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We present Butler, a computational tool that facilitates large-
scale genomic analyses on public and academic clouds. Butler 
includes innovative anomaly detection and self-healing func-
tions that improve the efficiency of data processing and analy-
sis by 43% compared with current approaches. Butler enabled 
processing of a 725-terabyte cancer genome dataset from the 
Pan-Cancer Analysis of Whole Genomes (PCAWG) project in 
a time-efficient and uniform manner.

Cloud computing offers easy and economical access to compu-
tational capacity at a scale that had previously been available to only 
the largest research institutions. To take advantage, large biologi-
cal datasets are increasingly analyzed on various cloud computing 
platforms, using public, private and hybrid clouds1 with the aid of 
workflow systems. When employed in global projects, such systems 
must be flexible in their ability to operate in different environments, 
including academic clouds, to allow researchers to bring their com-
putational pipelines to the data, especially in cases where the raw data 
themselves cannot be moved. The recently developed cloud-based 
scientific workflow frameworks Nextflow2, Toil3 and GenomeVIP4 
focus their support largely on individual commercial cloud comput-
ing environments—mostly Amazon Web Services—and lack com-
plete functionality for other major providers. This limits their use in 
studies that require multi-cloud operation due to practical and regu-
latory requirements5,6. Butler, in contrast, provides full support for 
operation on OpenStack-based commercial and academic clouds, 
Amazon Web Services, Microsoft Azure and Google Compute 
Platform, and can thus enable international collaborations involving 
the analysis of hundreds of thousands of samples where distributed 
cloud-based computation is pursued in different jurisdictions5–7.

A key lesson learned from large-scale projects including the 
PCAWG project7, which has pursued a study of 2,658 cancer genomes 
sequenced by the International Cancer Genome Consortium and 
the Cancer Genome Atlas, is that analysis of biological data of het-
erogeneous quality, generated at multiple locations with varying 
standard operating procedures, frequently suffers from artifacts that 
lead to many failures of computational jobs and that can consider-
ably limit a project’s progress. Sequencing library artifacts, sample 
contamination and nonuniform sequencing coverage8 can cause 
data and software anomalies that challenge current workflows. 
Delays in recognizing and resolving these failures can notably affect 
data processing rate and increase project duration and costs. In con-
trast to previous tools, Butler provides an operational management 
toolkit that quickly discovers and resolves expected and unexpected 
failures (Fig. 1a,b and Supplementary Note 1).

The toolkit functions at two levels of granularity: host level and 
application level. Host-level operational management is facilitated 
via a health metrics system that collects system measurements 
at regular intervals from all deployed virtual machines (VMs). 
These metrics are aggregated and stored in a time-series database 
within Butler’s monitoring server. A set of graphical dashboards 
reports system health to users while supporting advanced que-
rying capabilities for in-depth troubleshooting (Supplementary  
Fig. 8). Application-level monitoring is facilitated via systematic 
log collection (Supplementary Fig. 4) and extraction wherein the 
logs are stored in a queryable search index9. These tools provide 
multidimensional visibility into operational bottlenecks and error 
conditions as they occur, in a manner that is aggregated across hun-
dreds of VMs. On top of these data, a rule-based anomaly detection 
engine defines normal operating conditions that, when breached, 
trigger handling routines that can notify the user by sending e-mail, 
Slack or Telegram messages, and enables automated restarting of 
offending workflows, underlying services or entire VMs, allowing 
the cluster to self-heal (Fig. 1b).

These monitoring and operational management capabilities 
set Butler apart from current scientific workflow frameworks2–4,10 
(Supplementary Table 1), which do not contain anomaly detection 
modules and are therefore unable to automatically resolve key issues 
that frequently occur during large-scale analyses. For example, 
Butler’s operational modules are able to identify and resolve failures 
of the cloud workflow scheduler, workflows that run perpetually 
and never finish (indicative of underlying problems), and crashed 
and unresponsive VMs that, in practice, may prevent workflows 
from setting a failed status and thus would prevent triggering of 
error handling logic in other workflow systems.

