
ETH Library

Anthropogenic Heat Due to
Road Transport: A Mesoscopic
Assessment and Mitigation
Potential of Electric Vehicles and
Autonomous Vehicles in Singapore

Report

Author(s):
Ivanchev, Jordan; Fonseca, Jimeno A.

Publication date:
2020-02-14

Permanent link:
https://doi.org/10.3929/ethz-b-000401288

Rights / license:
Creative Commons Attribution 4.0 International

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000401288
http://creativecommons.org/licenses/by/4.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


 
 
 

DELIVERABLE 
TECHNICAL REPORT 

Version 14/02/2020 
 

D1.2.2.2.1– Anthropogenic Heat Due to Road Transport: A 
Mesoscopic Assessment and Mitigation Potential for the City 

of Singapore  
 

 

Project ID NRF2019VSG-UCD-001 

Project Title 
Cooling Singapore 1.5:  

Virtual Singapore Urban Climate Design  

Deliverable ID D1.2.2.2.1 

Authors  Jordan Ivanchev, Jimeno Fonseca 

DOI (ETH Collection)  

Date of Report 14/02/2020 

 

Version Date Modifications Reviewed by 

1 10/01/2020 Changes to 

phrasing and 

graphs 

Jimeno Fonseca 

    

 

 

 



Abstract

The objective of this work is to evaluate the heat mitigation

strength on a city-scale of electri�cation and automation of the road

transport sector. We present a case study for the city of Singapore

examining the spatio-temporal pro�le of the heat emissions due to

road transport for a typical day. We calibrate and validate our

simulation model which is later used for analysis of future electri�cation

and automation scenarios. Furthermore, we also evaluate the temporal

energy demand associated with the electri�cation of transport and

assess the heat released for the production of this energy. Our results

show a sixfold decrease of the energy usage of the road transport

sector in case of a complete electri�cation of all vehicle classes,

which include lorries and vans, private vehicles, taxis, buses, and

motorcycles. Lastly, we study the e�ects the presence of autonomous

vehicles might have on the amount of heat produced by road transit.

While autonomous mobility greatly reduces the overall trip durations

as it mitigates congestion, the energy consumption of the sector

remains almost unchanged compared to the fully electric scenario.
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1 Introduction

Road tra�c is believed to be a signi�cant contributor to the Urban Heat Island
(UHI) e�ect [1] in both active and passive ways. Throughout their movements within
the city vehicles produce heat that contributes to the increase of urban temperatures,
which is the active component.

The passive contributions relate to the heat stored and then released by roads,
constituting 14% of the surface area of the city, as a consequence of a prolonged
exposure to solar radiation. This work will study the active component of tra�c
anthropogenic heat.

According to the Energy Market Authority (EMA) [2], Singapore's road transport
sector consumes close to 97 PJ of energy every year. Since in road transportation
there are almost no waste products or chemical absorption processes, it can be
assumed that all this energy is eventually transformed into heat.

The overall amount of heat produced by road tra�c could signi�cantly impact
the local weather conditions of a city, however, the spatio-temporal pro�le of this
heat release matters. Even relatively small amounts of heat released at strategic
locations and times can cause major inconveniences and even endanger the well-
being of people, while vast amounts of heat released further from social hot-spots
that have high population density might produce almost no e�ect on local weather
and thermal comfort. Therefore, the main question, concerning the UHI e�ect, the
outdoor thermal comfort and estimating the local weather conditions is when and
where exactly is this heat being released.

The relevance of heat produced by transportation remains high since roads are
the medium that allows commuters to move around the city and are thus congenitally
in close proximity to where people are. The reduction of the heat produced by
transportation is, therefore, an important challenge that requires further investigation.
As the heat produced is equal to the amount of energy that is needed by the vehicles
to move, any improvements to the overall energy e�ciency of the road transport will
e�ectively reduce the heat that is released. In this work we examine two types of
improvements, one is the e�ciency of the vehicle's power train, namely the switch
to electric vehicles, and another is the system e�ciency, namely the introduction of
autonomous mobility. We compare the overall changes of energy consumption for
the fully electric road transport population and fully autonomous vehicle population
to the base case scenario. We also estimate the additional energy that will be needed
to produce the electricity used by electric and autonomous vehicles. In the case of
Singapore this electricity is actually produced within the city and thus the heat
released during the energy generation is relevant to the local weather.

