KKT conditions are equivalent
to the full KKT conditions considering a Lagrange multiplier
for (18). Details follow similarly to the above derivation. If
we use a Lagrange multiplier λj,k1 for each of the conditions
in (20), we have when P̂Y Ŷ |X(k1, k2|j) > 0

∂

∂PY Ŷ |X(k1, k2|j)
f(P̂X , PY Ŷ |X)

∣∣∣∣
PY Ŷ |X=P̂Y Ŷ |X

= λj,k1

(21)

and when P̂Y Ŷ |X(k1, k2|j) = 0 and j ∈ S(k1, k2) we have

∂

∂PY Ŷ |X(k1, k2|j)
f(P̂X , PY Ŷ |X)

∣∣∣∣
PY Ŷ |X=P̂Y Ŷ |X

≥ λj,k1 .

(22)

Explicitly computing the derivative gives

∂

∂PY Ŷ |X(k1, k2|j)
f(P̂X , PY Ŷ |X)

∣∣∣∣
PY Ŷ |X=P̂Y Ŷ |X

(23)

= P̂X(j) log
P̂Ŷ |X(k2|j)
q̂Ŷ (k2)

. (24)
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Summarizing, for the KKT optimality conditions of we get
the following inequalities

1) For P̂X(j) > 0,

∑

k∈Y
P̂Ŷ |X(k|j) log

P̂Ŷ |X(k|j)
q̂Ŷ (k)

= 1 + ρ, (25)

2) For P̂X(j) = 0,

∑

k∈Y
P̂Ŷ |X(k|j) log

P̂Ŷ |X(k|j)
q̂Ŷ (k)

≤ 1 + ρ, (26)

3) For P̂Y Ŷ |X(k1, k2|j) > 0,

P̂X(j) log
P̂Ŷ |X(k2|j)
q̂Ŷ (k2)

= λj,k1 , (27)

4) For P̂Y Ŷ |X(k1, k2|j) = 0 and j ∈ S(k1, k2),

P̂X(j) log
P̂Ŷ |X(k2|j)
q̂Ŷ (k2)

≥ λj,k1 . (28)

In the next section, we employ the above KKT conditions
to analyze the multiletter version of our bound.

III. MULTILETTER BOUND

In this section, we study the multiletter extension of the
bound (4). In particular, we show that the multiletter version
cannot improve on its single-letter counterpart. We define the
`-letter decoding metric d(`) : X ` × Y` → R as follows

d(`)
(
(x1, x2, · · · , x`), (y1, y2, · · · , y`)

)
=
∑̀

i=1

d(xi, yi).

(29)

This decoding metric definition is consistent with the additive
decoder we have defined in (3). We denote j ∈ X ` and k ∈ Y`
as the `-letter inputs and outputs, respectively. Let W (`) denote
a DMC over input alphabet X ` and output alphabet Y` with
the channel rule W (`)

(
(y1, y2, · · · , y`)|(x1, x2, · · · , x`)

)
=∏`

i=1W (yi|xi). Additionally, we define P
(`)
X and P

(`)

Y Ŷ |X
accordingly

P
(`)
X (x1, . . . x`) =

∏̀

i=1

PX(xi) (30)

P
(`)

Y Ŷ |X
(
(y1, y2, · · · , y`), (ŷ1, ŷ2, · · · , ŷ`)|(x1, x2, · · · , x`)

)

=
∏̀

i=1

PY Ŷ |X(yi, ŷi|xi) (31)

X` and Y `, Ŷ ` denote random variables defined on alphabets
X `, Y` and Y`, respectively. Moreover, S(`)(k1,k2) is defined
as

S(`)(k1,k2)
∆
=

{
i ∈ X ` | i = arg max

i′∈X `

d(`)(i′,k2)− d(`)(i′,k1)
}
.

(32)

In the following lemma we characterize the sets
S(`)(k1,k2) and relate them to S(k1,i, k2,i), i = 1, 2, · · · , `.

Lemma 2: For j ∈ X `,k1 ∈ Y`,k2 ∈ Y` we have that
j ∈ S(`)(k1,k2) if and only if for all 1 ≤ i ≤ ` we have

ji ∈ S(k1,i, k2,i). (33)

Proof: We have

arg max
j∈X `

d(`)(j,k2)− d(`)(j,k1) (34)

= arg max
j∈X `

∑̀

i=1

d(ji, k2,i)− d(ji, k2,i) (35)

= arg max
(j1,j2,··· ,j`)∈X `

∑̀

i=1

d(ji, k2,i)− d(ji, k2,i) (36)

From (36) we get that if (j1, j2, · · · , j`) ∈ S(k1,k2) then for
all 1 ≤ i ≤ ` we should have ji ∈ S(k1,i, k2,i). Therefore,

S(`)(k1,k2)

= S(k1,1, k2,1)× S(k1,2, k2,2)× · · · × S(k1,`, k2,`). (37)

For the above `-letter alphabets and distributions, the con-
struction and analysis of the bound remains unchanged. There-
fore, (4) remains valid for its `-letter extension, which can be
written as

R̄
(`)
d (W ) , 1

`
R̄d(`)(W

(`)) (38)

=
1

`
max
p
X`

min
P

Y `Ŷ `|X`∈Mmax(d(`))

P
Y `|X`=W (`)

I(pX` , PY `Ŷ `|X`).

(39)

We have the following result.
Proposition 1:

R̄
(`)
d (W ) = R̄d(W ). (40)

Proof: Given that I(PX , PŶ |X) is convex in PY Ŷ |X , and
concave in PX , the KKT conditions are also sufficient for
global optimality. Similarly, f(PX` , PY `Ŷ `|X`) is convex in
PX` and concave in PY `Ŷ `|X` . Here we use the optimal-
ity conditions derived in the previous section to show that
if P̂X , P̂Y Ŷ |X are the optimal distributions for the single-

letter bound then P̂
(`)
X , P̂

(`)

Y Ŷ |X defined in (30) and (31) are
optimal distributions for the multiletter version. As a result,
if we find a feasible pair PY `Ŷ `|X` , PX` such that when
fixing PY `Ŷ `|X` , the input distribution PX` is a maximizer
of f(·, PY `Ŷ `|X`), and when fixing PX` , the joint conditional
distribution PY `Ŷ `|X` is a minimizer of f(pX` , ·), then the
pair (PY `Ŷ `|X` , PX`) is a saddlepoint.

We need to show that if P̂X , P̂Y Ŷ |X is a saddlepoint for the

single-letter case, then, P̂ (`)
X , P̂

(`)

Y Ŷ |X is a saddlepoint for the
multiletter bound. Based on the aforementioned argument, it is
sufficient to show that P̂ (`)

Y Ŷ |X is a minimizer of (39) by fixing
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P̂
(`)
X . This is because it is known that 1

`C(P̂
(`)

Ŷ |X) = C(PŶ |X),

i.e., the product distribution P̂ (`)
X achieves C(P̂

(`)

Ŷ |X).

In the following lemma, we prove that by fixing P̂
(`)
X ,

then P̂
(`)

Y Ŷ |X satisfies the KKT conditions and hence, it is
a minimizer of (39). Before stating the result we recall that
the multiletter counterparts of the single-letter KKT conditions
given in (27) and (28) hold. Moreover, as in the single-letter
case, the multiletter KKT conditions are sufficient for global
optimality, because the function f(P̂

(`)
X , ·) is concave. Using

Lemma 3 below completes the proof.
Lemma 3: Let P̂X , P̂Y Ŷ |X be a saddlepoint for optimization

problem (4). Set PX` = P̂
(`)
X . Then, the joint conditional

distribution P̂ (`)

Y Ŷ |X is a minimizer of

min
P

Y `Ŷ `|X`∈Mmax(d(`))

P
Y `|X`=W (`)

f
(
P̂

(`)
X , PY `Ŷ `|X`

)
. (41)

Proof: We should show that by setting PX` = P̂
(`)
X , the

multiletter versions of the KKT conditions (27) and (28) hold
for P̂ (`)

Y Ŷ |X . Generalizing the conditions of (27) and (28) to the

multiletter case, and setting PY `Ŷ `|X` = P̂
(`)

Y Ŷ |X , we should
show that for all j,k1 ∈ X ` × Y` there exist λj,k1

such that
the conditions below are fulfilled. If we show this, then the
Lemma is proved because these are precisely the conditions
for the minimizer of (41).
i) When P̂ (`)

Y Ŷ |X(k1,k2|j) > 0 we must have,

∂

∂PY `Ŷ `|X`(k1,k2|j)
f(P̂

(`)
X , PY `Ŷ `|X`)

∣∣∣∣
P

Y `Ŷ `|X`=P̂
(`)

Y Ŷ |X

= λj,k1
. (42)

ii) When P̂ (`)

Y Ŷ |X(k1,k2|j) = 0 and j ∈ S(`)(k1,k2) we must
have that,

∂

∂PY `Ŷ `|X`(k1,k2|j)
f(P̂

(`)
X , PY `Ŷ `|X`)

∣∣∣∣
P

Y `Ŷ `|X`=P̂
(`)

Y Ŷ |X

≥ λj,k1
. (43)

Similarly to (23), the derivative in (42) and (43) is,

∂

∂PY `Ŷ `|X`(k1,k2|j)
f(P̂

(`)
X , PY `Ŷ `|X`)

∣∣∣∣
P

Y `Ŷ `|X`=P̂
(`)

Y Ŷ |X

= P̂
(`)
X (j) log

P̂
(`)

Ŷ |X(k1|j)

q̂
(`)

Ŷ
(k1)

(44)

which, by using that PY `Ŷ `|X` = P̂
(`)

Y Ŷ |X , P̂ (`)
X and q̂

(`)

Ŷ
are

product distributions, gives,

P̂
(`)
X (j) log

P̂
(`)

Ŷ |X(k1|j)

q̂
(`)

Ŷ
(k1)

= P̂X(j1)P̂X(j2) · · · P̂X(j`)

(∑̀

i=1

log
P̂Ŷ |X(k2,i|ji)
q̂Ŷ (k2,i)

)
(45)

In order to show that there exist some coefficients λj,k1

satisfying both (42) and (43), we make a particular choice
and show that this specific choice satisfies both (42) and (43).
To this end, define

λj,k1
=

{
0 P̂X(j) = 0
∏`
i=1 P̂X(ji)

(∑`
i=1

λji,k1,i

P̂X(ji)

)
P̂X(j) 6= 0

(46)

where λji,k1,i is the single-letter Lagrange multiplier corre-
sponding to ji and k1,i.

Now, excluding the cases where
P̂X(j1)P̂X(j2) · · · P̂X(j`) = 0 where from (45), (42)
and (43) the KKT conditions clearly hold, we have two cases
i) When P̂

(`)

Y Ŷ |X(k1,k2|j) > 0, then for all 1 ≤ i ≤ ` we

must have P̂Y Ŷ |X(k1,i, k2,i|ji) > 0 and therefore, (27) is
valid. We have to verify that this implies that (42) is also
valid. Thus,

∂

∂PY `Ŷ `|X`(k1,k2|j)
f(P̂X , PY `Ŷ `|X`)

∣∣∣∣
P

Y `Ŷ `|X`=P̂
(`)

Y Ŷ |X

= P̂X(j1)P̂X(j2) · · · P̂X(j`)

(∑̀

i=1

log
P̂Ŷ |X(k2,i|ji)
q̂Ŷ (k2,i)

)
(47)

= P̂X(j1)P̂X(j2) · · · P̂X(j`)

(∑̀

i=1

λji,k1,i

P̂X(ji)

)
(48)

= λj,k1 (49)

where (48) holds from the single-letter optimality in (27).
ii) When P̂

(`)

Y Ŷ |X(k1,k2|j) = 0 and j ∈ S(`)(k1,k2), as a

result of Lemma 2, we have that S(`)(k1,k2) is a product set,
i.e., for all 1 ≤ i ≤ `,

ji ∈ S(k1,i, k2,i). (50)

Moreover, either P̂Y Ŷ |X(k1,i, k2,i|ji) > 0 where (27) is
satisfied or P̂Y Ŷ |X(k1,i, k2,i|ji) = 0 where (28) is satisfied.
Now, with these assumptions, we should verify that (43) holds.
We have,

∂

∂PY `Ŷ `|X`(k1,k2|j)
f(P̂X , PY `Ŷ `|X`)

∣∣∣∣
P

Y `Ŷ `|X`=P̂
(`)

Y Ŷ |X

= P̂X(j1)P̂X(j2) · · · P̂X(j`)

(∑̀

i=1

log
P̂Ŷ |X(k2,i|ji)
q̂Ŷ (k2,i)

)
(51)

≥ P̂X(j1)P̂X(j2) · · · P̂X(j`)

(∑̀

i=1

λji,k1,i

P̂X(ji)

)
(52)

= λj,k1
(53)

where (52) is true because of the single-letter optimality in
(27) and (28).
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IV. BINARY-INPUT CHANNELS

In [2], the authors state that for any DMC and decoding
metric d(x, y), the mismatch capacity Cd(W ) remains unal-
tered for a decoder with metric d̃(x, y) = d(x, y)+a(x)+b(y),
where a(x), b(y) are functions of the input and output, respec-
tively. This property suggests that for binary-input channels,
the mismatch capacity Cd(W ) is only a function of the
metric difference d(1, y) − d(2, y). In this section, we show
a necessary condition for Cd(W ) < C(W ) for binary-input
channels based on the above observation.

Definition 2: We say that two sequences {αi}Ki=1 and
{βi}Ki=1 have the same order if for all 1 ≤ i1, i2 ≤ K

αi1 ≥ αi2 ⇒ βi1 ≥ βi2 . (54)

We have the following result.
Theorem 1: Assume that W (k|j) > 0, for all j = 1, 2, k =

1, . . .K. If the sequences
{

logW (k|1) − logW (k|2)
}K
k=1

and
{
d(1, k)− d(2, k)

}K
k=1

do not have the same order, then
R̄d(W ) < C(W ).

Proof: Without loss of generality, we assume that the
sequence

{
d(1, k) − d(2, k)

}K
k=1

is non-decreasing, i.e., for
k1 ≤ k2,

d(1, k1)− d(2, k1) ≤ d(1, k2)− d(2, k2). (55)

This assumption simplifies the evaluation of the sets S(·, ·).
For k1 = k2 we have S(k1, k2) = {1, 2}. Moreover, when
k1 < k2 from (55) and Definition 1, we have that 1 ∈
S(k1, k2) and 2 ∈ S(k2, k1).

We prove a slightly stronger result. In particular, we prove
that the condition Cd(W ) = C(W ) implies that sequences
{
P̂X(1) log

W (k|1)

q̂Ŷ (k)

}K
k=1

,
{
− P̂X(2) log

W (k|2)

q̂Ŷ (k)

}K
k=1

(56)

both should have the same order as the decoding metric
difference sequence {d(1, k)− d(2, k)}Kk=1, where recall that
the notation P̂X refers to the capacity-achieving distribution
of W .

Now assume that Cd(W ) = C(W ). Therefore,
P̂X , PY Ŷ |X = PY Y |X must be a saddlepoint of (9). As a
result, the KKT conditions in (27) and (28) must hold. Observe
that

PY Y |X(k1, k2|j) =

{
W (k1|j) k1 = k2

0 k1 6= k2.
(57)

Therefore, combining the KKT conditions in (27) (28) we
have,

1) If k1 = k2, for both j = 1, 2 we have

P̂X(j) log
W (k1|j)
q̂Y (k1)

= λj,k1 (58)

2) If k1 < k2 we know 1 ∈ S(k1, k2) and 2 ∈ S(k2, k1)

P̂X(1) log
W (k2|1)

q̂Y (k2)
≥ λ1,k1 (59)

P̂X(2) log
W (k1|2)

q̂Y (k1)
≥ λ2,k2 (60)

Therefore, we get that if k1 < k2

P̂X(1) log
W (k2|1)

q̂Y (k2)
≥ λ1,k1 = P̂X(1) log

W (k1|1)

q̂Y (k1)
(61)

P̂X(2) log
W (k1|2)

q̂Y (k1)
≥ λ2,k2 = P̂X(2) log

W (k2|2)

q̂Y (k2)
. (62)

Thus, we get that
{
P̂X(1) log W (k|1)

q̂Y (k)

}K
k=1

and

−
{
P̂X(2) log W (k|2)

q̂Y (k)

}K
k=1

are both non-decreasing sequences
and so is any linear combination of them with positive
coefficients. Therefore, since

logW (k|1)− logW (k|2) =
1

P̂X(1)

(
P̂X(1) log

W (k|1)

q̂Y (k)

)

− 1

P̂X(2)

(
P̂X(2) log

W (k|2)

q̂Y (k)

)

(63)

we conclude that the sequence {logW (k|1)−logW (k|2)}Kk=1

is a non-decreasing sequence.
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Fundamental Limits of Wireless Caching
under Uneven-Capacity Channels

Eleftherios Lampiris, Jingjing Zhang, Osvaldo Simeone, Petros Elia

Abstract— This work identifies the fundamental limits of
cache-aided coded multicasting in the presence of the well-
known ‘worst-user’ bottleneck. This stems from the presence
of receiving users with uneven channel capacities, which often
forces the rate of transmission of each multicasting message to be
reduced to that of the slowest user. This bottleneck, which can be
detrimental in general wireless broadcast settings, motivates the
analysis of coded caching over a standard Single-Input-Single-
Output (SISO) Broadcast Channel (BC) with K cache-aided
receivers, each with a generally different channel capacity. For
this setting, we design a communication algorithm that is based
on superposition coding that capitalizes on the realization that
the user with the worst channel may not be the real bottleneck
of communication. We then proceed to provide a converse
that shows the algorithm to be near optimal, identifying the
fundamental limits of this setting within a multiplicative factor
of 4. Interestingly, the result reveals that, even if several users
are experiencing channels with reduced capacity, the system can
achieve the same optimal delivery time that would be achievable
if all users enjoyed maximal capacity.

I. INTRODUCTION

The seminal work in [1] showed how adding caches to
receiving nodes can substantially reduce the time required to
deliver content. Specifically, reference [1] studied the case
in which a transmitter with access to a library of N unit-
sized files serves – via a wired, single-stream, unit-capacity
bottleneck link – K cache-aided receivers/users. Each user is
equipped with a cache of size equal to a fraction γ ∈ [0, 1] of
the size of the library, so that Kγ is the cumulative cache size
normalized by the library size. For this setting, the authors of
[1] proposed a novel cache placement algorithm and a novel
multicast transmission policy that delivers any set of K files
to the receivers with (normalized) delay at most

TMN =
K(1− γ)
Kγ + 1

(1)

thus revealing a speed-up factor of Kγ + 1 compared to the
delay K(1−γ) corresponding to a standard scheme that serves
each user in turn.
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The delay (1) is obtained by a coded caching approach
that is based on the transmission of a sequence of multicast
messages that convey information to several users at a time
(even if these users requested different content), with users
decoding their desired information by means of cache-aided
interference cancellation. In this scheme, each multicast mes-
sage consists of a XOR Xσ that carries information to a subset
σ ⊂ [K] , [1, 2, . . . ,K] of |σ| = Kγ + 1 users at a time.

While the promised speedup factor of Kγ + 1 in (1) is
proportional to the normalized cumulative cache size of the
network, it was quickly realized that a variety of bottlenecks
severely hamper this performance. These include the subpack-
etization bottleneck [2]–[8], the uneven cache sizes bottleneck
[9]–[12], and the bottleneck studied here that arises from
uneven channel capacities between the transmitter and the
users. This last bottleneck is particularly relevant in wireless
scenarios with multicasting. Such networks produce “slower”
users that can force the multicast rates to be reduced down to
a level that can be decoded by these users. This can diminish
the coded caching gains and could pose a serious limitation
to any effort to implement cache-aided coded multicasting in
wireless settings.

Example 1. Let us consider the wireless Single-Input-Single-
Output (SISO) Broadcast Channel (BC) with K users, each
equipped with a cache of normalized size γ, and let us further
assume that all users have maximal normalized unit capacity,
except for one user that has a normalized link capacity equal
to 1

K + γ < 1. It is easy to see that a (naive) transmission of
the sequence of the XORs from [1] would induce the delay

T =
1− γ
1+Kγ
K

+
(K −Kγ − 1)(1− γ)

1 +Kγ
(2)

= 2TMN − (1− γ) ≈ 2TMN (3)

which is approximately double the delay TMN in (1) that we
would have if all users enjoyed unit normalized link capacities.
It is also worth noting that approximately the same delay T in
(2) would be obtained if we treated the slow user separately
from the rest using time sharing. Essentially, whether with a
naive or with a separated approach that excludes the slow user
from coded caching, a single slow user can cause the worst-
case delivery time to double, and the overall multicasting gain
to be cut in half.