These capabilities indeed enable highly efficient data process-
ing in studies, such as PCAWG, where analyses are run by multiple 
groups at different times and on different clouds. Butler can invoke 
a variety of analysis algorithms, including genome alignment, vari-
ant calling and execution of R scripts. These can either be prein-
stalled or run as Docker11 images or Common Workflow Language 
(CWL)12 tools and workflows. Butler’s workflows accept parameters 
via JavaScript Object Notation (JSON) configuration files, which 
are stored in a database to maintain reproducibility. Workflow tasks 
scheduled for execution are deposited into a distributed task queue 
from which available worker nodes will pick them up, allowing  
analyses to be distributed over thousands of computing nodes. It is 
worth noting that for some small-scale projects executed over rela-
tively short timelines, the increased complexity of setting up and 
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running these monitoring systems may render Butler less practi-
cable than simpler workflows.

We assessed Butler’s ability to facilitate large-scale analyses of 
patient genomes in the context of the PCAWG study, where Butler 
was deployed on 1,500 CPU cores, 5.5 terabytes of random access 
memory (RAM), 1 petabyte of shared storage and 40 terabytes 
of local solid-state drive storage. Using Butler, we implemented 
and successfully tested a genomic alignment workflow using 
BWA13, germline variant calling workflows based on FreeBayes14 
(Supplementary Fig. 5) and Delly15, as well as several tools for 
somatic mutation calling, including Pindel16 and BRASS17. We car-
ried out whole-genome variant discovery and joint genotyping of 
90 million germline genetic variants (single nucleotide polymor-
phisms (SNPs), indels and structural variants) across a 725-tera-

byte dataset comprising the full PCAWG cohort (including samples 
that were later blacklisted) of 2,834 cancer patients7. Additionally, 
we performed sequence alignment and called both germline and 
somatic variants on 232 high-coverage prostate cancer tumor–nor-
mal sample pairs in the context of the PanProstate Cancer Group 
(PPCG) Consortium. We executed and successfully completed over 
2.5 million computational jobs using 546,552 CPU hours. The man-
agement overhead of employing Butler for these analyses was less 
than 2% of the overall computational cost.

To assess Butler performance in the field, in comparison to other 
large-scale workflow systems, we compare the actually observed 
historical performance of Butler, recorded during PCAWG, against 
the performance of the ‘core’ somatic PCAWG consortium pipelines 
(Fig. 2), which represent the current state of the art in the field in 
terms of cloud software7 (on the basis of recency of development, 
scale of deployment, dataset size and analysis duration)—achiev-
ing nearly complete feature parity with several available cloud-
based scientific workflow frameworks2–4,10 (Supplementary Table 1).  
These PCAWG pipelines used the same information technology 
infrastructure and computed over the same samples, but did not use 
Butler. Our metric to estimate the highest achievable processing rate 
for an analysis is defined as the smallest proportion of time required 
for processing 5% of all samples, which we refer to as the ‘target pro-
cessing rate’. This is measured on the basis of the difference between 
the calendar completion date and time of the samples and the analy-
sis start date, thus taking into account the time spent on failed and 
repeated runs and cluster downtime, which are major contributors 
to analysis duration. To establish how well a pipeline performs com-
pared to its potential, we calculated the ratio of the actual process-
ing rate to the target processing rate (Fig. 2a,b). Butler-operated 
pipelines were markedly closer to the target processing rate (mean 
actual/target rate ratio 0.696) than the core PCAWG pipelines 
(mean actual/target rate ratio 0.490) (Fig. 2c). Consequently, Butler-
based analyses showed a duration 1.43 times the ideal target dura-
tion while core PCAWG pipelines showed a duration of 2.04 times 
the ideal target duration—43% longer. Additionally, core PCAWG 
pipelines exhibited a highly nonuniform processing rate (Fig. 2d) 
deviating 23.1% on average (minimum 0.0%, maximum 57.8%, s.d. 
15.0%) from the ideally uniform trajectory of processing 1% of sam-
ples in 1% of analysis time, while Butler-based pipelines (Fig. 2e)  
performed in a substantially more uniform manner, deviating only 
4.0% (minimum 0.0%, maximum 15.6%, s.d. 3.7%) over the same 
sample set on average (Methods). These timesaving and controlled 
execution abilities resulted in the adoption of Butler for genomics-
oriented analyses in the context of the European Open Science Cloud 
(EOSC) Pilot (http://eoscpilot.eu) and its further adoption within 
PPGC (http://melbournebioinformatics.org.au/project/ppgc).