2 Methodology

In order to assess the spatio-temporal pro�le of heat released due to road tra�c
we utilize a bottom-up approach. Since the charging temporal pro�le also needs to
be evaluated for the scenarios involving electro-mobility, the simulation approach
needs to have the concept of a single traceable vehicle (agent) rather than modelling
tra�c on a macroscopic �ow level. Therefore, we use an agent-based approach,
which allows us to have a complete set of records for every vehicle that is being
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simulated, including its current state of charge.
In this work we use the CityMoS city-scale agent-based simulator. CityMoS is

capable of simulating large scenarios even on a microscopic level, however, since
in this work we are interested in a mesoscopic assessment, we only utilize some of
the available functionality. The general overview of the simulation model for this
speci�c assessment is represented on �g. 1.

Traffic 
Demand and 

Road 
Network 

Data

Trip 
Generation

Traffic 
Assignment

Heat 
Generation 
Estimation

Figure 1: Overview of road transport simulation model

In order to arrive at the spatio-temporal pro�le of heat release, we assess the
heat release on every road segment in the road network. The amount of heat that
is released on a single segment for a given unit of time depends on the amount of
vehicles that have passed on this segment and the level of congestion on the segment.
In order to estimate the congestion level and the �ow of vehicles, the actual routes
of the vehicles are needed. They are computed during the tra�c assignment phase
of the simulation, which also gives an estimate of the congestion levels. In order
to compute the routes, the tra�c assignment module needs to know the origins,
destinations, and start times of all trips. The data structure that contains this
information is the trip table, which is constructed from a travel diary survey.

2.1 Tra�c Demand and Road Network Data

Tra�c simulations typically need two main types of data input. First, the tra�c
demand, which describes from where, to where, and when are people and goods
moving. Second, the road network, which describes the medium that allows these
movements. Furthermore, simulation models need to be calibrated and validated
which also requires additional, ideally independent, data sets.

The tra�c demand in this work is extracted from the Singapore's Household
Interview Travel Survey (HITS). It is a collection of travel diaries of about 50,000
commuters describing their movements for a single day.

The road network that has been used is a fusion of data acquired from NAVTEQ,
Open Street Maps, and Google Maps. It is represented as a uni-directional graph
where nodes are decision points and edges are road segments. Every road segment
has a maximum allowed speed, length, and number of lanes.

Furthermore, speed band recordings are used for the validation of the model.
Every road segment is classi�ed within 8 categories, called speed bands, depending
on the average movement speed of vehicles on it. The speed bands are updated
every 5 minutes and are collected for roughly 58,000 road segments.
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2.2 Trip Generation

The HITS dataset consists of a set of trips that we call sample trips. Every sample
trip is described by: agent id, trip id, trip mode, origin postal code, destination
postal code, trip start time, estimated trip duration, trip expansion factor, and
person expansion factor.

Trip mode is an indication of the modality of the movement and includes walking,
cycling, taking public transportation, being a passenger in a private vehicle or taxi,
or driving a vehicle. Since we are only interested in trips that generate tra�c, in
the sense that they actively put a vehicle on the road, we �lter out all trips that do
not ful�l this requirement which leaves around 14,000 commuters or roughly 25% of
the initial dataset.

Singapore has a 6 digit postal code system which allows for a building level
assignment of postal codes. This means that every address has a unique postal
code. Trip and person expansion factors are numbers that represent how many of
this trip or person are expected to be in the actual commuting population. They
are, therefore, useful for constructing the complete set of trips for the simulation
scenario later on.

The main challenge that the survey presents is the misreporting of trips. Drivers
of duty vehicles such as taxis or lorries rarely report all their trips but rather describe
their movements as a single trip with identical origin and destination with a duration
of a typical working day. Furthermore, trips with taxis can be counted twice since
both passengers and taxi drivers are included in the survey. The extended duty
vehicle trips need to be broken down into a sequence of normal trips during the trip
generation process. The procedure applied to arrive at the �nal set of trips for the
whole population from the survey data is described in algorithm 1.

Every person in the survey is treated as one sample which will produce as many
itineraries as the person expansion factor given in the survey. For every generated
trip from the sample itinerary, noise in space is added by sampling its start and end
road segment within a given radius of the original geographical positions reported in
the survey. Uniformly distributed noise in time is added as well to the trip starting
times.

