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Abstract

Since life began spreading on Earth, the distribution of vital resources and
their subsequent safekeeping have led to constant survival conflicts. Even
more so in today’s technologically and economically advanced societies,
where wrongly granted access to critical resources, like private customer
data, powerful weaponry, or crucial infrastructure can harm organizations,
civilizations, or even life itself.

A famous example where poorly managed access led to the fall of a large
organization is the case of Barings Bank [1], which went bankrupt after
one of its employees engaged in a series of fraudulent and unauthorized
investments. Moreover, crucial bandwidth resources in today’s Internet
suffer from major distribution vulnerabilities. Distributed Denial of Service
(DDoS) attacks against GitHub, in the beginning of 2018, peaking at 1.35
Tbps, and against Arbor Networks, only five days later, peaking at 1.7
Tbps [64], show that attackers can severely skew bandwidth allocations to
harm large organizations. Verizon’s data breach report from 2019 asserts
that denial of service and privilege misuse are the two major causes for
security incidents we face today [2].

To address these two problems, sophisticated techniques were invented
in the following two fields. (1) Access control provides qualitative guaran-
tees by defining and enforcing access control policies. These policies are
designed to give honest users access to crucial resources and to prevent
malicious users from nefarious actions. Policy analysis applies logic-based
frameworks to specify and verify properties of such policies. (2) Resource al-
location provides quantitative guarantees by fairly distributing resources
among users. Bandwidth reservation provides hard bandwidth and stability
guarantees in the face of strong network adversaries during DDoS attacks.

This thesis makes following contributions to these two fields. First,
we propose FORBAC, an extension of Role-Based Access Control (RBAC)
based on first-order logic. FORBAC is expressive enough to formalize a wide
range of access control policies and is simple enough to keep their policy
analysis in NP. Second, we provide the first principled solution to the global
bandwidth allocation problem in adversarial networks. We propose and
formalize the N-Tube algorithm, that reserves bandwidth in path-aware
networks with a powerful attacker. We prove that N-Tube’s bandwidth
allocations quickly stabilize, provide minimum bandwidth guarantees, even
in the presence of congestion, and satisfy a new fairness notion.





Zusammenfassung

Seitdem sich Leben auf der Erde auszubreiten begann, haben die Verteilung
von lebenswichtigen Ressourcen und deren anschließende Sicherstellung
ständig zu Überlebenskonflikten geführt. Dies gilt heutzutage umso mehr in
technologisch und wirtschaftlich fortschrittlichen Gesellschaften, in denen
falsch vergebener Zugriff auf kritische Ressourcen, wie private Kundenda-
ten, mächtige Waffensysteme oder lebenswichtige Infrastrukturen, erhebli-
chen Schaden für Organisationen, Zivilisationen und sogar das Leben an
sich verursachen kann.

Ein berühmtes Beispiel, bei dem schlecht verwaltete Zugangskontrollen
zum Sturz eines großen Unternehmens führten, ist der Fall der Barings
Bank, die bankrottging, nachdem einer ihrer Mitarbeiter eine Reihe von
betrügerischen und ungenehmigten Investitionen getätigt hatte. Darüber
hinaus leiden wichtige Bandbreitenressourcen im heutigen Internet un-
ter schwerwiegenden Verteilungsschwächen. Verteilte Denial of Service
(DDoS)-Attacken gegen GitHub Anfang 2018 mit Datenraten von bis zu
1,35 Tbit/s pro Sekunde und nur fünf Tage später gegen Arbor Networks mit
bis zu 1,7 Tbit/s, zeigen, dass Angreifer Bandbreitenzuweisungen erheblich
verdrehen können, um großen Unternehmen Schaden zuzufügen. Verizons
Bericht zu Datenschutzverletzungen aus dem Jahr 2019 besagt, dass Denial-
of-Service und Missbrauch von Zugriffsrechten die beiden Hauptursachen
für heutige Sicherheitsvorfälle sind [2].

Um diese beiden Probleme anzugehen, wurden ausgefeilte Techniken
in den folgenden beiden Bereichen entwickelt: (1) Der Bereich der Zugriffs-
kontrolle bietet qualitative Garantien, indem mit Hilfe von Zugriffskon-
trollrichtlinien gutartigen Benutzern der Zugriff auf wichtige Ressourcen
gewährt wird und böswillige Benutzer von schändlichen Handlungen abge-
halten werden. Die Richtlinienanalyse verwendet logikbasierte Modelle um
Eigenschaften von Zugriffskontrollrichtlinien zu definieren und zu verfizie-
ren. (2) Der Bereich der Ressourcenzuteilung bietet quantitative Garantien,
indem die Ressourcen fair unter verteilt werden. Bandbreitenreservierun-
gen bieten bei DDoS-Attacken, die durch mächtige Netzwerksangreifer
verursacht werden, hohe Bandbreiten- und Stabilitätsgarantien.

Diese Arbeit liefert zu den beiden Bereichen die folgenden Beiträge:
Zunächst präsentieren wir FORBAC, eine Erweiterung der rollenbasierten
Zugriffssteuerung (RBAC), welche auf Prädikatenlogik basiert. FORBAC ist
aussagekräftig genug, um eine breite Palette von Zugriffssteuerungsrichtli-
nien zu formalisieren, und ist einfach genug, um ihre Richtlinienanalyse
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auf die Komplexitätsklasse NP zu beschränken. Zweitens bieten wir die
erste anhand von Grundsätzen abgeleitete Lösung für das globale Bandbrei-
tenzuweisungsproblem in Netzwerken mit Attackern. Wir präsentieren und
formalisieren den N-Tube-Algorithmus, der Bandbreitenreservationen in
pfadbewussten Netzwerken mit starken Angreifern ermöglicht. Wir bewei-
sen, dass sich die Bandbreitenzuweisungen von N-Tube schnell stabilisieren,
selbst während Netzüberlastungen eine Mindestbandbreite garantieren und
einen neuen Fairnessbegriff erfüllen.
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Chapter 1

Introduction

One of the earliest conflicts for living beings on our planet has been gaining
and defending access to vital resources. The very process of evolution is
driven by changes in the environment and their effects on the distribution
and accessibility of essential resources like living space, energy supply, and
food. In case of resource scarcity, competing life forms have to strike a
balance in distributing these resources among each other. This balance
usually emerged due to a self-organized distributed process, called natural
selection, which is based on better chances of reproduction for the fittest.

Particularly, the human species, one of the currently most successful
species regarding adaptation to various environments and the domination
of other species, draws a huge part of its success from using its superiority
in communication, planning, and sharing resources by trading. Histor-
ical evidences of successful but also questionable advances in resource
distribution are the Roman Empire which built streets and water supply
systems spanning the European continent, the English and Spanish imperi-
alism which extended their resource extraction throughout the world with
colonisation, capitalism which optimized production to balance supply and
demand of resources, and lately the internet and mobile networks which
provides ubiquitous access to information.

However, distributing resources only marked the first step. To avoid
losing resources or giving access to resources that might risk the survival
of organizations or even states, it became necessary to control their access.
Due to technological advances, humans have developed increasingly pow-
erful and dangerous tools that need to be protected from human greed and
their urge for power. Wrongly granting malicious users access to such re-
sources has led to privilege misuses and severe damages. Famous examples
are the case of Barings Bank [1], which went bankrupt in 1995 after its
employee Nick Leeson engaged in a series of fraudulent and unauthorized
investments. Another case was the 2011 UBS rogue trader scandal [20]
where the trader Kweku Adoboli was convicted of illegally trading away
USD 2 billion.

Due to such severe failures in access control, the banking industry
has become highly regulated. However, newly emerging technologies
like today’s Internet are still developing the right means to fairly allocate
their resources among users. Access to bandwidth, the main resource
in today’s Internet, is barely controlled and often volatile. Bandwidth
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allocation on network links is deployed according to a best-effort service
model and therefore vulnerable to traffic overload, also called congestion.
Moreover, malicious users can intentionally cause congestion by launching
Distributed Denial of Service (DDoS) attacks. To create this artificially
induced congestion, attackers control a set of devices connected to the
Internet, so called bot-nets. During such an attack these devices collude
and generate more traffic than a target can handle or congest critical
network links by leaving only a small portion of bandwidth to honest users.
DDoS attacks against GitHub, in the beginning of 2018, peaking at 1.35
Tbps [65] and against Arbor Networks, only five days later, peaking at 1.7
Tbps [64], show that allocation of bandwidth resources can be skewed
towards extremely unfair allocations in today’s Internet. Such allocation
imbalances call for new procedures of resource allocation that provide fair
and stable access guarantees.

1.1 Background
To regulate access, sophisticated techniques were invented in the fields
of access control to enable or prevent malicious users to access valu-
able resources, as well as resource allocation to fairly distribute network
resources among honest users. In this work, we differentiate between qual-
itative and quantitative access guarantees. Given a user u and a resource r,
qualitative guarantees ensure that u is given or denied access to r according
to a policy. For example, in a bank, relationship managers are allowed to
read the balances of their customers’ bank accounts but software engineers
are denied to make trading transactions. Quantitative guarantees ensure
that a certain fraction of r is allocated to u. For example, mobile phone
users in the Zurich main station are always guaranteed a minimum amount
of bandwidth, or students have stable access to their university’s Wi-Fi
network during lectures.

Access Control
In this thesis, qualitative access is defined by access control policies. An
access control policy is a relation Auth between a set of users U and a
set of permissions P. This is illustrated in Figure 1.1, where the access
control policy Auth is visualized by arrows from users, i.e., employees in
an organization, to three permissions: access to servers, printers, and keys.

We say that user u has access to a permission p, if (u, p) ∈ Auth and a
user u is denied access to a permission p, if (u, p) 6∈ Auth. Permissions are
often further refined to pairs consisting of a resource and an action, i.e.,
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Figure 1.1: The access control policy Auth is given as a relation between
users and permissions.

p = (a, r). In this case, we say that a user u is allowed (or denied) to execute
an action a on a resource r .

Access control policies can be given as tables containing all user-permis-
sion pairs. However, such policies are mostly defined by procedures, based
on high-level languages, that describe when a given users has (or is denied)
access to a given permission. To formalize such procedures, many policy
languages have been invented that can be specified in a machine-readable
format and therefore can automatically make access decisions. One of
the most commonly used paradigms to specify access control policies is
role-based access control (RBAC).

RBAC [26]: To define an access control policy Auth in the RBAC paradigm,
a third set R and two relations UA and PA are added. Elements of R are
called roles where each role describes a set of permissions that are needed
to execute a certain task, e.g., the role of a relationship-manager who needs
read and write permissions to update customer data. The user-assignment
relation UA⊆ U × R assigns roles to users and the permission-assignment
relation PA⊆ R× P assigns permissions to roles. For (u, r) ∈ UA, we say
that a user u has a role r. Analogously, for (r, p) ∈ PA we say that a role
r has a permission p. The access control policy Auth is UA ◦ PA. That is a
user u has a permission p, i.e., (u, p) ∈ Auth, if there is a role r such that
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Employee

Roles
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Manager

Figure 1.2: The access control policy Auth given in RBAC.

(u, r) ∈ UA and (r, p) ∈ PA. More formally,

(u, p) ∈ Auth :⇔ ∃r ∈ R. (u, r) ∈ UA ∧ (r, p) ∈ PA.

This is illustrated by the example given in Figure 1.2. Employees of an
organization are assigned to two roles, manager or employee, given by
relation UA. The manager-role contains all three permissions, whereas the
employee role just provides access to the servers and the printers.

RBAC with constraints [6]: RBAC is not expressive enough for specifying
access control policies for large organizations, since it does not scale. To
counter this, several extensions of RBAC have been invented. An expressive
category of these extensions is called RBAC with constraints and allows one
to define additional features such as role hierarchies or specifying attributes
for users, roles, and permissions. These constraints restrict the relations
between user and roles, and roles and permissions, e.g., to be only valid
for certain time periods or at specific locations.

In the extended example shown in Figure 1.3 users are partitioned
according to their level, the manager role contains a set of goals, each em-
ployee role is connected to a supervisor, and the permission granting access
to servers has an attribute ip. There is a user-assignment constraint that
assigns users with level greater than 9 a manager-role with compliance and
profit goals and there is a permission-assignment constraint that assigns a
server-permission with IP 1.2.3.4 to employee-roles with supervisor Bob.
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PA-Constraint

Employee.supervisor = “Bob”

and Server.ip = “1.2.3.4”
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Manager.goals = {“compliance”, “profit”}

Roles

! "#

Users Permissions

Figure 1.3: The access control policy Auth given in RBAC with constraints.

Policy Analysis [28, 54]: Due to the increasing complexity of access con-
trol paradigms and their policies the field of policy analysis emerged. Policy
analysis applies logic-based frameworks to define properties of access con-
trol policies and creates methods and tools to verify these properties. These
properties are derived from policy analysis queries which policy administra-
tors must answer to auditors or company management. Common queries
are: "Is it possible for all users with a level greater than 10 to access a
server with IP 1.2.3.4?" or "Is there an employee with level less than 5
who has access to the keys?". These queries are then formalized in policy
analysis frameworks and verified using policy analysis tools and techniques
to provide qualitative access guarantees.

Resource Allocation
A network is a weighted, directed graph N = (V, E, cap) with a non-empty
set V of nodes, an edge relation E ⊆ V × V , and a weight function cap :
V → R+0 . Every edge e ∈ E has a weight ce := cap(e) assigned to it.
A path p in this graph is a non-empty sequence of edges of the form
((u, v), (v, w), (w, x), . . . ) and its source src(p) is the node u. Nodes in the
graph represent autonomous systems (AS) in today’s Internet, but we refer
to them as users. Edges represent physical links between ASes. Weights
represent the links’ bandwidth capacities and we refer to them as resources.
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Figure 1.4: A two-link network with three users and three paths.

Figure 1.4 illustrates a network consisting of two links e1 and e2 with
capacities c1 = c2 = 1 and three users x ,y, and z. The resources are
the available bandwidths on the three paths p1 = (e1, e2), p2 = (e1), and
p3 = (e2). User x is the source of p1 and p2, and user y is the source of p3.

Suppose that a network N and a subset of its paths P are given. Then
the resource allocation problem consists of allocating a bandwidth xp to
each path p ∈ P such that each user src(p) obtains a "fair share". We define
fairness next.

Fairness: A fair bandwidth allocation is formalized with respect to the
utility users derive from the bandwidth allocated to their paths. Suppose
that for each user u there exists a numeric function Uu denoting how much
utility u obtains from the network’s bandwidth allocations. A solution
x ∗ = (xp)p∈P is fair if it maximizes the optimization problem

max
x

∑

u∈V

Uu (x )

under the constraints

∀e ∈ E.
∑

p∈P
s.t. e∈p

xp ≤ ce

∀p ∈ P . xp ≥ 0.

The first constraint states that bandwidth allocations must not exceed
the links’ capacities and the second constraint ensures that bandwidth
allocations are non-negative. The literature refers to this optimization
problem as network utility maximization (NUM), because its objective can
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be understood as to maximize the social welfare utility
∑

u∈V Uu given by
the aggregated utility of all users.

For the family of utility functions

Uu (x ) =
∑

src(p)=u

lim
α→∞

−αx−αp ,

the optimal resource allocation is x ∗ = (0.5, 0.5, 0.5) and is called max-min
fair. One can show that

lim
α→∞

−αx−αp =

¨

−∞, if xp ∈ [0;1]
0, otherwise.

Intuitively, this utility function models that users are "infinitely" unsatisfied
if they are not allocated a minimum share of 1 and their utility remains
constant otherwise. In the max-min fair allocation the allocated bandwidths
of smaller or minimum flows are maximized, i.e., the max-min fair alloca-
tion gives maximum protection to the flows with the minimum allocated
bandwidths.

For the family of utility functions

Uu (x ) =
∑

src(p)=u

log
�

xp

�

the optimal resource allocation is x ∗ = (1/3, 2/3, 2/3) and is called propor-
tionally fair. This allocation aims to strike a balance between maximizing
the average utilization of all links capacities while at the same time allowing
all users a minimum of service.

Resource Allocation [61]: A user, whose utility can be characterized with a
concave and differentiable function, is called elastic, and inelastic otherwise.
Under the assumption that all users are elastic, Kelly et al. showed in their
seminal paper [45] that the corresponding resource allocation problem
has a unique solution. Moreover, they showed that the resource allocation
problem can be decomposed into subproblems that can be solved locally
at each source and each link in the network. This results in a distributed
algorithm that computes the fair resource allocation and provides the
basis for different versions of the predominant transport layer protocol
in today’s Internet, the Transmission Control Protocol (TCP), and various
queuing protocols. Using this framework, they proved that these protocols
approximate proportional fairness [61].
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Bandwidth Reservation: In today’s Internet, however, we also find in-
elastic users, i.e., those who require minimum bandwidth guarantees or
malicious users whose goal is to reduce other users’ utility ad infinitum.
These users contradict the utility assumptions given above. Therefore, fair
resource allocation is no longer sufficient and admission control mechanisms
are needed which regulate access to bandwidth resources.

A promising admission control mechanism was proposed for networks
supporting path-based forwarding. SIBRA [10], describes a scalable inter-
domain bandwidth allocation architecture that allows ASes to make and
enforce reservations along network paths. The SIBRA architecture is based
on a distributed bandwidth reservation algorithm that processes reserva-
tion requests made by ASes and allocates bandwidth on the paths’ links
accordingly. Together with an enforcement mechanism that monitors and
polices these reservations, this architecture is designed to provide minimum
bandwidth guarantees to all honest users.

1.2 Challenges
We identified four challenges to enable qualitative and quantitative guar-
antees. Two major challenges in the field of policy analysis are (i) to
define logic-based frameworks that can both express access control policies
and their properties, and (ii) to create methods and tools to check these
properties efficiently. Two major challenges in the field of bandwidth reser-
vation are (iii) to define distributed algorithms with bandwidth, fairness,
and stability guarantees in the face of strong network adversaries, and
(iv) to formalize and verify these guarantees. We now elaborate on these
challenges for each field.

Imbalance between expressiveness of access control languages and
the complexity of their policy analysis: Researchers have investigated
numerous extensions that allow RBAC to scale better and to ease its admin-
istration, e.g., [29, 34, 40, 42, 48, 52]. However, the expressive power of
these extensions makes it difficult to understand the behavior of policies,
which in turn has motivated a plethora of research on policy analysis for
RBAC, e.g., [6, 11, 27, 62]. Many RBAC extensions use first-order logic in
their syntax, but first-order logic is too expressive and needs to be restricted
to fragments for enabling efficient policy analysis.

The imbalance between expressiveness and efficient analysis introduces
to a new research direction: to develop frameworks expressive enough to
formalize realistic access control policies, but simple enough to provide
efficient policy analysis in practice. These frameworks should provide
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languages to specify policies and properties, and methods and tools to
verify properties against their policies.

To the best of our knowledge, no prior work has attempted to establish
a framework that balances expressiveness and efficient policy analysis for
RBAC extensions based on first-order logic.

Verified bandwidth reservation under link-flooding attacks: A core
challenge for quantitative bandwidth guarantees is that link-flooding at-
tacks can be caused by a huge number of low-volume flows originating
from colluding legitimate-looking bots, e.g., as seen in the Hidden Cobra
DDoS Botnet Infrastructure [66]. Therefore, commonly known fairness
notions that QoS solutions try to achieve, such as per source [53], per des-
tination [71], per flow [22], per computation [56], and per class [35], are
insufficient in such settings and result in an unfair sharing of bandwidth.
These fairness notions suffer from the “tragedy of the commons” [32],
whereby the incentive of rational users to increase their share of a com-
monly available resources will lead to infinitesimally small shares for less
aggressive, honest users. In particular, in today’s Internet, TCP fairness is
the most commonly used per-flow fairness notion, which allows adversarial
users to request arbitrarily many flows and thereby obtain a disproportional
amount of bandwidth compared to honest users [18].

To provide bandwidth and stability guarantees several bandwidth reser-
vation architectures have been proposed in the literature, e.g., [10, 25,
35, 72]. These architectures enable users to make bandwidth reservations
along network paths by allowing reservation state at the routers. However,
they neither handle malicious reservations nor do their authors provide
formal arguments to support their claims.

To the best of our knowledge, we are the first to provide a principled so-
lution to the bandwidth allocation problem that provides fairness, minimum
bandwidth, and stability guarantees in adversarial networks.

1.3 Contributions
We address the challenges given above with the following two contributions.

FORBAC is an extension of RBAC based on first-order logic. FORBAC is
designed to be expressive enough to formalize a wide range of access control
policies and at the same time simple enough to provide efficient policy
analysis. FORBAC was developed in collaboration with Carlos Cotrini. I
proposed relevant policy properties and formalized them in first-order logic.
Carlos Cotrini proposed the FORBAC language that allowed to translate the
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proposed policy properties to existential FORBAC formulas. He also proved
that FORBAC is simple enough that these properties can be analyzed in NP
and that it is the natural complexity class for this problem. I reduced their
policy analysis to the problem of satisfiability modulo appropriate theories.
To evaluate FORBAC’s expressiveness and our approach to policy analysis,
I used off-the-shelf SMT solvers to conducted a case study where I analyzed
access control of a major European bank.

N-Tube, a Neighbor-based Tube-fair bandwidth reservation algorithm, al-
lows ASes to reserve bandwidth on network paths. To allocate bandwidth
on a path, each AS on the path computes and allocates bandwidth locally
while accounting for other reservations. We model the N-Tube algorithm
and a powerful attacker as a labeled transition system. Transitions cor-
respond to message exchanges and the creation, update, and deletion of
reservations. We formalize and prove that N-Tube’s bandwidth allocations
quickly stabilize in periods of constant demands and that the resulting sta-
ble state (i) guarantees the allocation of a minimum bandwidth, even in
the presence of congestion, and (ii) satisfies a new fairness notion called
bounded tube-fairness. We also prove that any successful reservation imme-
diately reserves some bandwidth and existing reservations are immutable
up to their expiration time.

Publications: The content of the two contributions of this thesis are based
on the following two articles:

• Carlos Cotrini, Thilo Weghorn, Manuel Clavel, and David Basin, Ana-
lyzing First-Order Role-Based Access Control, in Proceedings of
the 28th IEEE Computer Security Foundations Symposium (CSF
2015).

• Thilo Weghorn, David Basin, Adrian Perrig, and Christoph Sprenger,
N-Tube: Guaranteed Bandwidth Reservation in the Age of DDoS,
submitted to CCS 2019.

In addition to the core publications, during my doctoral studies I also
co-authored the following articles:

• Carlos Cotrini, Thilo Weghorn, and David Basin, Mining ABAC Rules
from Sparse Logs, in Proceedings of the 3rd European Symposium
on Security and Privacy (EuroS&P 2018).

• Carlos Cotrini, Luca Corinzia, Thilo Weghorn, and David Basin, The
Next 700 Policy Miners: A Universal Method for Building Policy
Miners, submitted to CCS 2019.
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Both works are contributions in the field of access control, more specifically
in policy mining, closely related to the first part of the thesis.

1.4 Organization
The remainder of this thesis is divided into two parts. First, in Chapter 2
we define our access control policy paradigm FORBAC together with a set
of properties given as policy analysis queries in first-order logic. We explain
how the queries provide qualitative guarantees for FORBAC-policies and
show how we answer them with our tool. Second, in Chapter 3 we model
our distributed algorithm N-Tube that reserves bandwidth on network
paths and we prove quantitative guarantees such as lower bounds on
N-Tube’s bandwidth allocations and the time needed for these allocations
to stabilize. We conclude the thesis in Chapter 4 by summarizing our
findings and providing possible future directions to extend our contributions.
Appendices A and B contain technical details and proofs for Chapter 3.





Chapter 2

FORBAC : First-order Role-based Access
Control Policy Analysis

2.1 Introduction
RBAC [26] is a predominant access control model for centralized access-
control. However, it is not the last word, and researchers have investigated
numerous extensions that allow RBAC to scale better and be easier to
administrate, e.g. [29, 34, 40, 42, 48, 52]. However, the expressive power
of these extensions makes it difficult to understand the behavior of policies,
which in turn has motivated a plethora of research on policy analysis for
RBAC, e.g. [6, 11, 27, 62].

Many RBAC extensions use first-order logic in their syntax, but first-
order logic is simply too expressive for policy specification languages. This
is reflected in the syntax of different logic-based languages [12, 31] that
have been used in practice; for instance, they exclude disjunction and limit
quantifier alternation. Moreover, these languages have been defined with a
focus on policy formulation rather than policy analysis. As a result, policy
analysis can handle only fragments of these languages. For example, [38]
defines a language for administrating user attributes, where first-order logic
is used to define administrative rules that specify how users’ attribute values
change. Later, in [39], the authors study the complexity of the reachability
problem, a common analysis problem in administrative RBAC [5, 27, 37].
It turns out that this problem is PSPACE-complete, even after restricting
quantifier alternation, and allowing only unary functions and binary pred-
icates. Further restrictions must be imposed on the language to obtain
fragments where this reachability problem is solvable in polynomial time.

The use of first-order logic in RBAC extensions gives rise to new prob-
lems. In some extensions, the assignments of roles to users and permissions
to roles are specified by first-order formulas [14, 29, 34, 40]. This specifica-
tion is done by humans and is hence prone to errors. Policy administrators
may fail to anticipate all the consequences of their specifications. For ex-
ample, they may specify policies with redundant roles, as illustrated in
Figure 2.1, or even worse, assign users incorrect authorizations.

The imbalance between expressiveness and efficient analysis gives rise
to a new research direction: to develop frameworks strong enough to
express realistic authorization policies, but simple enough to be analyzed
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Figure 2.1: The role r2 is redundant: the permissions assigned to r2 are
contained in those assigned to r1 and the users assigned to r2 are also
assigned to r1.

in practice. These frameworks should provide languages for specifying
policies and properties, and procedures to verify properties against policies.
Other researchers have presented such frameworks [7, 55]. However there
are features and problems specific to extensions of RBAC, like the one
illustrated in Figure 2.1 [6], that were not addressed by this work. To
the best of our knowledge, no prior work has attempted to establish a
framework that balances expressiveness and efficient policy analysis for
RBAC extensions based on first-order logic.

We propose FORBAC, an extension of RBAC that incorporates the main
features of different RBAC extensions from the literature, e.g. [5, 29, 34, 40].
FORBAC strikes a balance among the variety of policies it can express, the
properties that can be verified, and its complexity, which is NP. Although
a polynomial complexity would be desirable, we argue that NP-hardness
cannot be avoided in policy analysis. To verify properties of FORBAC
policies, we reduce them to satisfiability modulo theories and use the
SMT-solver Z3 [21].

To evaluate our theses that (1) FORBAC is expressive enough for sub-
stantial real-world applications and (2) realistic policies can be analyzed
with reasonable overhead, we conduct a case study on the access-control
infrastructure of a major European bank. The bank’s PDP manages around
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350 applications, each with a separate security policy. In total, it manages
access for close to 50,000 users and 57,000 actions. We give an overview of
the bank’s rules that govern both the assignments of roles to users and the
assignment of permissions to roles. We express them as FORBAC policies
and conduct experiments on a variety of relevant policy analysis queries.
Using SMT solvers, most of the queries are answered in seconds. For a few
of the queries, the evaluation takes several minutes and we identify reasons
for this and suggest improvements.

The remainder of this chapter is organized as follows. In Section 2.2 we
describe the features of different RBAC extensions from the literature and
establish requirements for FORBAC. In Section 2.3 we define FORBAC’s
syntax and semantics and in Section 2.4 we show how to specify policy
analysis queries for FORBAC policies. In Section 2.5 we present experimen-
tal results. In Section 2.6 we discuss related work and in Section 2.7 we
draw conclusions.

2.2 Requirements for FORBAC
FORBAC is a RBAC extension designed to strike a balance between

• providing an expressive language for specifying RBAC policies and
properties of these policies, and

• guaranteeing a low complexity for verifying policies against such
properties.

Many extensions for RBAC like [34, 40, 52] include fragments of first-
order logic and therefore make their policy analysis undecidable, or at least
intractable. In the following, we present some of their central features to
provide insight into the requirements for an expressive RBAC policy specifi-
cation language. Based on these requirements, we define in Section 2.3 a
fragment of first-order logic that is sufficiently simple, but still expressive
enough to formalize realistic RBAC policies.

Attributes A powerful increase in RBAC’s expressiveness is introduced by
adding attributes to users, roles, and permissions. This allows fine-grained
access control, e.g., providing a role for relationship mangers to access
customer data but restricting each of their permissions to precisely those
customers they manage. Instead of defining a separate role for each subset
of customers, an attribute is added to the role relationship manager that
specifies the set of customers assigned to it.
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Extensions of roles with attributes have been proposed as parameterized
permissions and role templates [3, 16, 29]. A parameterized permission
describes a set of permissions that have certain attributes in common. For
example, accessing customer data could be given as a parameterized per-
mission ReadData(c), where c is a variable representing a customer. By
using parameterized permissions, policy administrators only need to define
one permission together with the ReadData attribute, instead of one permis-
sion for every customer. Role templates are sets of parameterized permis-
sions. For example, for relationship manager we can define a role template
RelManager containing the parameterized permission ReadData(c). When a
user is assigned the role template RelManager, he or she is also assigned a set
of customers C . The pair (RelManager, C) is called a role instance. Assigned
to this role instance, the user can access the data of every customer in C and
therefore avoids creating a separate role for every relationship manager.
We add parameterized permissions and role templates to our language and
formalize them with functions and binary relations in first-order logic.

Role and permission assignments Moreover, RBAC extensions apply rules
to assign roles to users and permissions to roles. Instead of manually admin-
istering these relations in large organizations where users and permissions
change their attribute values frequently, machine-readable rules provide
a convenient solution to create these relations automatically. Numerous
RBAC extensions [29, 34, 38] use first-order logic to specify rules for user-
role and role-permission assignment relations. However, they leave the
fragment of first-order logic formalizing these specifications unrestricted.

We restrict the first-order fragment used for FORBAC. For instance,
we exclude the arbitrary nesting of quantifiers. In practice, permissions
simply require the presence or absence of values in the user’s, role’s, and
permission’s attributes.

Various logic-based policy specification language that are used in prac-
tice forbid quantifier alternation. For example, Lithium [31] does not allow
quantifier alternation but it is still possible to express various parts of the
U.S. legislation with it including fragments of the Privacy Rule. Another
example is Cassandra [13], which also forbids quantifier alternation, but
allows to formalize policies for the national electronic health record system
of the United Kingdom.

Numeric constraints Constraints restricting dates and durations of per-
missions are often part of access control policies, such as the following
fragment of the HIPAA rule shows:
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A period of creditable coverage shall not be counted, with
respect to enrollment of an individual under a group health
plan, if, after such period and before the enrollment date, there
was a 63-day period during all of which the individual was not
covered under any creditable coverage.

Moreover, functions in organizations are often limited to certain time
periods or for a fixed duration. For example, vendors may access their
contracts in the second week of every quarter of the year, and these contracts
must be handed in within two weeks [14]. Hence, most of these constraints
can be expressed by inequalities between integer values.

Note that there are other requirements that are used in access control
specifications, but we excluded from our language. The most well-known
of these features are role hierarchies [59], delegation [9], and separation-
of-duty constraints [4], which we leave for future work.

Complexity of policy analysis To be usable in daily business, policy anal-
ysis of access control languages must be efficiently computable. However,
in [19] it is shown that checking the basic query, if every access request is
permitted, in a sufficiently expressive but simple policy specification lan-
guage is NP-hard. State-of-the-art policy analysis tools like Margrave [54]
and the one presented in [7] are used for analyzing realistic XACML policies
like Continue [47] and are expressive enough to embed such a simple query
in their policy analysis. As basic policy analysis queries are NP-hard, we
believe P is too restrictive (unless P = NP) and therefore set the limit to
perform our policy analysis to NP.

2.3 Syntax and semantics of FORBAC
Provided the requirements of our framework, we define the vocabulary of
our policy specification language.

Definition 1. A FORBAC signature is a triple Σ = (S,A1,A2) where S is a
set of sorts S = SRBAC ∪ {Integer,String} with,

SRBAC = {Users, Roles1, Roles2, . . . , RolesT , Perms},

for T ∈ N and A1, A2 are sets of unary function symbols. Every g ∈ A1 ∪
A2 has a function type Wg → Vg with Wg ∈ SRBAC. For g ∈ A1, Vg ∈
{Integer,String} and for g ∈ A2, Vg ∈ {Pf (Integer) ,Pf (String)}, where
Pf (Integer) and Pf (String) denote the sets of finite sets of integers and
strings, respectively.
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Elements in A1 denote single-valued attributes and those in A2 denote
set-valued attributes. We use the term attribute to refer to any single or
set-valued attribute. We use RT(Σ) to denote the set {Roles1, . . . , RolesT } of
role templates of Σ.

Example 2. We present a simple FORBAC-signature ΣB = (S,A1,A2) for
specifying the access control policies of an administrative tool to manage bank
accounts. The sorts S are Users, RJunior, RSenior, Perms, Integer, and String.
Here, RT(ΣB) = {RJunior, RSenior} where both represent two kinds of bank
accounts, “junior accounts” and “senior accounts”, respectively.
The sort Users has the following four single-valued attributes

• custID : Users→ String,

• age : Users→ Integer,

• home : Users→ String,

• income : Users→ Integer.

where custID, age, and income provide the corresponding real world attributes
and home denotes the user’s home country.
The role template RSenior has the single-valued attribute

• limit : RSenior→ Integer

that specifies the maximal amount a professional bank account holder may
withdraw or transfer from his account.
The role template RJunior has the set-valued attribute

• region : RJunior→ Pf (String)

that specifies in which countries a junior bank account holder can withdraw
money without additional charges.
Perms have the following three single-valued attributes

• service : Perms→ String,

• value : Perms→ Integer,

• country : Perms→ String.

The attribute service describes the kind of transaction, e.g., withdrawing or
transferring money from a bank account, value sets an upper bound to how
much money may be involved, and country denotes the country where the
transaction takes place.
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Definition 3. Let Σ = (S,A1,A2) be a FORBAC signature. A Σ-structure S
consists of

• a finite, non-empty set W S , for each sort W ∈ S, where IntegerS and
StringS are the sets of integers and strings, and Pf (Integer)S and
Pf (String)S are the sets of their finite subsets, respectively, and

• a function gS : W S
g → V S

g , for every g ∈ A1 ∪A2 with function type
Wg → Vg .

We call the elements of UsersS users in S, for a role template R ∈ RT(Σ), we
call the elements of RS role instances of R, and we call the elements of PermsS

permissions of S.

Example 4. Let ΣB be the FORBAC-signature from Example 2. Figure 2.2
shows a ΣB-structure S with three users, two role instances of RJunior, one
role instance of RSenior, and three permissions.

u1

u2

u3

r1

r2

r3

p1

p3

p2

UsersS RT(Σ)S PermsS

 
 
custID(u1) = "c534"
age(u1) = 21
home(u1) = "DE"
income(u1) = 800

custID(u2) = "c145"
age(u2) = 19
home(u2) = "FR"
income(u2) = 200

custID(u3) = "c689"
age(u3) = 53
home(u3) = "CH"
income(u3) = 8,000

region(r1) = {"DE", "CH"} service(p1) = "withdraw"
value(p1) = 200
country(p1) = "DE"

service(p2) = "withdraw"
value(p2) = 30
country(p2) = "DE"

service(p3) = "transfer"
value(p3) = 2,000
country(p3) = "CH"

region(r2) = {"FR", "CH"}

limit(r3) = 8,000

Figure 2.2: An example of a ΣB-structure
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Definition 5. An atomic FORBAC formula can be either of the following
expressions:

• t1 ∼ t2, where t1 and t2 are single-valued terms. They are either
constants of type Integer or String, or expressions of the form g(x),
where g is a single-valued attribute and x is a variable. The symbol ∼
can be =, ≤, or <.

• T1∝ T2, where T1 and T2 are set-valued terms. They are either con-
stant symbols denoting finite sets of strings, constant symbols denoting
finite sets of finite intervals of integers, or expressions of the form G(x),
where G is a set-valued attribute and x is a variable. The symbol∝ is
either = or ⊆.

• t ∈ T, where t is a single-valued and T a set-valued term, respectively.

The syntax of atomic FORBAC-formulas is summarized by the following
BNF grammar:

ψ ::= t∼ t |T∝ T | t ∈ T
t ::= c | g(x)
T ::= C | G(x)
∼ ::= ≤ | = | <
∝ ::= ⊆ | =

Here, c ranges over integer and string constants, g ranges over single-valued
attributes, G ranges over set-valued attributes, C is any finite set of strings or
any finite set of integer intervals, and x is a variable of an appropriate type.
Finally, a FORBAC-formula is a Boolean combination (negation, conjunction,
disjunction, implication, or equivalence) of atomic FORBAC formulas.

Definition 6. The size of a FORBAC-formula φ is the number of occurrences
of φ’s atomic FORBAC-formulas and is recursively defined by

|φ|=







1 if φ is atomic
|ψ| if φ ≡ ¬ψ
|ψ1|+ |ψ2| if φ ≡ψ1 ./ ψ2,

where ./∈ {∧,∨,→,↔}.

Remark 7. Note that FORBAC can be embedded in many-sorted first-order
logic. Given a FORBAC-formula, for every set-valued attribute G, choose a
distinct binary relation symbol RG . Rewrite every atomic FORBAC subformula
containing a set-valued term as illustrated in the following three cases
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t ′ ∈ G(t)  RG(t, t ′)
G(t) ⊆ G′(t ′)  ∀y . (RG(t, y)→ RG′(t ′, y))
G(t) = G′(t ′)  ∀y . (RG(t, y)↔ RG′(t ′, y))

where G and G′ range over set-valued attributes and t and t ′ range over
single-valued terms. The remaining cases are analogous.

Definition 8. A FORBAC-policy is a triple (Σ,UA,PA), whereΣ is a FORBAC-
signature. The user-assignment specification

UA=
⋃

R∈RT(Σ)UAR(u, r)

and the permission-assignment specification

PA=
⋃

R∈RT(Σ)PAR(r, p)

are unions of sets UAR(u, r) and PAR(r, p) of FORBAC-formulas over Σ,
respectively. The user-assignment formulas UAR(u, r) contain at most the
two free variables u and r of sorts Users and R, respectively, and the permission-
assignment formulas PAR(r, p) contain at most the two free variables r and
p of sorts R and Perms, respectively.

Example 9. Consider the FORBAC-signature ΣB from Example 2 and suppose
that we have the following policy:

Users no older than 21 are assigned an instance of RJunior, which allows
them to withdraw up to 2,000 CHF in the users’ respective home country
or in Switzerland.