Butler can be generally applied to any large-scale analysis and 
could, for example, readily extend to studies such as GTEx (http://
gtexportal.org), ENCODE (http://encodeproject.org) and the 
Human Cell Atlas Project (http://humancellatlas.org). A standard 
Butler workflow generically parallelizes R script execution across 
thousands of VMs, which will facilitate its use for other research 
contexts and other data types (including single-cell ‘omics’ data and 
microbiomes, for example).

We have developed Butler to meet the challenges of working 
with diverse cloud computing environments in the context of large-
scale scientific data analyses. The operational management tools 
provided with Butler help overcome the key challenge that impacts 
analysis duration—the ability to autonomously detect, diagnose 
and address issues in a timely manner—thus allowing researchers 
to spend less time focusing on error conditions and considerably 
reduce analysis duration and cost. The comprehensive nature of the 
Butler toolkit sets it apart from current scientific workflow manag-
ers2–4,10 (Supplementary Table 1) by offering an efficient and scalable 
solution for modern global cloud-based big data analyses.
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Fig. 1 | Butler framework architecture. a, The framework consists of several 
interconnected components, each running on a separate virtual machine 
(VM). See Methods and Supplementary Note 1 for details. b, Metrics flow 
from all VMs into a time series database. The self-healing agent detects 
anomalies and takes appropriate action. See Supplementary Note 1 for 
details. Solid arrows indicate information flow; dashed arrows indicate 
metrics flow; dashed-and-dotted arrows indicate configuration instructions.
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Fig. 2 | Butler performance comparison. a,b, Comparing the ratio of actual to target progress rates for core PCAWG pipelines (a) vs. Butler pipelines (b). 
See Methods for details. c, Mean actual/target progress rate ratio across pipelines for core PCAWG (mean 0.49) vs. Butler (mean 0.7) pipelines, each of 
which were run once over the entirety of PCAWG samples available to us. d,e, Progress rate uniformity of core PCAWG pipelines (d) vs. Butler (e). See 
Methods for details. In all panels the samples are arranged by their completion date. runtime includes time spent on failed attempts. Comparison between 
Butler and core pipelines was facilitated in the context of the PCAWG. Similar comparison between Butler and other frameworks is presently impractical at 
this scale due to the high costs and complexity involved.
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Methods
The Butler system. Overall, the Butler system is composed of four distinct 
subsystems. The Cluster Lifecycle Management is the first subsystem and deals 
with the task of creating and tearing down clusters on various clouds, including 
defining VMs, storage devices, network topology and network security rules. The 
second subsystem, Cluster Configuration Management, deals with configuration 
and software installation of all VMs in the cluster. The Workflow System is 
responsible for allowing users to define and run scientific workflows on the cloud. 
Finally, the Operational Management subsystem provides tools for ensuring 
continuous successful operation of the cluster, as well as for troubleshooting error 
conditions. Supplementary Note 1 contains an in-depth description of each of 
these subsystems and how they work within Butler, while the Installation Guide  
(http://butler.readthedocs.io/en/latest/installation.html) provides detailed 
instructions for how to set up the software.

Butler deployment. Butler has been validated for production use on the EMBL-
EBI Embassy Cloud (http://www.embassycloud.org), an academic cloud computing 
center that runs an OpenStack-based environment (Fig. 1). The Embassy Cloud 
has played a key role in the PCAWG project by donating substantial storage and 
cloud computing capacity over the course of 3 years. The total amount of resources 
dedicated to the project by the Embassy Cloud was as follows:
•	 1 PB Isilon storage shared over NFS
•	 1,500 computational cores
•	 5.5 TB RAM
•	 40 TB local solid-state drive storage
•	 10-gigabit network

These resources have been used to host one of the six PCAWG data repositories 
that exist worldwide, as well as performing scientific analyses for the project. 
We have used Butler extensively on the Embassy Cloud to carry out the analyses 
for the PCAWG Germline Working Group. To deploy Butler on the 1,500-core 
cluster, we set up five different profiles of VMs, each playing several different roles 
(Supplementary Table 2).