Pools containing all sample trips for every di�erent vehicle class are constructed.
Their purpose is to sample representative trips from them in order to deal with the
extended trips of duty vehicles. The procedure for breaking down those trips is
slightly more elaborate. First, the trips need to be detected using the reported
trip duration threshold parameter τ . We have used a value of 100 minutes for τ
to separate reported duty vehicle extended trips from normal trips. Second, a trip
from the respective vehicle pool is sampled within a given radius of the speci�ed
extended trip origin. Then, noise is added to the selected trip in time and space,
similarly to what is done for the normal trip generation. After that, the origin of
the subsequent trip becomes the destination of the current one. Similarly to the
�rst trip, every subsequent trip is sampled from the vehicle class pool such that the
origin of the trip is within a given radius of the destination of the previous trip.
This procedure is repeated until the sum of estimated trip durations reaches the
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reported extended trip duration.
Data:

S Travel Survey Data, a set of itinerarties
N Set of all nodes in the road network
Range Sampling range
P Trip pools by vehicle class

Result: Set of itineraries M

foreach Itinerary Ii ∈ S do

for j = 1 to Ii.ExpansionFactor do
Create New Agent aj with itinerary Tj
foreach trip tk in Ii do

if tk.Duration < τ then
Destinationk =
SampleAroundPoint(tk.Destination,Range,N)
StartT imek = SampleT ime(tk.startT ime)
if k=1 then

Origink = SampleAroundPoint(tk.Origin,Range,N)
M =
AddNewTrip(Origink, Destinationk, StartT imek, aj ,M)

else
Origink = Destinationk−1

M =
AddNewTrip(Origink, Destinationk, StartT imek, aj ,M)

else
CurrentDuration = 0
l = 1
Originl = tk.Origin
while CurrentDuration < tk.Duration do

SampleTrip =
FindSampleTrip(P (aj .V ehicleClass), Originl)
Destinationl =
SampleAroundPoint(SampleTrip.Destination,Range,N)
StartT imel =
SampleT ime(tk.startT ime) + CurrentDuration
CurrentDuration+ =
SampleTrip.ExpectedDuration(1 + aj .RestRatio)
AddNewTrip(Originl, Destinationl, StartT imel, aj ,M)

end

end

end

end
Algorithm 1: Itinerary Generation Algorithm

After this generation process is completed the �nal results is a list of itineraries,
each of which consists of a set of trips. Every itinerary represents one vehicle in
the simulation and its movements in a single day. Every trip is de�ned by: origin
road segment, destination road segment, start time, agent id, vehicle class. Tra�c
demand is considered to be identical for all three considered scenarios. That is, we
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have assumed that the type of vehicle will not a�ect the travelling desires of the
population.

2.3 Tra�c Assignment

After all itineraries have been de�ned the actual planned routes of the vehicles
need to be computed. This process is referred to as tra�c assignment and takes
as input the origin, destination, and start time of all trips. The objective of tra�c
assignment in the standard tra�c case is to �nd routes for all tra�c participants
such that their travel times are in a state of equilibrium, called user equilibrium
(UE) tra�c assignment. This means that for no tra�c participant there exists an
alternative that will provide a faster commute. Public transport buses participate
passively in the tra�c assignment since their routes are �xed. One key element of
the tra�c assignment process is the delay function, which relates the amount of
vehicles that would like to pass through a road segment to the estimated traverse
time of this road.

In this work we use the Bureau of Public Roads (BPR) function which de�nes
the traverse time ti of link i to be:

ti =
li
vi

(
1 + αi

(
Fi

Ciwit

)βi)
(1)

The function has parameters α, β that need to be calibrated for di�erent types
of roads. Other parameters of the function that require calibration are the capacity
of the road per lane per hour C and the free �ow velocity along the road v. The
length l and number of lanes w are extracted from the road network while the �ow F
is extracted from the routes of the vehicles computed during the tra�c assignment.

