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Recently, a novel real-space renormalization group (RG) algorithm was introduced. By maximizing an
information-theoretic quantity, the real-space mutual information, the algorithm identifies the relevant low-
energy degrees of freedom. Motivated by this insight, we investigate the information-theoretic properties of
coarse-graining procedures for both translationally invariant and disordered systems. We prove that a
perfect real-space mutual information coarse graining does not increase the range of interactions in the
renormalized Hamiltonian, and, for disordered systems, it suppresses the generation of correlations in the
renormalized disorder distribution, being in this sense optimal. We empirically verify decay of those
measures of complexity as a function of information retained by the RG, on the examples of arbitrary
coarse grainings of the clean and random Ising chain. The results establish a direct and quantifiable
connection between properties of RG viewed as a compression scheme and those of physical objects, i.e.,
Hamiltonians and disorder distributions. We also study the effect of constraints on the number and type of
coarse-grained degrees of freedom on a generic RG procedure.

DOI: 10.1103/PhysRevX.10.011037 Subject Areas: Complex Systems, Computational
Physics, Statistical Physics

I. INTRODUCTION

The conceptual relations between physics and informa-
tion theory date back to the very earliest days of statistical
mechanics; they include the pioneering work of Boltzmann
[1] and Gibbs [2] on entropy, finding its direct counterpart
in Shannon’s information entropy [3], and investigations of
Szilard [4] and Landauer [5]. In the quantum regime,
research initially focused on foundational challenges posed
by the notion of entanglement, but it soon gave rise to the
wide discipline of quantum-information theory [6], whose
more practical aspects include quantum algorithms and
computation.
In recent years, there has been renewed interest in applying

the formalism and tools of information theory to fundamental
problems of theoretical physics. The motivation comes
mainly from two, not entirely unrelated, directions. On the
one hand, the high-energy community is actively investigat-
ing the idea of holography in quantum field theories [7–9]
originally inspired by black-hole thermodynamics. On the
other hand, in condensed matter theory there is a growing
appreciation of the role of the entanglement structure of
quantum wave functions in determining the physical

properties of the system, exemplified by the short- and
long-range entanglement distinguishing the symmetry-pro-
tected topological phases [10–12] (e.g., topological insula-
tors) from genuine, fractionalized topological orders (e.g.,
fractional quantumHall states). The conceptual advances led
also to constructive developments in the formof newAnsätze
for wave functions (matrix-product states [13], multi-scale
entanglement renormalization Ansatz [14]) and numerical
algorithms (density-matrix renormalization group [15], neu-
ral quantum states [16]).
The focus of this work is on the renormalization group

(RG). One of the conceptually most profound developments
in theoretical physics, in particular, condensed matter theory,
it provides—beyond more direct applications—a theoretical
foundation for the notion of universality [17–21]. The
connections of RG to information theory have been explored
in a number of works [22–28] in both classical and quantum
settings. In particular, some of the present authors introduced
a numerical algorithm for real-space RG of classical stat-
istical systems [28] based on the characterization of relevant
degrees of freedom (d.o.f.) supported in a spatial block as
the ones sharing the most real-space mutual information
(RSMI) with the environment of the block. The algorithm
employs machine-learning techniques to extract those d.o.f.
and combines it with an iterative sampling scheme of
Monte Carlo RG [29,30], though, in a crucial difference,
the form of the RG coarse-graining rule is not given but
rather learned. Strikingly, the coarse-graining rules discovered
by the algorithm for the test systems were in an operational
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sense optimal [31]: They ignored irrelevant short-scale noise,
and they result in simple effective Hamiltonians or match
nontrivial analytical results.1

The above suggests that real-space RG can be univer-
sally defined in terms of information theory rather than
based on problem-specific physical intuition. Here we
develop a theoretical foundation inspired by and underlying
those numerical results. We show they were not accidental
but rather a consequence of general principles. To this end,
we prove that a perfect full-RSMI-retaining coarse graining
of a finite-range Hamiltonian does not increase the range of
interactions in the renormalized Hamiltonian in any dimen-
sion. We then study analytically generic coarse grainings
and the effective Hamiltonian they define as a function of
the real-space mutual information with the environment
(RSMI) retained. For the example of the Ising chain, we
perturbatively derive all the couplings in the renormalized
Hamiltonian resulting from, and RSMI captured by, an
arbitrary coarse graining and show monotonic decay of the
higher-order and/or long-range terms with increased RSMI.
Those properties also hold in the presence of disorder.

We prove that perfect RSMI-maximizing coarse graining is
stable to local changes in disorder realization and sup-
presses generation of correlations in the renormalized
disorder distribution. Using the solvable example of the
random dilute Ising chain, we study the properties of the
renormalized disorder distribution induced by an arbitrary
RG procedure and show the decay of statistical measures of
correlation in disorder as a function of the RSMI retained.
We also theoretically investigate the effects imposed by

constraints on the number and type of coarse-grained
variables, which can make the loss of part of the relevant
information inevitable. We construct simple toy models
providing intuitive understanding of our results.
Our results establish a direct link between compression

theory intuition behind the introduction of RSMI [32]
and physical properties of the renormalized Hamiltonian
or disorder distribution. They strongly support RSMI
maximization as a model-independent variational princi-
ple defining the optimal RG coarse graining. In contrast to
fixed schemes, this RG approach is, by construction,
informed by the physics of the system considered,
including the position in the phase diagram. This general-
ity could allow application of RG schemes to systems, for
which they are currently not known, avoiding many of the
pitfalls befalling fixed RG transformations [33,34].
The paper is organized as follows: In Sec. II, the informa-

tion-theoretic formalism and the RSMI algorithm are
reviewed. In Sec. III, we prove that a RSMI-perfect RG does
not generate longer-range interactions. In Sec. IV, we inves-
tigate the renormalized Hamiltonian as a function of the
information retained on the example of arbitrary coarse

grainings of the 1D Ising model. In Sec. V, we study the
effect of constraints on the number and type of coarse-grained
variables on a RG procedure. We introduce toy models
explaining the differences in optimal coarse grainings in
1D and 2D. In Sec. VI, we extend the analysis to disordered
systems. We prove RSMI-perfect RG does not generate
correlations in disorder. We study properties of the renormal-
ized disorder as a function of the information retained for
arbitrary coarse grainings of the random dilute Ising chain. In
Sec. VII, we discuss implications of the results, generaliza-
tions, and open questions. Appendices give proof details,
derivations of the statements in the main text, and additional
information.

II. THE RSMI ALGORITHM

The RSMI algorithm is defined in the context of real-
space RG originally introduced by Kadanoff for lattice
models [17]. The goal of real-space RG [21] is to coarse
grain a given set of d.o.f. X in position space in order to
integrate out short-range fluctuations and retain only long-
range correlations, and in so doing, to construct an effective
theory. An iterative application of this procedure should
result in recursive relations between coupling constants of
the Hamiltonian at successive RG steps—those are the RG
flow equations formalizing the relationship between effec-
tive theories at different length scales.
Consider a generic system with a set of real-space d.o.f.

X , e.g., spins, described by the Hamiltonian H½X � and a
canonical partition function:

Z ¼
X
X

e−βH½X � ≡X
X

e−K½X � ð1Þ

with the inverse temperature β ¼ 1=kBT and the reduced
Hamiltonian K ≔ −βH. Equivalently, the system is speci-
fied by a probability measure:

PðXÞ ¼ 1

Z
eK½X �: ð2Þ

The coarse-graining transformation X → X 0 between the
set of the original d.o.f. and a (smaller) set of new d.o.f. is
given by a conditional probability distribution PΛðX 0jXÞ,
where Λ is a set of parameters completely specifying the
rule (the rule can be totally deterministic, in which case PΛ
is a (δ) function). The probability measure of the coarse-
grained system is then

PðX 0Þ ¼
X
X

PΛðX 0jXÞPðXÞ: ð3Þ

If PðX 0Þ is (or can be approximated by) a Gibbs measure,
then the requirement to correctly reproduce thermodynam-
ics enforces Z0 ¼ Z, and a renormalized Hamiltonian
H0½X 0� in the new variables X 0 is defined implicitly via

eK
0½X 0� ¼

X
X

PΛðX 0jXÞeK½X �: ð4Þ1For a brief discussion of related concepts in coarse graining of
differential equations, we refer to the Appendix F.

PATRICK M. LENGGENHAGER et al. PHYS. REV. X 10, 011037 (2020)

011037-2



The procedure is often implemented in the form of a block
RG [21,35] corresponding to a factorization of the condi-
tional probability distribution into independent contribu-
tions from equivalent (assuming translation invariance)
blocks V ⊂ X :

PðX 0jXÞ ¼
Yn
j¼1

PΛðHjjVjÞ; ð5Þ

where fVjgnj¼1 and fHjgnj¼1 are disjoint partitions of X
and X 0, respectively, and PΛ now defines the coarse
graining of a single block (and therefore, Λ contains
substantially fewer parameters). Concrete examples of such
a PΛ include the standard “decimation” or “majority-rule”
transformations [see Eqs. (13) and (14)].
Not every choice ofPΛ is physicallymeaningful. It should

at least be consistent with the symmetries of the system, for
instance. This is, however, not sufficient in practice. While it
may be difficult to formulate a concise criterion for the choice
of the coarse-graining transformation, it is clear that in
order to derive the recursive RG equations the effective
Hamiltonian cannot proliferate new couplings at each step. If
there is to be a chance of analytical control over the
procedure, the interactions in the effective Hamiltonian
should be tractable (short ranged, for instance). That is to
say, if one chooses the “correct” d.o.f. to describe the system,
the resulting theory should be “simple.”Numerous examples
of failure to achieve this can be found in the literature [33,34]
and include cases as simple as decimation of the Ising model
in 2D. Implicit in this discussion is the notion that there does
not exist a single RG transformation which does the job, but
rather the transformation should be designed for the problem
at hand [36].
Recently, some of us proposed the maximization of

RSMI (introduced below) as a criterion for a physically
meaningful RG transformation [28]. The idea behind it is
that the effective block d.o.f., in whose terms the long-
wavelength theory is simple, are those which retain most of
the information (already present in the block) about long-
wavelength properties of the system. This informally
introduced “information” can be formalized by the follow-
ing construction. Consider a single block V at a time and
divide the system into four disjoint regions X ¼ V ∪
B ∪ E ∪ O: the visibles (i.e., the block) V, the buffer B,
the environment E, and the remaining outer part of the
system O (which is introduced only for algorithmic
reasons, conceptually the environment E could also contain
this part). Figure 2 depicts this decomposition in the case
of a 1D spin model, but it trivially generalizes to any
dimension. The real-space mutual information between the
new (coarse-grained) d.o.f.H and the environment E of the
original ones (i.e., of the block) is then defined as

IΛðH∶EÞ ¼
X
H;E

PΛðE;HÞ log
�

PΛðE;HÞ
PΛðHÞPðEÞ

�
; ð6Þ

where PΛðE;HÞ and PΛðHÞ are marginal distributions of
PΛðH;XÞ ¼ PΛðHjVÞPðXÞ. Thus, IΛðH∶EÞ is the stan-
dard mutual information between the random variables H
and E. Exclusion of the buffer B (in contrast to other
adaptive schemes; see, for instance, Ref. [37]), generally of
linear extent comparable to V, is of fundamental impor-
tance: It filters out short-range correlations, leaving only
the long-range contributions to IΛðH∶EÞ.
The RSMI satisfies the bounds (see also Appendix A):

0 ≤ IΛðH∶EÞ ≤ HðHÞ; ð7Þ

IΛðH∶EÞ ≤ IðV∶EÞ; ð8Þ
where HðHÞ denotes the information entropy of H, and
IðV∶EÞ is the mutual information of the visibles with the
environment. The optimization algorithm starts with a set
of samples drawn from PðXÞ and a differentiable Ansatz
for PΛðHjVÞ, which in Ref. [28] takes the form of a
restricted Boltzmann machine (RBM) parametrized by Λ
(see Appendix C 3) and updates the parameters using a
(stochastic) gradient descent procedure. The cost function
to be maximized is precisely IΛðH∶EÞ, which in the course
of the training is increased toward the value of IðV∶EÞ. The
iterative procedure is shown in Fig. 1. Using the trained
PΛðHjVÞ, the original set of samples drawn from PðXÞ can

FIG. 1. Flow diagram of the RSMI algorithm [28]. Given a
lattice and Hamiltonian H (or, in practice, given Monte Carlo
samples) a RBM Ansatz for the RG rule is optimized by
maximizing the mutual information between the new d.o.f. H
and the environment E of the original ones using stochastic
gradient descent. The trained PΛðHjVÞ is used to define a new
effective measure and Hamiltonian Heff .
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be coarse grained and the full procedure recomputed for a
subsequent RG step.

