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Abstract

Machine Learning models are often considered to be “black boxes” that provide only lit-
tle room for the incorporation of theory (cf. e.g. Mukherjee, 2017; Veltri, 2017). This article
proposes so-called Dynamic Factor Trees (DFT) and Dynamic Factor Forests (DFF) for macro-
economic forecasting, which synthesize the recent machine learning, dynamic factor model and
business cycle literature within a unified statistical machine learning framework for model-based
recursive partitioning proposed in Zeileis, Hothron and Hornik (2008). DFTs and DFFs are non-
linear and state-dependent forecasting models, which reduce to the standard Dynamic Factor
Model (DFM) as a special case and allow us to embed theory-led factor models in powerful
tree-based machine learning ensembles conditional on the state of the business cycle. The out-
of-sample forecasting experiment for short-term U.S. GDP growth predictions combines three
distinct FRED-datasets, yielding a balanced panel with over 375 indicators from 1967 to 2018
(FRED, 2019; McCracken & Ng, 2016, 2019a, 2019b). Our results provide strong empirical
evidence in favor of the proposed DFTs and DFFs and show that they significantly improve the
predictive performance of DFMs by almost 20% in terms of MSFE. Interestingly, the improve-
ments materialize in both expansionary and recessionary periods, suggesting that DFTs and
DFFs tend to perform not only sporadically but systematically better than DFMs. Our findings
are fairly robust to a number of sensitivity tests and hold exciting avenues for future research.
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1 INTRODUCTION

1. Introduction

Machine learning systems in general and deep learning systems in particular have
achieved notable breakthroughs in predictive accuracy in recent years (cf. e.g. Esteva
et al., 2017; LeCun, Bengio, & Hinton, 2015; McAfee & Brynjolfsson, 2017). Unfortu-
nately, however, the predictive ability and interpretative feasibility of these systems
stand usually in conflict with one another (Breiman, 2001b) as their inner working
mechanisms are typically not amenable to human comprehension — an issue known
as the “black box” problem (Appenzeller, 2017; Mittelstadt, Allo, Taddeo, Wachter,
& Floridi, 2016; Mittelstadt & Floridi, 2016; Mukherjee, 2017; Veltri, 2017).

The nature of most machine learning algorithms is often fundamentally differ-
ent from traditional data modelling techniques used in statistics or econometrics (cf.
Breiman, 2001b; McAfee & Brynjolfsson, 2017; Mullainathan & Spiess, 2017; Veltri,
2017; Wochner, 2018). As discussed in Breiman (2001Db), they shift the data modelling
paradigm from a stochastic to an algorithmic one: Instead of assuming a stochastic
data model (e.g. logistic regression) for the function that maps inputs to outputs,
machine learning algorithms (e.g. neural networks) consider the functional form to
be largely unknowable and instead seek to discover patterns that predict the response
well by primarily building upon algorithmic properties (e.g. convergence speed) rather
than stochastic properties (e.g. unbiasedness) (cf. Breiman, 2001b, for details; also
see Athey & Imbens, 2019; Varian, 2014; Veltri, 2017; Wochner, 2018, for related
discussions). A promising new field of research in statistical machine learning seeks
to fruitfully merge these two paradigms so as to endow machine learning algorithms
with more theory-led structure while maintaining their high predictive accuracy (cf.
e.g. Athey & Imbens, 2017; Athey, Tibshirani, & Wager, 2019; Seibold, Zeileis, &
Hothorn, 2016; Varian, 2016; Zeileis et al., 2008). To take an example outside the
field of economics — which inspired this research — consider the benefits of treat-
ment effects in medical applications, which are likely to differ between individuals and
may depend, for instance, on their demographics (e.g. male/female) or health status
(e.g. healthy/sick) (cf. Athey & Imbens, 2017, p. 10; Seibold et al., 2016). Seibold
et al. (2016) promote advances in personalized medical healthcare by employing a
segmented machine learning model that is able to autonomously identify distinct pa-
tient subgroups with heterogenous medical treatment effects based on a set of personal
health conditions.

This article adopts and adapts these ideas for macroeconomic forecasting by em-
ploying and extending the unified statistical machine learning framework for seg-
mented (or state-dependent) model estimation developed by Zeileis et al. (2008).
Their “model-based recursive partitioning (MOB) algorithm” combines the well-known
class of parametric models from statistics with tree-based partitioning algorithms from
machine learning and derives a state-dependent model in four key steps: (1) a para-
metric model is estimated, (2) parameter instability tests over pre-determined par-
titioning variables are performed, (3) if instabilities are absent, stop; otherwise the
initial parametric model is split in a tree-like fashion into two sub-states with regards
to the partitioning variable that shows the most significant instabilities; (4) the proce-
dure is recursively repeated in each sub-state until a stopping criterion is reached (see
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Zeileis & Hothorn, 2015; Zeileis et al., 2008, for details). In the present case, we seek
to predict US GDP growth and our state-dependent forecasting model consists of two
key ingredients: First, to take advantage of big macroeconomic datasets, we extract a
set of dynamic factors and employ factor-augmented autoregressive processes as para-
metric models in the MOB-framework (Stock & Watson, 2006, 2016, 2017; Siliverstovs
& Wochner, 2019). Second, instead of choosing the health conditions of patients as
in Seibold et al. (2016), we align more closely with the business cycle literature and
choose the health conditions of the economy (proxied via recession probability indices)
as partitioning variable (e.g. Chauvet & Potter, 2013; Doz & Fuleky, 2019). In short:
Provided that there are sufficient instabilities over the estimation period, this design
results in a state-dependent dynamic factor model with, for instance, two states —
one dynamic factor model for time periods in which the economy is in a bad state
(“sick”) and another one for time periods in which it is in a good state (“healthy”). If
no instabilities can be detected, there is only a single state and the standard dynamic
factor model is estimated for all observations. The proposed modelling design there-
fore merges dynamic factor models with regression trees and we shall call the resulting
model “dynamic factor trees” (DFT). Moreover, Garge et al. (2013) extended Zeileis
et al. (2008)’s model-based recursive partitioning to tree ensembles and we extend dy-
namic factor trees in a similar spirit to, what we call, “dynamic factor forests” (DFF)
by combining hundreds of dynamic factor trees with each tree being grown from a
(block-)bootstrapped sample (also see Breiman, 1996, 2001a; Hastie, Tibshirani, &
Friedman, 2009; Canty, 2002; see Section 2.4 for details).

Why may we expect this to be a sensible modelling strategy? Based on Stock
and Watson (2017)’s views in their summary article on time series econometrics, we
see both conceptual and empirical advantages. On the conceptual side, Stock and
Watson (2017) expect that “the next steps towards exploiting additional information
in large datasets will need to use new statistical methods guided by economic theory.”
(ibid., p. 83). Model-based recursive partitioning may provide a suitable framework
in this regard (cf. Veltri, 2017; Zeileis et al., 2008, for a general discussion): Standard
regression tree algorithms split the feature space into non-overlapping subgroups and
fit a constant model, such as the sample mean, to each of these (cf. e.g. Hastie et al.,
2009; James, Witten, Hastie, & Tibshirani, 2013). The proposed dynamic factor trees
and forests, instead, allow us to fit dynamic factor models to each subgroup (Zeileis et
al., 2008), which not only enjoy great empirical performance but are also well-grounded
in macroeconomic equilibrium theories (cf. e.g. Forni, Giannone, Lippi, & Reichlin,
2009; Stock & Watson, 2006, 2011, 2016, 2017; also e.g. Diebold & Rudebusch, 1996, p.
69fF.).! On the empirical side, Stock and Watson (2017) refer to the forecasting models’
repeated inability to capture the severity of economic downturns as the “Mother of
All Forecast Errors” (ibid., p. 82) and question in the context of dynamic factor
models “whether there is exploitable nonlinear structure [...] that could perhaps be
revealed by modern machine learning methods.” (ibid., p. 83). The proposed state-
dependent machine learning approach may contribute along these lines in that they
allow for non-linearities by fitting distinct models to autonomously detected subsets
of the data (cf. Seibold et al., 2016; Zeileis et al., 2008) and thereby equip the models
with the flexibility to be more adaptive in states in which the economic situation
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deteriorates and less adaptive when it improves (see K. Kim & Swanson, 2016, for a
similar argument; also see discussions in Siliverstovs & Wochner, 2019).

This article contributes to the current state of research by synthesizing three
nascent streams of the macroeconomic forecasting literature within a novel statis-
tical machine learning framework. First, there is a growing interest among macro-
economists to employ machine learning algorithms for more accurate assessments and
predictions of macroeconomic dynamics (e.g. Coulombe et al., 2019; Garcia et al.,
2017; H. H. Kim & Swanson, 2014, 2018; Kock & Terasvirta, 2016; Stock & Watson,
2017; Wochner, 2018, among many others). Among these, there is an increasing num-
ber of studies reporting that standard tree-based ensembles, such as random forests,
can have great predictive power for a range of macroeconomic and financial indicators
(e.g. J. C. Chen et al., 2019; Coulombe et al., 2019; Khaidem et al., 2016; Medeiros
et al., 2019; Wochner, 2018; also see Garcia et al., 2017 who find satisfactory perfor-
mance). These findings are relevant because the MOB-framework embeds parametric
models within tree-based structures (Zeileis et al., 2008) and is thus closely related
but clearly different from conventional tree-based models, which belong to the class
of non-parametric methods (cf. X. Chen & Ishwaran, 2012).

Second, our work relates to the rich literature on dynamic factor models in general
and the factor-based literature on structural instabilities in particular (cf. e.g. Stock
& Watson, 2006, 2016, 2017; Doz & Fuleky, 2019; Rossi, 2013, for reviews). Structural
instabilities can arise from policy changes, preference shifts or technological advances
(B. Chen & Hong, 2012; Yousuf, 2019) and this line of research typically distinguishes
structural instabilities in factor loadings from non-linear dynamics in factor processes
(Bai & Wang, 2016; Doz & Fuleky, 2019). As to the former, Banerjee et al. (2008),
Stock and Watson (2009) and Breitung and Eickmeier (2011) provide experimental
and empirical evidence for instabilities in factor loadings. Recent developments show
that the factors can be consistently estimated via principle components provided that
the instabilities are limited (see Bates et al., 2013, for precise definitions; Bai & Han,
2016; Stock & Watson, 2016). For example, in case of a single small break, Pesaran
and Timmermann (2007) show that the use of full sample data (pre- and post-break
data) can yield lower MSFE than only using post-break data as the inclusion of pre-
break may greatly reduce the variance at a slight increase in bias. In a similar vein,
Stock and Watson (2009) find full sample factor estimates determined via principal
components (PC) to provide stable estimates of the factors. Their best forecasting
model was therefore not obtained by allowing for instabilities in factor loadings but
for instabilities in the (time-varying) coefficients of the factors in their forecasting
equations and they find this to be in accord with changing dynamics of the factor
processes. Our work is related to Stock and Watson (2009) in that we also employ
full sample PC-factor estimates and allow for time-varying coefficients of factors in
the forecasting equations.