As mentioned earlier, UE tra�c assignment is used to simulate the base case
scenario. We also use UE for the electric scenario since we assume that the engine
type does not a�ect the routing choices of the population. In the case of autonomous
vehicles, there are two key di�erences when it comes to tra�c assignment. First,
instead of computed UE we compute the system optimum (SO) tra�c assignment
since we assume that vehicles will cooperate to improve tra�c conditions. This
means that we try to minimize the overall system travel time instead of individual
travel times. We use the BISOS algorithm in order to compute SO tra�c assignment
[3]. Second, it is generally accepted that autonomous mobility will increase the
capacities of roads. Depending on the actual level of autonomy and level of cooperative
driving implemented, this capacity increase can greatly vary from actual degradation
of tra�c to up to 350% increase.

According to the analytical model in [4] the capacity increase is a mainly a
function of the time headway that autonomous vehicle keep. Setting the time-
headway to a conservative 1s value results in a 50% capacity increase which is
also in line with what is reported in [5]. It must be noted that this is a gross
assumption on what full automation will look like, however, the topic in itself is so
broad that a further analysis of possible automation scenarios is outside the scope
of this work. We believe that this modelling approach is su�cient to provide a
good rough estimation of energy consumption and macroscopic tra�c distribution,
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however a more detailed further studies are required for a fair assessment of the
large range of autonomous technologies available.

2.4 Heat Generation Estimation

After tra�c assignment is performed we have information about the traverse time
on every road and the amount of cars that will eventually traverse it. We can use
this information to estimate the energy used by the vehicles and thus the total
generated heat. Since the amount of energy used by a vehicle is determined by
its fuel consumption and the fuel consumption is a function of the congestion on
the road and the vehicle type, we need to come up with a model to represent this
relationship.

The fuel consumption F for vehicle j on road segment i is de�ned as:

Fi,j = g(si, li,Θj) (2)

where g() is the fuel consumption model, si is the traverse speed along the
road, and Θj is a set of parameters describing the vehicle, such as its mass, drag
coe�cient, fuel type. We have split the vehicles into 5 classes, each with a di�erent
fuel consumption model. Those classes are lorries and vans, buses, private cars,
taxis, and motorcycles.

In the case of vehicles with a an Internal combustion engine (ICE), considered
in our base case, all fuel consumption models are built, calibrated, and validated by
the European commission in the report [6]. In the case of electric vehicles, however,
such models only exist for private cars. We extracted such a model from the [7] and
veri�ed that the numbers match other publications [8, 9].

A comparison between the energy consumption pro�les of the two di�erent
engine types is shown on �g. 2. It can clearly be seen that ICEs and electric
vehicles reach their peak e�ciencies for di�erent drive cycle average speeds, which
is one of the key elements of the comparison between the two in an urban setting.

Figure 2: Energy consumption comparison of an electric private car and ICE private
car as a function of the average drive cycle speed.

Using the electric vehicle model from [7], we derive a transfer curve between an
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ICE private car energy consumption and the electric private car energy consumption.
The transfer function T is de�ned as the piecewise division of the energy consumption
of ICE vehicle g vs the energy consumption of the electric vehicle h as a function of
the average speed.

T = gprivatecar/hprivatecar (3)

The resulting transfer function is shown in �g. 3.

Figure 3: E�ciency Ratio between an electric private car and ICE private car as a
function of the average drive cycle speed.

Using this transfer function then we derive the energy consumption models for
all other electric vehicle classes from their ICE counterparts.

hk = gk/T (4)

Using this approach to derive the electric vehicle energy consumption models
for all vehicle classes relies on the assumption that the e�ciency ratio relationship
of electric vehicles over ICE vehicles is vehicle-class-invariant. That is, an electric
truck moving with an average speed of 10 km/h is as more e�cient than an ICE
truck moving with the same speed as an electric car moving at 10 km/h is more
e�cient than its ICE counterpart.

2.5 Calibration and Validation

We calibrate our model using the reported trip durations from the HITS data set.
For every trip the surveyed individual has provided the duration that trip took from
memory (they were asked about their movements from the previous day). Using
those trip durations we create a trip duration distribution. Similarly we extract the
trip durations of the simulated trips in our model and we compare the two. The
objective is to make the two distributions as similar as possible. We achieve this by
matching their mean and standard deviation. Technically, the problem is a multi-
objective one, however, we scalarize our objective function by combining the two
error terms thus making it a single-objective optimization problem. The problem
can be formalized as:
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argmin
Ψ

e(Ψ) = λ1

(
µh − µs(Ψ)

µh

)2

+ λ2

(
σh − σs(Ψ)

σh

)2

(5)

The set of parameters that can be used to match the distributions Ψ includes
the BPR function parameters α, β, and v for di�erent road classes, as well as the
capacity of roads C for di�erent road classes and types of intersections, the search
range during from the trip generation phase, and the rest ratio of duty vehicles for
extended trips. Acceptable bounds for all parameters in Ψ were set as constraints
of the optimization problem.