A. Related Work

The importance of the uneven-channel bottleneck in coded
caching has been acknowledged in a large number of recent
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works that seek to understand and ameliorate this limitation
[13]–[29]. For example, reference [13] focuses on the uneven
link-capacity SISO BC where each user experiences a distinct
channel strength, and proposes algorithms that outperform the
naive implementation of the algorithm of [1] whereby each
coded message is transmitted at a rate equal to the rate of the
worst user whose message appears in the corresponding XOR
operation. Under a similar setting, the work in [16] considered
feedback-aided user selection that can maximize the sum-rate
as well as increase a fairness criterion that ensures that each
user receives their requested file in a timely manner. In the
related context of the erasure BC where users have uneven
probabilities of erasures, references [17] and [18] showed how
an erasure at some users can be exploited as side information
at the remaining users in order to increase system performance.
Related work can also be found in [19]–[21].

The uneven-capacity bottleneck was also studied in the
presence of multiple transmit antennas [15], [30]. Reference
[15] exploited transmit diversity to ameliorate the impact of
the worst-user capacity, and showed that employing O(lnK)
transmit antennas can allow for a transmission sum-rate that
scales with K. Similarly, the work in [30] considered multiple
transmit and multiple receive antennas, and designed topology-
dependent cache-placement to ameliorate the worst-user effect.

In a related line of work, the papers [22] and [23] studied the
cache-aided topological interference channel where K cache-
aided transmitters are connected to K cache-aided receivers,
and each transmitter is connected to one receiver via a direct
“strong” link and to each of the other receivers via “weak”
links. Under the assumption of no channel state information
at the transmitters (CSIT), the authors showed how the lack
of CSIT can be ameliorated by exploiting the topology of the
channel and the multicast nature of the transmissions.

Recently, significant effort has been made toward under-
standing the behavior of coded caching in the finite Signal-
to-Noise Ratio (SNR) regime with realistic (and thus often
uneven) channel qualities. In this direction, the work in [24]
showed that a single-stream coded caching message beam-
formed by an appropriate transmit vector can outperform some
existing multi-stream coded caching methods in the low-SNR
regime, while references [25], [26] (see also [27]) revealed
the importance of jointly considering caching with multicast
beamformer design. Moreover, the work in [28] studied the
connection between rate and subpacketization in the multi-
antenna environment, accounting for the unevenness naturally
brought about by fading.

Our work is in the spirit of all the above papers, and it can
be seen specifically as an extension of [14] which focused on
the case of two link-strength levels, as well as the work of
[29], where though the closely related scheme places focus on
minimizing the power.

B. Overview of Results

In this paper, we study a cache-aided SISO BC where each
receiver k experiences a link of some normalized capacity
αk ∈ [0, 1]. We establish the optimal worst-case delivery time

T (K, γ, {αk}) within a factor of at most 4 for any number of
K users, fractional cache capacity γ, and capacity set {αk}.
Key to this result is a new algorithm that uses superposition
coding, where (assuming without loss of generality that the
users are labeled from weaker to stronger, i.e., such that αk ≤
αk+1) we split the power into K − Kγ − 1 layers, and in
layer k, we transmit only XORs whose weakest user is user k.
While this design indeed encodes some XORs at lower rates
(matching the capacity of the worst user for that message),
it also allows the simultaneous transmission of other XORs
in the remaining power layers. The main result reveals that
the optimal performance (1) achievable when αk = 1, for all
k ∈ [K] , [1, 2, . . . ,K], is in fact achievable even if each
user k has reduced link capacity such that the condition

αk & 1− e−kγ , ∀k ∈ [K] (4)

is satisfied. This quantifies the intuitive fact that systems with
smaller caches can be better immune to the negative effects
of channel unevenness.

II. SYSTEM MODEL

We consider the K-user wireless SISO BC, with the
transmitter having access to a library of N files {Wn}Nn=1,
each of normalized unit size, and the K receivers having a
cache whose size is equal to a fraction γ ∈ [0, 1] of the
library size. Communication takes place in two distinct phases,
namely the pre-fetching and the delivery phases. In the first
phase, the caches of the users are filled with content from
the library without any knowledge of future requests or of
channel capacities. Then, during the delivery phase, each user
k requests1 a single file W dk , after which the transmitter
– with knowledge of the requests and the link capacities –
delivers the requested content. After transmission, at each user
k ∈ [K], the received signal takes the form

yk =
√
Pαkhkx+ zk, (5)

where P represents the transmitting power; x ∈ C is the
power-normalized transmitted signal satisfying E{|x|2} ≤ 1;
hk ∈ C is the channel coefficient of user k; zk ∼ CN (0, 1)
represents the Gaussian noise at user k; and αk ∈ (0, 1] is
such that at each user k ∈ [K] the average SNR equals

E{|yk|2} = Pαk . (6)

Under the simplified Generalized Degrees of Freedom (GDoF)
framework of [31]–[33], condition (6) amounts to a (nor-
malized, by a factor logP ) user rate of rk = αk ∈ [0, 1].
Without loss of generality, α = 1 corresponds to the highest
possible channel strength. We assume an arbitrary set of such
normalized capacities α , {αk}Kk=1 and we assume them
without loss of generality to be ordered in ascending order
(αk ≤ αk+1).

The objective is to design the caching and communi-
cation scheme that minimizes the worst-case delivery time
T (K, γ,α) for any capacity vector α.

1We are interested in the worse-case delivery time and thus we will assume
that each user will ask for a different file.
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III. MAIN RESULTS

Before presenting the main results, we remind the reader
that the naive implementation of coded caching which se-
quentially transmits the sequence of XORs Xσ to all subsets
σ ∈ [K] of |σ| = Kγ+1 users, requires a worst-case delivery
time

Tuc(K, γ,α) =
1(
K
Kγ

)
∑

σ⊆[K], |σ|=Kγ+1

max
i∈σ

{
1

αi

}
. (7)

This follows since this conventional uncoded scheme allocates,
for each XOR Xσ , a transmission time Tσ = maxw∈σ

{
1
αw

}

to allow the weakest user in σ to decode the message2.
We now proceed with the main result.

Theorem 1. In the K-user SISO BC with receiver channel
strengths

{
αk
}K
k=1

(αk ≤ αk+1) and with receivers equipped
with a cache of normalized size γ, the worst-case delivery time

Tsc(K, γ,α) = max
w∈[K]

{
1

αw
·
(

K
Kγ+1

)
−
(
K−w
Kγ+1

)
(
K
Kγ

)
}

(8)

is achievable and is within a multiplicative factor of at most
4 from the optimal delay T ∗(K, γ,α).

Proof. The achievability part of the scheme is described as Al-
gorithm 1 in Section IV, while the converse and the derivation
of the gap to optimal are presented in Section V.

One of the main conclusions from the above result is
summarized in the following corollary.

Corollary 1. In the same K-user SISO BC with γ-sized caches
and (ordered) capacities

{
αk
}K
k=1

, the baseline performance

T (K, γ,α = 1) = TMN =
K(1− γ)
1 +Kγ

(9)

associated to the ideal case αk = 1 ∀k ∈ [K], can be achieved
even if the capacities satisfy the inequalities

αk ≥ αth,k , 1−
(
K−k
Kγ+1

)
(

K
Kγ+1

) ≈ 1− e−kγ , ∀k ∈ [K]. (10)

Proof. The proof is direct from Eq. (8), after using the Sterling
approximation

(
n
k

)
≈
(
n
k

)k
and the limit

lim
K→∞

(
1− b

K

)K
= e−b. (11)

Given any user k, αth,k = 1− (K−k
Kγ+1)
( K
Kγ+1)

provides a threshold
channel capacity that allows the algorithm to achieve the
baseline unit-capacity performance TMN .

IV. PLACEMENT AND DELIVERY ALGORITHMS

We here present the superposition-based communication
scheme with the corresponding cache placement, transmission,
and decoding that achieves the delay in Theorem 1.

2This is a well known expression that has been calculated in a variety of
works such as in [13], [24].
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Fig. 1. The plot presents the threshold αth,k for the case of K = 100 users.
We can see that as γ decreases, an ever increasing fraction of users can have
a further reduced channel capacity without any performance degradation with
respect to the maximal-capacity delay.

A. Cache Placement
During the placement phase, we apply directly the place-

ment algorithm of [1] without exploiting any knowledge of
the channel capacities. To this end, each file Wn, n ∈ [N ], is
subpacketized into S =

(
K
Kγ

)
subfiles

Wn → {Wn
τ , τ ⊂ [K], |τ | = Kγ} (12)

and the cache Zk of user k is filled as

Zk = {Wn
τ : τ ⊂ [K],∀n ∈ [N ]} (13)

which, as can easily be shown, adheres to the cache-size
constraint.

B. Delivery Algorithm
After each user k ∈ [K] requests a file W dk as in [1], the

transmitter delivers the
(

K
Kγ+1

)
XORs

Xσ =
⊕

k∈σ
W dk
σ\{k} (14)

for all subsets σ of users of size |σ| = Kγ+1. To this end, in
every communication slot, we split the available transmission
power into K −Kγ − 1 “power layers”. In power layer k we
encode XORs from the set

Xk , {Xσ : min{σ} = k}. (15)

This contains all the XORs intended for set of users σ for
which the slowest user is user k i.e., all the XORs intended
for user k except those desired by any user whose channel is
weaker than user k. It can be easily shown3 that the sets Xk
are disjoint; that for any k ≤ K −Kγ − 1, we have

|Xk| =
(
K − k + 1

Kγ + 1

)
−
(
K − k
Kγ + 1

)
=

(
K − k
Kγ

)
(16)

XOR messages in power layer k and that the total number of
XOR messages in the first k power layers is

∣∣∣∣∣
k⋃

m=1

Xm
∣∣∣∣∣ =

(
K

Kγ + 1

)
−
(
K − k
Kγ + 1

)
. (17)

3The last equality follows directly from Pascal’s triangle.
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For example, Layer 1 (which will correspond to the highest-
powered layer) contains all the XORs in set X1 i.e., all the
XORs that are intended for the weakest user (user 1). Similarly
Layer 2 will contain the XORs from X2, i.e., those XORs that
are intended for user 2, but not for user 1, and so on. The power
allocation for each XOR is designed so that the weakest user
of the XOR can decode it, implying that any other user that
needs to decode that same XOR is able to do so. The chosen
power allocation seeks to minimize the overall delay.

Algorithm 1: Delivery based on Superposition Coding

1 Let αk ≤ αk+1, ∀k ∈ [K]
2 Find w ∈ [K] such that

w=arg max
k∈[K]

{(
K

Kγ+1

)
−
(
K−k
Kγ+1

)

αk

}
. (18)

3 Set β0 = 0 and for k ∈ [K −Kγ − 1] set

βk =

∣∣∪ki=1Xk
∣∣

|∪wi=1Xk|
αw =

(
K

Kγ+1

)
−
(
K−k
Kγ+1

)
(

K
Kγ+1

)
−
(
K−w
Kγ+1

)αw. (19)

for all k ∈ [K −Kγ − 1] do
4 Encode xk selected from Xk without replacement
5 with power

Pk = P−βk−1 − P−βk (20)

6 and rate

rk = βk − βk−1 =

(
K−k
Kγ

)
(

K
Kγ+1

)
−
(
K−w
Kγ+1

)αw. (21)

7 Transmit xk,∀k ∈ [K] simultaneously.

The process is described in the form of pseudo-code in
Algorithm 1. The algorithm begins by identifying (Step 2)
the bottleneck user

w=arg max
k∈[K]

{(
K

Kγ+1

)
−
(
K−k
Kγ+1

)

αk

}
. (22)

This is defined as the user k that takes the longest time to
decode all power layers from 1 to k. Then Step 3 calculates
the power layer coefficients βi, i ∈ {0, 1, ..,K − Kγ − 1}
for each power layer as explained below. In Step 4, for every
k ∈ [K − Kγ − 1], a new XOR is selected from set Xk,
and is encoded in message xk, with power Pk = P−βk−1 −
P−βk (Step 5) and rate (K−k

Kγ )
( K
Kγ+1)−(

K−w
Kγ+1)

αw (Step 6). Finally

in Step 7 all the xk,∀k ∈ [K] are transmitted simultaneously
using superposition coding.

C. Decoding

In the received signal

yk =hk
√
Pαk

k∑

m1=1

xm1
+ hk

√
Pαk

K−Kγ−1∑

m2=k+1

xm2
(23)

at user k ∈ [K], the second term
∑K−Kγ−1
m2=k+1 xm2

contains the
lower power layers, which carry no valuable information for
user k and are treated as noise. This part of the message is

transmitted with power P−βk , where βk =
( K
Kγ+1)−(

K−k
Kγ+1)

( K
Kγ+1)−(

K−w
Kγ+1)

αw.
Due to the power and rate allocation for each of these mes-
sages (cf. Eq. (20) and Eq. (21)), using successive interference
cancellation4 (SIC), receiver k can decode the first term that
encodes the messages that potentially contain information that
is valuable for user k.

D. Delay Calculation

The total delay of the scheme is

Tsc(K, γ,α) = max
k∈[K−Kγ−1]

{
|Xk|(
K
Kγ

) · 1
rk

}
(24)

=
1

αw
·
(

K
Kγ+1

)
−
(
K−w
Kγ+1

)
(
K
Kγ

) . (25)

This corresponds to the maximum delay required to deliver all
XORs Xσ ∈ Xk across all values of k ∈ [K −Kγ − 1].

V. CONVERSE AND GAP TO OPTIMALITY

In this section, we provide a lower bound on the optimal
delay for any given set of parameters K, γ,α, and then we
prove that the achievable delay Tsc , Tsc(K, γ,α) from
Theorem 1 is within a factor of at most 4 from the optimal
delay T ∗(k, γ,α).

To lower bound the minimum delay T ∗(k, γ,α), we con-
sider an augmented system where the capacities of the first w
users, with w selected as (18), are increased to αk = αw , α,
for all k ∈ [w], while the capacities of the remaining users are
increased to 1. For this system, the delay is lower bounded as

Taug ≥

t1︷︸︸︷
1

α

t2︷ ︸︸ ︷
1

2

w(1− γ)
1 + wγ

, (26)

where term t1 corresponds to the channel capacity of the first
w users, while term t2 corresponds to a lower bound on the
minimum possible worst-case delivery time5 associated to a
system with w cache-aided users (cf. [36]).

To bound the ratio Tsc/Taug, we first consider the case of
wγ < 1 for which we have the inequalities

Tsc
Taug

≤
( K
Kγ+1)−(

K−w
Kγ+1)

( KKγ)
1
2
w(1−γ)
(1+wγ)

≤ w(1− γ)
1
2
w(1−γ)
(1+wγ)

≤ 4, (27)

where we used the inequality ( K
Kγ+1)−(

K−w
Kγ+1)

( KKγ)
≤ w(1 − γ)

which we prove in the online version of this work [37].

4In successive interference cancellation, a user first decodes the highest
powered message by treating the remaining messages as noise, then proceeds
to remove this – known at this point – message and decodes the second
message by treating the remaining as noise, and so on until all messages have
been decoded.

5In fact, as we know from [36], this factor is slightly smaller than 1
2

.
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When wγ ≥ 1, the bound – after a few basic algebraic
manipulations – takes the form

Tsc
Te

=

( K
Kγ+1)−(

K−w
Kγ+1)

( KKγ)
1
2
w(1−γ)
(1+wγ)

≤
( K
Kγ+1)
( KKγ)

1
2
w(1−γ)
(1+wγ)

(28)

=

K(1−γ)
1+Kγ

1
2
w(1−γ)
1+wγ

= 2
K(1 + wγ)

w(1 +Kγ)
= 2 + 2

K − w
w+Kwγ

(29)

< 2

(
1 +

K + w

w + wKγ

)
< 2

(
1 +

K

wKγ

)
≤ 4, (30)

which concludes the proof.

VI. CONCLUSIONS AND RAMIFICATIONS

In this work, we studied a cache-aided SISO BC in which
users have different channel capacities. This model is mo-
tivated by the well-known worst-user bottleneck of coded
caching, which, when left untreated, can severely deteriorate
coded caching gains. The new algorithm establishes, together
with the converse, the fundamental limits of performance
within a factor of 4, revealing that it is in fact possible to
achieve the full-capacity performance even in the presence of
many users with degraded link strengths.

Pivotal to our approach is the identification of a ‘bottleneck
(threshold) user’, which may not necessarily be the user with
the worst channel. From an operational point of view, this
reveals that to increase performance, we must not necessarily
focus on enhancing only the weakest users, but rather should
focus on altering this bottleneck threshold.
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Abstract—We use importance sampling to estimate the
random-coding union (RCU) bound to the achievable error
probability in coded-modulation wireless channels. We provide
closed-form expressions of the exponentially-tilted distributions
to generate the required samples, and illustrate the technique for
coded BPSK modulation over the i.i.d. Rayleigh fading channel.

I. INTRODUCTION

Evaluating the error probability of the transmission of coded
data over a continuous-output channel is a common problem in
digital communications. Efficient simulation methods of high-
performance codes were proposed in, e. g., [1] for low density
parity check (LDPC) codes. Together with other powerful
codes such as polar codes and turbo codes, LDPC codes as-
sume large code lengths. This assumption is yet not compatible
with the ultra-high reliability and low latency requirements for
next-generation wireless systems.

Instead of considering a good code, we study the random-
coding union (RCU) bound to the achievable error probability
[2, Eq. (62)]. Let x denote a transmitted codeword of length
n drawn from a constellation X , and let y be the received
sequence taking values over Cn. Random-coding arguments
show the existence of a code of M codewords, transmitted
over a memoryless channel with conditional density W (y|x),
whose error probability, the probability of decoding in favor
of the wrong codeword, is at most the RCU, given by

rcun =

∫
Qn(x)Wn(y|x) min

{
1, (M−1)pepn(x,y)

}
dxdy,

(1)
where the pairwise error probability pepn(x,y) reads

pepn(x,y) =

∫
Qn(x)1{Wn(y|x) ≥Wn(y|x)} dx, (2)

and 1{·} is the indicator function. The expressions (1) and (2)
are expectations with respect to the joint probability density

Qn(x)Wn(y|x)Qn(x). (3)

The exact computation of the RCU bound is cumbersome
even for simple channels and moderate values of n. Instead
of resorting to approximations (e.g., [3]–[5]), we explore fast
and accurate simulation to estimate (1).

This work has been funded in part by the European Research Council under
ERC grant agreement 725411, and by the Spanish Ministry of Economy and
Competitiveness under grant TEC2016-78434-C3-1-R.

II. IMPORTANCE SAMPLING

We first note that both expectations (1) and (2) can be
cast as follows. Let f(z) be a non-negative function of some
random variable Z with density P (z). The standard Monte
Carlo estimate of a quantity pn = E

[
f(Z)

]
involves drawing

N samples zi from P (z) and computing the average

p̂n,N =
1

N

N∑

i=1

f(zi). (4)

The Monte Carlo estimator (4) is unbiased as its expected
value satisfies E[p̂n,N ] = pn. Besides, when f(z) in (4) is
an indicator function, it can be inferred that the number of
samples needed to estimate pn to a given accuracy level grows
as N ∝ p−1n , [6, Sec. 4.1]. Since the RCU bound decays
exponentially with the codeword length n, this implies an
exponential growth in the required number of samples.

Alternatively, importance sampling was proposed in [7] to
diminish the sampling size in estimating the error probability
of a communication scheme. Instead of estimating pn as (4),
this variance-reducing method involves generating i.i.d. sam-
ples from another distribution P̄ (z) [7] to estimate pn as

p̂n,N =
1

N

N∑

i=1

ω(zi)f(zi), (5)

where the weights ω(z) that account for the distribution
mismatch are given by the ratio ω(z) = P (z)/P̄ (z).

A good choice for P̄ (z) is known to be the exponential
tilting [6] that exploits the exponential decay of pn. For any
value s ≥ 0 and a function gn(z), we define the exponentially-
tilted distribution

P̄s,g(z) = P (z)esgn(z)−κn(s) (6)

in terms of the cumulant generating function [8] of gn(z),

κn(s) = log E
[
esgn(Z)

]
. (7)

The importance-sampling estimator (5) then becomes

p̂n,N = α̂n,N(s) · eκn(s), (8)

where

α̂n,N(s) =
1

N

N∑

i=1

e−sgn(zi)f(zi) (9)

and the samples zi are independently drawn from P̄s,g(z).

International Zurich Seminar on Information and Communication (IZS), February 26 – 28, 2020

125



Roughy speaking, the importance-sampling estimator ap-
proximates the pre-exponential factor αn in the quantity
pn = αn(s) · eκn(s) by α̂n,N , instead of directly estimating
pn. The importance-sampling estimator (8) is also unbiased
[6, Sec. 4.2] with a normalized sample variance

σ2
n =

E
[
eκn(s)−sgn(Z)f(Z)2

]
− p2n

p2n
(10)

that is now reduced by properly choosing the parameters
involved in the exponential tilting, namely s ≥ 0 and gn(z).
A good choice of s is the minimizer

ŝn = arg min
s≥0

κn(s), (11)

whereas the choice of gn(z) depends on the structure of f(z).
We next apply the exponentially-tilted importance-sampling
method described in this section to estimate (1).