Third, a related strand allows the dynamics of factor processes to depend on the
state of the business cycle (Doz & Fuleky, 2019). For example, Diebold and Rude-
busch (1996) ranked among the first who combined linear dynamic factor models with
Hamilton’s (1989) Markov regime-switching approach so as to treat expansions and
recessions as distinct stochastic entities (cf. Diebold, 2003; see Doz & Fuleky, 2019, for
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turning point detections). A growing literature documents systematic differences in
predictive power across states of the business cycle (cf. e.g. Chauvet & Potter, 2013;
Fossati, 2018; Siliverstovs, 2019; Siliverstovs & Wochner, 2019). Building upon this
fact, Kim and Swanson (2016), for example, propose a state-dependent model that
switches between autoregressive benchmarks during expansions and (mixed-frequency)
factor models during recessions to predict output growth and inflation. Likewise, Del
Negro et al. (2016) find their DSGE model with financial frictions to perform well
during recessions but less so during expansions. Similarly, Chauvet and Potter (2013)
show in their comprehensive assessment of leading forecasting models that predictabil-
ity differs across business cycle states and find that their Markov-switching DFMs rank
among the best models in terms of out-of-sample forecasting performance, especially
during recessions. Our forecasting experiment is closely related to Chauvet and Pot-
ter (2013)’s regime-switching dynamic factor model, but clearly distinct in that our
regime-switching is not governed probabilistically via Markov processes but rather al-
gorithmically via recent advances in statistical machine learning (Zeileis et al., 2008).
Moreover, a desirable property of our proposed dynamic factor trees over Markov
switching models is the fact that they have a clear interpretation (James et al., 2013;
Zeileis et al.; 2008) whereas Markov-switching models are typically more difficult to
interpret as the hidden state-variables are not observed (Kock & Terdsvirta, 2011;
Kuan, 2002).

This article aims to assess the empirical performance of the proposed dynamic fac-
tor trees and forests against standard dynamic factor models as well as conventional
benchmarks, such as autoregressive and distributed lag processes. The main analy-
ses are based on three distinct FRED datasets (FRED-MD, FRED-QD, FRED; see
Section 3), which can be combined to a balanced panel with real GDP growth as de-
pendent variable, 375 explanatory variables plus a recession probability indicator from
October 1967 to September 2018 (e.g. McCracken & Ng, 2016, 2019a, 2019b). The
analyses make two key modelling assumptions: First, to cope with mixed frequencies,
we follow Kim and Swanson (2014)’s approach in the Journal of Econometrics and
interpolate quarterly GDP to a monthly frequency. We will show the robustness of our
results by means of two alternative interpolation methods (see Section 4.2) and run
the experiment also in quarterly frequency (cf. Foroni & Marcellino, 2013). Second,
as a consequence, we also interpolate the recession probability index to a monthly
frequency and assume the series to be released together with all other monthly indi-
cators in FRED-MD. Under this interpolation and publication scheme, we consider
to have an accurate monthly proxy for the recession probability index available. This
assumption also allows us to make our results more comparable with the existing
Markov-switching literature, which typically derives the recession probabilities from a
contemporaneous set of available predictors (cf. Kuan, 2002). We assess the sensitivity
of this assumption by predicting the missing values on the current edge (cf. e.g. Bulli-
gan, Marcellino, & Venditti, 2015) and show robustness for two alternative recession
probability indices (see Section 4.2).

We find strong empirical evidence in favor of the proposed dynamic factor trees and
forests. Our out-of-sample forecasting experiment shows that they may significantly
improve upon standard dynamic factor models and yield MSFE-improvements of al-
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most 20%. Interestingly, their state-dependent model design allows to systematically
improve upon DFMs in both expansionary and recessionary periods, which suggests
that DFTs and DFFs perform not only sporadically but systematically better than
DFMs. In light of the generally strong performance of DFMs (Chauvet & Potter,
2013; Stock & Watson, 2017), we perceive these additional improvements as notable
gains in predictive accuracy. Moreover, the results qualify as fairly robust against a
large number of robustness tests.

The remainder of this article is organized as follows: Section 2 sets out the modelling
environment and formalizes dynamic factor trees and forests. Section 3 describes the
data. Section 4 evaluates the models’ forecasting performance and their robustness.
Section 5 concludes with directions for future research.

2. Modelling Framework

2.1. Setup, Notation and Environment

For the definition of our modelling framework, we follow the notational and methodical
conventions in the relevant literature (e.g. Elliott & Timmermann, 2016; Stock &
Watson, 2006, 2016; Siliverstovs & Wochner, 2019; Wochner, 2018). Let t € {1,...,T}
denote the time index in monthly frequency and h € {1, 3} corresponds to the monthly
forecasting horizon. The timeline is divided into an estimation window (Dec. 1967 —
Dec. 1997) and forecasting window (Jan. 1998 — Sep. 2018). Let @) denote the last time
period of the first estimation window (Dec. 1997), so that the recursive estimation
window is given as ., = {1+ h,...,7} with 7 € {Q,...,T — h}, and the forecasting
window as .y = {Q +1,...,T — h+ 1} (e.g. Siliverstovs & Wochner, 2019).
Denoting vectors and matrices in bold letters, the dataset consists of four dif-
ferent types of stationary variables: The dependent variable, Yt(h) € R, the set of
K mean-zero and unit-variance standardized explanatory variables (including their
Ist and 2nd-order lags; cf. H. H. Kim & Swanson, 2014), Xt(l) € RE from which
we extract the vector of R factors Ft(l) € RE gStock & Watson, 2006, 2016, for de-
tails) as well as the partitioning variables, Zt(1 € R?, which are used in the MOB-
framework to segment the sample space into S distinct subsets (cf. Zeileis et al., 2008).
The bracketed super-indices indicate the h-period ahead stationarity transformation
of dependent and independent variables (cf. e.g. Stock & Watson, 2012). Further,
let Wt(l) = (1, Y;(l), R Y;(E}J +1)/ denote additional controls that include an intercept
constant and autoregressive dependent variables up to lag L, such that the relevant

dataset for model estimation is given as Dy = (Yt(h), t(l),, Ft(l)/, Zt(l)/).

2.2. Regression Trees

The macroeconomic forecasting literature managed to successfully employ tree-based
methods such as random forests (e.g. Medeiros et al., 2019). To appreciate the dif-
ference between this literature and Zeileis et al. (2008)’s more recent advances put
forth in here, we shall briefly review conventional regression trees (also see Strobl,
Wickelmaier, & Zeileis, 2011).
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A regression tree seeks to minimize some objective function (e.g. the sum of squared
residuals) by repeatedly sub-dividing the predictor space spanned by the variables in
Zt(l) into mutually exclusive regions and fitting a constant model (e.g. sample mean)
to each of these subregions until some stopping criterion is reached (e.g. minimum
quantity of observations per region) (James et al., 2013). Unfortunately, trying to
find the first-best partition of the space requires to consider every possible partition,
which is generally infeasible in practice (Hastie et al., 2009, p. 307; James et al.,
2013). However, binary recursive partitioning algorlthms are a greedy and iterative
search procedure that make the estimation of regression trees computationally feasible
by determining the “best” partitioning variable k£ and partitioning point ¢ for space
division as the pair (k, ) that yields the largest reduction of the objective function in
the current iteration (Hastie et al., 2009; James et al., 2013). Using a least squares
objective the algorlthm seeks to divide region R into two rectangular sub-regions

= {Z |Zk < (} and Ry = {Z(l)]Z,glt > (} and chooses (k,() such that they

solve the followmg minimization problem,

h 2 . h 2
(K, ¢7) = argmin | min > (Y -e)+ min ) (V) — ¢2)
2R, t:2{" eRs

and repeats this procedure until the tree is grown to full depth (cf. Hastie et al.,
2009, p. 307ff;; James et al., 2013; also Wochner, 2018). Two points are worth noting;:
First, the procedure reveals the algorithmic nature of regression trees in that they do
not presume any theory-led stochastic model but instead rely on algorithmic search
procedures to discover complex patterns that closely approximate the response in a
purely data-driven manner (Breiman, 2001b; Veltri, 2017; Wochner, 2018). Second,
this recursive procedure lends to a hierarchical representation (“dendrograms”) in
which the first binary splits are at the top and subsequent splits are attached to the
resulting regions of the previous splits and the bottom layer constitutes the leaf nodes
of the tree (James et al., 2013).

Formally, we may describe the forecasting equation of regression trees as a piecewise
constant model as,

S
h h 1
=37 (ps + )12 € Ry) M)
s=1
with Rs denoting region s € {1,...,S}, egi)h the error term and 1(-) is the indicator

function, which evaluates to unity whenever the condition is satisfied and to zero
else (Hastie et al., 2009; Kock & Terasvirta, 2011; Medeiros et al., 2019; Wochner,
2()18) The best estimator for ¢s in a least squares sense is the sample average,

T > oier. Ve t+h’ with Ts = [{t: Zt(l) € Rs}| many observations in region R and
| \ designating the size of the set (Hastie et al., 2009, p. 307f.).
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2.3. Dynamic Factor Trees (DFT)?
2.3.1. Formal Model

Simply put, Zeileis et al. (2008)’s model-based recursive partitioning algorithm is a
general statistical framework that allows to fit parametric models to distinct subsets
of the data. A key advantage of their framework is that these subsets (or states) are
autonomously detected through the recursive application of parameter instability tests
over the space spanned by the partitioning variables in a tree-based fashion (ibid.).
Their algorithm is therefore capable to autonomously detect nonlinearities arising from
interactions of variables and fits, in case of their presence, local models to subsets of
the data that yield better fit than a single global model for all observations (cf. Zeileis
& Hothorn, 2015; Zeileis et al., 2008).

More precisely, let M (15, ¢s; D) denote a parametric model with parameter coef-
ficients ¥, and ¢4 in state s € {1,..., S} for dataset D, the MOB algorithm seeks to
minimize the objective function, » . o Q()s, @s; Dy), for a given loss function (-)
(Zeileis et al., 2008). As detailed in Zeileis et al. (2008) and Zeileis and Hothorn (2015)
(also see Kopf et al.; 2013), the algorithm starts in the first state with all observations
and derives a state-dependent model in four key steps:

(1) estimate a parametric model of type M(-) in the current state by minimizing
the objective function (e.g. via OLS if () is the squared residual loss);

(2) run score-based fluctuation tests for parameter instability over all partitioning
variables in Z; and if instabilities are present (at significance level o), determine
the variable k with the most significant instability; else, stop;

(3) determine the optimal split point ¢ for Z,(Clt) such that the objective function,

given as the sum of local objective functions in the two resulting sub-states,
Zte{ﬂzk,tSC} Q(’(/;Sp ¢81 ; Dt) + Zte{tlzk,t>4} Q(¢827 d)sg; Dt)7 is mlnlmlzed7

(4) split the current state according to (k*, (*) into two sub-states, namely 5’6(81) =
{t|Z+ < (*} and T2 = {t|Zxx+ > (*}, and repeat the procedure in each
substate until stability is achieved or the minimum node size, 7, is reached.