The HITS average trip duration µh and standard deviation σh are extracted
from the HITS survey, while the simulation mean µs and deviation σh are extracted
from the output of the simulation. The weights λ are chosen such that the average
trip duration is given twice as much weight as the standard trip deviation. The
optimization problem was solved using the Nelder-Mead simplex algorithm [10].

We validate the results of our simulation in 2 separate ways. First, we validate
the tra�c conditions that are resulting from our simulation to real life tra�c conditions
recorded as speed bands. Every road segment i is allocated a speed band b0i,t :=

b0i,t ∈ [1, 8]Z for timeslot t.
These speed bands records are collected for the duration of three months and

averaged speed bands are extracted for every road for every hour b̂0i,t. The road
segments from the speed band database, collected in set D, are map-matched to
the road segments from the modelled network and the speed bands predicted by the
simulation model bsi,t are extracted.

We formalize the validation error as:

ev =
∑
i∈D

24∑
t=1

Fi,t|b̂0i,t − bsi,t|∑
j∈D Fj,t

(6)

where Fi,t is the �ow of vehicles on road i during hour t of the simulation. The
reason for the weights expressed using the �ows is that we are more interested in
getting the speed bands correct of roads that experience large throughput, since
they tend to be the critical parts of the tra�c system, compared to underutilized
roads. Our validation procedure results in a measurement of the validation error
of 0.2 which is quite a satisfactory result. To get an intuition about this result, a
validation error of less than 0.5 means that on average the speed band is guessed
exactly, which means that the average error on the average speed can be estimated
to be less than 5 km/h.

After we feel con�dent that the tra�c conditions represent reality su�ciently
well from our �rst validation test, we perform another check to validate our energy
consumption models. This check consists of summing up the total energy consumption
that our simulation predicts for a full year and comparing it to the number found
in the report published by EMA [2] and in [11]. The di�erence between the two
values is 7 PJ which corresponds to 6.9% relative error which as well is within a
satisfactory range.
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3 Simulation Model Results and Analysis

The agent-based nature of the simulation model that we are using allows us to
compute the heat release separately for every single agent in the simulation. We use
this information in order to compute the proportion of heat that every vehicle class
produces. The energy usage split is shown on �g. 4.

Figure 4: Vehicle class split of total energy consumption.

It can be observed that the biggest energy consumers, and thus heat producers,
are lorries and vans, followed by private cars, buses, taxis, and motorcycles. It
must be noted that, the mileage that lorries and vans cover is 35% lower than the
mileage of private cars, however, the fuel consumption of the prior vehicle class is
signi�cantly higher thus resulting in a larger heat generation portion.

If we examine the temporal pro�le of this split we can observe that all vehicle
classes exhibit morning and evening rush hour peaks in fuel consumption due to
both increased travel demand and higher congestion levels. The highest energy
consumption level amplitudes are exhibited by private cars while buses and lorries
heat emissions are distributed more homogeneously in time.

In order to investigate the spatial distribution of heat in a single �gure, we
accumulate all heat released throughout a typical day and compute the spatial
pro�le of the average �ux throughput the day. The hotspots that can be seen on
�g. 6 coincide with the locations of major roads, highways, and major intersections.
There are also a few hotspots that correspond to areas with high density of bus
depots.

Snapshots from morning and evening rush hour, and noon time are also presented
in �g. 7.

In order to compare the three di�erent scenarios (base case, fully electric, and
fully autonomous and electric) we �rst look at the temporal domain for a typical
day. The overall energy consumption temporal pro�le for a typical day for the three
examined scenarios is shown on �g. 8. The �rst thing that can be observed is that
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Figure 5: Temporal pro�le of energy consumption by vehicle class.

the electric and autonomous scenarios use a signi�cantly smaller amount of energy.
Furthermore, the morning and evening rush hour peaks are less pronounced. Those
peaks generally occur due to two main factors: 1) increased amount of cars which
proportionally increases the amount of fuel utilized and 2) congestion which leads
to a non-linear increase in energy usage. Electric vehicles (and autonomous cars
since they are also assumed to be electric) are much more e�cient in congested
tra�c states which reduces the impact the second factor has on the total energy
consumption and thus explains the di�erence in relative energy consumption increase
during rush hours.