III. OPTIMALITY: THE MEASURE AND THE
EFFECTIVE HAMILTONIAN

In what sense is the RSMI coarse graining optimal? By
construction, the scheme preserves as much information as
possible about the long-range properties of the system, and
thus, when viewed as a compression of the relevant
information in V into H, it is information-theoretically
optimal [38]. We show that this well-defined but abstract
notion implies physical “simplicity” of the renormalized
Hamiltonians. The latter property, though intuitively clear
and operationally useful, may be difficult to define unam-
biguously. We therefore examine natural measures of
Hamiltonian complexity and show they all decay with
increased MI, also for disordered systems. It proves useful
to approach this problem at the level of properties of the
probability measure (which is the fundamental object the
RSMI algorithm works with).
Consider first the following setup: Given a 1D system

with a short-ranged Hamiltonian, introduce a coarse grain-
ing fVjgwith a block size chosen so that the Hamiltonian is
the nearest neighbor with respect to the blocks. Let us
choose an arbitrary block V0, denote its immediate neigh-
bors V�1 as the buffer B, and all the remaining blocks
fVj<−1g and fVj>1g as the environment E0, or in more
detail, as the left and right environment EL=RðV0Þ, respec-
tively. Assume now thatH0, the coarse-grained variable for
V0, is constructed so that IðH0∶E0Þ ¼ IðV0∶E0Þ; i.e., the
coarse-grained variable retains all of the information which
the original block V0 contained about the environment and
thus about any long-wavelength physics. The following
then holds true (proof in Appendix B):
Proposition 1. Let IðH0∶E0Þ ¼ IðV0∶E0Þ. Then the

probability measure on the coarse-grained variables
PðfHjgÞ obeys the factorization property:

PðHj≤−2;Hj≥2jH0Þ ¼ PðHj≤−2jH0ÞPðHj≥2jH0Þ; ð9Þ
where in the conditional probabilities, the buffer variables
(i.e., the neighbors H�1 of H0) are integrated out. In other
words, for a fixed H0, the probabilities of its environments
EL=RðH0Þ are independent of each other.
An immediate consequence of the above is the following

corollary:
Corollary 1. The effective Hamiltonian does not con-

tain terms directly coupling ELðH0Þ and ERðH0Þ.
This is because the factorization Eq. (9) implies

EðHj≤−2;H0;Hj≥2Þ ∝ log½PðHj≤−2;H0;Hj≥2Þ�
¼ EðEL;H0Þ þ EðER;H0Þ þ EðH0Þ: ð10Þ
Since the variables ELðH0Þ ≔ fHgj<−1 and ERðH0Þ ≔

fHgj>1 are decoupled after integrating out the buffer H�1,

there generally would not have been any longer-range
interaction (in particular, next-nearest neighbor) involving
H�1 in the renormalized Hamiltonian, or the measure
would not factorize. Since the choice of V0, E0 is arbitrary
in the first place, we have the following corollary:
Corollary 2. For a finite-range Hamiltonian, if

IðH0∶E0Þ ¼ IðV0∶E0Þ, the RSMI coarse graining is guar-
anteed not to increase the range of interactions.
These observations generalize, under very mild addi-

tional assumptions, to any dimension D. Taking a coarse
graining
with blocks sufficiently large to make the short-ranged
Hamiltonian nearest neighbor, and under the assumption of
full information capture, we repeat the above reasoning,
conditioning on—instead of a single arbitrary variable
H0—a hyperplane of dimension D − 1 separating the
coarse-grained variables fHjg into two disconnected sets
to show that no longer-ranged interactions across the
hyperplane can exist. Since the choice of hyperplane is
arbitrary, the effective Hamiltonian is nearest neighbor,
as the original one was (see Appendix B). A perfect RSMI
scheme does not, therefore, increase the range of a short-
ranged Hamiltonian, i.e., its complexity.
While a strong property, the above results appear to have

one serious shortcoming: For a generic physical system and
coarse-graining scheme, it may not be possible to satisfy
the assumption IðH0∶E0Þ ¼ IðV0∶E0Þ, which is a strict
upper bound on IðH0∶E0Þ, for any RG rule. This is due to
the fact that the block size, as well as the number and
character (Ising spin, Potts spin, etc.) of coarse-grained
variables are usually chosen a priori, and given those
constraints a solution PΛðHjVÞ satisfying IðH0∶E0Þ ¼
IðV0∶E0Þ is not mathematically guaranteed to exist (see
Sec. V for examples). This limitation, however, is only a
superficial problem. First, Proposition 1 is a sufficient, not a
necessary, condition. Much more importantly, the RSMI
prescription is a variational principle. If the physics of the
problem and constraints imposed preclude the existence of
a “perfect” solution, as is usually the case, the maximiza-
tion of RSMI still yields the best possible one, given the
conditions. A mathematical proof of this statement requires
establishing the decay of some measures of the effective
Hamiltonian complexity (such as range and the ones we
consider below) as a function of the mutual information. In
the absence of such a rigorous result, in what follows we
instead study, analytically and numerically, tractable models
and verify that this decay indeed holds empirically; i.e., the
more mutual information the RG rule captures, the smaller
the complexity of the effectiveHamiltonian. Furthermore, we
show this also holds in the presence of disorder (see Sec. VI).
We now investigate a realistic setup, in which the RSMI

is maximized under the constraint of number and type of
coarse-grained d.o.f. Additionally, since the RG rule is
optimized iteratively, we study the approach to the optimal
solution via the properties of the renormalized Hamiltonian
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defined by the RG rule at any stage of the procedure.
We briefly review how the effective Hamiltonian can be
expressed by appropriate cumulant expansion [35] (though
the RSMI algorithm deals with a probability measure as the
basic object, and at no point computes the Hamiltonian, the
Hamiltonian is more interpretable physically), and we
apply this machinery to the Ising chain with and without
disorder.

IV. SOLUBLE EXAMPLE: ARBITRARY RG
TRANSFORMATIONS OF THE CLEAN

1D ISING MODEL

To investigate the relationship between the renormalized
Hamiltonian and the real-space mutual information for
practical coarse-graining procedures, we consider the
example of the one-dimensional Ising model with nearest-
neighbor interactions and periodic boundary conditions.
We deliberately use this simple model, since it allows us to
analytically derive properties not only of the optimal RG
procedure (which we do first) but also those of arbitrary
coarse grainings: Both the effective Hamiltonian and the
amount of RSMI captured can be calculated explicitly and
without any arbitrary truncations to establish the relation
between them. The Ising Hamiltonian reads

K½X � ¼ K
XN
i¼1

xixiþ1 ð11Þ

with xi ¼ �1 collectively denoted by X ¼ fxigNi¼1 and
with K ≔ −βJ. The sizes of the block, buffer, and
environment regions introduced in Sec. II are given by
LV , LB, and LE . Accordingly, there are n ¼ N=LV blocks.
To best illustrate the results, we now specialize to the

(typical) case of blocks of two visible spins V ¼ fv1; v2g
coarse grained into a single hidden spin h (computations for
general LV are analogous). The RG rule is parametrized by
a RBM Ansatz:

PΛðHjVÞ ¼ 1

1þ e−2h
P

i
λivi

ð12Þ

with Λ ¼ ðλ1; λ2Þ describing the quadratic coupling of
visible to hidden spins (see Appendix C 3 for a discussion
of the Ansatz). In Fig. 2, the decomposition of the system
and the RG rule are schematically shown.
The standard decimation and the majority-rule coarse-

graining schemes are given in our language by

Pdecðhjfv1; v2gÞ ¼
�
1; h ¼ v1;

0; h ≠ v1;
ð13Þ

and by

Pmajðhjfv1; v2gÞ ¼

8>><
>>:

1; v1 ¼ v2 ¼ h;

0; v1 ¼ v2 ≠ h;
1
2
; v1 ≠ v2;

ð14Þ

respectively. They correspond to the choice ofΛdec ¼ ðλ; 0Þ
and Λmaj ¼ ðλ; λÞ in the limit λ → ∞.
For the case of decimation, an exact calculation using the

transfer-matrix approach yields an effective Hamiltonian of
the same nearest-neighbor form, albeit with a renormalized
coupling constant [39,40]:

K0 ¼ 1

2
log½coshð2KÞ�: ð15Þ

For the majority rule, and any other choice of parameters
Λ, the renormalized Hamiltonian cannot be obtained in a
closed form, but it can still be derived analytically. To this
end, we split it into two parts [35]:

K½X � ¼ K0½X � þK1½X �; ð16Þ
where K0 contains intrablock and K1 interblock terms.
Using the cumulant expansion, the new Hamiltonian is
given perturbatively:

K0½X 0� ¼ log½Z0PΛ;0ðX 0Þ� þ
X∞
k¼0

1

k!
Ck½X 0�; ð17Þ

where the cumulants Ck can be expressed in terms of
averages of the form hK1½X �kiΛ;0, which factorize into
averages of operators from a single block (see Appendix C 1
for details). The renormalized coupling constants are not
apparent in Eq. (17). In order to identify them, we introduce
the following canonical form of the Hamiltonian:

K0½X 0� ¼ K0
0 þ

X
fαlgnl¼1

K0
α1;α2;…;αn

�Xn
j¼1

Yn
l¼1

ðx0jþlÞαl
�
; ð18Þ

with α1 ¼ 1 and αl ∈ f0; 1g for all l > 1. Here, the
addition of the indices is to be understood modulo n

FIG. 2. Schematic decomposition of the system for the purpose
of defining the mutual information IΛðH∶EÞ (in 1D, for con-
creteness). The full system is partitioned into blocks of visibles V
(yellow) embedded into a buffer B (blue) and surrounded by the
environment E (green). The remaining part of the system is
denoted by O in the main text. The conditional probability
distribution PΛðHjVÞ couples V to the hiddens H (red).
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(i.e., with periodic boundary conditions). Note that arbitrary
orders k of the cumulant expansion Ck contribute to each
coupling constant K0

α1;α2;…;αn .
In the example of the Ising model, the only nonvanishing

averages contributing to the cumulants are

hv1iΛ;b½h�≕ a1h; ð19aÞ

hv2iΛ;b½h�≕ a2h; ð19bÞ

hv1v2iΛ;b½h�≕ b; ð19cÞ

with the effective block parameters a1, a2, b independent
of the coarse-grained variable h and functions of Λ and K
only, whose closed form expressions can easily be found
(see Appendix D). Consequently, the averages hKk

1iΛ;0,
and thus, also the Hamiltonian K0, are polynomials in the
new d.o.f. X 0, the reduced temperature K, and the block
parameters, which gives rise to Eq. (18). In practice, the
cumulant expansion is terminated at a finite orderM, which
results in an expansion of K0 and thus of each coupling
constant K0

α1;α2;…;αn up to that order in K. All the informa-
tion about the RG rule (except for the size of H, which is
fixed at the outset) is contained in the dependence of the
effective block parameters on Λ (and on N, K).
Expressing the moments hKk

1iΛ;b appearing in the
cumulant expansion in terms of the new variables X 0 is
a combinatorial problem. Each term in K1 couples spins
from neighboring blocks j and jþ 1 so that

K1½X �k ¼ Kk
Xn

j1;…;jk¼1

Yk
l¼1

x2jlx2jlþ1: ð20Þ

The average of each summand factorizes into contributions
from each block, whose value [see Eq. (19)] is determined
by the arrangement of j1;…; jk. Thus, the calculation is
reduced to finding and grouping all equivalent (under the
fact that for Ising variables x2j ¼ 1) configurations
(j1;…; jk). Bringing the resulting polynomial in canonical
form (18) is an inverse problem and is solved by recursively
eliminating noncanonical terms. For a givenM, we can thus
finally arrive at an expression of coupling constants
K0

α1;α2;…;αn as functions of Λ and K (see Appendix D for
details).
We are now in a position to examine the effective

Hamiltonian obtained by applying the RSMI-maximization
procedure Fig. 1 to the model Eq. (11). Anticipating the
results in Fig. 4, in Fig. 3 we compare, for varying K and
order of cumulant expansion M, the renormalized nearest-
neighbor (NN) coupling obtained in the RSMI-favored
solution with the exact nonperturbative one Eq. (15) (which
we refer to as “exact decimation”). The two results
converge with increasing M, and the convergence is faster
for weak coupling or higher temperatures, which is

unsurprising since the cumulant expansion is in powers
of K. We emphasize again that the RSMI algorithm itself
works on the level of the probability measure, and at no
point does it compute the effective Hamiltonian. It is only
when we want to examine the renormalized Hamiltonian
which the converged—in the sense of saturating the mutual
information during optimization of the Λ parameters—
RSMI solution corresponds to, that we are performing the
cumulant expansion.
Since exact decimation leads to a strictly NN effective

Hamiltonian in the 1D Ising case, and since perturbatively
the RSMI-favored solution converges to the decimation
value for the NN coupling, it is instructive to inspect the
behavior of the m-body couplings in the effective
Hamiltonian for larger order m. Denoting the m-spin
coupling with distances l1;l2;…;lm between the spins
by Kmðl1;l2;…;lmÞ, with KmðlÞ short for
Kmðl;l;…;lÞ, we observe that, in the limit of weak
coupling (small K), both l ↦ K2ðlÞ, i.e., arbitrary range
two-body interactions, as well as m ↦ jKmð1Þj, i.e.,
arbitrary order NN interactions, decay exponentially.
This behavior is shown in Figs. 10 and 11 in Appendix D.
The decay length is characterized by K2ð2Þ=K2ð1Þ and
Kmð1Þ=K2ð1Þ, respectively. Thus, the RSMI approach
indeed converges to the exact decimation in this case, which
is known to be the optimal choice.
To further strengthen the link between the amount of

RSMI retained and the resulting properties of the effective
Hamiltonian, we now consider a generic coarse graining,
suboptimal from the RSMI perspective (i.e., away from the
maximum the RSMI algorithm strives for). To this end, we
compute the mutual information IΛðH∶EÞ captured for the
Ising model by a general coarse-graining rule Eq. (12) with
parameters Λ ¼ ðλ1; λ2Þ. This calculation can be performed
exactly using the transfer-matrixmethod (see Appendix D 4)
and yields a closed-form expression Eq. (D30).