A few points deserve further attention: First, a partitioning variable can either be
categorical or numerical (Zeileis et al.; 2008). The former provides the possibility to
exogenously determine different states (via manual discretization of a numeric vari-
able) whereas the latter allows to endogenously determine different states (based on
automated detection mechanisms) (cf. Strobl et al., 2011; Zeileis & Hornik, 2007;
Zeileis et al., 2008). Second, the empirical parameter instability tests are based on
generalized M-fluctuation tests that assess whether or not the scores of estimated ob-
jective functions s = 9(Q(hs, ds; Dy)) /0((, $)) deviate systematically from zero
over some Zj,; and use robust standard errors to account for possibly heteroscedas-
tic and autocorrelated errors (Zeileis et al., 2008, p. 496ff.; Zeileis & Hornik, 2007).
These fluctuation or instability tests comprise several well-known tests employed in
the macroeconomic literature on structural breaks, such as Nyblom’s (1989) maximum
likelihood score tests for constant parameters or Andrews’s (1993) Lagrange multiplier
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test for single discrete breaks (see Zeileis et al., 2008, p. 497f.; Rossi, 2013, p. 1236f;
Zeileis, 2005). Breitung and Eickmeier (2011) show, for example, that Andrews’s
(1993) test can be used to detect structural breaks in factor models. Third, as the re-

cursive testing procedure entails multiple testing, the p-values are Bonferroni-adjusted
(Zeileis & Hothorn, 2015, p. 4).

2.3.2. Empirical Implementation

Our empirical implementation proceeds in two steps: First, we extract the primary
R factors, Ft(l), from the set of explanatory variables contained in Xt(l) via principal
components estimation (e.g. Stock & Watson, 2006, 2016; Siliverstovs & Wochner,
2019). In addition to these plain factors, we consider targeted factors in the spirit of
Bai and Ng (2008), where the factors are not extracted from the full set of original
explanatory variables, Xt(l), but the subset of variables )oft(l) - Xt(l) that have a
statistically significant relation with the response at the 5% level (also see Stock &
Watson, 2012; Wochner, 2018). Second, we employ factor-augmented autoregressive
processes as parametric model (similar to Siliverstovs & Wochner, 2019) and use, in
the spirit of the business cycle and structural breaks literature, recession probability
indices as partitioning variables within the MOB-framework (cf. Chauvet & Potter,
2013; Doz & Fuleky, 2019).

This procedure yields a non-linear and state-dependent dynamic factor model,
which we call “Dynamic Factor Trees” (DFT). Building upon the discussions above,
we may formalize this model as,

S
v =30 (wew + gl + ) 12 € Ry(orm) 2)
s=1

where 15 and ¢, denote the regression coefficients and Rs(a,n) refers to the set of
observations in state s (cf. Kock and Terdsvirta’s, 2011, for closely related non-linear
regime-switching models; and e.g. Stock & Watson, 2016, for conventional DFMs).3
This notation also highlights that the determination of states depends on two key
hyper-parameters: the statistical level of the instability tests o as well as the minimum
state size 7 (see Section 2.3.1). While conventional significance levels are chosen for the
former, we determine the latter via blocked cross-validation that divides the sample
into ten approximatively equally sized blocks and leaves out a dozen observations in the
training set from either side of every held-out test set (Racine, 2000; cf. discussion in
Wochner, 2018). This allows us to attain an optimal tree size via pre-pruning to limit
the risk of overfitting (Zeileis & Hothorn, 2015, p. 4). Finally, equation (2) formally
reveals the hybrid nature of dynamic factor trees as a blend between regression trees
(in equation (1)) and dynamic factor models (in equation (4)).

2.3.3. Stylized Example

To appreciate the difference between the proposed dynamic factor trees, regression
trees, dynamic factor models as well as other well-known regression models, consider
the following stylized example: Figure 1 displays scatterplots and fitted models of
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equation (1) and (2) for 100 simulated realizations of the dependent variable Yt(f})”
the first estimated factor Ft(l) and partitioning variable Zt(l), which is assumed to be
binary for simplicity (see James et al., 2013, p. 303ff. and Zeileis et al., 2008, p. 501ff.
for related illustrations).

Equation (2) nests several models as special cases. For example, when partitioning
is not allowed (o = 0), a single-state model arises (S = 1) and the reduced form
corresponds exactly to the standard dynamic factor model. This situation is depicted
in Figure 1.a, where a single factor model (without autoregressive processes; ARO-
DFM1) is fitted to all observations. By contrast, if partitioning is enforced (a = 1),
a multi-state model arises (S > 1) in which we have state-dependent dynamic factor
models that are fitted to subsets of the data, i.e. “expanding” and “contracting”
states. This situation is illustrated in Figure 1.b and depicts a situation in which the
model reacts more sensitively to changes in the underlying factors during contractive
periods (Zt(l) = 1) and less sensitive during expansionary periods (Zt(l) = 0). For the
remaining values of o € (0, 1), either one of the two cases may emerge depending on
the outcome of the statistical parameter instability tests (see Section 2.3.1).

Furthermore, Figure 1 also depicts the fitted models of regression trees as horizontal
dashed lines in all possible final states considered. Model-based recursive partitioning
allows to overcome at least two limitations of conventional regression trees: First,
while regression trees fit constant models to subsets of the data (James et al., 2013)
that leave only little room for theory-led modelling, model-based recursive partitioning
enables the incorporation of theory-driven parametric models within tree structures
(Zeileis et al., 2008; Veltri, 2017). Second, while regression trees seek to partition
the space based on plain differences in the dependent variable, model-based recursive
partitioning builds upon a rigorous statistical foundation and partitions the space
based on significant differences in model parameters (Strobl et al., 2011; Zeileis et al.,
2008).

Finally, model-based recursive partitioning is closely related yet clearly different
from interaction models. The estimated model displayed in Figure 1.b can also be ob-
tained by fully interacting the partitioning variable with the standard dynamic factor
model displayed in Figure 1.a. However, the MOB-framework is more general in that
fully interacted models are enforced to apply splits whereas MOB-based models only
do so if there are statistically significant parameter differences (Strobl et al., 2011;
Zeileis et al., 2008). Moreover, we may also imagine more sophisticated partitions and
sub-group detections than those in Figure 1. For instance, in case of a continuous
partitioning variable, either one of the substates in Figure 1 could be further parti-
tioned into two new substates, yielding a more complex partition of the space. In
real-world cases it is harder to know a-priori how the relevant interactions look like
in order to “hard-code” them into an interacted model and one may thus prefer to
resort to MOB’s automated detection mechanisms (see Section 2.3.1).

2.4. Dynamic Factor Forests (DFF)

Our discussions above, have so far only considered a single dynamic factor tree. While
single tree models enjoy a high degree of interpretability, they may overfit the data
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2 MODELLING FRAMEWORK

(particularly when they are grown at full depth) and can consequentially be very
sensitive to minor changes in the data (Garge et al., 2013; James et al., 2013; Zeileis
et al., 2008). Bagged or randomized forests solve the overfitting problem at the cost of
interpretability through averaging among a multitude of trees, each of which is grown
from bootstrapped samples (Breiman, 1996, 2001a; Hastie et al., 2009; James et al.,
2013).

Garge et al. (2013) extended Zeileis et al. (2008)’s model-based recursive par-
titioning to tree ensembles. We extend dynamic factor trees in a similar vein and
propose Dynamic Factor Forests (DFF) in two steps: First, we will estimate B dy-
namic factor trees, each of which was grown from a (stationary) block-bootstrapped
sample, Dy, = (V) W), B}, Z}))") for b € {1,..., B} with B = 500 (Politis &
Romano, 1994; Canty, 2002; Wochner, 2018). Second, in the spirit of conventional
bagging (cf. Hastie et al., 2009, p. 282ff.), we subsequently average among all fitted
dynamic factor trees and may characterize dynamic factor forests as,

B S
1
v =23 (v W + ¢ F 4 ) 12 e Roslam) (9)

o
Il
-
@
I
—

where the parameters 1, , and ¢, are the state-dependent parameters for the b-th
bootstrap and R s(a,n) denotes the s-th sub-state of the b-th dynamic factor tree.
The minimum node size 7 is derived via blocked cross-validation for the original sample
and is subsequently used for each block-bootstrapped sample.

2.5. Benchmarks

We assess the proposed dynamic factor trees and dynamic factor forests against two
key benchmarks and five conventional benchmarks typically employed in the relevant
literature (e.g. H. H. Kim & Swanson, 2014; Siliverstovs & Wochner, 2019; Stock &
Watson, 2012).

2.5.1. Key Benchmarks
Dynamic Factor Models (DFM)

Our first benchmark model of interest is the standard dynamic factor model,

v =W+ g FY 4, @
where parameter coefficients are estimated from the original sample (OS) and use
L = 2 autoregressive lags as well as R = 5 factors (cf. Stock & Watson, 2006, 2012,
2016; Siliverstovs & Wochner, 2018). In the spirit of tree-based forests, we will also
consider a bootstrapped version, where we estimate a standard dynamic factor model
for each bootstrapped sample (BS) (yielding v, and ¢;) and subsequently average
among all bootstrapped model coefficients. These models will be abbreviated as OS-
DFM and BS-DFM, respectively.

11



2 MODELLING FRAMEWORK

Recession Probability Augmented Dynamic Factor Models (DFM-RP)

Our second key benchmark is closely related to the regime-switching dynamic factor
model of Chauvet and Potter (2013),

Y =W ¢ FY 19’z 1 ) (5)

where we directly include our partitioning variable as an explanatory variable into the
DFM model (ibid., see their equation (16) on p. 164). While Chauvet and Potter
(2013) use Markov-switching processes, we employ similar and exogenously provided
recession probability indices Zt(l) (see Section 3 and 4). In analogy to the previous
section, we will also consider a bootstrapped version, where we estimate equation (5)
for each bootstrapped sample (yielding 1y, ¢y, and 9;) and then average among all
bootstrapped model coefficients. We shall abbreviate the corresponding models as

OS-DFM-RP and BS-DFM-RP, respectively.

2.5.2. Common Benchmarks

Similar to Siliverstovs and Wochner (2019) and Wochner (2018), we employ the fol-
lowing five common benchmarks: Historic mean (HMN), Yt(H)L o+ eg +)h, autore-
gressive processes Wlth either a two, four or BIC-based lag order L (AR2, AR4,
ARL), Y, + h =4 Wt + Egi)h’ as well as combined autoregressive distributed lag mod-
els (CADL). The CADL model first estlmates for each explanatory variable in X (1)
an autoregressive distributed lag model, Y, +h =) W )+ 1A% t) + egi)h with Vk(, t) =
(Xkts--» Xkt—r+1) and L = 2 for both autoregressive and distributed lag terms,
and subsequently averages the predictions of these models among all k£ € {1,..., K}

(H. H. Kim & Swanson, 2014; Siliverstovs & Wochner, 2019).