Each profile was defined separately via Terraform and uses Saltstack roles 
for configuration. Users can check out the Butler github repository to their local 
machine, and once they install Terraform locally, they can fully commandeer the 
provisioning process from the local machine via Terraform.

The cluster is bootstrapped via the Salt-master VM. This VM is started first 
whenever the cluster needs to be recreated from scratch. The monitoring-server 
role is responsible for installing and configuring InfluxDB and other monitoring 
components, as well as registering them with Consul so that metrics can start being 
recorded. We also attach a 1-TB block storage volume for the metrics database so 
that it can survive cluster crashes and teardowns. If the monitoring server needs 
to be recreated, the block storage volume simply needs to be reattached to the new 
Monitoring Server VM.

The tracker VM is responsible for running various Airflow components, such 
as the Scheduler, Webserver and Flower. Additionally, we deploy the Butler tracker 
module to this VM, and thus the tracker VM acts as the main control point of the 
system from which analyses are launched and monitored. This VM additionally 
has the Elasticsearch role that designates it as the location of the Logstash and 
Elasticsearch components. To persist the search index, we attach an additional 
1-TB block storage volume.

The job queue VM is responsible for hosting the RabbitMQ server, which 
holds all of the in-flight workflow tasks. Because the resources of the job queue are 
heavily taxed by communication with all of the worker VMs in the cluster, we do 
not assign any additional roles to this host.

The db-server is responsible for hosting most of the databases used by Butler. 
This VM runs an instance of PostgreSQL Server and hosts the Run Tracking DB, 
Airflow DB and Sample Tracking DB. The 1-TB block storage volume serves as the 
backing storage mechanism.

The worker VMs are the workhorses of the Butler cluster. For analyses by the 
PCAWG Germline Working Group, we employed 175 eight-core worker machines 
dedicated to running Butler workflows. The worker role ensures that Airflow client 
modules are installed and loaded on each worker. The germline role also loads the 
workflows and analyses that are relevant to the PCAWG Germline Working Group.

Because of the comprehensive nature of the Butler framework, which covers far 
more scope than a traditional workflow framework (provisioning, configuration 
management, operations management, anomaly detection, etc.), the setup and 
deployment of a Butler system are more complex than those of other workflow 
frameworks because multiple VMs need to be successfully set up and configured 
to interact with each other in a secure environment that is fit for sensitive 
information handling. Even though Butler features comprehensive documentation 
(http://butler.readthedocs.io), usage examples and automated deployment and 
configuration scripts, we recommend that the prospective user should ideally have 
a working understanding of cloud computing, server administration, networking, 
security, and other development operations (dev ops) concepts to make full use of 
the system. And while smaller-scale projects may benefit less from Butler’s state-of-
the-art feature set owing to its increased complexity and learning curve, this feature 
set is imperative for enabling the success of current and future generations of large-
scale bioinformatics computing on the cloud.

PCAWG germline analyses. To assess Butler’s performance on real data,  
we carried out several large-scale data analyses using Butler on the Embassy  
Cloud and over the entirety of the 725 TB of raw PCAWG data, including the 
following:
•	 discovery of germline single nucleotide variants (SNVs) and small indels in 

normal genomes.
•	 genotyping of common SNVs occurring at minor allele frequency (MAF) >1% 

in the 1000 Genomes Project18.
•	 genotyping of germline SNVs and small indels in tumor and normal genomes 

(Supplementary Fig. 6).
•	 discovery and genotyping of structural variant deletions in tumor and normal 

genomes (Supplementary Fig. 7).
•	 discovery and genotyping of structural variant duplications in tumor and 

normal genomes (Supplementary Fig. 7).
Overall, most Butler workflows that carry out an analysis follow a similar 

structure (Supplementary Fig. 1): an analysis run is started, access to the sample 
is validated, the analysis steps are carried out (possibly with branching), and the 
analysis run is completed. Because of the largely common structure between 
workflows a large degree of code reuse is possible, and thus most of the methods 
reside in the workflow_common submodule of the Analysis Tracker and are 
invoked for each workflow.