FIG. 3. The relative difference between the renormalized NN
coupling obtained from the cumulant expansion of the RSMI-
favored solution (decimation) and the nonperturbative result
Eq. (15). The convergence improves with increasing order of
cumulant expansion M and lower K.
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Equipped with these results, for an arbitrary coarse
graining defined by a choice of Λ, we can now compute
both the amount of mutual information with the environ-
ment retained (RSMI), as well as the effective Hamiltonian
generated. In Fig. 4(a), the amount of information captured
is shown as a function of ðλ1; λ2Þ in units of IðV∶EÞ (for
concreteness, all plots are for K ¼ 0.1 and a single site
buffer LB ¼ 1). A few observations can be made: The
choices ofΛ retaining more RSMI are not symmetric in jλ1j
and jλ2j but instead tend to ð�λ; 0Þ and ð0;�λÞ for large
enough jλj; i.e., they resemble decimation Eq. (13) (the four
plateaux in Fig. 4 are not exactly flat, as also examined in
Fig. 5), as opposed to majority rule Eq. (14) which, in fact,
captures the least information. The symmetries of the plot
are due to globalZ2 Ising symmetry as well as an additional
Z2 symmetry of the mutual information: Correlation and
anticorrelation for random variables are equivalent from
the point of view of information. Furthermore, the lack of
information retained for small jjΛjj2 is due to the fact that in
this case the coarse-graining Eq. (12) only weakly depends
only on the visible spins and is essentially randomly
assigning the value of the hidden spin (i.e., it is dominated
by random noise). In other words, it only makes sense to
think of Eq. (12) as a coarse graining if it strongly depends
on the original spins, i.e., for large jjΛjj2.
The properties of the corresponding effective

Hamiltonians can be understood with the help of Figs. 4(b)
and 4(c), where the ratio of next-nearest-neighbor (NNN) to
NN terms as well as the ratio of NN four-body to two-body
terms in the effective Hamiltonian are plotted as a function
of Λ (note the inverted color scale). It is apparent that
decimationlike choices, which maximize RSMI, result
also in vanishing NNN and four-body terms (and more
generally, long-range or high-order terms, as discussed
previously and shown in Figs. 10 and 11 in Appendix D).
This is examined in more detail in Fig. 5: Trajectories in the
parameter spaceΛ are chosen according to λ½cosðθÞ; sinðθÞ�
with θ ∈ ½0; π�, for different magnitudes jλj. The ratios in

Figs. 4(b) and 4(c), which we dub “rangeness” and “m-
bodyness” for brevity, are plotted against the mutual
information along the trajectories. The mutual information
is maximized for θ ¼ 0 and θ ¼ π, and the maximum
increases with λ (though it saturates, there is little difference
between λ ¼ 3 and λ ¼ 1000). Simultaneously, for large
enough jλj, both ratios in Figs. 5(b) and 5(c) vanish,
rendering the effective Hamiltonian two body and nearest
neighbor. It is now clear how the RSMI maximization
results in a decimation coarse graining for the 1D Ising
model.Amore detailed discussion of Figs. 4 and5 [including
asymmetries in Fig. 5(a) and accidental vanishings in
Fig. 5(b)] can be found in the Appendix D, but it does not
change the general picture: Maximizing RSMI results in
the decay of longer-ranged and higher-order terms in the
Hamiltonian.
The superiority of decimation over majority rule in our

example can be understood intuitively from a physical
perspective by considering fluctuations of the original
(visible) spins for a fixed (clamped) configuration of the
new variables X 0. In 1D, decimation fixes every other
spin in X , which prevents all but isolated fluctuations of
the remaining d.o.f., which are being integrated out in the
clamped averages of Eqs. (C3) and (C4). Consequently,
only nearest neighbors in X 0 are coupled in the effective
Hamiltonian. In contrast, the majority rule fixes a linear
combination of the visibles (the average), thereby allowing
fluctuations of orthogonal linear combinations. These
fluctuations can span multiple blocks and thus generate
higher-order coupling terms. In the following section, an
alternative information-based intuition is offered, which
also explains the difference between the optimal coarse-
graining procedures in 1D and 2D.
Finally, we note that the results that we describe above

from a static perspective, i.e., considering properties of
arbitrary coarse graining, for a fixed, potentially subopti-
mal, choice of Λ, can also be interpreted dynamically.
In this sense, they characterize the convergence of the

5

(a) (b) (c)

FIG. 4. Density plots of (a) the mutual information of the hiddens with the environment scaled to the mutual information of the visibles
with the environment IΛðH∶EÞ=IðV∶EÞ, (b) the ratio of the NNN to the NN coupling constants jK0

2ð2Þ=K0
2ð1Þj, and (c) the ratio of the

NN four-point to two-point coupling constants jK0
4ð1; 1; 1Þ=K0

2ð1Þj. All three quantities are shown as a function of the parameters of the
RG rule Λ ¼ ðλ1; λ2Þ. Note the inverted color scale in (b) and (c). For large enough jjΛjj2, a maximum of mutual information
corresponds to a minimum of rangeness and m-bodyness, and vice versa. See the main text and Appendix D 3 for details.
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RSMI algorithm of Ref. [28] as the Λ parameters are
iteratively optimized during the training (see Fig. 1).

V. THE “SHAPE” OF THE COARSE-GRAINED
VARIABLES

So far, we motivated on physical grounds (the properties
of the effective Hamiltonian) why maximizing RSMI
generally provides a guiding principle for constructing a
real-space RG procedure. We then investigated the example
of the 1D Ising system the properties of such a scheme in a
typical situation, when the RSMI-maximization problem is
additionally constrained by the number and type of d.o.f. the
system is coarse grained into. In particular, we gave physical
intuitions which explain the solution RSMI converges to in
the 1D case, i.e., decimation. This outcome is to be
contrasted with the situation in 2D, when the decimation
procedure is known to immediately generate long-range and
many-spin interactions and can be shown not to posses a
nontrivial fixed point at all [33]. For the square-lattice Ising
model in two dimensions, the majority-rule transformation
is preferable: Numerical evidence, at least, points to the
existence of a fixed point [41]. Remarkably, the RSMI
solution in 2D converges (numerically) toward a majority-
rule block transformation (for two-by-two blocks) [28].
In this section, we provide an information-theory-based
explanation of these observations. In doing so, we also
elucidate and quantify the nontrivial influence on the RG
scheme of the constraints imposed by the properties (type
and number) of the new coarse-grained variables for the

general case. Finally, we exemplify our findings using
simple and intuitive toy models.
To this end, let us revisit the inequality Eq. (8). We refine

it by explicitly introducing the random variables VΛ, which
the hidden d.o.f. hi ∈ H couple to in a RG scheme
parametrized by Λ ¼ fλijg. For instance, in the RBM
parametrization discussed previously, while generically
H depends on the full V, the coarse graining defined by
the conditional probability PΛðHjVÞ makes each hi ∈ H
dependent only on the combination

VΛi
¼ 1

jjΛijj
X
j

λijvj: ð21Þ

Note that the overall normalization in the definition is not
important but only the relative strengths of λij which define
the linear combination of d.o.f. in the block. The following
now holds:

IΛðH∶EÞ ≤ IðVΛ∶EÞ ≤ IðV∶EÞ: ð22Þ

That is, the information about the environment carried by
the particular chosen variables VΛ is potentially smaller
that the overall information about the environment con-
tained in the block IðV∶EÞ. Still less of the information may
ultimately be encoded in the d.o.f. H.
Where do the inequalities Eq. (22) originate from?

Formally, this is because we have a Markov chain

E → V → VΛ → H: ð23Þ

(a) (b)

FIG. 5. The two proxy measures of complexity of the renormalized Hamiltonian discussed in the text are shown against mutual
information retained: the rangeness, i.e., the ratio of the NNN to the NN coupling constants, and the m-bodyness, i.e., the ratio of the
NN four-point to two-point coupling constants. The mutual information is scaled to the total mutual information the block V shares with
the environment. The curves are obtained by parametrizing the RG rule as λ½cosðθÞ; sinðθÞ� and varying θ ∈ ½0; π� for different
magnitudes of λ. In the physically relevant limit of large λ, the maximum of mutual information corresponds to a minimum of rangeness
and m-bodyness. The plots are discussed in more detail in Appendix D 3.
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But the more pertinent question is, what can make those
inequalities sharp? The second one is rather trivial: If we
decide only to keep a few (one, as is often the case)
variables VΛi

, then their entropy may be simply too small to
even store the full information IðV∶EÞ. Still, for the same
entropy, there may be choices of Λ which result in bigger
or smaller IðVΛi

∶EÞ. Crucially though, IðVΛi
∶EÞ does not

depend on the nature of hi ∈ H (i.e., on whether hi is a
binary variable or not, for instance). It characterizes only
how good the particular set of physical d.o.f. VΛ is at
describing fluctuations in the environment E.
Whether this information can be efficiently encoded inH

is a different question entirely. The answer, and the origin
of the first inequality Eq. (22), is revealed by

IΛðH∶EÞ ¼ IðVΛ∶EÞ − IðVΛ∶EjHÞ; ð24Þ
where IðVΛ∶EjHÞ is the conditionalmutual information, and
weuse the chain rule and theMarkovpropertyEq. (23). Since
IðVΛ∶EÞ is independent of H in the sense described above,
IðVΛ∶EjHÞ quantifies the failure of the encoding into H
due to the properties of the H itself (conditional mutual
information being always non-negative). We thus manage to
identify the contributions to IΛðH∶EÞ resulting from cou-
pling to a certain choice of physical modes inV and to isolate
them from the losses incurred due to the impossibility of
encoding this information perfectly in a particular type ofH.
The conditional probability distribution IðVΛ∶EjHÞ can

be thought of as describing the mismatch of the probability
spaces of the random variables H and VΛ; it tells us how
much information is still shared between VΛ and E after VΛ
is restricted to only values compatible with a given outcome
of H. For example, in the 1D Ising case we examined
previously, the majority rule defines VΛ ¼ v1 þ v2, for
which the set of possible outcomes is equivalent to
f−1; 0; 1g. The entropy of VΛ is bounded by and possibly
equal to log2ð3Þ. Since the system is Z2 symmetric, then
unless Prob½VΛ ¼ 0� ¼ 0, this distribution cannot be faith-
fully encoded into any probability distribution of a single
binary variable H. Below, we construct simple toy models
to provide more examples and intuition for the somewhat
abstract notions we introduce here.
First, let us stress though, that the RSMI prescription

maximizes IΛðH∶EÞ as a whole, and that, for a type of H
fixed at the outset, the procedure cannot be split into
maximization of IðVΛ∶EÞ followed by a linear coupling of
H to the VΛ found. Such a naive greedy approach does
not necessarily lead to an optimal solution; the toy models
below provide an explicit counterexample. The RSMI-
based solution of PΛðHjVÞ thus converges to the optimal
trade-off between finding the best modes in V to describe E
and finding those whose description can be faithfully
written in H of a given type.
To illustrate the above considerations, we construct

minimal toy models. In 1D this consists of four coupled
Ising spins: v1, v2 in the block V and e1, e2 representing the

left and right environment (in 1D the environment is not
simply connected) with the Hamiltonian

K ¼ KVEðe1v1 þ v2e2Þ þ KVv1v2; ð25Þ
where as before, the coupling constants contain a factor of
β ¼ 1=kBT. The two spins in V are coupled to a single
hidden spin H using a RBM Ansatz Eq. (12), and the
random variable VΛ is defined as in Eq. (21). In Fig. 6, the
results of the calculation of the mutual information
IΛðH∶EÞ and IðVΛ∶EÞ for decimation and the majority
rule are shown. In the regime of strong coupling to the
environment KVE [see Fig. 6(a)], for small KV both visible
spins are nearly independent and almost copy the state of
the left and right environments, respectively. Consequently,
VΛ for the majority rule carries almost log2ð3Þ bits of
information about the environment, while VΛ for decima-
tion, being a binary variable, at most one bit. However,
when IΛðH∶EÞ is examined, it becomes apparent that for
decimation it is exactly equal to IðVΛ∶EÞ, while for
majority rule, it is significantly lower, so much so, that
overall decimation is better across the whole parameter
regime. The difference between the solid and dashed curves
in Fig. 6(a) is precisely the mismatch of Eq. (24), and the
above provides a counterexample to a greedy maximization
of IðVΛ∶EÞ instead of IΛðH∶EÞ, which was mentioned
previously. In the large-KV limit, both spins in V become
bound into an effective single binary variable, and the
distinction between the two rules vanishes. In Fig. 6(b), we
show the same in the regime when the spins in V are only
weakly coupled to the environment (or the temperature is
high). Again, decimation perfectly encodes information
IðVΛ∶EÞ into H and is overall better.
Let us contrast this picture with the situation in higher (in

particular, two) dimensions, when the environment is
simply connected. Based on the discussion above, we
may anticipate that the optimal solution could be different
and that majority rule may instead be preferable. This is
because, on the one hand, for the same coupling strength to
the environment and the same linear dimensions LV ¼ 2 of
the block, the ratio of IðVΛ∶EÞ for the majority rule to the
one for decimation increases with increasing dimension
(a consequence of all visible spins interacting with the same
environment). On the other hand, the mismatch IðVΛ∶EjHÞ
for the majority rule decreases compared to 1D, since the
probability of VΛ ¼ P

i vi being zero is smaller. This fact is
due to both dimensional considerations as well as (again)
the environment being simply connected, the importance of
which, even in 1D, we illustrate in Appendix E.
We verify those expectations using a simple toy model of

the 2D setting: The environment is represented by a single
random variable E with a large number of states, to which
all the spins in V couple. These states should be thought of
intuitively as fluctuations of some large environment at
wavelengths longer than the size of the coarse-graining cell.
The Hamiltonian is

OPTIMAL RENORMALIZATION GROUP TRANSFORMATION … PHYS. REV. X 10, 011037 (2020)

011037-9



K ¼ KVEEðv1 þ v2 þ v3 þ v4Þ
þ KVðv1v2 þ v1v3 þ v2v4 þ v3v4Þ: ð26Þ

As before, the spins in block V are coupled to a single
hidden spin H with a RBM Ansatz parametrized by Λ.
In Fig. 7, the mutual information IΛðH∶EÞ is computed

for the model Eq. (26) for different course-graining rules
given by Λ. Indeed, the decimation is now inferior to the
majority rule across the full parameter range. This is also
consistent with the known properties of decimation and
majority rule for the 2D Ising model and suggests their
information-theoretic origin.

VI. DISORDERED SYSTEMS

While investigations of clean higher-dimensional models
(to which RSMI can be applied without any restriction),
such as, e.g., the 3D Ising model, are still relevant, of much
more interest are disordered systems. We show that RSMI
naturally generalizes to this case and that the information-
theoretic approach provides important insights, particularly
concerning disorder correlations.
The proper object of study in the disordered setting is not

the individual Hamiltonian H but rather the disordered
Hamiltonian distribution PðHÞ [42–44], which equivalently
can be thought of as a distribution over the vector space
spanned by all the possible coupling constants fKi1;i2;…;iMg.