Users whose income exceeds 7,500 CHF are assigned an instance of
RSenior, which allows them to withdraw and transfer money in any
country provided the value does not exceed the user’s income.

The following FORBAC-policy (ΣB,UA,PA) formalizes this. AS ΣB is given
in Example 2, we only provide the formulas for UA and PA.

UARJunior
(u, r)≡

�

age(u)≤ 21 ∧
region(r) = {home(u), “CH”}

�

PARJunior
(r, p)≡





service(p) ∈ {“withdraw”} ∧
value(p)≤ 2,000 ∧
country(p) ∈ region(r)




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UARSenior
(u, r)≡

�

income(u)> 7,500 ∧
limit(r) = income(u)

�

PARSenior
(r, p)≡

�

service(p) ∈ {“withdraw”, “transfer”} ∧
value(p)≤ limit(r)

�

.

Let Σ be a FORBAC-signature, S a corresponding Σ-structure, and suppose
u is a user, p a permission, and r a role instance of R in S. We say that u is
assigned r if u and r satisfy UAR(u, r) in S, and r is assigned p if r and p
satisfy PAR(r, p) in S, respectively.

Example 10. Given the ΣB-structure of Example 4, Figure 2.3 illustrates
which permissions are assigned to which role instances and which role instances
are assigned to which users.

u1

u2

u3

r1

r2

r3

p1

p3

p2

UsersS RT(Σ)S PermsS

 
 
custID(u1) = "c534"
age(u1) = 21
home(u1) = "DE"
income(u1) = 800

custID(u2) = "c145"
age(u2) = 19
home(u2) = "FR"
income(u2) = 200

custID(u3) = "c689"
age(u3) = 53
home(u3) = "CH"
income(u3) = 8,000

region(r1) = {"DE", "CH"} service(p1) = "withdraw"
value(p1) = 200
country(p1) = "DE"

service(p2) = "withdraw"
value(p2) = 30
country(p2) = "DE"

service(p3) = "transfer"
value(p3) = 2,000
country(p3) = "CH"

region(r2) = {"FR", "CH"}

limit(r3) = 8,000

Figure 2.3: User and permission-assignments in the ΣB-structure S

Definition 11. Given a FORBAC-policy (Σ,UA,PA) and a role template
R ∈ RT(Σ), the formula AuthR(u, p) is defined by

∃r ∈ R . UAR(u, r) ∧ PAR(r, p)
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and Auth(u, p) is defined by
∨

R∈RT(Σ) AuthR(u, p) .

Given a Σ-structure S, we say that a user u ∈ UsersS is authorized for a
permission p ∈ PermsS if u and p satisfy Auth(u, p) in S.

To simplify notation, we omit the sorts Users and Perms when quantify-
ing over variables of their type, i.e., instead of writing

∀u ∈ Users∃r1 ∈ R1, r2 ∈ R2 . UAR1
(u, r1) ∨ UAR2

(u, r2),

we write

∀u∃r1 ∈ R1, r2 ∈ R2 . UAR1
(u, r1) ∨ UAR2

(u, r2).

Example 12. Consider the FORBAC-signature presented in Example 2, the
ΣB-structure S presented in Example 4, and the FORBAC-policy presented in
Example 9. User u1 is authorized for permissions p1 and p2 and user u3 is
authorized for permissions p1, p2, and p3.

Instead of role templates one could use simply one sort role and a special
type function to distinguish between different role templates. However,
this makes specifying FORBAC-policies more complicated since attributes
among role templates may differ. Policy administrators would need to
use dummy values in case attributes are undefined for the respective role
template. In Example 9 the attribute region is superfluous in the role
template RSenior and would need to be set to all existing countries.

It can be shown that authorization in a FORBAC-structure can be de-
cided in polynomial time [19].

Theorem 13. Given a FORBAC policy (Σ,UA,PA), a Σ-structure S, a user
u ∈ UsersS , and a permission p ∈ PermsS , deciding whether u is authorized
for p takes at most polynomial time.

2.4 Policy analysis in FORBAC
We now define the language for posing analysis queries for FORBAC-policies.
Since FORBAC-formulas can be expressed in first-order logic, this language
is also a natural choice for reasoning about FORBAC-policies. However,
first-order logic is undecidable in general and its restriction to fragments
must be done with care. Halpern and Weissman [31] studied several
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fragments of first-order logic for specifying access control policies. They
showed that even after limiting the number of quantifier alternations and
removing function symbols, one can end up with a fragment where merely
deciding authorization is intractable.

To strike a balance between expressiveness in property specification
and efficiency in policy analysis, we propose the set of existential FORBAC-
formulas as the language for specifying analysis queries.

Definition 14. An existential FORBAC-formula is a first-order formula of the
form ∃x1, x2 . . . , xn .ϕ(x1, x2, . . . , xn), where ϕ(x1, x2, . . . , xn) is a Boolean
combination of FORBAC-formulas over a FORBAC-signature.

To verify if a property holds for a FORBAC-policy, we build an existential
FORBAC-formula that describes a countermodel that violates the property.
The Boolean combination of FORBAC-formulas describes the negation
of the property and the existential quantifiers specify the elements that
should appear in a countermodel. The formula can then be input into an
SMT solver, which attempts to find such a countermodel. The syntax of
existential FORBAC-formulas limits quantifier alternation and the behavior
of relations and functions so that deciding satisfiability is NP-complete. For
a detailed proof we refer to [19].

Theorem 15. Deciding the satisfiability of an existential FORBAC-formula is
NP-complete.

The low complexity, NP, is not for free. There are relevant policy analysis
queries like observational equivalence and conflict [7] that cannot be ex-
pressed as existential FORBAC-formulas. However, they can be expressed
in first-order logic and can be passed as input to an SMT-solver.

We present now four kinds of policy analysis queries and explain how
to reduce them to satisfiability of existential FORBAC-formulas.

A Authorization inspection can be used to verify that a FORBAC-policy
does not grant undesired access.

B Assignment simplification can be used to identify redundancies in
FORBAC formulas.

C Role subsumption can be used to identify redundant role templates.

D Redundant assignments can be used to identify redundancies in the
user-assignment relation.
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These queries illustrate the expressive power of existential FORBAC for-
mulas as a language for policy analysis for FORBAC. Moreover, they are
all natural queries, that arise and require answers, when administrating
policies specified in rich policy languages, e.g., where role templates and
first-order user and permission-assignments interact.

2.4.1 Authorization inspection
Suppose we are given a FORBAC-policy (Σ,UA,PA), a FORBAC formula
ψuser(u) with a free variable u of sort Users, and FORBAC formulas ψ1(p1),
ψ2(p2), . . ., ψk(pk), with free variable p1, p2, . . ., pk of sort Perms. Autho-
rization inspection can be cast as the question of whether a formula of the
following form is satisfiable:

∃u, p1, . . . , pk .ψuser(u) ∧
∧

i≤k

�

ψi(pi) ∧ Auth(u, pi)
�

. (2.1)

Checking this formula’s satisfiability amounts to searching for a Σ-structure
S with a user u who matches the criteria of ψuser and who is authorized for
some permissions p1, p2, . . ., pk that match the criteria of ψ1, ψ2, . . ., ψk,
respectively.

Example 16. Consider again the FORBAC-policy from Example 9. According
to UARJunior

(u, r), users can be assigned instances of RJunior if they are at most
21 years old. Also, according to PARJunior

(r, p), instances of RJunior can never
be granted permission to withdraw amounts larger than 2,000 CHF. One may
conjecture that users who are at most 21 years old can never withdraw large
amounts of money; they cannot, at least, for the ΣB-structure in Figure 2.3.
To determine whether this property holds for any ΣB-structure, we instantiate
Formula (2.1) as follows.

ψuser(u) ≡ age(u)≤ 21,

ψ1(p1) ≡
�

service(p1) = “withdraw” ∧
value(p1)> 2,000

�

.

The resulting instance of Formula (2.1) is

∃u, p1 .







age(u)≤ 21 ∧
service(p1) = “withdraw” ∧
value(p1)> 2,000 ∧
Auth(u, p1)






. (2.2)

If this formula is unsatisfiable, then we have confirmed our conjecture. How-
ever, if we input this formula to the SMT-solver Z3, then Z3 outputs that it
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is satisfiable and provides a model satisfying the formula. This model can be
used to build a ΣB-structure that refutes our conjecture.

The following is a ΣB-structure S̃ that satisfies Formula (2.2). Let ΣB be
the FORBAC-signature from Example 2. Figure 2.4 shows a ΣB-structure S̃
with one user u, one role instance r of type RSenior, none of type RJunior, and
one permission p. It is easy to see that u and r satisfy UARSenior

(u, r) and that

u r p

UsersS RT(Σ)S PermsS

 
 
custID(u) = "c224"
age(u) = 20
home(u) = "ES"
income(u) = 9,000

limit(r) = 9,000 service(p) = "withdraw"
value(p) = 2,600
country(p) = "ES"