Common variant genotyping was performed across the PCAWG cohort using 
a site list of 12 million variants occurring with at least 1% minor allele frequency 
within the 1000 Genomes Project18 phase 3 cohort, interrogating 34 billion sites 
overall. 130,152 computing hours were used to complete 70,850 workflow tasks 
for this analysis, with an additional 2,688 CPU hours used for cluster management 
overhead. Thus, management overhead accounted for 2% of the overall 
computational resource costs for this analysis. Using 1,000 cores, this analysis 
took less than 6 d to complete. Supplementary Fig. 2 shows a distribution of job 
runtimes by chromosome (runtimes highly correlate with chromosome length,  
r = 0.92). Using a site list of 60 million variants obtained from the FreeBayes 
Variant Discovery analysis, we used the Butler FreeBayes Workflow in genotyping 
mode to calculate genotypes at 170 billion genomic positions. 76,518 workflow 
tasks were completed using 302,071 CPU hours over the course of the analysis 
(10 d wall time), of which 5,040 CPU hours were cluster management overhead, 
accounting for 1.6% of total resource utilization.

244,889 deletions were evaluated across 5,668 samples (tumor and normal) 
for a total of 1,388,030,852 genomic sites genotyped. Overall wall time was 13 d, 
using 265,200 CPU hours with 6,240 CPU hours going to cluster management 
overhead—an overhead of 2.2%. 217,433 duplications were genotyped for each 
sample across 5,668 samples, for a total of 1,232,410,244 genomic variants 
genotyped. The wall time for this analysis was only 4.5 d, using 151,200 CPU hours 
during this time, with a management overhead of 2,160 h, for a total overhead of 
1.4%. The comparatively low cluster management overhead has been accomplished 
by scaling up the cluster to 1,400 cores without the need for more management 
resources. Supplementary Fig. 3 shows a distribution of workflow run durations.

We carried out several analyses on a 725-TB dataset of 2,834 cancer patients’ 
genomic samples, consuming a total of 546,552 CPU hours. Each analysis took 
no longer than 2 weeks to complete and used only 1.5%–2.2% of the overall 
computing capacity for management overhead. On several occasions we were able 
detect large-scale cluster instability and program crashes using the Operational 
Management system and take corrective action with a minimal impact on overall 
productivity.

Comparing Butler with the core PCAWG somatic pipelines. We evaluate the 
relative effectiveness of Butler-based pipelines in comparison to a set of pipelines 
operating under similar conditions and over the same dataset, namely the ‘core’ 
PCAWG somatic pipelines that have been used to accomplish genome alignment 
and somatic variant calling for the PCAWG Technical Working Group7. The core 
PCAWG pipeline set consists of five pipelines—BWA, Sanger, Broad, DKFZ/
EMBL and OxoG detection—run over the course of 18 months over all samples 
in PCAWG. The Butler-based pipeline set consists of two pipelines—FreeBayes 
and Delly, used to accomplish four analyses: germline SNV discovery, germline 
SNV genotyping, germline structural variant deletion genotyping and germline 
structural variant duplication genotyping—also running over all samples in 
PCAWG (725 TB in total). We assessed and compared pipeline performance with 
respect to an estimated optimal performance (based on available hardware), as well 
as with respect to analysis progress uniformity in time.

For core PCAWG pipelines, we used the date of data upload to the official data 
repository as the most reliable sample completion date. However, approximately 
25% of the DKFZ/EMBL pipeline results were uploaded in two batches on two 
separate days, and thus do not accurately represent the real analysis progress rate. 
For this reason, we excluded this pipeline from the optimal performance analysis. 
Butler sample completion dates are based on timestamps collected in Butler’s 
analysis tracking database.