(b)(a)

FIG. 6. The mutual information IΛðH∶EÞ and IðVΛ∶EÞ for decimation (blue) and majority-rule (yellow) procedures in the 1D toy
model Eq. (25). Two parameter regimes are shown: (a) strong coupling to the environment or low-temperature KVE (recall that the
coupling constants contain a factor of β ¼ 1=kBT) and (b) weak coupling KVE ; note that the absolute value of all mutual information is
lower in this limit. The solid lines differ from the dashed lines of the same color by the mismatch IðVΛ∶EjHÞ (see main text). In both
parameter regimes, the dashed blue line exactly coincides with the solid blue line: For the decimation procedure, the information
IðVΛ∶EÞ is perfectly encoded intoH. Majority rule IΛðH∶EÞ is inferior to decimation, even though IðVΛ∶EÞ is significantly larger: All
that information is lost in encoding. The distinction between the two rules vanishes in the KV → ∞ limit when both visible spins are
effectively bound into a single binary variable.

FIG. 7. Mutual information IΛðH∶EÞ in the toy model of a 2D
system Eq. (26) as a function of the coupling KV between the
visibles. The coupling pattern to the visibles in different RG rules
Λ is shown schematically in the (physically relevant) large-jjΛjj2
limit. The majority rule (and interestingly, also coupling to three
spins depicted by a red line coinciding with the purple one)
consistently retains more information than decimation or any
coupling to two spins (blue and yellow coinciding with green).
Again, the distinction vanishes for largeKV when all visible spins
are bound into a single one.
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Denoting the (potentially infinite-dimensional) vector of
couplings by K, the RG transformation induces a mapping

PðKÞ → P0ðKÞ ð27Þ

generating RG flows of P with fixed-point distributions P�.
The formalism subsumes the clean case: Any fixed
Hamiltonian is a trivial (δ)-like distribution with all prob-
ability mass concentrated in one point.
Let us examine the mapping Eq. (27). The probabilistic

framework of Sec. II can also be used in this case. For any
fixed disorder realizationK, the RG transformation (condi-
tional probability distribution) is applied to the Gibbsian
probability measure defined by the HamiltonianHðKÞ, and
the new effective Hamiltonian HðK0Þ is implicitly defined
exactly as in Eq. (4). The new coupling constants are in this
way the functions of the old ones K0 ¼ K0ðKÞ, and they
can be recovered by solving the inverse problem. Their
distribution is obtained by integrating over PðKÞ:

P0ðK0Þ ¼
Z

δ½K0 −K0ðKÞ�PðKÞdK: ð28Þ

Equation (28) appears trivial, but, of course, all the
complexity of the problem is concealed in the functional
dependence of K0 on K. The distribution P is usually
assumed to be factorized into a product of independent
distributions, over, say, bond strengths [42–47]. The flow
of the distribution is then analyzed either analytically or
numerically in terms of a variable characterizing the
strength of disorder, i.e., the variance of the individual
distribution factor in P [47], by forcing a factorized
parametrization at each stage. It is clear, however, that
even if this (often unrealistic, since one can expect disorder
in nearby areas to be correlated [48]) assumption holds
initially, the renormalized distribution need not necessarily
obey it, except in special cases. Generically, coarse graining
the system introduces correlations in P. Additionally, as in
the clean case, higher-order and longer-range couplings are
generated, in effect shifting the disorder distribution away
from the hyperplane defined by only nearest-neighbor
couplings. Both effects depicted in Fig. 8 increase the
complexity of distribution and render the problem of
computing and analyzing RG flows for disordered systems
very challenging.
The real-space RG transformations applied to disordered

systems are either similar to those used in the clean case,
i.e., various decimation or Migdal-Kadanoff prescriptions,
or based on the strong-disorder RG [49,50]. We focus on
block transformations, which have the advantage of main-
taining a regular topology in higher dimensions [51]
(though the arguments below apply also when coarse-
graining cells are chosen in a sequential, greedy fashion).
The very same questions as in the translation-invariant
setting need to be answered: Is there a more fundamental

reason—beyond a simple algebraic coincidence—why
certain RG transformations should work better in particular
cases? Is there a constructive way to find the best such
transformation within a certain class for a given physical
system?
Our results suggest that the answer to both questions is

affirmative: Beyond controlling the range of the inter-
actions, RSMI maximization also suppresses generation
of correlations in the renormalized distribution P. As in
Secs. III and IV, we first prove that factorizability properties
of P under the full-information-capture assumption are
stable to local changes in disorder, at least in (quasi)-1D
systems and imply suppression of disorder correlations.
Subsequently, we study the effect of arbitrary RG rules on
the renormalized disorder distribution using a model
system where the optimal solution is known, and the
distribution can be computed (perturbatively) for arbitrary
transformation. The following counterpart to Proposition 1
holds true (proof in Appendix B):
Proposition 2. Consider a disordered 1D system, with a

factorizable (product) disorder distribution over, without
loss of generality, nearest-neighbor couplings. The choice
Λ� of the optimal coarse graining of a block X0 satisfying
IðX0

0∶E0Þ ¼ IðX0∶E0Þ, and thus the factorization property
of Proposition 1, are stable to local changes in disorder,
provided those do not directly affect the block or the buffer,
i.e., are fully confined to the environment.
Proposition 2 has two important consequences: (i) As

seen from Eq. (B22) of the proof, in the explicit factori-
zation of the conditional probability distribution of the
coarse-grained d.o.f. in the left and right environments
(cf. Proposition 1), changes to the disorder realization in
one of the coarse-grained environments do not affect the

FIG. 8. Generic behavior of disorder probability under RG.
Every point is a disorder realization (Hamiltonian). The shaded
plane K0 spanned by axes perpendicular to K⊥

0 represents the
subspace of two-body nearest-neighbor couplings; K⊥

0 is the
complement space of all other couplings. (a) Initially, a factorized
distribution is usually assumed, schematically shown as a product
of independent Gaussians. (b) After the RG step, the distribution
can develop correlations depicted for simplicity in the K0 plane,
and additional couplings can be generated, resulting in proba-
bility mass shift out of K0. The former effect is quantified by KL
divergence or distance correlation, the latter by the shift of the
center of mass of the distribution depicted with a green arrow (see
also Fig. 9).
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distribution of d.o.f. in the other. This invariance implies
the following corollary:
Corollary 3. The probability distribution of d.o.f. in

ERðX 0
0Þ being completely insensitive to the choice of

disorder realization in ELðX 0
0Þ, there cannot exist any

correlations in the renormalized disorder distribution P
between the regions ELðX 0

0Þ and ERðX 0
0Þ (i.e., no such

correlations across X 0
0 are generated by the optimal course

graining).
Since this corollary holds for every block, we conclude

that with the above assumptions, disorder correlations
remain suppressed under coarse graining. Note that this
can be generalized to higher dimensions similar to Sec. III.
(ii) Proposition 2 also implies that for the purpose of finding
the optimal course graining of a block, which in general
should depend on the disorder realization (as is also the case
in strong-disorder RG), only the disorder configuration in the
local neighborhood of the block can be considered. Though
this is strictly true under the full-information-capture
assumption, it provides motivation for constructing adaptive
coarse grainings in more complicated systems, with the RG
rule optimized for the local disorder realization (or, more
practically, the equivalence classes thereof).
We turn to a solvable model system to empirically

demonstrate decay of disorder correlations as a function
of MI, especially when the stringent requirements of
Proposition 2 are not satisfied. In the random Ising chain
[43], the nearest-neighbor couplings are independent ran-
dom variables Ki;iþ1 distributed according to a probability
PðKÞ. For a generic PðKÞ, the recursive RG Eq. (28) is
intractable, but for the special case when it is Bernoulli
distributed

PðKÞ ¼ pδðK − k0Þ þ ð1 − pÞδðK − k1Þ; ð29Þ
the decimation transformation allows to solve Eq. (28)
analytically, since the factorizability is then preserved

exactly along the flow. The model exhibits much richer
phenomenology than the clean case: For k0 ¼ −k1, in
addition to the usual (unstable) ferromagnetic and (stable)
paramagnetic fixed points, the spin-glass fixed point is
reached for any 0 < p < 1 if starting exactly at T ¼ 0. For
k1 ¼ 0, i.e., in the random dilute Ising chain, additional
Griffiths singularities appear in the limit k0 → ∞ and
h0 → 0, where h0 → 0 are the on-site (uniform) magnetic
fields [43,53]. This effect is associated with the existence of
rare but arbitrarily large coupled clusters of spins [54].
We focus on the random dilute Ising chain but allow

instead any arbitrary RG transformation (without loss of
generality, for a block of two sites) parametrized by
Λ ¼ ðλ1; λ2Þ, as in Sec. IV. For a finite periodic system,
the renormalized couplings can be computed perturbatively
using the cumulant expansion for any quenched disorder
realization and anyΛ. For illustration, we consider a system
of 16 spins and all possible disorder realizations. For each
realization, we compute the Hamiltonian after the RG
step, for arbitrary Λ, by summing up to ninth order in
the cumulants, obtaining the full renormalized disorder
distribution P1

ΛðKÞ, where K is a vector of all possible
couplings between the block spins.
To quantify the generated disorder correlations in

P1
ΛðKÞ, we examine the joint probability distribution of

two neighboring NN couplings P1
ΛðKi;iþ1; Kiþ1;iþ2Þ

obtained by marginalization, as a function of Λ (it is
chosen since those correlations develop the fastest). We use
two statistical measures of dependence for this distribution:
the distance correlation dCor [55] and the information-
theoretic Kullback-Leibler divergence DKL [56]. Both are
sensitive also to nonlinear correlations and share the
essential property that two random variables are statistically
independent if and only if dCor ¼ DKL ¼ 0, though dis-
tance correlation is generally better suited for continuous
variables. In Fig. 9(a), we plot dCorðKi;iþ1; Kiþ1;iþ2Þ as a

(c)(a) (b)

FIG. 9. Properties of the renormalized disorder distribution as a function of the coarse-graining rule for the case of the random dilute
Ising chain. The RG rules are parametrized by λ1, λ2, as before. (a) The distance correlation (see the main text) dCor between
renormalized distributions of two neighboring NN couplings. The couplings are uncorrelated if and only if dCor vanishes; compare with
Fig. 4(a). (b) An alternative measure of correlations is the Kullback-Leibler divergence DKL computed between the product of marginal
distributions of neighboring couplings and their joint distribution (c) The K⊥

0 center of mass of the disorder distribution dCOM (see the
main text and Fig. 8). Note that all those quantities vanish when MI is maximized.

PATRICK M. LENGGENHAGER et al. PHYS. REV. X 10, 011037 (2020)

011037-12



function ofΛ, while in Fig. 9(b),DKL½P1
ΛðKi;iþ1;Kiþ1;iþ2Þjj

P1
ΛðKi;iþ1ÞP1

ΛðKiþ1;iþ2Þ�. Both measures coincide: The
disorder distributions at neighboring bonds are the more
independent, the more RSMI is retained by the coarse-
graining rule, as seen by comparing with Fig. 4(a) (which is
valid up to rescaling for every quenched disorder realiza-
tion in the model). The couplings are statistically indepen-
dent, rendering the renormalized disorder distribution
factorizable, precisely where RSMI is maximized, i.e.,
for decimation. These results empirically establish the
decay of correlations.
We also investigate another measure of complexity, i.e.,

how non-nearest-neighbor terms are generated as a function
of Λ. Denote by K0 the subspace of two-body NN
couplings, and by K⊥

0 the orthogonal space of all other
couplings (see Fig. 8). For any (renormalized) disorder
realization K, let K⊥ be its restriction to K⊥ obtained by
truncation of all couplings in K0. One measure of the shift
of the renormalized disorder distribution away from K0 is
the K⊥

0 center-of-mass dCOM:

dCOM ¼
����X

K

PðKÞK⊥
����; ð30Þ

where k · k is the Euclidean norm. It is shown in Fig. 9(c)
and exhibits the same qualitative behavior, as a function of
Λ, as the correlation measures; i.e., it vanishes as a function
of increasing RSMI.
We thus observe that empirically, RSMI maximization

suppresses the generation of both spurious correlations and
of higher-order and long-range couplings in the renormal-
ized disorder distribution, which is also supported by
Proposition 2 (under the appropriate assumptions).