III. ERROR PROBABILITY ESTIMATION

We first note that for a fixed transmitted codeword x and
received sequence y, a nested estimator of the pairwise error
probability (2) is needed. A good choice of gn(x) for the
importance-sampling estimate of the pairwise error probability
in (2) with integration variable x is the log-likelihood ratio

`n(x,y,x) = log
Wn(y|x)

Wn(y|x)
. (12)

As stated later, this choice helps capturing the correct expo-
nential decay of the pairwise error probability in terms of n.
The cumulant generating function of `n(x,y,X) is given by

κn,τ (x,y) = log E
[
eτ ·`n(x,y,X)

]
(13)

and leads to the following tilted distribution P̄τ (x|y) in (6)
for the estimation of pepn(x,y)

P̄nτ (x|y) =
1

µn(y)
Qn(x)Wn(y|x)τ , (14)

where µn(y) is a normalizing factor. We remark that while
the log-likelihood `n(x,y,x) depends on the transmitted
codeword x, the conditional distribution (14) for the codeword
x depends only on the received sequence y through the tilted
channel density W (y|x)τ .

The importance-sampling estimator of the pairwise error
probability generates N1 independent samples xj from the
conditional probability distribution (14), computes the average

γ̂τ,N1(x,y) =
1

N1

N1∑

j=1

e−τ ·`n(x,y,xj)fpep(x,y,xj), (15)

where we defined

fpep(x,y,x) = 1
{
`n(x,y,x) ≥ 0

}
, (16)

and finally obtains the final estimate

ˆpepn,N1
(x,y) = γ̂τ,N1(x,y) · eκn,τ (x,y). (17)

The tilting parameter τ is chosen as τ = τ̂n(x,y), where

τ̂n(x,y) = arg min
τ≥0

κn,τ (x,y). (18)

Note that τ used in the function κn,τ (x,y) depends on both
x and y. Yet, we drop the dependence on x,y in τ̂n to lighten
the notation. Basic results in large-deviation theory imply that
for memoryless channels the pairwise error probability (2)
behaves exponentially as

lim
n→∞

log pepn(x,y)

κn,τ̂n(x,y)
= 1. (19)

We now address the importance-sampling estimate of the
random-coding union bound in (1), an expectation with respect
to the integration variables x and y. In this case, we select
the random variable

gn(x,y) = log(M − 1) + κn, 1
1+ρ

(x,y) (20)

because its cumulant generating function, given by

χn(ρ) = log E

[
(M − 1)ρ

(
E
[
Wn(Y |X)

1
1+ρ |Y

]

Wn(Y |X)
1

1+ρ

)ρ]
, (21)

gives the random-coding exponent [9, Sec. 5.6]. As a result,
we will restrict the parameter ρ in the [0, 1] interval. Using (6),
every pair of samples (xi,yi) is drawn from

P̄nρ (x,y) = Qn(x)W̄n
ρ (y|x), (22)

where W̄n
ρ (y|x) is the tilted channel density given by

W̄n
ρ (y|x) =

1

µn
Wn(y|x)

1
1+ρ

(
E[Wn(y|X)

1
1+ρ ]

)ρ
(23)

with normalizing factor µn. Inspecting (22), we observe that
the transmitted codewords xi are generated with the original
random coding distribution Qn(x), whereas the received se-
quences yi are drawn from the modified channel transition
probability (23).

The importance-sampling estimator for the RCU bound (1)
based on the independently generated pairs of samples xi,yi
from the probability distribution (22) is given by

ˆrcun,N1,N2 = α̂n,N1,N2(ρ) · eχn(ρ), (24)

where the pre-factor estimate reads

α̂n,N1,N2
(ρ) =

1

N2

N2∑

i=1

e−ρ·gn(xi,yi)frcu(xi,yi) (25)

with frcu(xi,yi) a function that depends on the pairwise error
probability estimate (17) as

frcu(x,y) = min{1, (M − 1) ˆpepn,N1
(x,y)}. (26)

For choice of

ρ̂n = arg min
0≤ρ≤1

χn(ρ), (27)

it follows from basic results in large-deviation theory that

lim
n→∞

log rcun
χn(ρ̂n)

= 1. (28)
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In summary, we proposed an importance-sampling estimator
for the RCU bound (1) built from two nested estimators.
Transmitted codewords x are drawn from the original random-
coding distribution and received sequences y are generated
from the modified channel transition probability (23) with
optimal tilting parameter ρ̂n related to the random-coding error
exponent (28). For a given transmitted codeword and received
sequence, the pairwise codewords x are generated indepen-
dently from x but conditioned on y from the conditional
distribution (14) with optimal tilting parameter τ̂n related to
the exponential decay of the pairwise error probability (19).

We remark that (14) and (23) might not be standard prob-
ability distributions. Yet, samples can be efficiently generated
using, e. g., the rejection method described in [10, Ch. II.3].

We finally briefly discuss the performance analysis of the
proposed importance-sampling estimator. We observe that
ˆrcun,N1,N2

is the sum of N2 independent terms, each of them a
nonlinear function of the inner estimator ˆpepn,N1

(xi,yi) that
is also the sum of N1 independent terms. Using refined central-
limits theorems and Taylor expansions in inverse powers of N1

and N2, we show in [11] that for memoryless channels and
sufficiently large code length n, as both N1 and N2 tend to
infinity the importance-sampling estimator (24) converges in
probability1 to the exact RCU bound rcun according to

ˆrcun,N1,N2

p−−−−−−−→
N1,N2→∞

rcun

(
1− k1,n

N1
+

√
k2,n
N2

Θ

)
, (30)

where k1,n and k2,n are positive numbers growing with n as
O(
√
n), and Θ is the standard normal random variable.

Since k1,n in (30) is a positive term and Θ is a zero-mean
random variable, it implies a negative bias in the estimation
of the RCU bound. Yet, the estimator is consistent, as the bias
vanishes as N1 goes to infinity, although the bias might be sig-
nificant for small values of N1. The variance term k2,n in (30)
grows as the squared root of n, implying a significant reduction
in the variance with the importance-sampling estimator, as the
number of samples needed to accurately estimate the RCU
bound for a given confidence level grows as N2 ∝

√
n, rather

than the typical growth N2 ∝ rcun
−1 in standard Monte Carlo

[6, Sec. 4.1], which would be exponential in the code length
n in our setting of a memoryless channel.

.

IV. NUMERICAL EXAMPLE

We illustrate the above importance-sampling estimator of
the RCU bound for the binary phase-shift keying (BPSK)
modulation. We denote the symbol set X = {−

√
P ,+

√
P},

where P is a positive number describing an average power

1Two sequences of random variables AN and BN indexed by N are said
to converge in probability if for all ε > 0, it holds

lim
N→∞

Pr[|AN −BN | > ε] = 0. (29)

We denote the convergence in probability by AN
p−−−−−→

N→∞ BN .
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Fig. 1. Error probability versus Eb/N0 over the AWGN channel, for code
rate Rb = 0.5, N1 = N2 = 500 samples, and several code lengths n.
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Fig. 2. Error probability versus n over the AWGN channel, for code rate
Rb = 0.5, N1 = N2 = 500 samples, and several values of Eb/N0.

constraint. A codeword x = (x1, . . . , xn) is transmitted over
the i.i.d. Rayleigh fading channel described by

yi = hixi + wi, (31)

where y = (y1, . . . , yn) is the received sequence, w =
(w1, . . . , wn) is an i.i.d. real-valued zero-mean Gaussian noise
with variance σ2. Since the phase of the fading coefficients is
irrelevant, we assume that h = (h1, . . . , hn) is a real-valued
i.i.d. Rayleigh distributed with density

pn(h) =

n∏

i=1

2hie
−h2

i1{hi ≥ 0}. (32)

The symmetry of BPSK implies that the input distribution
Qn(x) that optimizes both the exponential decay (28) and the
channel capacity, denoted as Cb, is the uniform distribution

Qn(x) =
1

2n
. (33)
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Fig. 3. Error probability versus Eb/N0 over the i.i.d. Rayleigh channel, for
code length n = 1024, N1 = N2 = 500 samples, and several code rates Rb.

The input distribution Qn(x), together with the channel con-
ditional density given by

Wn(y|x,h) =
n∏

i=1

1√
2πσ2

e−
(yi−hixi)2

2σ2 , (34)

determine the required parameters for the importance-
sampling estimator (24), namely the the cumulant-generating
functions (13) and (21), the optimal tilting parameters τ̂n
and ρ̂n respectively in (18) and (27), and the tilted distri-
butions (14) and (23). The additive white Gaussian noise
(AWGN) channel can be recovered from (34) by setting

pn(h) = δn(h− 1) (35)

where δn(·) is the n-dimensional Dirac delta, and 1 is the
all-ones length-n vector. As usual, we define the code rate as

Rb =
1

n
log2M, (36)

and the coded average Eb/N0 ratio as

Eb

N0
=

P

σ2
· 1

2Rb
. (37)

We set N1 = N2 = 500 to estimate the achievable error
probability by means of the RCU, and include Shannon’s
sphere-packing bound [12, Eq. (15)] for the AWGN channel
or an improved sphere-packing bound [13, Th. 3.1] for the
i.i.d. Rayleigh fading channel. The error probability of good
binary codes must lie between the RCU and the sphere-
packing bounds, as shown in Figs. 1–4 in gray-shaded regions
for several configurations of codeword length n, code rate Rb

and coded Eb/N0 ratio. In the presence of fading, we observe
a larger gap between achievability and converse bounds com-
pared to the AWGN case, especially for small values of n. As
another example, a performance loss of approximately 2 dB
in Eb/N0 is noticed at n = 2048 in Fig. 4 for the fading case
when compared to the AWGN case in Fig. 1.
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Fig. 4. Error probability versus Eb/N0 over the i.i.d. Rayleigh channel, for
code rate Rb = 0.5, N1 = N2 = 500 samples, and several code lengths n.

V. CONCLUSION

In this paper, we proposed an importance-sampling tech-
nique to estimate the random-coding union (RCU) bound to
the achievable error probability for the transmission of coded
data over a continuous-output channel. We derived closed-
form expressions for the optimal tilted distributions needed
to generate the samples of the two nested estimators involved,
and illustrated the transmission of the coded BPSK modulation
over the AWGN and i.i.d. Rayleigh fading channels.
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Abstract—This paper studies the performance of block coding
on an additive white Gaussian noise channel under different
power limitations at the transmitter. Lower bounds are presented
for the minimum error probability of codes satisfying an average
power constraint. These bounds are tighter than previous results
in the literature, and yield a better understanding on the
structure of good codes under an average power limitation.

I. INTRODUCTION

We consider the problem of transmitting equiprobable mes-
sages over several uses of an additive white Gaussian noise
(AWGN) channel. We consider different power constraints:
equal power constraint (all the codewords in the transmission
code have equal energy); maximal power constraint (the
energy of all the codewords is below a certain threshold); and
average power constraint (while some codewords may violate
the threshold, the energy budget is satisfied in average).

In his 1959 paper, Shannon derived a lower bound to the
error probability of any equal power constrained codebook
via geometrical arguments [1, Eq. (20)]. Following a different
approach, Polyanskiy, Poor and Verdú applied a particular
instance of a binary hypothesis test to lower bound the same
error probability [2, Th. 41]. While [2, Th. 41] was derived
originally under an equal power constraint, it was recently
shown to also hold under a maximal power constraint [3,
Th. 3]. Other connections among the system performance
under the three power constraints are studied in [1, Sec. XIII]
(see also [2, Lem. 39]).

In this work, we establish direct lower bounds for codes
satisfying an average power limitation at the transmitter. Our
analysis is based on the meta-converse bound [2, Th. 27] eval-
uated for auxiliary Gaussian distributions. We characterize the
error probability of the binary hypothesis test appearing in this
bound for the AWGN channel, and use its properties to avoid
the optimization over input distributions. Our results show that,
if the cardinality of the codebook is below a certain threshold,
[2, Th. 41] and [3, Th. 3] hold under an average power
limitation without any modifications. The resulting bound is
tighter than previous results in the literature for the same power
constraint and provide an accurate characterization of the error
probability for a wide range of system parameters.

G. Vazquez-Vilar is also with the Gregorio Marañón Health Research
Institute, Madrid, Spain. This work has been funded in part by the Eu-
ropean Research Council (ERC) under grant 714161, and by the Spanish
Ministry of Economy and Competitiveness under grant TEC2016-78434-C3
(AEI/FEDER, EU).

II. SYSTEM MODEL

We consider the problem of transmitting M equiprobable
messages over n uses of an AWGN channel with noise
power σ2. Specifically, we consider the channel with law
W = PY |X which, for an input x = (x1, . . . , xn) and output
y = (y1, . . . , yn), has a probability density function (pdf)

w(y|x) =
n∏

i=1

ϕxi,σ(yi), (1)

where ϕµ,σ(·) denotes the pdf of the Gaussian distribution,

ϕµ,σ(x) , 1√
2πσ

e−
(x−µ)2

2σ2 . (2)

In our communications system, a source produces a certain
message v ∈ {1, . . . ,M} randomly with equal probability.
This message is mapped by the encoder to a codeword cv
according to a codebook C ,

{
c1, . . . , cM

}
, and the sequence

x = cv is transmitted over the channel. Then, based on the
channel output y, the decoder guesses the transmitted message
v̂ ∈ {1, . . . ,M}. We define the average error probability

Pe(C) , Pr{V̂ 6= V }, (3)

where the underlying probability is induced by the chain of
source, encoder, channel and decoder.

We consider codebooks satisfying the following constraints:
• Equal power constraint Υ:

Le(n,M,Υ) ,
{
C
∣∣∣ ‖ci‖2 = nΥ, i = 1, . . . ,M

}
(4)

• Maximal power constraint Υ:

Lm(n,M,Υ) ,
{
C
∣∣∣ ‖ci‖2 ≤ nΥ, i = 1, . . . ,M

}
(5)

• Average power constraint Υ:

La(n,M,Υ) ,
{
C
∣∣∣ 1
M

∑M

i=1
‖ci‖2 ≤ nΥ

}
(6)

Clearly, Le ⊆ Lm ⊆ La. In the following, we study lower
bounds on the error probability Pe(C) under equal, maximal
and average power constraints. While derivation of converse
bounds is easier under an equal power constraint, the maximal
power and average power constraints are more relevant for
practical applications.
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III. META-CONVERSE BOUND FOR EQUAL AND
MAXIMAL POWER CONSTRAINTS

In [2], Polyanskiy et al. proved that the error probability
of a binary hypothesis test with certain parameters lower
bounds the error probability Pe(C) for a certain channel W .
In particular, [2, Th. 27] shows that

Pe(C) ≥ inf
P∈P

sup
Q

{
α 1
M

(
PW,P ×Q

)}
, (7)

where P is the set of distributions over the input alphabet Xn
satisfying a certain constraint and Q is an auxiliary distribution
over the output alphabet Yn which is not allowed to depend on
the input x. Here αβ (A,B) denotes the minimum type-I error
for a maximum type-II error β ∈ [0, 1] in a binary hypothesis
test between the distributions A and B. Specifically, for two
distributions A and B defined over an alphabet Z , the function
αβ (A,B) is given by

αβ(A,B) , inf
0≤T≤1:

EB [T (Z)]≤β

{
1− EA[T (Z)]

}
, (8)

where T : Z → [0, 1] and EP [·] is the expectation operator
with respect to the random variable Z ∼ P .

The bound (7) is usually referred to as the meta-converse
bound since several converse results in the literature can be
recovered from it via relaxation. While it is possible to restrict
the set of distributions Q over which the bound is maximized
and still obtain a lower bound, the minimization over P
needs to be carried out over all the n-dimensional probability
distributions (not necessarily product) satisfying P .

For the Gaussian channel W , Polyanskiy et al. fixed Q
to be zero-mean Gaussian distributed with variance θ2 and
independent entries, i.e., with pdf

q(y) =

n∏

i=1

ϕ0,θ(yi). (9)

For this choice of Q, α 1
M

(·, ·) presents spherical symmetry.
Then, restricting the input distribution to lie on the surface
of a n-dimensional hyper-sphere of squared radius nΥ and
setting θ2 = Υ + σ2, they obtained the following result.

Theorem 1 (Converse, equal power constraint [2, Th. 41]):
Let C ∈ Le(n,M,Υ) be a length-n code of cardinality M
satisfying an equal power constraint. Then, for θ2 = Υ + σ2,

Pe(C) ≥ α 1
M

(
ϕn√

Υ,σ
, ϕn0,θ

)
. (10)

The bound in Theorem 1 can be extended to maximal and
average power constraints using, e.g., [2, Lem. 39]. A direct
lower bound under maximal power constraint is given next.

Theorem 2 (Converse, maximal power constraint [3, Th. 3]):
Let C ∈ Lm(n,M,Υ) be a length-n code of cardinality M
satisfying a maximal power constraint. For any θ ≥ σ, n ≥ 1,
the lower bound (10) holds for this code.

The bounds in Theorems 1 and 2 coincide for equal and
maximal power constraints. Then, one may wonder if this is
also the case for codes satisfying an average power constraint.
In Section IV, we will show that the lower bound (10) holds
in this setting under certain conditions (but not in general).

A. Computation of αβ
(
ϕn√γ,σ, ϕ

n
0,θ

)

Computation of Theorems 1 and 2 require to evaluate

f(β, γ) , αβ
(
ϕn√γ,σ, ϕ

n
0,θ

)
. (11)

We next provide a parametric formulation of this function.
Proposition 1: Let σ, θ > 0 and n ≥ 1, be fixed parameters,

and define δ , θ2 − σ2. The trade-off between α and β
admits the following parametric formulation as a function of
the auxiliary parameter t ≥ 0,

α(γ, t) = Qn
2

(√
nγ
σ

δ
,
t

σ

)
, (12)

β(γ, t) = 1−Qn
2

(√
nγ
θ

δ
,
t

θ

)
, (13)

where Qm(x, y) denotes the generalized Marcum Q-function.
Let tb satisfy β(γ, tb) = b according to (13). Then, the
function (11) is given by f(b, γ) = α(γ, tb) according to (12).

Proof outline: Following the lines of the proof of [2,
Th. 41], we obtain a parametric formulation in terms of two
non-central χ2 distributions. Then, to recover (12)-(13), we
write the cumulative density function Fn,ν(x) of a non-central
χ2 distribution with n degrees of freedom and non-centrality
parameter ν in terms of the generalized Marcum Q-function
Qm(a, b) as Fn,ν(x) = 1−Qn

2

(√
ν,
√
x
)
.

In Proposition 1, we need to invert the marcum-Q function
in (13) to evaluate f(β, γ). The following alternative expres-
sion is more adequate for implementation purposes, as it only
requires to solve a one dimensional optimization problem.

Corollary 1: Let σ, θ > 0 and n ≥ 1, be fixed parameters.
The function f(β, γ) = αβ

(
ϕn√γ,σ, ϕ

n
0,θ

)
is given by

f(β, γ) = max
t≥0

{
Qn

2

(√
nγ
σ

δ
,
t

σ

)
+
θn

σn
e

1
2

(
nγ
δ − δt2

σ2θ2

)

×
(

1− β −Qn
2

(√
nγ
θ

δ
,
t

θ

))}
. (14)

Proof outline: We define

j(y) , log
ϕn√γ,σ(y)

ϕn0,θ(y)
(15)

= n log
θ

σ
− 1

2

n∑

i=1

θ2(yi −√γ)2 − σ2y2
i

σ2θ2
. (16)

According to the Neyman-Pearson lemma, the trade-off
αβ
(
ϕn√γ,σ, ϕ

n
0,θ

)
admits the parametric form

α(t′) = Pr
[
j(Y 0) ≤ t′

]
, (17)

β(t′) = Pr
[
j(Y 1) > t′

]
, (18)

in terms of t′ ∈ R and where Y 0 ∼ ϕn√γ,σ , Y 1 ∼ ϕn0,θ.
We apply [4, Lem. 1] to the tail probabilities (17)-(18) and

consider the change of variables t′ ↔ t, which are related as
t2 = 2σ2θ2 1

δ

(
n log θ

σ + n
2
γ
δ − t′

)
. Then, to obtain the desired

result, we proceed as in the proof of Proposition 1 and use
that et

′
= θn

σn exp
{

1
2

(
nγ
δ − δt2

σ2θ2

)}
.
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IV. LOWER BOUNDS FOR AVERAGE-POWER CONSTRAINT

The Legendre-Fenchel (LF) transform of a function g is

g∗(b) = max
a∈A

{
〈a, b〉 − g(a)

}
, (19)

where A is the domain of the function g and 〈a, b〉 denotes
the interior product between a and b.