2.6. Forecast Evaluation

We will assess forecasting performance in terms of relative Root Mean Squared Fore-
cast Errors (RMSFE) of any two models m and b as follows,

(h)
MSFE;,
relative RMSFE!") = %

b RMSFE,
where,

1/2
1 B ) )
RMSFE!" = | —————— > (v} - v{7],)
7 _ _ +h i,t+h
T-Q—-h+1 ey

where Y(tJ)rh denotes the h-period ahead prediction of model i € {m, b} (e.g. Korobilis,

2017; Siliverstovs & Wochner, 2019; Stock & Watson, 2012). Moreover, we assess
superior predictive ability of our dynamic factor trees and forests against the standard
dynamic factor model by means of directed Diebold Mariano (1995) tests,

e e (6)] - [()] e[ B(0)]
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and install two cautionary measures through the use of heteroscedasticity and auto-
correlation robust standard errors (for h > 1) as well as McCracken (2007)’s critical
values for nested model comparisons (cf. Siliverstovs & Wochner, 2019). Borrowing
McCracken’s (2007, p. 724) argument, directed testing is applied because our main
models, m, (DFT, DFF) and main benchmark, b, (DFM) are nested.* Finally, building
upon Welch and Goyal (2008), the state-dependent evaluation literature promotes the
use of the cumulative sum of squared forecast error differences (CSSFED) between
two models b and m,

t
CSSFED}") (to, t1) = Z (6& h)? B (Eﬁff,)t+h)2

t=to

with continuously increasing tg, which allows us to assess the forecast performance
over time (see e.g. Siliverstovs, 2017, 2019; Siliverstovs & Wochner, 2019). While a
horizontal movement of CSSFED indicates similar performance between model m and
b, an upward [downward] trending series indicates persistent superiority [inferiority]
of model m over b, whereas an upward [downward] jumping series indicates transient
superiority [inferiority] (cf. ibid.).

3. Data

We bridge three distinct FRED datasets for our main analyses all of which are pro-
vided by the Federal Reserve Bank of St. Louis. We use 125 monthly indicators from
FRED-MD and the quarterly GDP time-series from FRED-QD as dependent vari-
able, all of which are available from 1960 until 2018 (McCracken & Ng, 2019a, 2019b;
see McCracken, 2019).°> FRED-MD and FRED-QD constitute fairly new data services
ever since 2015 and 2018, respectively, that manage data revisions and real-time up-
dates (McCracken & Ng, 2016) and find increasing use among macroeconomists (e.g.
Korobilis, 2017; Medeiros et al., 2019; Siliverstovs & Wochner, 2019; Wochner, 2018).
The third FRED source corresponds to the MCJH-recession probability index, which
builds upon the work of Marcelle Chauvet and James Hamilton (MCJH) (2006) and
provides the probability of a recession at any given quarter since October 1967 (see
FRED, 2019; Hamilton, 2019).% Hence, a balanced panel with information from all
three sources is available as of October 1967.

Similar to Siliverstovs and Wochner (2019), the following data transformations were
applied: First, less than 0.35% of the datasets were classified as outliers in FRED-MD
and these were substituted with the median of the previous five observations (see Stock
& Watson, 2012, online appendix B) and no outliers were detected for the GDP series
in FRED-QD. Second, all data were stationarity transformed as defined in McCracken
and Ng (2019a; 2019b) and all the partitioning variables in use were first differenced.
Following Stock and Watson (2012), the dependent variable was h-period stationarity
transformed (ibid., see their Table B.2) as indicated by the super-index (h) in Yt(_f})l

To cope with mixed frequencies, we follow Kim and Swanson (2014)’s Journal of
Econometrics article who proposed to interpolate quarterly GDP values. As is well
known, interpolations, however, may induce a measurement error and can affect the

13
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dynamics of the interpolated series and its associations with other variables (Angelini,
Henry, & Marcellino, 2006). To mitigate the concerns that a particular choice of
interpolation method is driving our results, we will examine in total three distinct
interpolation methods and will also assess the results in quarterly frequency as a ro-
bustness test (see Section 4.2). Our main specifications in Section 4.1 interpolate GDP
(in levels) via Denton-Cholette (DCO) (Sax & Steiner, 2013).7 Finally, similar to pre-
vious research (e.g. Siliverstovs & Wochner, 2019), we do not have real-time vintages
of the data available, we assume the same publication structure for all variables as in
the last vintage date and pursue a quasi real-time forecasting exercise.® For variables
with ragged edges, we employ Altissimo et al. (2010)’s lagging procedure at the cost
of a few observations at the beginning of the sample to ensure a balanced dataset.

4. Results

4.1. Main Results

The main results of our direct out-of-sample forecasting experiment for horizons h = 1
(nowcasts) and h = 3 (forecasts) is based on a recursively expanding scheme over a
forecasting window of slightly more than 20 years (Jan. 1998 until Sep. 2018). Our
proposed models can be divided into four main groups depending on the model type
(DFT vs. DFF) and factor targeting (plain factors (F) vs. targeted factors (TF)).
Within each of these four categories, we further distinguish between numeric (NUM)
and binary measurement scales of the partitioning variable, where the latter discretize
Zt(l) by assigning a binary classification to the values above and below the 40, 50,
and 60th percentile of the partitioning variable, respectively (BIN40, BIN50, BIN60).
Such a binary discretization (exogenously) determines “good” and “bad” states, which
limits the number of possible splits and may therefore be meaningful to reduce the
problem of overfitting — particularly when no cross-validation is applied (see Section
2 and 4.2; Zeileis et al., 2008; also Strobl et al., 2011).

4.1.1. Full Sample Evaluation

Table 1 summarizes our main results in terms of relative RMSFE against the AR2
benchmark over the full evaluation sample and highlights several interesting results:
First, the dynamic factor tree and forest entries are printed in bold if they are superior
in terms of RMSFE than the corresponding dynamic factor model. An inspection of
Table 1 provides strong evidence in favor of the proposed models and highlights that
dynamic factor trees and forests are statistically significantly superior to the stan-
dard dynamic factor model. In terms of MSFE, dynamic factor trees and forests tend
to improve upon the standard dynamic factor models by almost 20%. For example,
the best performing dynamic factor forest for three-month ahead predictions (DFF-
NUM(TF)) achieves a relative MSFE of 0.643 whereas the standard targeted dynamic
factor model from bootstrapped sample (BS-DFM(TF)) has a relative MSFE of 0.796.
Second, the results also appear to be well in accord with the factor targeting litera-
ture (e.g. Bai & Ng, 2008; Stock & Watson, 2012; Boivin & Ng, 2006) in that factor
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Benchmarks Dynamic Factor Trees Dynamic Factor Forests
Horizon Results Models rRMSFE Models rRMSFE
HMN OS-DFM(F) 0.841 BS-DFM(F) 0.839
1.001 OS-DFM-RP(F) 0.773*** BS-DFM-RP(F) 0.772***
w
g DFT-NUM(F) 0.762*** DFF-NUM(F) 0.754***
AR4 [ DFT-BIN40(F) 0.766*** DFF-BIN40(F) 0.765***
0.924 DFT-BIN50(F) 0.763*** DFF-BIN50(F) 0.758***
- DFT-BIN60(F) 0.767*** DFF-BIN60(F) 0.766***
ARL ¢ OS-DFM(TF) 0.802 BS-DFM(TF) 0.800
0.894 {-'O_, OS-DFM-RP(TF)  0.755*** BS-DFM-RP(TF)  0.754***
©
L_; DFT-NUM(TF) 0.732*** DFF-NUM(TF) 0.724***
CADL % DFT-BIN40(TF) 0.739*** DFF-BIN40(TF) 0.738***
0.922 “%’ DFT-BIN50(TF) 0.739*** DFF-BIN50(TF) 0.736***
= DFT-BIN60(TF) 0.743*** DFF-BIN60(TF) 0.739***
HMN OS-DFM(F) 0.914 BS-DFM(F) 0.909
1.014 OS-DFM-RP(F) 0.781*** BS-DFM-RP(F) 0.780***
[
*8 DFT-NUM(F) 0.831*** DFF-NUM(F) 0.814***
AR4 [ DFT-BIN40(F) 0.820*** DFF-BIN40(F) 0.814***
0.970 DFT-BIN50(F) 0.827*** DFF-BIN50(F) 0.821***
he3 DFT-BIN60(F) 0.829*** DFF-BIN60(F) 0.822***
ARL ¢»  OS-DFM(TF) 0.894 BS-DFM(TF) 0.892
0.975 8 OS-DFM-RP(TF)  0.775*** BS-DFM-RP(TF)  0.774***
©
i DFT-NUM(TF) 0.812*** DFF-NUM(TF) 0.802***
CADL % DFT-BIN40(TF) 0.813*** DFF-BIN40(TF) 0.808***
0.943 f‘%f DFT-BIN50(TF) 0.819*** DFF-BIN50(TF) 0.811***
= DFT-BINGO(TF) 0.820*** DFF-BIN60(TF) 0.811***

Notes: The table entries show the relative root mean squared forecast error (RMSFE) of a particular model against the AR2
benchmark (settings: recursive scheme; DCO interpolation; Jan. 1998 first vintage; MCJH-REC-IDX partitioning variable). DFT
and DFF models employ model splitting at the conventional 5% significance level. The star symbols indicate the level of statistical
significance from a directed Diebold Mariano (1995) test that assesses superiority in predictive performance of dynamic factor trees
and forests (namely, DFT(F), DFT(TF), DFF(F) and DFF(TF)) or recession probability augmented dynamic factor models (namely,
OS-DFM-RP(F), OS-DFM-RP(TF), BS-DFM-RP(F), BS-DFM-RP(TF)) against the corresponding (italicized) standard dynamic
factor model (namely, OS-DFM(F), OS-DFM(TF), BS-DFM(F), and BS-DFM(TF)). For example, superior predictive ability of the
DFT(TF) model is assessed against the OS-DFM(TF) model. The HMN, AR4, ARL and CADL benchmarks are compared against
DFM(F). For nested model comparisons, McCracken (2007)’s critical values are used. The entries for DFTs and DFFs are bold if
they have equal or lower MSFE than the corresponding DFM. The best model of each of the four groups per horizon is underlined.
Factors are targeted based on a hard-threshold in the spirit of Bai and Ng (2008). The symbols *, *, **, *** indicate significance
at the 15%, 10%, 5% and 1% level, respectively. For more details, see Section 4.1.

Table 1: Main Results (relative RMSFE)

targeting consistently helps to improve predictive performance. Moreover, while nu-
meric and binary partitioning variables perform comparably well, numeric partitions
are able to meaningfully exploit the richer information and perform slightly superior.
Third, consistent with the tree-based ensemble and forecast combination literature
(e.g. Medeiros et al., 2019; Breiman, 2001a; James et al., 2013; also Elliott & Tim-
mermann, 2016), dynamic factor forests systematically improve upon dynamic factor
trees in all cases. Fourth, dynamic factor trees and forests perform about equally
well as recession probability augmented dynamic factor models (DFM-RP) — which
is broadly in line with Chauvet and Potter (2013) in that that DFM-RP models are
closely related to their Markov-switching dynamic factor model, which also achieved
strong predictive performance in their setting. In fact, while DFTs and DFFs tend
to be first-best for nowcasts (h = 1), the DFM-RP models tend yield the first-best
forecasts (h = 3).
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Notes: This figure shows the CSSFED of the conventional dynamic factor model against the top-performing dynamic factor trees and forests in
Table 1 (settings: recursive scheme; DCO interpolation; Jan. 1998 first vintage; MCJH-REC-IDX partitioning variable). An upward [downward]
movement of CSSFED indicates superior [inferior] performance of DFT or DFF over DFM (Siliverstovs, 2017, 2019; Siliverstovs & Wochner,
2019). While the absolute levels of two CSSFED in Figure 2.a and 2.b may not be compared quantitatively because the CSSFED are not
measured on similar scales (non-standardized SFED) (cf. Siliverstovs & Wochner, 2019), they reveal qualitatively similar dynamics.