VII. CONCLUSIONS AND OUTLOOK

We investigate information-theoretic properties of real-
space RG procedures and particularly of one based on
variational maximization of RSMI [28], both for clean
and disordered systems. We demonstrate suppression of
longer-range interactions in the renormalized Hamiltonian
as a function of the RSMI retained: formally, proving
this statement under explicitly stated assumptions, and
empirically, by considering arbitrary coarse grainings in
the solvable example of the Ising chain. For the case of
disordered systems, again using formal proofs and the
example of the dilute random Ising chain, we show that in
addition to longer-range or higher-order terms, also corre-
lations in the renormalized disorder distribution are sup-
pressed. We also examine the effect of constraints on the
type of coarse-grained variables on the RG procedure.
Our results provide a formal underpinning for the

physical intuition behind the RSMI maximization: The
effective long-wavelength description of the system is
simple in terms of d.o.f. which carry the most information

about its large-scale behavior.While the notion of simplicity
may be ambiguous—despite the clear practical conse-
quences of its absence—as there exist multiple measures
of Hamiltonian complexity, the long-range information and
its retention can be defined rigorously, similar to the
information bottleneck approach of compression theory
[32]. The different measures of complexity we compute
for both clean (range, amount of n-body interactions) and
disordered systems (correlations in the renormalized disorder
distribution measured using KL divergence and distance
correlation) are all suppressed asmore RSMI is preserved by
the coarse graining. This observation strongly indicates that
the model-independent RSMI coarse graining, optimal by
construction from the point of view of compression theory, is
also optimal physically, resulting in operationally desirable
properties (a tractable Hamiltonian).We thus establish direct
and quantifiable connections between the information-theo-
retic properties of RG transformation and the actual physical
properties of the renormalized Hamiltonian and the disorder
distribution.
Beyond conceptual significance, the results can be useful

practically, inspiring new numerical approaches to RG for
disordered or complex systems, as we briefly discuss in
Sec. VI. This is especially interesting given the progress in
machine learning, numerical techniques for MI estimation
[57,58], and the inverse problem [59].
A number of distinct directions are possible for further

research.On the formal part of the spectrum, amathematically
rigorous investigation of the probability measure defined by
the RSMI coarse graining in the spirit of Refs. [33,34,60] is
desirable. Conceptually, an interestingquestion iswhether the
type and number of coarse-grained variables can also be
variationally optimized, as opposed to being chosen at the
outset, as is usually the case. This will have the interpretation
of “discovering” whether the best variables to describe a
system, originally given in terms of, say, Ising spins, are the
same, or rather some emergent d.o.f. are preferable (see also
Refs. [61–63]). More practically, the results invite the
application of the RSMI method to the study of disordered
systems, both using synthetic as well as experimental data.
Finally, a quantum version of the procedure is an open
question. The information bottleneck has recently been
extended to the case of compression of quantum data [64]:
In this setting, the conditional probability of classical systems
is replaced by a quantum channel. It would be interesting to
explore how the physics of the system manifests itself in
properties of these optimal channels and to compare it with
energy-based approaches [65–68] and the recently introduced
graph-independent local truncation version of the tensor
renormalization group method [69].
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APPENDIX A: MUTUAL INFORMATION

The mutual information Eq. (6) can equivalently be
defined by

IΛðH∶EÞ ¼ HðHÞ −HðHjEÞ; ðA1Þ
where

HðHÞ ¼ −
X
H

PΛðHÞ log½PΛðHÞ�; ðA2Þ

HðHjEÞ ¼ −
X
H;E

PΛðH; EÞ log
�
PΛðH; EÞ
PðEÞ

�
ðA3Þ

are the Shannon entropy and conditional entropy, respec-
tively. It is a symmetric quantity. Positivity of mutual
information and of the conditional entropy, together with
the bound on entropy, immediately imply the following
inequalities:

0 ≤ IΛðH∶EÞ ≤ HðHÞ; ðA4Þ
where HðHÞ is the entropy of H. The mutual information
IΛðH∶EÞ is also bounded by the mutual information of the
visibles and the environment:

IΛðH∶EÞ ≤ IðV∶EÞ; ðA5Þ
which is obvious, since the hidden d.o.f. only couple to the
environment via the visibles.
Throughout the text, we also use the notion of condi-

tional mutual information, which, for any random variable
E, H, V, generically can be defined via the so-called
chain rule:

IðE∶H;VÞ ¼ IðE∶HÞ þ IðE∶VjHÞ: ðA6Þ

APPENDIX B: RSMI DOES NOT INCREASE THE
RANGE OF INTERACTIONS AND MAINTAINS

FACTORIZABILITY OF DISTRIBUTIONS

Here we give the details of the argument in Sec. III. We
work directly in D dimensions, and we spell out explicitly
the additional (reasonable) assumptions required compared
to the 1D case.
Consider a generic finite-ranged Hamiltonian with d.o.f.

X in D dimensions. For concreteness, let us assume a
hypercubic lattice. We partition X into hypercubic coarse-
graining blocks Vj large enough, so that only nearest-
neighbor blocks interact. For the purpose of this argument,
we arrange the blocks into parallel (D − 1)-dimensional
hyperplanes index by l so that X ¼∪l Xl with Xl ¼
∪j∈Jl Vj. Thus, in terms of the hyperplanes we end up with
a quasi-one-dimensional structure. Let us choose an arbitrary

hyperplane X0, denote its immediate neighbors X�1 as the
buffer B, and the union of the remaining hyperplanes Xl<−1
and Xl>1 as the environment E0ðX0Þ, or, in more detail, as
the left and right environment EL=RðX0Þ, respectively.
Assume now that the coarse-grained variables Hj for

the blocks Vj in X0 are constructed in such a way that
IðX0

0∶E0Þ ¼ IðX0∶E0Þ, where X0
0 ¼∪j∈J0 Hj. This is the

full-information-capture condition for the hyperplane gen-
eralizing the condition for the single block in 1D (note
though, that we still optimize variables Hj for each block
and not some new collective hidden variables for the entire
hyperplanes). Strictly speaking, this extension requires an
additional assumption (compared to 1D) that it is equiv-
alent to assuming IðHj∶E0Þ ¼ IðVj∶E0Þ separately for
each individual block in the hyperplane X0. This seems
reasonable for a short-ranged Hamiltonian, at least in the
isotropic case. Under those assumptions, we show that the
probability measure on the coarse-grained variables PðX 0Þ
obeys a D-dimensional analog of the factorization property
of Proposition 1 in Sec. III:

PðX 0
j≤−2;X

0
j≥2jX 0

0Þ ¼ PðX 0
j≤−2jX 0

0ÞPðX 0
j≥2jX 0

0Þ: ðB1Þ

To prove this, we begin with a crucial separability lemma,
which is a technical condition enabling Proposition 1:
Lemma. Let EL, ER be the left and right environments,

respectively, of X0 and let IðX0
0∶E0Þ ¼ IðX0∶E0Þ. Then,

the following factorization property with respect to
the coarse-grained variable X 0

0 holds: PðEL; ERjX 0
0Þ ¼

PðELjX 0
0ÞPðERjX 0

0Þ.
Proof. To show that, first note that from the full-

information-capture assumption, it follows that

IðE0∶X0jX 0
0Þ ¼ IðE0∶X0;X 0

0Þ − IðE0∶X 0
0Þ

¼ IðE0∶X0Þ − IðE0∶X 0
0Þ ¼ 0; ðB2Þ

where the first equality is the chain rule for mutual
information, and the second is due to the fact that the
coarse-grained variables X 0

0 are a function of X0 only.
Vanishing of this mutual information is equivalent to
the (conditional) probability distribution factorizing, and
therefore,

PðE0;X0jX 0
0Þ ¼ PðE0jX 0

0ÞPðX0jX 0
0Þ: ðB3Þ

Furthermore, the locality of the interactions assumption
implies that IðEL∶ERjX0Þ ¼ 0, and thus,

PðEL; ER;X0jX 0
0Þ ¼ PðEL; ERjX0;X 0

0ÞPðX0jX 0
0Þ

¼ PðEL; ERjX0ÞPðX0jX 0
0Þ

¼ PðELjX 0ÞPðERjX 0ÞPðX0jX 0
0Þ: ðB4Þ

Comparing Eqs. (B3) and (B4), we find that
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PðE0jX 0
0ÞPðX0jX 0

0Þ ¼ PðELjX0ÞPðERjX0ÞPðX0jX 0
0Þ:
ðB5Þ

For a given X 0
0, let us denote the set of X0 such that

PðX0jX 0
0Þ ≠ 0 by fX0ðX 0

0Þg. For all such “compatible”
X0 ∈ fX0ðH0Þg, we can divide by PðX0jX 0

0Þ and obtain

PðE0jX 0
0Þ ¼ PðELjX0ÞPðERjX0Þ: ðB6Þ

Crucially, the left-hand side does not depend on X0, and
so as long as X 0 ∈ fX 0ðX 0

0Þg the equality holds, and the
conditional probability factorizes independently of a
particular X0. In fact, the factorization holds generally,
and the case PðX0jX 0

0Þ ¼ 0 is not a problem:

PðE0jX 0
0Þ ¼

X
X0

PðEL; ER;X0jX 0
0Þ

¼
X
X0

PðELjX0ÞPðERjX0ÞPðX0jX 0
0Þ

¼
X

X0∈fX0ðX 0
0
Þg
PðELjX0ÞPðERjX0ÞPðX0jX 0

0Þ

¼ P½ELjX 0ðX 0
0Þ�P½ERjX0ðX 0

0Þ�; ðB7Þ

where we use Eq. (B4) in the second equality, explicitly
remove vanishing [by virtue of PðX0jX 0

0Þ ¼ 0] terms
in the sum in the third, and use Eq. (B6) to take the
X0-independent product from under the restricted sum-
mation in the third. We thus construct an explicit factori-
zation of PðEL; ERjX 0

0Þ in Eq. (B7), which implies

IðEL∶ERjX 0
0Þ ¼ 0; ðB8Þ

and hence, we can simply write

PðEL; ERjX 0
0Þ ¼ PðELjX 0

0ÞPðERjX 0
0Þ: ðB9Þ

▪
The lemma has a very nice physical interpretation,

which provides useful intuition of more general validity.
It states that with a short-range Hamiltonian, an area of
finite width has to mediate all correlations between its
neighborhoods, and if the information that area has about
them is accurately retained in a new variable, no corre-
lations can exist between the neighborhoods beyond
those mediated by the new variable. Note we do not rely
on translation invariance at all. This will be useful
in deriving a corresponding statement for disordered
systems, which explains the results in Sec. VI. More
immediately, it is the key element in showing Eq. (B1),
giving the D-dimensional version of Proposition 1:
Proposition 1. Let IðX0

0∶E0Þ ¼ IðX0∶E0Þ. Then, the
probability measure on the coarse-grained variables PðX 0Þ
obeys the factorization property

PðX 0
j≤−2;X

0
j≥2jX 0

0Þ ¼ PðX 0
j≤−2jX 0

0ÞPðX 0
j≥2jX 0

0Þ; ðB10Þ

where in the conditional probabilities, the buffer (i.e., the
neighbors X 0

�1 of X
0
0) is integrated out. In other words, for

fixed X 0
0, the probabilities of its left and right environments

EL=RðX 0
0Þ are independent of each other.

Proof. Consider the coarse-grained probability measure
defined by Eqs. (3) and (5):

PðX 0Þ ¼
X
X

PðXÞ
Y
j

PðHjjVjÞ: ðB11Þ

Denoting the product of the block conditional probability
distributions in the hyperplanes by

Q
l PðX 0

ljXlÞ and
integrating out X 0

�1, we have

PðX 0
j≤−2;X

0
0;X

0
j≥2Þ ¼

X
X jlj≠1

PðfXlgjlj≠1Þ
Y
jlj≠1

PðX 0
ljXlÞ:

ðB12Þ
Using the definition of conditional probability and the fact
that X 0

0 directly depends only on X0, we have

PðfXlgjlj≠1ÞPðX 0
0jX0Þ≡ PðE0;X0;X 0

0Þ
¼ PðE0;X0jX 0

0ÞPðX 0
0Þ; ðB13Þ

which allows us to write

PðX 0
j≤−2;X

0
0;X

0
j≥2Þ

¼
X
X jlj≠1

PðE0;X0jX 0
0ÞPðX 0

0Þ
Y

jlj≠0;1
PðX 0

ljXlÞ ðB14Þ

¼
X
X jlj≠1

PðEL; ERjX 0
0ÞPðX0jX 0

0ÞPðX 0
0Þ

Y
jlj≠0;1

PðX 0
ljXlÞ

ðB15Þ

¼
X
X jlj≠1

PðELjX 0
0ÞPðERjX 0

0ÞPðX0jX 0
0ÞPðX 0

0Þ

×
Y

jlj≠0;1
PðX 0

ljXlÞ ðB16Þ

¼
X

X jlj≠0;1

PðELjX 0
0ÞPðERjX 0

0ÞPðX 0
0Þ

Y
jlj≠0;1

PðX 0
ljXlÞ

ðB17Þ

¼ PðX 0
0Þ
�X

Xl≤−2

PðELjX 0
0Þ
Y
l≤−2

PðX 0
ljXlÞ

�

×

�X
Xl≥2

PðERjX 0
0Þ
Y
l≥2

PðX 0
ljXlÞ

�
ðB18Þ

¼ PðX 0
0ÞPðX 0

j≤−2jX 0
0ÞPðX 0

j≥2jX 0
0Þ; ðB19Þ
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where to obtain Eq. (B15), we condition on X0 and
use the full-information-capture assumption to write
PðEL; ERjX0;X 0

0Þ ¼ PðEL; ERjX 0
0Þ; to obtain Eq. (B16),

we use the factorization Eq. (B9) proved in the lemma; to
obtain Eq. (B17) we perform the summation over X 0; to
obtain Eq. (B18), we rearrange the sums taking expressions
independent of summation variables out of them; in the last
line, we use Bayes’s law. Dividing both sides by PðX 0

0Þ, we
obtain Eq. (B10). ▪
Proposition 1 shows that for a fixed X 0

0, the probability
PðX 0

j≤−2;X
0
0;X

0
j≥2Þ factorizes into a product over left and

right environments. As we describe in the main text,
together with the arbitrariness of the choice of the hyper-
plane, this implies (barring a pathological fine-tuned
scenario in which integration over X�1 exactly cancels
all preexisting NNN couplings) that the effective
Hamiltonian in terms of new variables is still nearest
neighbor (in all directions).
Furthermore, under the same assumptions of the finite-

ranged Hamiltonian, we can also derive an important
result about the properties of the renormalized disorder
distribution. Assume, without loss of generality, that the
blocks are chosen sufficiently large to render interactions
nearest neighbor with respect to the blocks. Then:
Proposition 2. Consider a disordered 1D system with

a factorizable (product) disorder distribution over, with-
out loss of generality, nearest-neighbor couplings. The
choice Λ� of the optimal coarse graining of a block X0

satisfying IðX0
0∶E0Þ ¼ IðX 0∶E0Þ, and thus, the factori-

zation property of Proposition 1, are stable to local
changes in disorder, provided those do not affect directly
the block or the buffer; i.e., they are fully confined to the
environment.
Proof. For a fixed quenched disorder realization,

denote the probability distribution of the d.o.f. under
this Hamiltonian by PðXÞ. Let PΛ� ðX 0