A general overview comparison between the three scenarios can be seen on �g. 9.
In terms of heat being generated, the full electri�cation scenario leads to a sixfold
decrease in energy usage by the road sector. This number is roughly the same
for the case of electric autonomous vehicles. This result might come as a surprise
since autonomous mobility is shown to generally increase the e�ciency of the tra�c
system. This trend can, in fact, also be observed in the obtained results as the
average trip duration is signi�cantly decreased, which means that congestion is
largely mitigated by the system optimum tra�c assignment and the increased road
capacities due to autonomous mobility.

The key detail that can explain why this increase in tra�c system e�ciency
does not lead to smaller amount of energy used is the comparison of the average
trip speeds. The increased capacity of the network and the smarter routing of AVs
leads to a reduction of congestion levels. Due to the alleviated congestion the average
trip speed increases from 30 km/h to 50 km/h. Looking back at �g. 3 we see that
while electric vehicles are close to their e�ciency peak at drive cycle average speed
of 30km/h, outperforming ICEs by a factor of 8, at speed of 50km/h they are only
a factor of 4 more e�cient than ICEs. In other words, by making the tra�c move
faster electric vehicles have entered a suboptimal drive cycle speed on average.

At one hand, due to alleviated congestion, roads that have exhibited very low
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Figure 6: Spatial pro�le of averaged heat �ux for base case over a typical day.

average speeds are now in a more e�cient speed ranges thus decreasing the energy
consumption. On the other hand, roads that were experiencing perfect road conditions
for electric vehicles in the 20-30 km/h ranges have moved to the 40-50 km/h ranges
thus increasing the energy consumption levels. Those two factors seem to balance
each other out producing an almost identical energy consumption pro�le for the case
of autonomous mobility as in the case of electric vehicles. This di�erence between
the two scenarios can be very clearly observed on �g. 10 that shows the di�erence
of the averaged daily spatial heat �uxes between the electric and AV scenarios.

It can be seen that while the total produced heat is more or less the same its
spatial distribution varies. Highways generate more heat in the case of AVs due to
the increased average velocity that takes them further from the optimum e�ciency
velocity, while smaller roads produce less heat since the average speed increase
in their case brings the vehicles on them closer to their most e�cient velocity.
Therefore, the spatial heat distribution in the electric scenarios spreads heat more
homogeneously than the AV scenario, which concentrates a signi�cant amount of the
heat on the highways. It is hard to tell which of the two scenarios is more favourable
in terms of UHI. In terms of outdoor thermal comfort, however, the AV scenario
seems to be more favourable since it shifts heat from areas with high concentration
of people outside (major and minor roads), to areas with low concentration of
people nearby (highways). It should further be noted that autonomous mobility
reduces overall travel time of the system by almost 50%, which although unrelated
in the context energy consumption is a massive improvement for the commuting
population.

One major aspect that changes in the energy consumption pro�le of transportation
when there is electri�cation is the �refueling� procedure, or charging of the electric
vehicles. In our simulation model, vehicles recharge their batteries once they reach
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(a) 7-8 am

(b) 12-1 pm

(c) 5-6 pm

Figure 7: Snapshots from morning, midday, and evening heat �ux spatial pro�le
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Figure 8: Temporal pro�le of energy consumption for ICE and fully electri�ed vehicle
population.

Figure 9: General overview of the three scenarios

a state of charge (SOC) smaller than 20%, typically because of battery health
considerations, or lack of enough energy for the next trip in their itinerary.