Figure 2: DFTs and DFFs Relative Performance against DFMs over Time (CSSFED)

4.1.2. Sub-sample Evaluation

To better understand the evolution of these forecasting improvements, we follow the
burgeoning state-dependent forecast evaluation literature and examine (in addition to
full sample forecast evaluations above) also those for the sub-samples in boom and
bust periods according to NBER (e.g. Chauvet & Potter, 2013; Fossati, 2018; Siliver-
stovs, 2017; Siliverstovs & Wochner, 2019). Table 2 reveals that the DFT and DFF
models perform better than the DFM in both recessionary and expansionary subsam-
ples. Specifically, during recessions they typically achieve seizable and statistically
significant improvements over the DFM, whereas in expansions the improvements are
still present but more moderate in terms of size and significance. Especially at higher
forecasting horizons, the performance during expansions is similar to those of the AR2
benchmark, which is again in accord with the state-dependent forecast evaluation lit-
erature (e.g. Siliverstovs & Wochner, 2019).

Building upon Siliverstovs (2017; 2019) and Siliverstovs and Wochner (2019), Fig-
ure 2 provides the CSSFED of the conventional dynamic factor model with targeted
factors from bootstrapped samples (b = BS-DFM(TF)) against the targeted dynamic
factor tree (m; = DFT-NUM(TF)) as well as against the targeted dynamic factor
forest (mg = DFF-NUM(TF)). As explained in Section 2.6, the figure visualizes how
the relative performance of these models evolves over the evaluation window: On the
one hand, the CSSFED series show a fairly consistent upward trend (with a slightly
diminishing slope) and have, on the other, larger upward jumps during recessions
(and slight to moderate deteriorations in the aftermath of recessions). This indicates
that targeted dynamic factor trees and forests tend to perform persistently superior
to dynamic factor models in general and especially during recessions.
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BM Dynamic Factor Trees Dynamic Factor Forests
Horizon Results Models rRMSFE Models rRMSFE
HMN OS-DFM(F) 0.979 BS-DFM(F) 0.976
0.991 g OS-DFM-RP(F) 0.912*** BS-DFM-RP(F) 0.910***
o
S AR4 E DFT-NUM(F) 0.921*** DFF-NUM(F) 0.911***
@ 0.966 DFT-BIN50(F) 0.922*** DFF-BIN50(F) 0.915***
2]
u% ARL 8 OS-DFM(TF) 0.941 BS-DFM(TF) 0.939
0.936* & OS-DFM-RP(TF)  0.881*** BS-DFM-RP(TF)  0.879***
CADL *E;) DFT-NUM(TF) 0.875*** DFF-NUM(TF) 0.866***
. 0.956 F  DFT-BIN50(TF) 0.884*** DFF-BIN50(TF) 0.880***
=1
HMN OS-DFM(F) 0.655 BS-DFM(F) 0.654
1.012 g OS-DFM-RP(F) 0.584** BS-DFM-RP(F) 0.584**
o
g AR4 E DFT-NUM(F) 0.533*** DFF-NUM(F) 0.530***
o 0.877 DFT-BIN50(F) 0.535*** DFF-BIN50(F) 0.535***
[}
d:g ARL 8 OS-DFM(TF) 0.613 BS-DFM(TF) 0.612
0.847 & OS-DFM-RP(TF)  0.587 BS-DFM-RP(TF)  0.586
CADL *E;) DFT-NUM(TF) 0.531*** DFF-NUM(TF) 0.523***
0.883 ~  DFT-BIN50(TF) 0.535*** DFF-BIN50(TF) 0.534***
HMN OS-DFM(F) 1.067 BS-DFM(F) 1.064
1.003* g OS-DFM-RP(F) 0.982*** BS-DFM-RP(F) 0.982***
5 AR4 E DFT-NUM(F) 1.035* DFF-NUM(F) 1.015**
@ 0.999 DFT-BIN50(F) 1.028** DFF-BIN50(F) 1.022**
[
u% ARL 8 OS-DFM(TF) 1.058 BS-DFM(TF) 1.059
1.000 & OS-DFM-RP(TF)  0.975*** BS-DFM-RP(TF)  0.976***
CADL *E;) DFT-NUM(TF) 0.997** DFF-NUM(TF) 0.986***
0.971+ =  DFT-BIN50O(TF) 1.004** DFF-BIN50(TF) 0.999**
h=3
HMN OS-DFM(F) 0.769 BS-DFM(F) 0.761
1.023 g OS-DFM-RP(F) 0.567*** BS-DFM-RP(F) 0.565***
s AR4 E DFT-NUM(F) 0.618*** DFF-NUM(F) 0.601***
@ 0.946 DFT-BIN50(F) 0.616*** DFF-BIN50(F) 0.610***
[
d:g ARL £ OS-DFM(TF) 0.735 BS-DFM(TF) 0.730
0.954 & OS-DFM-RP(TF)  0.561*** BS-DFM-RP(TF)  0.559***
CADL *E;) DFT-NUM(TF) 0.620*** DFF-NUM(TF) 0.610***
0.919 = DFT-BIN50O(TF) 0.627*** DFF-BIN50(TF) 0.615***

Notes: Building upon Chauvet and Potter (2013) and Siliverstovs and Wochner (2019), the table entries show the relative RMSFE of a
particular model against the AR2 benchmark for expansionary and recessionary sub-samples separately (settings: recursive scheme; DCO
interpolation; Jan. 1998 first vintage; MCJH-REC-IDX partitioning variable). Recessions and expansions are determined according
to NBER. For h = 1 and h = 3, the forecast evaluation window contains 249 and 247 monthly time periods, respectively; the
expansionary sub-sample contains 221 and 219 observations and the remaining observations belong to the recessionary sub-sample.
BM stands for benchmarks. For more details about table entries, see notes in Table 1.

Table 2: Main Results for Sub-samples (relative RMSFE)

4.2. Robustness Results

This section examines how sensitive our estimation results are with respect to several
modelling choices and assumptions. We will hereafter assess alternatives typically
encountered in the relevant literature (e.g. H. H. Kim & Swanson, 2014; Siliverstovs

& Wochner, 2019; Stock & Watson, 2012).
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4.2.1. Alternative Interpolations

To mitigate the concerns that our results are driven by a particular choice of interpola-
tion method, we shall examine three distinct ones: Our main specifications interpolate
GDP (in levels) via Denton-Cholette (DCO), which seeks to preserve the movement
at a higher frequency (Sax & Steiner, 2013). In a notable contribution to the Journal
Econometrics, Kim and Swanson (2014) propose to interpolate GDP via Chow-Lin,
which can either be applied to stationary or co-integrated series (Sax & Steiner, 2013,
p. 80ff.). In the former case, GDP (in growth rates) is interpolated from a dynamic
factor model with monthly factors (CLU).? In the latter, GDP (in levels) is interpo-
lated from three monthly co-integrated series (CL3).!? All three interpolations (DCO,
CL3, CLU) qualify as equally appropriate as there has not yet emerged a general
consensus on a first best interpolation method (Guérin & Marcellino, 2013).

Table A.1 shows the result for the CLU-based interpolations of GDP growth. As
can be seen the results are fairly similar to DCO-interpolations both in terms of size
and significance. Still all DFTs and DFFs outperform the DFMs and tend to be sub-
stantially better than conventional benchmarks (e.g. HMN, ARL). Likewise, Table A.2
shows that the main results can be qualitatively maintained for CL3 interpolations
but are quantitatively slightly weaker in terms of size and significance.

4.2.2. Quarterly Frequency

Table A.3 provides the estimation results for quarterly series by quarterly aggrega-
tion of the monthly FRED-MD series (cf. Foroni & Marcellino, 2013). As expected,
the substantial reduction of sample size by two thirds results in weaker model perfor-
mance because the power of the parameter instability tests is decisively weakened.!!
For example, while the monthly nowcasts (h,, = 1) for the DFT-NUM(TF) find pa-
rameter instabilities in virtually every time-period and split the model accordingly
(see Figure 2); the equivalent quarterly nowcasts (hq = 0) of the DFT-NUM(TF) split
only in very few time-periods. The similar performance between DFT-NUM(TF) and
OS-DFM(TF) models can therefore be attributed to the fact that there are only a
few observations responsible for performance differences because the two models are
formally equivalent in the absence of any splits (see Section 2). Nevertheless, aggre-
gating a large number of trees proves helpful and dynamic factor forests show a fairly
robust performance at quarterly frequencies: Almost all DFFs still outperform DFMs
— and do so often significantly.

4.2.3. Rolling Windows

While our main results are based on recursively expanding windows, Table A.4 exam-
ines the effect of using rolling schemes with window lengths of 300 months (see e.g.
H. H. Kim & Swanson, 2014; Stock & Watson, 2012). The table shows that our main
findings are robust to this change. In fact, the results strengthen our main findings
in that the improvements of DFTs and DFFs over DFMs tend to be slightly more
accentuated under rolling than under recursive windows.
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4.2.4. Extended Forecasting Window

While the forecast evaluation window for the main specification in Section 4.1 in-
cludes over 20 years (1998-2018) with almost 250 monthly predictions, we examine an
extension of the evaluation window to 1985-2018 with over 400 monthly observations
(Siliverstovs & Wochner, 2019; Wochner, 2018). Table A.5 shows that the main results
still persist but are weaker in terms of size (especially for nowcasts), which indicates
that the nowcasting over the post-millennial period appears to be better than over
the pre-millennial period (also see Wochner, 2018). As the sources of these differences
cannot be attributed to insufficient power due to shorter sample sizes (because DFT's
and DFFs tend to split over the pre-millennial era), they appear to be, at least in
part, structural in the sense that the proposed methodology appears to work worse
over the pre-millennial period (1985-2000). Moreover, Table A.5 makes evident that
the DFM-RP models are the first best models in each group at all horizons.

4.2.5. Alternative Recession Probability Indices

While our main specifications make use of the MCJH-index (see Chauvet & Hamilton,
2006; Hamilton, 2019), the Federal Reserve Bank of Philadelphia conducts the Survey
of Professional Forecasters (SPF) (2018; 2019) and provides the mean survey response
concerning the probability of a recession in the current (SPF-RECI1-IDX) and next
quarter (SPF-REC2-IDX) ever since 1968. These survey-based indicators shall be
used as alternative partitioning variables to the data-based version of the MCJH-
index. In analogy to our main analyses, the quarterly SPF-REC1 and SPF-REC2
indices are interpolated to monthly frequencies via Denton-Cholette (Sax & Steiner,
2013). The results in Table A.6 and A.7 provide empirical support for the proposed
dynamic factor trees and forests for these alternative recession probability indices: At
all horizons the results are only slightly weaker and still outperform the standard DFM
and rank in about half of all cases as the first best model among all those considered.
This suggests that the proposed methodology is not dependent on the MCJH-index
and generalizes to alternative recession probability indicators.

4.2.6. Absence of Hyper-Parameter Tuning

As outlined in Section 2, the hyper-parameters of the DF'Ts and DFFs, such as min-
imum node size, were defined via cross-validation. In the absence of such parameter
tuning, we would expect the performance to be less pronounced (cf. James et al.,
2013; Zeileis & Hothorn, 2015) and this is indeed what Table A.8 shows: The numeric
DFTs and DFFs tend to perform slightly worse in the absence of cross-validation. As
expected, binary models tend to perform often equally well with or without parameter
tuning because they can only have a single split and are consequentially less sensible
to parameter tuning.