0jX0Þ be the
optimal coarse graining for the block X0 determined
by Λ� saturating mutual information and consequently
ensuring the factorization property of the lemma is
obeyed. Consider now a localized change to the disorder
realization, affecting only terms acting entirely within an
area XD ⊂ EL, resulting in a modified probability dis-
tribution P̃ðXÞ. One can then show that the factorization
property still holds with the very same choice of
PΛ� ðX 0

0jX0Þ.
To this end, denote by K̃ðXDÞ the local terms in the

reduced Hamiltonian affected by the disorder change
and by KðXDÞ the original ones (the change to the
Hamiltonian K is also localized since it is a NN in the
blocks and the change to the disorder is confined to XD).
Then,

P̃ðEL; ER;X0ÞPΛ� ðX 0
0jX0Þ

¼ eK̃ðEL;ER;X0Þ

Z̃
PΛ� ðX 0

0jX 0Þ

¼ eKðEL;ER;X0Þ

Z
Z

Z̃

eK̃ðXDÞ

eKðXDÞ PΛ� ðX 0
0jX0Þ

¼ Z

Z̃

eK̃ðXDÞ

eKðXDÞ PðEL; ER;X 0ÞPΛ� ðX 0
0jX0Þ

¼ Z

Z̃

eK̃ðXDÞ

eKðXDÞ PðEL; ER;X 0;X 0
0Þ

¼ Z

Z̃

eK̃ðXDÞ

eKðXDÞ PðEL; ER;X 0jX 0
0ÞPðX 0

0Þ

¼ Z

Z̃

eK̃ðXDÞ

eKðXDÞ PðELjX 0
0ÞPðERjX 0

0ÞPðX 0jX 0
0ÞPðX 0

0Þ
¼ P̃ðELjX 0

0ÞPðERjX 0
0ÞPðX0jX 0

0ÞPðX 0
0Þ; ðB20Þ

where Z and Z̃ are the original and modified partition
functions. In the penultimate line, we use the lemma for
the initial distribution PðEL; ER;X0Þ, and in the last, we
absorb all additional factors, which are local, into the
definition of P̃ðELjX 0

0Þ. Dividing both sides by PðX 0
0Þ

and marginalizing over X0, we arrive at

P̃ðEL; ERjX0
0Þ ¼ P̃ðELjX 0

0ÞPðERjX 0
0Þ; ðB21Þ

where the right factor is as for the original distribution.
Since the change to the disorder (other than being

confined to EL) is completely arbitrary, Eq. (B21) shows
that any such localized changes do not affect the choice
of optimal coarse graining of the block. Thus, they do
not break the factorization property and, in particular,
they do not affect the other environment: Note that in
Eq. (B21), we still have the original PðERjX 0

0Þ.
Consequently, Proposition 1 immediately holds for both
the original and modified disorder realization with the
same coarse graining PΛ� ðX 0

0jX0Þ and the same proba-
bility distribution of the renormalized right environment
ERðX 0

0Þ:

P̃ðX 0
j≤−2;X

0
j≥2jX 0

0Þ ¼ P̃ðX 0
j≤−2jX 0

0ÞPðX 0
j≥2jX 0

0Þ: ðB22Þ

Hence, the coarse graining is stable. ▪
Proposition 2 has an important consequence for the

renormalized disorder distribution P: With the probability
distribution of d.o.f. in ERðX 0

0Þ being completely insensi-
tive to the choice of disorder realization in ELðX 0

0Þ, we
conclude that there cannot exist any correlations in the
disorder distribution between in the regions ELðX 0

0Þ and
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ERðX 0
0Þ (i.e., no such correlations across X 0

0 are generated
by the optimal coarse graining).

APPENDIX C: THE EFFECTIVE HAMILTONIAN

1. The cumulant expansion

Consider a generic Hamiltonian K½X �. We split it into
two parts [35]:

K½X � ¼ K0½X � þK1½X �; ðC1Þ

where K0 contains intrablock terms, i.e., those which
couple only spins within a single block, and K1 contains
interblock terms, i.e., those that couple spins from different
blocks. Such a decomposition simplifies the calculations
significantly. For translationally invariant systems, the
intrablock terms are all of the same form:

K0½X � ¼
Xn
j¼1

Kb½Vj�: ðC2Þ

Using the decomposition Eqs. (C1) and (C2), the
definition of the renormalized Hamiltonian in Eq. (4)
can be rewritten as an intrablock average of the interblock
part of the Hamiltonian:

eK
0½X 0� ¼ Z0

X
X

eK1½X � Yn
j¼1

eKb½Vj�

Zb
PΛðHjjVjÞ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

≕PΛ;bðHj;VjÞ

¼ Z0

X
X

eK1½X � Yn
j¼1

PΛ;bðVjjHjÞPΛ;bðHjÞ

¼ Z0

Yn
j¼1

PΛ;bðHjÞ
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

≕PΛ;0ðX 0Þ

X
X

eK1½X �Yn
j¼1

PΛ;bðVjjHjÞ
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

≕PΛ;0ðX jX 0Þ

¼ Z0PΛ;0ðX 0ÞheK1½X �iΛ;0½X 0�; ðC3Þ

where the average h·iΛ;0 is over PΛ;0ðX jX 0Þ as a probability
distribution in X and thus introduces a dependence on the
new spin variables X 0. We indicate this dependence by
square brackets ½:� after the average.
Equation (C3) lends itself to a cumulant expansion:

heK1½X �iΛ;0½X 0� ¼ e
P

∞
k¼0

1
k!Ck½X 0� ðC4Þ

with the standard expressions for the cumulants in terms of
moments, the first few of which are given by

C1 ¼ hK1iΛ;0; ðC5aÞ

C2 ¼ hK2
1iΛ;0 − hK1i2Λ;0; ðC5bÞ

C3 ¼ hK3
1iΛ;0 − 3hK2

1iΛ;0hK1iΛ;0 þ 2hK1i3Λ;0; ðC5cÞ

where for brevity we do not indicate the dependence on X 0.
The powers of K1 inside the averages induce couplings
between multiple blocks and naturally lead to new coupling
terms in the effective Hamiltonian.
The cumulant expansion Eq. (C4) allows us to determine

the new Hamiltonian by taking the logarithm of Eq. (C3):

K0½X 0� ¼ log½Z0PΛ;0ðX 0Þ� þ
X∞
k¼0

1

k!
Ck½X 0�: ðC6Þ

The renormalized coupling constants are not apparent in
Eq. (C6). In order to identify them, we introduce the
following canonical form of the Hamiltonian:

K0½X 0� ¼ K0
0 þ

X
fαlgnl¼1

K0
α1;α2;…;αn

�Xn
j¼1

Yn
l¼1

ðx0jþlÞαl
�

ðC7Þ

with α1 ¼ 1 and αl ∈ f0; 1g for all l > 1. Here, the
addition of the indices is to be understood modulo n
(i.e., with periodic boundary conditions). Note that arbi-
trary orders k of the cumulant expansion Ck contribute to
each coupling constant K0

α1;α2;…;αn .

2. Factorization of quenched averages

Factorization of the conditional probability distribution
results in the factorization of expectations hO½X �iΛ;0 for
any operator, which is a product of operators oj acting on
separate blocks, i.e., O½X � ¼ Q

n
j¼1 oj½Vj�,

hO½X �iΛ;0½X 0� ¼
Yn
j¼1

X
Vj

oj½Vj�PΛ;bðVjjHjÞ

¼
Yn
j¼1

hoj½V�iΛ;b½Hj�; ðC8Þ

where the probability over which we average is

PΛ;bðVjHÞ ¼ eKb½V�

ZbPΛ;bðHÞPΛðHjVÞ: ðC9Þ

In particular, the factorization holds for the operators Kk
1,

which appear in the expressions for the cumulants.

3. Parametrization of the RG rule using a RBM Ansatz

The conditional probability distribution PΛðHjVÞ is
parametrized using a RBM Ansatz [70–72]. The RBMs
belong to a family of energy-based models, whose main
purpose is to efficiently approximate probability distri-
butions, and, more generally, they are an example of a
growing class of machine-learning techniques recently
employed in a statistical physics or condensed matter
setting [16,28,73–81].
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In the RBM Ansatz, the joint probability of the visible
and hidden d.o.f. is approximated by a Boltzmann
distribution

PðV;HÞ ¼ 1

Z
e−EΛðV;HÞ ðC10Þ

with a quadratic energy function

EΛðV;HÞ ¼ −
X
i;j

λjivihj −
X
i

αivi −
X
j

βjhj; ðC11Þ

where vi ∈ V, hj ∈ H, and Λ collectively denote the set of
parameters fλjigi;j, fαigi, and fβjgj, which are to be
variationally optimized so that the PΛðV;HÞ they define
is as close as possible to the target distribution PðV;HÞ.
Note that the energy function couples only the visible to
the hidden d.o.f. and includes no couplings within the
visible or the hidden sets. This peculiarity (which the word
“restricted” in the RBM refers to) is crucial to the
existence of fast algorithms [82] for training and sampling
from the trained distribution PΛðV;HÞ.
The conditional probability is then given by

PΛðHjVÞ ¼ e−EΛðV;HÞP
He

−EΛðV;HÞ : ðC12Þ

It is easy to see that the parameters fαigi drop out in
PΛðHjVÞ. Additionally, because of the Ising Z2 symmetry,
the bias (magnetic field) term for hj is not allowed: βi ¼ 0

for all i. Because of the absence of interactions between
hiddens, the expression factorizes and the summation over
H is trivial. In the case of a 1D system and a single hidden
spin H ¼ fhg, the conditional probability is then given
explicitly by

PΛðHjVÞ ¼ 1

1þ e−2h
PLV

i¼1
λivi

ðC13Þ

with Λ ¼ fλigi. The choice of the parameters defines the
RG rule. It is intuitively clear that while one could, in
principle, consider any choice of Λ, the physically mean-
ingful choices would correspond to the limit jjΛjj2 → ∞,
i.e., when the value of h actually strongly depends on v. In
that limit, Eq. (C13) becomes a Heaviside function. This is
also what happens in practice during the RSMI training (see
the Supplemental Material in Ref. [28]).
Thus, the virtue of the RBM Ansatz is twofold: First, it

provides an efficient tool from the algorithmic perspective
of RSMI implementation, and second, it also provides a
well-behaved, differentiable analytical Ansatz, which we
use to explicitly calculate the quantities of interest. We
emphasize though, that conceptually the RBM Ansatz is not
essential to the RSMI approach. Any other parametrization
of PΛðH;VÞ can also be used at the expense of having to

devise efficient algorithms to fix the parameters of this
new Ansatz.

APPENDIX D: THE 1D ISING MODEL

For the 1D Ising model, Eq. (11), and a single hidden
spin, we define

Vj ¼ fxðj−1ÞLVþ1; xðj−1ÞLVþ2;…; xjLV
g; ðD1aÞ

Hj ¼fhjg: ðD1bÞ

The Hamiltonian decomposition Eq. (16) gives

Kb½V� ¼ K
XLV−1

i¼1

viviþ1; ðD2Þ

K1½X � ¼ K
Xn
j¼1

xjLV
xjLVþ1 ðD3Þ

with the partition functions Z0 ¼
Q

n
j¼1 Zb, where Zb ¼P

V e
Kb½V�.

The 1D Ising model with nearest-neighbor interactions
can be solved exactly using the method of transfer matrices.
To this end, we define the transfer matrix T with compo-
nents hx1jTjx2i ≔ eKx1x2 . The matrix elements of arbitrary
integer powers of T can be computed by diagonalization:

hx1jTmjx2i ¼
1

2
½2 coshðKÞ�m½1þ x1x2 tanhðKÞm�: ðD4Þ

1. Exact decimation

For the purpose of numerical comparison with the RSMI
solution, we perform one step of the exact decimation RG
transformation Eq. (13). Following Eq. (4):

eK
0½X 0� ¼

X
X

Yn
j¼1

PΛðHjjVjÞeK
P

N
i¼1

xixiþ1

¼
X
X

Yn
j¼1

PΛðx0jjfx2j−1; x2jgÞ

× hx2j−1jTjx2jihx2jjTjx2ðjþ1Þ−1i

¼
Yn
j¼1

hx0jjT2jx0jþ1i; ðD5Þ

because for every block j the (δ)-like conditional proba-
bility PΛðx0ijfx2j−1; x2jgÞ strictly enforces x0j ¼ x2j−1 and
does not involve x2j. Thus, x2j can simply be integrated out.
The above has, up to a multiplicative constant ec

0
, the same

form as eK½X � with a new coupling constantK0, such that we
can set ec

0
T 0 ¼ T2. From that, we obtain
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c0 ¼ 1

2
log½4 coshð2KÞ�; ðD5aÞ

K0 ¼ 1

2
log½coshð2KÞ�; ðD5bÞ

such that the renormalized Hamiltonian is

K0½X 0� ¼ n
2
log½4 coshð2KÞ� þ K0 Xn

i¼1

x0ix
0
iþ1: ðD6Þ

2. The effective Hamiltonian

Here we compute the effective block parameters Eq. (19)
of the 1D Ising model for general block size LV .
Using Eq. (D4), the partition function of the intrablock

contribution to the Hamiltonian is given by

Zb ¼
X
V

YLV−1

i¼1

hvijTjviþ1i ¼
X
v1;vLV

hv1jTLV−1jvLV
i

¼ 2½2 coshðKÞ�LV−1: ðD7Þ

The expectations of powers of interblock couplings K1½X �k
appearing in the cumulant expansion can be written as a
sum of products of operators acting on single blocks (see
Appendix C 2). We have

K1½X �k ¼
�
K
Xn
j¼1

xjLV
xjLVþ1

�k

¼ Kk
X

P
n
j¼1

kj¼k

k!Q
n
j¼1 kj!