_
_

_
_

_ _
_

_

~~~

___

Figure 2.4: User and permission-assignments in the ΣB-structure S̃

r and p satisfy PARSenior
(r, p). Therefore u is authorized for p. This means

that it is possible for users who are at most 21 years old to withdraw amounts
greater than 2,000 CHF. What they should do is to have an income greater
than 7,500 CHF, so they obtain an instance r of RSenior with a limit higher
than 7,500 CHF. This would allow them to withdraw more than 2,000 CHF.

Note that, as given, Formula (2.1) is not an existential FORBAC-formula
because Auth(u, pi), for i ≤ k, contains existential quantifiers. However,
it can be rewritten into an existential FORBAC-formula by moving the
existential quantifiers in Auth(u, pi), for i ≤ k, to the front of the formula,
using standard first-order equivalences.

2.4.2 Assignment simplification
Poor design or changes in policy specifications may lead to redundancies,
which humans have difficulty detecting. We explain how we can identify
redundancies using existential FORBAC formulas.

Example 17. Consider the following FORBAC formula that specifies UA for
some policy:

UAR(u, r)≡ψ1(u, r) ∨ ψ2(u, r),

where
ψ1(u, r) ≡ unit(r) = 45 ∧ level(u) = 23 and
ψ2(u, r) ≡ unit(r) = 45 ∧ level(u)> 20.
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UAR(u, r) consists of a disjunction of two formulas, where the satisfaction
of the first formula implies the satisfaction of the second one. This means
that ψ1(u, r) is redundant. To confirm this, we can show that the following
formula is valid:

∀u∀r ∈ R . (ψ1(u, r) ∨ ψ2(u, r))↔ψ2(u, r) .

This is equivalent to showing that the following existential FORBAC formula

∃u, r ∈ R .¬ ((ψ1(u, r) ∨ ψ2(u, r))↔ψ2(u, r))

is not satisfiable.

The same technique can be used to detect redundancies in PAR(r, p). In
general, whenever one conjectures that a FORBAC formulaψ(x1, x2, . . . , xk)
is equivalent to another formula ψ′(x1, x2, . . . , xk), one can check this by
determining whether the following formula is valid:

∀x1, x2, . . . , xk .ψ(x1, x2, . . . , xk)↔ψ′(x1, x2, . . . , xk) .

This is equivalent to determining whether the following existential FORBAC
formula is unsatisfiable:

∃x1, x2, . . . , xk .¬
�

ψ(x1, x2, . . . , xk)↔ψ′(x1, x2, . . . , xk)
�

.

2.4.3 Role subsumption
RBAC systems used in large enterprises with multiple administrators may
end up with equivalent redundant roles, especially, when the administrators
are unaware of roles previously created by other administrators. Identifying
these roles helps simplify RBAC policies. We explain how this situation can
occur in FORBAC.

Example 18. Consider a FORBAC-policy (Σ,UA,PA)with RT(Σ) = {R1, R2}
and role permission-assignment formulas

PAR1
(r, p) ≡
�

action(p) ∈ {“read”, “write”} ∧
(level(r) = level(p) ∨ level(r)> level(p))

�

PAR2
(r, p) ≡
�

(action(p) = “read” ∨ action(p) = “write”) ∧
level(r)≥ level(p)

�

.
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Now, consider a Σ-structure S with two role instances r1 and r2 of R1 and R2,
respectively. Suppose that levelS(r1) = levelS(r2). Observe that both instances
are assigned the same set of permissions. As a result, whenever a user is
assigned an instance r of R2, she can be assigned instead an instance r ′ of R1
with levelS(r ′) = levelS(r). The user would be authorized for the same set of
permissions. Hence R2 is redundant.

We now formally define the ideas from the previous example. For
simplicity, we ignore set-valued attributes, but the presentation is analogous
for the general case.

Definition 19. Let Σ be a FORBAC-signature and let R1, R2 ∈ RT(Σ). We say
that R1 expands R2 if for every attribute g of type R2→W, with W ∈ {String,
Integer}, there is the same symbol g, but of type R1→W.

Definition 20. Let R1 and R2 be two role templates in a FORBAC-signature.
We say that R1 subsumes R2 and R1 expands R2 if the following formula holds:

∀r1 ∈ R1, r2 ∈ R2 .
∧

g:R2→W g(r1) = g(r2)→
∀p .PAR2

(r2, p)→ PAR1
(r1, p) .

Here, g ranges over attributes of type R2→W , with W ∈ {String, Integer}.
This formula says the following. Let r1 and r2 be two role instances of
R1 and R2, respectively. If gS(r1) = gS(r2), for every attribute g of type
R2→W , then any permission assigned to r2 is also assigned to r1.

Using first-order logic equivalencies, it is easy to prove that R1 subsumes
R2 iff R1 expands R2 and the following existential FORBAC-formula is
unsatisfiable:

∃ r1 ∈ R1, r2 ∈ R2 ∃p .
∧

g:R2→W g(r1) = g(r2) ∧
PAR2

(r2, p) ∧ ¬PAR1
(r1, p) .

Finally, we call two roles equivalent if they subsume each other. Equivalent
roles point to potential redundancies in the policy. However, we note that
two equivalent roles are not necessarily redundant. It may happen that
such roles have different functions from an organizational perspective. For
example, the role of a programmer may have exactly the same types of
permissions as the role of a tester, but they need to be distinguished in an
organization [6].

2.4.4 Redundant assignments
In classical RBAC, the assignment of roles to users and the assignment of
permissions to roles are two tasks performed by different people who do
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not necessarily communicate with each other. The assignment of roles may
be performed, for example, by people in human resources; whereas the
assignment of permissions may be performed by the application owners.
This might lead to a situation where for two roles r1 and r2 the permissions
assigned to r2 are contained in those assigned to r1 and the users who are
assigned r2 are also assigned r1. This is illustrated in Figure 2.1 in the
introduction. In this case, role r2 might be redundant.

This situation, presented in [6], occurs in a kind of FORBAC policies that
we call functional FORBAC-policies. In a functional FORBAC-policy, for every
role template R, any two role instances assigned to a same user have exactly
the same attribute values. The policy presented in Example 9 is a functional
FORBAC policy. For any two role instances r and r ′ of RJunior assigned to
a user u, we have that region(r) = region(r ′) = {home(u), “CH”}. Similarly,
for any two instances r and r ′ of RSenior assigned to a user u, we have that
limit(r) = limit(r ′) = income(u). Contrast this with a FORBAC-policy with
a role template R such that

UAR(u, r) ≡ age(u)≥ 18 ∧ level(r)≤ 50.

This is not a functional FORBAC-policy. A user over 18 can be assigned
several role instances, each with a different value for level. We now formally
define functional FORBAC-policies.

Definition 21. A FORBAC-policy (Σ,UA,PA) is functional if every role
template R ∈ RT(Σ) satisfies the following two requirements:

1. UAR(u, r) can be written as a conjunction UAu
R(u) ∧ UAr

R(u, r). This
means that the conditions for assigning a role instance to a user can be
split in two: requirements the user must fulfill and requirements that
the role instance must fulfill based on the user attributes.

2. The following formula is valid:

∀u∀r ∈ R, r ′ ∈ R .UAr
R(u, r) ∧ UAr

R(u, r ′)→
∧

g:R→W g(r) = g(r ′),

where g ranges over attributes of type R → W, with W ∈ {Integer,
String, Pf (Integer) , Pf (String)}. This means that any two role in-
stances of R assigned to a same user have the same attribute values.

It is easy to automatically check if a FORBAC-policy (Σ,UA,PA) is func-
tional. To check the second requirement, one checks, for every R ∈ RT(Σ),
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whether the following existential FORBAC-formula is unsatisfiable.

∃u∃r ∈ R, r ′ ∈ R .
UAr

R(u, r) ∧ UAr
R(u, r ′) ∧

∨

g:R→W g(r) 6= g(r ′) .

Having defined what a functional FORBAC-policy is, we now introduce
a policy analysis query for identifying redundant formulas in UA. We start
with an example.

Example 22. Consider a FORBAC-policy (Σ,UA,PA)with RT(Σ) = {R1, R2}
and UA and PA given by

UAR1
(u, r) ≡ age(u)≥ 18 ∧ level(r) = 6

UAR2
(u, r) ≡ age(u)≥ 21 ∧ level(r) = 5

PAR1
(r, p) ≡
�

action(p) ∈ {“read”, “write”} ∧
level(r)≥ level(p)

�

PAR2
(r, p) ≡
�

action(p) ∈ {“read”} ∧
level(r)≥ level(p)

�

.

Note that this is a functional FORBAC-policy. Now, observe that whenever
a user is assigned an instance r2 of R2, he is also assigned an instance r1
of R1. Moreover, r1 would get more permissions than r2. This implies that
UAR2

(u, r) is redundant.

We now formally define this policy analysis query. Given a functional
FORBAC-policy (Σ,UA,PA) and two role templates R1, R2 ∈ RT(Σ), we
want to check if the following formula is valid:

�

∀u .UAu
R2
(u)→ UAu

R1
(u)
�

∧

∀u∀r1 ∈ R1, r2 ∈ R2.
UAr

R1
(u, r1) ∧ UAr

R2
(u, r2)→

∀p .PAR2
(r2, p)→ PAR1

(r1, p) .

If the previous formula is valid, thenUAR2
(u, r) is redundant in the FORBAC-

policy. Checking the validity of the previous formula is equivalent to check-
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ing whether the following existential FORBAC-formula is unsatisfiable:
�

∃u .UAu
R2
(u) ∧ ¬UAu

R1
(u)
�

∨

∃u∃r1 ∈ R1, r2 ∈ R2∃p .
UAr

R1
(u, r1) ∧ UAr

R2
(u, r2) ∧

PAR2
(r2, p) ∧ ¬PAR1

(r1, p) .

2.5 Experimental results
We present here the evaluations of our two theses: the FORBAC language
is suitable for specifying realistic access control policies and these policies
can be analyzed with reasonable overhead. For this, we conducted a case
study on the access-control infrastructure of a European bank. We had
access to the access control policies of 350 applications, in particular the
rules defining the assignments of roles to users and the assignments of
permissions to roles. We chose 10 of those policies and translated their rules
into FORBAC-policies. In our translation, we omitted those parts dealing
with delegation of role instances and separation-of-duty constraints, which
are out of the scope of FORBAC, as explained in Section 2.2. For each
of the 10 resulting FORBAC-policies, we randomly generated 10 different
instances of the problems from Section 2.4 and checked them against their
respective policies using Z3.

2.5.1 Policy structure
We now describe the structure of the 10 translated FORBAC-policies.

User-assignment relation In the FORBAC-policies, users are assigned role
instances in two different ways. First, depending on a user’s attribute values,
like job or country, the user is automatically assigned the role instances
that allow him to perform his duties. Second, users may require for some
tasks more role instances than what the bank’s policy automatically assigns
to them. They therefore request additional role instances from the policy
administrator, who assigns them individually.

These two ways are called provisioned and individual assignments. Both
can be expressed as FORBAC-formulas of the following form:

�

∧

i

conditionsi(u)

�

∧ instanceAssigned(u, r). (2.3)

Whenever a user’s attribute values satisfy
∧

i conditionsi(u), then the user
can be assigned a role instance whose attribute values are defined by
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instanceAssigned(u, r). An example of this formula is

(job(u) = “trader” ∧ country(u) ∈ {“FR”, “USA”})
∧ location(r) = country(u) ∧ value(r) = 10,000.

This expresses a provisioned assignment, which assigns users, who are
traders working in France or the USA, to a role instance with their own
country as location and a value of 10,000.

Individual assignments are a special case of provisioned assignments,
where

∧

i conditionsi(u) contains only one conjunct of the form userID(u) =
c, with c a constant, and instanceAssigned(u, r) does not contain any at-
tribute of the sort User. An example of an individual assignment is

userID(u) = 73,134 ∧ location(u) = “FR” ∧ value(r) = 10,000.

Here, userID is an attribute of type Users→ Integer used to identify the
application’s users.

The provisioned and the individual assignments for each role template
R ∈ RT(Σ) are expressed in UAR(u, r) as a large disjunction of FORBAC-
formulas of the form (2.3). To differentiate between provisioned and
individual assignments we partition the disjunctions

UAR(u, r) ≡ UA1
R(u, r) ∨ UA2

R(u, r)

in two parts, where UA1
R(u, r) contains the provisioned assignments and

UA2
R(u, r) contains the individual assignments.

Permission-assignment relation For a role template R, the formula
PAR(r, p) has the form

∨

i

∧

j

fi j(p)∼ gi j(r),

where fi j and gi j are attributes and∼ is one of the following: =, 6=,∈, or /∈.

Size of the policies In Table 2.1, we report on the size of the 10 translated
FORBAC-policies. The label ]A denotes the number of (single- and set-
valued) attributes in the signature . |UA1| denotes

∑

R

�

�UA1
R(u, r)

�

�,
�

�UA2
�

�

denotes
∑

R

�

�UA2
R(u, r)

�

� and |PA| denotes
∑

R |PAR(u, r)|. ]Users is the
number of users. Finally, ]RT(Σ) is the number of role templates.

2.5.2 Generating instances of queries
For each of the selected policies and for each query presented in Section 2.4,
we generated 10 instances and verified them against the selected policy
with Z3. We present next, for each query, how we generated these instances.
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Policy ]A |UA1| |UA2| |PA| ]Users ]RT(Σ)

App1 19 33 238,052 126 3,490 6
App2 24 1,646 174,655 1668 9,330 96
App3 56 694 256,439 232 34,782 51
App4 20 78 135,089 262 17,554 11
App5 20 16 3,262 156 85,949 8
App6 9 56 4,451 200 23,368 17
App7 15 363 1,911 237 44,276 14
App8 36 318 13,144 661 20,438 14
App9 15 249 9,427 160 8,152 11
App10 34 46 1,734 120 24,199 12

Table 2.1: Size of the FORBAC policies for 10 bank applications

Authorization inspection We generate each instance as follows.

1. Build ψuser(u). Randomly choose an attribute g of type Users→W ,
with W ∈ {Integer,String} and a constant value c of type W . Let
ψuser(u) be g(u) = c.

2. Randomly choose a value k ≤ 10.

3. for i = 1 to k,

(a) Build ψi(pi). Randomly choose up to 5 attributes g1, g2, . . . ,
g5 and constant values c1, c2, . . . , c5. Let

ψi(pi) ≡
∧

i≤5

gi(pi) = ci .

(b) Build Auth(u, pi) as
∨

R ∃r ∈ R . UAR(u, r) ∧ PAR(r, pi),

4. The instance is the formula

∃u∃p1, . . . , pk .ψuser(u) ∧

�

∧

i≤k

ψi(pi) ∧ Auth(u, pi)

�

.
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Assignment simplification Recall that Σ is the FORBAC-signature used to
specify the application’s FORBAC-policy. Recall too that, for a role template
R in Σ, UA1

R(u, r) is a disjunction of formulas of the form

�

∧

i≤K

conditionsi(u)

�

∧ instanceAssigned(u, r).

To generate an instance of the assignment simplification query, we randomly
choose j ≤ K . The generated instance is then

∃u .¬







∧

i≤K

conditionsi(u)↔
∧

i≤K
i 6= j

conditionsi(u)






.

Intuitively, we want to know if conditions j(u) is redundant. Note that
instanceAssigned(u, r) is not part of the formula because we want to simplify
the conditions that assign the role to a user and instanceAssigned(u, r) just
describes the role instance.

Role subsumption To generate an instance of the role subsumption query,
we randomly choose two role templates R1 and R2. We then take PAR1

(r, p)
and PAR2

(r, p) and define the instance as

∃r1 ∈ R1, r2 ∈ R2 ∃p .
∧

g g(r1) = g(r2) ∧ PAR2
(r2, p) ∧ ¬PAR1

(r1, p) .

Intuitively, we ask if R1 subsumes R2. The bank’s policies, once translated
in FORBAC, have the following property: for any two role templates R1 and
R2, if there is defined a function g : R1→W , then there is also defined a
function g : R2→W . In other words, every attribute is defined for all role
templates, so it follows immediately that any two role templates expand
each other.

Redundant assignments Recall that, for every role template R, UA1
R(u, r)

is a disjunction of formulas of the form
�

∧

i

conditionsi(u)

�

∧ instanceAssigned(u, r).

These disjuncts are always functional FORBAC-formulas. To generate an
instance of the redundant assignments query, we randomly choose two
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role templates R1 and R2 and one disjunct from each of UA1
R1
(u, r) and

UA1
R2
(u, r). Let

�

∧

i

conditionsi(u)

�

∧ instanceAssigned(u, r), and

�

∧

j

conditions′j(u)

�

∧ instanceAssigned′(u, r)

be the selected disjuncts. The instance is
�

∃u .
∧

i conditionsi(u)∧¬
∧

j conditions′j(u)
�

∨
∃u ∃r1 ∈ R1, r2 ∈ R2 ∃p .
instanceAssigned(u, r1) ∧
instanceAssigned′(u, r2) ∧
PAR2

(r2, p) ∧ ¬PAR1
(r1, p) .

2.5.3 Results and conclusions
We used the SMT solver Z3 to verify each of these instances against the
corresponding FORBAC-policy. We ran the checks on a 2.50 GHz Intel Core
i5 CPU, with 8GB of RAM. Table 2.2 shows how much time Z3 took to
verify, for each application, 10 instances of the queries of Authorization
Inspection (AI), Assignment Simplification (AS), Role Subsumption (RS),
and Redundant Assignments (RA). A cell with NA indicates that there
were not enough provisioned assignments to create 10 instances for the
corresponding policy. A cell with > 360 indicates that Z3 required more
than 60 minutes for 10 instances, i.e. more than 360 seconds on average.
Regarding our first thesis, expressiveness, we could express the main parts

Policy App1 App2 App3 App4 App5 App6 App7 App8 App9 App10

AI 357.87 >360 >360 >360 2.98 1.85 3.52 32.69 38.02 0.30
AS 0.61 0.63 0.57 0.54 NA 0.75 0.87 0.5 0.49 NA
RS 0.53 0.55 0.43 0.43 0.45 0.47 0.46 0.47 0.47 0.44
RA 0.73 0.47 0.46 0.49 NA 0.58 0.53 0.59 0.49 NA

Table 2.2: Time (in seconds) needed by Z3 for an instance on average

of the policies in FORBAC, except for delegation of role instances and
separation of duty constraints. Regarding our second thesis, that policies
can be analyzed with reasonable overhead, the instances we generated



36 2 FORBAC : First-order Role-based Access Control Policy Analysis

for AS, RS, and RA can be analyzed by Z3 within one second for realistic
policies. The only exceptions are the first four applications in AI, which
include many individual assignments.

For policies where many individual assignments must be analyzed, we
see two ways of proceeding in practice:

1. Check the AI queries only on the provisioned assignments UA1
R(u, r).

We note that in practice UA2
R(u, r) should not be too large and can

often be replaced by provisioned assignments to improve policy main-
tenance.

2. In case UA2
R(u, r) is large, evaluate AI on each individual assignment

separately. Based on our experience it is possible to restrict the query
to a proper subset of all individual assignments before creating the
SMT-files.

If we evaluate the 10 instances on UA1
R(u, r) only, as described in 1), we

obtain the following average times:

Policy App1 App2 App3 App4 App5 App6 App7 App8 App9 App10

AI1 0.11 4.97 1.56 0.15 0.13 0.12 0.40 0.45 0.31 0.12

Alternatively if we evaluate as in 2) on 10 randomly chosen users with
individual assignments, we obtain the following average times:

Policy App1 App2 App3 App4 App5 App6 App7 App8 App9 App10

AI2 0.97 6.73 1.75 0.96 0.89 0.78 0.87 1.21 0.95 2.02

Finally note that the evaluation of the individual assignments can be ex-
ecuted in parallel on a cluster since they can be analyzed independently.
If parallelization is not supported, one can instead proceed iteratively. In
each of the 10 FORBAC-policies, there were at most 10,000 users with
individual assignments. Therefore, an upper bound on the time required
for 2) is one day in the worst case. From the bank’s point of view this is
still reasonable since AI queries must be executed only rarely for audits
and can be run offline over night.



2.6 Related work 37

2.6 Related work
In the early days of RBAC, it was sufficient to propose an RBAC model
that overcame the limitations that were observed in previous RBAC models.
Here, limitations were understood in terms of expressiveness, not policy
analysis. Later, some authors (such as [38] and [28]) noted that the ex-
pressive power of policy specification languages hindered policy analysis.
Hence, our perspective is that new RBAC models should be frameworks
that provide three components: a language for policy specification, a lan-
guage for specifying policy analysis queries, and procedures for efficiently
evaluating these queries. To the best of our knowledge, there are two such
frameworks that have gained acceptance in the literature: [55] and [7].
We discuss them as well as other work related to RBAC policy analysis.

2.6.1 Margrave
Margrave [55] is a framework for policy specification and analysis. With
Margrave, users can specify policies and query their properties. Margrave
then searches for representative scenarios that satisfy the property.

In our framework, we reason about RBAC policies and compute one
satisfying scenario rather than a set of scenarios. In contrast to Margrave,
our framework can reason about integer constraints and, therefore, express
policies like “Alice can read a file if her clearance level is greater than the
file’s clearance level”.

FORBAC’s interaction between set-valued terms and roles gives rise
to policies that cannot be modeled in Margrave. Consider, for example,
a FORBAC signature with a role template Technician and the following
functions:

• OU that assigns a string to each user which represents the user’s
organizational unit.

• Sectors that assigns a set of integers to each role instance of Technician.

• sector that assigns an integer to each permission.

Suppose that only those users u with OU(u) = A are assigned an instance
r of Technician with Sectors(r) = [100,110], and that an instance r of
Technician is authorized to any permission p with sector(p) ∈ Sectors(r).

In Margrave, we can use two policies to model the user and permission-
assignments, respectively. The first policy indicates when a user u is as-
signed a role instance r and can be expressed in Margrave as the following
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first-order formula:

ΦUA ≡ ∀u, r .
�

OU(u) = A ∧
∧

100≤i≤110 Sectors(r, i)

�

→mUA(u, r).

The second policy indicates when a role instance r is authorized for per-
mission p:

ΦPA ≡ ∀r, p . Sectors(r, sector(p))→mPA(r, p).

To decide authorization, we use the Margrave policy analysis framework.
A user u is authorized for permission p if the following query is satisfiable:

∃r . ΦUA ∧ ΦPA ∧ mUA(u, r) ∧ mPA(r, p).

Now, consider the following property: There is a user who is authorized
for a permission in sector 300. Such a user does not exist since instances of
role Technician can access only the sectors between 100 and 110. However,
if we query Margrave with

∃u, r, p . mUA(u, r) ∧ mPA(r, p) ∧ sector(p) = 300,

then Margrave responds with a scenario consisting of a user ũ with OU(ũ) = A,
a permission p̃ with sector(p̃) = 300, and a role instance r̃ with Sectors(r̃) =
{100, . . . , 110,300}. This is because the policy that assigns instances of
Technician allows one to assign to a user any instance that contains at least
the sectors from 100 through 110. It is not possible to assign an instance
of Technician that contains only the sectors from 100 through 110 unless
we explicitly say that all other sectors must not be assigned:





OU(u) = A ∧
∧

100≤i≤110 Sectors(r, i) ∧
∧

i≥111¬Sectors(r, i)



→mUA(u, r). (2.4)

Such specifications, however, are difficult to maintain. If new sectors are
created in the environment, then the policy must be adapted to prevent the
new sectors from being authorized for technicians. In addition, Margrave
cannot efficiently handle policies with large attribute domains [7]. In
contrast, this policy can be expressed in FORBAC as follows:

UATechnician(u, r) ≡
�

OU(u) = A ∧
Sectors(r) = [100, 110]

�

PATechnician(r, p) ≡ sector(p) ∈ Sectors(r).
(2.5)
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The fact that no user is authorized for permission in sector 300 follows
from the unsatisfiability of the existential FORBAC formula:

∃u, p . Auth(u, p) ∧ sector(p) = 300.

2.6.2 Athena+Yices
Another framework related to our work is Athena+Yices [7], which merges
functional programming with first-order logic for both policy specification
and property verification. For verifying properties, the Yices SMT-solver
is used. They do experiments on the CONTINUE [47] policy and achieve
results better than Margrave [28] and the framework used in [46]. In
contrast to FORBAC, their language can express arithmetic constraints and
they can reason about XACML policies.

Athena+Yices faces the same problem as Margrave when dealing with
the administration of set-valued attributes. Although Athena+Yices can
reason about arithmetic constraints, they do not allow quantification when
specifying policies. This makes it impossible to write Policy (2.5), unless
users explicitly list all the sectors that should and should not be allowed.

The authors [7] do not provide complexity bounds for the policy analysis
problems they consider. The policy properties they propose are undecidable
in general because their syntax allows addition, subtraction, and multi-
plication of integer variables, which allows Diophantine equations to be
expressed as requirements for authorization. This shows again how one
ends up in undecidable fragments of policy analysis if the language is not
restricted. In contrast, FORBAC ensures that all the given policy analysis
queries are evaluated in NP. However, the low complexity of policy analysis
for FORBAC does not come for free. Existential FORBAC formulas cannot
express relevant queries presented in [7] like observational equivalence,
conflict detection, and change-impact analysis.

2.6.3 Other related work
Other researchers examine policy analysis for RBAC, but they neither pro-
pose a language for specifying properties nor procedures for verifying them.
They only propose procedures for verifying specific properties.

For example, [27, 37, 62] focus on the reachability problem. In this
problem, a set of users is given together with a set of administrative rules.
These administrative rules specify who can assign and remove role assign-
ments according to the roles assigned to the users. The objective of the
reachability problem is to decide if it is possible for the given set of users to
reach a goal set of roles using the administrative rules. We did not include
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the reachability problem in our framework because there are many effi-
cient frameworks proposed for this problem. Additionally, the reachability
problem is defined only for classical roles. To the best of our knowledge,
no work has investigated administrative rules for role templates.
[8] uses SMT-solvers to identify induced role hierarchies. They model

rule-based user-role assignments and decide which role assignments are
entailed by others within an RBAC model. Their framework can reason
about negative authorization via negated roles. However, they only work
with classical roles and single-valued attributes. In contrast, we analyze
this problem with role templates and set-valued attributes.

Another language that combines policy specification and policy analysis
is presented in [24]. It is a Datalog-based language that can express policies
in dynamic environments and performs verification on goal reachability
and contextual policy containment. Goal reachability consists of deciding if
the system can reach a state where a given property holds, expressed as an
existential formula. Contextual policy containment consists of deciding, for
two given policies and in every state the system can reach, whether those
permissions authorized by one policy are authorized by the other. However,
their framework neither expresses nor reasons about numeric constraints
and set-valued attributes.

Lithium [31] is a policy specification language based on a fragment of
first-order logic. Lithium policies are sets of formulas consisting of either
conjunctions of ground literals or universally quantified formulas of the
form ∀x1 . . .∀xn . (`1 ∧ . . . ∧ `k → `k+1), where `1, . . .,`k+1 are literals. It
can express a variety of authorization policies used in practice and also
decide authorization in polynomial time. In contrast to our framework,
Lithium allows predicates and function symbols of any arity as long as
they respect a set of conditions (see [31] for details). For example, in a
Lithium policy, there must not be two formulas, which contain two literals
` and `′ such that ` and ¬`′ are unifiable. However, they cannot handle
numeric constraints and their policy analysis framework is limited. They
only show how to efficiently decide whether, for a given policy, a permission
is permitted and denied at the same time.

2.7 Conclusion and future work
Many policy specification languages have been proposed and new languages
are often more expressive than their predecessors. However, policy analysis
can only handle a fragment of the languages for which they are intended [28,
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38, 46, 58]. This is also the case for RBAC where new extensions have
richer expressiveness, but policy analysis becomes more difficult.

In this work, we have presented FORBAC as a framework that strikes a
balance between expressiveness and efficient policy analysis for RBAC. We
have provided strong evidence that FORBAC can specify and reason about
relevant policies. As future work, we propose to extend FORBAC with two
RBAC idioms that have received attention in the literature. The first is role
hierarchies, which define a partial order on a set of roles. Roles are assigned
those permissions granted to that role and those granted to subroles in the
hierarchy. There is no standard that specifies how to define role hierarchies
with role templates. The second idiom consists of constraints. The NIST
standard for RBAC [26] offers two types of constraints: static and dynamic
separation-of-duty constraints and cardinality constraints. It remains open
how to define these constraints in RBAC models where users, roles, and
permissions have attributes.





Chapter 3

N-Tube: Neighbor-Based Tube-Fair
Bandwidth Reservation

3.1 Introduction
Guaranteed protection against DDoS attacks remains an open research
problem. The increasing sophistication of attacks has not yet been neu-
tralized by progress in scalable, cost-effective defenses. In sophisticated
attacks, the attacker does not target the victim directly, but only a few
critical links of the network that carry the victim’s traffic. For example, in
Crossfire, a botnet sends low-volume flows to public servers that are chosen
to flood critical links required for the victim’s traffic [44]. Similarly, in the
Coremelt attack, the adversary sets up traffic flows among pairs of bots
that it controls in a way that floods critical links [63]. For such attacks,
an attacker with limited resources can effectively attack critical links and
degrade connectivity for large Internet regions [43]. Defending against
such attacks is currently impossible since the congestion hotspots may be
far from the victim, thus removing any possible recourse.

DDOS protection is related to an effective quality of service (QoS)
scheme that can provide hard guarantees in the face of strong adversaries.
Since best-effort delivery and over-provisioned network bandwidth enable
good performance in the average case, offering QoS guarantees requires fair
resource allocation when bandwidth becomes scarce [60]. Previous QoS ar-
chitectures, such as IntServ and DiffServ, were designed for an Internet with
trusted network participants, not for adversarial scenarios [15, 17]. It re-
mains an open research problem how to allocate bandwidth in an adversar-
ial context such that legitimate hosts obtain useful bandwidth guarantees.

A core challenge is that current link-flooding attacks can be caused by
a huge number of low-volume flows originating from colluding legitimate-
looking bots, e.g., as seen in the Hidden Cobra DDoS Botnet Infrastruc-
ture [66]. Therefore, commonly known fairness notions that QoS solutions
try to achieve, such as per source [53], per destination [71], per flow [22],
per computation [56], and per class [35], are insufficient in such settings
and result in an unfair sharing of bandwidth. These fairness notions suffer
from the “tragedy of the commons” [32], whereby the incentive of rational
agents to increase their share of a commonly available resources will lead to
infinitesimally small shares for less aggressive, honest agents. In particular,
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in today’s Internet, TCP fairness is the most commonly used per-flow fairness
notion, which allows adversarial agents to request arbitrarily many flows
and thereby obtain a disproportional amount of bandwidth compared to
honest agents [18].

To address the above challenge, we design a bandwidth reservation
algorithm with the following goals: (1) availability: any reservation request
will promptly reserve bandwidth, (2) immutability: reserved bandwidth is
guaranteed until expiry, (3) stability: the allocated bandwidths stabilize
quickly if constantly renewed, (4) minimum bandwidth guarantee: there
is a lower bound on the allocated bandwidth, and (5) fairness: bandwidth
is fairly partitioned among the requesting parties. Our algorithm should
provably satisfy these goals, even in the presence of congestion (such as
during link-flooding attacks). Moreover, it should be efficient and scalable.

To achieve these goals, we focus on networks that support path-based
forwarding, where the sender chooses an unidirectional path along which
data packets are forwarded, which is recorded in the data packets’ headers.
New Internet architectures, such as NIRA [70], SCION [57], and Path-
lets [30], are prominent examples of such architectures and indicate that
path-based forwarding is feasible in large-scale networks like the Internet.
Path-based forwarding plays a key role in our work: it ensures that the
paths taken by data packets stay fixed and correspond to the reserved paths.
In contrast, today’s Internet uses forwarding tables that are frequently
updated, which greatly complicates reasoning about resource allocation.

Our algorithm, called the Neighbor-based Tube-fair bandwidth reser-
vation algorithm (N-Tube), allows autonomous systems (ASes) to reserve
bandwidth on network paths. To allocate bandwidth on a path, each AS on
the path computes and allocates bandwidth locally while accounting for
other reservations. N-Tube builds on two key ideas:

First, to enable the immediate allocation of bandwidth (1), N-Tube only
uses a fixed fraction δ < 1 of the available bandwidth, saving the rest
for future requests. Together with the immutability (2) of reservations
until their expiry or deletion, this enables a quick stabilization (3) of the
bandwidth allocations if a fixed set of reservations is continuously renewed.

Second, N-Tube is based on a novel fairness notion, called bounded-
tube fairness, where each agent’s aggregated bandwidth demands are first
limited by the available bandwidth resources and then split proportionally
among its immediate network neighbors. Hence, if a malicious AS (out-
side the path) tries to congest a link, the first AS between the malicious
AS and the attacked link limits the adversarial AS’ demands and thereby
prevents it from obtaining a disproportional share of bandwidth on the
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attacked link. We show that our algorithm stabilizes in an ideal bandwidth
allocation, which is bounded-tube fair (5) and provides a guaranteed lower
bound on the allocated bandwidth (4) to the source AS, independently
of the destination it wishes to reach. This holds even in the presence of
adversarial demand bursts, including link-flooding attacks such as Crossfire
or Coremelt.

Contributions. The main contribution of this work is the first principled
solution to the global bandwidth allocation problem in adversarial networks:
We provide formalizations of the N-Tube algorithm including a strong
attacker model and the security goals (1)-(5) above, and we prove that our
model satisfies these properties. To the best of our knowledge, this is the
first bandwidth reservation algorithm that simultaneously offers properties