4.2.7. Single Factor and Ten Factors

While the main results are all based on five dynamic factors, Table A.9 and A.10
examine the model performance with only a single factor and ten factors (cf. Siliver-
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stovs & Wochner, 2019). The ten [one] factor models tend to perform slightly superior
[inferior] than the five factor models, but the main results stay qualitatively the same
in that DFTs and DFFs remain superior to the standard DFMs.

4.2.8. Publication Lag

The MCJH-Index has a fairly consistent publication structure and is released with a
publication lag of 4 to 6 months.'? While the main results assumed the MCJH-index
to be released together with all monthly indicators, i.e. having a one month lag, we
may alternatively seek to predict the missing values arising from lagged publications
(cf. Bulligan et al., 2015). Inspired by Kim and Swanson (2016), we infer the missing
values on the current edge, Zt(j_h, with a simple regime-switching model that alter-
nates between predictions from a distributed lag model and a beta regression model
(cf. Caribari-Neto & Zeileis, 2019; Hill, Griffiths, Lim, & Lim, 2011).13 Table A.11
provides the estimation results and indicates that the timely release of the MCJH-
index contains indeed relevant information — particularly for the 3-months ahead
forecasts. While the nowcasting results (h = 1) remain robust to publication lags, the
forecasting results (h = 3) are weaker but the DFFs still tend to outperform DFMs
slightly.

These findings suggest that the employed MCJH-index entails both advantages
and disadvantages: On the one hand, it appears to be the one that yields the best
performance in our modelling framework among all indices considered. On the other,
the index is unfortunately not (yet) available in a monthly frequency and publication
lags appear to weaken model performance to some extent. In light of these results, a
high-frequency real-time release of the MCJH-index in the spirit of Aruoba, Diebold
and Scotti (2009)’s daily business cycle indicator appears to be desirable. In any case,
the analyses have made clear that weaker performance due to publication lags can
only hardly be considered as a weakness of the proposed dynamic factor trees and
forests but constitute rather a limitation of the data.

5. Conclusion

This study proposed dynamic factor trees and forests based on Zeileis et al. (2008)’s
model-based recursive partitioning algorithm, which allows to embed theory-led dy-
namic factor models within tree-based machine learning ensembles conditional on the
state of the business cycle (see Section 1 and 2). In our out-of-sample forecasting exer-
cise for short-term GDP growth predictions, we find strong and statistically significant
empirical evidence that they systematically outperform standard dynamic factor mod-
els in both expansive and contractive periods. These observations corroborate the idea
that the proposed state-dependent models are indeed able to beneficially exploit the
time-varying dynamics in good and bad times — much like sailors who benefit from
maneuvering their ships differently in stormy and calm seas (cf. K. Kim & Swanson,
2016; Diebold & Rudebusch, 1996).

We see several possible avenues for future research: First, the proposed modelling
framework will have to be examined for alternative dependent variables. It is, however,

20



5 CONCLUSION

not clear a-priori whether it will work as well for other variables because these series
may have structurally distinct characteristics. For instance, Corradi and Swanson
(2014)’s test for structural instability in dynamic factor models rejects the null of
stability for GDP but fails to reject the null for the S&P500, producer price index
or the 10-year Treasury-bond rate. Second, despite the fact that DFTs and DFFs
tend to perform overall generally superior to DFMs, they tend to perform slightly
worse than DFMs in the aftermath of recessions. Hence, the hyper-parameter «
could be endogenized (ay) so as to allow splitting (a; > 0) in some time periods ¢
and disallow it in others (a; = 0) (cf. e.g. K. Kim & Swanson, 2016). Third, the
present work could be readily extended to a two-stage machine learning framework
where the recession probability index itself is also derived via recent advances in
(statistical) machine learning (e.g. Dopke, Fritsche, & Pierdzioch, 2015). Finally,
while we used only a single partitioning variable in DFTs and DFFs, the framework
can also be readily generalized to multiple partitioning variables, which may reveal
further relevant sub-states (cf. Zeileis et al., 2008). For example, when inflation is used
as dependent variable, one could think of the different Federal Reserve Bank regimes
(e.g. Greenspan, Bernanke, Yellen) as potentially relevant categorical partitioning
variables (cf. Fernandez-Villaverde & Rubio-Ramirez, 2013). Zeileis et al. (2008)’s
framework is general enough to encompass exciting future research along these lines.

Notes

. Theoretical equilibrium models often assume that macroeconomic dynamics are driven by a few shocks, such
as technology or monetary policy shocks (Bai & Ng, 2007; Giannone, Reichlin, & Sala, 2006). Dynamic
factor models are consistent with these assumptions and rest on the idea that the co-movements among many
economic variables can be decomposed into two (orthogonal) sources: A “common component” (common shocks
or common factors) that captures a few unobserved factors that govern the dynamics of many variables plus
a “idiosyncratic component”, which captures residual peculiarities of each individual series (e.g. D’Agostino,
Giannone, Lenza, & Modugno, 2016; Diebold & Rudebusch, 1996; Forni et al., 2009; Giannone et al., 2006;
Stock & Watson, 2006, 2016, 2017). Furthermore, theoretical business cycle equilibrium models can be shown to
take a factor-like structure in case of measurement errors (cf. e.g. Giannone et al., 2006; Diebold & Rudebusch,
1996).

. As indicated in the text, parts of this section follow closely Zeileis et al. (2008) as well as Zeileis and Hothorn
(2015) (also see Kopf et al., 2013, for a thorough review).

. Equation (2) is, for instance, closely related to standard regime switching models, such as threshold autoregres-
sive (TAR) models: Specifically, if there were no factors present and if the partitioning variable corresponded
to lagged values of the dependent variable, then equation (2) would come close to a TAR-like structure (cf.
e.g. Kock & Terésvirta, 2011, p. 62ff.).

. The determination of McCracken’s (2007) critical values for two nested models requires the difference in the
number of model parameters, k2 (excess parameters). For example, comparing DFM-RP versus DFM, we
simply have k2 = 1. As seen in Section 2.3.3, dynamic factor trees with a binary dependent variable are
mathematically equivalent to fully-interacted dynamic factor models. More generally, for A\; many terminal
nodes in the dynamic factor tree in period ¢, there are (A — 1) x (1 4+ L + R) many excess parameters relative
to the dynamic factor model (i.e. one additional intercept, L additional autoregressive lags and R additional
factors per additional terminal node). To determine k2 for trees [and forests], we use the average number of
terminal nodes, X = 1/|.%%] 23:1 At land X = 1/|.7%| Zthl 1/B Zle Ab,t]. Moreover, since the maximum ka
provided by McCracken (2007) is limited to 10, we use k2 = min(}, 10).

. The raw datasets for FRED-MD actually provide information for 128 monthly and 248 quarterly macro-
economic indicators (see McCracken & Ng, 2019a, 2019b). From FRED-MD, we dropped monthly and quar-
terly datasets which are not available at the beginning of 1960 (cf. Wochner, 2018) and retained quarterly
GDP from FRED-QD. Factors are subsequently extracted from the 375 contemporaneous, first and second
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order lags of the monthly indicators (cf. H. H. Kim & Swanson, 2014). Moreover, to retain the UMCSENTx index
(FRED-MD), which is only available in quarterly frequency until Q4-1977, the initial values were interpolated
via Denton-Cholette (Sax & Steiner, 2013).

. The FRED mnemonic of the index is JHGDPBRINDX. We will cope with the mixed-frequency problem by inter-

polating quarterly recession probability indices via Denton-Cholette (Sax & Steiner, 2013) and will examine
the quarterly frequency equivalent as a robustness test.

. Flow variables are typically interpolated such that the sum or mean of the monthly interpolated values cor-

respond to the quarterly observed value (Chipman & Lapham, 1995, p. 89) and the sum is typically cho-
sen for flow variables, such as GDP or national income (ibid. p. 92). However whether the mean or the
sum is chosen for the interpolation of GDP levels is mathematlcally irrelevant for the subsequent deriva-
tion of the logarithmic growth rate, which is given as Y( ) = =1In(y:t) — In(y¢—p) with y¢ denoting the level
of GDP in period ¢ (cf. e.g. Siliverstovs & Wochner, 2019; Stock & Watson, 2012). To see this, let y¢
denote the interpolated level of GDP (meeting the sum constraint) and §; denote the interpolated level of
GDP (meeting the mean constraint). As each quarter has ¥ = 3 months, it follows that each y; is a third
of }?t’ i.e. v Xyt = t, and thus the logarithmic growth rate for both series is mathematically equivalent:
Y = In(ije) — n(iie—n) = (v x §0) — (v % Ge—p) = (Ge) — n(Gep) = V")

. Notice that we assume the recession probability index to be released together with FRED-MD variables. The

robustness of this assumption will be assessed in Section 4.2.8.

. As previously explained, we use h-period differenced growth rates, Y(h) =1In(yt) — In(y;—p) as dependent

variables, where y; is the level of GDP in period ¢ (cf. Stock & V\atson 2012; Siliverstovs & Wochner, 2019;
also see McCracken & Ng, 2019a). While the quarterly growth rates, Y( ), can be simply derived frorn the
interpolated GDP levels via DCO and CL3, this task is more complex for CLU as it does not impute the levels,
y¢, but monthly growth rates, Yt( ), Hence, for h = 3, we will reconstruct the quarterl}z growth rates, Y;(3),
from the monthly growth rates, Y< ) , by summing over the three adjacent values of Y because

v = o + v + v
(In(yt) — In(ye—1)) + (In(ye—1) — In(ys—2)) + (In(ys—2) — In(y—3))
= In(yt) — In(ye—3).

The Chow-Lin interpolation “CL3” is obtained via the three co-integrated series with FRED-mnemonics
DPCERA3MO86SBEA, SRVPRD and CE160V. Stationarity of the errors is warranted in that the (augmented) Dickey-
Fuller test (Trapletti, Hornik, & LeBaron, 2019) for the residuals of the regression in levels rejects the null of
non-stationarity at the 1% significance level.

While this argument relates to the estimation sample, a similar argument applies to the subsequent tests on
superior predictive performance for the evaluation sample.

For example, for vintage dates in Jan, Feb and May 2018 (Q1 2018), the index is available until Sep 2017 (Q3
2017). Likewise, for vintage dates in April, May and June 2018 (Q2 2018), the index is available until Dec
2017 (Q4 2017) (see Hamilton, 2019).