Our assessment of pipeline performance is based on establishing an ‘optimal’ 
progress rate for a pipeline given a hardware allocation. We divided the sample 
set into 20 bins based on their completion time (each bin comprising 5% of all 
samples) and defined the optimal progress rate for each pipeline to be the smallest 
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proportion of overall analysis time required to process all samples of a bin (scaled 
to a 1% rate).

ropt ¼ min
b2bins

durationb=durationtotal=5f g

We observed that the mean ropt was significantly higher for Butler-based pipelines 
at 0.46 than for the core PCAWG pipelines at 0.13 (Supplementary Table 3). For 
each pipeline and each 1% of the samples under analysis, we then computed a 
metric e (for effectiveness) defined as the proportion of ropt actually achieved.

e ¼ ract
ropt

Comparing the core PCAWG and Butler pipelines with respect to e (Fig. 2a–c), 
we observed that effectiveness was on average lower for PCAWG pipelines 
(μePCAWG

¼ 0:49
I

) than for Butler pipelines (μeButler ¼ 0:70
I

). Assessing the expected 
analysis duration for the two sets of pipelines, we observed

dPCAWG ¼ 100
μePCAWG

¼ 2:04dopt

dButler ¼
100
μeButler

¼ 1:43dopt

dPCAWG ¼ 1:43dButler

Thus, the estimated duration for PCAWG pipelines was 43% longer than that for 
Butler-based pipelines.

We further compared core PCAWG pipelines with Butler pipelines on the basis 
of uniformity of rate of progress through an analysis. Given a constant resource 
allocation, an ideal analysis execution processes 1% of all samples in 1% of the 
analysis runtime. We divided the sample set into 100 equal-size bins and measured 
the percentage of overall analysis time spent processing each bin (Fig. 2d,e). 
Deviations from the diagonal indicate inefficiencies in data processing. Measuring 
this deviation, we observed that PCAWG pipelines deviated 23.1% from the 
diagonal on average (minimum 0.0%, maximum 57.8%, s.d. 15.0%) while Butler 
pipelines over the same sample set only deviated 4.0% (minimum 0.0%, maximum 
15.6%, s.d. 3.7%) from the diagonal on average. This indicates that Butler pipelines 
are considerably less affected by various causes that slow an analysis (for example, 
job and infrastructure failures).

Adapting Butler to new projects and domains. Butler is a highly general 
workflow framework, built on top of generic open source components that in 
principle can work with any data in any scientific domain, deploy onto over 20 
cloud types, and work on any operating system, and it comprises a rich set of tools 
for installing and configuring software. Adapting Butler to a new application is 
straightforward. This process is described below.

Butler has a prebuilt library of workflows that focus on handling genomic 
data and can support a large variety of studies that are based on next-generation 
sequencing applications, such as variant discovery, common and rare variant 
association studies, cancer genome analysis, and expression quantitative trait locus 
(eQTL) mapping. Using one of these workflows is simply a matter of providing 
configuration values in JSON format for the underlying tools (such as, for example, 
FreeBayes, Delly, samtools19 or bcftools). Notably, Butler also supplies a generic 
workflow that allows execution of arbitrary R scripts across the entire Butler 
cluster. This powerful functionality can be used to facilitate a broad range of 
studies across disciplines, communities and analysis types, given the wide cross-
community usage of R.

If the prebuilt workflows do not meet the users’ requirements as-is, they can be 
customized to adapt to arbitrary needs or entirely new workflows can be written. 
Each Butler workflow is a Python program, which typically contains only 100–200 
lines of code. There are three principal avenues of developing new workflows that 
are suitable to a wide variety of users’ needs.

The easiest involves adapting tools that are already available as Docker images. 
Butler has prebuilt configurations for setting up all the infrastructure necessary 
to run Docker containers. The user only needs to wrap the Docker command 
line within existing boilerplate code that sets up access to the data that need to be 
analyzed. Once appropriate configuration parameters are supplied, Butler will be 
able to run the workflow seamlessly.

Only slightly more sophisticated is the setup of workflows that use CWL 
(Common Workflow Language) as a description language. Butler already 
has built-in functionality for installing and configuring cwl-runner, which is 
the reference implementation of CWL. To set up a new workflow that uses 
CWL within Butler, users need to prepare an appropriate JSON parameter file 
according to the CWL definition. This is accomplished via Butler’s configuration 
functionality. The genome alignment and somatic variant calling workflows that 
accompany the Butler framework already provide full functionality in this regard 
and can be used as examples by new users. Because a number of workflows from 
varying scientific fields have already been described with CWL, this approach 

opens up a relatively straightforward avenue for adopting Butler in a wide variety 
of additional studies.