(3)-(5) in an adversarial setting. We consider this a significant step towards
a new era of DDoS-free networking.

3.2 Background
In this section we provide a high-level account of the main properties a
bandwidth reservation algorithm should satisfy as well as assumptions on
the network and the attacker. We will formalize these assumptions and
properties in Sections 3.5 and 3.6 and sketch the correctness proofs in
Section 3.6. The full proofs are given in Appendix B.

3.2.1 Goal and Associated Properties
Our goal is to design a provably secure bandwidth reservation architecture
that provides hard, worst-case bandwidth guarantees to source ASes for
reaching their destination ASes. A key component of such a QoS archi-
tecture, and our focus in this work, is a bandwidth reservation mechanism
that allocates bandwidth according to the demands of source ASes and
guarantees that a minimum bandwidth is allocated even under heavy con-
gestion or flooding attacks. We have designed our bandwidth reservation
algorithm N-Tube to provide the following properties.

P1 Availability: Any reservation request can immediately reserve band-
width, even if there is network congestion.

P2 Immutability: The allocated bandwidth of any existing reservation
stays fixed until the reservation expires.

P3 Stability: In periods of steady and constant demand, the bandwidth
allocation in the entire network stabilizes quickly.
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P4 Minimum Bandwidth Guarantee: Shortly after a reservation is set
up, there is a lower bound on the allocated bandwidth, i.e., a minimal
bandwidth guarantee even in the presence of high external demands
like link-flooding attacks.

P5 Bounded Tube Fairness: Bandwidth allocation is distributed pro-
portionally to the requested demands, however, adjusted to the max-
imally available bandwidth.

Note that when designing our algorithm, we also accounted for the fol-
lowing additional requirements. N-Tube should be efficient in computing
bandwidth allocations using only local information of the network, i.e.,
based on the demands of neighbor ASes. N-Tube should be scalable by re-
ducing its configuration effort for AS administrators managing bandwidth
reservations, since bandwidth allocations are computed automatically. How-
ever, N-Tube allows AS administrators to specify bandwidth restrictions
between their neighbor ASes to adjust minimum bandwidth guarantees.
Finally, N-Tube should provide ASes with flexibility by allowing them to
reserve segments of paths, and to update and delete reservations.

3.2.2 Model and Assumptions

Network Model. We model the network as a connected graph with weighted,
directed edges. Nodes in the graph represent the AS’s network interfaces
and the directed edges represent physical links. Each link starts at an
egress interface of an AS, called an egress link of this AS, and ends at an
ingress interface of another AS, called an ingress link of that AS, and has
a weight corresponding to its capacity. Using interfaces instead of multiple
edges between ASes provides a simple graph, instead of an equivalent
multigraph, network model, which is closer to N-Tube’s implementation.
Furthermore, we assume an inter-domain control plane that enables each
AS to obtain multiple loop-free paths to reach a destination AS. These paths
are expressed at the granularity of interfaces between the ASes. Finally,
we assume that there is a globally, loosely synchronized time, i.e., with
a time discrepancy between ASes on the order of seconds, in contrast to
reservation times on the order of minutes.

Attacker Model. Any AS outside of the path of a legitimate reservation
request may be compromised or malicious, e.g., part of a botnet. In par-
ticular, there are no constraints on the distribution of compromised ASes.
We consider malicious ASes that (possibly) collude and attempt to allocate
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excessive amounts of bandwidth in order to exhaust the available band-
width to be shared with other ASes. More specifically, ASes can attempt to
request excessive bandwidth through (multiple) reservations over one or
more paths. Moreover, we assume that senders authenticate all fields in
their reservation requests and that attackers cannot defeat cryptography,
e.g., spoof a signed message without the appropriate private key. Hence,
attackers can replay legitimate reservation requests, but cannot craft new
ones for ASes they do not control.

Attacks launched by routers located inside ASes on the path that in-
tentionally modify, delay, or drop traffic (beyond the natural drop rate)
are out of this work’s scope. Such attackers could execute DoS attacks by
ignoring reservations and blocking any data traffic directly. We also do not
consider data-plane attacks in which the adversary sends excessive traffic or
excessive amounts of bandwidth requests. In this work we design a secure
bandwidth reservation algorithm, thus data-plane attacks are out of scope.

3.3 N-Tube overview
We want to enable ASes to reserve bandwidth on network paths by reserving
bandwidth on each inter-domain link of a path. A reservation consists of a
path, an expiration time, and an amount of bandwidth. The reservation is
valid for a limited time period after which it must be renewed. This allows
ASes to probe the network for congestion and adjust their reservation paths
and demands.

To reserve bandwidth, the source AS chooses a path, an amount of
bandwidth and an expiration time, combines them in a reservation mes-
sage, and authenticates them, e.g., with RPKI [51]. In Figure 3.1, we
illustrate the reservation process. The source AS1 sends a reservation
message asking for 60 Gbps valid until 15:50:45 on the path given by
the list of ASes and their corresponding ingress and egress interfaces
[(E, AS1, C), (B, AS2, A), (C , AS3, D)]. On the way to AS3, the reservation
message accumulates the amount of bandwidth each AS on the path can
allocate on its egress link associated to the path: 60 Gbps, 37 Gbps, and
45 Gbps, respectively. On the return path, each AS allocates the minimum,
which is 37 Gbps.

N-Tube uses two parameters that are set by its users. First, N-Tube
enforces an upper bound on how long the expiration time can be set into
the future, given by the parameter maxT ∈ N. This forces ASes to update
their reservations regularly, about every 5 minutes. Second, N-Tube only
reserves a fixed portion of each link’s total capacity, which is called the
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Figure 3.1: The process of making a reservation.

adjusted capacity and is given by the parameter δ, where 0 < δ < 1. For
any new reservation request, N-Tube again initially allocates at most the
portion δ of the remaining free capacity and thereby keeps the rest of the
link’s capacity available for other new reservations.

3.3.1 Bounded Tube-Fairness
The main challenge for a resource allocation algorithm is to treat all reser-
vations fairly and to provide a minimum bandwidth guarantee for honest
ASes, even when adversarial ASes try to congest a link by demanding as
much bandwidth on it as possible. To provide fair bandwidth allocation, we
bound excessive demands by the links’ capacities and share the resulting
demands proportionally.

The two properties of bounded tube-fairness and minimum bandwidth
guarantee are achieved by N-Tube’s bandwidth allocation computation. The
main idea is illustrated in Figure 3.2 for AS3 in the example given above:

1. AS3 factors the demands going to a given egress interface by each
ingress interface. These factored demands are called tubes.

2. AS3 limits the accumulated demands of each tube by its ingress and
egress links’ adjusted capacities, which we call bounded tube demands.

3. AS3 proportionally shares the egress link’s adjusted capacity between
its bounded tube demands.

AS3 has three interfaces A, B, and C with ingress link capacities 100 Gbps,
200 Gbps, and 125 Gbps, and and an interface D with an egress link capac-
ity of 150 Gbps, respectively. The link’s adjusted capacities are obtained by
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multiplying each link’s capacity with δ = 0.8 and are indicated by the dot-
ted lines. The three demands of 20 Gbps, 80 Gbps, and 60 Gbps coming
from interfaces A, B, and C are factored into three tubes and the adjusted
capacity of 120 Gbps at interface D is proportionally split among them into
15 Gbps for A, 60 Gbps for B, and 45 Gbps for C .
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Figure 3.2: N-Tube’s bandwidth allocation computation at AS3 distributes
the egress link’s (adjusted) bandwidth capacity D proportionally to three
ingress demands.

3.3.2 Minimum Bandwidth Guarantee
By bounding the accumulated demands of tubes in the second step of the
bandwidth allocation computation, we can guarantee that each tube gets a
fair share of the egress link’s capacity. Whenever we must reduce a tube,
we say it has excessive demands and we proportionally reduce all of the
demands inside it.

We illustrate the main ideas of N-Tube’s bandwidth allocation compu-
tation in three adversarial examples for AS3. We assume that all ASes on
the given path are honest and any AS outside of this path may be adversar-
ial. The goal of the adversarial ASes is to reduce as much as possible the
allocated bandwidth for the use by honest ASes between the interface C
and the interface D. Therefore, we allow adversarial ASes to demand an
arbitrary amount of bandwidth to subsequently congest the egress link at
interface D. We then show how the bandwidth allocation computation still
provides a minimum bandwidth guarantee.
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Limit demands on an ingress link by its adjusted capacity: In the ex-
ample in Figure 3.3, two adversarial ASes demand in total 400 Gbps of
bandwidth trough interface B to D. N-Tube bounds these demands by the
ingress link’s adjusted capacity at interface B of 160 Gbps. Hence, D’s ad-
justed capacity of 120 Gbps is split proportionally between 20 Gbps from
A, 60 Gbps from C , and 160 Gbps, instead of 400 Gbps, from interface B.

120/(20+160+60)*20=1/2*20=10
120/(20+160+60)*160=1/2*160=80
120/(20+160+60)*60=1/2*60=30
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Figure 3.3: Limit demands on the ingress interface.

Limit each AS’s demands by the egress link’s capacity: In the example
in Figure 3.4, an adversarial AS demands in total 200 Gbps to interface
D, by asking for 80 Gbps and 120 Gbps through A and B, respectively.
However, since its combined demand of 200 Gbps still exceeds the egress
link’s capacity, N-Tube reduces both demands proportionally by multiplying
them with a scaling factor. The scaling factor is the ratio of the egress link’s
adjusted capacity of 120 Gbps and the total adjusted demand of the ad-
versarial AS of 200 Gbps, i.e., 120/200 = 0.6. This results in the allocated
demands of 48 Gbps and 72 Gbps from interfaces A and B, respectively.
Note that, in this case, each AS must keep per-source AS state, i.e., how
much bandwidth each source AS has reserved through this AS. However,
this is feasible since the number of ASes in a network is much smaller
than the number of flows. Hence, D’s adjusted capacity of 120 Gbps is
split proportionally between 60 Gbps from interfaces C , and the reduced
demands of 48 Gbps and 72 Gbps, from interfaces A and B.

Worst case, minimum bandwidth guarantees: In this example, given in
Figure 3.5, all ASes outside the path are adversarial and demand as much
as they can on all ingress links, i.e., a maximum of 80 Gbps on interface A
and 160 Gbps (i.e., 80 Gbps each) on interface B. Note that this represents
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Figure 3.4: Limit demands on the egress interface.

a worst-case attack since even when more adversarial ASes are present their
bandwidth demands will be adjusted and are therefore limited as described
in the two previous examples. The interface D’s adjusted capacity of 120
Gbps is split proportionally between the bounded demands of 80 Gbps
from interface A and 160 Gbps from interface B and the honest demand of
60 Gbps from interface C . Hence, this honest demand cannot be reduced
to less than 24 Gbps by any amount of external demands. This provides
the minimum bandwidth guarantee for this reservation at AS3.

120/(80+160+60)*80=2/5*80=32
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Figure 3.5: Minimum bandwidth guarantee in the worst case.

By applying the idea from the last example to each of the path’s ASes, one
can show that N-Tube’s bandwidth allocation computation provides mini-
mum bandwidth guarantee (P4). Furthermore, N-Tube’s computation splits
the adjusted link’s capacity proportionally between the non-excessive de-
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mands. This illustrates, informally, that N-Tube’s bandwidth allocation com-
putation provides the property of bounded tube-fairness (P5) for each link.

3.3.3 Additional properties
By only reserving a proportion given by δ of the available bandwidth,
N-Tube can always provide a positive (but possibly small) amount of band-
width for new reservations. This ensures availability (P1) and is proven in
Section 3.6. To optimize the links’ utilization, unused bandwidth capacities
are provided for best-effort traffic.

By N-Tube’s design, the only two ways for a reservation to become
invalid is either for it to expire, when it is not successfully renewed, or to be
deleted by a deletion message sent by the source, as described in Section 3.4.
Otherwise N-Tube does not modify existing reservations. This results in the
property of immutability (P2), which we also prove in Section 3.6.

The upper bound maxT on how long the expiration time can be set into
the future forces ASes to renew their reservations regularly. This allows
N-Tube to stabilize the allocations quickly after a burst in demands, i.e., the
stability property (P3). We prove in Section 3.6 that after a 2maxT-period
of stable demands, N-Tube’s computations converges to a stable state of
allocations, which satisfies our notion of bounded tube-fairness.

Finally, we argue that allowing ASes to reserve path segments along
paths and renewing and deleting reservations provides sufficient flexibility
for source ASes to adapt their reservations. Furthermore, since the N-Tube
bandwidth allocation computation for each reservation is done locally,
and only involves simple arithmetic computations, each AS can execute
the reservation’s bandwidth allocation computation efficiently in the num-
ber of already existing reservations. Additionally, N-Tube minimizes its
communication complexity by requiring only one round-trip per request.

3.4 Algorithm details
After introducing some notation, we define the network model, messages
and reservation maps. Afterwards we describe how our distributed band-
width allocation algorithm N-Tube processes messages. In the last subsec-
tion we specify N-Tube’s bandwidth allocation computation in detail and
describe the local properties it achieves.

3.4.1 Notation
As base types, 1 = {⊥} denotes the unit type, B = {TRUE, FALSE} denotes
the booleans, N= {0,1,2, . . . } denotes the natural numbers, and Q+0 and
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R+0 denote the non-negative rational and the non-negative real numbers,
respectively. Given elements a and b of the same numeric type, with a ≤ b,
we denote open and closed intervals by ]a; b[ and [a; b], respectively.

Given two types A and B, we denote the function type with domain A
and co-domain B by A→ B, their product type by A× B, and their sum type
by A+ B. We define partial functions A* B = A→ B⊥ with B⊥ = B + 1,
the support of a partial function g by supp (g) = {a ∈ A | g(a) 6= ⊥}, and
its range by rng (g) = {b ∈ B | ∃a ∈ A. g(a) = b}. In case g(x) appears in a
predicate P we implicitly assume P (g(x))∧ g(x) 6=⊥. We denote partial
functions with finite support by A*f B and the undefined function with
empty support by ;.

We identify types with sets and also use standard set notation. For
example, for a set A we write P (A) for its power set, Pf (A) for the set of its
finite subsets, |A| for its cardinality, An for its n-ary product, A∗ and Aω for
its finite and infinite sequences, and A∞ := A∗ ∪ Aω for its sequences.

By f (x 7→ y), we denote the function that behaves like f except that it
maps x to y , i.e.,

f (x 7→ y)(x ′) :=

¨

y, if x ′ = x
f (x ′), otherwise.

Informally, a record type is a product type together with names for its
projections, as shown in the following example: point= L x ∈ N; y ∈ N M
with elements like p ≡ L x = 1; y = 2 M and projections p.x and p.y. The
term pL x := 3 M denotes the updated point L x = 3; y = 2 M. The type
cpoint= point⊕ L c ∈ color M extends point with a color field.

The inductive type of lists of type A is defined as [A] = 1 + A× [A],
with the constructors nil : 1 → [A] providing the empty list nil(⊥) and
# : A× [A]→ [A] for prepending an element a ∈ A to a list l ∈ [A]. To
simplify notation, we write nil instead of nil(⊥) and a#l instead of #(a, l).
We also use conventional list notation , e.g., [1, 2, 3]1 for the list 1#2#3#nil
and for a list l ∈ [A] and n ∈ N we write l[n] to retrieve the n’s element in
l, starting from n = 0. The functions min and max respectively yield the
minimum and maximum element of a non-empty finite set of numbers and
+∞ and 0 for the empty set. We extend them to tuples, lists, and records
of numbers (by taking the set of their components) and to partial functions
with finite support and numerical co-domain (by taking the range).

1Note the syntactic difference between the closed interval [1;3], the pair (1,3), and the
two element list [1,3].
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3.4.2 Message Processing

Network We model the network as a weighted, directed graph (N , E, cap)
for which we give a simplified definition here. Full details are given in
Appendix A.1.

• The nodes N are given by the set V × I , where V is a finite set of
vertices and I provides a set of identifiers for interfaces inside of
each AS.

• The finite set of directed edges E ⊆ N × N represents the physical
links between ASes. Given a link ((u, e), (v, i)) ∈ E we call e its egress
interface at AS u and i its ingress interface at AS v. We assume that
at any AS interface there is either exactly one ingress and one egress
link or no link at all.

• The capacity of each link is given by the non-negative real-valued
function cap : E → R+0 . Since a link l = ((u, e), (v, i)) is uniquely
defined by (u, e) (and (v, i)), we identify cap(l) with cap(u, e) (and
cap(v, i)).

We define the type of paths P as the lists of records with ingress interface
inI , AS identifier as, and egress interface eg I :

P =
�

L inI ∈ I ; as ∈ V ; eg I ∈ I M
�

.

Given a network, we call a path p ∈ P valid, if (i) it is non-empty, (ii)
each edge corresponding to p’s ingress and egress interfaces is an inter-AS
link, i.e., it starts and ends in distinct ASes, and (iii) its set of links is
connected and directed, i.e., the edges connect the ASes in p and they all
point in the same direction, and (iv) loop-free, i.e., that each AS occurs at
most once on the path. In the following, we denote elements of the sets
V and I with lowercase letters, specifically for V we use the letters s, x ,
v, and z, for ingress interfaces i and i′, and for egress interfaces e and e′.
To simplify notation, we write the ingress interface as subscripts and the
egress interface as superscript to the AS identifier.

Messages There are two types of messages: reservation and deletion mes-
sages. The fields of a message identify the reservation, state how the
message should be routed through the network, how much bandwidth
should be reserved, and until when the reservation should be valid. We
introduce the fields of a reservation message m in Figure 3.6:
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Figure 3.6: The message m is processed along p by the events described in
Section 3.5.3.

• The source s ∈ V of the path (see below) can choose any reservation
ID id ∈ N (= 22). The pair (s, 22) of source identifier and reservation
ID uniquely determines a reservation in the network. Furthermore,
the source provides an index idx (= 5) that indicates which version
of the reservation the messages refers to. Version indices are used to
update already existing reservations and are explained later.

• The field path ∈ P (= p) provides the path and the field ptr ∈ N (=
4) provides the pointer to the AS (p[4].as = z), where the message
is currently processed. The fields first ∈ N (= 2) and last ∈ N (= 4)
point to the first and last AS on p, respectively.

• The minimum minBW ∈ R+0 (= 10 GB/sec) and maximum bandwidth
maxBW ∈ R+0 (= 50 GB/sec) state the range of bandwidth the source
AS would like to reserve. Hereby, maxBW states the source’s demand
in this reservation request. In case the source’s demand cannot be
provided on p, minBW states the minimal amount of bandwidth the
source is willing to accept as a reservation.

• The expiration time expT ∈ N (= 16:45:30) indicates when the
reservation expires and must be deleted by the ASes on the path p.

• The list of bandwidth values accBW ∈ [L avBW, idBW ∈ R+0 M] indi-
cates the available and ideal bandwidth the previous ASes (v and w
in the example) were able to provide, as explained in Section 3.4.3.
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The functions src, first, cur, and sgmt on valid messages respectively extract
from m.path the source AS, the first AS, the current AS with its ingress and
egress interfaces, and the set of ASes between first and last. In the example of
Figure 3.6 src(m) = s, first(m) = v, cur(m) = zC

A , and sgmt(m) = {v, w, z}.
In a deletion message, the fields first, last, minBW, maxBW, expT, and
accBW are omitted.

Formally, the type of messages M is the sum-type of reservation messages
MR and deletion messages MD

M= MD +MR

with

MD = L id, idx ∈ N; path ∈ P; ptr ∈ N M
MR =MD ⊕ L first, last ∈ N;

minBW, maxBW ∈ R+0 ; expT ∈ N;

accBW ∈ [L avBW, idBW ∈ R+0 M] M

A message m is valid, if it contains a valid path in its field m.path and for
its pointers it holds that 0 ≤ ptr, first, last ≤ length(m.path) and first < last.
The bandwidth range must be a non-empty interval, i.e., 0 ≤ m.minBW ≤
m.maxBW and m.maxBW > 0, hence only non-zero bandwidth allocations
are allowed.

Reservation maps Each AS maintains its own reservation map where it
stores all currently valid reservations with a path traversing it. A reservation
map is a partial function that maps a source and a reservation ID to a record
containing the following fields: The reservation’s path path, the pointers
ptr, first and last, and a version map vrs. For example in the reservation map
resMz of AS z, the entry rs corresponding to message m from Figure 3.6 is

resMz(s, 22) = L path= p; ptr= 4; first= 2; last= 4; vrs= verM M.

To provide flexibility, N-Tube allows source ASes to update their reservations
multiple times before they expire and therefore stores different versions of
each reservation in the version map field vrs.

A version map is a partial function that maps each reservation index to
a record containing the following fields: The minimal bandwidth minBW,
the maximal bandwidth maxBW, the ideal bandwidth idBW computed by
the previous AS w, the expiration time expT given by m, and the reserved
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bandwidth resBW determined by the N-Tube algorithm. We call the entries
in the version map versions of its corresponding reservation, e.g., for m

verM(5) = L minBW = 10 GB/s; maxBW = 50 GB/s;
idBW = 60 GB/s; resBW = 32 GB/s; expT = 16:45:30 M.

A version vr is currently valid at time t, written cvalid(vr, t), if it is not
expired, i.e., vr.expT ≥ t, and successful, i.e., vr.minBW ≤ vr.resBW. The
reservation’s bandwidth demand and allocation, demBW and allocBW, are
defined as the maximum of its currently valid versions’ maxBW and resBW,
respectively.

demBW(rs, t) = max
vr∈rng(rs.vrs)

{vr.maxBW | cvalid(vr, t)}

allocBW(rs, t) = max
vr∈rng(rs.vrs)

{vr.resBW | cvalid(vr, t)}

The maximum is taken, since the source can send traffic using any existing
version of its reservations. Hence, this computation guarantees that, in the
worst-case, enough bandwidth is available.

Reservation process The N-Tube algorithm processes reservation messages
depending on their direction and position on the path as shown in Figure 3.6.
If AS s wants to make a new reservation id on a path p, it creates (CRT)
a reservation message m containing p in its path field. The ASes located
before first on p just forward (FWD) the message along p by increasing m’s
ptr field. If m reaches the ASes between first and last, each AS x processes
(CMP) m by:

1. checking that resMx does not contain a reservation at (s, id) or there
is a reservation at (s, id) for the same path but no valid version map
entry at idx,

2. computing how much bandwidth is available at x and how much x
can ideally provide for the reservation (details of the computation
will be given shortly in Section 3.4.3),

3. updating m to a new message m′ by appending the computation
results to the accBW and incrementing ptr,

4. sending m′ to the next AS on the path p, and

5. adding a new version at index idx of the reservation identified by
(s, id) in resMx .
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After the last AS z, given by the pointer last, on the path p has processed
m, it sends the message m′ backward (TRN) on the path. During the
backward traversal, each of the path’s ASes extracts how much bandwidth
finBW could be reserved on the entire path by taking the minimum of m’s
fields maxBW and accBW, i.e., what has been computed by each AS on the
forward traversal

finBW(m) =min (m.maxBW,min(m.accBW)) .

Analogously to the forward traversal updates, the AS updates (UPT) its
reservation map according to the same two cases: Either (i) the reservation
was successful, i.e., m.minBW ≤ finBW, and each AS on the path updates
the reserved bandwidth of the corresponding version in its reservation map
to finBW, or (ii) there was not enough bandwidth available on the path,
i.e., m.minBW > finBW, and each AS deletes the corresponding version
from its reservation map. The ASes between first and the source just send
the message backwards (BWD) without processing it until s receives it in
the end (FIN).

Renewal If s wants to renew one of its reservations with a given ID id,
it sends a new reservation message m containing an updated bandwidth
range and expiration time, along the previous path p. The index idx of m
must be fresh, i.e., s has not used it yet and the pointers first and last must
remain the same. Otherwise the renewal is invalid and m is dropped.

Deletion If s wants to delete a version with index idx of one of its reserva-
tions with ID id, it sends a deletion message along p with the corresponding
id and idx. Each AS on p processes the deletion message by removing the
version entry at idx in the reservation identified by (s, id). In contrast to a
complete round-trip, required for set-up and renewal, the last AS drops the
message, i.e., only one traversal along p is required for deletion.

3.4.3 Fair Bandwidth Allocation
The heart of the N-Tube algorithm is the bandwidth allocation computation.
We assume that a valid reservation message m was sent by its source AS s
and arrives at an AS x that lies between first and last on m’s path at the
current time t. First, the N-Tube algorithm derives its source s (= src(m))
and its current AS, ingress, and egress interfaces x e

i (= cur(m)). Given m
and resMx , the N-Tube computation determines:

• the available bandwidth, i.e., how much bandwidth remains on the
link at the egress interface e, and



3.4 Algorithm details 59

• the ideal bandwidth, i.e., how much bandwidth s is requesting com-
pared to all active reservations in resMx from interface i to e.

These computations are given by the functions avail and ideal, and are
described in detail in the following. To simplify notation, we fix the message
m and its elements s, id, x , i, and e, and we omit resMx , t, and the
parameter δ as arguments. For a complete description, see Appendix A.9.

Available Bandwidth Computation

Given the message m, the function avail computes how much bandwidth is
available on the link at the egress interface e of AS x

avail(e) = δ ·
�

cap(x , e)−
∑

r′∈rng(resMx ):
resEg(r′)=e

allocBW(r′)
�

.

This function subtracts the aggregated allocated bandwidth of all currently
valid reservations with the same egress interface e from the link’s total
capacity cap(x , e) and multiplies the result by the parameter δ to obtain
the remaining bandwidth. Multiplying with 0 < δ < 1 guarantees that
some bandwidth is always available for subsequent reservation requests.
The functions resSr, resEg and resIn extract the corresponding reservation’s
source AS and egress and ingress interface, see Appendix A.9 for details.

Limiting Excessive Demands

To avoid that s reserves more bandwidth in one request than physically
possible, we limit the bandwidth demand demBW(r.vrs) of a reservation r
by the ingress and egress links’ capacities. The resulting requested demand
of a reservation r is defined by

reqDem(r) =min{cap(x , i), cap(x , e), demBW(r)}.

This guarantees that

reqDem(r)≤min{cap(x , i), cap(x , e)}.

As illustrated in Section 3.3, a source’s aggregated demands at a given link
may exceed the link’s capacity, even if none of its individual requests does.
We now formally define the notion of a source having excessive demands
on a link and an adjusted version of the requested demand, adjReqDem, to
account for such demands.
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The egress demand of s on e is defined as the aggregate over its requested
demands with egress demand e

egDem(s, e) =
∑

r ′∈rng(resMx ):
resSr(r ′)=s
resEg(r ′)=e

reqDem(r ′).

Analogously, we compute the ingress demand on the ingress interface i, see
Appendix A.9 for details.

Definition (Excessive Demands). We say an AS s has excessive demands
on the egress link e, if egDem(s, e) > cap(x , e). Otherwise, we say s has
moderate demands on e. We call an egress link e congested if

∑

s′∈V egDem(s′, e)> cap(x , e).

Analogous definitions apply to ingress links.

To account for the case where s has excessive demands on the egress
link e, we adjust the requested demand of a reservation r by multiplying it
with the minimum of the corresponding ingress and egress scaling factors,
yielding the adjusted requested demand

adjReqDem(r) =
min{inScalFctr(s, i), egScalFctr(s, e)} · reqDem(r, i, e).

with s, i, and e the corresponding source AS, ingress and egress interface
of r, respectively.

We compute the egress scaling factor on the egress link at e for s as the
source’s proportion of the total egress demand bounded by the egress link’s
capacity, given by

egScalFctr(s, e) =
min (cap(x , e), egDem(s, e))

egDem(s, e)
.

Analogously, we compute the source’s ingress scaling factor, see Appendix
A.9 for details.

This guarantees that the adjusted egress demand of s on e defined as the
aggregate over its adjusted requested demands

adjEgDem(s, e) =
∑

r ′∈rng(resMx ):
resSr(r ′)=s
resEg(r ′)=e

adjReqDem(r ′)
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is bounded by the egress link’s capacity, i.e., adjEgDem(s, e) ≤ cap(x , e),
and analogously for the adjusted ingress demand.

Note that we give sources who have excessive demands the benefit of
the doubt. We assume that they cannot know the links’ capacities in the
network and unintentionally demand too much bandwidth. Hence, instead
of dropping their reservation messages, we adjust their excessive demands
in the ideal computation by limiting and scaling them as described above.

Ideal Bandwidth Computation

Given a message m, the function ideal computes how the adjusted capacity
δ · cap(x , e) of the egress link e of AS x is shared in a so-called bounded
tube-fair manner among all the existing reservations (in resMx) with the
same egress link e

ideal(s, id, i, e) =
reqRatio(s, id, i, e) · linkRatio(i, e) · tubeRatio(i, e) ·δ · cap(x , e).

The function ideal

1. proportionally splits the egress link’s adjusted capacity between each
ingress link by multiplying with tubeRatio,

2. partitions the result between reservations starting and traversing the
ingress link i by multiplying with linkRatio, and

3. splits the result proportionally between all starting respectively travers-
ing reservations by multiplying with reqRatio.

In the following, we will define these three ratios.

Tube Ratio: The tube ratio between an ingress interface i and an egress
interface e is computed as the ratio of the bounded tube demand between i
and e, given by min{cap(x , i), tubeDem(i, e)}, and the aggregated bounded
tube demands at e

tubeRatio(i, e) =
min{cap(x , i), tubeDem(i, e)}

∑

i′∈I min{cap(x , i′), tubeDem(i′, e)}
.

Taking the minimum with respect to the corresponding ingress link’s capac-
ity guarantees that its respective portion of tube demand compared to the
other ingress links’ tube demands is always bounded. This prevents that
the bandwidth reserved for other ingress links will be reduced ad infinitum.
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The tube demand between an ingress interface i and an egress interface
e aggregates their adjusted requested demands

tubeDem(i, e) =
∑

r ′∈rng(resMx ):
resIn(r ′)=i
resEg(r ′)=e

adjReqDem(r ′).

Link Ratio: If x is a transit AS on m’s path, i.e., m.ptr > m.first, then
the link ratio between an ingress interface i and an egress interface e is
computed as the ratio of the bounded transit demand between i and e,
given by min{cap(x , i), transitDem(i, e)}, and the sum of bounded start and
bounded transit demand

linkRatio(i, e) =
min{cap(x , i), transitDem(i, e)}

min{cap(x , i), startDem(i, e)}+min{cap(x , i), transitDem(i, e)}
.

Taking the minimum with respect to ingress link’s capacity guarantees that
its respective portion for transit demand compared to demands of reser-
vations starting at i is always bounded. This prevents that the bandwidth
allocated for traversing reservations can be reduced ad infinitum by exces-
sive reservations starting at link i and vice-versa. Here transit demand and
start demand are similarly defined to the tube demand, see Appendix A.9.

Request Ratio: The request ratio of a reservation identified by (s, id)
between i and e is the ratio between its adjusted ideal bandwidth allocation
(provided by the predecessor on the reservation’s path) and the transit
demand between i and e:

reqRatio(s, id, i, e) =
adjIdBW(s, id, e)
transitDem(i, e)

,

with adjIdBW similarly defined to adjReqDem, see Appendix A.9.

Properties of the N-Tube Computation
If the reservation message m is valid, then N-Tube’s bandwidth allocation
computation has the following properties.

Positivity: The functions avail and ideal always compute strictly positive
values, hence, for a valid request a positive amount of bandwidth is always
allocated:

∀m. finBW(m)> 0.
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Lower ideal Bound: Let m be a valid message with source s, ID id, and
first AS v together with v’s ingress and egress interface iv and ev . There is
a strictly positive lower bound G · rv on the ideal computation (even when
all sources exceed their demands), where G only depends on m’s path and
rv = reqRatio(s, id, iv , ev) is the request ratio of m at v.

∀m.∃G ∈]0;1].∀x ∈ sgmt(m). ideal(m, resMx)> G · rv .

Bounded Tube-Proportionality: Provided that two ingress links i, i′ of
AS x are not congested, the tubeRatio computation splits the capacity of
egress link e proportionally according to the tube demands of i and i′ to e

tubeRatio(i, e)
tubeRatio(i′, e)

=
tubeDem(i, e)
tubeDem(i′, e)

.

In case i′ is congested and its tube demand to e further increases, the ratio
between both tube ratios remains fixed

tubeRatio(i, e)
tubeRatio(i′, e)