Formally, the regime-switching model is given as (see K. Kim & Swanson, 2016, for a related specification),

A . 5 (1
Z(+)h =1(24n < <)Z1<3L> t+n T (1 = 1(&4n < g))Z]gP%TA,tJrh’

where Z]SE tth designates the prediction from a distributed lag model with BIC chosen number of Y< ) lags
with iy € {0,1,...,4} (cf. Hill et al., 2011) and Z](BP%TA .t+h is the predicted value of a beta- regressmn with
a logit-link functlon for the mean and premsmn equation (see Caribari-Neto & Zeileis, 2019). Both mean and
precision equations are BIC optimized over Y, _ ) lags with iy € {0,1,...,4}, the first ir linear factors F<
with iz € {1,...,10} and the first ig quadramc factors (F}é{tf with ig € {0,...,10} (cf. Bai & Ng, 2003)
Finally, ¢ = 0.2 and 2;4}, corresponds to the predicted raw value of the index from the beta regression.
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A APPENDIX

A. Appendix

Benchmarks Dynamic Factor Trees Dynamic Factor Forests
Horizon Results Models rRMSFE Models rRMSFE
HMN OS-DFM(F) 0.892 BS-DFM(F) 0.890
1.063 g OS-DFM-RP(F) 0.864*** BS-DFM-RP(F) 0.863***
AR4 ,_‘,_% DFT-NUM(F) 0.837*** DFF-NUM(F) 0.834***
he=1 0.983 DFT-BIN50(F) 0.840*** DFF-BIN50(F) 0.837***
ARL g OS-DFM(TF) 0.867 BS-DFM(TF) 0.866
1.003 & OS-DFM-RP(TF)  0.852* BS-DFM-RP(TF)  0.851*
CADL ‘é‘b DFT-NUM(TF) 0.823*** DFF-NUM(TF) 0.818***
0.931 =  DFT-BIN50(TF) 0.826*** DFF-BIN50(TF) 0.824***
HMN OS-DFM(F) 0.883 BS-DFM(F) 0.880
1.078 g OS-DFM-RP(F) 0.773*** BS-DFM-RP(F) 0.772***
AR4 L‘E DFT-NUM(F) 0.792*** DFF-NUM(F) 0.779***
h—3 0.989 DFT-BIN50(F) 0.785*** DFF-BIN50(F) 0.782***
ARL 8 OS-DFM(TF) 0.864 BS-DFM(TF) 0.862
1.010 & OS-DFM-RP(TF)  0.766*** BS-DFM-RP(TF)  0.765***
CADL ‘é}) DFT-NUM(TF) 0.783*** DFF-NUM(TF) 0.767***
0.932 = DFT-BIN50O(TF) 0.780*** DFF-BIN50(TF) 0.778***

Notes: The table entries show the relative RMSFE of a particular model against the AR2 benchmark (settings: recursive scheme;
CLU interpolation; Jan. 1998 first vintage; MCJH-REC-IDX partitioning variable). For more details, see notes in Table 1.

Table A.1: Robustness Results: Chow-Lin (CLU) Interpolation

Benchmarks Dynamic Factor Trees Dynamic Factor Forests
Horizon  Results Models rRMSFE Models rRMSFE
HMN OS-DFM(F) 0.943 BS-DFM(F) 0.942
1.004 g OS-DFM-RP(F) 0.918** BS-DFM-RP(F) 0.918**
AR4 ,_',_% DFT-NUM(F) 0.918** DFF-NUM(F) 0.908***
he1 0.990 DFT-BIN50(F) 0.928** DFF-BIN50(F) 0.914***
ARL 8 OS-DFM(TF) 0.927 BS-DFM(TF) 0.926
0.998 & OS-DFM-RP(TF)  0.905** BS-DFM-RP(TF)  0.904**
CADL % DFT-NUM(TF) 0.900*** DFF-NUM(TF) 0.893***
0.971 = DFT-BIN50(TF) 0.919* DFF-BIN50(TF) 0.898***
HMN OS-DFM(F) 0.930 BS-DFM(F) 0.928
1.014 g OS-DFM-RP(F) 0.835*** BS-DFM-RP(F) 0.835***
AR4 ,_‘,_% DFT-NUM(F) 0.865*** DFF-NUM(F) 0.849***
h—3 0.980 DFT-BIN50(F) 0.865*** DFF-BIN50(F) 0.861***
ARL o OS-DFM(TF) 0.931 BS-DFM(TF) 0.930
1.012 & OS-DFM-RP(TF)  0.843*** BS-DFM-RP(TF)  0.844***
CADL ‘é‘;) DFT-NUM(TF) 0.904** DFF-NUM(TF) 0.867***
0.956 = DFT-BIN50(TF) 0.873*** DFF-BIN50(TF) 0.871***

Notes: The table entries show the relative RMSFE of a particular model against the AR2 benchmark (settings: recursive scheme;
CL3 interpolation; Jan. 1998 first vintage; MCJH-REC-IDX partitioning variable). For more details, see notes in Table 1.

Table A.2: Robustness Results: Chow-Lin (CL3) Interpolation
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Benchmarks Dynamic Factor Trees Dynamic Factor Forests
Horizon  Results Models rRMSFE Models rRMSFE
HMN OS-DFM(F) 0.739 BS-DFM(F) 0.744
1.115 g OS-DFM-RP(F) 0.721 BS-DFM-RP(F) 0.723*
-
AR4 ,_j_% DFT-NUM(F) 0.738 DFF-NUM(F) 0.690***
h=0 1.004 DFT-BIN50(F) 0.738 DFF-BIN50(F) 0.709***
ARL 8 OS-DFM(TF) 0.754 BS-DFM(TF) 0.762
1.025 & OS-DFM-RP(TF) 0.727* BS-DFM-RP(TF)  0.732*
CADL ‘é‘b DFT-NUM(TF) 0.755 DFF-NUM(TF) 0.708***
0.869 = DFT-BIN50(TF) 0.764 DFF-BIN50(TF) 0.725***
HMN OS-DFM(F) 0.973 BS-DFM(F) 0.977
1.060 g OS-DFM-RP(F) 0.855*** BS-DFM-RP(F) 0.861***
-
AR4 L‘,_% DFT-NUM(F) 0.916*** DFF-NUM(F) 0.924***
h—1 1.006 DFT-BIN50(F) 0.922*** DFF-BIN50(F) 0.929***
ARL 8 OS-DFM(TF) 0.866 BS-DFM(TF) 0.874
1.002 & OS-DFM-RP(TF)  0.792*** BS-DFM-RP(TF)  0.799***
CADL ‘Q, DFT-NUM(TF) 0.826** DFF-NUM(TF) 0.886
0.945 = DFT-BIN50(TF) 0.866 DFF-BIN50(TF) 0.863**

Notes: The table entries show the relative RMSFE of a particular model against the AR2 benchmark (settings: recursive scheme;
quarterly frequency; Q1 Jan. 1998 first vintage; MCJH-REC-IDX partitioning variable). The results for the predictions in the 3rd
month of every quarter are shown. The DM-tests require h = 1 for both forecasting horizons and were derived accordingly. For
more details, see notes in Table 1.

Table A.3: Robustness Results: Quarterly Frequency

Benchmarks Dynamic Factor Trees Dynamic Factor Forests
Horizon  Results Models rRMSFE Models rRMSFE
HMN OS-DFM(F) 0.885 BS-DFM(F) 0.881
0.998 £ 0S-DFM-RP(F) 0.800*** BS-DFM-RP(F) 0.797***
AR4 L‘E DFT-NUM(F) 0.780*** DFF-NUM(F) 0.772***
he1 0.935 DFT-BIN50(F) 0.789*** DFF-BIN50(F) 0.792***
ARL 8 OS-DFM(TF) 0.814 BS-DFM(TF) 0.813
0.909 & OS-DFM-RP(TF)  0.750*** BS-DFM-RP(TF)  0.747***
CADL *é‘}, DFT-NUM(TF) 0.730*** DFF-NUM(TF) 0.719***
0.938 —  DFT-BIN5O(TF) 0.736*** DFF-BIN50(TF) 0.739***
HMN OS-DFM(F) 0.964 BS-DFM(F) 0.956
1.020 g OS-DFM-RP(F) 0.806*** BS-DFM-RP(F) 0.799***
AR4 ,_j_% DFT-NUM(F) 0.860*** DFF-NUM(F) 0.824***
h=3 0.973 DFT-BIN50(F) 0.844*** DFF-BIN50(F) 0.828***
ARL 8 OS-DFM(TF) 0.940 BS-DFM(TF) 0.933
0.980 & OS-DFM-RP(TF)  0.767*** BS-DFM-RP(TF)  0.764***
CADL ‘9'_';) DFT-NUM(TF) 0.752*** DFF-NUM(TF) 0.748***
0.960 = DFT-BIN50(TF) 0.819*** DFF-BIN50(TF) 0.823***

Notes: The table entries show the relative RMSFE of a particular model against the AR2 benchmark (settings: rolling scheme; DCO
interpolation; Jan. 1998 first vintage; MCJH-REC-IDX partitioning variable). The rolling window has a length of 300 observations.
For more details, see notes in Table 1.

Table A.4: Robustness Results: Rolling Windows
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Benchmarks Dynamic Factor Trees Dynamic Factor Forests
Horizon Results Models rRMSFE Models rRMSFE
HMN OS-DFM(F) 0.865 BS-DFM(F) 0.864
0.998 g OS-DFM-RP(F) 0.803*** BS-DFM-RP(F) 0.803***
AR4 ,_j_% DFT-NUM(F) 0.830*** DFF-NUM(F) 0.820***
h—1 0.927 DFT-BIN50(F) 0.828*** DFF-BIN50(F) 0.819***
ARL 8 OS-DFM(TF) 0.831 BS-DFM(TF) 0.830
0.894 & OS-DFM-RP(TF)  0.780*** BS-DFM-RP(TF)  0.781***
CADL ‘é‘j; DFT-NUM(TF) 0.806*** DFF-NUM(TF) 0.794***
0.924 = DFT-BIN50(TF) 0.810*** DFF-BIN50(TF) 0.797***
HMN OS-DFM(F) 0.947 BS-DFM(F) 0.943
1.015 g OS-DFM-RP(F) 0.818*** BS-DFM-RP(F) 0.818***
AR4 L‘E DFT-NUM(F) 0.889*** DFF-NUM(F) 0.873***
h—3 0.975 DFT-BIN50(F) 0.888*** DFF-BIN50(F) 0.882***
ARL 8 OS-DFM(TF) 0.931 BS-DFM(TF) 0.926
0.987 & OS-DFM-RP(TF)  0.807*** BS-DFM-RP(TF)  0.806***
CADL ‘é‘}) DFT-NUM(TF) 0.880*** DFF-NUM(TF) 0.867***
0.944 = DFT-BIN50O(TF) 0.883*** DFF-BIN50(TF) 0.871***

Notes: The table entries show the relative RMSFE of a particular model against the AR2 benchmark (settings: recursive scheme;
DCO interpolation; Jan. 1985 first vintage; MCJH-REC-IDX partitioning variable). For more details, see notes in Table 1.

Table A.5: Robustness Results: Extended Forecasting Window (1985-2018)

Benchmarks Dynamic Factor Trees Dynamic Factor Forests
Horizon  Results Models rRMSFE Models rRMSFE
HMN OS-DFM(F) 0.841 BS-DFM(F) 0.839
1.001 g OS-DFM-RP(F) 0.813*** BS-DFM-RP(F) 0.813***
AR4 ,_j_% DFT-NUM(F) 0.835 DFF-NUM(F) 0.832
h—1 0.924 DFT-BIN50(F) 0.834 DFF-BIN50(F) 0.826**
ARL 8 OS-DFM(TF) 0.802 BS-DFM(TF) 0.800
0.894 & OS-DFM-RP(TF)  0.779*** BS-DFM-RP(TF)  0.779***
CADL ‘§_'.o DFT-NUM(TF) 0.777*** DFF-NUM(TF) 0.776***
0.922 = DFT-BIN50(TF) 0.776*** DFF-BIN50(TF) 0.772***
HMN OS-DFM(F) 0.914 BS-DFM(F) 0.909
1.014 g OS-DFM-RP(F) 0.908** BS-DFM-RP(F) 0.909
AR4 ,:_“3’ DFT-NUM(F) 0.910 DFF-NUM(F) 0.906
h—3 0.970 DFT-BIN50(F) 0.912 DFF-BIN50(F) 0.907
ARL 8 OS-DFM(TF) 0.894 BS-DFM(TF) 0.892
0.975 & OS-DFM-RP(TF)  0.886** BS-DFM-RP(TF)  0.887**
CADL ‘E;_L DFT-NUM(TF) 0.881*** DFF-NUM(TF) 0.884**
0.943 = DFT-BIN50(TF) 0.884*** DFF-BIN50(TF) 0.885**

Notes: The table entries show the relative RMSFE of a particular model against the AR2 benchmark (settings: recursive scheme;
DCO interpolation; Jan. 1998 first vintage; SPF-REC1-IDX partitioning variable). For more details, see notes in Table 1.