The function g∗ is usually referred to as Fenchel’s conjugate
(or convex conjugate) of g. If g is a convex function with
closed domain, applying the LF transform twice recovers the
original function, i.e., g∗∗ = g. If g is not convex, applying
the LF transform twice returns the lower convex envelope of
g, which is the largest lower semi-continuous convex function
function majorized by g. For our problem, for f(β, γ) in (11),
we define

f(β, γ) , f∗∗(β, γ), (20)

and note that f(β, γ) ≤ f(β, γ) for any β ∈ [0, 1] and γ ≥ 0.
The lower convex envelope (20) is a lower bound to the

error probability in the average power constraint setting.
Theorem 3 (Converse, average power constraint): Let C ∈
La(n,M,Υ) be a length-n code of cardinality M satisfying
the average power constraint Υ. Then, for any θ ≥ σ, n ≥ 1,

Pe(C) ≥ f
(

1
M ,Υ

)
, (21)

where f(β, γ) is the lower convex envelope (20) of f(β, γ)
defined in (11).

Proof: We start by considering the general meta-converse
bound in (7) with P = Pa(Υ) corresponding to the set of
distributions satisfying an average power constraint, i.e.,

Pa(Υ) ,
{
X ∼ PX

∣∣∣ E
[
‖X‖2

]
≤ nΥ

}
. (22)

To solve the minimization over P in (7) we shall use the
following decomposition. For any γ ≥ 0, we define the set
Sγ ,

{
x | ‖x‖2 = nγ

}
. Then, any input distribution PX

induces a distribution over the parameter γ, Pγ , Pr{X ∈
Sγ}, and a conditional distribution

dPX|γ(x) =

{
dPX(x)

dPγ
, x ∈ Sγ ,

0, otherwise.
(23)

It follows that PX(x) =
∫
PX|γ(x) dPγ . Here, dPγ ≥ 0 and∫

dPγ = 1. Furthermore, the conditional distributions PX|γ
have disjoint support. Then, we apply [5, Lem. 25] to write

inf
P∈Pa(Υ)

{
α 1
M

(
PW,P ×Q

)}

= inf
{Pγ ,βγ}:∫
γ dPγ=Υ∫
βγ dPγ= 1

M

{∫
αβγ

(
PγW,Pγ ×Q

)
dPγ

}
(24)

= inf
{Pγ ,βγ}:∫
γ dPγ=Υ∫
βγ dPγ= 1

M

{∫
αβγ

(
ϕn√γ,σ, ϕ

n
0,θ

)
dPγ

}
, (25)

where the last step follows from the spherical symmetry of
each of the tests in (24), using that x = (

√
γ, . . . ,

√
γ) ∈ Sγ .

Using that f(β, γ) ≤ f(β, γ) = αβ
(
ϕn√γ,σ, ϕ

n
0,θ

)
, we

lower-bound the right-hand side of (25) as

inf
{Pγ ,βγ}:∫
γ dPγ=Υ∫
βγ dPγ= 1

M

{∫
f
(
βγ , γ

)
dPγ

}

≥ inf
{Pγ ,βγ}:∫
γ dPγ=Υ∫
βγ dPγ= 1

M

{∫
f
(
βγ , γ

)
dPγ

}
(26)

≥ inf
{Pγ ,βγ}:∫
γ dPγ=Υ∫
βγ dPγ= 1

M

{
f
(

1
M ,Υ

)}
(27)

= f
(

1
M ,Υ

)
, (28)

where (27) follows by applying Jensen’s inequality since
f(β, γ) is jointly convex in both parameters and by using
the constraints; and (28) holds since the objective of the
optimization in (27) does not depend on {Pγ , βγ}.

The lower bound (21) then follows from combining (7),
(24)-(25) and the inequalities (26)-(28).

The function f(β, γ) can be evaluated numerically by
considering a 2-dimensional grid of the parameters (β, γ),
using (14) to compute f(β, γ) over this grid, and obtaining
the corresponding convex envelope. Nevertheless, sometimes
f
(

1
M ,Υ

)
= f

(
1
M ,Υ

)
= α 1

M

(
ϕn√

Υ,σ
, ϕn0,θ

)
and these steps

can be avoided, as the next result shows.
Corollary 2: Let σ, θ > 0 and n ≥ 1, be fixed parameters,

and define δ , θ2 − σ2. For t ≥ 0, we define

ξ1(t) , Qn
2

(√
nΥ

σ

δ
,
t

σ

)
−Qn

2

(
0,
√(

t2

σ2 − nΥ θ2

δ2

)
+

)
,

(29)

ξ2(t) , θn

σn
e
− 1

2

(
t2

σ2θ2
−nΥ

δ

)(
Qn

2

(
0,
√(

t2

θ2 − nΥσ2

δ2

)
+

)

−Qn
2

(√
nΥ

θ

δ
,
t

θ

))
, (30)

ξ3(t) =
nΥ

2δ

(
tδ

σ2
√
nΥ

)n
2

e
− 1

2

(
t2

σ2 +nΥσ2

δ2

)
In

2

(√
nΥ

t

δ

)
, (31)

where (a)+ = max(0, a), Qm(a, b) is the Marcum Q-function
and Im(·) denotes the m-th order modified Bessel function of
the first kind. Let t0 be the solution to the implicit equation

ξ1(t0) + ξ2(t0) + ξ3(t0) = 0, (32)

and let

M̄ ,
(
1−Qn

2

(√
nΥθ/δ, t0/θ

))−1
. (33)

Then, for any code C ∈ La(n,M,Υ) with cardinality M ≤ M̄ ,

Pe(C) ≥ α 1
M

(
ϕn√

Υ,σ
, ϕn0,θ

)
. (34)

Proof: See the Appendix.
Corollary 2 implies that the bound from Theorems 1 and 2

holds in the average power constraint setting if the cardinality
of the codebook is sufficiently small. Indeed, it follows that
this condition is satisfied for typical communication systems.
For transmission rates very close to capacity or above capacity,
the bound (21) is needed instead (see the example in Fig. 2).
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Fig. 1: Upper and lower bounds to the channel coding error
probability over an AWGN channel with SNR = 10 dB and
rate R = 1.5 bits/channel use.

V. NUMERICAL EXAMPLES

A. Comparison with previous results

We consider the transmission of M = 2nR codewords over
n uses of an AWGN channel with R = 1.5 bits/channel use
and SNR = 10 log10

Υ
σ2 = 10 dB. The channel capacity is

C = 1
2 log2

(
1 + Υ

σ2

)
≈ 1.8 bits/channel use.

Figure 1 compares the lower bound from Theorem 3 with
previous results in the literature. In particular, we consider
Shannon’59 achievability and converse bounds for equal power
constraint [1, Eq. (20)], Shannon’59 converse bound for
maximal power constraint [1, Eqs. (20) and (83)], and the
lower bound for average power constraint that follows from
combining [1, Eq. (20)] and [6, Lem. 65]. While the bounds in
Figure 1 hold under the average probability of error formalism,
for reference we also include the curve Sh’59 (average)
for maximal error probability, which is tighter than that for
average error probability (see [6, Lem. 65] for details).

As the transmission rate R is close to capacity C, the
optimizing θ2 in Theorem 3 is close to the variance of the
capacity achieving output distribution. Then, for simplicity,
we fix θ2 = Υ + σ2. For the system parameters considered,
the condition M ≤ M̄ from Corollary 2 is satisfied for all n
and Theorem 3 can be evaluated using (34). It thus follows
that the bounds from Theorems 1, 2 and 3 coincide.

The results in Figure 1 show that that Shannon’59 lower
bound is the tightest bound in the equal power constraint
setting. However, under both maximal and average power
constraints, Theorem 3 yields a tighter lower bound and
presents a small constant gap to the achievability bound from
[1, Eq. (20)].1 Indeed, for an average power constraint and
under the average probability of error formalism the advantage
of Theorem 3 over previous results is significant in the finite
blocklength regime, as shown in Figure 1.

1The rate considered here is above the critical rate of the channel, and
therefore the error exponents of the achievability and converse bounds in
Figure 1 coincide. This is not longer true for rates below the critical rate.
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Fig. 2: Lower bounds to the channel coding error probability
over an AWGN channel with n = 2 and SNR = 10 dB.
Markers show the simulated error probability of a sequence
of codes satisfying an equal (◦), maximal (×) and average (•)
power constraints. Vertical line corresponds to the boundary
M ≤ M̄ ≈ 22.8 from Corollary 2.

B. Constellation design under power constraints

We consider the problem of transmitting M codewords with
n = 2 uses of an AWGN channel with SNR = 10 dB. This
problem is analogous to determining the best 2-dimensional
constellation for an uncoded communication system.

Figure 2 depicts Shannon’59 lower bound [1, Eq. (20)], and
the bounds from Theorems 2 and 3, both with θ2 = Υ + σ2.
The vertical line shows the boundary of the region M ≤ M̄
from Corollary 2, where the bounds from Theorems 2 and 3
coincide. With markers, we show the simulated ML decod-
ing error probability of a sequence of M -PSK (phase-shift
keying) constellations satisfying an equal power constraint
(◦), of a sequence of M -APSK (amplitude-phase-shift keying)
constellations satisfying a maximal (×) and average (•) power
constraints (both optimized using an stochastic algorithm).

As 2-dimensional cones coincide with the ML decoding
regions of an M -PSK constellation, Shannon’59 curve is on
top of the corresponding simulated probability (◦). However,
Shannon’59 lower bound does not apply to M -APSK con-
stellations satisfying maximal (×) and average (•) power
constraints. We can see that while Theorem 3 applies in both
of these settings, this is not the case for Theorem 2, that
in general only applies under maximal power constraint. As
stated in Corollary 2, the bounds from Theorems 2 and 3
coincide for M ≤ M̄ ≈ 22.8.

An analysis of the average power constrained codes (•) that
violate Theorem 2 shows that they present several constellation
points concentrated at the origin (0, 0). As these symbols
coincide, it is not possible to distinguish between them and
they will often yield a decoding error. However, since the
symbol (0, 0) does not require any energy for its transmission,
the average power for the remaining symbols is increased and
this code yields an overall smaller probability of error.

International Zurich Seminar on Information and Communication (IZS), February 26 – 28, 2020

132



ACKNOWLEDGMENT

The author gratefully acknowledges the insightful comments
by the reviewers and fruitful discussions with Tobias Koch and
David Morales-Jimenez.

APPENDIX

We characterize the region where f(β, γ) and its convex
envelope f(β, γ) coincide. We shall use the following result.

Proposition 2: Suppose g is differentiable with gradient ∇g.
Let A denote the domain of g, and let a ∈ A. If the inequality

g(ā) ≥ g(a) +∇g(a)T (ā− a), (35)

is satisfied for all ā ∈ A, then, it holds that g(a) = g∗∗(a).
Proof: As g∗∗ is the lower convex envelope of g, then

g(a) ≥ g∗∗(a) trivially. It remains to show that (35) implies
g(a) ≤ g∗∗(a). Fenchel’s inequality [7, Sec. 3.3.2] yields

g∗∗(a) ≥ 〈a, b〉 − g∗(b), (36)

for any b in the domain of g∗.
Setting b = ∇g(a) and using (19) in (36), we obtain

g∗∗(a) ≥ ∇g(a)Ta−max
ā∈A

{
∇g(a)T ā− g(ā)

}
(37)

= min
ā∈A

{
∇g(a)T (a− ā) + g(ā)

}
(38)

≥ min
ā∈A

{
g(a)

}
, (39)

where in the last step we used (35) to lower bound g(ā). Since
the objective of (39) does not depend on ā, we conclude from
(37)-(39) that g(a) ≤ g∗∗(a) and the result follows.

We apply Proposition 2 to the function f(β, γ). We recall
that f(β, γ) is differentiable for β ∈ [0, 1] and γ ≥ 0 with
derivatives given in [8, App. A]. We define the gradients

∇βf(b, g) , ∂f(β, γ)

∂β

∣∣∣
β=b,γ=g

, (40)

∇γf(b, g) , ∂f(β, γ)

∂γ

∣∣∣
β=b,γ=g

. (41)

According to Proposition 2, the function f(β0, γ0) and its
convex envelope f(β0, γ0) coincide if

f(β, γ) ≥ f(β0, γ0) + (β − β0)∇βf(β0, γ0)

+ (γ − γ0)∇γf(β0, γ0). (42)

is satisfied for all β ∈ [0, 1] and γ ≥ 0. This condition implies
that the first-order Taylor approximation of f at (β0, γ0) is a
global under-estimator of the function f(β, γ).

The derivatives of f(β, γ), given in [8, App. A], show that
the function is decreasing in both parameters, convex with
respect to β for all β ∈ [0, 1], and jointly convex with respect
to (β, γ) except for the neighborhood near the axis γ = 0.
Using these properties, it can be shown that the the condition
(42) only needs to be verified along the axis γ = 0.

Then, we conclude that f(β0, γ0) = f(β0, γ0) if (42) holds
for every β ∈ [0, 1] and γ = 0, i.e., if

f(β0, γ0)− f(β, 0) ≥ (β0 − β)∇βf(β0, γ0)

+ γ0∇γf(β0, γ0). (43)

Let θ ≥ σ > 0, n ≥ 1. Let t0 be the value such that
β(γ0, t0) = β0 and let t̄ satisfy β(0, t̄) = β, for β(γ, t) defined
in (13). Using (12) and the derivatives in [8, App. A], yields

f(β0, γ0)−f(β, 0) = Qn
2

(√
nγ0

σ

δ
,
t0
σ

)
−Qn

2

(
0,
t̄

σ

)
, (44)

∇βf(β0, γ0) = − θ
n

σn
e

1
2 (nγ0

δ −t20( 1
σ2− 1

θ2
)), (45)

∇γf(β0, γ0) = − n

2δ

(
t0δ

σ2√nγ0

)n
2

In
2

(
t0
√
nγ0

δ

)

× e− 1
2

(
nγ0σ

2

δ2
+
t20
σ2

)
. (46)

As β(γ0, t0) = β0 and β(0, t̄) = β, using (13), it follows that

β0 − β = Qn
2

(
0,
t̄

θ

)
−Qn

2

(√
nγ0

θ

δ
,
t0
θ

)
. (47)

Substituting (44) and (47) in (43), reorganizing terms, yields

Qn
2

(√
nγ0

σ

δ
,
t0
σ

)
+∇βf(β0, γ0)Qn

2

(√
nγ0

θ

δ
,
t0
θ

)

− γ0∇γf(β0, γ0) ≥ Qn
2

(
0,
t̄

σ

)
+∇βf(β0, γ0)Qn

2

(
0,
t̄

θ

)
.

(48)

The interval β ∈ [0, 1] corresponds to t̄ ≥ 0. We maximize
the right-hand side of (48) over t̄ ≥ 0 and we only verify the
condition (48) for this maximum value. To this end, we find the
derivative of the right-hand side of (48) with respect to t̄, we
identify the resulting expression with zero, and we use (45).
We conclude that the right-hand side of (48) is maximized for

t̄? =
√(

t20 − nγσ2θ2/δ2
)

+
(49)

where the threshold (a)+ = max(0, a) follows from the
constraint t̄ ≥ 0. By evaluating the second derivative of (48),
it can be verified that t̄? in (49) is indeed a maximum.

Using (45), (46) and (49) in (48) we obtain the desired
characterization for the region of interest. For the statement of
the result in Corollary 2, we select the smallest t0 that fulfills
(48) (which satisfies the condition with equality) and invert
the transformation β(γ0, t0) = β0 for γ0 = Υ and β0 = 1

M .
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Abstract—The single user parallel multiple input multiple
output (MIMO) slow (block) flat fading channel, subject to a
two-state fading per channel with additive white Gaussian noise
(AWGN) is examined. The fading in each of the parallel channels
is interpreted as state, which takes on two values with prescribed
probabilities. We focus here on the variable to fixed channel rate
(the broadcast approach) where a novel view of extension of
El-Gamal’s capacity of degraded broadcast product channels is
examined. The optimized average rate is analytically derived over
the parameters of the proposed scheme, and comparison to the
simple scheme that employs the broadcast approach per each of
the parallel channels separately. The achievable improvement in
rates under the latency demand (transmission in a single fading
block) is reflected.

I. INTRODUCTION

Recent growth in bandwidth requirements of the 5G wireless
communications networks, under stringent low latency require-
ments lead to vast contributions of innovations. This work
focuses on the slow (block) fading parallel MIMO channel [1],
where channel state is known at the receiver only. Under
this channel model the transmitter may adopt a broadcast
approach [2], which can optimize the expected transmission
rate under no transmission channel state information (CSI),
which is essentially characterized by the variable-to-fixed
coding [3].

The broadcast approach [2] for slow flat-fading channels [4]
uses the degradedness nature of the fading channel and applies
multi-layer coding, to deliver variable-to-fixed coding over
block fading channels. The amount of successfully decoded
layers depends on the channel realization. For deeply fad-
ing channels few layers are decoded, while for high fading
gains, more layers can be decoded. Rate and power allocation
per layer are optimized to maximize the expected rate. The
broadcast approach can be compared to the ergodic bound [5],
achievable given transmit CSI, and other contributions such as
[6]–[14].

El-Gamal [15] composed two degraded broadcast chan-
nels [16], [17] into a three-user setup: an encoder with two
outputs, each driving a dual-output broadcast channel; two
decoders, each is input by one less-noisy broadcast channel
output and one more-noisy output of the other channel (called
‘unmatched’). This was coined degraded broadcast product
channel. For the AWGN case, the capacity region (private and
common rates) was derived.

In this paper, the MIMO setup for the broadcast approach
is revisited, with new tools that differ from those in [2], [18].
This is by analyzing the finite state parallel MIMO channel,
where El-Gamal’s capacity region [15] is used to address
the multi-layering optimization problem for maximizing the

expected rate of a two-state fading [19]–[21] parallel MIMO
channel.

II. CHANNEL MODEL

Consider a single user parallel MIMO channel setting,
where a message w is to be block-encoded and sent through
a diagonal matrix two-input two-output flat fading channel
depicted in Fig. 1. The channel is given by

Y1 = H1X1 + N1,

Y2 = H2X2 + N2,
(1)

where Yi ∈ Cn is the received n-length symbols vector on
channel i ∈ 1, 2, Xi ∈ Cn is the transmitted vector over
channel i which satisfies the power constraint E[|Xi|2] ≤ P
, i ∈ 1, 2. The additive noise vector is denoted Ni ∈ Cn
and its elements are complex normal i.i.d with zero mean and
unit variance CN (0, 1). The i-th sub-channel fading coefficient
is denoted Hi ∈ R+, is drawn by some probability function
PH(·) and its value remains fixed during a block transmission,
changes along blocks independently, and H1 and H2 are
statistically independent. These channel states are known only
to the receiver side and are not fed back to the transmitter.
With no loss of generality, the channel fading Hi is assumed
to be real and positive.

For a given realization set of channel states {H1, H2} known
to both the transmitter and receiver, the per-block Shannon
capacity is well known [1]. Since H1 and H2 are unknown to
the transmitter, setting the rates to withstand the worst (lowest)
possible Hi may occur a great deal of rate loss. Variable-to-
fixed coding allows to deliver higher throughput, at the expense
that only parts of the message are decodable, according the
channel conditions. Clearly, the expected achievable rate can
be higher than the worst-case classical capacity. The recovered
message ŵ has different cardinality upon the realization set.

In this work, the channel model is limited to a two-state
symmetric case. Each channel i = 1, 2 can have independent
fading gain realizations Si ∈ {A,B}, state A denotes a fading
coefficient Hi = HA with probability PA; whereas state
B refers to the sub-channel Hi = HB , and |HA| < |HB |,
and is with probability PB = 1 − PA. This is reflected by
the condition PH(h) = PAδ(h − HA) + PBδ(h − HB)
where δ(·) is the kronecker delta.For brevity, denote the
fading gains by ν = |H|2, νa = |HA|2 and νb = |HB |2
and by definition νb > νa. The common power constraint
is given by E[|Xi|2] ≤ P , i = 1, 2. The ergodic capacity of
the two state fading parallel MIMO channel is specified by
Cerg = 2(PA log(1 + Pνa) + PB log(1 + Pνb)).
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Fig. 1: The parallel MIMO block fading channel with channel
state information at receiver. All codewords are of length n.

III. PRELIMINARY: CAPACITY OF DEGRADED GAUSSIAN
BROADCAST PRODUCT CHANNELS

Consider the model introduced in [15]: two receiver
discrete memoryless degraded product broadcast channels.
The Gaussian case was addressed as a special case. A single
transmitter codes two n-length codewords consisting of a
common message w0 ∈ {1, ..., 2nR0} to be decoded by both
users, and two private messages wBA ∈ {1, ..., 2nRBA} and
wAB ∈ {1, ..., 2nRAB}, one for each of the two decoding users.
A single function codes these 3 messages into two codewords;
each undergoes parallel degraded broadcast subchannels{

Y1 = X1 +N11

Z1 = Y1 +N12

{
Z2 = X2 +N21

Y2 = Z2 +N22,

and N11, N21 ∼ CN (0, ν−1
b ) , N21, N22 ∼ CN (0, ν−1

a −ν−1
b ).