=
tubeDem(i, e)

cap(x , i′)
.

Per Request-Proportionality: Suppose two sources s1 and s2 respectively
make new reservations m1 and m2 whose paths intersect in x . If s1 and s2
do not have excessive demands on e and there is no congestion on either
path up to x , then their ideal bandwidth computations are proportional to
the messages’ bandwidth demands, even if e is congested

ideal(m1, resMx)
ideal(m2, resMx)

=
m1.maxBW
m2.maxBW

.

These properties follow easily from the functions’ definitions and proofs
are given in Appendix A.9.

Manual Tube Ratio Adjustment
Often the links’ capacities may not reflect the actual demands arriving at the
interfaces of an AS. Network administrators know from experience what
data rates they can expect between interfaces of their ASes. For instance,
there might be an oversea link ending at an AS which is much larger
compared to the other ingress links. The respective AS serves as transit
and simply forwards the oversea traffic to a single egress interfaces with
no demands on the other egress interfaces. Another example is an AS that
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transfers priority traffic from a hospital or a research center. Such traffic
may be small compared to less urgent traffic from video streaming services
coming from other interfaces, but needs a stable bandwidth allocation for
fixed time periods.

To account for such cases, N-Tube’s bandwidth allocation computation
can be adjusted by using limit matrices at each AS, instead of the links’
capacities.

Limit matrix: Suppose, given an AS x and the two sets Ix ,Ex ⊆ I of its
ingress and egress interfaces, respectively. The limit matix of x is a function
of type Ix ×Ex → R+, i.e., a matrix, that defines for each pair (i, e) ∈ Ix ×Ex
its limited tube demand. Note that Limitx(i, e)> 0.

The limited ingress demand of ingress link i ∈ Ix are the aggregated of
values of Limitx fixed at i

Limitx(i) =
∑

e′∈Ex
Limitx(i, e′).

Analogously, we define the limited egress demand for an egress link e ∈ Ex ,
denoted by Limitx(e), by aggregating over the ingress links i′ ∈ Ix .

To adapt N-Tube’s bandwidth allocation computation, we simply replace
cap(x , i) and cap(x , e) with Limitx(i) and Limitx(e), respectively.

It is easily to see that the assumption Limitx(i, e) > 0 is sufficient for
proving the properties given in the previous subsection. For the lower ideal
bound property the lower bound G also depends on the limit matrices of
the ASes on the message’s path. In case of the bounded tube-proportionality
property the capacity cap(x , e) in the denominator must be Limitx(e).

3.5 Model
In this section, we first introduce labeled transitions systems as our gen-
eral modeling framework. These consist of states providing snapshots of
the system and events defining its transitions. Next we model the N-Tube
algorithm and its networking environment as a labeled transition system.
We assume that the set of ASes V is partitioned into a set of honest ASes
H and a set of malicious (or compromised) ASes M . Our model includes
a definition of the state space and events modeling (i) the N-Tube algo-
rithm by describing how honest ASes process messages, and (ii) the attack
capabilities of the malicious ASes.

3.5.1 Preliminaries
Our mathematical model of the system is based on a labeled transition
system T = (Σ,Σ0,Λ,∆) with state space Σ, initial states Σ0 ⊆ Σ, labels
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Λ, and transition relation ∆ ∈ Λ→ P (Σ×Σ). Given a labeled transition
system T, executions are functions of type E= N→ Σ×Λ such that any π
= {(σn,λn)}n∈N ∈ E

• starts from an initial state σ0 ∈ Σ0 and

• progresses according to the transition relation ∆

∀n ∈ N. (σn,σn+1) ∈∆(λn).

To specify our concrete models, we use a structured form of transition
systems, where states are given by a record type and the transition relation
is defined by a finite set E of events. Each event evt ∈ E is given as a function
of type Devt→ P (Σ×Σ) and is of the general form

evt( x̄) = {(σ,σ′) | Gevt( x̄ ,σ)∧σ′.v̄ = f̄evt ( x̄ ,σ)}.

We write x̄ of type Devt for the event’s parameters and v̄ for a subset of
the state variables. Furthermore, Gevt( x̄ ,σ) is a conjunction of guards, and
σ′.v̄= f̄evt (x̄,σ) is an action with update functions f̄evt, one for each variable
in v̄. The guards define when the event is enabled and the action is syntactic
sugar for σ′ = σL v̄ := f̄evt (x̄,σ) M, i.e., the simultaneous assignment of
values f̄evt ( x̄ ,σ) of variables v̄ in state σ.
The set of labels Λ is defined by

Λ =
⊎

evt∈E{evt} × Devt,

and the labeled transition relation ∆ is defined by

∆(evt, d̄) =
⋃

d̄∈Devt
evt(d̄).

The concrete parameters d̄ can be thought of as being chosen non-deter-
ministically by the environment.

In the following sections, we fix the system’s environment, i.e., the
network graph (N , E, cap) as described in Section 3.4, a partition V =
H ]M , and the fraction 0 < δ < 1 of the links’ adjusted capacities.

3.5.2 States
The set of states Σ is defined as the record type

Σ= L time ∈ N; buf ∈ Buff ; res ∈ ResMap; kwl ∈ P (M) M
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A state σ ∈ Σ describes a snapshot of the system at a given point in time,
given by its time field. In our system model, we assume discrete time, which
is loosely synchronized between all ASes in the network, i.e., compared
to the minimal duration of reservations (on the order of minutes), the
discrepancy of time measurements between AS (on the order of seconds)
is negligible. The buffers in the field buf model the traversal of messages
through the network as a partial function of type

Buff = V × I → Pf (M) .

A function buf ∈ Buff describes for every AS x ∈ V and interface i ∈ I the
set of messages buf(x , i) that has arrived at that interface of the AS. The
field res models all reservation maps in the network are the partial functions

ResMap= V × V ×N*f Res.

A partial function res ∈ ResMap stores for each AS x its reservations res(x, s, id)
given by the corresponding pair of reservation identifiers (s, id). Note that,
compared to the previous section, we combine all reservation maps resMx
into a global one, but continue using the indexed notation. Each reservation
is given by

Res= L path ∈ P; ptr, first, last ∈ N; vrs ∈ VrsMap M,

containing a version map of the partial function type

VrsMap= N*f L minBW, maxBW, idBW, resBW ∈ R+0 ; expT ∈ N M

as described in the previous section.
The field kwl models the attackers’ knowledge as the set of messages that

malicious ASes can create or collect over time. These messages then can
be modified and sent to honest ASes to execute attacks, e.g., by reserving
excessive bandwidth in the network.

The set of initial states Σ0 = {σ0} is given by the single state

σ0 = L time := 0; buf := ;; res := ;; kwl := kwl0 M.

where time starts at 0, the buffers and reservation map are initially empty,
and the attackers’ initial knowledge kwl0 = {m ∈M | src(m) ∈ M} consists
of all messages with a malicious source AS.
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3.5.3 Events
The set of events E can be partitioned into two kinds of events:

1. Events of the N-Tube algorithm. These consist of the N-Tube message
processing events and an internal event that removes expired reser-
vations in each AS. There are different message processing events
depending on a message’s type, its location on the path, and the
direction of the path traversal (cf. Figure 3.6). This results in seven
events describing how honest ASes process reservation messages,
three events to process deletion messages, and one event for drop-
ping messages.

2. Environment events. These include a time progress (clock tick) event
and two events modeling the attacker’s capabilities, one for model-
ing the attackers collecting and modifying messages and one for the
attackers using these messages for reserving bandwidth anywhere in
the network.

Below, we discuss the attacker events and one representative message
processing event. For a detailed description of the remaining events, see
Appendix A.5.

Attacker Events. There are two events that each attacker, i.e., malicious
AS a ∈ M , can execute: (i) receive a message, partially modify it, and store
the resulting message in the attacker knowledge kwl, and (ii) sending a
message from kwl to any AS in the network. Recall that kwl also includes
any message in M with a malicious source AS. We now discuss the two
attacker events in more detail.

In the first event, C LT , the attacker a ∈ M receives a message m from
his buffer buf(a, i) at interface i, possibly modifies its mutable fields ptr and
accBW (but not the other fields), and adds the resulting message to kwl.

C LT (m, m′ ∈M, a ∈ M , i ∈ I) = {(σ,σ′) |
- guards -

m ∈ σ.buf(a, i) ∧
m′ ≈ m ∧ - modify mutable fields -

- actions -

σ′.kwl= σ.kwl∪ {m′} }.

This partial modification of the message is modeled by the relation m≈ m′,
expressing that m and m′ coincide except on their mutable fields. It precise
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definition is given in Appendix A.3. We assume that in an implementation
of the N-Tube algorithm, the source AS signs the immutable fields with its
private key.

In the second event, AT K , an attacker can send any message m in kwl
to any neighbor AS v by adding m to v’s buffers buf(v, i)

AT K(m ∈M, a ∈ M , v ∈ H, i, e ∈ I , t ∈ N) = {(σ,σ′) |
- guards -

m ∈ σ.kwl ∧
((a, e), (v, i)) ∈ E ∧
- actions -

σ′.buf = σ.buf((v, i) 7→ σ.buf(v, i)∪ {m} }.

These two events model a powerful attacker’s capabilities: Malicious
ASes can attack anytime, they can make arbitrary reservation requests from
their own ASes, and they can partially modify requests. Note, that these
capabilities include that attackers can communicate between each other
through channels outside the network to collude and synchronize attacks
and they can replay old messages. However, the attackers cannot spoof
arbitrary messages from honest ASes, change the reservations stored in the
reservation maps of honest ASes, or change the system’s global time.



3.5 Model 69

Message Processing Events. We depict the CMP event, since it is the most
representative message processing event. In this event, AS v receives a
reservation message m at interface i (first guard) at time t (second guard),
allocates bandwidth using the function save (first action), and forwards the
modified reservation message m′ using the function send (second action)

CMP(m, m′ ∈MR, v ∈ H, i ∈ I , t ∈ N) = {(σ,σ′) |
- guards -

(1) m ∈ σ.buf(v, i) ∧
(2) σ.time= t ∧
(3) PathCheck(m.path) ∧
(4) ResMsgCheck(m,σ.time) ∧
(5) ResMapCheck(σ.res, m, v) ∧
(6) m.first≤ m.ptr< m.last ∧
(7) m.path[m.ptr].inI = i ∧
(8) m′ = process(m,σ.res) ∧

- actions -

σ′.res= save(v,σ.res, m′) ∧
σ′.buf = send(v, i,σ.buf , m, m′) }.

The third, forth and fifth guard ensure that m is well-formed and compatible
with existing reservations in v’s reservation map that corresponds to m.
Details are given in Appendix A.5. The sixth guard determines if v is on
the path segment, i.e., if m’s pointer is between first and last. The seventh
guard checks if m traverses the path in the forward direction, i.e., if the
arrival interface i of AS v matches the corresponding ingress interface given
on m’s path field. The final guard models, using the function process, how
N-Tube processes the received message m resulting in m′. This function
determines the available and ideal bandwidth that AS v can allocate using
the functions avail and ideal described in Section 3.4, appends their results
to the accBW field, and increments m’s pointer

process(m ∈MR, resM ∈ ResMap) =
let newBW = L avBW := avail(m, resM);

idBW := ideal(m, resM) M
in mL accBW := newBW # m.accBW; ptr :=m.ptr+ 1 M.
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3.6 Properties
We formally define N-Tube’s five properties over valid executions and we
sketch their proofs. See Appendix B for details.

Definition (Valid Executions). A valid execution π = {(σn,λn)}n∈N ∈ E
satisfies the following assumptions:
Time-Progress: The global time infinitely progresses

∀t ∈ N ∃n ∈ N. σn.time≥ t. (TP)

Message-Progress: All messages in the buffers of honest ASes are processed
in at most time bufT

∀n ∈ N, v ∈ H, i ∈ I , m ∈ σn.buf(v, i).
∃ñ> n. m 6∈ σñ.buf(v, i) ∧ σñ.time−σn.time≤ bufT. (MP)

This is satisfied if all honest ASes run a fair scheduling algorithm, for
example Round-Robin, to prevent message starvation and messages are
dropped in case of buffer overflow.

All properties assume that a successful reservation has been established
by an honest source AS.

Definition (Successful Reservation). We say an honest source s ∈ H makes
a successful reservation confirmed by the message m ∈MR at time t if the
following three conditions hold:
Honest Path: m’s path only contains honest ASes.
Confirmation: s confirms m at time t with sufficient bandwidth

∃n ∈ N, i ∈ I . λn = F IN(m, s, i, t) ∧ finBW(m)≥ m.minBW.

No deletion: There is no deletion event matching the reservation (src(m), m.id)
and version m.idx before m’s expiration time.

Theorem 23. If an AS s makes a successful reservation m and time t, then
all ASes on m’s path added their avail and ideal computations to m.accBW
and reserve finBW(m) until it expires

∀n ∈ N, v ∈ V, k ∈ [m.first; m.last].
σn.time ∈ ]t; m.expT] ∧ v = m.path[k].as

⇒ σn.res(v, s, m.id).vrs(m.idx).resBW = finBW(m) ∧
∃ñ< n, m̃ ∈MR. m̃≈ m ∧

m.accBW[k−m.first] = L avBW = avail(m̃,σñ.res);
idBW = ideal(m̃,σñ.res) M.
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Proof Sketch. The proof proceeds by induction on n and then by case dis-
tinction on the event λn. By the No Deletion assumption, we do not need to
consider deletion events. By the Honest Path assumption it can be shown
that m only traverses honest ASes, which also excludes the ATK event. Since
the reservation was successful, we can show that, for each AS v on the
path from the source s back to the AS w at index m.last, there is exactly
one message processing event, and that the ASes between first(m) and w
reserve the bandwidth finBW(m). Likewise, going backwards from w to s,
we can show that the accumulated bandwidths are as indicated.

We model “constant bandwidth demands” using a function D : V×N*f
MR such that D(s, id) = m implies src(m) = s and m.id = id. We say that a
reservation message m corresponds to D if (src(m), m.id) ∈ supp (D) and m
coincides with D(src(m), m.id) on all fields except ptr, expT, minBW, and
accBW. For the rest of this section we fix two time points t0, t1 ∈ N such
that t1 − t0 ≥ 2maxT.

Definition (Constant Demands). We say an execution π ∈ E has constant
demands D between t0 and t1 if

• for all (s, id) ∈ supp (D) the source AS s has successfully made a reser-
vation confirmed by a message m corresponding to D(s, id) before
time t0 and successfully renews this reservation without any gaps
until t1,

• any reservation confirmed by a reservation message m between t0
and t1, corresponds to D, and

• there are no deletion events between t0 and t1 for reservations given
by supp (D).

See Appendix A.13 for a formalization of this definition.

Theorem 24. If there are constant demands D between t0 and t1, then after
time t0 + 2maxT all reservations allocate the ideal bandwidth until t1, i.e.,

∃ñ ∈ N. σñ.time= t0 + 2maxT ∧
∀m ∈ rng (D) , r ∈ Res, n> ñ, v ∈ sgmt(m).
σn.time ∈ ]t0 + 2maxT; t1] ∧ r = σn.resv(src(m), m.id)
⇒ allocBW (r,σn.time) =minx∈sgmt(m){ideal(m,σñ.resx)}
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Proof sketch. We first show that after maxT the requested demands in all
reservation maps correspond to D. Due to the constant demands, after
2maxT the ideal bandwidth allocations in the field accBW stay constant and
are greater than the avail bandwidth allocations in all processed reservation
messages. Hence, between t0+2maxT and t1 the ideal bandwidth allocation
is reserved.

3.6.1 Availability
If an honest AS makes a successful reservation m, then a positive amount
of bandwidth, finBW(m), will be reserved on its path until it expires.

Corollary 1 (Availability). Assume s makes a successful reservation m at
time t, then

∀n ∈ N, v ∈ sgmt(m). σn.time ∈ ]t; m.expT]
⇒ σn.resv(s, m.id).vrs(m.idx).resBW > 0.

Proof sketch. Follows directly from Theorem 23 and the positivity property
of the bandwidth computation from Section 3.4.3.

3.6.2 Immutability
If an honest AS makes a successful reservation m, the reserved bandwidth
stays the same for all ASes on m’s path until it expires.

Corollary 2 (Immutability). Assume s makes a successful reservation m at
time t. Then

∀n, n′ ∈ N, v, v′ ∈ sgmt(m). σn.time,σn′ .time ∈ ]t; m.expT]
⇒ σn.resv(s, m.id).vrs(m.idx).resBW

= σn′ .resv′(s, m.id).vrs(m.idx).resBW.

Proof sketch. This follows directly from the first statement in Theorem 23,
since the resBW fields are set to finBW(m) for all path ASes until m expires.
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3.6.3 Stability
During a period of constant demands, all reservations stabilize.

Corollary 3 (Stability). Assume there are constant demands D between
t0 and t1. Then

∀n, n′ ∈ N, r, r ′ ∈ Res, v ∈ V, m ∈ rng (D) .
σn.time,σn′ .time ∈ ]t0 + 2maxT; t1] ∧
r = σn.resv(src(m), m.id) ∧ r ′ = σn′ .resv(src(m), m.id)

⇒ allocBW (r,σn.time) = allocBW
�

r ′,σn′ .time
�

Proof sketch. This follows directly from Theorem 28.

3.6.4 Minimum Bandwidth Guarantee
If there are constant demands D between t0 and t1, then there is a lower
bound on the ideal bandwidth allocations that only depends on the request
ratios on their first link and on the link capacities along their paths.

Corollary 4 (Minimum Bandwidth Guarantee). Assume there are constant
demands D between t0 and t1, then

∃ñ ∈ N. σñ.time= t0 + 2maxT ∧
∀m ∈ rng (D) , r ∈ Res.

∃ G ∈ ]0; 1]∀n> ñ, v ∈ sgmt(m) \ {first(m)}.
σn.time ∈ ]t0 + 2maxT; t1] ∧ r = σn.resv(src(m), m.id)
⇒ allocBW(r,σn.time)> G · reqRatio(m,σñ.resfirst(m))

Proof sketch. This follows directly from Theorem 28 and the lower ideal
bound property of the ideal function in the bandwidth computation from
Section 3.4.3.

3.6.5 Bounded Tube Fairness
If there are constant demands D between t0 and t1, then, in the absence of
congestion, bandwidth of egress links is allocated proportionally between
tube demands and, in case some tube demands exceed their ingress links’
capacities, their tube ratio is bounded.
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Corollary 5 (Bounded Tube Fairness). Assume there are constant demands
D between t0 and t1, then

∃ñ ∈ N. σñ.time= t0 + 2maxT ∧
∀m ∈ rng (D) , v ∈ sgmt(m), i, i′, e ∈ I , n> ñ.

tubeDemv(i, e) ∈ ]0; cap(v, i)]∧ tubeDemv(i
′, e) ∈ ]0; cap(v, i′)]

⇒
tubeRatiov(i, e)
tubeRatiov(i′, e)

=
tubeDemv(i, e)
tubeDemv(i′, e)

.

Analogously, in case tubeDemv(i′, e) ≥ cap(v, i′), e.g., there are excessive
demands from i′ to e,

tubeRatiov(i, e)
tubeRatiov(i′, e)

=
tubeDemv(i, e)

cap(v, i′)
.

Here tubeRatiov and tubeDemv denote the corresponding functions defined
in Section 3.4.3 that are computed at AS v.

Proof sketch. This follows directly from Theorem 28 and the bounded tube-
proportionality property of the ideal function in the bandwidth computation
from Section 3.4.3.

Bounded tube-fairness implies that, when the system reaches a stable
state, the bounded tube-proportionality property holds globally, i.e., on
all links of honest ASes. This guarantees that in case of a link-flooding
allocation attack the attacked ingress links’ tube ratios are always bounded,
which prevents that bandwidth reservations through the other ingress links
will be reduced ad infinitum.

3.7 Related work

Congestion Control enables end-to-end connections with possibly multiple
paths to control their path rates to fairly mitigate congestion. The seminal
work of Kelly et al. [45] theoretically analysed fairness and stability of the
problem by framing it in terms of Network Utility Maximization (NUM).
Various fairness notions, including models of deployed TCP congestion-
control mechanisms, can be formulated in this setting as summarized by
Srikant et al. [61]. By adding minimal information about path congestion
to traversing packets, these algorithms provide resource allocation without
the need for state at routers.
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These works, however, are based on per-flow fairness with complete
knowledge of users’ utility functions. In this work we take the stance
that new Internet architectures [30, 57, 70] can handle reservation states
efficiently which allows them to police misbehaving traffic. As observed
by Briscoe et al. [18], self-interested and strategic users can skew the
overall rate allocation by opening arbitrarily many connections violating
the property of minimum bandwidth guarantee. Furthermore, stateless
algorithms can only reduce bandwidth allocations of misbehaving flows
but cannot determine aggregated misbehaviour (over time and per AS) and
cannot revoke access.

Capability-based mechanisms [33, 49, 50, 56, 69, 71] attempt to counter
link-flooding attacks with authenticity identifiers, called tokens, for in-
dividual flows provided by the destination. The tokens allow routers to
distinguish between legitimate and malicious DDoS traffic. However, such
mechanisms are insufficient against link-flooding attacks if attackers can
acquire these tokens in a legitimate manner from numerous honest and ma-
licious destinations and send a huge number of low-volume flows through
critical network links.

Game Based Mechanisms consider resource allocation for maximizing a
global objective function as an "inverse game theory" problem, i.e., how
to design games that achieve maximum social-welfare utility [36, 41].
Mechanism design for the resource allocation problem allows for users
that are self-interested and strategic, and may attempt to manipulate the
system to their advantage by misreporting information about their utility
functions. Vickrey-Clarke-Groves (VCG) type mechanisms [68] provide
sealed bid auctions that incentivize users to reveal their objective truthfully
and can also include sellers of resources. However, for these mechanisms to
allow practical bids, the class of utility functions is very restricted, e.g., to
piecewise linear [36]. Furthermore, the main objective of these mechanisms
is to increase efficiency and not to provide minimal guarantees.

Resource reservation architectures such as RSVP [72], DiffServ [35], and
PCE [67] enable users to make bandwidth reservations along network paths
by allowing reservation state at the routers. However, they neither handle
malicious reservations nor do their authors provide formal arguments to
support their claims.

For networks supporting path-based forwarding, SIBRA [10], the ap-
proach closest to our work, describes a scalable inter-domain bandwidth
allocation architecture that allows ASes to make and enforce reservations
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along network paths. The SIBRA architecture is based on a distributed
bandwidth reservation algorithm that processes reservation requests made
by ASes and allocates bandwidth on the path’s links accordingly. Together
with an enforcement mechanism that monitors and polices these reserva-
tions, the authors claim that this architecture provides an effective QoS
scheme, i.e., that it provides minimum bandwidth guarantees, which they
call botnet-size independence. However, their reservation algorithm is based
on proportional fair bandwidth sharing, allowing attackers to reserve exces-
sive amounts of bandwidth and to reduce legitimate reservation arbitrarily.
Without formal arguments their claim to provide botnet-size independence
remains questionable.

3.8 Conclusion and future work
We have presented N-Tube, the first provably correct, distributed band-
width reservation algorithm. N-Tube makes a substantial step forward to
providing a reliable counter-measure against DDoS attacks in the presence
of powerful attackers. By rigorously verifying safety and security prop-
erties, our algorithm rests on a solid foundation where all corner cases
are considered and checked, which dramatically reduces the risk of future
vulnerabilities and exploits. Another key contribution is the new fairness
notion of bounded tube-fairness that provides minimal bandwidth guar-
antees in the face of excessive demands and proportional fairness under
normal circumstances with moderate demands.

As future work we would like to refine the underlying stability assump-
tions, to couple our fairness notion with the Network Utility Maximization
setting, and to verify all proofs using a theorem prover. We are also working
on integrating the N-Tube algorithm into an existing path-based forwarding
architecture to finally enter the era of DDoS free Internet.
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Conclusion

4.1 Summary
As shown in Verizon’s data breach report from 2019 [2], large organizations
and users of today’s Internet most frequently suffer from severe security
incidents due to privilege misuse and denial of service. To address these
two problems, sophisticated techniques were invented in the field of policy
analysis to provide qualitative guarantees for access control policies of
large organizations and in the field of bandwidth reservation to provide
quantitative guarantees for Internet users during DDoS attacks. However,
policy analysis suffers from an imbalance between expressiveness of policy
specification and the efficiency of policy analysis. Furthermore, bandwidth
reservation schemes neither handle malicious reservations nor do they
provide formal arguments to support their claimed guarantees. In this
thesis, we proposed two solutions, one for each challenge.

First, we proposed FORBAC, a framework that strikes a balance between
expressiveness and efficient policy analysis for RBAC. FORBAC is expressive
enough to formalize a wide range of access control policies. However, it is
also simple enough so that relevant policy analysis queries can be analyzed
in NP, which we argue is a natural complexity class for this problem. To
analyze queries efficiently, we reduce them to the problem of satisfiability
modulo appropriate theories, and use off-the-shelf SMT solvers. FORBAC
is the first framework that provides an expressive access control policy
language together with a reasonable complexity class for its policy analysis.
Furthermore, we provide strong evidence that our approach is practical by
evaluating it in a case study with a large European bank.

Second, we proposed N-Tube, the first provably correct, distributed
bandwidth reservation algorithm. We formalized and proved that N-Tube’s
bandwidth allocations quickly stabilize in periods of constant demands and
that the resulting stable state (i) guarantees the allocation of a minimum
bandwidth, even in the presence of congestion, and (ii) satisfies a new
fairness notion called bounded tube-fairness. We also proved that any
successful reservation immediately reserves some bandwidth and existing
reservations are immutable up to their expiration time. By rigorously
verifying safety and security properties, our algorithm rests on a solid
foundation where all corner cases are considered and checked, which
dramatically reduces the risk of future vulnerabilities and exploits.
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4.2 Future Work
Working on these solutions has led to the following open challenges for
future research directions.

Extending the FORBAC-language with further access control idioms:
As future work, we propose to extend FORBAC with two RBAC idioms that
have received attention in the literature. The first is role hierarchies, which
define a partial order on a set of roles. Roles are assigned permissions
granted to that role and in addition, permissions granted to all its subroles
in the hierarchy. There is no standard that specifies how to define role
hierarchies with role templates. The second idiom consists of two types of
constraints: static and dynamic separation-of-duty constraints and cardinal-
ity constraints. Further idioms which are provided by the XACML language
are delegation and policy composition. Delegation allows to transfer access
rights among users. Policy composition provides multi-valued decisions
and rules how to resolve conflicts between contradicting decisions of sub-
policies. It remains open how to define these idioms in RBAC models where
users, roles, and permissions have attributes.

Providing complexity bounds for policy analysis of XACML policies:
In the work of Athena+Yices [7] the authors formalize XACML policies like
the CONTINUE [47] policy with first-order logic. They also provide new
policy properties, like observational equivalence, conflict detection, and
change-impact analysis. However, the authors do not provide complexity
bounds for their policy analysis problems which are undecidable in general.
It remains open how to define extensions of the FORBAC fragment that
can specify XACML policies together with these properties and what the
complexity bounds are for their policy analysis.

Formally verify the N-Tube algorithm in a theorem prover: We pro-
vided a principled solution to the resource reservation problem: First we
modelled the N-Tube algorithm and a powerful attacker as a labeled tran-
sition system. Second, we formalized and proved that N-Tube’s bandwidth
allocations provides quantitative guarantees, i.e., stability and minimum
bandwidth allocations. The third step remains for future research to for-
mally verify all these proofs using a theorem prover. This guarantees that
all corner-cases were considered and verified correctly. In addition, we are
working on integrating the N-Tube algorithm into an existing path-based
forwarding architecture, namely SCION. Another research direction is to
combine program verification of its implementation with our formalization.
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Framing the N-Tube bandwidth allocation computation in the Network
Utility Maximization setting: Our newly proposed notion of bounded
tube-fairness provides a local property, i.e., it holds for allocations at each AS
on the path of a reservation request. Our approach of introducing N-Tube
is similar to the research development of congestion control in the early
Internet. Due to the problem of congestion collapse, Van Jacobsen started
the development of congestion control for TCP in the mid 1980s [61]. But
much later in the mid 1990s a formal framework was designed by Kelly
et al. to provide a mathematical model by framing it in terms of Network
Utility Maximization (NUM) [45]. Later works extended this approach
using game-based mechanisms which consider resource allocation as an
"inverse game theory" problem, i.e., how to design games that achieve
maximum social-welfare utility [36, 41]. It remains to show if bounded
tube-fairness can also be expressed in the setting of an optimization problem
maximizing a global objective function, where N-Tube approximates its
maximum in a distributed manner.
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Appendix: Model

A.1 Network and Environment
The network is modeled as a directed, labeled multi-graph. We provide a
more refined model using arcs A and two corresponding functions src and
hd to define a network:

Definition 25. Given three finite sets V , A, and I. We define a network
η ∈N as a record with

N = L ases = V ; links= A; intf = I ;

tl, hd ∈ A→ V × I ; cap ∈ A→ R+0 M

with the following components:

• V is a finite set of vertices, called ASes.

• The nodes of the graph are given by the set V × I .

• Hereby, the finite set I provides a global set of identifiers, which are
used for interfaces inside of each AS.

• The finite set of arcs A is called links being the domain for the following
functions:

– The weight of each link is given by the function cap : A→ R+0 , the
capacity function.

– A link can start from exactly one interface of an AS given by the
injective function tl : A→ V × I and

– ends in at exactly one interface of another AS given by the injective
function hd : A→ V × I .

• To guarantee that G is a valid network graph the following constraints
must hold:

– No internal links

∀u, v ∈ V, i, j ∈ I , a ∈ A. tl(a) = (u, i)∧ hd(a) = (v, j)⇒ u 6= v
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– Inverse links

∀u, v ∈ V, i, j ∈ I , a ∈ A.

tl(a) = (u, i)∧ hd(a) = (v, j)
⇒∃a′ ∈ A. tl(a′) = (v, j)∧ hd(a′) = (u, i)

Definition 26. The set environment Γ is defined as

Γ = L η ∈N ;δ ∈]0;1[; maxT, bufT ∈ R+0 M.

An environment γ ∈ Γ contains the network graph η, the N-Tube parameters
δ, to adjust link capacities, maxT, limiting the maximum time a version of
a reservation can be valid, and bufT, limiting the maximum time a message
stays in a buffer until it is processed.

A.2 Paths
For any p ∈ P it has to hold that it

• contains at at least one link, i.e., length(p)≥ 1

• is directed and consistent with the network

∀k ∈N, u, v ∈ V, i, e, i′, e′ ∈ I .

0≤ k ≤ length(p)− 1 ∧

p[k] = ue
i ∧ p[k+ 1] = ve′

i′

⇒ ∃a ∈ A. src(a) = (u, e) ∧ hd(a) = (v, i′)
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• is loop-free

∀k, k′ ∈ N, u, v ∈ V, i, e, i′, e′ ∈ I .

k < k′ ≤ length(p) ∧ p[k] = ue
i ∧ p[k′] = ve′

i′ ⇒ u 6= v

The set of ASes on a path p are defined by

nodes(p) := {v ∈ V | ∃k ∈ N. p[k].as = v}

In this work we only consider the set of valid paths P and ignore the
underlying network η.

A.3 Messages
As described before messages M are defined as either deletion messages or
reservation messages

M= MD +MR

together with injections delM : MD →M and resM : MR→M.
For a valid message m the following must hold:

1. Valid path, i.e., m.path ∈ P

2. Valid path counter

m.ptr≤ length(m.path)

3. Valid pointers

m.first< m.last≤ length(m.path)

4. Valid current bandwidth

length(m.accBW) =max(0, m.ptr−m.first)

5. Valid bandwidth range

m.minBW ≤ m.maxBW ∧ 0< m.maxBW
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The function src : M→ V extracts the source AS from a message’s path.

src(m) = m.path[0].as

The function cur : M → L inI ∈ I;as ∈ V ; egI ∈ I M extracts the current
AS together with the corresponding ingress and egress interface from a
message m.

cur(m) = m.path[m.ptr]

The function nodes : M→ P (V ) extracts the AS between on the path field
of a message,

nodes(m) = {v ∈ V | ∃k ∈ [0; length(m.path)]. v = m.path[k].as}.

The function sgmt : MR→ P (V ) extracts the AS between first and last of
a reservation message,

sgmt(m) = {v ∈ V | ∃k ∈ [m.first; m.last]. v = m.path[k].as}.

Given two messages m, m′ ∈M We say m corresponds to m′ (and reversely)
if they refer to the same version of a reservation

m∼ m′ :⇔
src(m) = src(m′) ∧ m.id= m′.id ∧ m.idx = m′.idx

Given two reservation messages m, m′ ∈MR. We say m is equivalent to
m′ (and reversely) if all fields except of their ptr and accBW coincide

m≈ m′ :⇔
m.id= m′.id ∧
m.idx = m′.idx ∧
m.path= m′.path ∧
m.first= m′.first ∧
m.last= m′.last ∧
m.minBW = m′.minBW ∧
m.maxBW = m′.maxBW ∧
m.expT = m′.expT

Note that the relations ≈ ⊆MR ×MR and ∼ ⊆M×M are equivalence
relations.
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A.4 Reservation Maps
A valid reservation map has to be consistent regarding their reservations in
the following sense:

∀v,s ∈ V, id, k, st, en ∈ N, p ∈ P , vrs ∈ VrsMap

σ.res(v, s, id) = L p, k, st, en, vrs M ∧
p[k].as= v ∧ p ∈ P ∧ s = p[0].as ∧ st ≤ k ≤ en≤ length(p) ∧
∀idx ∈ N, min,max, idl, res ∈ R+0 , expT ∈ N.

vrs(idx) = L min, max, idl, res, expT M
min≤ res≤max ∧ 0<max

and it must hold that the reserved bandwidth for any egress link does not
exceed the link’s capacity, i.e.,

∀v ∈ V, e ∈ I , t ∈ N.
∑

r∈rng(σ.resv):
resEg(r)=e

allocBW(r.vrs, t)≤ cap(v, e).

The functions resSr : Res→ V , resEg : Res→ I and resIn : Res→ I extract
the corresponding reservation’s source AS and egress and ingress interface.

resSr(r) = r.path[0].as

resEg(r) = r.path[r.ptr].egI

resIn(r) = r.path[r.ptr].inI

The function sgmt : Res→ P (V ) ASes on the path segment of a reservation
are given by the following function:

sgmt(r) = {v ∈ V | ∃k ∈ [r.first; r.last]. v = r.path[k].as}.

Given a reservation r ∈ Res and a reservation message m ∈MR. We say r
corresponds to m if holds

r∝ m :⇔
m.maxBW = r.maxBW ∧
m.path= r.path ∧
m.first= r.first ∧
m.last= r.last
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A.5 Events
There are 14 events in our model. In contrast to the rest of the events, the
first event TCK and the second event RST are not triggered by a message
arrival, but model time progress and expiration of reservations, respectively.

In case the arrived message is a reservation message the following six
events can be triggered.

The event FWD describes how the message is forwarded along the
path until it reaches the AS where the N-Tube algorithm starts reserving
bandwidth. The event CMP continues from there and describes how the
bandwidth allocation is computed by N-Tube, how the results are added
to the message and how the updated message is then forwarded until the
end. The event TRN finishes the N-Tube computation at the last AS of the
reservation and sends the updated message backwards along the path.

The event UPT describes how the reservations are updated in the reser-
vation maps of each AS between the end and including the start of path on
the trip back. The event BWD sends the message backward along the path
and the event FIN finally drops the message at the source.

In case the arrived message is a deletion message two events are trig-
gered. In the event RMV all ASes forward the deletion message along the
path and delete the corresponding version of the reservation from their
reservation maps. The event DST is triggered at the destination of the path
and instead of forwarding the message it drops it.

At any arrival of an reservation or deletion messages the event DRP can
be triggered that just drops the message without any interaction with the
N-Tube algorithm. Furthermore, we define two attack events ATK and CLT
as described previously.

Tick event: This is the only event that models the progress of time in the
system by increasing the state’s time-field to progress to its successor state.

TCK(t ∈ N) = {(σ,σ′) |
- guards -

σ.time= t ∧
- actions -

σ′.time= σ.time+ 1 }

Reset event: This event models the removal of expired or unsuccessful
reservations. Given by the event’s parameters a reservation at an hon-
est AS v and identified by source s, id, and id x , this event can trigger
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non-deterministically for the corresponding reservation. Its first guard is
satisfied if the reservation has been expired before the current time of the
system. Its second is satisfied is satisfied if less bandwidth was reserved
than the source AS asked for.

RST(v ∈ H, s ∈ V, id, idx ∈ N) = {(σ,σ′) |
- guards -

( σ.res(v, s, id).vrs(idx).expT < σ.time ∨
σ.res(v, s, id).vrs(idx).resBW

< σ.res(v, s, id).vrs(idx).minBW ) ∧
- actions -

σ′.res= delRes(v, s, id, idx,σ.res) }

The function delRes removes the version idx of the reservation identified by
(s, id) from v’s reservation map:

delRes(v, s ∈ V, id, idx ∈ N, res ∈ ResMap) =
let

delVrs := res(v, s, id).vrs (idx 7→ ⊥)
in

res
�

(v, s, id) 7→ L vrs := delVrs M
�

A.6 Event Guards

For message creation and message processing events a set of checks are
executed, given in as event guards. In the following the predicates for these
guards are presented:

PathCheck : P → B checks the validity of the path m.path, i.e., if it
contains at at least one link, it is loop-free, and it is consistent with the
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network (all its links have positive capacities)

PathCheck(p ∈ P) =
length(p)≥ 1 ∧
∀k ∈ N, u ∈ V, i, e, i′, e′ ∈ I .

k < length(p) ∧ p[k] = ue
i ∧ p[k+ 1] = u′e

′

i′

⇒ cap(u, i)> 0 ∧ cap(u, e)> 0 ∧
∀k, k′ ∈ N, u, u′ ∈ V, i, e, i′, e′ ∈ I .

k < k′ ≤ length(p) ∧ p[k] = ue
i ∧ p[k′] = u′e

′

i′

⇒ u 6= u′

Loc : M → B checks at which part the of the path m.path the AS v
arrived. There are five instantiations of this predicate:

atSrc(m ∈M) =
m.ptr= 0

onWay(m ∈M) =
0< m.ptr< m.first

atSrt(m ∈M) =
m.ptr= m.first

onPth(m ∈M) =
m.first< m.ptr< m.last

atEnd(m ∈M) =
m.ptr= m.last

Note that by assumption (D) all these are disjoint predicates, i.e. non of
their conjunctions is satisfiable.

Dir : V × I ×MR → B checks at which border router the message m
arrived compared to the provided path m.path and if the length of the
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accBW field fits the position of v on the path:

isFwd(v ∈ V, i ∈ I , m ∈MR) =
m.path[m.ptr].as= v ∧
m.path[m.ptr].inI = i ∧
length(m.accBW) =max(0, m.ptr−m.first)

isBwd(v ∈ V, i ∈ I , m ∈MR) =
m.path[m.ptr].as= v ∧
m.path[m.ptr].egI = i ∧
length(m.accBW) = m.last−m.first

isWrg(v ∈ V, i ∈ I , m ∈MR) =
¬(isFwd(v, i, m)∨ isBwd(v, i, m))

Rsvd : ResMap × V ×MR × N → B checks if there is already a valid
version of the reservation corresponding to the arrived reservation message
in the reservation map. The predicate isRsvd defines a valid version of a
reservation r, i.e., successful and not expired.

isRsvd(res, v, m, t) =
∃r ∈ Res. r = res(v, src(m), m.id) ∧
¬(0) r 6=⊥ ∧
¬(5) r.vrs 6= ; ∧
¬(6) r.vrs(m.idx) 6=⊥ ∧
(9) r.vrs(m.idx).expT ≥ t ∧
(10) r.vrs(m.idx).resBW ≥ r.vrs(m.idx).minBW ∧
(11) r.vrs(m.idx).resBW ≥min(m.accBW)

The predicate isRsvd defines a marked version of a reservation r to indicate
that a version of the reservation with the corresponding index m.id x has
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been made before.

isMrkd(res, v, m, t) =
∃r ∈ Res. r = res(v, src(m), m.id) ∧
¬(0) r 6=⊥ ∧
¬(5) r.vrs 6= ; ∧
¬(6) r.vrs(m.idx) 6=⊥ ∧
(9) r.vrs(m.idx).expT ≥ t ∧
(10′) r.vrs(m.idx).resBW =⊥

The predicate notRsvd indicates that no version of the reservation r exists
yet or that one has existed but was unsuccessful or has been expired.

notRsvd(res, v, m, t) =
∃r ∈ Res. r = res(v, src(m), m.id) ∧
( (0) r =⊥ ∨
(5) r.vrs= ; ∨
(6) r.vrs(m.idx) =⊥ ∨
¬(9) r.vrs(m.idx).expT < t ∨
¬(10) r.vrs(m.idx).resBW < r.vrs(m.idx).minBW ∨
¬(11) r.vrs(m.idx).resBW <min(m.accBW) )

It holds that all three event are mutual exclusive and cover all cases:

Lemma 1.

isMrkd∧ isRsvd⇔ FALSE

¬(isMrkd∨ isRsvd)⇔ notRsvd

ResMsgCheck : MR ×N×N→ B is checked only if m is a reservation
message as follows:

ResMsgCheck(m ∈MR, t, maxT ∈ N) =
m.expT −maxT ≤ t < m.expT ∧
m.minBW ≤ m.maxBW ∧
0< m.maxBW ∧
m.first< m.last≤ length(m.path)
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ResMapCheck : ResMap×V×MR→ B compares the path, and the point-
ers pt r, first and last of a message m with the corresponding reservation
in res of v at the entry m.id as follows:

ResMapCheck(res, v, m) =
∃r ∈ Res. r = res(v, src(m), m.id) ∧
(0) r =⊥ ∨
(¬(0) r 6=⊥ ∧
(1) r.path= m.path ∧
(2) r.ptr= m.ptr ∧
(3) r.first= m.first ∧
(4) r.last= m.last ∧
((5) r.vrs= ; ∨
¬(5) r.vrs 6= ; ∧
¬(6) r.vrs(m.idx) 6=⊥ ∧
(7) r.vrs(m.idx).minBW = m.minBW ∧
(8) r.vrs(m.idx).minBW = m.maxBW ∧
(9) r.vrs(m.idx).expT = m.expT ) )

After the message processing events on the back traversal of the path it
holds that (1) the reservation message was valid and (2) there has been a
corresponding reservation, i.e.,

ResMapCheck(res, v, m)∧ isRsvd(res, v, m, t)



92 A Appendix: Model

This can be summarized in the property:

isStrongRsvd(res, v, m, t) =
r =res(v, src(m), m.id) ∧
¬(0) r 6=⊥ ∧
(1) r.path= m.path ∧
(2) r.ptr= m.ptr ∧
(3) r.first= m.first ∧
(4) r.last= m.last ∧
¬(5) r.vrs 6= ;
¬(6) r.vrs(m.idx) 6=⊥ ∧
(7) r.vrs(m.idx).minBW = m.minBW ∧
(8) r.vrs(m.idx).maxBW = m.maxBW ∧
(9) r.vrs(m.idx).expT ≥ t

The following Lemma shows that the predicate isStrongRsvd is equivalent
to ResMapCheck(res, v, m) together with isRsvd(res, v, m, t):

Lemma 2.

ResMapCheck(res, v, m)∧ isRsvd(res, v, m, t)
⇔ isStrongRsvd(res, v, m, t)

ResMapCheckD : ResMap× V ×MD → B is the analogous predicate for
deletion messages which only keeps checks (1− 4), since for a deletion
message m does not contain the fields minBW, maxBW, and expT.

ResMapCheck(res, v, m) =
∃r ∈ Res. r = res(v, src(m), m.id) ∧
(0) r =⊥ ∨
(¬(0) r 6=⊥ ∧
(1) r.path= m.path ∧
(2) r.ptr= m.ptr ∧
(3) r.first= m.first ∧
(4) r.last= m.last )



A.7 Message-Creation 93

A.7 Message-Creation

The two message creation events describe how honest ASes create reserva-
tion and deletion messages correctly. The creation of reservation messages
is defined as follows:

CRTR(γ ∈ Γ , m ∈MR, v ∈ H, i ∈ I , t ∈ N)
= {(σ,σ′) |

- guards -

σ.time= t ∧
PathCheck(m.path) ∧
ResMsgCheck(m,σ.time,γ.maxT) ∧
ResMapCheck(σ.res, m, v) ∧
atSrc(resMsg(m)) ∧
isFwd(v, i, m) ∧
¬isMrkd(σ.res, v, resMsg(m),σ.time) ∧
- actions -

σ′.buf = σ.buf ((v, i) 7→ σ.buf(v, i)∪ {m}) ∧
σ′.res=mark(v,σ.res, m) }

AS v creates a valid reservation message m at time t and adds it to the
buffer of the ingress interface i. To avoid that it creates a further reservation
messages with the same identifiers src(m), m.id, and m.idx, the source
marks the corresponding version of the reservation in its reservation map
when creating m. The guard ¬isMrkd together with the function mark
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guarantee that no duplicates are created as long as m is not expired.

mark(v ∈ V, resM ∈ ResMap, m ∈MR) =
let

newVrs= L minBW := m′.minBW;

maxBW := m′.maxBW;

idBW :=⊥;

resBW :=⊥;

expT := m′.expT M

newVrsM = resM(v, src(m), m′.id).vrs
�

m′.idx 7→ newVrs
�

newRes= L path := m′.path;

ptr := m′.ptr;

first := m′.first;

last := m′.last;

vrs := newVrsM M
in

resM
�

(v, src(m), m′.id) 7→ newRes
�

The creation of deletion messages is similarly defined, but less guards
are sufficient:

CRTD(γ ∈ Γ , m ∈MD, v ∈ H, i ∈ I , t ∈ N)
= {(σ,σ′) |

- guards -

σ.time= t ∧
PathCheck(m.path) ∧
atSrc(delMsg(m)) ∧
isFwd(v, i, delMsg(m)) ∧
- actions -

σ′.buf = σ.buf ((v, i) 7→ σ.buf(v, i)∪ {m}) } ∧
σ′.res=mark(v,σ.res, m) }

Note that we do check if there is a corresponding reservation in v’s reserva-
tion map.



A.8 Reservation Message Arrival Events 95

A.8 Reservation Message Arrival Events
These events are triggered by a reservation message arrival and are given
by the following event template RES:

RES(γ ∈ Γ , m, m′ ∈MR, v ∈ V, i ∈ I , t ∈ N,

Loc ∈M→ B,
Dir ∈ V × I ×MR→ B,
Rsvd ∈ ResMap× V ×MR ×N→ B,
updMsg ∈MR × ResMap×]0; 1[×N→MR,

updBuf ∈ V × I × Buff ×M×M→ Buff ,

updRes ∈ V × ResMap×MR→ ResMap)
= {(σ,σ′) |

- guards -

m ∈ σ.bu f (v, i) ∧
σ.time= t ∧
PathCheck(m.path) ∧
ResMsgCheck(m,σ.time,γ.maxT) ∧
ResMapCheck(σ.res, m, v) ∧
Loc(resMsg(m)) ∧
Dir(v, i, m) ∧
Rsvd(σ.res, v, m,σ.time) ∧
m′ = updMsg(m,σ.res,γ.δ,σ.time) ∧
- actions -

σ′.buf = updBuf(v, i,σ.buf , resMsg(m), resMsg(m′)) ∧
σ′.res= updRes(v,σ.res, m′) }

This event-template should be understood as follows:

• A reservation message m arrives at AS v at interface i at time σ.time
to be processed, i.e., m ∈ σ.buf(v, i) and σ.time= t.

• The predicates PathCheck and ResMsgCheck ensure that the path
m.path and the m are well-formed. The predicate ResMapCheck en-
sures that the arriving reservation message m fits an already existing
reservation with ID m.id in v’s reservation map.
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• The function updMsg given as a parameter creates a new reservation
message m′ from the arrived message m. Here the N-Tube computa-
tion is executed and the pointer m.ptr is updated depending on the
location and the direction of the message on the path.

• The predicates Loc, Dir, and Rsvd indicate at which part of the path
m.path the message is arrived, at which interface it arrived and if
there is already an existing reservation for m.id and m.idx in v’s
reservation map.

• Using the function updBuf the processed message m′ is either sent
to the next AS on the path given by m.path. or is dropped after it
returned to the source.

• The function updRes saves the reservation given by m′ in v’s reser-
vation map between m.first and m.last on the path, and marks it
otherwise.

Forward event: This event is triggered by the arrival of a reservation
message m at interface i of AS v at time σ.time at the source (but not at
the start) or on the way to the start of the reservation and there is no valid
reservation in v’s reservation map yet. Using the event template RES it is
instantiated as follows:

FWD(γ, m, m′, v, i, t) =
RES(γ, m, m′, v, i, t, (atSrc∧¬atSrt)∨ onWay,

isFwd,¬isRsvd, forward, send, save)

where the parameter updMsg is instantiated by the function forward

forward(m ∈MR, res ∈ ResMap,δ ∈]0;1[, t ∈ N) =
mL ptr := ptr+ 1 M.

The parameter updBuf is instantiated by the function send which models
the sending of the processed message m′ by removing the received message
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m from v’s buffer at interface i and adding m′ to buffer i′ of the next AS v′.

send(v ∈ V, i ∈ I , buf ∈ Buff , m ∈M, m′ ∈M) =
let

L i′, v′, e′ M= cur(m′)
in

buf
�

(v, i) 7→ buf(v, i) \ {m}
(v′, i′) 7→ buf(v′, i′)∪ {m′}

�

The parameter updRes is instantiated by the function save, which writes
a new entry derived from the information given by message m′ in v’s
reservation map at entry (src(m′), m′.id).

save(v ∈ V, resM ∈ ResMap, m′ ∈MR) =
let

finBW =min(m′.maxBW, min(m′.accBW))
vrs′ = L minBW := m′.minBW;

maxBW := m′.maxBW;

idBW := m′.accBW.[m′.ptr− 1].idBW;

resBW := finBW;

expT := m′.expT M

vrsM′ = resM(v, src(m′), m′.id).vrs
�

m′.idx 7→ vrs′
�

res′ = L path := m′.path;

ptr := m′.ptr;

first := m′.first;

last := m′.last;

vrs := vrsM′ M
in

resM
�

(v, src(m′), m′.id) 7→ res′
�

.

Note, that m′.accBW.[m′.pt r − 1].idBW is defined as ⊥ if the field accBW
is the empty list nil.

Computation event: This event is triggered by the arrival of a reservation
message m at interface i of the start AS v at time σ.time at the start and on
the path before the end of the reservation and if there is no valid reservation
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in v’s reservation map yet. Using the event template RES it is instantiated
as follows:

CMP(γ, m, m′, v, i, t) =
RES(γ, m, m′, v, i, t, atSrt∨ onPth,

isFwd, notRsvd, process, send, save)

process(m ∈MR, res ∈ ResMap,δ ∈]0; 1[, t ∈ N) =
forward (compute(m, res,δ))

where the function compute executes the N-Tube computations avail and
ideal at v and adds them to m’s field accBW:

compute(m ∈MR, res ∈ ResMap,δ ∈]0;1[, t ∈ N) =
let

newBW = L avBW := avail(m, res,δ, t);
idBW := ideal(m, res,δ, t) M

in

mL accBW := newBW # m.accBW M.

The parameter updRes is initiated by the function save as defined above.
Note that there is no N-Tube computation necessary since m′ contains the
values of the avail and ideal computation due to the function process.

Turn event: This event is triggered by the arrival of a message m at interface
i of AS v at time σ.time at the end of the reservation and if there is no valid
reservation in v’s reservation map yet. Using the event template RES it is
instantiated as follows:

TRN(γ, m, m′, v, i, t) =
RES(γ, m, m′, v, i, t, atEnd

isFwd, notRsvd, turn, send, save)

The parameter updMsg is instantiated by the function turn which is similar
to the function process but decreases pt r using the function backward.

turn(m ∈MR, res ∈ ResMap,δ ∈]0;1[, t ∈ N) =
backward (compute(m, res,δ, t))
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The function backward does the same as the function forward except that
it decrements the pointer pt r.

backward(m ∈MR, res ∈ ResMap,δ ∈]0; 1[, t ∈ N) =
mL ptr := ptr− 1 M

Update event: This event is triggered by the arrival of a reservation mes-
sage m at interface i of an AS v on the path (not the end or the start) of the
reservation at time σ.time, i.e. the message traverses the path backwards.
Using the event template RES it is instantiated as follows:

UPT(γ, m, m′, v, i, t) =
RES(γ, m, m′, v, i, t, onPth∨ (atSrt∧¬atSrc),

isBwd, isRsvd∨ isMrkd, backward, send, save)

Backward event: This event is triggered by the arrival of a reservation
message m at interface i of an AS v on the way back between start and
source at time σ.time. Using the event template RES it is instantiated as
follows:

BWD(γ, m, m′, v, i, t) =
RES(γ, m, m′, v, i, t, onWay,

isBwd, isRsvd∨ isMrkd, backward, send, save)

Finish event: This event is triggered by the arrival of a reservation message
m at interface i of the source AS v of the path at time σ.time, i.e., the
message completes its round-trip, the source updates its reservation map
res with the final result and drops the message. Using the event template
RES it is instantiated as follows:

FIN(γ, m, m′, v, i, t) =
RES(γ, m, m′, v, i, t, atSrc

isBwd, isRsvd∨ isMrkd, nothing, drop, save)

The parameter updMsg is instantiated by the function nothing

nothing(m ∈M, res ∈ ResMap,δ ∈]0;1[, t ∈ N) = m
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and the parameter updBuf is instantiated by the function drop

drop(v ∈ V, i ∈ I , buf ∈ Buff , m, m′ ∈M) =
buf ((v, i) 7→ buf(v, i) \ {m})

A.9 N-Tube’s Bandwidth Allocation Computation

Available Bandwidth Computation The function avail computes for mes-
sage m how much bandwidth is available on the egress link at interface
e of AS v as follows. First, resM′v is obtained from resM by removing the
reservation corresponding to m. Second, resM′v is obtained by extracting
the reservations that go trough AS v. Finally, avail subtracts the aggre-
gated allocated bandwidth of all currently valid reservations with the same
egress interface e from the link’s total capacity cap(x , e) and multiplies the
result by the parameter δ to obtain the remaining bandwidth. Multiplying
with 0 < δ < 1 guarantees that some bandwidth is always available for
subsequent reservation requests.

avail(m, resM,δ, t) =
let

L i, v, e M= cur(m)
resM′ = resM ((v, src(m), m.id) 7→ ⊥)
resM′v = filter(resM′, v)
in

δ ·
�

cap(v, e)−
∑

r∈rng(resM′v):
resEg(r)=e

allocBW(r.vrs, t)
�

Given an AS v and a reservation resM the function filter restricts resM to
the reservations that go through v.

filter(resM, v) =
λ(s′, id ′).
let r = resM(v, s′, id ′)

in
�

if r.first≤ r.ptr≤ r.last then resM(v, s′, id ′) else ⊥
�

Given the current time t, a currently valid version vrs is not expired, i.e.,
vrs.expT ≥ t, and successful, i.e., vrs.minBW ≤ vrs.resBW. The reservation’s
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bandwidth allocation are computed by the function allocBW and is defined
as the maximum of its currently valid versions’ resBW .1

allocBW(vrsM, t) =
max
vrs∈

rng(vrsM)

{vrs.resBW | vrs.minBW ≤ vrs.resBW ∧ vrs.expT ≥ t}

The maximum is taken, since the source can send traffic using any existing
version of its reservations. Hence, this computation guarantees that, in the
worst-case, enough bandwidth is available.

Analogously, the function demBW computes reservation’s bandwidth
demand and is defined as the maximum of its currently valid versions’
maxBW .

demBW(vrsM, t) =
max
vrs∈

rng(vrsM)

{vrs.maxBW | vrs.minBW ≤ vrs.resBW ∧ vrs.expT ≥ t}

Ideal Bandwidth Computation Given a message m, the function ideal
computes how the adjusted capacity δ · cap(v, e) of the egress link e of AS
v is shared in a so-called bounded tube-fair manner among all the existing
reservations at AS v with the same egress link e. First, resM′ is obtained
from resM by removing all existing versions and adding a new version cor-
responding to m. Removing previous versions of the reservation guarantees
that the result of the ideal computation is not influenced by versions that
are still valid and therefore simulates the ideal state where only versions of
the reservation exist which correspond to m. Second, resM′v is obtained by
extracting the reservations that go trough AS v. Finally, ideal first propor-
tionally splits the egress link’s adjusted capacity between each ingress link
by multiplying with tubeRatio, partitions the result between reservations
starting and traversing the ingress link i by multiplying with linkRatio, and
splits the result proportionally between all remaining reservations requests
by multiplying with reqRatio.

1Note that max;= 0.
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ideal(m, resM,δ, t) =
let

s = src(m)
id = m.id

L i, v, e M= cur(m)
vrs′ = L minBW := m.minBW;

maxBW := m.maxBW;

idBW := m.accBW.[m.ptr− 1].idBW;

resBW := m.minBW;

expT := m.expT M

vrsM′ = ;
�

m.idx 7→ vrs′
�

res′ = L path := m.path;

ptr := m.ptr;

first := m.first;

last := m.last;

vrs := vrsM′ M

resM′ = resM
�

(v, s, id) 7→ vrsM′
�

resM′v = filter(resM′, v)
if (m.first< m.ptr)
then reqRatio= reqRatiotransit(v, s, id, i, resM′v , t)

linkRatio= linkRatiotransit(v, i, resM′v , t)
else inRatio= reqRatiostart(v, s, id, i, resM′v , t)

linkatio= linkRatiostart(v, i, resM′v , t)
in

reqRatio · linkRatio · tubeRatio(v, i, e, resM′v , t) ·δ · cap(v, e)

Tube Ratio: The tube ratio between an ingress interface i and an egress
interface e is computed as the ratio of the bounded tube demand between i
and e, given by min{cap(v, i), tubeDem(i, e)}, and the aggregated bounded
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tube demands at e.

tubeRatio(v, i, e, resM, t) =
min{cap(v, i), tubeDem(v, i, e, resM, t)}

∑

i′∈I min{cap(v, i′), tubeDem(v, i′, e, resM, t)}
.

Taking the minimum with respect to the corresponding ingress link’s capac-
ity guarantees that its respective portion of tube demand compared to the
other ingress links’ tube demands is always bounded. This prevents that
the bandwidth reserved for other ingress links will be reduced ad infinitum.

The tube demand between an ingress interface i and an egress interface
e aggregates their adjusted requested demands

tubeDem(v, i, e, resM, t) =
∑

r∈rng(resM):
resIn(r)=i
resEg(r)=e

adjReqDem(v, r, i, e, resM, t).

A source can demand more than the ingress and egress links’ capacities
allow. To account for that, the adjusted requested demand of a reservation
r is derived from its requested demand, by multiplying the latter with the
minimum of two scaling factors

adjReqDem(v, r, resM, t) =
let

s = resSr(r)
i = resIn(r)
e = resEg(r)

in

min{inScalFctr(v, s, i, resM, t), egScalFctr(v, s, e, resM, t)}
· reqDem(v, r, i, e, t).

Analogously to the allocated bandwidth allocBW in avail, the requested
demand of a reservation r is the maximum of its demanded bandwidth
demBW

reqDem(v, r, i, e, t) =
min{cap(v, i), cap(v, e), demBW(r.vrs, t)}.

Note that, the requested demand is bounded by the ingress and egress links’
capacities. This avoids that s reserves more bandwidth in one request than
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physically possible, i.e., this guarantees that

reqDem(v, r, i, e, t)≤min{cap(v, i), cap(v, e)}.

Analogously to the allocated bandwidth allocBW in avail, the requested
demand of a reservation r is the maximum of its demanded bandwidth
demBW .

demBW(vrsM, t) =
max
vrs∈

rng(vrsM)

{vrs.maxBW | vrs.minBW ≤ vrs.resBW ∧ vrs.expT ≥ t}

The maximum is taken, since the source can send traffic using any existing
version of its reservations. Hence, this computation guarantees that, in the
worst-case, enough bandwidth is available.

However, it is possible that s demands less than the capacity of an
ingress (or egress) link in each of its requests, but the aggregate of all its
demands might still exceed the link’s capacity. To adjust the requested
demands, we multiply them with the minimum of the corresponding ingress
and the egress scaling factor. We compute the egress scaling factor on the
egress link at e for s as the source’s proportion of the total egress demand
bounded by the egress link’s capacity, given by the function

egScalFctr(v, s, e, resM, t) =
min (cap(v, e), egDem(v, s, e, resM, t))

egDem(v, s, e, resM, t)
.

Analogously, we define the ingress scaling factor on the egress link at e for s

inScalFctr(v, s, i, resM, t) =
min (cap(v, i), inDem(v, s, i, resM, t))

inDem(v, s, i, resM, t)
.

The egress demand of s on e is defined as the aggregate over its requested
demands with egress interface e,

egDem(v, s, e, resM, t) =
∑

r ′∈rng(resM):
resSr(r ′)=s
resEg(r ′)=e

reqDem(v, r ′, resIn(r ′), e, t).
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Analogously, we compute the source’s ingress scaling factor on the ingress
interface i,

inDem(v, s, i, resM , t) =
∑

r ′∈rng(resM):
resSr(r ′)=s
resIn(r ′)=i

reqDem(v, r ′, i, resEg(r ′), t).

Link Ratio: If v is a transit AS on m’s path, i.e., m.first < m.ptr (≤ m.last),
then the link ratio between an ingress interface i and an egress interface
e is computed as the ratio of the bounded transit demand between i and
e, given by min{cap(v, i), transitDem(i, e)}, and the sum of bounded start
and bounded transit demand

linkRatiotransit(v, i, resM, t) =
let

stDem= startDem(v, i, resM, t)
trDem= transitDem(v, i, resM, t)
in

min{cap(v, i), trDem}
min{cap(v, i), stDem}+min{cap(v, i), trDem}

.

If v is the first AS on m’s path, i.e., m.first = m.pt r, then the link ra-
tio between an ingress interface i and an egress interface e is computed
analogously with startDem in the nominator instead of transitDem

linkRatiostart(v, i, resM, t) =
let

stDem= startDem(v, i, resM, t)
trDem= transitDem(v, i, resM, t)
in

min{cap(v, i), stDem}
min{cap(v, i), stDem}+min{cap(v, i), trDem}

.

Taking the minimum with respect to ingress link’s capacity guarantees that
its respective portion for transit demand compared to demands of reser-
vations starting at i is always bounded. This prevents that the bandwidth
allocated for traversing reservations can be reduced ad infinitum by exces-
sive reservations starting at link i and vice-versa. Here the transit demand
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at an ingress interface i adjusted request demands of traversing reservations,

transitDem(v, i, resM, t) =
∑

r∈rng(resM):
resIn(r)=i
r.first<r.ptr

adjIdDem(v, r, i, resM, t).

Analogously, the startDem at an ingress interface i adjusted request demands
of starting reservations,

startDem(v, i, resM, t) =
∑

r∈rng(resM):
resIn(r)=i
r.first=r.ptr

adjIdDem(v, r, resM, t).

The adjusted previous ideal bandwidth allocations of a reservation r is simi-
larly defined to adjReqDem the previous ideal bandwidth allocation with the
egress scaling factors of the corresponding source AS and egress link

adjIdDem(v, r, resM, t) =
let

s = resSr(r)
i = resIn(r)
e = resEg(r)

in

egScalFctr(v, s, e, resM, t) ·min{cap(v, i), cap(v, e), idBW(r.vrs, t)}.

The previous ideal bandwidth allocation of a reservation’s version map is
similarly defined to the allocated bandwidth by maximizing over the field
idBW instead of resBW.

idBW(vrsM, t) =
max
vrs∈

rng(vrsM)

{vrs.idBW | vrs.minBW ≤ vrs.resBW ∧ vrs.expT ≥ t}.

Request Ratio: If v is a transit AS on m’s path, i.e., m.first < m.pt r
(≤ m.last), then the request ratio of a reservation identified by (s, id) at
ingress interface i is the ratio between its adjusted ideal bandwidth allocation
(provided by the predecessor on the reservation’s path) and the transit
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demand at interface i

reqRatiotransit(v, s, id, i, resM, t) =
adjIdDem(v, resM(v, s, id), resM, t)

transitDem(v, i, resM, t)
.

Similarly, in case v is the first AS on m’s path, i.e., m.first = m.ptr, we the
request ratio by

reqRatiostart(v, s, id, i, resM, t) =
adjIdDem(v, resM(v, s, id), resM, t)

startDem(v, i, resM, t)
.

A.10 Deletion Events
The two events triggered by a arrival of a deletion message are given by
the following event template:

DEL(m, m′ ∈MD, v ∈ V, i ∈ I , t ∈ N,

Loc : M→ B,
updBuf : V × I × Buff ×M×M→ Buff

= {(σ,σ′) |
- guards -

m ∈ σ.buf(v, i) ∧
σ.time= t ∧
PathCheck(m.path) ∧
ResMapCheckD(m, v,σ.res) ∧
Loc(delMsg(m)) ∧
m.path[m.ptr].as= v ∧
m.path[m.ptr].inI = i ∧
m′ = mL ptr := ptr+ 1 M ∧
- actions -

σ′.buf = updBuf(v, i,σ.buf , delMsg(m), delMsg(m′)) ∧
σ′.res= remove(v,σ.res, m) }
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The function remove overwrites an entry given by a message m in the
reservation map res of AS v

remove(v ∈ V, res ∈ ResMap, m ∈MD) =
let

delVrs= res(v, src(m), m.id).vrs (m.idx 7→ ⊥)
in

res
�

(v, src(m), m.id) 7→ L vrs := delVrs M
�

Note that the following parts were changed compared to the reservation
message arrival template RES:

• Environment γ is not needed, since there is no N-Tube computation
in deletion events.

• Predicate Dir instantiated is replaced with the first two conjuncts
of predicate isFwd, since deletion messages only travels the path
forward once and the accBW field is not needed in deletion messages.

• Predicate Rsvd is not needed, since if there is no version corresponding
to m, then function remove does not change it.

• Function updMsg is replaced by the term of function forward.

• Function updRes is initiated with the function remove

• Predicate ResMsgCheck is not necessary since it validates fields of
reservation messages that are not part of deletion messages.

There are two instantiations of the DEL event template:

Remove event: This event is triggered by the arrival of a deletion message
m at interface i of AS v which is the source or on the path (but not the
destination) at time σ.time. Using the event template DEL it is instantiated
by

RMV(m, m′, v, i, t) =
DEL(m, m′, v, i, t, prePth, send)

with the path predicate onPth : M→ B

prePth(m ∈M) =
m.ptr< length(m.path).
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Destination event: This event is triggered by the arrival of a deletion
message m at interface i of the destination AS v of the path at time σ.time.
Using the event template DEL it is instantiated by

DST(m, m′, v, i, t) =
DEL(m, m′, v, i, t, atDst, drop).

with the path predicate atDst : M→ B

atDst(m ∈M) =
m.ptr= length(m.path)

A.11 Drop Events
This event is triggered by the arrival of a deletion or reservation message
m at interface i of the source AS v of the path at time σ.time

DRP(m ∈M, v ∈ V, i ∈ I , t ∈ N) = {(σ,σ′) |
- guards -

m ∈ σ.buf(v, i) ∧
σ.time= t ∧
- actions -

σ′.buf = σ.buf( (v, i) 7→ σ.buf(v, i) \ {m} ) }

A.12 Attack Events
The attack events are given as described before. However, in Theorem 23,
we assume a stronger attacker model by weakening the guards of the AT K
event

AT K(m ∈M, v ∈ V, i ∈ I) = {(σ,σ′) |
- guards -

m ∈ σ.kwl ∧
- actions -

σ′.buf = σ.buf ((v, i) 7→ σ.buf(v, i)∪ {m}) }.

In the previously defined AT K event we restrict by the additional guard
((a, e), (v, i)) ∈ E that v has to be honest and connected with a link to a
malicious AS a ∈ M . Note, however, proving properties with this stronger
attacker model does imply these properties also for the weaker one.
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A.13 Executions

Monotonicity Given the transition relation ∆ defined in Section 3.5 for
any execution π ∈ E is the property of time-monotonicity, i.e.,

Lemma 3.

∀n, ñ ∈ N. n≤ ñ⇒ σn.time≤ σñ.time

Proof. It’s sufficient to show:

∀n ∈ N. σn.time≤ σn+1.time

Given n ∈ N. By case distinction on λn:

• T CK( t̃): By the event’s action it holds σn+1.time = σn.time+ 1 >
σn.time.

• All other event’s actions keep the time unchanged, i.e., σn.time =
σn+1.time.

Time-progress The global time infinitely progresses, i.e.,

∀t ∈ N ∃n ∈ N. σn.time≥ t, (TP)

more well-known as the property of zeno-freeness.
This is reasonable to assume, since it is equivalent to the assumption

that in a realistic execution there are only finitely many ATK and CRT events
at any given point in time

∀t ∈ N ∃B ∈ N.

|{n ∈ N | λn.time= t ∧λn.evt= AT K}| ≤ B ∧
|{n ∈ N | λn.time= t ∧λn.evt= CRT}| ≤ B.

Message-Progress: All messages in the buffers of honest ASes are pro-
cessed in at most time bufT

∀n ∈ N, v ∈ H, i ∈ I , m ∈ σn.buf(v, i).
∃ñ> n. m 6∈ σñ.buf(v, i) ∧ σñ.time−σn.time≤ bufT. (MP)
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Distinct-Pointers: W.l.o.g., we assume (DP) that all messages m their field
first is positive which is given as Assumption DP

∀n ∈ N, v ∈ V, i ∈ I , m ∈M.

m ∈ σn.buf(v, i)⇒ 0< m.first (DP)

Note that we assumed m.first < m.last. Adding this assumption does not
change any of the properties we prove but avoids considering additional
corner-cases.

Successful Reservation We say an honest source s ∈ H makes a successful
reservation confirmed by the message m ∈MR at time t if the following
three conditions hold:

Honest Path: m’s path only contains honest ASes.

nodes(m) ⊆ H. (HP)

Confirmation: s confirms m at time t with sufficient bandwidth

∃n ∈ N, i ∈ I . λn = F IN(m, s, i, t) ∧ finBW(m)≥ m.minBW. (CF)

No deletion: There is no deletion event matching the reservation (src(m), m.id)
and version m.id x before m expires

∀n̂, nc ∈ N, v̂ ∈ V, î, i ∈ I , m̂ ∈MD, mc ∈MR, t̂, tc ∈ N.

λnc
= CRTR(mc , s, i, tc)∧mc ≈ m ∧

σn̂.time ∈ ]tc; m.expT] ∧
�

λn̂ = RMV (v̂, î, m̂, t̂) ∨ λn̂ = DST (v̂, î, m̂, t̂)
�

⇒ mc 6∼ m̂. (nDE)

Constant Demands We model “constant bandwidth demands” using a
function

D : V ×N*f MR

such that D(s, id) = m implies src(m) = s and m.id = id, and
D(s, id).minBW = 0.
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We say that a reservation message m corresponds to D if (src(m), m.id) ∈
supp (D) and m coincides with D(src(m), m.id) on all fields except ptr,
expT, and accBW.

m `D :⇔
D(src(m), m.id).path= m.path ∧
D(src(m), m.id).first= m.first ∧
D(src(m), m.id).last= m.last ∧
D(src(m), m.id).minBW = m.minBW ∧
D(src(m), m.id).maxBW = m.maxBW

We say that a reservation r identified by (s, id) corresponds to D at time t if
(s, id) ∈ supp (D) and r coincides with D(s, id) on all fields except ptr, expT,
for all its versions and accBW.

r `D :⇔
(s, id) ∈ supp (D) ∧
D(s, id).path= r.path ∧
D(s, id).first= r.first ∧
D(s, id).last= r.last ∧
∀idx ∈ N.

r.vrs(idx) =⊥ ∨
r.vrs(idx).expT < t ∨
D(s, id).minBW = r.vrs(idx).minBW ∧
D(s, id).maxBW = r.vrs(idx).maxBW )

We say that a reservation map resv corresponds to D at time t at AS v if all
its reservation correspond to D at time t

∀r ∈ rng (resv) . r `D

We say that a state σ corresponds to D at time t if all for any honest ASes
v ∈ H its reservation map resv corresponds to D at time t at AS v

∀v ∈ H, r ∈ rng (σ.resv) . r `D

For the rest of this section we fix two time points t0, t1 ∈ N such that t1− t0
≥ 2maxT. We say an execution π ∈ E has constant demands D between t0
and t1 if
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Successful Requests: for all (s, id) ∈ supp (D) the source AS s has success-
fully made a reservation confirmed by a message m corresponding to
D(s, id) before time t0

∀m ∈ rng (D) , evt ∈ {C M P, TRN , U PT}, v ∈ sgmt(m).

∃ñ ∈ N, m̃, m̃′ ∈MR, ĩ ∈ I , t̃ ∈ N.

σñ.time≤ t0 ∧ m̃ `D ∧ λñ = evt(m̃, m̃′, v, ĩ, t̃) ∧ m̃.expT > t0,

Successful Renewal: and successfully renews this reservation without
any gaps until t1,

∀ñ ∈ N, evt ∈ {C M P, TRN , U PT}. σñ.time ∈ [t0, t1]⇒

∀m̃, m̃′ ∈MR, ṽ ∈ H, ĩ ∈ I , t̃ ∈ N.

λñ = evt(m̃, m̃′, ṽ, ĩ, t̃) ∧ m̃ `D ⇒
∃n̂ ∈ N, m̂, m̂′ ∈MR, ṽ ∈ sgmt(m̂), î ∈ I , t̂ ∈ N.

σn̂.time ∈ [ t̃, m̃.expT] ∧ λn̂ = evt(m̂, m̂′, v̂, î, t̂)∧ m̂.expT > m̃.expT.

Constant Demands: any reservation confirmed by a reservation message
m between t0 and t1, corresponds to D

∀ñ ∈ N, evt ∈ {C M P, TRN , U PT}. σñ.time ∈ [t0, t1]⇒

∀m̃, m̃′ ∈MR, ĩ ∈ I , t̃ ∈ N, ṽ ∈ sgmt(m̃).

λñ = evt(m̃, m̃′, ṽ, ĩ, t̃)⇒ m̃ `D

and similarly for attack events

∀ñ ∈ N. σñ.time ∈ [t0, t1]⇒

∀m̃ ∈MR, ĩ, ẽ ∈ I , t̃ ∈ N, ã ∈ M , ṽ ∈ sgmt(m̃).

λñ = AT K(m̃, ã, ṽ, ĩ, ẽ, t̃)
⇒ m̃ `D ∧ finBW(m̃) =D(src(m̃), m̃.id).maxBW

No Deletion: there are no deletion events between t0 and t1 for reserva-
tions given by supp (D).

∀ñ ∈ N, evt ∈ {RMV, DST}. σñ.time ∈ [t0, t1]

∀m̃ ∈MD, ṽ ∈ H, ĩ ∈ I , t̃ ∈ N.

λñ = evt(m̃, ṽ, ĩ, t̃)⇒ (src(m̃), m̃.id) 6∈ supp (D)
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Appendix: Proofs

To not increase the appendix further with technical poofs, we just provide
the most representative ones to give an idea how such poofs look like.

B.1 Event Lemmata
Lemma 4.

∀n ∈ N, s ∈ V, i ∈ I , m ∈MR, t ∈ N.

λn = CRTR(s, i, m, t) ⇒
m ∈ σn+1.buf(s, is) ∧
PathCheck(m) ∧ ResMsgCheck(m,σn+1.time) ∧
σn+1.time= t ∧
atSrc(m) ∧
isFwd(s, is, m) ∧
ResMapCheck(σn+1.res, s, m) ∧ isMrkd(σn+1.res, s, m,σn+1.time)

Proof. m ∈ σn+1.buf(s, is): follows by the first action of CRTR, i.e.