Table A.6: Robustness Results: Recession Probability Index (SPF-REC1-IDX)
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Benchmarks Dynamic Factor Trees Dynamic Factor Forests
Horizon  Results Models rRMSFE Models rRMSFE
HMN OS-DFM(F) 0.841 BS-DFM(F) 0.839
1.001 g OS-DFM-RP(F) 0.806*** BS-DFM-RP(F) 0.809***
AR4 ,_‘,_% DFT-NUM(F) 0.797*** DFF-NUM(F) 0.794***
he1 0.924 DFT-BIN50(F) 0.798*** DFF-BIN50(F) 0.803***
ARL 8 OS-DFM(TF) 0.802 BS-DFM(TF) 0.800
0.894 & OS-DFM-RP(TF)  0.767*** BS-DFM-RP(TF)  0.770***
CADL *Q, DFT-NUM(TF) 0.773** DFF-NUM(TF) 0.758***
0.922 = DFT-BIN50(TF) 0.759*** DFF-BIN50(TF) 0.761***
HMN OS-DFM(F) 0.914 BS-DFM(F) 0.909
1.014 g OS-DFM-RP(F) 0.868** BS-DFM-RP(F) 0.870**
AR4 ,_',_% DFT-NUM(F) 0.863*** DFF-NUM(F) 0.871**
h—3 0.970 DFT-BIN50(F) 0.886* DFF-BIN50(F) 0.885*
ARL g OS-DFM(TF) 0.894 BS-DFM(TF) 0.892
0.975 & OS-DFM-RP(TF)  0.849** BS-DFM-RP(TF)  0.851**
CADL ‘é‘b DFT-NUM(TF) 0.882* DFF-NUM(TF) 0.876*
0.943 = DFT-BIN50(TF) 0.868** DFF-BIN50(TF) 0.869*

Notes: The table entries show the relative RMSFE of a particular model against the AR2 benchmark (settings: recursive scheme;
DCO interpolation; Jan. 1998 first vintage; SPF-REC2-IDX partitioning variable). For more details, see notes in Table 1.

Table A.7: Robustness Results: Recession Probability Index (SPF-REC2-IDX)

Benchmarks Dynamic Factor Trees Dynamic Factor Forests
Horizon  Results Models rRMSFE Models rRMSFE
HMN OS-DFM(F) 0.841 BS-DFM(F) 0.839
1.001 g OS-DFM-RP(F) 0.773*** BS-DFM-RP(F) 0.772***
AR4 ,_‘,_% DFT-NUM(F) 0.777*** DFF-NUM(F) 0.752***
he1 0.924 DFT-BIN50(F) 0.763*** DFF-BIN50(F) 0.759***
ARL 8 OS-DFM(TF) 0.802 BS-DFM(TF) 0.800
0.894 & OS-DFM-RP(TF)  0.755*** BS-DFM-RP(TF)  0.754***
CADL *?'_';, DFT-NUM(TF) 0.756*** DFF-NUM(TF) 0.729***
0.922 = DFT-BIN50(TF) 0.739*** DFF-BIN50(TF) 0.734***
HMN OS-DFM(F) 0.914 BS-DFM(F) 0.909
1.014 g OS-DFM-RP(F) 0.781*** BS-DFM-RP(F) 0.780***
AR4 ,_',_% DFT-NUM(F) 0.844** DFF-NUM(F) 0.816***
h—3 0.970 DFT-BIN50(F) 0.827*** DFF-BIN50(F) 0.821***
ARL 8 OS-DFM(TF) 0.894 BS-DFM(TF) 0.892
0.975 & OS-DFM-RP(TF)  0.775*** BS-DFM-RP(TF)  0.774***
CADL ‘é‘b DFT-NUM(TF) 0.853** DFF-NUM(TF) 0.803***
0.943 ~  DFT-BIN50(TF) 0.819*** DFF-BIN50(TF) 0.812***

Notes: The table entries show the relative RMSFE of a particular model against the AR2 benchmark (settings: recursive scheme;
DCO interpolation; Jan. 1998 first vintage; MCJH-REC-IDX partitioning variable). The hyper-parameter for minsize was not
determined via cross-validation. For more details, see notes in Table 1.

Table A.8: Robustness Results: Non-cross-validated Minsize
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Benchmarks Dynamic Factor Trees Dynamic Factor Forests
Horizon  Results Models rRMSFE Models rRMSFE
HMN OS-DFM(F) 0.873 BS-DFM(F) 0.872
1.001 £ 0S-DFM-RP(F) 0.806*** BS-DFM-RP(F) 0.806***
AR4 L‘,_% DFT-NUM(F) 0.784*** DFF-NUM(F) 0.772***
h—1 0.924 DFT-BIN50(F) 0.791*** DFF-BIN50(F) 0.785***
ARL 8 OS-DFM(TF) 0.895 BS-DFM(TF) 0.896
0.894 & OS-DFM-RP(TF)  0.827*** BS-DFM-RP(TF)  0.828***
CADL ‘E;_L DFT-NUM(TF) 0.798*** DFF-NUM(TF) 0.796***
0.922 =  DFT-BIN50(TF) 0.808*** DFF-BIN50(TF) 0.803***
HMN OS-DFM(F) 0.897 BS-DFM(F) 0.879
1.014 g OS-DFM-RP(F) 0.753*** BS-DFM-RP(F) 0.753***
AR4 ,_',_% DFT-NUM(F) 0.808** DFF-NUM(F) 0.781***
h=3 0.970 DFT-BIN50(F) 0.796** DFF-BIN50(F) 0.791**
ARL 8 OS-DFM(TF) 0.915 BS-DFM(TF) 0.908
0.975 & OS-DFM-RP(TF)  0.777*** BS-DFM-RP(TF)  0.779***
CADL % DFT-NUM(TF) 0.817** DFF-NUM(TF) 0.803***
0.943 = DFT-BIN50(TF) 0.811** DFF-BIN50(TF) 0.810**

Notes: The table entries show the relative RMSFE of a particular model against the AR2 benchmark (settings: recursive scheme;
DCO interpolation; Jan. 1998 first vintage; MCJH-REC-IDX partitioning variable). The DFMs, DFTs and DFFs were estimated
with 1 factor. For more details, see notes in Table 1.

Table A.9: Robustness Results: One Factor

Benchmarks Dynamic Factor Trees Dynamic Factor Forests
Horizon Results Models rRMSFE Models rRMSFE
HMN OS-DFM(F) 0.767 BS-DFM(F) 0.765
1.001 g OS-DFM-RP(F) 0.738*** BS-DFM-RP(F) 0.735***
AR4 ,_‘,_% DFT-NUM(F) 0.720*** DFF-NUM(F) 0.710***
he=1 0.924 DFT-BIN50(F) 0.727*** DFF-BIN50(F) 0.719***
ARL 8 OS-DFM(TF) 0.772 BS-DFM(TF) 0.773
0.894 & OS-DFM-RP(TF)  0.748** BS-DFM-RP(TF)  0.748**
CADL ‘é‘b DFT-NUM(TF) 0.715*** DFF-NUM(TF) 0.708***
0.922 = DFT-BIN50(TF) 0.723*** DFF-BIN50(TF) 0.719***
HMN OS-DFM(F) 0.838 BS-DFM(F) 0.837
1.014 g OS-DFM-RP(F) 0.746*** BS-DFM-RP(F) 0.746***
AR4 L‘E DFT-NUM(F) 0.763*** DFF-NUM(F) 0.763***
h—3 0.970 DFT-BIN50(F) 0.778*** DFF-BIN50(F) 0.773***
ARL 8 OS-DFM(TF) 0.843 BS-DFM(TF) 0.843
0.975 & OS-DFM-RP(TF)  0.749*** BS-DFM-RP(TF)  0.749***
CADL ‘é}) DFT-NUM(TF) 0.772*** DFF-NUM(TF) 0.757***
0.943 = DFT-BIN50O(TF) 0.776*** DFF-BIN50(TF) 0.771***

Notes: The table entries show the relative RMSFE of a particular model against the AR2 benchmark (settings: recursive scheme;
DCO interpolation; Jan. 1998 first vintage; MCJH-REC-IDX partitioning variable). The DFMs, DFTs and DFFs were estimated
with 10 factors. For more details, see notes in Table 1.

Table A.10: Robustness Results: Ten Factors

33



A APPENDIX

Benchmarks Dynamic Factor Trees Dynamic Factor Forests
Horizon  Results Models rRMSFE Models rRMSFE
HMN OS-DFM(F) 0.841 BS-DFM(F) 0.839
1.001 g OS-DFM-RP(F) 0.806*** BS-DFM-RP(F) 0.804***
-
AR4 ,_j_% DFT-NUM(F) 0.818** DFF-NUM(F) 0.802***
he1 0.924 DFT-BIN50(F) 0.813** DFF-BIN50(F) 0.808***
ARL 8 OS-DFM(TF) 0.802 BS-DFM(TF) 0.800
0.894 & OS-DFM-RP(TF) 0.784* BS-DFM-RP(TF)  0.782*
CADL ‘é'.o DFT-NUM(TF) 0.794 DFF-NUM(TF) 0.780**
0.922 = DFT-BIN50(TF) 0.789* DFF-BIN50(TF) 0.783**
HMN OS-DFM(F) 0.914 BS-DFM(F) 0.910
1.014 g OS-DFM-RP(F) 0.898 BS-DFM-RP(F) 0.895
-
AR4 L‘,_% DFT-NUM(F) 0.927 DFF-NUM(F) 0.898*
h—3 0.970 DFT-BIN50(F) 0.912 DFF-BIN50(F) 0.907
ARL 8 OS-DFM(TF) 0.894 BS-DFM(TF) 0.892
0.975 & OS-DFM-RP(TF) 0.886 BS-DFM-RP(TF)  0.885
CADL ‘S,'_}, DFT-NUM(TF) 0.903 DFF-NUM(TF) 0.892
0.943 = DFT-BIN50(TF) 0.902 DFF-BIN50(TF) 0.897

Notes: The table entries show the relative RMSFE of a particular model against the AR2 benchmark (settings: recursive scheme;
DCO interpolation; Jan. 1998 first vintage; MCJH-REC-IDX partitioning variable). Assuming the absence of a publication lag of
the MCJH-REC-IDX is relaxed and missing values are inferred from a regime-switching model (see Section 4.2.8). For more details,
see notes in Table 1.

Table A.11: Robustness Results: Publication Lag
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