Potentially the most complex, but also the most powerful, way of authoring 
new workflows is writing them using the native constructs of the underlying 
Apache Airflow workflow framework. This approach provides the users with all 
of the power of the Python language and extended library, as well as the prebuilt 
Airflow components for interacting with a wide variety of distributed systems 
and engines, such as HDFS, Apache Spark, Apache Cassandra, various databases 
such as PostgreSQL and SQLite, email engines and many more. Several of the 
prebuilt Butler workflows, such as the FreeBayes, Delly and R workflow, use this 
approach, and users can employ these as templates for new workflows built in 
this style.

Because of the wide variety of workflow authoring and customization styles 
available, the existing examples, and the generic nature of the underlying open 
source components, applying Butler to new projects and analysis domains can 
be accomplished with minimal efforts and at a complexity level that is matched 
to the requirements of the project. Individual steps of the workflow can be easily 
debugged and tested on the local machine without the need to deploy to any cloud, 
using Python’s extensive testing and debugging functionality. The typical life cycle 
for developing a new workflow is a few hours to a few days long and is usually 
much shorter than a week. Because new projects frequently require the installation 
and configuration of new software packages, Butler has integrated a full-featured 
configuration management solution called Saltstack that is used to set up and 
configure Butler internals and also any additional software required by the user 
for their project. Recipes for configuring dozens of software packages are already 
included with the Butler system, and hundreds more are available as community 
contributions to the Saltstack project. Arbitrary new configurations can be defined 
by the user to meet their custom requirements. To support this the user would 
typically set up a new Github repository that acts as a customization layer on top of 
the core Butler configurations. Within this custom repository, users can define new 
configuration recipes or override the behavior of the pre-existing Butler settings 
depending on the needs of their scientific project. We provide several examples  
of such repositories under ‘Code availability’ to help users become familiar  
with Butler.

Statistics. No formal sample size and power calculations were performed as we 
made use of all 5,668 of the samples available to us via the PCAWG consortium. 
The analyses in Fig. 2, performed over the entirety of PCAWG samples available to 
us, were run once (rather than multiple times) owing to the multi-year nature and 
high costs of the PCAWG project.

Ethical compliance. The authors have complied with all of the relevant ethical 
regulations with regards to the subjects described in this manuscript.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
PCAWG’s final callsets, somatic and germline variant calls, mutational 
signatures, subclonal reconstructions, transcript abundance, splice calls and 
other core data generated by the ICGC/TCGA Pan-cancer Analysis of Whole 
Genomes Consortium is described in ref. 7 and available for download at https://
dcc.icgc.org/releases/PCAWG. Additional information on accessing the data, 
including raw read files, can be found at https://docs.icgc.org/pcawg/data/. In 
accordance with the data access policies of the ICGC and TCGA projects, most 
molecular, clinical and specimen data are in an open tier that does not require 
access approval. To access potentially identifying information, such as germline 
alleles and underlying sequencing data, researchers will need to apply to the 
TCGA Data Access Committee (DAC) via dbGaP (https://dbgap.ncbi.nlm.nih.
gov/aa/wga.cgi?page=login) for access to the TCGA portion of the dataset and 
to the ICGC Data Access Compliance Office (DACO; http://icgc.org/daco) for 
access to the ICGC portion. In addition, to access somatic single nucleotide 
variants derived from TCGA donors, researchers will also need to obtain dbGaP 
authorization.

Code availability
The source code for Butler is freely available at http://github.com/llevar/butler 
under the GPL v3.0 license.
The project-specific deployment settings, configurations, analysis definitions, and 
workflows are available at the following:
PCAWG Germline Project: https://github.com/llevar/pcawg-germline
EOSC Pilot: https://github.com/llevar/eosc_pilot
Pan-Prostate Cancer Group: https://github.com/llevar/pan-prostate
The R source code for the analysis is available at https://github.com/llevar/butler_
perf_analysis.
The core computational pipelines used by the PCAWG Consortium for alignment, 
quality control and variant calling are available to the public at https://dockstore.
org/search?search=pcawg under the GNU General Public License v3.0, which 
allows for reuse and distribution.
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    Experimental design
1.   Sample size

Describe how sample size was determined. The sample size corresponds to all whole cancer genomes that at the time of the 
commencement of the Pan-Cancer Analysis of Whole Genomes (PCAWG) study had been 
completed by deep massively parallel sequencing within the International Cancer Genome 
Consortium (ICGC) and the Cancer Genome Atlas (TCGA).