σn+1.buf = σn.buf ((s, is) 7→ σ.buf(s, is)∪ {m}) }

PathCheck(m): Follows by first guard of CRTR.

ResMsgCheck(m,σn+1.time): Follows by second guard and since the action
of CRTR does not change σn.time, i.e. σn.time= σn+1.time.

ResMapCheck(σn+1.res, s, m): Follows by third guard and since the action
of CRTR does not change σn.res, i.e. σn.res= σn+1.res.

σn+1.time= tc: Follows by the fourth guard and since the action of CRTR
does not change σn.time, i.e. σn.time= σn+1.time.

atSrc(m): Follows by the sixth guard of CRTR.

¬isRsvd(σn+1.res, s, m,σn+1.time): Follows from the seventh guard and
since the actions of CRTR do not changeσn.res, i.e. σn.res = σn+1.res.
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Lemma 5.

∀n ∈ N, m, m′ ∈MR, v ∈ V, i ∈ I , t ∈ N.

λn = FW D(m, m′, v, i, t) ⇒
m≈ m′ ∧ m′.ptr= m.ptr+ 1 ∧ m′.accBW = m.accBW = nil ∧
isFwd(v′, i′, m′) ∧
m ∈ σn.buf(v, i)∧m 6∈ σn+1.buf(v, i)∧m′ ∈ σn+1.buf(v′, i′) ∧
PathCheck(m′) ∧ ResMsgCheck(m′,σn+1.time) ∧
σn+1.time= σn.time= t ∧
onWay(m′)∨ atSrt(m′) ∧

∀ṽ 6= v, s̃ 6= src(m), ĩd 6= m.id, ˜idx 6= m.idx.

σn.res(v, s, id).vrs(idx) = σn+1.res(v, s, id).vrs(idx) ∧
ResMapCheck(σn+1.res, v, m)∧ isMrkd(σn+1.res, v, m,σn+1.time)

Proof. First seven statements: By event’s first guard it holds m ∈ σn.buf(v, i).
By the event’s guard m′ = forward(m,σn.res,γ.δ) it follows that
m′.ptr = m.ptr+ 1 and the rest of the fields stay the same, hence,
m ≈ m′ and m.accBW = m′.accBW. This implies m′.path = m.path
and therefore

m.path[m.ptr+ 1].as= m′.path[m′.ptr].as= v′

m.path[m.ptr+ 1].as= m′.path[m′.ptr].inI = i′.

This is by definition equivalent to isFwd(v′, i′, m′). m.accBW = nil
follows by the event’s guards isFwd(v, i, m) and atSrc(m)∨onWay(m).
Furthermore, it follows by the definition of function send

σn+1.buf(v, i) = σn.buf(v, i) \ {m}
σn+1.buf(v′, i′) = σn.buf(v′, i′)∪ {m′}.

and therefore m 6∈ σn+1.buf(v, i), and m′ ∈ σn+1.buf(v′, i′).

PathCheck(m′): Follows by the second guard of FW D and m′ ≈ m, hence
m.path= m′.path.

ResMsgCheck(m′,σn+1.time): By the third guard of FWD we have
ResMsgCheck(m,σn.time). The actions of FW D do not changeσn.time,
i.e. σn.time = σn+1.time. FW D’s guard m′ = forward(m,σn.res,γ.δ)
only changes the field pt r, which ResMsgCheck does not depend on,
and keeps all the other fields the same.
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σn+1.time= t: Follows by the fifth guard and since the action of FW D
does not change σn.time, i.e. σn.time= σn+1.time= t.

onWay(m′)∨ atSrt(m′): Follows by the seventh guard of FW D for m, i.e.
0 ≤ m.pt r < m.first and that m′.pt r = m.pt r + 1 and m.first =
m′.first, given by the sixth guard of FW D. Hence, together it follows
that 0< m′.pt r ≤ m′.first or equivalently onWay(m′)∨ atSrt(m′).

¬isRsvd(σn+1.res, v, m,σn+1.time): Follows by FWD’s action σn+1.res =
mark(v,σn.res, m′) that sets

σn+1.res(v, src(m′), m′.id).vrs(m′.id x) =⊥

and from above that m ≈ m′, i.e. src(m) = src(m′), m′.id = m.id,
and m′.id x = m.id x .

Unchanged Reservations: This follows directly from the event’s action
only changing the reservation corresponding to src(m), m.id, and
m.id x , i.e.

∀ṽ 6= v, s̃ 6= src(m), ĩd 6= m.id, ˜id x 6= m.id x .

σn.res(v, s, id).vrs(id x) = σn+1.res(v, s, id).vrs(id x)

ResMapCheck(σn+1.res, v, m): By the event’s actionσn+1.res = save(v,σn.res, m′)
and m′ ≈ m for r = σn+1.res(v, src(m), m.id) it holds that

r.path= m.path

r.ptr= m.ptr

r.first= m.first

r.last= m.last

r.vrs(idx).minBW = m.minBW

r.vrs(idx).maxBW = m.maxBW

r.vrs(idx).expT = m.expT

Hence, by definition of ResMapCheck this implies
ResMapCheck(σn+1.res, v, m).

isRsvd(σn+1.res, v, m,σn+1.time): In the same way this implies by defini-
tion of isRsvd that isRsvd(σn+1.res, v, m, m.expT) holds. And by the



118 B Appendix: Proofs

event’s guards it follows m.ex pT > σtime = σn+1.time and therefore
isRsvd(σn+1.res, v, m,σn+1.time).

Lemma 6.

∀n ∈ N, m, m′ ∈MR, v ∈ V, i ∈ I , t ∈ N.

λn = C M P(m, m′, v, i, t) ⇒
m≈ m′ ∧ m′.ptr= m.ptr+ 1 ∧ m′.accBW = newBW # m.accBW ∧
isFwd(v′, i′, m′) ∧
m ∈ σn.buf(v, i)∧m 6∈ σn+1.buf(v, i)∧m′ ∈ σn+1.buf(v′, i′) ∧
PathCheck(m′) ∧ ResMsgCheck(m′,σn+1.time) ∧
σn+1.time= σn.time= t ∧

(atSrt(m)∨ onPth(m))∧
�

onPth(m′)∨ atEnd(m′)
�

∧

∀ṽ 6= v, s̃ 6= src(m), ĩd 6= m.id, ˜idx 6= m.idx.

σn.res(v, s, id).vrs(idx) = σn+1.res(v, s, id).vrs(idx) ∧
ResMapCheck(σn+1.res, v, m) ∧ resCheck(σn+1.res, v, m,σn+1.time)

with

newBW = L avBW := avail(m,σn.res,γ.δ, t);
idBW := ideal(m,σn.res,γ.δ, t) M

Proof. Similar to the proof of Lemma 5
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Lemma 7.

∀n ∈ N, m, m′ ∈MR, v ∈ V, i ∈ I , t ∈ N.

λn = TRN(m, m′, v, i, t) ⇒
m≈ m′ ∧ m′.ptr= m.ptr− 1 ∧ m′.accBW = newBW # m.accBW ∧
isBwd(v′, i′, m′) ∧
m ∈ σn.buf(v, i)∧m 6∈ σn+1.buf(v, i)∧m′ ∈ σn+1.buf(v′, i′) ∧
PathCheck(m′) ∧ ResMsgCheck(m′,σn+1.time) ∧
σn+1.time= σn.time= t ∧
atEnd(m) ∧ onPth(m′) ∧

∀ṽ 6= v, s̃ 6= src(m), ĩd 6= m.id, ˜idx 6= m.idx.

σn.res(v, s, id).vrs(idx) = σn+1.res(v, s, id).vrs(idx) ∧
ResMapCheck(σn+1.res, v, m) ∧ resCheck(σn+1.res, v, m,σn+1.time)

Proof. Similar to the proof of Lemma 5

Lemma 8.

∀n ∈ N, m, m′ ∈MR, v ∈ V, i ∈ I , t ∈ N.

λn = U PT (m, m′, v, i, t) ⇒
m≈ m′ ∧ m′.ptr= m.ptr− 1 ∧ m′.accBW = m.accBW ∧
isBwd(v′, i′, m′) ∧
m ∈ σn.buf(v, i)∧m 6∈ σn+1.buf(v, i)∧m′ ∈ σn+1.buf(v′, i′) ∧
PathCheck(m′) ∧ ResMsgCheck(m′,σn+1.time) ∧
σn+1.time= σn.time= t ∧

(onPth(m)∨ atSrt(m))∧
�

onPth(m′)∨ atSrt(m′)∨ onWay(m′)
�

∧

∀ṽ 6= v, s̃ 6= src(m), ĩd 6= m.id, ˜idx 6= m.idx.

σn.res(v, s, id).vrs(idx) = σn+1.res(v, s, id).vrs(idx) ∧
ResMapCheck(σn+1.res, v, m) ∧ resCheck(σn+1.res, v, m,σn+1.time)

Proof. Similar to the proof of Lemma 5
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Lemma 9.

∀n ∈ N, m, m′ ∈MR, v ∈ V, i ∈ I , t ∈ N.

λn = BW D(m, m′, v, i, t) ⇒
m≈ m′ ∧ m′.ptr= m.ptr− 1 ∧ m′.accBW = m.accBW ∧
isBwd(v′, i′, m′) ∧
m ∈ σn.buf(v, i)∧m 6∈ σn+1.buf(v, i)∧m′ ∈ σn+1.buf(v′, i′) ∧
PathCheck(m′) ∧ ResMsgCheck(m′,σn+1.time) ∧
σn+1.time= σn.time= t ∧
onWay(m) ∧ onPth(m′)∨ atSrc(m′) ∧

∀ṽ 6= v, s̃ 6= src(m), ĩd 6= m.id, ˜idx 6= m.idx.

σn.res(v, s, id).vrs(idx) = σn+1.res(v, s, id).vrs(idx) ∧
ResMapCheck(σn+1.res, v, m)∧ resCheck(σn+1.res, v, m,σn+1.time)

Proof. Similar to the proof of Lemma 5

Lemma 10.

∀n ∈ N, m, m′ ∈MR, v ∈ V, i ∈ I , t ∈ N.

λn = F IN(m, m′, v, i, t) ⇒
m≈ m′ ∧ m′.ptr= m.ptr− 1 ∧ m′.accBW = m.accBW ∧
isBwd(v′, i′, m′) ∧
m ∈ σn.buf(v, i)∧m 6∈ σn+1.buf(v, i)∧m′ 6∈ σn+1.buf(v′, i′) ∧
PathCheck(m′) ∧ ResMsgCheck(m′,σn+1.time) ∧
σn+1.time= σn.time= t ∧
atSrc(m) ∧

∀ṽ 6= v, s̃ 6= src(m), ĩd 6= m.id, ˜idx 6= m.idx.

σn.res(v, s, id).vrs(idx) = σn+1.res(v, s, id).vrs(idx) ∧
ResMapCheck(σn+1.res, v, m) ∧ resCheck(σn+1.res, v, m,σn+1.time)

Proof. Similar to the proof of Lemma 5
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B.2 Attacker Lemmata
Given a reservation message m containing only honest ASes on its path, i.e.
nodes(m) ⊆ H. Then it holds that this message can neither be contained in
the attacker knowledge nor in any buffer of an attacker. Note that for this
proofs we use a slightly stronger version of the ATK event

AT K(m ∈M, v ∈ V, i ∈ I) = {(σ,σ′) |
- guards -

m ∈ σ.kwl ∧
- actions -

σ′.buf = σ.buf ((v, i) 7→ σ.buf(v, i)∪ {m}) }.

Lemma 11.

∀m ∈MR.

nodes(m) ⊆ H ⇒
∀n ∈ N, a ∈ M , i ∈ I . m 6∈ σn.kwl ∧ m 6∈ σn.bu f (a, i).

Proof. We show by induction on n ∈ N

∀n ∈ N, a ∈ M , i ∈ I , m ∈MR.

nodes(m) ⊆ H ⇒
m 6∈ σn.kwl ∧ m 6∈ σn.bu f (a, i)

i.e. the induction hypothesis IH for σn is given by

∀a ∈ M , i ∈ I , m ∈MR.

(∗) nodes(m) ⊆ H ⇒
(1) m 6∈ σn.kwl ∧
(2) m 6∈ σn.bu f (a, i)

n= 0: Since by definition of the initial state for any m ∈ σ0.kwl it holds
that src(m) ∈ A this leads to a contradictions with the assumption
nodes(m) ⊆ H, i.e. (1) holds. By the definition of the initial state that
∀v ∈ V, i ∈ I . σ0.bu f (v, i) = ;, the statement (2) holds trivially.

n→ n+ 1: By case distinction on λn,

C LT (m̂, m̂′, â, î, t̂): Hence, m̂≈ m̂′, m̂ ∈ σn.bu f (â, î), and â ∈ M
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(1): Assume m ∈ σn+1.kwl = σn.kwl ∪ {m̂′}. By case distinc-
tion:
m ∈ σn.kwl \ {m̂′}: Contradiction to IH (1).
m= m̂′: By guard of CLT it holds that m̂ ∈ σn.bu f (â, î)

and m̂≈ m̂′. By m = m̂′ and (∗) follows, that nodes(m̂) =
nodes(m) ⊆= H, which is in contradiction to IH (2) ap-
plied to m̂

(2): Assume ∃a ∈ M , i ∈ I . m ∈ σn+1.bu f (a, i). Due to the
action of C LT it holds that σn+1.bu f (a, i) = σn.bu f (a, i).
This is in contradiction to IH (2) applied to m.

RES(m̂, m̂′, v̂, î, t̂): Hence,

(+) σn+1.buf =

σn.buf

�

(v̂, î) 7→ σn.buf(v̂, î) \ {m̂}
(v̂′, î′) 7→ σn.buf(v̂′, î′)∪ {m̂′}

�

with v̂′ = m̂′.path[m̂′.pt r].as.

(1): Assume m ∈ σn+1.kwl = σn.kwl. By the action of RES, it
holds that m ∈ σn+1.kwl = σn.kwl, which is in contradic-
tion to IH (1) applied to m.

(2): Assume ∃a ∈ M , i ∈ I . m ∈ σn+1.bu f (a, i) By case distinc-
tion due to (+):
m ∈ σn.bu f (v̂, î) \ {m̂′}: Contradiction to IH (1).
m= m̂′: By this it follows that a = v̂′, hence, a ∈ nodes(m̂′).

Together with m̂ ≈ m̂′, hence nodes(m̂) = nodes(m̂′),
and (∗) it follows, that

a = v̂′ ∈ nodes(m̂) = nodes(m) ⊆= H,

which is in contradiction to IH (2) applied to m̂

CRTR(m̂, v̂, î, t̂): Due to the action of CRTR, it holds

(+) σn+1.bu f = σn.bu f
�

(v̂, î) 7→ σn.bu f (v̂, î)∪ {m̂}
�

(1): Assume m ∈ σn+1.kwl. By the action of CRTR, it holds that
m ∈ σn+1.kwl = σn.kwl, which is in contradiction to IH (1)
applied to m.

(2): Assume ∃a ∈ M , i ∈ I . m ∈ σn+1.bu f (a, i). By case dis-
tinction on (+) it follows:
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m ∈ σn.bu f (v̂, î) \ {m̂}: By assumption (v̂, î) = (a, i), which
contradicts IH (2) for m.

m= m̂: By this it follows that src(m) = src(m̂). By the
guards of CRTR it follows that src(m̂) = v̂ and by (+)
and assumption it follows that v̂ = a, hence,

a = src(m̂) = src(m) ∈ nodes(m) ⊆ H,

i.e. a contradiction to (∗) for m.

AT K(m̂, v̂, î, t̂): Due to the action of AT K , it holds

(+) σn+1.bu f = σn.bu f
�

(v̂, î) 7→ σn.bu f (v̂, î)∪ {m̂}
�

(1): Assume m ∈ σn+1.kwl. By the action of AT K , it holds that
m ∈ σn+1.kwl= σn.kwl, which contradicts IH (1) applied
to m.

(2): Assume ∃a ∈ M , i ∈ I . m ∈ σn+1.buf(a, i). By case distinc-
tion on (+) it follows:
m ∈ σn.buf(v̂, î) \ {m̂}: By assumption (v̂, î) = (a, i), which

contradicts IH (2) for m.
m= m̂: By this and the guard of AT K it follows that m=

m̂ ∈ σn.kwl, which is in contradiction to IH (1) for m.

other : Both fields bu f and kwl stay unchanged.

B.3 In Buffer Lemmata
Honest

Lemma 12.

∀n ∈ N, m, m′ ∈MR, v ∈ H, e ∈ I , t ∈ N.

isBwd(v, e, m) ∧ 0≤ m.pt r < m.first− 1 ∧
nodes(m) ⊆ H ∧ m ∈ σn.buf(v, e)⇒
∃n̄< n, m̄, m̄′ ∈MR, v̄ ∈ H, ē ∈ I , t̄ ∈ N.

λn̄ = BW D(v̄, ē, m̄, m̄′, t̄) ∧
m= m̄′ ∧
∀n̂. n̄< n̂≤ n⇒ m ∈ σn̂.buf(v, e)
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Proof. By induction on n:

n= 0: The premise λ0 = F IN(m, m′, v, e, t) cannot hold, since σ0.buf = ;
, hence the event’s guard m ∈ σ0.buf(v, e) is not satisfied and the
claim holds trivially.

n→ n+ 1: Assume IH:

∀m, m′ ∈MR, v ∈ H, e ∈ I , t ∈ N.

isBwd(v, e, m)∧ 0≤ m.pt r < m.first− 1∧
nodes(m) ⊆ H ∧m ∈ σn.buf(v, e)⇒
∃n̄< n, m̄, m̄′ ∈MR, v̄ ∈ H, ē ∈ I , t̄ ∈ N.

λn̄ = BW D(v̄, ē, m̄, m̄′, t̄) ∧
m= m̄′ ∧
∀n̂. n̄< n̂≤ n⇒ m ∈ σn̂.buf(v, e)

Given m, m′ ∈MR , v ∈ H, e ∈ I , t ∈ N with

(1) isBwd(v, e, m) ∧
(2) 0≤ m.pt r < m.first− 1 ∧
(3) nodes(m) ⊆ H ∧
(4) m ∈ σn+1.buf(v, e)

We need to show:

∃n̄< n+ 1, m̄, m̄′ ∈MR, v̄ ∈ H, ē ∈ I , t̄ ∈ N.

λn̄ = BW D(v̄, ē, m̄, m̄′, t̄) ∧
m= m̄′ ∧
∀n̂.n̄< n̂≤ n+ 1. m ∈ σn̂.buf(v, e)

By case distinction on λn:

T CK( t̃): The event’s actions keep the buffer the same, i.e., m ∈
σn+1.buf(v, e) implies m ∈ σn.buf(v, e). Given (1),(2) and (3)
we can apply IH and obtain:

∃n̄< n, m̄, m̄′ ∈MR, v̄ ∈ H, ē ∈ I , t̄ ∈ N.

λn̄ = BW D(v̄, ē, m̄, m̄′, t̄) ∧
m= m̄′ ∧
∀n̂. n̄< n̂≤ n⇒ m ∈ σn̂.buf(v, e)
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Since n< n+1 we only need to show m ∈ σn+1.buf(v, e) in the
fourth line, which is given by (4).

RST (ṽ, s̃, ĩd, ˜id x): As in T CK .

CRTR(m̃, ṽ, ĩ, t̃): Two cases:

m= m̃∧ v = ṽ ∧ e = ẽ: By Lemma 4 it follows isFwd(v, e, m) in
contradiction to (1).

Otherwise: As in T CK .

CRTD(m̃, ṽ, ĩ, t̃): As CRTR, but in the case m̃= m the contradiction
comes from both messages having different types.

FW D(m̃, m̃′, ṽ, ĩ, t̃): Following cases:

m= m̃: By Lemma 5 it follows isFwd(v, e, m) in contradiction
to (1).1

m= m̃′: By Lemma 5 it follows isFwd(v, e, m) in contradiction
to (1).

Otherwise: As in T CK .

C M P(m̃, m̃′, ṽ, ĩ, t̃): As FW D.

TRN(m̃, m̃′, ṽ, ĩ, t̃): As FW D.

U PT (m̃, m̃′, ṽ, ĩ, t̃): As FW D, but the contradiction comes from both
messages m̃ and m̃′ have the following locations, i.e.,

m̃.first≤ m̃.pt r ≤ m̃.last− 1

m̃.first− 1≤ m̃′.pt r ≤ m̃.last− 2

Hence in case m= m̃∨m= m̃′ this contradicts assumption (2).
BW D(m̃, m̃′, ṽ, ĩ, t̃): Following cases:

m= m̃′: Set n̄ := n (hence n̄< n+1). Hence by setting m̄ := m̃,
m̄′ := m̃′ (hence m = m̃′ = m̄′), v̄ := ṽ, ē := ẽ, and t̄ := t̃
it follows:

∃n̄< n+ 1, m̄, m̄′ ∈MR, ṽ ∈ H, ẽ ∈ I , t̃ ∈ N.

λn̄ = BW D(v̄, ē, m̄, m̄′, t̄) ∧
m= m̄′

Since n =: n̄ < n̂ ≤ n + 1, i.e. n̂ = n + 1, and m ∈
σn̂.buf(v, e) by (4) it follows trivially:

∀n̂. n̄< n̂≤ n+ 1⇒ m ∈ σn̂.buf(v, e)
1m 6∈ σn+1.buf(ṽ, ẽ) in contradiction to (4).
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m= m̃: By Lemma 5 it follows

∀ṽ ∈ V, ẽ ∈ I . m 6∈ σn+1.buf(ṽ, ẽ)

in contradiction to (4).

m 6= m̃∨m 6= m̃′: As in T CK .

F IN(m̃, m̃′, ṽ, ĩ, t̃): As CRTR, but in the case m̃ = m the contradiction
comes from m 6∈ σn+1.buf(v, e) and (4).

C LT (m̃, m̃′, ã, ĩ, t̃): As in T CK .

AT K(m̃, ṽ, ĩ, t̃): Two cases:

m≈ m̃: By assumption nodes(m) =m≈m̃ nodes(m̃) ⊆ H and by
Lemma 11 it follows that m̃ 6∈ σn.kwl in contradiction to
the event’s guard.

m 6≈ m̃: This implies m 6= m̃, hence as in T CK .

RMV (m̃, m̃′, ṽ, ĩ, t̃): As in F IN .

DST (m̃, m̃′, ṽ, ĩ, t̃): As in F IN .

DRP(m̃, ṽ, ĩ, t̃): As in F IN .

Lemma 13.

∀n ∈ N, m, m′ ∈MR, v ∈ H, e ∈ I , t ∈ N.

isBwd(v, e, m) ∧ m.first− 1≤ m.pt r < m.last− 1 ∧
nodes(m) ⊆ H ∧ m ∈ σn.buf(v, e)⇒
∃n̄< n, m̄, m̄′ ∈MR, v̄ ∈ H, ē ∈ I , t̄ ∈ N.

λn̄ = U PT (v̄, ē, m̄, m̄′, t̄) ∧
m= m̄′ ∧
∀n̂. n̄< n̂≤ n⇒ m ∈ σn̂.buf(v, e)

Proof. Similar to the proof of Lemma 12
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Lemma 14.

∀n ∈ N, m, m′ ∈MR, v ∈ H, e ∈ I , t ∈ N.

isBwd(v, e, m) ∧ m.pt r = m.last− 1 ∧
nodes(m) ⊆ H ∧ m ∈ σn.buf(v, e)⇒
∃n̄< n, m̄, m̄′ ∈MR, v̄ ∈ H, ē ∈ I , t̄ ∈ N.

λn̄ = TRN(v̄, ē, m̄, m̄′, t̄) ∧
m= m̄′ ∧
∀n̂. n̄< n̂≤ n⇒ m ∈ σn̂.buf(v, e)

Proof. Similar to the proof of Lemma 12

Lemma 15.

∀n ∈ N, m, m′ ∈MR, v ∈ H, e ∈ I , t ∈ N.

isFwd(v, e, m) ∧ m.first< m.pt r ≤ m.last ∧
nodes(m) ⊆ H ∧ m ∈ σn.buf(v, e)⇒
∃n̄< n, m̄, m̄′ ∈MR, v̄ ∈ H, ē ∈ I , t̄ ∈ N.

λn̄ = C M P(v̄, ē, m̄, m̄′, t̄) ∧
m= m̄′ ∧
∀n̂. n̄< n̂≤ n⇒ m ∈ σn̂.buf(v, e)

Proof. Similar to the proof of Lemma 12

Lemma 16.

∀n ∈ N, m, m′ ∈MR, v ∈ H, e ∈ I , t ∈ N.

isFwd(v, e, m) ∧ 0< m.pt r ≤ m.first ∧
nodes(m) ⊆ H ∧ m ∈ σn.buf(v, e)⇒
∃n̄< n, m̄, m̄′ ∈MR, v̄ ∈ H, ē ∈ I , t̄ ∈ N.

λn̄ = FW D(v̄, ē, m̄, m̄′, t̄) ∧
m= m̄′ ∧
∀n̂. n̄< n̂≤ n⇒ m ∈ σn̂.buf(v, e)

Proof. Similar to the proof of Lemma 12
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Lemma 17.

∀n ∈ N, m, m′ ∈MR, v ∈ H, e ∈ I , t ∈ N.

isFwd(v, e, m) ∧ m.pt r = 0 ∧
nodes(m) ⊆ H ∧ m ∈ σn.buf(v, e)⇒
∃n̄< n, m̄′ ∈MR, v̄ ∈ H, ē ∈ I , t̄ ∈ N.

λn̄ = CRTR(v̄, ē, m̄′, t̄) ∧
m= m̄′ ∧
∀n̂. n̄< n̂≤ n⇒ m ∈ σn̂.buf(v, e)

Proof. Similar to the proof of Lemma 12

General

Lemma 18.

∀n ∈ N, m, m′ ∈MR, v ∈ H, e ∈ I , t ∈ N.

isBwd(v, e, m) ∧ 0≤ m.pt r < m.first− 1 ∧
m ∈ σn.buf(v, e)⇒
∃n̄< n, m̄, m̄′ ∈MR, v̄ ∈ H, ē ∈ I , t̄ ∈ N.

( λn̄ = BW D(v̄, ē, m̄, m̄′, t̄) ∨
λn̄ = AT K(v̄, ē, m̄′, t̄) ) ∧

m= m̄′ ∧
∀n̂. n̄< n̂≤ n⇒ m ∈ σn̂.buf(v, e)

Proof. As in Lemma 12, except in case:
λn = AT K(m̃, ṽ, ĩ, t̃): Two cases:

m= m̃: Set n̄ := n, i.e., n̄< n+ 1, and m̄′ := m̃= m, v̄ := ṽ, ē := ĩ, t̄ := t̃,
hence,

λn̄ = AT K(m̃, ṽ, ĩ, t̃) = AT K(m̄, v̄, ī, t̄)

By assumption m ∈ σn+1.buf(v, e) the claim follows.

m 6= m̃: As in T CK .
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Lemma 19.

∀n ∈ N, m, m′ ∈MR, v ∈ H, e ∈ I , t ∈ N.

isBwd(v, e, m) ∧ m.first− 1≤ m.pt r < m.last− 1 ∧
m ∈ σn.buf(v, e)⇒
∃n̄< n, m̄, m̄′ ∈MR, v̄ ∈ H, ē ∈ I , t̄ ∈ N.

( λn̄ = U PT (v̄, ē, m̄, m̄′, t̄) ∨
λn̄ = AT K(v̄, ē, m̄′, t̄) ) ∧

m= m̄′ ∧
∀n̂. n̄< n̂≤ n⇒ m ∈ σn̂.buf(v, e)

Proof. Similar to the proof of Lemma 18

Lemma 20.

∀n ∈ N, m, m′ ∈MR, v ∈ H, e ∈ I , t ∈ N.

isBwd(v, e, m) ∧ m.pt r = m.last− 1 ∧
m ∈ σn.buf(v, e)⇒
∃n̄< n, m̄, m̄′ ∈MR, v̄ ∈ H, ē ∈ I , t̄ ∈ N.

( λn̄ = TRN(v̄, ē, m̄, m̄′, t̄) ∨
λn̄ = AT K(v̄, ē, m̄′, t̄) ) ∧

m= m̄′ ∧
∀n̂. n̄< n̂≤ n⇒ m ∈ σn̂.buf(v, e)

Proof. Similar to the proof of Lemma 18

Lemma 21.

∀n ∈ N, m, m′ ∈MR, v ∈ H, e ∈ I , t ∈ N.

isFwd(v, e, m) ∧ m.first< m.pt r ≤ m.last ∧
m ∈ σn.buf(v, e)⇒
∃n̄< n, m̄, m̄′ ∈MR, v̄ ∈ H, ē ∈ I , t̄ ∈ N.

( λn̄ = C M P(v̄, ē, m̄, m̄′, t̄) ∨
λn̄ = AT K(v̄, ē, m̄′, t̄) ) ∧

m= m̄′ ∧
∀n̂. n̄< n̂≤ n⇒ m ∈ σn̂.buf(v, e)
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Proof. Similar to the proof of Lemma 18

Lemma 22.

∀n ∈ N, m, m′ ∈MR, v ∈ H, e ∈ I , t ∈ N.

isFwd(v, e, m) ∧ 0< m.pt r ≤ m.first ∧
m ∈ σn.buf(v, e)⇒
∃n̄< n, m̄, m̄′ ∈MR, v̄ ∈ H, ē ∈ I , t̄ ∈ N.

( λn̄ = FW D(v̄, ē, m̄, m̄′, t̄) ∨
λn̄ = AT K(v̄, ē, m̄′, t̄) ) ∧

m= m̄′ ∧
∀n̂. n̄< n̂≤ n⇒ m ∈ σn̂.buf(v, e)

Proof. Similar to the proof of Lemma 18

Lemma 23.

∀n ∈ N, m, m′ ∈MR, v ∈ H, e ∈ I , t ∈ N.

isFwd(v, e, m) ∧ m.pt r = 0 ∧
m ∈ σn.buf(v, e)⇒
∃n̄< n, m̄′ ∈MR, v̄ ∈ H, ē ∈ I , t̄ ∈ N.

σn −σn̄ ≤ bufT ∧
( λn̄ = CRTR(v̄, ē, m̄′, t̄) ∨
λn̄ = AT K(v̄, ē, m̄′, t̄) ) ∧

m= m̄′ ∧
∀n̂. n̄< n̂≤ n⇒ m ∈ σn̂.buf(v, e)

Proof. Similar to the proof of Lemma 18
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Lemma 24.

∀n ∈ N, m, m′ ∈MR, v ∈ H, e ∈ I , t ∈ N.

isWrg(v, e, m) ∨ m.pt r > m.last ∧
m ∈ σn.buf(v, e)⇒
∃n̄< n, m̄′ ∈MR, v̄ ∈ H, ē ∈ I , t̄ ∈ N.

σn −σn̄ ≤ bufT ∧
λn̄ = AT K(v̄, ē, m̄′, t̄) ) ∧
m= m̄′ ∧
∀n̂. n̄< n̂≤ n⇒ m ∈ σn̂.buf(v, e)

Proof. Similar to the proof of Lemma 18

B.4 Step Lemmata
Lemma 25.

∀n ∈ N, m, m′ ∈MR, v ∈ H, e ∈ I , t ∈ N.

λn = F IN(m, m′, v, e, t)∧ nodes(m) ⊆ H ⇒
∃n̄< n, m̄, m̄′ ∈MR, v̄ ∈ H, ē ∈ I , t̄ ∈ N.

λn̄ = BW D(v̄, ē, m̄, m̄′, t̄) ∧
m= m̄′ ∧
∀n̂. n̄< n̂≤ n⇒ m ∈ σn̂.buf(v, e)

Proof. Given m, m′ ∈MR , v ∈ H, e ∈ I , t ∈ N with k = m.pt r, nodes(m) ⊆
H and λn = F IN(m, m′, v, e, t).

By Lemma 10 it follows that m ∈ σn.buf(v, e) with isBwd(v, e, m) and
atSrc(m).

By Lemma 18 we get:

∃n̄< n, m̄, m̄′ ∈MR, v̄ ∈ H, ē ∈ I , t̄ ∈ N.

λn̄ = BW D(v̄, ē, m̄, m̄′, t̄) ∧
m= m̄′ ∧
∀n̂. n̄< n̂≤ n⇒ m ∈ σn̂.buf(v, e)
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Lemma 26.

∀n ∈ N, m, m′ ∈MR, v ∈ H, e ∈ I , t ∈ N.

λn = BW D(m, m′, v, e, t)∧ nodes(m) ⊆ H∧
0≤ m.pt r < m.first⇒
∃n̄< n, m̄, m̄′ ∈MR, v̄ ∈ H, ē ∈ I , t̄ ∈ N.

λn̄ = BW D(v̄, ē, m̄, m̄′, t̄) ∧
m= m̄′ ∧
∀n̂. n̄< n̂≤ n⇒ m ∈ σn̂.buf(v, e)

Proof. Similarly to the proof in Lemma 25.

Lemma 27.

∀n ∈ N, m, m′ ∈MR, v ∈ H, e ∈ I , t ∈ N.

λn = BW D(m, m′, v, e, t)∧ nodes(m) ⊆ H∧
m.pt r = m.first− 1⇒
∃n̄< n, m̄, m̄′ ∈MR, v̄ ∈ H, ē ∈ I , t̄ ∈ N.

λn̄ = U PT (v̄, ē, m̄, m̄′, t̄) ∧
m= m̄′ ∧
∀n̂. n̄< n̂≤ n⇒ m ∈ σn̂.buf(v, e)

Proof. Similarly to the proof in Lemma 25.

Lemma 28.

∀n ∈ N, m, m′ ∈MR, v ∈ H, e ∈ I , t ∈ N.

λn = U PT (m, m′, v, e, t)∧ nodes(m) ⊆ H∧
m.first≤ m.pt r < m.last− 1⇒
∃n̄< n, m̄, m̄′ ∈MR, v̄ ∈ H, ē ∈ I , t̄ ∈ N.

λn̄ = U PT (v̄, ē, m̄, m̄′, t̄) ∧
m= m̄′ ∧
∀n̂. n̄< n̂≤ n⇒ m ∈ σn̂.buf(v, e)

Proof. Similarly to the proof in Lemma 25.
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Lemma 29.

∀n ∈ N, m, m′ ∈MR, v ∈ H, e ∈ I , t ∈ N.

λn = U PT (m, m′, v, e, t)∧ nodes(m) ⊆ H∧
m.pt r = m.last− 1⇒
∃n̄< n, m̄, m̄′ ∈MR, v̄ ∈ H, ē ∈ I , t̄ ∈ N.

λn̄ = TRN(v̄, ē, m̄, m̄′, t̄) ∧
m= m̄′ ∧
∀n̂. n̄< n̂≤ n⇒ m ∈ σn̂.buf(v, e)

Proof. Similarly to the proof in Lemma 25.

Lemma 30.

∀n ∈ N, m, m′ ∈MR, v ∈ H, e ∈ I , t ∈ N.

λn = TRN(m, m′, v, e, t)∧ nodes(m) ⊆ H∧
m.pt r = m.last⇒
∃n̄< n, m̄, m̄′ ∈MR, v̄ ∈ H, ē ∈ I , t̄ ∈ N.

λn̄ = C M P(v̄, ē, m̄, m̄′, t̄) ∧
m= m̄′ ∧
∀n̂. n̄< n̂≤ n⇒ m ∈ σn̂.buf(v, e)

Proof. Similarly to the proof in Lemma 25.

Lemma 31.

∀n ∈ N, m, m′ ∈MR, v ∈ H, e ∈ I , t ∈ N.

λn = C M P(m, m′, v, e, t)∧ nodes(m) ⊆ H∧
m.first< m.pt r < m.last⇒
∃n̄< n, m̄, m̄′ ∈MR, v̄ ∈ H, ē ∈ I , t̄ ∈ N.

λn̄ = C M P(v̄, ē, m̄, m̄′, t̄) ∧
m= m̄′ ∧
∀n̂. n̄< n̂≤ n⇒ m ∈ σn̂.buf(v, e)

Proof. Similarly to the proof in Lemma 25.
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Lemma 32.

∀n ∈ N, m, m′ ∈MR, v ∈ H, e ∈ I , t ∈ N.

λn = C M P(m, m′, v, e, t)∧ nodes(m) ⊆ H∧
m.pt r = m.first⇒
∃n̄< n, m̄, m̄′ ∈MR, v̄ ∈ H, ē ∈ I , t̄ ∈ N.

λn̄ = FW D(v̄, ē, m̄, m̄′, t̄) ∧
m= m̄′ ∧
∀n̂. n̄< n̂≤ n⇒ m ∈ σn̂.buf(v, e)

Proof. Similarly to the proof in Lemma 25.

Lemma 33.

∀n ∈ N, m, m′ ∈MR, v ∈ H, e ∈ I , t ∈ N.

λn = FW D(m, m′, v, e, t)∧ nodes(m) ⊆ H∧
0< m.pt r < m.first⇒
∃n̄< n, m̄, m̄′ ∈MR, v̄ ∈ H, ē ∈ I , t̄ ∈ N.

λn̄ = FW D(v̄, ē, m̄, m̄′, t̄) ∧
m= m̄′ ∧
∀n̂. n̄< n̂≤ n⇒ m ∈ σn̂.buf(v, e)

Proof. Similarly to the proof in Lemma 25.

Lemma 34.

∀n ∈ N, m, m′ ∈MR, v ∈ H, e ∈ I , t ∈ N.

λn = FW D(m, m′, v, e, t)∧ nodes(m) ⊆ H∧
m.pt r = 0⇒
∃n̄< n, m̄, m̄′ ∈MR, v̄ ∈ H, ē ∈ I , t̄ ∈ N.

λn̄ = CRTR(m̄, v̄, ē, t̄) ∧
m= m̄′ ∧
∀n̂. n̄< n̂≤ n⇒ m ∈ σn̂.buf(v, e)

Proof. Similarly to the proof in Lemma 25.
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B.5 Uniqueness Lemmata
Lemma 35.

∀n1, n2 ∈ N, m1, m′1, m2, m′2 ∈MR, v1, v2 ∈ V, e1, e2 ∈ I , t1, t2 ∈ N.

λn1
= F IN(m1, m′1, v1, e1, t1) ∧

λn2
= F IN(m2, m′2, v2, e2, t2) ∧

m1 ∼ m2 ∧ v1 = v2 ∧
nodes(m1) ⊆ H ∧
n1 < n2 ∧ σn2

.time≤ m1.expT

⇒ n1 = n2

Proof. By m1 ∼ m2, m1.pt r = m2.pt r, and m1.path= m2.path it follows
that v := v1 = v2 and e := e1 = e2. Together with assumption nodes(m1) ⊆
H by Lemma 25 it follows that

(1) ∃n̄1 < n1, m̄1, m̄′1 ∈MR, v̄1 ∈ H, ē1 ∈ I , t̄1 ∈ N.

λn̄1
= BW D(m̄1, m̄′1, v̄1, ē1, t̄1)∧

m1 = m̄′1 ∧
∀n̂1. n̄1 < n̂1 ≤ n1⇒ m1 ∈ σn̂1

.buf(v, e)

and similarly with m1.path= m2.path and nodes(m2) ⊆ H follows (2) for
n2.

(2) ∃n̄2 < n2, m̄2, m̄′2 ∈MR, v̄2 ∈ H, ē2 ∈ I , t̄2 ∈ N.

λn̄2
= BW D(m̄2, m̄′2, v̄2, ē2, t̄2)∧

m2 = m̄′2 ∧
∀n̂2. n̄2 < n̂2 ≤ n2⇒ m2 ∈ σn̂2

.buf(v, e)

By m1 ∼ m2 and m1 = m̄′1 and m̄′1 ≈ m̄1 (and analogously for m̄2), it
follows that m̄1 ∼ m̄2 Furthermore it follows:

nodes(m̄1) =
BW D(m̄1,m̄′1,... ) nodes(m̄′1)

=m1=m̄′1 nodes(m1) ⊆ H
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and

m̄1.pt r =BW D(m̄1,m̄′1,... ) m̄′1.pt r − 1

=m1=m̄′1 m1.pt r − 1

=m1.pt r=m2.pt r m2.pt r − 1

=m2=m̄′2 m̄′2.pt r − 1=BW D(m̄2,m̄′2,... ) m̄2.pt r

and

m̄1.path=BW D(m̄1,m̄′1,... ) m̄′1.path

=m1=m̄′1 m1.path

=m1.path=m2.path m2.path

=m2=m̄′2 m̄′2.path=BW D(m̄2,m̄′2,... ) m̄2.path

Three cases:

n̄1 < n̄2 Then it holds:

σn̄2
.time≤n̄2<n2 σn2

.time

≤σn2
.time≤m1.expT m1.expT

=m1=m̄′1 m̄′1.expT

=BW D(m̄1,m̄′1,... ) m̄1.expT

By Lemma 36 applied to

λn̄1
= BW D(m̄1, m̄′1, v̄1, ē1, t̄1)∧

λn̄2
= BW D(m̄2, m̄′2, v̄2, ē2, t̄2)∧

m̄1 ∼ m̄2 ∧ m̄1.pt r = m̄2.pt r ∧ m̄1.path= m̄2.path ∧
nodes(m̄1) ⊆ H ∧
n̄1 < n̄2 ∧ σn̄2

.time≤ m̄1.expT

it follows n̄ := n̄1 = n̄2.
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n̄2 < n̄1: Then it holds:

σn̄1
.time≤n̄1<n1 σn1

.time

≤n1<n2 σn2
.time

≤σn2
.time≤m2.expT m2.expT

=m2=m̄′2 m̄′2.expT

=BW D(m̄2,m̄′2,... ) m̄2.expT

By Lemma 36 applied to

λn̄1
= BW D(m̄1, m̄′1, v̄1, ē1, t̄1)∧

λn̄2
= BW D(m̄2, m̄′2, v̄2, ē2, t̄2)∧

m̄1 ∼ m̄2 ∧ m̄1.pt r = m̄2.pt r ∧ m̄1.path= m̄2.path ∧
nodes(m̄2) ⊆ H ∧
n̄2 < n̄1 ∧ σn̄1

.time≤ m̄2.expT

it follows n̄ := n̄1 = n̄2.

n̄1 = n̄2: Hence, n̄ := n̄1 = n̄2 holds immediately.

Since π is a function and λn̄1
= λn̄2

and therefore m̄ := m̄1 = m̄2, m̄′ :=
m̄′1 = m̄′2, v̄ := v̄1 = v̄2, ē := ē1 = ē2, and t̄ := t̄1 = t̄2. Set m := m1 = m̄′1 =
m̄′2 = m2, n̄ := n̄1 = n̄2 in (2), then we get:

(2′) ∀n̂. n̄< n̂≤ n2⇒ m ∈ σn̂.buf(v, e)

By assumption λn1
= F IN(m1, m′1, v1, e1, t1) and m := m1 we get m 6∈

σn1+1.buf(v, e).
By n1 < n2 we get ñ < n1 + 1 ≤ n2. By setting n̂ := n1 + 1 in (2′) we

get m ∈ σn1+1.buf(v, e), i.e. a contradiction.

Corollary 6.

∀n1, n2 ∈ N, m1, m′1, m2, m′2 ∈MR, v1, v2 ∈ V, e1, e2 ∈ I , t1, t2 ∈ N.

λn1
= F IN(m1, m′1, v1, e1, t1) ∧

λn2
= F IN(m2, m′2, v2, e2, t2) ∧

m1 ≈ m2 ∧ m1.pt r = m2.pt r ∧ nodes(m1) ⊆ H

⇒ n1 = n2
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Lemma 36.

∀n1, n2 ∈ N, m1, m′1, m2, m′2 ∈MR, v1, v2 ∈ V, e1, e2 ∈ I , t1, t2 ∈ N.

λn1
= BW D(m1, m′1, v1, e1, t1) ∧

λn2
= BW D(m2, m′2, v2, e2, t2) ∧

m1 ∼ m2 ∧ v1 = v2 ∧
nodes(m1) ⊆ H ∧
n1 < n2 ∧ σn2

.time≤ m1.expT

⇒ n1 = n2

Proof. Similar to the proof of Lemma 35.

Lemma 37.

∀n1, n2 ∈ N, m1, m′1, m2, m′2 ∈MR, v1, v2 ∈ V, e1, e2 ∈ I , t1, t2 ∈ N.

λn1
= U PT (m1, m′1, v1, e1, t1) ∧

λn2
= U PT (m2, m′2, v2, e2, t2) ∧

m1 ∼ m2 ∧ v1 = v2 ∧
nodes(m1) ⊆ H ∧
n1 < n2 ∧ σn2

.time≤ m1.expT

⇒ n1 = n2

Proof. Similar to the proof of Lemma 35.

Lemma 38.

∀n1, n2 ∈ N, m1, m′1, m2, m′2 ∈MR, v1, v2 ∈ V, e1, e2 ∈ I , t1, t2 ∈ N.

λn1
= TRN(m1, m′1, v1, e1, t1) ∧

λn2
= TRN(m2, m′2, v2, e2, t2) ∧

m1 ∼ m2 ∧ v1 = v2 ∧
nodes(m1) ⊆ H ∧
n1 < n2 ∧ σn2

.time≤ m1.expT

⇒ n1 = n2

Proof. Similar to the proof of Lemma 35.
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Lemma 39.

∀n1, n2 ∈ N, m1, m′1, m2, m′2 ∈MR, v1, v2 ∈ V, e1, e2 ∈ I , t1, t2 ∈ N.

λn1
= C M P(m1, m′1, v1, e1, t1) ∧

λn2
= C M P(m2, m′2, v2, e2, t2) ∧

m1 ∼ m2 ∧ v1 = v2 ∧
nodes(m1) ⊆ H ∧
n1 < n2 ∧ σn2

.time≤ m1.expT

⇒ n1 = n2

Proof. Similar to the proof of Lemma 35.

Lemma 40.

∀n1, n2 ∈ N, m1, m′1, m2, m′2 ∈MR, v1, v2 ∈ V, e1, e2 ∈ I , t1, t2 ∈ N.

λn1
= FW D(m1, m′1, v1, e1, t1) ∧

λn2
= FW D(m2, m′2, v2, e2, t2) ∧

m1 ∼ m2 ∧ v1 = v2 ∧
nodes(m1) ⊆ H ∧
n1 < n2 ∧ σn2

.time≤ m1.expT

⇒ n1 = n2

Proof. Similar to the proof of Lemma 35.

Lemma 41.

∀n1, n2 ∈ N, m1, m2 ∈MR, v1, v2 ∈ V, e1, e2 ∈ I , t1, t2 ∈ N.

λn1
= CRTR(m1, v1, e1, t1) ∧

λn2
= CRTR(m2, v2, e2, t2) ∧

m1 ∼ m2 ∧
n1 < n2 ∧ σn2

.time≤ m1.expT

⇒ n1 = n2

Note that m1.ptr= m2.ptr follows from the first two assumptions.
Furthermore, we do not need the assumption nodes(m1) ⊆ H, but in

the following lemmas we need it to use the respective existence lemmas.
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Proof. By m1 ∼ m2 it follows src(m1) = src(m2). By atSrc(m1) and
isFwd(m1, v1, i1) it follows v1 = src(m1) and similarly v2 = src(m2), hence,
all together v := v1 = v2. Together with Lemma 44 applied to λn1

=
CRTR(m1, v, e1, t1) it follows that

(∗) ∀n̂> n1. σn̂.time≤ m1.expT⇒
( isMrkd(σn̂.res, v, m1,σn̂.time) ∨

isRsvd(σn̂.res, v, m1,σn̂.time) )

Set n̂ := n2 (by assumption n2 > n1).

By assumption σn2
.time≤ m1.expT and by (∗) then

( isMrkd(σn2
.res, v, m1,σn2

.time) ∨
isRsvd(σn2

.res, v, m1,σn2
.time) )

Since m1 ∼ m2 it follows by Lemma 43

( isMrkd(σn2
.res, v, m2,σn2

.time) ∨
isRsvd(σn2

.res, v, m2,σn2
.time) )

However, this is in contradiction to the guard of λn2
= CRTR(m2, v, e2, t2),

i.e.

notRsvd(σn2
.res, v, m2,σn2

.time)

, hence n1 = n2.

B.6 Reserved Lemmata
Lemma 42.

∀res ∈ ResMap, v ∈ V m, m′ ∈M, t, t ′ ∈ N.

m≈ m′ ∧ m.pt r = m′.pt r ∧ ResMapCheck(res, v, m)
⇒ ResMapCheck(res, v, m′)
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Proof. By definition of ResMapCheck

(0) res(v, src(m), m.id) =⊥ ∨
( ¬(0) res(v, src(m), m.id) 6=⊥ ∧
(1) res(v, src(m), m.id).path= m.path ∧
(2) res(v, src(m), m.id).pt r = m.pt r ∧
(3) res(v, src(m), m.id).first= m.first ∧
(4) res(v, src(m), m.id).last= m.last ∧
( (5) res(v, src(m), m.id).vrs= ; ∨
¬(5) res(v, src(m), m.id).vrs 6= ; ∧
¬(6) res(v, src(m), m.id).vrs(m.id x) 6=⊥ ∧
(7) res(v, src(m), m.id).vrs(m.id x).minBW = m.minBW ∧
(8) res(v, src(m), m.id).vrs(m.id x).maxBW = m.maxBW ∧
(9) res(v, src(m), m.id).vrs(m.id x).expT = m.expT ) )

and by m≈ m′ implying

src(m) = src(m′) ∧
m.id = m′.id ∧
m.id x = m′.id x ∧
m.path= m′.path ∧
m.first= m′.first ∧
m.last= m′.last ∧
m.minBW = m′.minBW ∧
m.maxBW = m′.maxBW ∧
m.expT = m′.expT

and m.pt r = m′.pt r it follows ResMapCheck(res, v, m′) by replacing the
corresponding fields.

Lemma 43.

∀res ∈ ResMap, v ∈ V, m, m′ ∈MR, t, t ′ ∈ N.

m∼ m′ ∧ t ≥ t ′ ∧ isMrkd(res, v, m, t)
⇒ isMrkd(res, v, m′, t ′)

Same holds true for isRsvd instead of isMrkd.



142 B Appendix: Proofs

Proof. Assume isMrkd(res, v, m, t), i.e.

¬(0) res(v, src(m), m.id) 6=⊥ ∧
¬(5) res(v, src(m), m.id).vrs 6= ; ∧
¬(6) res(v, src(m), m.id).vrs(m.id x) 6=⊥ ∧
(X ) res(v, src(m), m.id).vrs(m.id x).resBW =⊥ ∧
(9′) res(v, src(m), m.id).vrs(m.id x).expT ≥ t

By m∼ m′, i.e.

src(m) = src(m′) ∧ m.id = m′.id ∧ m.id x = m′.id x

it follows isMrkd(res, v, m′, t) and by t ≥ t ′ it follows (9′) and therefore
isMrkd(res, v, m′, t ′).

Lemma 44 (CRT-isMrkd-until-expiration).

∀n ∈ N, m, m′ ∈MR, v ∈ V, i ∈ I , t ∈ N.

λn = CRT (m, v, i, t) ⇒
∀n̂> n. σn̂.time≤ m.expT⇒
( isMrkd(σn̂.res, v, m,σn̂.time)
∨ isRsvd(σn̂.res, v, m,σn̂.time) ) ∧

ResMapCheck(σn̂.res, v, m)

Proof. Given n ∈ N, m, m′ ∈MR with m, v ∈ V , i ∈ I , t ∈ N with

λn = CRT (m, v, i, t)

By induction on n̂:

n̂= n+ 1: By assumption λn = CRT(m, v, i, t) and Lemma 4 it holds
isMrkd(σn+1.res, v, m,σn+1.time) and ResMapCheck(σn+1.res, v, m), hence,
in this case (n̂= n+ 1) the claim.

n̂→ n̂+ 1: By IH it holds

n̂> n ∧ σn̂.time≤ m.expT⇒
( isMrkd(σn̂.res, v, m,σn̂.time)
∨ isRsvd(σn̂.res, v, m,σn̂.time) ) ∧

ResMapCheck(σn̂.res, v, m)
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We need to show:

n̂+ 1> n ∧ σn̂+1.time≤ m.expT⇒
( isMrkd(σn̂+1.res, v, m,σn̂+1.time)
∨ isRsvd(σn̂+1.res, v, m,σn̂+1.time) ) ∧

ResMapCheck(σn̂+1.res, v, m)

Assume n̂+ 1> n+ 1 and σn̂+1.time≤ m.expT.

Case distinction by λn̂:

T CK( t̃): By the event’s guard it holds σn̂.time= t̃. Two cases:

σn̂.time≥ m.expT: In this case

σn̂+1.time= σn̂.time+ 1> m.expT

hence, the premise is not satisfied, i.e. the claim is true.

σn̂.time< m.expT: In this case it immediately holds σn̂.time≤
m.expT and we can apply IH and get:

( isMrkd(σn̂.res, v, m,σn̂.time)
∨ isRsvd(σn̂.res, v, m,σn̂.time) ) ∧

ResMapCheck(σn̂.res, v, m)

Since the event’s action does not change the reservation
maps, i.e. σn̂.res= σn̂+1.res, it follows that

( isMrkd(σn̂+1.res, v, m,σn̂.time)
∨ isRsvd(σn̂+1.res, v, m,σn̂.time) ) ∧

ResMapCheck(σn̂+1.res, v, m)

By (9) of ResMapCheck(σn̂+1.res, v, m) and assumptionσn̂+1.time≤
m.expT it follows that

(9′) σn̂+1(v, src(m), m.id).vrs(m.id x).expT

=(9) m.expT ≥ σn̂+1.time

i.e. isMrkd(σn̂+1.res, v, m,σn̂.time) and therefore the claim.
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RST (ṽ, s̃, ĩd, ˜id x): The event’s actions do not change time, i.e. σn̂+1.time =
σn̂.time. Together with the assumptions n̂+ 1 > n + 1 and
σn̂+1.time≤ m.expT we get

n̂> n

σn̂.time≤ m.expT

and can apply IH and get:

(−) ( isMrkd(σn̂.res, v, m,σn̂.time)
∨ isRsvd(σn̂.res, v, m,σn̂.time) ) ∧

ResMapCheck(σn̂.res, v, m)

and applying σn̂+1.time= σn̂.time again gives us:

(+) ( isMrkd(σn̂.res, v, m,σn̂+1.time)
∨ isRsvd(σn̂.res, v, m,σn̂+1.time) ) ∧

ResMapCheck(σn̂.res, v, m)

Regarding the reservation map there are two cases:

v = ṽ ∧ src(m) = s̃ ∧m.id = ĩd ∧ ˜id x = m.id x: The event’s guard
only deletes the corresponding version of the reservation if
holds that

σn̂.res(v, src(m), m.id).vrs(m.id x).expT < σn̂.time

By (9) in (+) ResMapCheck(σn̂.res, v, m) it holds:

(9) res(v, src(m), m.id).vrs(m.id x).expT = m.expT

and by assumption σn̂+1.time≤ m.expT it holds

m.expT ≥ σn̂+1.time= σn̂.time

i.e. a contradiction.
Otherwise: The event’s actions do not affect the version of the

reservation corresponding m, i.e.

σn̂.res(v, src(m), m.id).vrs(m.id x)
= σn̂+1.res(v, src(m), m.id).vrs(m.id x)

and therefore the claim follows by (+).
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CRTR(m̃, ṽ, ĩ, t̃): As in RST it follows (+), hence in particular

( isMrkd(σn̂.res, v, m,σn̂.time)
∨ isRsvd(σn̂.res, v, m,σn̂.time) ) ∧

ResMapCheck(σn̂.res, v, m)

The following cases:

m̃≈ m∧ m̃.pt r = m.pt r ∧ ṽ = v: By Lemma 4 it follows

isMrkd(σn̂+1.res, v, m̃,σn̂+1.time)
ResMapCheck(σn̂+1.res, v, m̃)

Together with m̃ ≈ m and m̃.pt r = m.pt r it follows by
Lemma 43 and Lemma 42 that

isMrkd(σn̂+1.res, v, m,σn̂+1.time)
ResMapCheck(σn̂+1.res, v, m)

(m̃ 6≈ m∨ m̃.pt r 6= m.pt r)∧ ṽ = v: m̃ 6≈ m ∨ m̃.pt r 6= m.pt r
implies

(a) src(m) 6= src(m̃) ∨
(b) m.id 6= m̃.id ∨
(c) m.id x 6= m̃.id x ∨
(d) m.path 6= m̃.path ∨
(e) m.first 6= m̃.first ∨
(e) m.last 6= m̃.last ∨
(g) m.minBW 6= m̃.minBW ∨
(h) m.maxBW 6= m̃.maxBW ∨
(i) m.expT 6= m̃.expT ∨
( j) m.pt r 6= m̃.pt r

Two cases:
(a)∨ (b)∨ (c): The event’s action do not affect the version

of the reservation corresponding to m, i.e.

σn̂.res(v, src(m), m.id).vrs(m.id x)
= σn̂+1.res(v, src(m), m.id).vrs(m.id x)

and the claim follows with (+).
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Otherwise: I.e.

src(m) = src(m̃) ∧
m.id = m̃.id ∧
m.id x = m̃.id x

but at least one of the other cases α in (d), . . . , ( j) does
not hold.
By (+) holds

( isMrkd(σn̂.res, v, m,σn̂.time)
∨ isRsvd(σn̂.res, v, m,σn̂.time) ) ∧

ResMapCheck(σn̂.res, v, m)

hence

r = σn̂.res(v, src(m), m.id) ∧
¬(0) r 6=⊥ ∧
(1) r.path= m.path ∧
(2) r.pt r = m.pt r ∧
(3) r.first= m.first ∧
(4) r.last= m.last ∧
¬(5) r.vrs 6= ;
¬(6) r.vrs(m.id x) 6=⊥ ∧
(7) r.minBW = m.minBW ∧
(8) r.vrs(m.id x).maxBW = m.maxBW ∧
(9) r.vrs(m.id x).expT = m.expT

But this is in contradiction to the event’s guard
ResMapCheck(σn̂.res, v, m̃) (using ṽ = v) and the case
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α that does not hold, i.e.,

σn̂.res(v, src(m), m.id)
= σn̂.res(v, src(m̃), m̃.id) ∧
σn̂.res(v, src(m), m.id).vrs(m.id x)
= σn̂.res(v, src(m̃), m̃.id).vrs(m̃.id x) ∧
σn̂.res(v, src(m), m.id).α= m.α ∧
σn̂.res(v, src(m̃), m̃.id).α= m̃.α ∧
m.α 6= m̃.α

Hence this guard is not satisfied and the event could
not happen.

ṽ 6= v: The event’s actions do not affect version of the reserva-
tion corresponding m, i.e.

σn̂.res(v, src(m), m.id).vrs(m.id x)
= σn̂+1.res(v, src(m), m.id).vrs(m.id x)

and therefore the claim follows by (+).

CRTD(m̃, ṽ, ĩ, t̃): The event does not affect the global time and the
reservation map, hence the claim follows by IH.

FW D(m̃, m̃′, ṽ, ĩ, t̃): As in RST it follows (+), hence in particular

( isMrkd(σn̂.res, v, m,σn̂.time)
∨ isRsvd(σn̂.res, v, m,σn̂.time) ) ∧

ResMapCheck(σn̂.res, v, m)

The following cases:

m̃≈ m∧ m̃.pt r = m.pt r ∧ ṽ = v: By Lemma 5 it follows

isMrkd(σn̂+1.res, v, m̃,σn̂+1.time)
ResMapCheck(σn̂+1.res, v, m̃)

Together with m̃ ≈ m and m̃.pt r = m.pt r it follows by
Lemma 43 and Lemma 42 that

isMrkd(σn̂+1.res, v, m,σn̂+1.time)
ResMapCheck(σn̂+1.res, v, m)
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(m̃ 6≈ m∨ m̃.pt r 6= m.pt r)∧ ṽ = v: m̃ 6≈ m ∨ m̃.pt r 6= m.pt r
implies

(a) src(m) 6= src(m̃) ∨
(b) m.id 6= m̃.id ∨
(c) m.id x 6= m̃.id x ∨
(d) m.path 6= m̃.path ∨
(e) m.first 6= m̃.first ∨
(e) m.last 6= m̃.last ∨
(g) m.minBW 6= m̃.minBW ∨
(h) m.maxBW 6= m̃.maxBW ∨
(i) m.expT 6= m̃.expT ∨
( j) m.pt r 6= m̃.pt r

Two cases:

(a)∨ (b)∨ (c): The event’s action do not affect the version
of the reservation corresponding to m, i.e.

σn̂.res(v, src(m), m.id).vrs(m.id x)
= σn̂+1.res(v, src(m), m.id).vrs(m.id x)

and the claim follows with (+).

Otherwise: I.e.

src(m) = src(m̃) ∧
m.id = m̃.id ∧
m.id x = m̃.id x

but at least one of the other cases α in (d), . . . , ( j) does
not hold.
By (+) holds

( isMrkd(σn̂.res, v, m,σn̂.time)
∨ isRsvd(σn̂.res, v, m,σn̂.time) ) ∧

ResMapCheck(σn̂.res, v, m)
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hence with r = σn̂.res(v, src(m), m.id)

¬(0) r 6=⊥ ∧
(1) r.path= m.path ∧
(2) r.ptr= m.ptr ∧
(3) r.first= m.first ∧
(4) r.last= m.last ∧
¬(5) r.vrs 6= ;
¬(6) r.vrs(m.idx) 6=⊥ ∧
(7) r.vrs(m.idx).minBW = m.minBW ∧
(8) r.vrs(m.idx).maxBW = m.maxBW ∧
(9) r.vrs(m.idx).expT = m.expT

But this is in contradiction to the event’s guard
ResMapCheck(σn̂.res, v, m̃) (using ṽ = v) and the case
α that does not hold, i.e.

σn̂.res(v, src(m), m.id).α= m.α∧
σn̂.res(v, src(m̃), m̃.id).α= m̃.α∧
m.α 6= m̃.α

ṽ 6= v: The event’s actions do not affect version of the reserva-
tion corresponding m, i.e.

σn̂.res(v, src(m), m.id).vrs(m.id x)
= σn̂+1.res(v, src(m), m.id).vrs(m.id x)

and therefore the claim follows by (+).
C M P(m̃, m̃′, ṽ, ĩ, t̃): As in FWD

m̃≈ m∧ m̃.pt r = m.pt r ∧ ṽ = v

By using Lemma 6 instead of Lemma 5 it follows