As depicted in the bold and red parts of Fig. 2, two users
(namely AB and BA) receive both common and private mes-
sages from the transmitter independently decode the messages.
This is an unmatched setting, as Y1 is less noisy than Z1, alas
Z2 is less noisy than Y2. Hence, each of the users has one less-
noisy channel output alongside another which is the noisier
output of the other sub-channel.

Following Theorem 2 of [15] which shows this case, and
exploiting symmetry for equal power allocation to both sub-
channels, optimal allocation is expected to be achieved by
equal common rate allocation to every user (state). Denoting
ᾱ = 1− α, the capacity region (R0, RBA, RAB) is

R0 ≤ log
(

1 + νaαP
1+νaᾱP

)
+ log

(
1 + νbαP

1+νbᾱP

)

R0 +RBA = R0 +RAB ≤ log
(
1 + νaαP

1+νaᾱP

)
+log(1 + νbP )

R0 +RBA +RAB ≤ log (1 + νbP ) + log
(

1 + νaαP
1+νaᾱP

)

+ log (1 + νbᾱP ) . (2)

IV. MAIN CONTRIBUTION

A. Extended Degraded Gaussian Broadcast Product Channels

The classical product channel is extended by introducing
two dual-input receivers in addition to the original two. The
first has the two more noisy channel outputs (Z1, Y2), whereas
the second gets the two less noisy outputs (Z2, Y1). To support
this, two messages wAA and wBB are added. The total two
n-length codewords are the superposition of three codewords
by independent encoders as follows (X1,X2) = fAA(wAA) +
fcr(w0, wBA, wAB) + fBB(wBB), where subscript cr stands
for "crossed" states ((A,B) or (B,A)). See Fig. 2 for an
illustration.

Stream AA is decoded first, regardless of whether the others
can be decoded (this is done by treating all the other streams as
interference). Then, both streams AB and BA including their
common stream subscripted 0 can be decoded after removing
the AA impact from their decoder inputs (treating the BB
stream as interference). Finally, removing all above decoded
streams allows decoding stream BB. From (2), we have

RAA ≤ 2 log
(

1 + αAAP

ν−1
a +ᾱAAP

)
;

RAA +R0 ≤ 2 log
(

1 + αAAP

ν−1
a +ᾱAAP

)

+ log
(

1 + ααcrP

ν−1
b +(ᾱαcr+αBB)P

)
+ log

(
1 + ααcrP

ν−1
a +(ᾱαcr+αBB)P

)
;

RAA +R0 +RBA = RAA +R0 +RAB

≤ 2 log
(

1 + αAAP

ν−1
a +ᾱAAP

)
+ log

(
1 + ααcrP

ν−1
a +(ᾱαcr+αBB)P

)

+ log
(

1 + αcrP

ν−1
b +αBBP

)
;

RAA +R0 +RBA +RAB

≤ 2 log
(

1 + αAAP

ν−1
a +ᾱAAP

)
+ log

(
1 + αcrP

ν−1
b +αBBP

)

+ log
(

1 + ααcrP

ν−1
a +(ᾱαcr+αBB)P

)
+ log

(
1 + ᾱαcrP

ν−1
b +αBBP

)
;

RAA +R0 +RBA +RAB +RBB

≤ 2 log
(

1 + αAAP

ν−1
a +ᾱAAP

)
+ log

(
1 + αcrP

ν−1
b +αBBP

)

+ log
(

1 + ααcrP

ν−1
a +(ᾱαcr+αBB)P

)
+ log

(
1 + ᾱαcrP

ν−1
b +αBBP

)

+ 2 log
(

1 + αBBP

ν−1
b

)
; (3)

where αAA, αcr, αBB ∈ [0, 1] are the relative power alloca-
tions for the subscripted letters αAA + αcr + αBB = 1, and
α ∈ [0, 1] is the single user private power allocation within the
unmatched channel.

B. Suggested Encoding and Decoding Scheme

Wrapping the extended model of Section IV-A with a
message splitter at the transmitter and channel state dependent
message multiplexer at the receiver enriches the domain. Fig.
3 illustrates the encoding and decoding schemes in full.

During decoding, the 4 possible channel states S = (S1, S2)
impose different decoding capabilities. If S = (A,A), then
gAA(·) can reconstruct wAA to achieve a total rate of
RAA. For S = (B,A), gBA(·) is capable of reconstructing
three messages (wAA, w0, wBA) with sum rate of RAA +
R0 + RBA. Similarly for S = (A,B), gAB(·) reconstructs
(wAA, w0, wAB) with sum rate RAA + R0 + RAB . When
both channels are permissive S = (B,B), all 5 messages
(wAA, w0, wBA, wAB , wBB) are reconstructed at gBB(·) un-
der the rate RAA +R0 +RBA +RAB +RBB .

C. Average Sum Rate

Stitching up all cases with their probabilities, gives rise to
the average rate of the parallel channel of

Ravg = P 2
ARAA + PAPB(RAA +R0 +RAB)

+ PBPA(RAA +R0 +RBA)

+ P 2
B(RAA +R0 +RBA +RAB +RBB). (4)
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ŵ
(BB)
BA , ŵ
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Fig. 2: Encoding-decoding scheme of the 2 receiver Gaussian degraded product broadcast channel with users: AA,AB,BA,BB

splitter

fAA(·)

fcr(·)

fBB(·)

H1

H2

w

wAA

w0

wBA

wAB

wBB

+

+

H−1
1

H−1
2

+

+

CN (0,1)

CN (0,1)

Y1

Y2

X1

X2

gBA(·)

gAB(·)

gAA(·)

gBB(·)

ŵ
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Fig. 3: Encoding and decoding scheme of the two receiver Gaussian degraded product broadcast channel broadcast approach

Using (3), and since both channels have identical statistics lead
to RAB = RBA, and the achievable average rate is
Ravg = 2(PA + PB)2 log (1 + νaP ) +R0(1− αAA)

+R1(1− αAA − ααcr) +R2(1− αAA − αcr), (5)

where the new notations are
R0(α0) = [(PA + PB)2 − P 2

A] log(1 + νbα0P )

− [(PA + PB)2 + P 2
A] log(1 + νaα0P ), (6)

R1(α1) = P 2
B log(1 + νbα1P )

− [(PA + PB)2 − P 2
A] log(1 + νaα1P ), (7)

R2(α2) = −2PAPB log(1 + νbα2P ). (8)

and the arguements α0 = 1−αAA, α1 = 1−αAA−ααcr and
α2 = 1 − αAA − αcr = αBB . Note that R0(α0) and R1(α1)
are not obliged to be positive, as they can be negative for some
scenarios, and R2(α2) is non-positive by definition.

Denoting the domain D′ of valid power allocations vector
α′ = [α, αAA, αcr, αBB ]T ∈ [0, 1]4 and the operator [x]+ =
max{0, x} yield the following.

Proposition 1. The maximal sum rate of the symmetric two
parallel two state channel over all power allocations is
max
α′∈D′

Ravg(α′) = 2(PA + PB)2 log(1 + νaP )

+ max
0≤αAA≤1

{
R0(1− αAA) +R1(αopt

1 (αAA))
}
,

where
αopt

1 (αAA) = max{0,min{1− αAA, α∗1}}, (9)

α∗1 =
P 2
Bνb − [(PA + PB)2 − P 2

A]νa
[(PA + PB)2 − P 2

A − P 2
B ]νaνbP

, (10)

where the latter solves ∂
∂α1

R1(α∗1) = 0.

Proof. Consider the transform t′ : D′ → D defined by
[α0, α1, α2]T = α = t′(α′T ) = t′

(
[α, αAA, αcr, αBB ]T

)
=

[1 − αAA, 1 − αAA − ααcr, αBB ]T , which is bijective,
with inverse transform t : D → D′ defined by
[α, αAA, αcr, αBB ]T = α′ = t′(α′T ) = t′

(
[α0, α1, α2]T

)
=

[α0−α1

α0−α2
, 1− α0, α0 − α2, α2]T . Bijectiveness leads to

max
α′∈D′

Ravg(α′) = max
α∈D

{
2(PA+PB)2log(1+νaP )+

2∑

i=0

Ri(αi)

}

= 2(PA + PB)2 log (1 + νaP ) + max
α0,α1:

0≤α1≤α0≤1

{R0(α0) +R1(α1)}

The maximization of R2(α2) yields αopt
2 = 0, as R2(α2) is a

decreasing function. Further simplification gives,
max
α′∈D′

Ravg(α′) = 2(PA + PB)2 log (1 + νaP )

+ max
0≤αAA≤1

{
R0(1− αAA) + max

α1:
0≤α1≤1−αAA

R1(α1)

}
.

The inner maximization is done over α1 while αAA is fixed
prior to the maximization. By taking the first derivative w.r.t
α1 and some calculus, optimality is achieved for (9). �
Corollary 2. The optimal power allocation for the state
(B,B) is αopt

BB = 0.

This is true for any set of parameters νa, νb, PA, PB , even
if PB → 1 and νb � νa. Inherently, a penalty occurs when
trying to exploit the double permissive state.

Corollary 3. Under the optimal power allocation,
αopt(αAA) = 1− αopt

1 (αAA)/(1− αAA).
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This removes a degree of freedom in the optimization
problem. Using these corollaries, and the notation α′ =
[α, αAA, αcr, αBB ]T instead of α = [α0, α1, α2]T , we have:

Theorem 4. The maximal sum rate of the symmetric two-
parallel two-state channel over all allocations α′ ∈ D′ is
Ropt

avg = 2(PA + PB)2 log(1 + νaP )

+ max
0≤αAA≤1

{
R0(1−αAA)+R1((1−αAA)·(1−αopt(αAA)))

}

where
αopt(αAA) =

[
min

{
1, 1− P 2

Bνb−[(PA+PB)2−P 2
A]νa

2PA·PB ·νaνbP (1−αAA)

}]
+
. (11)

Denoting the argument of the maximization as αopt
AA, the

optimal power allocation vector is
α′opt = [αopt(αAA), αopt

AA, 1− α
opt
AA, 0]T .

Proof. Use Prop. 1 and note that α1 = 1 − αAA − ααcr =
(1− αAA)(1− α) for the optimal alocation αBB = 0. �

D. Sub Optimal Schemes

For evaluation of the advantage of the joint αAA and α, the
following sub optimal schemes are introduced: a) independent
broadcasting; b) privately broadcasting; and c) only common
broadcasting.

Definition 5. A scheme for which the encoder disjointly
encodes different messages into each single channel of the
parallel channel using the broadcast approach over the fading
channel is denoted independent broadcasting.

The broadcast approach for fading SISO channel (introduced
in [8], elaborated in [2]) relies on two main operations: super-
position coding by layering at the transmitter; and successive
interference cancellation at the receiver. The maximal average
sum rate of the symmetric two parallel two state channel under
independent broadcasting is

Rind-bc,opt
avg = 2(PA + PB) log

(
1+νaP

1+νa(1−αind-bc,opt)P

)

+ 2PB log
(
1 + νb(1− αind-bc,opt)P

)
,

αbc,opt =
[
min

{
1, 1− PBνb−(PA+PB)νa

PAνaνbP

}]
+
. (12)

Definition 6. A scheme for which no power is allocated for
the common stream in the (B,A) and (A,B) states (message
w0) is denoted privately broadcasting.

This scheme is equivalent to setting α = 0 in Theorem
4, thus allocating encoding power from the common stream
(R0 = 0) to the other streams RAA, RAB , RBA and RBB
which achieves optimality for

αprv-bc,opt
AA =

[
min

{
1, 1− [PB−PA]νb−[PB+PA]νa

2PAνaνbP

}]
+
.

Definition 7. A scheme for which all of the crossed state power
is allocated for common stream only (message w0) and no
power is allocated privately (no allocation for messages wAB
and wBA) is denoted only common broadcasting.

This scheme is equivalent to setting α = 1 in Theorem
4, thus allocating encoding power from the private streams
(RAB = RBA = 0) to the other streams RAA, R0 and RBB
which achieves optimality for
αcmn-bc,opt
AA =

[
min

{
1,1− [(PA+PB)2−P 2

A]νb−[(PA+PB)2+P 2
A]νa

2P 2
AνaνbP

}]
+
.

E. Numerical Results

Fig. 4 demonstrates the optimality of the proposed scheme
(Theorem 4). The selected metric is the part of each scheme
as a fraction of ergodic capacity. It is always superior in
comparison to the other sub-optimal schemes, and captures a
large portion of the ergodic capacity which stands as the upper
bound. The sub-optimal methods inferior or superior to other
sub-optimal methods, dependent on the parameters set. Some
parameters sets can make them coincide for all SNR values.
The gap to ergodic capacity does not change much, indicating
that most coding gain is achieved via one of the classical
broadcasting, and the specific one is parameters-set dependent.

V. SISO BLOCK FADING

A. SISO consecutive block encoding model

Consider a block fading channel, as depicted at Fig. 5. Each
n discrete time samples, a message w is to be encoded into
the sequence X ∈ Cn, which enters the single input single
output block fading channel satisfying the power constraint
E|X|2 ≤ P where X is the single letter random variable
representation of the vector X and P is the power constraint
Y = HX + N. The channel gain H ∈ C is fixed within the
n length block, and changes in-between blocks according to a
priori known statistics PH in a memoryless fashion. A complex
normal noise is added, i.i.d. per channel output sample. The
decoder is fully aware of the block gain (by channel sounding
using pilot symbols) and reconstructs the message ŵ. The
encoder has no way to know the channel realizations, yet has
knowledge regarding its statistics PH .

This setting, when allowing consecutive blocks variable-to-
fixed coding [3] joint encoding, is actually a variant of the
parallel MIMO single user case, where the diversity is over
time blocks. Any development done so far can be applied on
this special case. By allowing coding over two blocks at a time,
the parallel channel model described till this section holds for
this channel as well. The drawback is additional latency, yet
only in the length of a single block, which in some use cases
can be justified for the boos of achievable average rate.

B. A comment on Whiting [20]

The result in Theorem 4 differs from the one presented in
[20] for the two-parallel two state channel. In [20] it is chosen
to transmit only common information to the pairs (A,B)
and (B,A). [20, eq. (39)] clearly states that for the crossed
states (A,B) and (B,A) only common rate is used without
justification. It is further claimed that this is an expected
rate upper bound for some power allocation. Our result fully
coincides with [20, eq. (39)] for α = 1 rather than as in (9).
However, this work proves that α = 1 is suboptimal, and does
not yield the maximal average rate. Furthermore, [20] does
not notice that αBB = 0, whereas in this paper it is shown
analytically to be optimal in Corollary 2.

VI. CONCLUSION

The broadcast approach for the parallel MIMO two state
block fading channel is studied. The optimal scheme based on
the concept of El-Gamal’s degraded broadcast product channel,
requires transmission of both private and common streams on
two states (A, B) or (B, A). The expected rate is maximized
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Fig. 5: The SISO n-length block fading channel and system.

analytically for layered transmission over the parallel channel.
We demonstrate that the simple broadcast approach operating
on each of the parallel channels separately achieves a signif-
icant portion of the optimal average rate. While the simple
two-state parallel channel is considered here, the results apply
directly to reduced latency constraints, that permit decoding
over two fading blocks of a single two state fading channel.
Evidently, extensions to a richer state spaces are called for,
which may motivate new broadcast approach concepts of
direct interest to future latency limited wireless systems. The
framework considered motivates extensions where also the
number of parallel channels received is random (adding thus
a zero state), and this model may give rise to examine also
secrecy constraints [22].
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Abstract—We consider a Gaussian multiple-access channel
where the number of users grows with the blocklength n. For
this setup, the maximum number of bits per unit-energy that
can be transmitted reliably as a function of the order of growth
of the users is analyzed. For the per-user probability of error,
we show that if the number of users grows sublinearly with the
blocklength, then each user can achieve the capacity per unit-
energy of the Gaussian single-user channel. Conversely, if the
number of users grows at least linearly with the blocklength,
then the capacity per unit-energy is zero. Thus, there is a sharp
transition between orders of growth where interference-free
communication is feasible and orders of growth where reliable
communication at a positive rate per unit-energy is infeasible.
The same observation was made by Ravi and Koch (Proc. IEEE
Int. Symp. Inf. Theory, Jul. 2019) when the per-user probability
of error is replaced by the joint probability of error, with the
difference that the transition threshold is located at n/ logn
rather than at n. We further discuss the rates per unit-energy
that can be achieved if one allows for a non-vanishing error
probability.

I. INTRODUCTION

Recently, Chen et al. [1] introduced the many-access chan-
nel (MnAC) as a multiple-access channel (MAC) where the
number of users grows with the blocklength. The MnAC model
is motivated by systems consisting of a single receiver and
many transmitters, the number of which is comparable or even
larger than the blocklength. This situation may occur, e.g.,
in a machine-to-machine communication system with many
thousands of devices in a given cell. In [1], Chen et al. con-
sidered a Gaussian MnAC with kn users and determined the
number of messages Mn each user can transmit reliably with
a codebook of average power not exceeding P . Since then,
MnACs have been studied in various papers under different
settings. For example, Polyanskiy [2] considered a Gaussian
MnAC where the number of active users grows linearly in
the blocklength and each user’s payload is fixed. Zadik et al.
[3] presented improved bounds on the tradeoff between user
density and energy-per-bit of this channel. Generalizations to
quasi-static fading MnACs can be found in [4]–[7]. Shahi et

J. Ravi and T. Koch have received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and
innovation programme (Grant No. 714161). T. Koch has further received
funding from the Spanish Ministerio de Economía y Competitividad under
Grants RYC-2014-16332 and TEC2016-78434-C3-3-R (AEI/FEDER, EU).

al. [8] studied the capacity region of strongly asynchronous
MnACs. Ravi and Koch [9], [10] characterized the capacity
per unit-energy of Gaussian MnACs as a function of the order
of growth of the number of users.

Roughly, papers on the MnAC can be divided into two
groups: The first group, including [1], [8]–[10], considers a
classical information-theoretic setting where the number of
messages Mn transmitted by each user grows with n and the
probability of a decoding error is defined as

P
(n)
e,J , Pr{(Ŵ1, . . . , Ŵkn) 6= (W1, . . . ,Wkn)}. (1)

Here, Wi denotes the message transmitted by user i and Ŵi

denotes the decoder’s estimate of this message. The second
group, including [2]–[7], assumes that Mn is fixed and defines
the probability of a decoding error as

P
(n)
e,A , 1

kn

kn∑

i=1

Pr{Ŵi 6= Wi}. (2)

The error probability P
(n)
e,A is sometimes referred to as per-

user probability of error. In this paper, we shall refer to it as
average probability of error (APE). In contrast, we shall refer
to P (n)

e,J as joint probability of error (JPE).
This paper aims at a better understanding of the implications

of the above assumptions on the capacity per unit-energy,
defined as the largest number of bits per unit-energy that
can be transmitted with vanishing error probability [11]. To
this end, we consider the APE and study the behavior of the
capacity per unit-energy of Gaussian MnACs as a function
of the order of growth of the number of users kn. We
demonstrate that, if the order of growth of kn is sublinear,
then each user can achieve the capacity per unit-energy log e

N0

of the single-user Gaussian channel (where N0/2 is the noise
power). Conversely, if the growth of kn is linear or superlinear,
then the capacity per unit-energy is zero. Thus, there is a
sharp transition between orders of growth where interference-
free communication is feasible and orders of growth where
reliable communication at a positive rate is infeasible. The
same behavior has been observed for the JPE, but with the
transition threshold located at n/ log n [9], [10]. Consequently,
relaxing the error probability from JPE to APE merely shifts
the transition threshold from n/ log n to n.
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Our results imply that, when the number of users grows
linearly in n, as assumed, e.g., in [2]–[7], the capacity per
unit-energy is zero, irrespective of whether one considers the
APE or the JPE. We further show that, for the JPE, this holds
true even if we allow for a non-vanishing error probability. We
thus conclude that, when the number of users of the Gaussian
MnAC grows linearly in n, a positive rate per unit-energy can
be achieved only if one considers the APE and one allows for
a non-vanishing error probability.

The rest of the paper is organized as follows. In Section II,
we introduce the system model. In Section III, we characterize
the capacity per unit-energy of the Gaussian MnAC with APE
and compare it to the capacity per unit-energy of the Gaussian
MnAC with JPE obtained in [9], [10]. Section IV discusses
the rates per unit-energy that can be achieved if one allows
for a non-vanishing error probability. Section V concludes the
paper with a discussion of the obtained results.

II. PROBLEM FORMULATION AND DEFINITIONS

A. Model and Definitions

Suppose there are k users that wish to transmit their mes-
sages Wi, i = 1, . . . , k, which are assumed to be independent
and uniformly distributed on {1, . . . ,M (i)

n }, to one common
receiver. To achieve this, they send a codeword of n symbols
over the channel, where n is referred to as the blocklength. We
consider a many-access scenario where the number of users k
grows with n, hence, we denote it as kn. We further consider a
Gaussian channel model where, for kn users and blocklength
n, the received vector Y is given by

Y =

kn∑

i=1

Xi(Wi) + Z.