Yn
j¼1

ðxjLV
xjLVþ1Þkj

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
≕O

: ðD8Þ

We now consider one term in the above sum and rearrange
the factors according to blocks:

O ¼
Yn
j¼1

x
kj−1
ðj−1ÞLVþ1

x
kj
jLV|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

≕ oj

: ðD9Þ

Depending on the values of kj−1 and kj, the block operator
oj is one of the following three operators: xðj−1ÞLVþ1, xjLV

,
or xðj−1ÞLVþ1xjLV

. Hence, the average hOiΛ;b factorizes into

hxðj−1ÞLVþ1iΛ;b½Hj�; ðD9aÞ

hxjLV
iΛ;b½Hj�; ðD9bÞ

hxðj−1ÞLVþ1xjLV
iΛ;b½Hj�: ðD9cÞ

The Z2 symmetry of the 1D Ising model can be used to
extract the dependence of PΛ;bðhÞ and the above three
quantities on the single hidden spin h:

PΛ;bðhÞ ¼
X
V

eKb½V�

Zb
PΛðhjVÞ|fflfflfflffl{zfflfflfflffl}
¼PΛð−hj−VÞ

¼
X
V

eKb½V�

Zb
PΛð−hjVÞ ¼ PΛ;bð−hÞ; ðD10Þ

where we use the fact that for the Z2-symmetric system, the
coarse graining satisfies PΛðHjVÞ ¼ PΛð−Hj − VÞ. Since
PΛ;bðhÞ is normalized, we have

PΛ;bðhÞ ¼
1

2
: ðD11Þ

For any operator Op½V� with definite V parity p ¼ �1

given by Op½−V� ¼ pOp½V�, we find using similar argu-
ments that

hOp½V�iΛ;b½h� ¼ phOp½V�iΛ;b½−h�; ðD12Þ

since PΛ;bð−Vj − hÞ ¼ PΛ;bðVjhÞ. Hence, hOp½V�iΛ;b½h�
also has definite h-parity p.
Since h assumes only values �1, then p ¼ þ1 implies

that the average is actually independent of h, while p ¼ −1
implies it is linear in h. Thus,

hxðj−1ÞLVþ1iΛ;b½h� ¼ hv1iΛ;b½1�h; ðD12aÞ

hxjLV
iΛ;b½h� ¼ hvLV

iΛ;b½1�h; ðD12bÞ

hxðj−1ÞLVþ1xjLV
iΛ;b½h� ¼ hv1vLV

iΛ;b½1�: ðD12cÞ

The last expression can actually be explicitly calculated
independently of the choice of the RG rule:

hv1vLV
iΛ;b½1� ¼ ½2 coshðKÞ�−ðLV−1Þ

×
X
V

v1vLV
eKb½V�PΛð1jVÞ: ðD13Þ

Since vi ¼ �1, we also have

eKb½V� ¼
YLV−1

i¼1

eviviþ1

¼ coshðKÞLV−1
YLV−1

i¼1

½1þ viviþ1 tanhðKÞ�: ðD14Þ

Every term in the expanded expression is of the form
O½V� tanhðKÞm for an operator O, which is a product of
several consecutive pairs viviþ1. IfO has even V parity and
v1vLV

O½V� is not independent of V, then
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X
V

v1vLV
O½V�PΛð1jVÞ ¼

X
V

v1vLV
O½V�PΛð−1j − VÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

¼1−PΛð1j−VÞ

¼ −
X
V

v1vLV
O½V�PΛð1jVÞ

¼ 0: ðD15Þ

Thus, only O of odd V parity and those for which
v1vLV

O½V� is independent of V can contribute to
Eq. (D13). However, eKb½V� contains only two such con-
tributions: 1 and v1vLV

tanhðKÞLV−1. It follows that

hv1vLV
iΛ;b½1� ¼ tanhðKÞLV−1≕ b; ðD16Þ

i.e., it is a Λ-independent constant. The remaining two
averages depend on the choice ofΛ, and closed expressions
for them are given below for the case of block size LV ¼ 2.
As discussed previously, the cumulants can be expressed

in terms of the effective block parameters Eqs. (19). The
actual computations can be done by brute-force summation
of all possible terms in Eq. (20). This, however, is rather
impractical for obtaining higher-order cumulants. We
instead implement a simple algorithm based on the com-
binatorial considerations discussed in the main text.

3. The case of LV = 2 blocks: Discussion of
the numerical results

Specializing to blocks of two visible spins results in

K0½X 0� ¼ N
2
log½2 coshðKÞ� þ

X∞
n¼0

1

n!
CnðX 0Þ; ðD17Þ

and the effective block parameters are found to be

a1 ¼
2½coshðλ1Þ sinhðλ1Þ þ coshðλ2Þ sinhðλ2Þ tanhðKÞ�

coshð2λ1Þ þ coshð2λ2Þ
;

a2 ¼
2½coshðλ2Þ sinhðλ2Þ þ coshðλ1Þ sinhðλ1Þ tanhðKÞ�

coshð2λ1Þ þ coshð2λ2Þ
;

b ¼ tanhðKÞ: ðD18Þ

As we discuss in the main text, both the two-point
correlator as a function of the distance between the spins
(Fig. 10) and the m-point correlator as a function of the
number of consecutive spinsm (Fig. 11) decay exponentially
for small K for the RSMI-favored solution (i.e., decimation).
This solution, unsurprisingly, is decimation, which can be
seen from Figs. 4 and 5. Additionally, in Fig. 12 we show the
convergence to large-λ results shown in Fig. 5(a) with
increasing order of the cumulant expansion.
We also comment on the asymmetry (around 0) of the

curves in Figs. 5(a) and 5(b). The curves result from
traversing the path λðcos θ; sin θÞ in Fig. 4, which is not
fourfold symmetric (instead, there are two reflection

symmetries with respect to the diagonals). Starting from
θ ¼ 0 at the peak, the trajectory traces out the lower branch
of the curves in Figs. 5(a) and 5(b) reaching the lowest
point at θ ¼ π=4, before turning around and exactly
retracing the trajectory toward the peak at θ ¼ π=2.
The trajectory then moves on the upper branch reaching
the uppermost point at θ ¼ 3π=4 and retracing toward the
peak again at θ ¼ π=2. This exact retracing is due to two
independent Z2 symmetries: that of the Ising model and
that of the mutual information. Since Z2 × Z2 is not
isomorphic to Z4, we do not have a fourfold symmetry

FIG. 10. Logarithmic plot showing the exponential decay of the
two-point correlator K0

2ðlÞ with distance l at K ¼ 0.1. The blue
data points represent the results obtained from the cumulant
expansion of the RSMI-favored solution up to tenth order, while
the yellow line shows the exponential decay with decay length
obtained from the first two points. For small K, where the
cumulant expansion is expected to be accurate, the two-point
correlator decays exponentially.

FIG. 11. Logarithmic plot showing the exponential decay of the
nearest-neighbor m-point correlator K0

mð1Þ with m at K ¼ 0.1.
The blue data points represent the results obtained from the
cumulant expansion of the RSMI-favored solution up to tenth
order, while the yellow line shows the exponential decay with
decay length obtained from the first two points. Only points for
even m are present, as Kmð1Þ ¼ 0 for odd m due to reasons of
symmetry. Again, at small K, the two-point correlator decays
exponentially.
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in Fig. 4, and consequently, we do not have a symmetry
around 0 in Figs. 5(a) and 5(b). Physically, this is easily
understood: The mutual information in Fig. 4(a) on the
λ1 ¼ −λ2 diagonal is lower than on the λ1 ¼ λ2 one, since
for the ferromagnetic Ising model we simulated that the
neighboring spins are more likely to be aligned than not.
Then, for the majority of the spin configurations, we have
λ1v1 − λ2v2 ¼ 0 on the λ1 ¼ −λ2 diagonal, and hence, the
coarse-graining rule decides the orientation of the effective
spin at random, reducing the mutual information.
We emphasized before that the physically relevant

coarse-graining rules are in the limit of large jjΛjj2. For
small values of jjΛjj2, the coarse-graining rule is essentially
independent of the underlying variables V (or equivalently,
the rule can be thought of as having a large white-noise
component). This independence manifests itself in Fig. 4(a)
by low mutual information in the center. Nevertheless,
Figs. 4(b) and 4(c) seem to have some (different looking)
areas of vanishing rangeness and m-bodyness ratios in the
center. Those are entirely accidental and nonuniversal. It is
important to understand that since the central area corre-
sponds to entirely randomly deciding the coarse-grained
spin, the effective Hamiltonian (which would therefore
have hardly anything to do with the physics of the under-
lying system) would not even contain nearest-neighbor
terms. The central areas in Figs. 4(b) and 4(c) thus
correspond to ratios of two vanishing quantities.
Similarly, in Fig. 5(a) the position of the peak not being
exactly at 0 for small jjΛjj2 is exactly due to the accidental
features in the center of Fig. 4(b).
A slightly more practical lesson can be taken from

Fig. 4(c), where even for larger λ, multiple crossings of
the zero axis can be observed (i.e., the m-bodyness ratio
vanishes also for some smaller value of mutual information,

compared to the value at the peak, when the rangeness ratio
is still large). This behavior is also accidental, but it teaches
us that the proper metric to observe is the saturation of the
mutual information (corresponding to the peak) and not the
vanishing of some particular coefficient in the Hamiltonian
(which may be accidental).

4. Mutual information

Here we explicitly calculate the information-theoretic
quantities studied in the main text for the case of the NN
Ising model in 1D given by Eq. (11) with a visible region
of size LV coupled to a single hidden spin H ¼ fhg. The
system is split into four regions (see Fig. 2) with their
respective sizes satisfying N ¼ LV þ 2LB þ 2LE þ LO.
We denote the spin variables in the three inner regions
of the system by

V ¼ fv1; v2;…; vLV
g; ðD18aÞ

B ¼ fb−LB
; b−LBþ1;…; b−1; b1; b2;…; bLB

g; ðD18bÞ

E ¼ fe−LE
; e−LEþ1;…; e−1; e1; e2;…; eLE

g: ðD18cÞ

a. Mutual information between the hidden d.o.f.
and the environment

The mutual information can be calculated from Eq. (A1).
SinceH is a binary variable, the two entropies appearing in
Eq. (A1) can be rewritten in terms of the binary entropy
h2ðpÞ ≔ −p logðpÞ − ð1 − pÞ logð1 − pÞ:

HðHÞ ¼ h2½PΛðh ¼ 1Þ�; ðD19Þ

HðHjEÞ ¼ hh2½PΛðh ¼ 1jEÞ�iE ðD20Þ

with the conditional probability distribution

PΛðHjEÞ ¼
P

XnEPΛðHjVÞPðXÞ
PðEÞ : ðD21Þ

Thus, the mutual information is given by

IΛðH∶EÞ ¼ h2½PΛðh ¼ 1Þ� − hh2½PΛðh ¼ 1jEÞ�iE : ðD22Þ

The relevant probability distributions PΛðhÞ and PΛðhjEÞ
can be computed using transfer matrices (the result is
always given in the limit LO → ∞). For the former
distribution, we observe that

PðVÞ ¼
X
B;E;O

PðXÞ ¼ 1

Z

X
B;E;O

XN
i¼1

hxijTjxii ¼
eKb½V�

Zb
;

which implies that PΛðhÞ ¼
P

V PðhjVÞPðVÞ ¼ PΛ;bðhÞ,
in the thermodynamic limit. We have already found PΛ;bðhÞ

FIG. 12. The ratio between next-nearest-neighbor and nearest-
neighbour coupling constants is plotted versus the mutual
information for different orders of the cumulant expansion
(see inset legend). The curves are obtained by parametrizing
the RG rule by ðλ1; λ2Þ ¼ λ½cosðθÞ; sinðθÞ� and varying θ ∈ ½0; π�.
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in Eq. (D11) to be 1
2
, such that the first term in Eq. (D22)

gives h2ð1=2Þ ¼ logð2Þ. The other relevant probability
distribution is

PΛðhjEÞ ¼
X
V

PðhjVÞPðVjEÞ; ðD23Þ

where PðhjVÞ is given by the RBM Ansatz Eq. (C13), and
to obtain PðVjEÞ, the two distributions PðV; EÞ and PðEÞ
need to be computed. In the thermodynamic limit LO → ∞,
we obtain by Eq. (D4):

PðV; EÞ ¼
X
B;O

PðXÞ ¼ 1

Z

X
B;O

XN
i¼1

hxijTjxii

¼ 1

4
½1þ v1e−1GðLB þ 1Þ�½1þ v2e1GðLB þ 1Þ�

×
eK

P
he;e0iee

0

½2 coshðKÞ�2ðLE−1Þ
eKb½V�

Zb
; ðD24Þ

since tanhðKÞm → 0 for m → ∞ and finite K, and Z ¼
½2 coshðKÞ�N in the thermodynamic limit. Similarly,

PðEÞ ¼
X
V;B;O

PðXÞ ¼ 1

Z

X
V;B;O

XN
i¼1

hxijTjxii

¼ 1

4
½1þ e−1e1GðLV þ 2LB þ 1Þ�

×
eK

P
he;e0iee

0

½2 coshðKÞ�2ðLE−1Þ ; ðD25Þ

PðVjEÞ ¼ ½1þ e−1v1GðLB þ 1Þ�½1þ vLV
e1GðLB þ 1Þ�

1þ e−1e1GðLV þ 2LB þ 1Þ

×
eKb½V�

Zb
; ðD26Þ

PΛðhjEÞ ¼
1

2

X
V

PΛ;bðVjhÞ
1þ e−1v1GðLB þ 1Þ

1þ be−1e1G½2ðLB þ 1Þ�
× ½1þ vLV

e1GðLB þ 1Þ�; ðD27Þ

where we recognize PΛ;bðVjhÞ from Eq. (C9) and use the
fact that

GðLV þ 2LB þ 1Þ ¼ tanhðKÞLV−1G½2ðLB þ 1Þ�
¼ bG½2ðLB þ 1Þ�: ðD28Þ

By expanding the numerator, we can rewrite the above in
terms of averages h·iΛ;b, and using Eq. (19) we obtain