2.   Data exclusions

Describe any data exclusions. No data were excluded.  

3.   Replication

Describe the measures taken to verify the reproducibility 
of the experimental findings.

Not applicable. We analyzed all data available, namely, all whole cancer genomes that at the 
time of the commencement of the Pan-Cancer Analysis of Whole Genomes (PCAWG) study 
had been completed by deep massively parallel sequencing, by the ICGC and the TCGA.

4.   Randomization

Describe how samples/organisms/participants were 
allocated into experimental groups.

No randomization was necessary. We analyzed all data available, namely, all whole cancer 
genomes that at the time of the commencement of the Pan-Cancer Analysis of Whole 
Genomes (PCAWG) study had been completed by deep massively parallel sequencing, by the 
ICGC and the TCGA.

5.   Blinding

Describe whether the investigators were blinded to 
group allocation during data collection and/or analysis.

Not applicable. The entire set of data was analyzed by the respective methodologies 
presented in our manuscript.

Note: all in vivo studies must report how sample size was determined and whether blinding and randomization were used.
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6.   Statistical parameters 
For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or in the 
Methods section if additional space is needed). 

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)

A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same 
sample was measured repeatedly

A statement indicating how many times each experiment was replicated

The statistical test(s) used and whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of any assumptions or corrections, such as an adjustment for multiple comparisons

Test values indicating whether an effect is present 
Provide confidence intervals or give results of significance tests (e.g. P values) as exact values whenever appropriate and with effect sizes noted.

A clear description of statistics including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

Clearly defined error bars in all relevant figure captions (with explicit mention of central tendency and variation)

See the web collection on statistics for biologists for further resources and guidance.

   Software
Policy information about availability of computer code

7. Software

Describe the software used to analyze the data in this 
study. 

Butler (https://github.com/llevar/butler), R

For manuscripts utilizing custom algorithms or software that are central to the paper but not yet described in the published literature, software must be made 
available to editors and reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). Nature Methods guidance for 
providing algorithms and software for publication provides further information on this topic.

   Materials and reagents
Policy information about availability of materials

8.   Materials availability

Indicate whether there are restrictions on availability of 
unique materials or if these materials are only available 
for distribution by a third party.

No unique materials were used. All data are available to the community. Algorithms used are 
distributed as open source.

9.   Antibodies

Describe the antibodies used and how they were validated 
for use in the system under study (i.e. assay and species).

No Antibodies were used.

10. Eukaryotic cell lines
a.  State the source of each eukaryotic cell line used. No eukaryotic cell lines were used.

b.  Describe the method of cell line authentication used. No eukaryotic cell lines were used.

c.  Report whether the cell lines were tested for 
mycoplasma contamination.

No eukaryotic cell lines were used.

d.  If any of the cell lines used are listed in the database 
of commonly misidentified cell lines maintained by 
ICLAC, provide a scientific rationale for their use.

No commonly misidentified cell lines were used.

    Animals and human research participants
Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals
Provide all relevant details on animals and/or 
animal-derived materials used in the study.

No animals were used.
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Policy information about studies involving human research participants

12. Description of human research participants
Describe the covariate-relevant population 
characteristics of the human research participants.

The PCAWG marker paper presents the population-characteristics of these cancer patients in 
great detail, see http://www.biorxiv.org/content/biorxiv/early/2017/07/12/162784.full.pdf. 
In brief, demographically, the cohort included male (55%) and female (45%) donors, with a 
mean age of 56 years (median 60 years; range 1-90 years). By using population ancestry-
differentiated single nucleotide polymorphisms (SNPs), we were able to estimate the 
population ancestry of each donor. The continental ancestry distribution was heavily 
weighted towards Europeans (77% of total) followed by East Asians (16%), as expected by 
large contributions from European, North American, and Australian projects.