Here, Xi(Wi) is the length-n transmitted codeword by user
i for message Wi and Z is a vector of n i.i.d. Gaussian
components Zj ∼ N (0, N0/2) independent of Xi.

We next introduce the notion of an
(
n,
{
M

(·)
n

}
,
{
E

(·)
n

}
, ε
)

code. We use the subscripts “J” and “A” to indicate whether
the JPE or the APE is considered.

Definition 1: For 0 ≤ ε < 1, an
(
n,
{
M

(·)
n

}
,
{
E

(·)
n

}
, ε
)
J

code for the Gaussian MnAC consists of:
1) kn encoding functions fi : {1, . . . ,M (i)

n } → Xn, which
map user i’s message to the codeword Xi(Wi), satisfying
the energy constraint

n∑

j=1

x2ij(wi) ≤ E(i)
n . (3)

Here, xij is the jth symbol of the transmitted codeword.
2) A decoding function g : Yn → {M (·)

n }, which maps the
received vector Y to the messages of all users and whose
JPE, defined in (1), satisfies P (n)

e,J ≤ ε.
An

(
n,
{
M

(·)
n

}
,
{
E

(·)
n

}
, ε
)
A

code for the Gaussian MnAC
consists of the same encoding functions fi, i = 1, . . . , kn and
a decoding function g : Yn → {M (·)

n } whose APE, defined in
(2), satisfies P (n)

e,A ≤ ε.

We shall say that the (n, {M (·)
n }, {E(·)

n }, ε)ξ code
(ξ ∈ {J,A}) is symmetric if M (i)

n = Mn and E
(i)
n = En for

all i = 1, . . . , kn. For compactness, we denote a symmetric
code by (n,Mn, En, ε)ξ, ξ ∈ {J,A}. In this paper, we restrict
ourselves to symmetric codes.

Definition 2: Let ξ ∈ {J,A}. For a symmetric code, the
rate per unit-energy Ṙξ is said to be ε-achievable if for
every α > 0 there exists an n0 such that if n ≥ n0, then
an (n,Mn, En, ε)ξ code can be found whose rate per unit-
energy satisfies logMn

En
> Ṙξ − α. Furthermore, Ṙξ is said

to be achievable if it is ε-achievable for all 0 < ε < 1.
The ε-capacity per unit-energy Ċξε is the supremum of all
ε-achievable rates per unit-energy. Similarly, the capacity per
unit-energy Ċξ is the supremum of all achievable rates per
unit-energy.

Remark 1: In [11, Def. 2], a rate per unit-energy Ṙ is said
to be ε-achievable if for every α > 0 there exists an E0 such
that if E ≥ E0, then an (n,M,E, ε) code can be found whose
rate per unit-energy satisfies logM

E > Ṙ−α. Thus, the energy
E is supposed to be large rather than the blocklength n, as
required in Definition 2. For the MnAC, where the number
of users grows with the blocklength, we believe it is more
natural to impose that n→∞. Definition 2 is also consistent
with the definition of energy-per-bit in [2], [3]. Further note
that, for the capacity per unit-energy, where a vanishing error
probability is required, our definition is actually equivalent to
[11, Def. 2]. Indeed, as observed in [9, Lemma 1] for the
JPE, and as we argue below for the APE, a vanishing error
probability can only be achieved if En →∞ as n→∞.

B. Order Notations

Let {an} and {bn} be two sequences of nonnegative real
numbers. We write an = o(bn) if lim

n→∞
an
bn

= 0. We further
write an = Ω(bn) if lim inf

n→∞
an
bn

> 0 and an = ω(bn) if
lim
n→∞

an
bn

=∞.

III. CAPACITY PER UNIT-ENERGY OF
GAUSSIAN MANY-ACCESS CHANNELS

In this section, we discuss the behavior of the capacity per
unit-energy as a function of the growth of kn. Specifically,
in Subsection III-A we review the results for the case of JPE
that we originally presented in [9], [10]. In Subsection III-B,
we then present one of the main results of this paper, a
characterization of the capacity per unit-energy as a function
of the growth of the number of users for APE (Theorem 2).
The proof of Theorem 2 is given in Subsection III-C.

A. Joint Probability of Error

Theorem 1: The capacity per unit-energy ĊJ for JPE has
the following behavior:

1) If kn = o(n/ log n), then ĊJ = log e
N0

.
2) If kn = ω(n/ log n), then ĊJ = 0.

Proof: Part 1) is [9, Th. 2]. Part 2) is [9, Th. 1].
In words, if the order of growth is below n/ log n, then

each user can achieve the single-user capacity per unit-energy.
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Conversely, for any order of growth above n/ log n, no positive
rate per unit-energy is achievable. Thus, there is a sharp
transition between orders of growth where interference-free
communication is feasible and orders of growth where reliable
communication at a positive rate per unit-energy is infeasible.

B. Average Probability of Error

Theorem 2: The capacity per unit-energy ĊA for APE has
the following behavior:

1) If kn = o(n), then ĊA = log e
N0

.
2) If kn = Ω(n), then ĊA = 0.

Proof: See Section III-C.
We observe a similar behavior as for JPE. Again, there is a

sharp transition between orders of growth where interference-
free communication is feasible and orders of growth where
reliable communication at a positive rate per unit-energy is
infeasible. The main difference is that the transition threshold
is shifted from n/ log n to n.

C. Proof of Theorem 2

Part 1): We first argue that P (n)
e,A → 0 only if En →∞, and

that in this case ĊA ≤ log e
N0

. Indeed, let Pi , Pr{Ŵi 6= Wi}
denote the probability that message Wi is decoded erroneously.
We then have that P (n)

e,A ≥ mini Pi. Furthermore, Pi is lower-
bounded by the error probability of the Gaussian single-user
channel, since a single-user channel can be obtained from the
MnAC if a genie informs the receiver about the codewords
transmitted by users j 6= i. By applying the lower bound [12,
eq. (30)] on the error probability of the Gaussian single-user
channel, we thus obtain

P
(n)
e,A ≥ Q

(√
2En
N0

)
, Mn ≥ 2. (4)

Hence P (n)
e,A → 0 only if En →∞. As mentioned in Remark 1,

when En tends to infinity as n → ∞, the capacity per unit-
energy ĊA coincides with the capacity per unit-energy defined
in [11], which for the Gaussian single-user channel is given
by log e

N0
[11, Ex. 3]. Furthermore, if P (n)

e,A → 0 as n → ∞,
then there exists at least one user i for which Pi → 0 as
n → ∞. By the above genie argument, this user’s rate per
unit-energy is upper-bounded by the capacity per unit-energy
of the Gaussian single-user channel. Since for the class of
symmetric codes considered in this paper each user transmits
at the same rate per unit-energy, we conclude that ĊA ≤ log e

N0
.

We next show that any rate per unit-energy ṘA < log e
N0

is
achievable. For a given 0 < ε < 1, let 0 < ε′ < ε, and define

An , 1

kn

kn∑

i=1

1(Ŵi 6= Wi)

where 1(·) denotes the indicator function. Further define An ,
{0, 1/kn, . . . , 1} and Aε′n , {a ∈ An : a ≥ ε′}. Noting that

P
(n)
e,A = E[An], we then obtain that

P
(n)
e,A =

∑

a∈An
aPr{An = a}

=
∑

a∈An\Aε′n
aPr{An = a}+

∑

a∈Aε′n
aPr{An = a}

≤ ε′ +
∑

a∈Aε′n
Pr{An = a} (5)

where we used that a ≤ ε′ for a ∈ An \ Aε
′
n and a ≤ 1 for

a ∈ Aε′n . Next we show that if ṘA < log e
N0

, then

lim
n→∞

∑

a∈Aε′n
Pr{An = a} = 0. (6)

It then follows from (5) that P (n)
e,A ≤ ε for sufficiently large n

and all 0 < ε < 1. Thus, any rate per unit-energy ṘA < log e
N0

is achievable which proves Part 1) of Theorem 2.
To prove (6), we need the following lemma.
Lemma 1: For any arbitrary 0 < ρ ≤ 1, we have

Pr{An = a} ≤
(
kn
akn

)
Maknρ
n e−nE0(a,ρ), a ∈ An \ {0}

where

E0(a, ρ) , ρ

2
ln

(
1 +

a2knEn
n(ρ+ 1)N0

)
.

Proof: See [13, Th. 2].
Using Lemma 1, we can upper-bound the second term on

the right-hand side (RHS) of (5) as
∑

a∈Aε′n
Pr{An = a}

≤
(

max
a∈Aε′n

exp
[
−nE0(a, ρ) + lnMaρkn

n

]
) ∑

a∈Aε′n

(
kn
akn

)

≤ max
a∈Aε′n

exp [−Enfn(a, ρ)] (7)

where

fn(a, ρ) , nE0(a, ρ)

En
− aρkn lnMn

En
− kn ln 2

En
.

We next choose En = (ln(n/kn)kn/n)−1. This implies
that En → ∞ and Enkn/n → 0 as n → ∞ since, by the
theorem’s assumption, kn = o(n). We then show that, for
this choice of En and ṘA = log e

(1+ρ)N0
− δ (for some arbitrary

0 < δ < log e
(1+ρ)N0

), we have

lim inf
n→∞

min
a∈Aε′n

fn(a, ρ) > 0. (8)

Thus, for ṘA = log e
(1+ρ)N0

− δ, the RHS of (7) vanishes as
n→∞. Since 0 < ρ < 1 and δ > 0 are arbitrary, (6) follows.

To obtain (8), we first show that, for any fixed value of ρ
and our choices of En and ṘA,

lim inf
n→∞

dfn(a, ρ)

da
> 0, ε′ ≤ a ≤ 1. (9)
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Hence

lim inf
n→∞

min
a∈Aε′n

fn(a, ρ) ≥ lim inf
n→∞

fn(ε′, ρ). (10)

Indeed, basic algebraic manipulations yield for ε′ ≤ a ≤ 1

dfn(a, ρ)

da
≥ ρkn

[
1

1 + 2knEn
n(ρ+1)N0

1

(1 + ρ)N0
− ṘA

log e

]
. (11)

Recall that, for the given choice of En, we have knEn
n → 0

as n→∞. It follows that the bracketed term in (11) tends to
δ

log e as n→∞. This proves (9).
We next show that the RHS of (10) is positive for every

0 < ρ < 1. Let

in(ε′, ρ) , nE0(ε′, ρ)

En

jn(ε′, ρ) , ε′ρknṘA

log e

hn , kn ln 2

En
.

For our choices of En and ṘA, we have that hn/jn(ε′, ρ)→ 0
as n→∞. Consequently,

lim inf
n→∞

fn(ε′, ρ) ≥ lim inf
n→∞

jn(ε′, ρ) lim inf
n→∞

fn(ε′, ρ)

jn(ε′, ρ)

= lim inf
n→∞

jn(ε′, ρ)

{
lim inf
n→∞

in(ε′, ρ)

jn(ε′, ρ)
− 1

}
.

Note that jn(ε′, ρ) ≥ ε′ρṘA/ log e, which is bounded away
from zero for our choice of ṘA and δ < log e

(1+ρ)N0
. The RHS

of (10) is thus positive if lim infn→∞ in(ε′, ρ)/jn(ε′, ρ) > 1,
which is what we show next. Indeed, we have for our choice
of En and kn = o(n) that

lim
n→∞

in(ε′, ρ)

jn(ε′, ρ)
=

log e

(1 + ρ)N0ṘA
.

For our choice of ṘA, this is strictly larger than 1. We thus
conclude that the RHS of (10) is positive, from which (8), and
hence also (6), follows. This proves Part 1) of Theorem 2.

Part 2): Fano’s inequality yields that

logMn ≤ 1 + Pi logMn + I(Wi; Ŵi)

for i = 1, . . . , kn. Averaging over all i’s then gives

logMn ≤ 1 +
1

kn

kn∑

i=1

Pi logMn +
1

kn
I(W;Ŵ)

≤ 1 + P
(n)
e,A logMn +

1

kn
I(X;Y)

≤ 1 + P
(n)
e,A logMn +

n

2kn
log

(
1 +

2knEn
nN0

)
(12)

where X , (X1,X2, . . . ,Xkn). Here, the first inequality fol-
lows because the messages Wi, i = 1, . . . , kn are independent
and because conditioning reduces entropy, the second inequal-
ity follows from the definition of P (n)

e,A and the data processing

inequality, and the third inequality follows by upper-bounding
I(X;Y) by n

2 log
(
1 + 2knEn

nN0

)
.

Dividing both sides of (12) by En, and solving the inequal-
ity for ṘA, we obtain the upper bound

ṘA ≤
1
En

+ n
2knEn

log(1 + 2knEn
nN0

)

1− P (n)
e,A

. (13)

As argued at the beginning of the proof of Part 1), we have
P

(n)
e,A → 0 only if En → ∞. If kn = Ω(n), then this implies

that knEn/n→∞ as n→∞. It thus follows from (13) that,
if kn = Ω(n), then ĊA = 0, which is Part 2) of Theorem 1.

IV. NON-VANISHING ERROR PROBABILITY

In this section, we briefly discuss how the largest achievable
rate per unit-energy changes if we allow for a non-vanishing
error probability. With the help of the following example, we
first argue that when the number of users is bounded in n, then
a simple orthogonal-access scheme achieves an ε-achievable
rate per unit-energy that can be strictly larger than the single-
user capacity per unit-energy log e

N0
.

Example 1: Consider a k-user Gaussian MAC with normal-
ized noise variance N0/2 = 1 and where the number of users
is independent of n. Suppose that each user transmits one
out of two messages (Mn = 2) with energy En = 1 by
following an orthogonal-access scheme where each user gets
one channel use and remains silent in the remaining channel
uses. In this channel use, each user transmits either +1 or −1
to convey its message. Since the access scheme is orthogonal,
the receiver can perform independent decoding for each user,
which yields Pi = Q(1). Consequently, we can achieve the
rate per unit-energy logMn

En
= 1 at APE P

(n)
e,A = Q(1) and

at JPE P
(n)
e,J = 1 − (1 − Q(1))k [9, eq. (6)]. Thus, for some

0 < ε < 1, we have that Ċξε >
log e
N0

, ξ ∈ {J,A}.
Remark 2: A crucial ingredient in the above scheme is that

the energy En is bounded in n. Indeed, it follows from [12,
Th. 3] that if En → ∞ as n → ∞, then the ε-capacity per
unit-energy of the Gaussian single-user channel is equal to
log e
N0

, irrespective of 0 < ε < 1. The genie argument provided
at the beginning of Section III-C then yields that the same is
true for the Gaussian MnAC.

In the rest of this section, we discuss the ε-capacity per
unit-energy when the number of users kn tends to infinity as
n tends to infinity. Specifically, in Subsection IV-A we discuss
the ε-capacity per unit-energy for JPE as a function of the
order of growth of the number of users. In Subsection IV-B,
we briefly discuss the ε-capacity per unit-energy for APE when
kn grows linearly in n.

A. Non-Vanishing JPE

Theorem 3: The ε-capacity per unit-energy ĊJε for JPE has
the following behavior:

1) If kn = ω(1) and kn = o(n/ log n), then ĊJε = log e
N0

for
every 0 < ε < 1.

2) If kn = ω(n/ log n), then ĊJε = 0 for every 0 < ε < 1.
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Proof: We first prove Part 1). It follows from [9, eq. (20)]
that, for Mn ≥ 2,1

P
(n)
e,J ≥ 1− 64En/N0 + log 2

log kn
. (14)

This implies that P (n)
e,J tends to one unless En = Ω(log kn).

Since by the theorem’s assumption kn = ω(1), it follows
that En → ∞ is necessary to achieve a JPE strictly smaller
than one. As argued in Remark 2, if En → ∞ as n → ∞,
then the ε-capacity per unit-energy of the Gaussian MnAC
cannot exceed the single-user capacity per unit-energy log e

N0
.

Furthermore, by Theorem 1, if kn = o(n/ log n) then any rate
per unit-energy satisfying ṘJ < log e

N0
is achievable, hence it

is also ε-achievable. We thus conclude that, if kn = ω(1) and
kn = o(n/ log n), then ĊJε = log e

N0
for every 0 < ε < 1.

To prove Part 2), we use that, by Fano’s inequality, we can
upper-bound ṘJ as [9, eq. (2)]

ṘJ ≤
1

knEn
+ n

2knEn
log(1 + 2knEn

nN0
)

1− P (n)
e,J

. (15)

By (14), P (n)
e,J tends to one unless En = Ω(log kn). For kn =

ω(n/ log n), this implies that knEn/n→∞ as n→∞, so the
RHS of (15) vanishes as n tends to infinity. We thus conclude
that, if kn = ω(n/ log n), then ĊJε = 0 for every 0 < ε < 1.

B. Non-Vanishing APE

For the APE, we restrict ourselves to the case where
kn = µn for some µ > 0, since it is a common assumption in
the analysis of MnACs; see, e.g., [2]–[7]. By inspecting the
proof of Part 1) of Theorem 2, one can show that, for every
µ > 0 and 0 < ε′ < ε < 1, there exists an E independent of
n and a 0 < ρ ≤ 1 such that the RHS of (7) vanishes with n
for some positive ṘA. By (5), it then follows that P (n)

e,A ≤ ε
for sufficiently large n, hence, there exists a positive rate per
unit-energy ṘA that is ε-achievable.

While (5) and (7) yield an upper bound on P
(n)
e,A that is

sufficient to demonstrate the qualitative behavior of ĊAε , this
bound is looser than the bounds obtained in [2], [3]. Specif-
ically, [2], [3] derived bounds on the minimum energy-per-
bit E∗(M,µ, ε) required to send M messages at an APE not
exceeding ε when the number of users is given by kn = µn.
Since the rate per unit-energy is the inverse of the energy-
per-bit, these bounds also apply to ĊAε . The achievability and
converse bounds presented in [3] further suggest that there
exists a critical user density µ below which interference-free
communication is feasible. This conjectured effect can be
confirmed when each user sends only one bit (M = 2), since
in this case E∗(M,µ, ε) can be evaluated in closed form for
µ ≤ 1. For simplicity, assume that N0/2 = 1. Then,

E∗(2, µ, ε) =
(
max{0, Q−1(ε)}

)2
, 0 ≤ µ ≤ 1. (16)

Indeed, that E∗(2, µ, ε) ≥ (max{0, Q−1(ε)})2 follows
from (4). Furthermore, when µ ≤ 1, applying the

1A similar bound was presented in [14, p. 84] for the case where Mn = 2.

orthogonal-access scheme presented in Example 1 with energy
(max{0, Q−1(ε)})2 achieves P

(n)
e,A = ε. Observe that the

RHS of (16) does not depend on µ and agrees with the
minimum energy-per-bit required to send one bit over the
Gaussian single-user channel with error probability ε. Thus,
when µ ≤ 1, we can send one bit free of interference.

V. CONCLUSION

A common assumption in the analysis of MnACs is that
the number of users grows linearly with the blocklength.
Theorems 1 and 2 imply that in this case the capacity per
unit-energy is zero, irrespective of whether one considers the
APE or the JPE. Theorem 3 further demonstrates that, for
the JPE, this holds true even if we allow for a non-vanishing
error probability. The situation changes for the APE. Here a
positive rate per unit-energy can be achieved if one allows for
a non-vanishing error probability. Another crucial assumption
is that the energy En and payload logMn are bounded in
n. Indeed, for kn = µn, the RHS of (13) vanishes as En
tends to infinity, so when En →∞ no positive rate per unit-
energy is ε-achievable. Moreover, for kn = µn and a bounded
En, (12) implies that the payload logMn is bounded, too. We
conclude that the arguably most common assumptions in the
literature on MnACs—linear growth of the number of users,
a non-vanishing APE, and a fixed payload—are the only set
of assumptions under which a positive rate per unit-energy is
achievable, unless we consider nonlinear growths of kn.
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Abstract—A greedy algorithm is a fascinating choice in support
recovery problem due to its easy implementation and lower
complexity compared with other optimization-based algorithms.
In this paper, we present a novel greedy algorithm, referred to as
bit-wise maximum a posteriori (MAP) detector. In the proposed
method, for each iteration, one includes the best index to a target
support in the sense of maximizing a posteriori probability given
an observation, support indices previously chosen, and a priori
information on a sparse vector. In other words, the proposed
method employs statistical information on a given sparse recovery
system while the other greedy-based algorithms (e.g., orthogonal
matching pursuit (OMP)) uses the correlation values in mag-
nitude. We remark that the proposed method has much lower
complexity than the (vector-wise) MAP, where the complexity
of the former is linear with a sparsity level but the latter is
exponential. We further reduce the complexity of the proposed
method by efficiently computing a posteriori probability for each
iteration. Via simulations, we demonstrate that the proposed
method can outperform the other greedy algorithms based on
correlations, by exploiting statistical information properly.