PΛðhjEÞ ¼
1þ hða1e−1 þ a2e1ÞGðLB þ 1Þ
2f1þ be−1e1G½2ðLB þ 1Þ�g

×
be−1e1Gð2LB þ 2Þ

2f1þ be−1e1G½2ðLB þ 1Þ�g : ðD29Þ

PΛðhjEÞ depends only on the environment through
fe−1; e1g, so the sum over the remaining environment
spins in the average over PðEÞ can be performed explicitly,
and we are left with an average over the marginal
distribution: Pðe−1;e1Þ¼1

4
½1þe−1e1Gð2LBþ3Þ�. Finally,

we can gather the results and obtain

IΛðH∶EÞ
¼ logð2Þ−

X
e−1;e1

Pðe−1;e1Þh2

×

�
1þða1e−1þa2e1ÞGðLBþ1Þþbe−1e1Gð2LBþ2Þ

2½1þbe−1e1Gð2LBþ2Þ�
�
:

ðD30Þ
All dependence on Λ is in the block parameters a1, a2 (b

is Λ independent) calculated in Eq. (D18).

b. Mutual information between the visibles
and the environment

Equation (8) states that the mutual information between
the hiddens and the environment IΛðH∶EÞ is bounded from
above by the mutual information between the visibles
and the environment IðV∶EÞ. We now compute the latter
quantity explicitly. By definition:

IðV∶EÞ ¼
X
V;E

PðV; EÞ log
�

PðV; EÞ
PðVÞPðEÞ

�
; ðD31Þ

where all the probability distributions involved are already
known; see Eqs. (D24) and (D25). Observe that the
expression inside the logarithm depends only on the four
spins e−1, v1, vLV

, and e1, such that the sum over all other
spins can be performed explicitly. We obtain

IðV∶EÞ
¼

X
e−1 ;v1 ;
vLV

;e1

Pðe−1; v1; vLV
; e1Þ

× log

�½1þ e−1v1GðLB þ 1Þ�½1þ vLV
e1GðLB þ 1Þ�

1þ e−1e1GðLV þ 2LB þ 1Þ
�
;

ðD32Þ

Pðe−1; v1; vLV
; e1Þ

¼ 1

16
½1þ e−1v1GðLB þ 1Þ�

× ½1þ v1vLV
GðLV − 1Þ�½1þ vLV

e1GðLB þ 1Þ�: ðD33Þ
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5. The case of larger blocks

For the case of LV > 2, additional subtleties are present.
These subtleties can be attributed to differently broken
symmetries in the mutual information and in the effective
Hamiltonian.
On the level of interactions, the translation symmetry is

explicitly broken by the Hamiltonian decomposition in
Eq. (16) and subsequent cumulant expansion. This effect
is not merely a feature of the method of evaluation, but
rather a consequence of using a block-spin RG scheme:
Interactions of the spins in the same block are inherently
treated differently from interactions of the spins from
different blocks. However, the full translational symmetry
may sometimes be effectively restored. This happens, for
instance, in the case of a decimation, when for any block
size LV it does not matter which single spin exactly is
chosen in the block—the same effective Hamiltonian
results.
When computing the mutual information, on the other

hand, the full symmetry is not restored for LV > 2. The
spins in the interior of the block are always coupled to
the environment more weakly that the ones on the edges.
Thus, we end up with two quantities, the renormalized
Hamiltonian K0 and the mutual information IΛðH∶EÞ,
which have different symmetry properties. For example,
for LV ¼ 3 in the 1D Ising case, from the point of view of
mutual information, we have two equivalent optimal
solutions (coupling to leftmost and rightmost spins in
the block), but it is intuitively clear that coupling to the
center spin is equally good.

One important consequence is that the rangeness, for
instance, is not necessarily a monotonic function of mutual
information in the full parameter space (globally) but it is
locally. Crucially though, any global maximum of mutual
information corresponds to a global minimum of rangeness
(but there could be additional equivalent solutions, just as
the center spin in the LV ¼ 3 decimation). The RSMI
maximization is thus a sufficient criterion for a good RG
transformation, establishing it as a variational principle.
Further investigation of these effects for larger coarse-
graining blocks might prove useful (see also the numerical
results for the 2D Ising model case in the Supplemental
Material of Ref. [28]).

APPENDIX E: TOY MODELS

1. 1D system

To illustrate the influence of the environment E being
simply connected or not, we modify the 1D toy model
Eq. (6) by introducing additional coupling KE between the
environment spins e1;2, effectively making the system
periodic (and thus, the environment simply connected):

K ¼ KVEðe1v1 þ v2e2Þ þ KVv1v2 þ KEe1e2: ðE1Þ

This new coupling changes two things: On the one hand,
the visibles become more strongly coupled to each other.
On the other hand, since the environment for fixed V can no
longer be thought of as being composed of two independent
random variables E1 and E2, but rather a single one, the

(a) (b)

FIG. 13. The mutual information IΛðH∶EÞ and IðVΛ∶EÞ for decimation (blue) and majority-rule (yellow) procedures in the 1D
periodic toy model Eq. (E1) obtained by coupling the environment spins e1;2 in the model Eq. (25) with a coupling KE ¼ 1.5 (the value
shown). Compare with Fig. 6, for which all other parameters are the same. Similarly, two parameter regimes are shown: (a) strong
coupling to the environment or low-temperature KVE (recall that the coupling constants contain a factor of β ¼ 1=kBT) and (b) weak
coupling KVE . The solid lines differ from the dashed lines of the same color by the mismatch IðVΛ∶EjHÞ (see the main text). Note that
the introduction of KE coupling rendering the environment simply connected also in this 1D case greatly reduces the difference between
the two RG rules.
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information about the environment copied into the visible
spins v1;2 is much more correlated. This has the effect of
reducing the mismatch IðVΛ∶EjHÞ. Indeed, as seen in
Fig. 13, for the same values of all other parameters as in the
nonperiodic case of Fig. 6, the discrepancy between the
mutual information retained by the two coarse-graining
rules is significantly decreased. Note though, that decima-
tion still is (marginally) better.

2. 2D system

As we discuss in the main text, the situation in a two-
dimensional system is qualitatively different. We consider
the toy model with the Hamiltonian given by Eq. (26).
Since all visibles couple to the same environment E, which
is now a single variable E ∈ f−4;−3;…; 4g, in an identical
fashion, each copies the same amount of information (at
KV ¼ 0). Similar to the 1D case, VΛ captures more
information about E if the coupling is more evenly
distributed among the visibles. Additionally, with the
connected environment, this coupling pattern has the effect
of amplifying the shared information about E in each
visible spin by averaging out the independent noise. While
coupling to VΛ always leads to more compression loss
IðVΛ∶EjHÞ compared to decimation, the scale of the two
effects is different such that in the 2D (and presumably also
in higher-dimensional) case, the information gain when
coupling to more visibles outweighs the compression loss
as seen in Fig. 7.

APPENDIX F: COMPARISON TO OTHER
DEFINITIONS OF RG OPTIMALITY

The perfect action approach of Ref. [83] as well as those
of Refs. [84,85] define renormalization schemes dubbed
optimal. The goal, however, is fundamentally different
from ours: The starting point is a continuum problem
replaced by a coarse-grained version to numerically solve
it. Optimality is defined as minimizing the error of the
solution with respect to the solution of the continuum
problem. In contrast, RSMI captures the long-range
physics while discarding short-range fluctuations, in a
very general information-theoretic sense. It is, by con-
struction, optimally compressing long-range information.
We show that reduced complexity of the effective theory
(i.e., tractable Hamiltonian) is a consequence, even though
it is not explicitly optimized for. Note that there is no
reference problem, such as the continuum theory.
Perfect actions in field theories give cutoff-independent

results on coarse-grained lattices [83]. They are not unique;
in particular, the range and the order of interactions depend
on the details of the coarse graining. This necessitates a
second optimization to obtain an action approximated by
as few couplings as possible. It is this second optimization
that bears similarity to our problem. While, however, in
RSMI tractability is a consequence of general principles,

i.e., a result, in Ref. [83] it is explicitly optimized for by
computing the actions for several different rules and tuning
the RG procedure with respect to the range. The trans-
formations studiedwere block averages optimized on a single
parameter analogous to the magnitude of Λ, exploring only a
small subset of transformations. While justified in examples,
removing such choices altogether is the point of RSMI.
Coarse graining was also applied to numerically solving

partial and stochastic differential equations [84–87]. The
basic requirement is minimizing the difference between the
solution of the coarse grained equation and the coarse-
grained solution of the continuous equation. Fixed geo-
metric coarse grainings [84] and approximations yielding
short-range operators were discussed [86]. Geometric
coarse grainings cannot be fully satisfactory, since dynam-
ics can change the relevance of the d.o.f. Reference [85]
proposed minimizing the error at later times, more spe-
cifically, by optimizing the coarse graining for the error
incurred due to the noncommutativity of coarse graining
and time evolution. We do not consider dynamical prob-
lems; however, a generalization of our approach would not
involve a direct application of RSMI to coarse grain spatial
d.o.f. This is inherently based on the notion that the
important information to be compressed and preserved is
the one pertaining to long spatial length scales (which is
correct in deriving effective theory in equilibrium).
Correctly generalizing the compression intuition, in the
spirit of the information bottleneck method [32], would
involve a procedure where the definition of the relevant
information to be preserved also includes behavior at
longer timescales. This is a very interesting question and
another potential future research direction.

[1] L. E. Boltzmann, Über die Beziehung zwischen dem zweiten
Hauptsatze des mechanischen Wärmetheorie und der
Wahrscheinlichkeitsrechnung, respective den Sätzen über
das Wärmegleichgewicht (K.k. Hof- und Staatsdruckerei,
Vienna, 1877).

[2] J. W. Gibbs, Elementary Principles in Statistical Mechan-
ics: Developed with Especial Reference to the Rational
Foundations of Thermodynamics (Charles Scribner’s Sons,
New York, 1902).

[3] C. E. Shannon, A Mathematical Theory of Communication,
Bell Syst. Tech. J. 27, 379 (1948).

[4] L. Szilard, Über die Entropieverminderung in einem ther-
modynamischen System bei Eingriffen intelligenter Wesen,
Z. Phys. 53, 840 (1929).

[5] R. W. Landauer, Irreversibility and Heat Generation in the
Computing Process, IBM J. Res. Dev. 5, 183 (1961).

[6] C. H. Bennett and P.W. Shor, Quantum Information Theory,
IEEE Trans. Inf. Theory 44, 2724 (1998).

[7] G. ’t Hooft, Dimensional Reduction in Quantum Gravity,
arXiv:gr-qc/9310026.

[8] L. Susskind, The World as a Hologram, J. Math. Phys.
(N.Y.) 36, 6377 (1995).

PATRICK M. LENGGENHAGER et al. PHYS. REV. X 10, 011037 (2020)

011037-24

https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1007/BF01341281
https://doi.org/10.1147/rd.53.0183
https://doi.org/10.1109/18.720553
https://arXiv.org/abs/gr-qc/9310026
https://doi.org/10.1063/1.531249
https://doi.org/10.1063/1.531249


[9] R. Bousso, The Holographic Principle, Rev. Mod. Phys. 74,
825 (2002).

[10] A. Kitaev and J. Preskill, Topological Entanglement En-
tropy, Phys. Rev. Lett. 96, 110404 (2006).

[11] M. Levin and X.-G. Wen, Detecting Topological Order in a
Ground State Wave Function, Phys. Rev. Lett. 96, 110405
(2006).

[12] X. Chen, Z.-C. Gu, and X.-G. Wen, Local Unitary Trans-
formation, Long-Range Quantum Entanglement, Wave
Function Renormalization, and Topological Order, Phys.
Rev. B 82, 155138 (2010).

[13] S. Östlund and S. Rommer, Thermodynamic Limit of Density
Matrix Renormalization, Phys. Rev. Lett. 75, 3537 (1995).

[14] G. Vidal, Class of Quantum Many-Body States That Can Be
Efficiently Simulated, Phys. Rev. Lett. 101, 110501 (2008).

[15] S. R. White, Density Matrix Formulation for Quantum
Renormalization Groups, Phys. Rev. Lett. 69, 2863 (1992).

[16] G. Carleo and M. Troyer, Solving the Quantum Many-Body
Problem with Artificial Neural Networks, Science 355, 602
(2017).

[17] L. P. Kadanoff, Scaling Laws for Ising Models near Tc,
Physics (Long Island City, N.Y.) 2, 263 (1966).

[18] K. G. Wilson and J. Kogut, The Renormalization Group and
the ϵ Expansion, Phys. Rep. 12, 75 (1974).

[19] K. G. Wilson, The Renormalization Group: Critical Phe-
nomena and the Kondo Problem, Rev. Mod. Phys. 47, 773
(1975).

[20] M. E. Fisher, Renormalization Group Theory: Its Basis and
Formulation in Statistical Physics, Rev. Mod. Phys. 70, 653
(1998).

[21] E. Efrati, Z. Wang, A. Kolan, and L. P. Kadanoff, Real-
Space Renormalization in Statistical Mechanics, Rev. Mod.
Phys. 86, 647 (2014).

[22] J. Gaite and D. O’Connor, Field Theory Entropy, the h
Theorem, and the Renormalization Group, Phys. Rev. D 54,
5163 (1996).

[23] J. Gaite, Relative Entropy in 2D Quantum Field Theory,
Finite-Size Corrections, and Irreversibility of the Renorm-
alization Group, Phys. Rev. Lett. 81, 3587 (1998).

[24] S. M. Apenko, Information Theory and Renormalization
Group Flows, Physica (Amsterdam) 391A, 62 (2012).

[25] B. B. Machta, R. Chachra, M. K. Transtrum, and J. P.
Sethna, Parameter Space Compression Underlies Emergent
Theories and Predictive Models, Science 342, 604 (2013).
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