Since the energy used by transportation is now coming in the form of electricity
rather than gasoline, this electricity needs to be produced. Therefore, there is a
indirect energy footprint created by the change of energy source. That is, while
re�ning of petrol from crude oil has a high e�ciency of roughly 85%, generating
electricity has higher losses associated with it. Furthermore, the 15% losses in the
re�ning process are usually in the form of by-products which do not necessarily turn
into heat in the near future. In the case of Singapore electricity is largely generated
from natural gas. Assuming that this process has an e�ciency of 55% this means
that in reality almost twice the energy content is needed in terms of natural gas than
the 4 TWh computed earlier and shown on �g. 9. The losses of power generation
using natural gas are mostly resulting in heat thus they should be included and
modelled as well. When we account for the indirect heat emissions due to power
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(a) Heat �ux: AV scenario

(b) Heat �ux: electric scenario

(c) Heat �ux di�erence = AV - electric

Figure 10: Comparison of averaged daily heat �uxes for AV and electric scenarios
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Figure 11: Power demand temporal pro�le of fully electri�ed vehicle �eet for a
typical day for di�erent charging power scenarios.

generation, we get the heat generated by the electric vehicle and autonomous vehicle
scenarios is respectively 7.4 and 7.8 TWh. This is close to 70% less than the total
energy consumed with ICEs vehicles in Singapore today (see �g. 9). In order
to compute the temporal pro�le of the additional heat release due to electricity
generation we need to estimate the temporal pro�le of the energy demand coming
from the transport sector.

We simulate the state of charge of every agent which allows us to identify the
moment in time when the agent runs out of charge and thus creates an energy
demand. The temporal power demand levels extracted from the simulation of the
fully electri�ed vehicle population are shown on �g. 11. Since there are various
technologies available, we have computed di�erent power demand curves depending
on the charging power. It can be observed that the peak power demand only reaches
about 1GW which is a considerably small fraction of the 13.5 GW power generation
capacity of Singapore.

4 Conclusion

In this work we have evaluated the e�ects of road transport electri�cation and
automation on the spatio-temporal pro�le of heat release due to road tra�c. We
used a city-scale agent based simulation model that is calibrated and validated
using real world data for the city of Singapore. Our results show that the direct heat
generated by road transport can be reduced by a factor of six if the vehicle population
is fully electri�ed. The vehicle electri�cation, however, comes at a price of increased
indirect heat due to electricity generation. This additional heat is estimated to be
3.4 TWh and is generated at the locations of power plants. Summing up the direct
and indirect heat, the improvement that electri�cation brings to the road transport
system in terms of generated heat is threefold.
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We further show that autonomous mobility signi�cantly reduces the average
commute time from 23 minutes to 14 while keeping the energy usage levels almost
identical to the full electri�cation case. The lack of reduction of energy usage is
due to the fact that autonomous mobility alleviates congestion and thus increases
the average commute speed, while electric vehicles are most e�cient at low drive
cycle speeds. The trade-o� between trip speed and energy consumption that is
observed can be utilized by regulators by reducing free �ow velocities in the city,
however, future in-depth analysis of this phenomenon is required. Sacri�cing some
of the speed gains will produce a reduction of energy consumption and an increase
in safety and comfort associated with autonomous mobility.

It was also shown that the biggest contributor of heat is the lorries and vans
vehicle class. This �nding puts a high level of priority on producing viable electric
alternatives for those vehicles, and preparing the infrastructure for the electri�cation
of the goods transport sector. It was further shown that the peak in terms of
heat generation coincides with the rush hour tra�c occurrences. Shifting some of
the goods vehicle tra�c away from those peak hour regions would greatly reduce
those peaks, homogenize the temporal energy consumption pro�le, and thus decrease
the amount of extreme heat generation throughout the day. The power demand
associated with electri�cation peaks at about 1GW which on a city-scale level will
produce no signi�cant additional load on the Singapore power system in terms of
its available capacity. The spatial pro�le of this demand must also be studied in
greater detail to evaluate what the e�ect on the power network, on a grid level, will
be.

Further research is required regarding the passive anthropogenic heat aspects of
transportation such as analysis of di�erent pavement materials and their e�ects on
both the weather and transportation systems or the shift of road tra�c underground.
Di�erent energy options for vehicles can also be considered such as hydrogen, biofuels
etc. Furthermore, this work has only dealt with road transportation. Since there
are considerable amounts of heat coming from maritime and air transport those
sub-sectors must be studied in the future as well. Last but not least, the already
discussed autonomous mobility scenario which presented the peculiar trade-o� between
congestion levels and energy consumption must be analysed thoroughly in order to
�nd an optimal solution that will further reduce the heat generation due to road
transport.
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