Index Terms—Sparse vector recovery, compressed sensing,
MAP detector, greedy algorithm.

I. INTRODUCTION

An inverse problem is widely studied in which a vector
signal x ∈ RN is recovered from a set of linear noisy
measurements y = Ax + z, with an M × N measurement
matrix A. In particular when M < N (i.e., under-determined
system), the above problem has infinite solutions and thus it
can be solved if some additional a priori information on x is
available. In [1], [2], it has been proved that x can be exactly
reconstructed with the a priori knowledge on the sparsity of x
(i.e., ‖x‖0 = K with K ≪ N ), where K is referred to as the
sparsity level. Also, the optimal sparse vector can be obtained
by solving ℓ0-minimization problem such as

x⋆ = arg min
x

‖x‖0 s.t. ‖y − Ax‖2 ≤ η, (1)

where ‖x‖0 is introduced to ensure the sparsity of x. In
general, the above ℓ0-minimization is known to be NP-hard.
Leveraging the idea of convex optimization, a well-established
method, called LASSO, was proposed in which ℓ1-norm is
used as a convex-relaxation of ℓ0-norm [3], [4]. LASSO can
solve the sparse signal recovery problem with stability while
it has polynomial bounded computational complexity.

A greedy approach seems to be attractive due to its lower
complexity than convex-based algorithms in sparse signal
reconstruction. The key idea of greedy-based algorithms is to
estimate the support of a sparse signal vector in a sequential

fashion, where for each iteration, one index is added to a
target support by solving a sub-optimization problem. Since
the sub-optimization problem has much lower complexity
than the overall sparse signal recovery problem, the greedy
approach can significantly reduce the computational com-
plexity. Orthogonal matching pursuit (OMP) [5]–[7] is the
most famous greedy approach where for each iteration, it
identifies the best support index in the sense of correlations
between column vectors in the measurement matrix and the
residual vector. In addition, to overcome the downside of OMP,
numerous advanced greedy algorithms have been proposed
such as Compressive Sampling Matching Pursuit (CoSaMP)
[9], Subspace Pursuit (SP) [10] and generalized OMP [11].
The fundamental concept of such advanced algorithms lies in
the selection of multiple support indices for each iteration,
which can decrease the probability for estimating incorrect
support indices. In the above greedy algorithms, they only rely
on the order statistics of the correlation values in magnitude to
estimate support. However, it may not be optimal in the sense
of support detection in probability depending on the statistical
distributions of sparse signal vector and noise. Inspired by this,
a greedy algorithm, named Bayesian matching pursuit (BMP),
has been proposed in [12].

Our contributions: We propose a novel greedy algorithm,
named bit-wise MAP detector, for sparse signal recovery
problem. The key idea of the proposed algorithm is that for
each iteration, one adds the best index to a target support
in the sense of maximizing a posteriori probability given an
observation, support indices previously chosen, and a priori
information on a sparse signal vector. Namely, the proposed
method needs to solve bit-wise MAP detection for each
iteration, which has much lower complexity than the (vector-
wise) MAP detection. This is because the complexity of the
former is linear with the sparsity level while the latter is
exponential. Unfortunately, the complexity to solve bit-wise
MAP detection problem is still expensive since it requires
the marginalization of joint probability mass function (PMF)
with a large-size random vector. We address this problem by
presenting an efficient way to compute a good proxy (i.e.,
lower-bound) of a posteriori probability. Via simulations, we
demonstrate that the proposed method can outperform the
other greedy algorithms based on correlations, by exploiting
statistical information properly.
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II. PRELIMINARIES

In this section we will provide some useful notations and
state the sparse signal recovery problem.

A. Notations

We provide some notations which will be used throughout
the paper. Let [N ]

∆
= {1, ..., N}. We use X̄ and x to denote a

random vector and its values, respectively. Also, for a vector
x ∈ RN , xi denotes the i-th component of x for ∈ [N ].
Similarly for a matrix B ∈ RM×N the (i, j)-th component of
B is denoted as Bi,j . The diagonal approximation of a square
matrix S is denoted by diag(S), where diag(S) denotes the
diagonal matrix whose i-th diagonal component is Si,i. For
any positive K ≤ N , we let Ω denote the set of all length-N
binary vectors with the sparsity level K, i.e.,

Ω
∆
= {x ∈ {0, 1}N : ‖x‖0 = K}. (2)

Given an index subset I ⊆ [N ], we define the subset of Ω as

ΩI
∆
= {x ∈ {0, 1}N : ‖x‖0 = K, xi = 1 for i ∈ I}, (3)

where |ΩI | =
(
(N−|I|)
(K−|I|)

)
. Also, given a vector x ∈ RN ,

S(x) represents its support containing the indices of non-zero
locations of x such as

S(x)
∆
= {i|xi 6= 0, i ∈ [N ]}. (4)

As an extension, we also define S(ΩI)
∆
= {S(x)|x ∈ ΩI}.

Given two PMFs p(x) and q(x), the Kullaback-Leibler (KL)
divergence is denoted as DKL(p||q) For two probability dis-
tributions p(x) and q(x). Also, for 0 ≤ a ≤ 1, Bern(a)
represents a Bernoulli distribution with P(X = 1) = a.
Finally, to simplify the expressions, we introduce the notation
λt given by λt

∆
= K−t

N−t for t ≤ K.

B. Problem Formulation

We consider a N -dimensional binary sparse signal recovery
problem from a noisy observation. Let x ∈ {0, 1}N denote a
K-sparse binary signal vector (i.e., ‖x‖0 = K). Then, the
measurement vector y ∈ RM is obtained as

y = Ax + z, (5)

where A = [a1,a2, · · · ,aN ] ∈ RM×N represents a fixed
measurement matrix and z ∈ RM follows the zero-mean white
Gaussian distribution, namely, Z̄ ∼ N (0N , σ2I). Throughout
the paper, it is assumed that the sparsity level K is given as a
priori information and additionally, the marginal PMFs of the
sparse signal vector X̄ = (X1, ..., Xn)T (denoted by pi(a))
are given as

pi(a)
∆
= P(Xi = a) for i ∈ [N ] and a ∈ {0, 1}. (6)

It is noticeable that in the case of no priori knowledge on
the distribution of X̄ , the marginal PMFs can be assigned as
uniform distribution (i.e., pi(1) = 0.5 for i ∈ [N ]).

Algorithm 1 Approximate Bit-wise MAP Detector

Input: Measurement matrix A ∈ RM×N , noisy observation y ∈
RM , sparsity level K, and noise level σ2.

Output: Support Î(K) = {̂i1, ..., îK}.
1: Initialization Î(0) = φ
2: for k = 1 : K do
3: Find the k-th support index îk by taking the solution of

îk = argmax
ik∈[N ]\Î(k−1)

Λ
(
ik|Î(k−1)

)
,

where the objective function is defined in (10).
4: Update the support Î(k) = Î(k−1) ∪ {̂ik}.
5: end for

From the above model, we will investigate the maximum
a posteriori (MAP) support recovery problem, which can be
mathematically formulated as

Î = argmax
I∈S(Ω)

log P(S(X̄) = I
∣∣y). (7)

Unfortunately, it is too complex to solve the above problem
due to its combinatorial nature. Specifically, we need to
check the objective function (a posteriori probability) with
the

(
N
K

)
plausible candidates, which requires an exponential

complexity with the sparsity level K. In the following sections,
we will address the above complexity problem by introducing
a novel greedy approach.

III. THE PROPOSED BIT-WISE MAP SUPPORT DETECTOR

In this section, we propose a novel greedy approach to solve
the support recovery problem in (7) efficiently. In the proposed
method, K support indices (i.e., non-zero components of a
sparse signal vector x) are derived in a sequential way via
bit-wise MAP detection. Specifically, from the chain rule, the
objective function (7) can be factorized as

log P(S(X̄) = I(K)
∣∣y)

=

K∑

k=1

log P(ik ∈ S(X̄)|I(k−1) ⊂ S(X̄),y)︸ ︷︷ ︸
∆
=Φ(ik|I(k−1))

, (8)

where the above index sets are defined as I(K) = {i1, ..., iK}
and I(k) = {i1, ..., ik} ⊂ I(K) for k = 1, ..., K − 1, with
I(0) = φ. In the proposed greedy approach, we find a support
Î(K) = {̂i1, ...., îK} sequentially, by finding a local optimal
solution based on the previously chosen solutions. This is
mathematically formulated as

îk = argmax
ik∈[N ]\Î(k−1)

Φ(ik|Î(k−1)). (9)

This problem is referred to as bit-wise MAP detection, which
has much lower complexity than vector-wise MAP detection
in (7) since the complexity of the former is linear with the
sparsity level K while the that of the latter is exponential.
Although the proposed greedy approach significantly reduces
the computation complexity, it still suffers from the expen-
sive complexity for computing a posteriori probability (i.e.,
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Φ(ik|Î(k−1))). This is due to the marginalization of a large-
scale random vector, which requires the summations of all
possible K sparse vector signals x ∈ ΩÎ(k) .

To address the complexity problem, we will derive a good
proxy (which is simply computable) of the objective function
in (9), which is given as

Λ
(
ik|Î(k−1)

)
∆
=

N∑

i=1

−DKL(Bern(µ
(k)
i ), pi)

︸ ︷︷ ︸
A priori

+
1

σ2
yTAµ(k) − 1

2σ2
tr(ATAR(k))

︸ ︷︷ ︸
Likelihood

, (10)

where

µ
(k)
i =

{
1, i ∈ Î(k−1) ∪ {ik}
λk, else

(11)

and

R
(k)
i,j =





1, i, j ∈ Î(k−1) ∪ {ik}
λkλk+1, i, j /∈ Î(k−1) ∪ {ik}
λk, else.

(12)

This is in fact a lower bound on the objective function
Φ(ik|Î(k−1)) which is obtained by using the concavity of log
function and Jensen’s inequality (see Section IV for details).
As expected, the objective function in (10) will be further
simplified when a priori distribution on a sparse signal vector
is unknown, since a priori term is removed. Based on this,
the proposed greedy algorithm is described in Algorithm 1.
In Section V, it will be demonstrated that the proposed proxy
function performs very well.

IV. GOOD PROXY OF A POSTERIOR PROBABILITY

In this section, we will explain how to derive the proxy
function in (10) from the objective function in (9). Note that
we will use the notations C0, C1, C2, and C3 in the below in
order to indicate the constant terms which does not impact on
the bit-wise MAP optimization in (9). Then, our goal is to
efficiently compute the following a posteriori probability for
a given index set I = Î(k−1) ∪ {ik} = {̂i1, ..., îk−1, ik}:

Φ(ik|Î(k−1)) − C0 = log P(I ⊂ S(X̄)|y)

= log P(Xî1
= 1, ..., Xîj−1

= 1, Xij
= 1|y)

= log
∑

x̂∈ΩI

P(X̄ = x̂|y)

= log
∑

x̂∈ΩI

pX̄(x̂)fȲ |X̄(y|x̂)

fȲ (y)

= log

( |ΩI |
fȲ (y)

)
1

|ΩI |
∑

x̂∈ΩI

pX̄(x̂)fȲ |X̄(y|x̂), (13)

where pX̄ and fX̄|Ȳ denote the joint PMF and conditional
PDF, respectively, and ΩI is defined in Section I. We first
provide some definitions which will be used throughout this
section.

Definition 1. We define a length-N auxiliary random vector Ū
which takes the values in the set ΩI uniformly. Its joint PMF
is denoted by q(ΩI) where each element in ΩI can occur
with probability 1/|ΩI | = 1/

(
N−k
K−k

)
since |I| = k. Then, its

marginal PMF can be easily obtained as Uj ∼ Bern (λk) , j /∈
I and Uj ∼ Bern(1), j ∈ I.

From Definition 1, (13) can be written as

log P(I ⊂ S(X̄)|y) − C1

= log
1

|ΩI |
∑

x̂∈ΩI

pX̄(x̂)fȲ |X̄(y|x̂)

= log Eq(ΩI)

[
pX̄(Ū)fȲ |X̄(y|Ū)

]

≥ Eq(ΩI)

[
log pX̄(Ū)

]
︸ ︷︷ ︸

A priori

+ Eq(ΩI)

[
log fȲ |X̄(y|Ū)

]
︸ ︷︷ ︸

Likelihood

, (14)

where the last inequality follows the Jensen’s inequality due
to the concavity of log function.

A. The computation of a priori part
In this subsection, we will compute the a priori part in

(14). From the a priori probability pj for j ∈ [N ], we first
approximate the joint PMF of X̄ as pX̄(x) ≈ ∏N

i=1 pj(xi).
Then, we have:

Eq(ΩI)

[
log pX̄(Ū)

]

= Eq(ΩI)

[
N∑

i=1

log pj(Uj)

]

=
∑

j∈I
log pj(1) +

∑

j∈[N ]\I
Eq(ΩI)[log pj(Uj)]. (15)

Leveraging the marginal PMFs of Uj’s in (1), we have:

Eq(ΩI)[log pj(Uj)]

= λk log pj(1) + (1 − λk) log pj(0)

= −H2 (Bern(λk)) − DKL

(
Bern(λk))

∣∣∣∣pj

)
, (16)

where H2 and DKL(·||·) denote the binary entropy function
and KL divergence, respectively. By plugging (16) into (15),
we have:

Eq(ΩI)

[
log pX̄(Ū)

]
− C2

=
∑

j∈I
log pj(1) −

∑

j∈[N ]\I
DKL

(
Bern(λk))

∣∣∣∣pj

)
. (17)

B. The computation of likelihood part
In this subsection, we will compute the likelihood part in

(14). We first introduce a binary random vector V̄ for the ease
of exposition, which is defined as V̄ = AŪ . Using this, we
have:

Eq(ΩI)

[
log fȲ |X̄(y|Ū)

]

= Eq(ΩI)


log

M∏

j=1

fYj |X̄(yj |Ū)




=
M∑

j=1

Eq(ΩI)

[
log

(
1√

2πσ2
exp

(
− (yj − Vj)

2

2σ2

))]
.
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Focusing on the interesting terms depending on ik, we have

Eq(ΩI)

[
log fȲ |X̄(y|Ū)

]
− C3

=
1

σ2




M∑

j=1

yjE[Vj ] − 1

2
E[V 2

j ]




=
1

σ2
yTAE[Ū ] − 1

2σ2
tr
(
AE[Ū ŪT]AT

)

=
1

σ2
yTAE[Ū ] − 1

2σ2
tr
(
ATAE[Ū ŪT]

)
, (18)

where

AE[Ū ] =

n∑

j=1

ajE[Uj ] =
∑

j∈I
aj + λk

∑

j∈[N ]\I
aj , (19)

and the (i, j)-element of the matrix E[Ū ŪT ] is computed as

E[Ū ŪT]i,j =





1, i, j ∈ I
λkλk+1 i, j /∈ I
λk else.

(20)

From (17), (18), (19), and (20), and eliminating the constant
terms C1, C2, and C3, we can easily derive our objective
function in (10) for the bit-wise MAP detection problem.

Remark 1. In this paper, we only considered a binary sparse
signal vector for support recovery problem. Yet, we would like
to emphasize that the proposed method can be straightfor-
wardly extended to a more general case in which Xi follows
a given probability distribution when i belongs to support.
In this case, we only need to modify the computations of
expectations in (19) and (20) where they should be performed
by taking into account the probability distribution of Xi.

V. NUMERICAL RESULTS

In this section we provide numerical results to show the
superiority of the proposed bit-wise MAP detector. We used
the reconstruction probability as a performance metric and
considered OMP as benchmark method (see Remark 2 for the
comparisons with the other greedy algorithms).

No knowledge on a priori distribution: We consider
the case that a priori information on a sparse vector signal
x is unknown (i.e., each component of x can be 1 with
equal probability under the constraints of K sparsity). It is
remarkable that in this case, a priori term in (10) of the proxy
objective function is not used. Fig. 1 shows the reconstruction
probabilities of the proposed bit-wise MAP detector and OMP
as a function of SNRs. For the simulations, we considered the
50×120 measurement matrix A (i.e., M = 50 and N = 120)
whose elements are drawn from I.I.D. Gaussian distribution
with zero mean and unit variance. The proposed method
shows the 4∼5 times better reconstruction performances than
OMP in the relative lower SNR regimes (e.g., 0 ∼ 10 dBs).
For the range of higher than 20dB, the proposed method
achieves the two times higher reconstruction performance
than OMP. Not surprisingly, the proposed method performs
better in the relatively lower SNR regimes since in this case,
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Fig. 1. K = 10. Performance comparison of the proposed method in terms
of SNRs when a priori distribution on a sparse signal vector is unknown.
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Fig. 2. SNR = 30dB. Performance comparison of the proposed method in
terms of sparsity levels when a priori distribution on a sparse signal vector is
unknown.

the use of statistical information on noise does matter. We
next evaluated the reconstruction probabilities of the proposed
method and OMP as a function of sparsity levels (see Fig. 2).
In this case, we considered a little bit larger measurement
matrix (e.g., 80 × 150 measurement matrix A) to see the
performances with a larger sparsity level (e.g., K = 30). It
was shown that the proposed method can successfully recover
the sparse signal vector with 0.85 reconstruction probability
even in high sparsity condition (e.g., K = 14). Whereas,
the reconstruction probability of OMP is lower than 0.4
after K = 14. These results demonstrated that the proposed
algorithm can identify supports better than OMP even in high
SNR regime, nonetheless, statistical information on noise gives
smaller effect compared with relatively lower SNR regimes (as
shown in Fig. 1).
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Fig. 3. The impact of a priori distribution on the proposed bit-wise MAP
detector.

Non-uniform a priori distribution: Lastly we will verify
that the proposed method can indeed exploit a priori infor-
mation on a sparse signal vector (i.e, KL divergence terms in
(10) really works). For the simulation, we set pi(1) = 0.7 for
i ∈ S(x), and pi(1) = 0.5 for i /∈ S(x). Fig. 3 shows that the
reconstruction probability is considerably improved due to the
use of a priori information. As expected, in relatively lower
SNR regimes, the use of a priori information performs better
since in this case, the information from a noisy observation is
not sufficient. Namely, the proposed method can identify true
support with higher probability, when we know more accurate
priori information on a sparse signal vector to make up for the
uncertainty of a noisy observation.

From the above results, we can conclude that the proposed
algorithm can achieve better reconstruction performances than
the conventional greedy algorithm not only in various SNR
regimes but in different sparsity levels. In addition, if we
have some knowledge on a priori distribution of a sparse
signal vector, the proposed method can further improve the
performance while the conventional greedy algorithms cannot.

Remark 2. In our simulations, we only considered OMP as
benchmark method. Yet, there exist the advanced greedy algo-
rithms by incorporating the idea of multiple indices selection
into the underlying OMP [12]. We would like to highlight
that the proposed method can be straightforwardly combined
with the advanced algorithms by simply replacing OMP with
the proposed method. Thus, for fair comparisons with the
advanced algorithms, the proposed method should be also
enhanced with the multiple indices selection, which is left for
a future work. Given our simulation results, it is expected that
the proposed method together with the idea of advanced greedy
algorithms would outperform the conventional ones based on
OMP.

VI. CONCLUSION

In this paper, we proposed a novel greedy algorithm where
for each iteration, it finds the best support index by solving
bit-wise maximum a posteriori (MAP) detection. Namely, the
proposed method exploited the statistical distributions of a
sparse signal vector and noise, differently from the existing
greedy-based algorithms which rely on the correlation values
in magnitude. Our major contribution is to introduce a good
proxy function (which is simply evaluated) for the objective
function of a bit-wise MAP detection problem (i.e., a selection
function in the greedy algorithm), which enables the proposed
method practical. Via simulation results, we demonstrated
that the proposed method improves the reconstruction prob-
ability in all SNR regimes compared with the representative
greedy algorithm, named OMP. Moreover, we showed that KL-
divergence term, depending on a priori distribution on a spare
signal vector, performs quite well. Our ongoing work is to
extend the proposed method for the case of general sparse
signal vector with a certain probability distribution. Another
interesting research direction is to consider sparse support
recovery problems with multiple or quantized measurements.
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Abstract—The application of multilevel codes in lattice-reduc-
tion-aided (LRA) decision-feedback equalization (DFE) is dis-
cussed. There, integer linear combinations of the codewords in
signal space have to be decoded. Since multilevel codes do not
generate lattices in general and non-integer interference of not yet
decoded users is present, straightforward decoding is not possible.
A generalized version of multistage decoding adapted to LRA
DFE is proposed. Thereby, multilevel constructions using state-
of-the-art binary channel codes can be used, which makes coded
LRA DFE schemes applicable in practice. The performance of
the proposed structure is covered via numerical simulations.

I. INTRODUCTION

Lattice-reduction-aided (LRA) schemes [20], [19] and the

tightly related integer-forcing (IF) schemes [13], [22] are low-

complexity but well-performing approaches for the equal-

ization in multiple-input/multiple-output (MIMO) multiuser

uplink scenarios. They share the concept of decoding integer

linear combinations of the user’s signals; they differ in the

way how the integer interference is handled, cf. [4].

In IF schemes a strong coupling between integer equaliza-

tion and decoding/code constraints is present. In LRA schemes

the code has to be linear in signal space, i.e., lattice codes can

be used. In [5], and independently in [1], it has been shown

that for LRA linear equalization (LE) this linearity—integer

linear combinations of codewords are valid codewords—can

be relaxed and multilevel codes (MLC) can be employed

together with a generalized version of multistage decoding

(MSD) incorporating “carry correction”.

In this paper,1 we generalize this result to LRA decision-

feedback equalization (DFE). Using DFE, the noise predic-

tion gain over linear equalization can be utilized leading to

improved performance [2]. However, the successive decoding

in DFE and the carry correction procedure in [5] cannot

be combined straightforwardly. To solve this problem, we

introduce a new version of generalized MSD which em-

ploys tentative decisions. Via this approach, which requires

only marginal additional complexity compared to independent

MSD, multilevel constructions using state-of-the-art binary

channel codes can be used in LRA DFE schemes, which

simplifies implementation significantly.

The paper is organized as follows: The system model is

introduced in Sec. II and LRA DFE is discussed. Sec. III

reviews multilevel codes, multistage decoding with carry cor-

rection, and introduces the new decoding scheme. Results from

numerical simulations are presented in Sec. IV. The paper is

briefly summarized in Sec. V.

F2 C
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DEC

DEC

x1

xK

q1

qK

ENC / M

ENC / M

n

y

M−1

ENC−1

q̂x̂
Z−1

ˆ̄ay
FDFE

B − I

r

H

Fig. 1. System model. Top: channel model; Bottom: decision-feedback
equalization structure.

II. SYSTEM MODEL

In Fig. 1 (top), the considered system model is depicted.

We assume K non-cooperating (single-antenna) users k,

k = 1, . . . ,K , communicating their binary source symbols2

qk ∈ F2 to a central receiver with NR ≥ K receive antennas.

At the transmitters, the symbols are encoded and mapped to

complex-valued transmit symbols xk , drawn from the signal

constellation A with variance σ2
x.

The input/output relation in vector/matrix notation is given

as usual by

y = Hx + n , (1)

where x denotes the K-dimensional transmit vector, H the

NR × K channel matrix with flat-fading coefficients, n the

NR-dimensional noise vector (we assume zero-mean spatially

white Gaussian noise components with variance σ2
n per di-

mension), and y the NR-dimensional receive vector. Joint

processing of all components of y is performed at the receiver.

Lattice-reduction-aided and integer-forcing equalization are

low-complexity, well-performing approaches. In both strate-

gies, employing a successive equalization strategy improves

1A more comprehensive version can be found in [6].
2We clearly distinguish quantities over the complex numbers (typeset as x,

H , Z, . . . ), and over finite fields (typeset in Fraktur font; q, c, Z, . . . ). Vectors
over the complex numbers are column vectors, row vectors are signified by
underlining (e.g., r); vectors over the finite field (code words) are always row
vectors. Linear combinations over the field of complex numbers are marked
by an overbar (e.g., x̄k).
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performance over linear equalization. Desiring an equaliza-

tion according to the minimum mean-squared error (MMSE)

criterion, for lattice-reduction-aided decision-feedback equal-

ization and successive integer-forcing equalization, the aug-

mented (stacked) channel matrix H =
[

H√
ζI

]
, ζ

def
= σ2

n/σ
2
x, is

factorized according to3 [14], [16]

(H+)H = FH B−HZ−H , (2)

where Z ∈ GK×K , G = Z+jZ, is a full-rank Gaussian-integer

matrix, B is the upper triangular, unit main diagonal feedback

matrix, and the left NR columns of F (with orthogonal rows)

give the feedforward matrix FDFE =
[F]

(left NR columns)
.

Thereby, the factorization is performed such that the column

vectors of FH are as short as possible. As shown in [14] (cf.

also [16]), one can restrict to unimodular matrices Z and the

Hermite–Korkine–Zolotarev (HKZ) lattice reduction algorithm

[8], [11] is optimum.4

In the LRA DFE structure (Fig. 1 (bottom)), the feedforward

matrix FDFE guarantees that the noise is (spatially) white and

that the cascade FDFEHZ−1 has an (almost) upper triangular

form. This establishes a causality of the interference among

the parallel data streams [2].

Incorporating FDFE into the channel, the remaining part of

the receiver has to deal with

r = BZx + n̄
def
= Bx̄ + n̄ , (3)

where n̄ is the effective disturbance after equalization includ-

ing filtered channel noise and residual user interference.

In LRA linear equalization [3], [22], [5], not the users’

signals are decoded but at the decoder input (noisy versions

of) Gaussian integer linear combinations thereof are present. In

contrast to LRA LE, in LRA DFE they are not decoded simul-

taneously in parallel but successively—the depicted feedback

loop is processed branch by branch; due to the upper triangular

form of B the processing order is l = K, . . . , 1.

Noteworthy, (LRA) DFE can also be implemented in the

noise prediction structure, shown in Fig. 2 (top), which gives

the same performance [2]. Here, the feedforward matrix is

given by F LE = B−1FDFE, which is identical to the feed-

forward matrix in linear equalization. Basically, the successive

IF structure (Fig. 2 (bottom)) is similar to the LRA noise

prediction structure but here the decoding results and noise

samples are treated modulo Λb, the boundary lattice of the

used signal constellation A. Moreover, the integer interference

is resolved over the finite field (as in the linear IF receiver).

These different orders of encoder inverse and inverse of Z is

the main difference between the LRA and IF structures leading

to different constraints on the codes. In LRA (linear and DFE)

schemes, integer linear combinations in signal space have to

be decodable; hence lattice codes are suited. In IF schemes,

non-binary codes, tight to the prime signal constellation have

to be used [22]. Since the LRA (DFE or noise prediction)

3XH, X+, X−H: Hermitian, pseudoinverse, inverse and Hermitian of X .
4Thereby, the size reduction step is irrelevant; hence an effective HKZ

reduction is sufficient [16].
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Fig. 2. Lattice-reduction-aided noise prediction structure (top) and successive
integer-forcing receiver (bottom). Z is the finite-field equivalent of Z.

structure offers a much more flexible code design and avoids

the loss at low SNR due to modulo-folding of the noise, here

we restrict ourselves to LRA DFE.

III. MULTILEVEL CODES AND LRA DFE

Multilevel coding [9], [18] is an attractive strategy to coded

modulation, since the code in signal space is generated via

a set of conventional binary component codes Cµ, µ =
0, . . . ,m − 1, and a mapping from binary address labels of

m = log2(M) bits to M signal points.

A. Mapping, Codes, and Lattices

Each constellation can be associated with a mapping M of

binary information (labels) to signal points. We restrict our-

selves to quadrature-amplitude modulation (QAM) constituent

constellations and mapping according to the set partitioning

rule [17]. Then, the mapping is given by its binary expansion

w.r.t. the base φ = −1 + j; for an M -ary constellation it can

then be written as [7], [5]

M(bm−1 . . . b1b0) = modB

( ∑m−1

µ=0
ψ(bµ)φµ

)
−O , (4)

where ψ(·) is the common mapping from the finite-field

(F2) elements “0” and “1” to the real numbers “0” and “1”

(ψ(0) = 0 and ψ(1) = 1). B = φm defines the boundary

region; modB(x)
def
= x−B ⌊xB∗/|B|2⌉ is the complex modulo

operation (⌊·⌉: rounding to the nearest Gaussian integer), and

O is the offset for zero-mean constellations.

Via the mapping and having the binary component codes

Cµ for the levels µ = 0, . . . ,m− 1 (w.l.o.g. for simplification

with equal lengths N ), the multilevel code is defined by

CMLC = modB

(∑m−1

µ=0
ψ(Cµ)φµ

)
−O , (5)
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where ψ(·), mod(·), and the offset O are applied component-

wisely.

Eliminating the offset O and ignoring the modulo reduction

(inherently assuming an infinite number of extra uncoded

levels) multilevel codes can be lattices if the component codes

are chosen suitably [12]. However, the respective constraints

typically cannot be fulfilled in practical schemes (unless only

the lowest level is encoded which results in lattice construction

A [21])—in turn integer linear combinations of MLC code-

words are not valid codewords of the code and cannot be

decoded.

B. Carry Correction

To circumvent this problem and to enable the use of

MLC in LRA linear schemes, in [5] (and independently for

one-dimensional signaling in [1]) a generalized version of

multistage decoding which incorporates a “carry correction”

has been proposed. Thereby, the main idea is that the parallel

decoders (cf. Fig. 1 (bottom)) can exchange decoding results.

Instead of decoding each linear combination (via multistage

decoding) separately, the lowest level in each branch is de-

coded. To this end, we note that the effective codewords at level

µ = 0, i.e., the results of Gaussian integer linear combinations

in signal space, are given by


c
(µ)
eff,1
...

c
(µ)
eff,K


 = Z0



c
(µ)
1
...

c
(µ)
K


 , (6)

where Z0 = [z
(i,j)
0 ] and z

(i,j)
0 is the least significant bit (LSB)

of zi,j w.r.t. to the basis φ. As long as det(Z) ∈ 1 + φG [5],

(6) can be solved and the original codewords of each user in

the lowest level can be regenerated.

Having these estimates (̂c
(0)
k ), the “carries” to the higher

levels can be calculated and subtracted. The contributions

(over C) s
(0)
l of the superposition of these code words into

the higher levels (carries) of user k calculate to (µ = 0)


s
(µ)
1
...

s
(µ)
K


 = Z



ψ(̂c

(µ)
1 )
...

ψ(̂c
(µ)
K )


 . (7)

This procedure is repeated over the levels µ.

C. Carry Correction in DFE

Unfortunately, this procedure cannot be applied straightfor-

wardly in LRA DFE. In linear equalization, integer linear

combinations cause “interference” from the lower levels to

the upper ones—causality over the levels is present. Such a

causality w.r.t. the code levels does not exist in DFE since the

channel is equalized only towards an upper triangular matrix.

The not yet decoded upper levels cause interference via the

non-integer off-diagonal entries of B. The fractional part of

bl,k determines how the upper levels of user k interfere with

a particular level of linear combination l ≤ k.

Hence, to eliminate interference of other users when de-

coding level µ of linear combination l, all lower levels

c
(µ)
eff,l

c
(µ)
eff,l−1

c
(µ)
eff,l+1

c
(µ+1)
eff,l−1

c
(µ+1)
eff,l

c
(µ+1)
eff,l+1

c
(µ−1)
eff,l−1

c
(µ−1)
eff,l

c
(µ−1)
eff,l+1

c
(µ+2)
eff,l−1

c
(µ+2)
eff,l

c
(µ+2)
eff,l+1

Fig. 3. Visualization of the individual levels of the multilevel construction.
Situation when decoding the effective codeword c

(µ)
eff,l

. µ: coding level; l:
linear combination. Already decoded words are dark gray shaded, tentative
decisions are light gray shaded.

ν = 0, . . . , µ− 1 of all users have to be known and the upper

levels ν = µ, . . . ,m− 1 of users K,K − 1, . . . , l + 1 whose

interference has to be subtracted via B also have to be known.

This, at first glance, prevents the application of multistage

decoding with carry correction as developed for the linear

equalization case. However, a small modification is sufficient

to use the same philosophy in LRA DFE. The main idea is to

employ tentative decisions on the higher levels. When having a

decoding result ĉ
(µ)
eff,l for level µ of linear combination l (levels

ν = 0, . . . , µ−1 are already available from previous decoding

stages) symbol-by-symbol decisions ˇ̄xup,l on all upper levels

jointly of this linear combination are additionally generated

via quantization QG{·} to the signal point lattice G—thereby,

the code constraints in higher levels are simply ignored. As

now for all levels (tentative) decoding results are available, a

tentative estimate (row vector)

ˇ̄xl =
∑µ

ν=0
s

(µ)
l φν + ˇ̄xup,lφ

µ+1 (8)

of linear combination l can be calculated. Thereby, the

contributions s
(µ)
l of the lower levels to the higher ones

are calculated as in (7). The tentative estimates of linear

combinations l + 1, . . . ,K are used in the feedback loop to

eliminate the integer interference (“carry correction”) and the

non-integer residual interference. This procedure is repeated

over the levels.

Fig. 3 visualizes the dependencies in the decoding process.

The effective codewords at the individual levels of the mul-

tilevel construction are shown. Having decoded all effective

codewords c
(ν)
eff,l at one level ν, the original codewords at this

level can be calculated using (6) and the “carries” to the higher

levels can be calculated using (7) and subtracted.

When decoding c
(µ)
eff,l (bold frame), the effective codewords

(and hence initial codewords) of levels 0, . . . , µ−1 are already

decoded (dark gray shaded). Due to the successive procedure

(going from l = K to 1, i.e., right to left in the figure),

the effective codewords l + 1, . . . ,K at levels µ have been

decoded, too. In addition, hard (tentative) decisions on the

upper levels > µ are generated (light gray shaded). Using

the tentative decisions (8) of data streams l + 1, . . . ,K , the

interference is subtracted via the feedback matrix B. Hence,

c
(µ)
eff,l can be decoded free of carries of lower levels and

interference of other users. This is successively done for all
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Alg. 1 Multistage Decoding with Carry Correction for DFE.

function [ĉ1, . . . , ĉK ] = MSD(r1, . . . , rK)

1 for µ = 0, 1, . . . , m− 1 { // loop over levels

2 ˇ̄xl =
∑µ−1

ν=0
s
(µ)
l
φν , l = 1, . . . ,K // carries of lower levels

3 for l = K,K − 1, . . . , 1 { // loop over linear comb.

4 rl,µ =
(
rl −

∑K

ℓ=l
Bl,ℓ ˇ̄xℓ

)
/φµ // eliminate interference

5 ĉ
(µ)
eff,l

= DECC(µ)

{
rl,µ

}
// decode level µ

6 ˇ̄xup,l = QG
{

(rl,µ−ψ(̂c
(µ)
eff,l

))/φ
}

// decisions upper levels

7 ˇ̄xl = ˇ̄xl+ψ(̂c
(µ)
eff,l

)φµ+ ˇ̄xup,lφ
µ+1 // update tentative dec.

8 }
9 solve (6) for ĉ

(µ)
k

// calculate codewords

10 calculate s
(µ)
k

via (7) // calculate carries

11 }
12 ĉk =

∑m−1

µ=0
ψ(̂c

(µ)
k

)φµ // codeword estimates

data streams at one coding level. The decoding process then

continues with the next level.

In QAM signaling the next level operates at a 3 dB higher

SNR; the tentative decisions are hence reliable enough. Thus,

there are only a few erroneous tentative decisions at higher

levels when compared to the lower SNR at the actual level.

These errors are controllable by the codes at the actual level

without a serious performance degradation. Moreover, for

LRA DFE a unimodular integer matrix Z is optimal (cf.

Sec. II). For such matrices it is guaranteed that (6) is solvable

[5] and carry correction works.

In Alg. 1, a pseudo-code description of this generalized

version of multistage decoding is given. Noteworthy, if B = I ,

this algorithms reduces to that in [5] and if additionally Z = I
conventional multistage decoding in parallel for the users

results.

The complexity is dominated by the runs of the component

decoders; each level of each user is decoded exactly once.

Consequently, the same effort as K times conventional multi-

stage decoding (parallel, individual decoding of the users) is

required.

IV. NUMERICAL RESULTS

To study the performance of the above proposed decoding

algorithm, numerical simulations have been conducted. As a

simple example, we assume K = 3 users, each employing

a 16QAM constellation. The same low-density parity-check

(LDPC) codes, in particular irregular repeat-accumulate codes

[10], as in [5] with rates R0/R1/R2/R3 = .282/.753/.964/1
(sum rate 3 bits per QAM symbol) and code length N = 5000
are employed as component codes.

To enlighten the effects of decoding integer linear combi-

nations in the LRA DFE structure and to show the gains over

LRA linear equalization, first the channel matrix is randomly

chosen and kept fixed. The selected channel matrix reads

H =

[
0.336 + 0.151j −0.566 − 0.014j −0.255 + 0.454j

−1.101 + 0.581j 0.247 − 0.185j −0.373 − 0.465j
−1.848 − 1.037j 0.019 + 0.758j 1.776 − 1.298j

]
. (9)

For LRA linear equalization we employ the Minkowski

reduction, as for i.i.d. Gaussian channel matrices the restriction
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Fig. 4. Bit error rate over the inverse noise power (in dB). 16QAM.
Component codes: LDPC codes of length N = 5000. Rate 3 bit/symbol.
NR = 3 receive antennas, K = 3 users. Fixed channel matrix (9); averaging
over 100000 codewords. Dotted: asymptotic behavior (curve for uncoded
transmission shifted by the gross coding gain of 9 dB).

to unimodular matrices (| det(Z)| = 1) causes no noticeable

loss, cf. [4], [15]. The following integer matrix is obtained

ZMk =

[
j 1 −1 − j

−1 + j 0 −j
−1 0 −j

]
. (10)

For LRA DFE (see Sec. II) we employ the HKZ reduction on

the factorization problem (2); here the integer matrix and the

feedback matrix calculate to

ZHKZ =

[ −2 1 −2j
−1 + j 0 −j

−1 0 −j

]
, (11)

BHKZ =

[
1 0.422 − 0.423j −0.609 − 0.395j
0 1 −0.288 − 0.108j
0 0 1

]
. (12)

In all cases, the feedforward equalizers are calculated accord-

ing to the MMSE criterion.

Fig. 4 shows the error rates of the information bits of

the individual users over the inverse noise power (in dB).

For comparison, the performance of uncoded transmission is

shown (black, dashed) and that of the multilevel code (no lin-

ear combinations) over the single-input/single-output (SISO)

AWGN channel (green). Noteworthy, due to the uncoded

(R3 = 1) highest level, the asymptotic (gross) coding gain

is limited to 9 dB (dotted).

In all cases, user 2 has the worst performance, which is

due to the noise enhancement in the feedforward filter. In LE

this effect is much more pronounced (approximately 2.4 dB
worse) than in case of DFE (gain by not equalizing the channel

to (almost) identity matrix but only to upper triangular form).

Users 1 and 3 perform almost the same (the curves lie almost

on top of each other) for a given receiver type but better in case

of DFE. This positive effect cannot be explained by reduced

noise enhancement in the frontend as linear combinations

number 2 and 3 almost have the same noise enhancement

in the linear and the DFE case. The better performance is

due to the fact that in the successive procedure correlated
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Fig. 5. Bit error rate over the inverse noise power (in dB). 16QAM.
Component codes: LDPC codes of length N = 5000. Rate 3 bit/symbol.
NR = 3 receive antennas, K = 3 users. Block-fading channel with i.i.d.
circular symmetric complex Gaussian entries. Average over 100000 i.i.d.
circular symmetric complex Gaussian channel matrices and 10 codewords
per channel realization.

linear combinations have to be decoded [3]; these correlations

are exploited in DFE but ignored in linear equalization. The

performance of these two users is very close to that of the

original code over the SISO AWGN channel.

Next, the channel matrix is randomly chosen with i.i.d.

circular symmetric complex unit-variance Gaussian entries. A

block-fading channel is assumed, where the channel matrix is

constant over the codeword. Hence, the code cannot exploit

temporal diversity. Given the channel matrix, the integer

matrices are calculated using the Minkowski reduction (which

gives the optimal unimodular matrix for LRA LE) and the

HKZ reduction (which gives the optimal matrix for LRA

DFE), respectively. NR = 3 receive antennas and K = 3
users are assumed; the codes and signal constellations from

above are assumed.

Fig. 5 shows the average error rates of the information bits

of the users over the inverse noise power (in dB). Besides

LRA LE (with decoding algorithm from [5]) and LRA DFE

(with decoding algorithm Alg. 1), results for conventional LE

and DFE (both using the standard MSD decoding algorithm)

are treated.

As can be seen, the LRA schemes (solid lines) show a much

better performance than the conventional ones (dashed lines);

the diversity order is improved from one to NR = 3, which

is a well-known fact. Moreover, the DFE schemes (blue) are

superior over the linear ones (red), both in the conventional

(here the H-BLAST approach is present) and the LRA DFE

case. LRA DFE outperforms LRA LE by approximately 1 dB
with almost no extra cost in complexity.

V. SUMMARY AND CONCLUSIONS

In this paper, we have studied the application of multilevel

codes in LRA decision-feedback equalization. Employing

DFE, the noise prediction gain overlinear equalization can be

utilized leading to better performance. A generalized version

of multistage decoding incorporating carry correction and ten-

tative decisions has been proposed. Only marginal additional

complexity compared to independent decoding is required.

Via the multilevel construction, state-of-the-art binary channel

codes can be used and no lattice structure of the code is

required. This simplifies implementation significantly or even

makes coded LRA schemes applicable in practice.
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