isRsvd(σn̂+1.res, v, m̃,σn̂+1.time)
ResMapCheck(σn̂+1.res, v, m̃)

instead of

isMrkd(σn̂+1.res, v, m̃,σn̂+1.time)
ResMapCheck(σn̂+1.res, v, m̃)
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TRN(m̃, m̃′, ṽ, ĩ, t̃): As in CMP.

U PT (m̃, m̃′, ṽ, ĩ, t̃): As in CMP.

BW D(m̃, m̃′, ṽ, ĩ, t̃): As in CMP.

F IN(m̃, m̃′, ṽ, ĩ, t̃):

C LT (m̃, m̃′, ã, ĩ): As in CRTD.

AT K(m̃, ṽ, ĩ): As in CRTD.

RMV (m̃, m̃′, ṽ, ĩ, t̃): As in RST it follows (+), hence in particular

( isMrkd(σn̂.res, v, m,σn̂+1.time)
∨ isRsvd(σn̂.res, v, m,σn̂+1.time) ) ∧

ResMapCheck(σn̂.res, v, m)

Two cases:

m̃∼ m∧ ṽ = v: The event’s action remove only sets the field
resBW of the version corresponding to m̃ (and in this case
m) to ⊥, but keeps the other fields of σn̂.res the same.
Hence it holds

isMrkd(σn̂.res, v, m,σn̂+1.time)
⇒ isMrkd(σn̂+1.res, v, m,σn̂+1.time)

isRsvd(σn̂.res, v, m,σn̂+1.time)
⇒ isMrkd(σn̂+1.res, v, m,σn̂+1.time)

ResMapCheck(σn̂.res, v, m)
⇒ ResMapCheck(σn̂+1.res, v, m)

and therefore the claim follows by (+).
Otherwise: The event’s actions do not affect version of the

reservation corresponding m, i.e.

σn̂.res(v, src(m), m.id).vrs(m.id x)
= σn̂+1.res(v, src(m), m.id).vrs(m.id x)

and therefore the claim follows by (+).

DST (m̃, m̃′, ṽ, ĩ, t̃): As in RMV.

DRP(m̃, ṽ, ĩ, t̃): As in CRTD.
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B.7 Prefix Lemmata
Lemma 45.

∀n ∈ N, m, m′ ∈MR, v ∈ V, i ∈ I , t ∈ N.

λn = CRTR(m, v, i, t) ∧ nodes(m) ⊆ H ⇒

∀k ∈ [0; m.pt r]. ∃ñ≤ n, m̃, m̃′ ∈MR ṽ ∈ V, ĩ ∈ I .

σñ.time ∈ [m.expT −maxT, t] ∧ m≈ m̃ ∧ k = m̃.pt r ∧
m.accBW[k−m.first− 1] = m̃.accBW[k−m.first− 1] ∧
�

k = 0⇒ λñ = CRTR(m̃, ṽ, ĩ, t̃)
�

∧
�

0≤ k < m.first⇒ λñ = FW D(m̃, m̃′, ṽ, ĩ, t̃)
�

∧
�

m.first≤ k < m.last⇒ λñ = C M P(m̃, m̃′, ṽ, ĩ, t̃)
�

∧
�

k = m.last⇒ λñ = TRN(m̃, m̃′, ṽ, ĩ, t̃)
�

.

Note that by definition nil[k] =⊥ and that by the guards of CRTR it holds
m.pt r = 0, i.e., the premises of the last three constraints are not satisfied
and therefore the constraints hold trivially.

Proof. This holds trivially for ñ= n and therefore by assumption

CRTR(m, v, i, t) = λn = λñ = CRTR(m̃, ṽ, ĩ, t̃).

This implies

σñ.time= σn.time= t ∈ [m.expT −maxT, t]
k = m̃.pt r = 0

and by m= m̃ also m≈ m̃ and m.accBW = m̃.accBW = nil.

Lemma 46.

∀n ∈ N, m, m′ ∈MR, v ∈ V, i ∈ I , t ∈ N.

λn = FW D(m, m′, v, i, t) ∧ nodes(m) ⊆ H ⇒

∀k ∈ [0; m.pt r]. ∃ñ≤ n, m̃, m̃′ ∈MR ṽ ∈ V, ĩ ∈ I .

σñ.time ∈ [m.expT −maxT, t] ∧ m≈ m̃ ∧ k = m̃.pt r ∧
m.accBW[k−m.first− 1] = m̃.accBW[k−m.first− 1] ∧
�

k = 0⇒ λñ = CRTR(m̃, ṽ, ĩ, t̃)
�

∧
�

0≤ k < m.first⇒ λñ = FW D(m̃, m̃′, ṽ, ĩ, t̃)
�

∧
�

m.first≤ k < m.last⇒ λñ = C M P(m̃, m̃′, ṽ, ĩ, t̃)
�

∧
�

k = m.last⇒ λñ = TRN(m̃, m̃′, ṽ, ĩ, t̃)
�

.
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Proof. Similarly to the proof of Lemma 47.

Lemma 47.

∀n ∈ N, m, m′ ∈MR, v ∈ V, i ∈ I , t ∈ N.

λn = C M P(m, m′, v, i, t) ∧ nodes(m) ⊆ H ⇒

∀k ∈ [0; m.pt r]. ∃ñ≤ n, m̃, m̃′ ∈MR ṽ ∈ V, ĩ ∈ I .

σñ.time ∈ [m.expT −maxT, t] ∧ m≈ m̃ ∧ k = m̃.pt r ∧
m.accBW[k−m.first− 1] = m̃.accBW[k−m.first− 1] ∧
�

k = 0⇒ λñ = CRTR(m̃, ṽ, ĩ, t̃)
�

∧
�

0≤ k < m.first⇒ λñ = FW D(m̃, m̃′, ṽ, ĩ, t̃)
�

∧
�

m.first≤ k < m.last⇒ λñ = C M P(m̃, m̃′, ṽ, ĩ, t̃)
�

∧
�

k = m.last⇒ λñ = TRN(m̃, m̃′, ṽ, ĩ, t̃)
�

.

Proof. Assume n ∈ N, m, m′ ∈ MR, v ∈ V , i ∈ I , t ∈ N with (1) λn =
C M P(m, m′, v, i, t) and (2) nodes(m) ⊆ H.

We prove the statement by induction on d = m.pt r −m.first. Note that
by the event’s guards of CMP it holds that m.pt r ≥ m.first.

d = 0: i.e., m.pt r = m.first. There are two cases:

k = m.pt r: the claim holds trivially by (1).

k < m.pt r: Given (1), it follows by Lemma 32 it follows

m.pt r = m.first⇒
∃n̄< n, m̄, m̄′ ∈MR, v̄ ∈ H, ē ∈ I , t̄ ∈ N.

λn̄ = FW D(m̄, m̄′, v̄, ē, t̄) ∧
m= m̄′ ∧
∀n̂. n̄< n̂≤ n⇒ m ∈ σn̂.buf(v, e)

Hence, with ñ = n̄ and m̃ = m̄≈ m̄′ = m (i.e., m.expT = m̃.expT
and m̃.pt r = m.pt r − 1 = m.first− 1) By applying Lemma 46
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to λñ = FW D(m̃, m̃′, ṽ, ĩ, t̃) it follows

∀k ∈ [0; m̃.pt r]. ∃n̄≤ ñ, m̄, m̄′ ∈MR v̄ ∈ V, ī ∈ I .

σn̄.time ∈ [m̃.expT −maxT, t̃] ∧ m̃≈ m̄ ∧ k = m̄.pt r ∧
m̃.accBW[k− m̃.first− 1] = m̄.accBW[k− m̃.first− 1] ∧
�

k = 0⇒ λn̄ = CRTR(m̄, v̄, ī, t̄)
�

∧
�

0≤ k < m̃.first⇒ λn̄ = FW D(m̄, m̄′, v̄, ī, t̄)
�

∧
�

m̃.first≤ k < m̃.last⇒ λn̄ = C M P(m̄, m̄′, v̄, ī, t̄)
�

∧
�

k = m̃.last⇒ λn̄ = TRN(m̄, m̄′, v̄, ī, t̄)
�

.

where m ≈ m̃ ≈ m̄ and therefore m̃.expT = m.expT, m̃.first =
m.first, and m̃.last = m.last. Furthermore, it holds n̄ ≤ ñ ≤ n
and therefore t̃ ≤ t and therefore the claim for k ≤ k ∈ m̃.pt r =
m.first− 1.

d → d + 1: Assume the IH for d = m.pt r −m.first for any m ∈M, i.e., it
holds:

∀n ∈ N, m, m′ ∈MR, v ∈ V, i ∈ I , t ∈ N. d = m.pt r −m.first ∧
λn = C M P(m, m′, v, i, t) ∧ nodes(m) ⊆ H ⇒

∀k ∈ [0; m.pt r]. ∃ñ≤ n, m̃, m̃′ ∈MR ṽ ∈ V, ĩ ∈ I .

σñ.time ∈ [m.expT −maxT, t] ∧ m≈ m̃ ∧ k = m̃.pt r ∧
m.accBW[k−m.first− 1] = m̃.accBW[k−m.first− 1] ∧
�

k = 0⇒ λñ = CRTR(m̃, ṽ, ĩ, t̃)
�

∧
�

0≤ k < m.first⇒ λñ = FW D(m̃, m̃′, ṽ, ĩ, t̃)
�

∧
�

m.first≤ k < m.last⇒ λñ = C M P(m̃, m̃′, ṽ, ĩ, t̃)
�

∧
�

k = m.last⇒ λñ = TRN(m̃, m̃′, ṽ, ĩ, t̃)
�

.

Let n ∈ N, m, m′ ∈MR, v ∈ V , i ∈ I , t ∈ N with d + 1 = m.pt r −
m.first.

Assume (∗) λn = C M P(m, m′, v, i, t) and nodes(m) ⊆ H.
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Given (∗) it follows by the event’s guards and d > 0 that m.first <
m.pt r < m.last and therefore by Lemma 31

m.first< m.pt r < m.last⇒
∃n̄< n, m̄, m̄′ ∈MR, v̄ ∈ H, ē ∈ I , t̄ ∈ N.

λn̄ = C M P(m̄, m̄′, v̄, ē, t̄) ∧
m= m̄′

Therefore, by (+) λn̄ = C M P(m̄, m̄′, v̄, ē, t̄), m̄≈ m, d+1 = m.pt r−
m.first and m̄.pt r = m.pt r − 1, it follows

m̄.pt r − m̄.first= m.pt r − 1−m.first= d + 1− 1= d

Therefore we can apply IH to (+) and obtain

∀k ∈ [0; m̄.pt r]. ∃ñ≤ n̄, m̃, m̃′ ∈MR ṽ ∈ V, ĩ ∈ I .

σñ.time ∈ [m̄.expT −maxT, t̄] ∧ m̄≈ m̃ ∧ k = m̃.pt r ∧
m̄.accBW[k− m̄.first− 1] = m̃.accBW[k− m̄.first− 1] ∧
�

k = 0⇒ λñ = CRTR(m̃, ṽ, ĩ, t̃)
�

∧
�

0≤ k < m̄.first⇒ λñ = FW D(m̃, m̃′, ṽ, ĩ, t̃)
�

∧
�

m̄.first≤ k < m̄.last⇒ λñ = C M P(m̃, m̃′, ṽ, ĩ, t̃)
�

∧
�

k = m̄.last⇒ λñ = TRN(m̃, m̃′, ṽ, ĩ, t̃)
�

.

Since m̄ ≈ m (i.e., m.expT = m̄.expT, m.first = m̄.first and m.last =
m̄.last) and m̄.pt r = m.pt r−1 the claim follows for all k ∈ [0; m.pt r−
1].

The case for k = m.pt r follows directly from assumption (1).
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Lemma 48.

∀n ∈ N, m, m′ ∈MR, v ∈ V, i ∈ I , t ∈ N.

λn = TRN(m, m′, v, i, t) ∧ nodes(m) ⊆ H ⇒

∀k ∈ [0; m.pt r]. ∃ñ≤ n, m̃, m̃′ ∈MR ṽ ∈ V, ĩ ∈ I .

σñ.time ∈ [m.expT −maxT, t] ∧ m≈ m̃ ∧ k = m̃.pt r ∧
m.accBW[k−m.first− 1] = m̃.accBW[k−m.first− 1] ∧
�

k = 0⇒ λñ = CRTR(m̃, ṽ, ĩ, t̃)
�

∧
�

0≤ k < m.first⇒ λñ = FW D(m̃, m̃′, ṽ, ĩ, t̃)
�

∧
�

m.first≤ k < m.last⇒ λñ = C M P(m̃, m̃′, ṽ, ĩ, t̃)
�

∧
�

k = m.last⇒ λñ = TRN(m̃, m̃′, ṽ, ĩ, t̃)
�

.

Proof. Assume n ∈ N, m, m′ ∈ MR, v ∈ V , i ∈ I , t ∈ N with (1) λn =
TRN(m, m′, v, i, t) and (2) nodes(m) ⊆ H.

Given (1) it follows by Lemma 30

∃n̄< n, m̄, m̄′ ∈MR, v̄ ∈ H, ē ∈ I , t̄ ∈ N.

λn̄ = C M P(v̄, ē, m̄, m̄′, t̄) ∧
m= m̄′

Hence, for k = m.pt r = m.last and m= m̄′ ≈ m̄ the claim follows.
Furthermore, given λn̄ = C M P(m̄, m̄′, v̄, ē, t̄) it follows by Lemma 47

∀k ∈ [0; m̄.pt r]. ∃ñ≤ n, m̃, m̃′ ∈MR ṽ ∈ V, ĩ ∈ I .

σñ.time ∈ [m̄.expT −maxT, t̄] ∧ m̄≈ m̃ ∧ k = m̃.pt r ∧
m̄.accBW[k− m̄.first− 1] = m̃.accBW[k− m̄.first− 1] ∧
�

k = 0⇒ λñ = CRTR(m̃, ṽ, ĩ, t̃)
�

∧
�

0≤ k < m̄.first⇒ λñ = FW D(m̃, m̃′, ṽ, ĩ, t̃)
�

∧
�

m̄.first≤ k < m̄.last⇒ λñ = C M P(m̃, m̃′, ṽ, ĩ, t̃)
�

∧
�

k = m̄.last⇒ λñ = TRN(m̃, m̃′, ṽ, ĩ, t̃)
�

.

Since m̄.pt r = m.pt r − 1 and m= m̄′ ≈ m̄≈ m̃ it follows the claim for all
k ∈ [0; m.pt r − 1].
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Lemma 49.

∀n ∈ N, m, m′ ∈MR, v ∈ V, i ∈ I , t ∈ N.

λn = TRN(m, m′, v, i, t) ∧ nodes(m) ⊆ H ⇒

∀k ∈ [m.pt r; m.last]. ∃ñ≤ n, m̃, m̃′ ∈MR ṽ ∈ V, ĩ ∈ I .

σñ.time ∈ [m.expT −maxT, t] ∧ m≈ m̃ ∧ k = m̃.pt r ∧
m.accBW = m̃.accBW ∧
�

k = 0⇒ λñ = F IN(m̃, m̃′, ṽ, ĩ, t̃)
�

∧
�

0≤ k < m.first⇒ λñ = BW D(m̃, m̃′, ṽ, ĩ, t̃)
�

∧
�

m.first≤ k < m.last⇒ λñ = U PT (m̃, m̃′, ṽ, ĩ, t̃)
�

∧
�

k = m.last⇒ λñ = TRN(m̃, m̃′, ṽ, ĩ, t̃)
�

.

Note that by the guards of event TRN it follows that m.pt r = m.last and
therefore the premises of the three constraints with 0≤ k < m.last are not
satisfied and the constraints hold trivially.

Proof. By the event’s guard of TRN it holds that k = m.pt r = m.last.
Setting ñ = n and m̃ = m the claim follows trivially by assumption λn =
TRN(m, m′, v, i, t).

Lemma 50.

∀n ∈ N, m, m′ ∈MR, v ∈ V, i ∈ I , t ∈ N.

λn = U PT (m, m′, v, i, t) ∧ nodes(m) ⊆ H ⇒

∀k ∈ [m.pt r; m.last]. ∃ñ≤ n, m̃, m̃′ ∈MR ṽ ∈ V, ĩ ∈ I .

σñ.time ∈ [m.expT −maxT, t] ∧ m≈ m̃ ∧ k = m̃.pt r ∧
m.accBW = m̃.accBW ∧
�

k = 0⇒ λñ = F IN(m̃, m̃′, ṽ, ĩ, t̃)
�

∧
�

0≤ k < m.first⇒ λñ = BW D(m̃, m̃′, ṽ, ĩ, t̃)
�

∧
�

m.first≤ k < m.last⇒ λñ = U PT (m̃, m̃′, ṽ, ĩ, t̃)
�

∧
�

k = m.last⇒ λñ = TRN(m̃, m̃′, ṽ, ĩ, t̃)
�

.

Proof. By induction over d = m.last − m.pt r, similarly to the proof of
Lemma 47.
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Lemma 51.

∀n ∈ N, m, m′ ∈MR, v ∈ V, i ∈ I , t ∈ N.

λn = BW D(m, m′, v, i, t) ∧ nodes(m) ⊆ H ⇒

∀k ∈ [m.pt r; m.last]. ∃ñ≤ n, m̃, m̃′ ∈MR ṽ ∈ V, ĩ ∈ I .

σñ.time ∈ [m.expT −maxT, t] ∧ m≈ m̃ ∧ k = m̃.pt r ∧
m.accBW = m̃.accBW ∧
�

k = 0⇒ λñ = F IN(m̃, m̃′, ṽ, ĩ, t̃)
�

∧
�

0≤ k < m.first⇒ λñ = BW D(m̃, m̃′, ṽ, ĩ, t̃)
�

∧
�

m.first≤ k < m.last⇒ λñ = U PT (m̃, m̃′, ṽ, ĩ, t̃)
�

∧
�

k = m.last⇒ λñ = TRN(m̃, m̃′, ṽ, ĩ, t̃)
�

.

Proof. By induction over d = m.first − m.pt r, similarly to the proof of
Lemma 47.

Lemma 52.

∀n ∈ N, m, m′ ∈MR, v ∈ V, i ∈ I , t ∈ N.

λn = F IN(m, m′, v, i, t) ∧ nodes(m) ⊆ H ⇒

∀k ∈ [m.pt r; m.last]. ∃ñ≤ n, m̃, m̃′ ∈MR ṽ ∈ V, ĩ ∈ I .

σñ.time ∈ [m.expT −maxT, t] ∧ m≈ m̃ ∧ k = m̃.pt r ∧
m.accBW = m̃.accBW ∧
�

k = 0⇒ λñ = F IN(m̃, m̃′, ṽ, ĩ, t̃)
�

∧
�

0≤ k < m.first⇒ λñ = BW D(m̃, m̃′, ṽ, ĩ, t̃)
�

∧
�

m.first≤ k < m.last⇒ λñ = U PT (m̃, m̃′, ṽ, ĩ, t̃)
�

∧
�

k = m.last⇒ λñ = TRN(m̃, m̃′, ṽ, ĩ, t̃)
�

.

Proof. Assume (1) λn = F IN(m, m′, v, e, t) and (2) nodes(m) ⊆ H.
With ñ= n and m̃= m the claim follows for (+) k = m̃.pt r = m.pt r.
Furthermore, applying Lemma 25 to (1) and (2) implies

∃n̄< n, m̄, m̄′ ∈MR, v̄ ∈ H, ē ∈ I , t̄ ∈ N.

λn̄ = BW D(m̄, m̄′, v̄, ē, t̄) ∧
m= m̄′ ∧
∀n̂. n̄< n̂≤ n⇒ m ∈ σn̂.buf(v, e)
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with m̄.pt r = m.pt r + 1.
Applying Lemma 51 to λn̄ = BW D(m̄, m̄′, v̄, ē, t̄) implies

∀k ∈ [m̄.pt r; m̄.last]. ∃ñ≤ n̄, m̃, m̃′ ∈MR ṽ ∈ V, ĩ ∈ I .

σñ.time ∈ [m̄.expT −maxT, t] ∧ m̄≈ m̃ ∧ k = m̃.pt r ∧
m̄.accBW = m̃.accBW ∧
�

k = 0⇒ λñ = F IN(m̃, m̃′, ṽ, ĩ, t̃)
�

∧
�

0≤ k < m̄.first⇒ λñ = BW D(m̃, m̃′, ṽ, ĩ, t̃)
�

∧
�

m̄.first≤ k < m̄.last⇒ λñ = U PT (m̃, m̃′, ṽ, ĩ, t̃)
�

∧
�

k = m̄.last⇒ λñ = TRN(m̃, m̃′, ṽ, ĩ, t̃)
�

.

By m ≈ m̃ ≈ m̄ (i.e., m.expT = m̄.expT, etc) and m.accBW = m̃.accBW =
m̄.accBW the claim follows for k ∈ [m̄.pt r; m̄.last] = [m.pt r + 1; m.last]
and therefore together with (+) for k ∈ [m.pt r; m.last].

B.8 Theorem 1
Theorem 27. If an AS s makes a successful reservation m at time t, then
all ASes on m’s path segment added their avail and ideal computations to
m.accBW and reserve finBW(m) until it expires

∀m ∈MR,t ∈ N. SuccRes(m, t)⇒
∀n ∈ N, v ∈ V, vrs ∈ VrsMap, k ∈ [m.first; m.last].
σn.time ∈ ]t; m.expT] ∧ v = m.path[k].as ∧
vrs= σn.res(v, src(m), m.id).vrs(m.id x)
⇒ cvalid(vrs,σn.time)∧ vrs= finBW(m) ∧
∃ñ< n, m̃ ∈MR. m̃≈ m ∧

m.accBW[k−m.first] = L avBW = avail(m̃,σñ.res);
idBW = ideal(m̃,σñ.res) M.

Proof. First we prove that

∀n ∈ N, v ∈ V, k ∈ [m.first; m.last].
σn.time ∈ ]t; m.expT] ∧ v = m.path[k].as

⇒ σn.res(v, s, m.id).vrs(m.id x).resBW = finBW(m).

Given Assumption CF, we show that the F IN event is preceded by an
BW D event on the previous AS. Given a messages m ∈ buf(v, i) with
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v ∈ nodes(m), we can show by induction that there was corresponding
message processing event in the time interval [m.expT −maxT, t] with a
corresponding message m̃

∀v ∈ nodes(m). ∃evt ∈ {CRTR, FW D, C M P, TRN , U PT, BW D}.

∃ñ ∈ N, m̃, m̃′ ∈MR, ĩ ∈ I , t̃ ∈ N.

σñ.time< t ∧λñ = evt(m̃, m̃′, v, ĩ, t̃)∧ m̃≈ m

In the case distinction we need to exclude that the attacker put m into the
buffer by using Lemma 11 which is based on our Assumption HP.

Next, we show that each of these events is unique for each successful
reservation with message m

∀ñ, n̂ ∈ N, evt ∈ {CRTR, FW D, C M P, TRN , U PT, BW D},

∀m̃, m̃′, m̂, m̂′ ∈MR, v ∈ H, ĩ, î ∈ I , t̃, t̂ ∈ N.

λñ = evt(m̃, m̃′, v, ĩ, t̃)∧λn̂ = evt(m̂, m̂′, v, î, t̂)∧ m̃≈ m̂

⇒ ñ= n̂

and therefore exclude that there was another corresponding message pro-
cessing event that changes the reservation done by m̃.

Using Assumption nDE, we can also exclude that the reservation gets
deleted in the time interval [m.expT −maxT, t].

Thus, for each successful reservation with a message m, we obtain a list
of transitions lm = [λ1, . . . ,λ2·m.last] ordered by time, where each transition
corresponds to the message unique processing event for m. Given lm we
can finally show by induction on its length

∃ñ< n, m̃ ∈MR. m̃≈ m ∧
m.accBW[k−m.first] = L avBW = avail(m̃,σñ.res);
m.accBW[k−m.first] = L idBW = ideal(m̃,σñ.res) M.
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B.9 Theorem 2
Theorem 28. If there are constant demands D between t0 and t1, then after
time t0 + 2maxT all reservations allocate the ideal bandwidth until t1, i.e.,

∃ñ ∈ N. σñ.time= t0 + 2maxT ∧
∀m ∈ rng (D) , r ∈ Res, n> ñ, v ∈ sgmt(m).
σn.time ∈ ]t0 + 2maxT; t1] ∧ r = σn.resv(src(m), m.id)
⇒ allocBW (r,σn.time) =minx∈sgmt(m){ideal(m,σñ.resx)}

Proof. We first show that after maxT the requested demands in all reserva-
tion maps correspond to D,

∀n ∈ N.σn ∈ ]t0 +maxT; t1]. σn `D

From this follows that for any honest AS v and reservation r corresponding
to a reservation message m ∈ rng (D) the function demBW remains constant
and evaluates to m.maxBW

∀n ∈ N, v ∈ H, m ∈ rng (D) , r ∈ Res.

σn.time ]t0 +maxT; t1]∧ r = σn.resv(src(m), m.id)
⇒ demBW(r, t) = m.maxBW.

Since ideal bandwidth computation on first AS of a path only depends on
the value of the function demBWv and not on ideal bandwidth computations
executed at previous ASes on the path, it remains constant as well.

By induction on the length of the message’s path we can show that the
ideal computations for all ASes on the path remain constant.

Next, assuming that all ideal computations remain constant, we show
that the avail computation is greater than the ideal computation for every
renewal

∀n ∈ N, evt ∈ {C M P, U PT, TRN}.
∀v ∈ H, m, m′ ∈MR, i ∈ I , t ∈ N
σn.time ∈ ]t0 +maxT; t1]∧λn = evt(m, m′, v, i, t)∧m `D
⇒ ideal(m,σn.resv)≥ avail(m,σn.resv)

and together with the definition of finBW

finBW(m) =min{m.maxBW, min(m.accBW)}
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it follows that

allocBW (r,σn.time) =minx∈sgmt(m){ideal(m,σñ.resx)}

B.10 Properties of N-Tube’s Bandwidth Allocation
Computation

B.10.1 Positivity
The functions avail and ideal always compute strictly positive values, hence,
for a valid request with (∗) m.minBW = 0 and (+) nodes(m) ⊆ H a positive
amount of bandwidth is always allocated:

∀evt ∈ {C M P, TRN , U PT}.
∀n ∈ N, m, m′ ∈MR, v ∈ H, i ∈ I , t ∈ N.

λn = evt(m, m′, v, i, t)⇒ finBW(m, resMv)> 0.

Proof. W.l.o.g. we show the claim for the event UPT. For the events TRN
and CMP the proof works analogously. By induction on n:

n= 0 : Since in a valid execution all buffers are empty in σ0.buf and
therefore no message processing event can happen, the premise
λn = U PT (m, m′, v, i, t) is not satisfied and the claim holds trivially.

n> 0 : By IH it holds

∀n′ < n, m, m′ ∈MR, v ∈ H, i ∈ I , t ∈ N.

λn′ = U PT (m, m′, v, i, t)⇒ finBW(m, resMv)> 0.

Given AS v, message m with (i, v, e) = cur(m). By the event’s guard
it holds that m is valid, in particular, that

(1) m.maxBW > 0,

(2) cap(v, e)> 0,

(3) cap(v, i)> 0.
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Furthermore, by the event’s action it holds that

save(v ∈ V, resM ∈ ResMap, m′ ∈MR) =
let

finBW =min(m′.maxBW,min(m′.accBW))
vrs′ = L minBW := m′.minBW;

maxBW := m′.maxBW;

idBW := m′.accBW.[m′.ptr− 1].idBW;

resBW := finBW;

expT := m′.expT M

vrsM′ = resM(v, src(m′), m′.id).vrs
�

m′.idx 7→ vrs′
�

res′ = L path := m′.path;

ptr := m′.ptr;

first := m′.first;

last := m′.last;

vrs := vrsM′ M
in

resM
�

(v, src(m′), m′.id) 7→ res′
�

.

and the event’s guards onPth, i.e., m.first < m.ptr < m.last and
ResMapCheck it follows for the reservation corresponding to m, with
r = σn+1.res(v, src(m), m.id), that

(4) r.first< r.ptr< r.last

(5) r.vrs(m.idx).expT > t

By the function compute

compute(m ∈MR, res ∈ ResMap,δ ∈]0; 1[, t ∈ N) =
let

newBW = L avBW := avail(m, res,δ, t);
idBW := ideal(m, res,δ, t) M

in

mL accBW := newBW # m.accBW M.
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it follows that

m′.accBW[m′.ptr] =
L avBW := avail(m, res,δ, t); idBW := ideal(m, res,δ, t) M

Since m′.maxBW = m.maxBW and (1) it suffices to show that both
avail and ideal return a positive values.

avail : By definition

avail(m, resM,δ, t) =
let

L i, v, e M= cur(m)
resM′ = resM ((v, src(m), m.id) 7→ ⊥)
resM′v = filter(resM′, v)
in

δ ·
�

cap(v, e)−
∑

r∈rng(resM′v):
resEg(r)=e

allocBW(r.vrs, t)
�

By Lemma B.10.1 it follows that

cap(v, e)>
∑

r∈rng(resM′v):
resEg(r)=e

allocBW(r.vrs, t)

Note, that in Lemma B.10.1 the removal of all versions of reser-
vation (v, src(m), m.id)

resM′ = resM ((v, src(m), m.id) 7→ ⊥)

is not assumed. By δ > 0 it follows that avail(m, resM,δ, t)> 0.

ideal : By definition it suffices to show that each of the three factors
reqRatio, linkRatio, and tubeRatio is positive. Since their de-
nominators are sums of non-negative summands it is sufficient
to show that each nominator is positive. We show this only for
the factor reqRatio, since the other cases can be shown with
analogous arguments.
The nominator of reqRatio (analogously for reqRatiostart)

reqRatiotransit(v, s, id, i, resM, t) =
adjIdDem(v, resM(v, s, id), resM, t)

transitDem(v, i, resM, t)
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is given by

adjIdDem(v, r, resM, t) =
egScalFctr(v, s, e, resM, t) ·min{cap(v, i), cap(v, e), idBW(r.vrs, t)}

which by (2) and (3) is positive if egScalFctr and idBW are
positive.

egScalFctr : By the definition of egScalFctr

egScalFctr(v, s, e, resM, t) =
min (cap(v, e), egDem(v, s, e, resM, t))

egDem(v, s, e, resM, t)

and assumption (2) it suffices to show that egDem(v, s, e, resM, t)
is positive. By the definition of egDem

egDem(v, s, e, resM, t) =
∑

r ′∈rng(resM):
resSr(r ′)=s
resEg(r ′)=e

reqDem(v, r ′, resIn(r ′), e, t).

it suffices to show that reqDem(v, r, i, e, t) is positive. By
the definition of reqDem

reqDem(v, r, i, e, t) =
min{cap(v, i), cap(v, e), demBW(r.vrs, t)}.

and (2) and (3) it suffices to show that demBW(r.vrs, t) is
positive. By definition of demBW

demBW(vrsM, t) =
max
vrs∈

rng(vrsM)

{vrs.maxBW | vrs.minBW ≤ vrs.resBW ∧ vrs.expT ≥ t}

it suffices to show that

(a) r.vrs(m′.idx).maxBW > 0

(b) r.vrs(m′.idx).minBW ≤ r.vrs(m′.idx).resBW

(c) r.vrs(m′.idx).expT ≥ t

The fact (a) follows from (1).
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The fact (b) follows by assumption (∗) and that

r.vrs(m′.idx).minBW = m′.minBW = m.minBW = 0

The fact (c) follows by (5), n′ < n, and Lemma 3.
idBW : By the definition of function idBW

idBW(vrsM, t) =
max
vrs∈

rng(vrsM)

{vrs.idBW | vrs.minBW ≤ vrs.resBW ∧ vrs.expT ≥ t}.

it suffices to show that

(a) r.vrs(m′.idx).idBW > 0

(b) r.vrs(m′.idx).minBW ≤ r.vrs(m′.idx).resBW

(c) r.vrs(m′.idx).expT ≥ t

The fact (a) follows by the definition of the function save,
in particular by

r.vrs(m′.idx).idBW := m′.accBW.[m′.ptr− 1].idBW,

By Lemma 28 and assumption (+), there is a n′ < n such
that

λn′ = U PT (m̃, m̃′, ṽ, ĩ, t̃)

and therefore

m′.accBW.[m′.ptr− 1].idBW = ideal(m̃′,σn′ .res,δ, t̃)

By IH it follows that

finBW(m̃, resM ṽ)> 0

and therefore in particular

ideal(m̃′,σn′ .res,δ, t̃)> 0

The facts (b) and (c) follow analogously to the case above.

Observe that all three factors contain their nominator as a sum-
mand in the denominator. Since all the denominators’ sum-
mands are non-negative, it follows trivially that all three factors
are less or equal than 1 and therefore

ideal(m, resM,δ, t)≤ δ · cap(v, e).
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Lemma.

∀n ∈ N, s, v ∈ H, e ∈ I , id ∈ N, t ∈ N.

resM′v = filter (σn.res(v, s, id), v) ∧ cap(v, e)> 0

⇒ cap(v, e)>
∑

r∈rng(resM′v):
resEg(r)=e

allocBW(r.vrs, t)

Proof. By induction on n.

n= 0 : The inequality holds trivially since in the initial state σ0.res = ;,
hence allocBW(r.vrs, t) = 0 for any r ∈ rng

�

resM′v
�

. By assumption
cap(v, e)> 0 the claim follows.

n→ n+ 1 : Assume s, v ∈ H, e ∈ I , id ∈ N, t ∈ N with

resM′v = filter (σn(v, s, id).res, v)∧ cap(v, e)> 0

By IH

∀s, v ∈ H, e ∈ I , id ∈ N, t ∈ N.

resM′v = filter (σn(v, s, id).res, v)∧ cap(v, e)> 0

⇒ cap(v, e)>
∑

r∈rng(resM′v):
resEg(r)=e

allocBW(r.vrs, t)

By case distinction on λn. The relevant events are the following:

FW D(m̃, m̃′, ṽ, ĩ, t̃): By the event’s guard onWay(m), it follows that
the reservation that gets updated is filtered out by filter

filter(resM, v) =
λ(s′, id ′).
let r = resM(v, s′, id ′)

in
�

if r.first≤ r.ptr≤ r.last then resM(v, s′, id ′) else ⊥
�

Hence, allocBW(r.vrs, t) stays the same the claim follows by IH.
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C M P(m̃, m̃′, ṽ, ĩ, t̃): The only relevant case is if ṽ = v. Then by the
event’s action

save(v ∈ V, resM ∈ ResMap, m′ ∈MR) =
let

finBW =min(m′.maxBW,min(m′.accBW))
vrs′ = L minBW := m′.minBW;

maxBW := m′.maxBW;

idBW := m′.accBW.[m′.ptr− 1].idBW;

resBW := finBW;

expT := m′.expT M

vrsM′ = resM(v, src(m′), m′.id).vrs
�

m′.idx 7→ vrs′
�

res′ = L path := m′.path;

ptr := m′.ptr;

first := m′.first;

last := m′.last;

vrs := vrsM′ M
in

resM
�

(v, src(m′), m′.id) 7→ res′
�

.

and the event’s guards onPth, i.e., m̃.first< m̃.ptr< m̃.last and
ResMapCheck it follows for the reservation corresponding to m̃,
with r = σn+1.res(v, src(m̃), m̃.id), that

(4) r.first< r.ptr< r.last

(5) r.vrs(m̃.idx).expT > t

By IH it holds that

resMv = filter (σn(v, s, id).res, v)∧ cap(v, e)> 0

⇒ cap(v, e)>
∑

r̃∈rng(resMv):
resEg(r̃)=e

allocBW(r̃.vrs, t)

We need to show that

resM′v = filter (σn+1(v, s, id).res, v)∧ cap(v, e)> 0

⇒ cap(v, e)>
∑

r̃∈rng(resM′v):
resEg(r̃)=e

allocBW(r̃.vrs, t)
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The only reservation that changed from σn to σn+1 is r to r ′,
hence it holds (a)

∑

r̃∈rng(resM′v):
resEg(r̃)=e

allocBW(r̃.vrs, t)

=
∑

r̃∈rng(resM′v):
r̃ 6=r ′resEg(r̃)=e

allocBW(r̃.vrs, t) + allocBW(r ′.vrs, t̃)

=
∑

r̃∈rng(resMv):
r̃ 6=rresEg(r̃)=e

allocBW(r̃.vrs, t) + allocBW(r ′.vrs, t̃)

Furthermore, it holds that

(b) r ′.vrs(m̃.idx).resBW =min
�

m̃′.maxBW,min(m̃′.accBW)
�

and for all other indices idx 6= m̃.idx it holds that

(c) r ′.vrs(m̃.idx).resBW = r.vrs(m̃.idx).resBW

There are two cases:

r ′.vrs(m̃.idx).resBW ≤ allocBW(r.vrs, t̃) : From this together with
(b) and (c) it follows

(d) allocBW(r.vrs, t̃) = allocBW(r ′.vrs, t̃).

From this it follows by (c) and IH
∑

r̃∈rng(resM′v):
resEg(r̃)=e

allocBW(r̃.vrs, t)

=(c)
∑

r̃∈rng(resMv):
r̃ 6=r∧resEg(r̃)=e

allocBW(r̃.vrs, t) + allocBW(r ′.vrs, t̃)

=(d)
∑

r̃∈rng(resMv):
r̃ 6=r∧resEg(r̃)=e

allocBW(r̃.vrs, t) + allocBW(r.vrs, t̃)

=
∑

r̃∈rng(resMv):
resEg(r̃)=e

allocBW(r̃.vrs, t)

<IH cap(v, e)

and therefore the claim.
r ′.vrs(m̃.idx).resBW > allocBW(r.vrs, t̃) : In this case by (b), (c),

and the definition of allocBW it follows

allocBW(r ′.vrs, t̃) = r ′.vrs(m̃.idx).resBW
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and together with the definition of finBW it follows

r ′.vrs(m̃.idx).resBW

:=min(m̃′.maxBW,min(m̃′.accBW))
≤ m̃′.accBW[m̃′.ptr].avBW

= avail(m̃, resMv ,δ, t̃)

hence, altogether it holds

(e) allocBW(r ′.vrs, t̃)≤ avail(m̃, resMv ,δ, t̃)

By the definition of avail

avail(m, resM,δ, t) =
let

L i, v, e M= cur(m)
resM′ = resM ((v, src(m), m.id) 7→ ⊥)
resM′v = filter(resM′, v)
in

δ ·
�

cap(v, e)−
∑

r∈rng(resM′v):
resEg(r)=e

allocBW(r.vrs, t)
�

Applying this to (c) and
∑

r̃∈rng(resM′v):
resEg(r̃)=e

allocBW(r̃.vrs, t)

=(c)
∑

r̃∈rng(resMv):
r̃ 6=rresEg(r̃)=e

allocBW(r̃.vrs, t) + allocBW(r ′.vrs, t̃)

=(e)
∑

r̃∈rng(resMv):
r̃ 6=r∧resEg(r̃)=e

allocBW(r̃.vrs, t) + avail(m̃, resMv ,δ, t̃)

=( f )
∑

r̃∈rng(resMv):
r̃ 6=r∧resEg(r̃)=e

allocBW(r̃.vrs, t)+

δ

�

cap(v, e)−
∑

r̃∈rng(resMv):
r̃ 6=r∧resEg(r̃)=e

allocBW(r̃.vrs, t)

�

= δcap(v, e) + (1−δ)
∑

r̃∈rng(resMv):
r̃ 6=r∧resEg(r̃)=e

allocBW(r̃.vrs, t)

≤ δcap(v, e) + (1−δ)
∑

r̃∈rng(resMv):
resEg(r̃)=e

allocBW(r̃.vrs, t)

<IH δcap(v, e) + (1−δ)cap(v, e) = cap(v, e)
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and the claim follows.

TRN(m̃, m̃′, ṽ, ĩ, t̃): Analogous to CMP.

U PT (m̃, m̃′, ṽ, ĩ, t̃): The only relevant case is if ṽ = v. Then by the
event’s guard isRsvd(σn.res, ṽ, m̃, t̃) it follows

(11) r.vrs(m̃.idx).resBW ≥min(m̃.accBW)

Then by the event’s action it follows for the updated reservation
r ′ = σn+1.res(v, src(m̃), m̃.id) that

r ′.vrs(m̃′.idx).resBW :=min(m̃′.maxBW,min(m̃′.accBW))

and therefore

r ′.vrs(m̃′.idx).resBW ≤ r.vrs(m̃′.idx).resBW

From this and the fact that the version with index (m̃′.idx is the
only entry changed in the reservation map it follows

(g) allocBW(r ′.vrs, t̃)≤ allocBW(r.vrs, t̃)

From this together with the IV it follows as in event CMP that
∑

r̃∈rng(resM′v):
resEg(r̃)=e

allocBW(r̃.vrs, t)

=(c)
∑

r̃∈rng(resMv):
r̃ 6=r∧resEg(r̃)=e

allocBW(r̃.vrs, t) + allocBW(r ′.vrs, t̃)

≤(g)
∑

r̃∈rng(resMv):
r̃ 6=r∧resEg(r̃)=e

allocBW(r̃.vrs, t) + allocBW(r.vrs, t̃)

=
∑

r̃∈rng(resMv):
resEg(r̃)=e

allocBW(r̃.vrs, t)

<IH cap(v, e)

and therefore the claim.

BW D(m̃, m̃′, ṽ, ĩ, t̃): Analogous to FWD.

F IN(m̃, m̃′, ṽ, ĩ, t̃): Analogous to FWD.

In case of the other events, reservations get removed, hence,
allocBW(r.vrs, t) stays the same or decreases for a corresponding
reservation and the claim holds trivially.
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B.10.2 Lower ideal Bound
Let m be a valid message with (∗) m.minBW = 0, (+) nodes(m) ⊆ H, source
s, ID id, and first AS v together with v’s ingress and egress interface iv and
ev . There is a strictly positive lower bound G · rv on the ideal computation
(even when all sources exceed their demands), where G only depends on
m’s path and rv = reqRatio(s, id, iv , ev) is the request ratio of m at v.

∀evt ∈ {C M P, TRN , U PT}.
∀n ∈ N, m, m′ ∈MR, v ∈ H, i ∈ I , t ∈ N.

λn = evt(m, m′, v, i, t)⇒
∃G ∈]0;1].∀x ∈ sgmt(m). ideal(m, resMx)> G · rv

Lemma 53.

∀m ∈MR, s ∈ H, v ∈ sgmt(m) \ {first(m)}, i, e ∈ I , resM ∈ ResMap, t ∈ N.

cur(m) = ve
i ∧ s = src(m) ∧ vrs= resM(v, src(m), m.id).vrs(m.idx) ∧

0< vrs.maxBW = m.maxBW ∧
m.accBW[m.first].idBW = m.maxBW ∧
vrs.idBW = m.accBW[m.ptr].idBW ∧
egDem(v, src(m), e, resM, t)≤ cap(v, e) ∧
inDem(v, src(m), i, resM, t)≤ cap(v, i) ∧
transitDem(v, i, resM, t)≤ cap(v, i)
⇒∃Gv ∈]0;1]. ideal(m, resM,δ, t)≥ Gv ·m.accBW[m.ptr].idBW

and for v = first(m)

∃G′v ∈]0; 1]. ideal(m, resM,δ, t)≥ G′v · reqRatiostart(v, s, id, i, resM, t)

Proof. Given m, v ∈ sgmt(m), i, e ∈ I , resM ∈ ResMap, and t ∈ N with
cur(m) = ve

i , src(m) = s, and

(a) 0< m.maxBW

(b) egDem(v, src(m), e, resM, t)≤ cap(v, e)
(c) inDem(v, src(m), i, resM, t)≤ cap(v, i)
(d) transitDem(v, i, resM, t)≤ cap(v, i)
(e) 0< vrs.maxBW = m.maxBW

( f ) vrs.idBW = m.accBW[m.ptr].idBW

(g) m.accBW[m.first].idBW = m.maxBW
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By the definition of ideal

reqRatio · linkRatio · tubeRatio(v, i, e, resM′v , t) ·δ · cap(v, e)

We need to show that there are lower bounds for each of the following
factors:

tubeRatio : By its definition

tubeRatio(v, i, e, resM, t)

=
min{cap(v, i), tubeDem(v, i, e, resM, t)}

∑

i′∈I min{cap(v, i′), tubeDem(v, i′, e, resM, t)}

First we derive a lower bound for the fraction’s nominator. By the
definition of tubeDem

tubeDem(v, i, e, resM, t)
=
∑

r∈rng(resM):
resIn(r)=i
resEg(r)=e

adjReqDem(v, r, i, e, resM, t)

A lower bound is the summand r = resM(v, s, m.id)

adjReqDem(v, r, resM, t) =
=min{inScalFctr(v, s, i, resM, t), egScalFctr(v, s, e, resM, t)}

· reqDem(v, r, i, e, t)

From (b) and the definition of egScalFctr

egScalFctr(v, s, e, resM, t) =
min (cap(v, e), egDem(v, s, e, resM, t))

egDem(v, s, e, resM, t)
.

it follows that

egScalFctr(v, s, e, resM, t) = 1

and the same for inScalFctr by (c). Hence, it is sufficient to provide a
lower bound for reqDem

reqDem(v, r, i, e, t)
=min{cap(v, i), cap(v, e), demBW(r.vrs, t)}
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By the definition of egDem

egDem(v, s, e, resM, t) =
∑

r ′∈rng(resM):
resSr(r ′)=s
resEg(r ′)=e

reqDem(v, r ′, resIn(r ′), e, t).r.path[r.ptr].inI, e).

and (b) it follows that

(A) reqDem(v, r, i, e, t)≤ egDem(v, s, e, resM, t)≤(b) cap(v, e)

and analogously

reqDem(v, r, i, e, t)≤ inDem(v, s, i, resM, t)≤(c) cap(v, i)

it follows that

reqDem(v, r, i, e, t) = demBW(r.vrs, t).

By the definition of demBW

demBW(vrsM, t) =
max
vrs∈

rng(vrsM)

{vrs.maxBW | vrs.minBW ≤ vrs.resBW ∧ vrs.expT ≥ t}

it follows that

(B) demBW(vrsM, t)≥ r.vrs(m.idx).maxBW = m.maxBW

All together we obtain that

tubeRatio(v, i, e, resM, t)

=
min{cap(v, i), tubeDem(v, i, e, resM, t)}

∑

i′∈I min{cap(v, i′), tubeDem(v, i′, e, resM, t)}

≥
min{cap(v, i), tubeDem(v, i, e, resM, t)}

∑

i′∈Ix
cap(v, i′)

≥(A),(B)
m.maxBW

∑

i′∈Iv
cap(v, i′)

with Iv := {i′ ∈ I | cap(v, i′)> 0}.



174 B Appendix: Proofs

linkRatio There are two cases v = first(m) and v ∈ sgmt(m) \ first(m). By
the definition of linkRatiotransit

linkRatiotransit(v, i, resM, t) =
let

stDem= startDem(v, i, resM, t)
trDem= transitDem(v, i, resM, t)
in

min{cap(v, i), trDem}
min{cap(v, i), stDem}+min{cap(v, i), trDem}

.

By (d) it follows for its nominator

(D) min{cap(v, i), trDem}
=min{cap(v, i), transitDem(v, i, resM, t)}

=(d) transitDem(v, i, resM, t)

and therefore

linkRatiotransit(v, i, resM, t)

=
min{cap(v, i), trDem}

min{cap(v, i), stDem}+min{cap(v, i), trDem}

≥
min{cap(v, i), trDem}

2 · cap(v, i)

≥(D)
transitDem(v, i, resM, t)

2 · cap(v, i)

linkRatiostart: In this case (D) does not hold, but by By (C) and (g) it follows

(E) adjIdDem(v, r, resM, t)

≥(C) m.accBW[m.ptr].idBW

=(g) m.maxBW
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and we obtain as lower bound

linkRatiostart(v, i, resM, t)

=
min{cap(v, i), stDem}

min{cap(v, i), stDem}+min{cap(v, i), trDem}

≥
min{cap(v, i), stDem}

2 · cap(v, i)

≥(E)
m.maxBW
2 · cap(v, i)

reqRatiotransit : By the definition of adjIdDem

adjIdDem(v, r, resM, t) =
egScalFctr(v, s, e, resM, t) ·min{cap(v, i), cap(v, e), idBW(r.vrs, t)}.

and similar as above egScalFctr(v, s, e, resM, t) = 1 it follows that

(C) adjIdDem(v, r, resM, t)
= idBW(r.vrs, t)
≥ r.vrs(m.idx).idBW

= m.accBW[m.ptr].idBW

By (C) and (d) and the definition of reqRatiotransit

reqRatiotransit(v, s, id, i, resM, t) =
adjIdDem(v, resM(v, s, id), resM, t)

transitDem(v, i, resM, t)

it follows

reqRatiotransit(v, s, id, i, resM, t)

=
adjIdDem(v, resM(v, s, id), resM, t)

transitDem(v, i, resM, t)

≥(C)
m.accBW[m.ptr].idBW
transitDem(v, i, resM, t)

reqRatiostart : By (E) and the definition of mathit reqRatiostart it follows

reqRatiostart(v, s, id, i, resM, t)

=
adjIdDem(v, resM(v, s, id), resM, t)

startDem(v, i, resM, t)

≥(E)
m.maxBW

startDem(v, i, resM, t)
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Altogether we obtain the following lower bounds for ideal depending on
the two cases v = first(m) and v ∈ sgmt(m) \ {first(m)}, respectively:

v = first(m) :

ideal(m, resM,δ, t)
= reqRatiostart · linkRatiostart · tubeRatio ·δ · cap(v, e)

≥ reqRatiostart ·
m.maxBW
2 · cap(v, i)

·
m.maxBW

∑

i′∈Iv
cap(v, i′)

·δ · cap(v, e)

= reqRatiostart ·
m.maxBW2

2 · cap(v, i) ·
∑

i′∈Iv
cap(v, i′)

·δ · cap(v, e)

≥
m.maxBW

startDem(v, i, resM, t)
·

m.maxBW2

2 · cap(v, i) ·
∑

i′∈Iv
cap(v, i′)

·δ · cap(v, e)

Hence, we can set

G′v :=
m.maxBW2

2 · cap(v, i) ·
∑

i′∈Iv
cap(v, i′)

·δ · cap(v, e)

which only depends on m.maxBW and the capacities on m.path of
the network.

v ∈ sgmt(m) \ {first(m)} :

ideal(m, resM,δ, t)
= reqRatiotransit · linkRatiotransit · tubeRatio ·δ · cap(v, e)

≥
m.accBW[m.ptr].idBW

trDem
·

trDem
2 · cap(v, i)

·
m.maxBW

∑

i′∈Iv
cap(v, i′)

·δ · cap(v, e)

= m.accBW[m.ptr].idBW ·
m.maxBW

2 · cap(v, i) ·
∑

i′∈Iv
cap(v, i′)

·δ · cap(v, e)

Hence, we can set

Gv :=
m.maxBW

2 · cap(v, i) ·
∑

i′∈Iv
cap(v, i′)

·δ · cap(v, e)

which only depends on m.maxBW and the capacities on m.path of
the network.
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B.10.3 Bounded Tube-Proportionality

Provided that two ingress links i, i′ of AS x are not congested, the tubeRatio
computation splits the capacity of the egress link e proportionally according
to the tube demands of i and i′ to e

tubeRatio(i, e)
tubeRatio(i′, e)

=
tubeDem(i, e)
tubeDem(i′, e)

.

In case i′ is congested and its tube demand to e further increases, the ratio
between both tube ratios remains fixed

tubeRatio(i, e)
tubeRatio(i′, e)

=
tubeDem(i, e)

cap(x , i′)
.

Proof. Given two ingress links i, i′ of AS x . If both ingress links i and i′ are
not congested, i.e.,

(a)
∑

s̃∈V inDem(x , s̃, i, resM, t)≤ cap(x , i)
(b)

∑

s̃∈V inDem(x , s̃, i′, resM, t)≤ cap(x , i′).

By this it follows and the definition of tubeDem it follows

(a′) tubeDem(v, i, e, resM, t)
=
∑

r∈rng(resM):
resIn(r)=i∧resEg(r)=e

adjReqDem(v, r, i, e, resM, t)

≤
∑

r∈rng(resM):
resIn(r)=i∧resEg(r)=e

reqDem(v, r, i, e, resM, t)

≤
∑

r∈rng(resM):
resIn(r)=i

reqDem(v, r, i, e, resM, t)

=
∑

s̃∈V

∑

r∈rng(resM):
resSr(r)=s̃∧resIn(r)=i

reqDem(v, r, i, resEg(r), t)

=
∑

s̃∈V inDem(x , s̃, i, resM, t)

≤(a) cap(x , i)

and similarly

(b′) tubeDem(v, i′, e, resM, t)≤ cap(x , i′)
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therefore it follows
tubeRatio(x , i, e, resM, t)
tubeRatio(x , i′, e, resM, t)

=

min{cap(x ,i),tubeDem(x ,i,e,resM,t)}
∑

ĩ∈I min{cap(x ,ĩ),tubeDem(x ,ĩ,e,resM,t)}

min{cap(x ,i′),tubeDem(x ,i′,e,resM,t)}
∑

ĩ∈I min{cap(x ,ĩ),tubeDem(x ,ĩ,e,resM,t)}

=
min{cap(x , i), tubeDem(x , i, e, resM, t)}

min{cap(x , i′), tubeDem(x , i′, e, resM, t)}

=(a
′),(b′) tubeDem(x , i, e, resM, t)

tubeDem(x , i′, e, resM, t)

Independent from ingress link i′ being congestion, if i is not congested
then it follows

tubeRatio(x , i, e, resM, t)
tubeRatio(x , i′, e, resM, t)

=

min{cap(x ,i),tubeDem(x ,i,e,resM,t)}
∑

ĩ∈I min{cap(x ,ĩ),tubeDem(x ,ĩ,e,resM,t)}

min{cap(x ,i′),tubeDem(x ,i′,e,resM,t)}
∑

ĩ∈I min{cap(x ,ĩ),tubeDem(x ,ĩ,e,resM,t)}

=
min{cap(x , i), tubeDem(x , i, e, resM, t)}

min{cap(x , i′), tubeDem(x , i′, e, resM, t)}

≥(a
′) tubeDem(x , i, e, resM, t)

cap(x , i′)
.

If the tube demand between i′ and e exceeds cap(x , i′), i.e.,

tubeDem(x , i′, e, resM, t)≥ cap(x , i′)

then the last inequality becomes an equality

tubeRatio(x , i, e, resM, t)
tubeRatio(x , i′, e, resM, t)

=
tubeDem(x , i, e, resM, t)

cap(x , i′)

and stays fixed no matter how much tubeDem(x , i′, e, resM, t) increases.

B.10.4 Per Request-Proportionality
Suppose two sources s and s′ respectively make new reservations m and
m′ whose paths intersect on a connected segment [v1, . . . , vn], i.e.,

∃k1, kn, k′1, k′n ∈ N.k1 ≤ kn ≤ length(m.path) ∧ k′1 ≤ k′n ≤ length(m′.path) ∧
∀ki , k′i ∈ N. k1 ≤ ki ≤ kn, k′1 ≤ k′i ≤ k′n⇒
vi = m.path[ki].as= m.path[k′i].as
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If s and s′ do not have excessive demands on this segment, then the ratio
of their ideal bandwidth computations on the segment remain the same to
their ratio at the first AS on the segment, even if links on the segment are
congested

∀vi ∈ {v1, . . . , vn}.
ideal(m, resMvi

,δ, t)

ideal(m′, resMvi
,δ, t)

=
ideal(m, resMv1

,δ, t)

ideal(m′, resMv1
,δ, t)

.

Lemma 54.

∀m, m′ ∈MR, s, s′ ∈ V, v ∈ H, i, e ∈ I , resM ∈ ResMap, t ∈ N
m.path[m.ptr] = m′.path[m′.ptr] = ve

i ∧
s = src(m) ∧ s′ = src(m′) ∧
inDem(v, s, i, resMv , t)≤ cap(v, i) ∧
egDem(v, s′, e, resMv , t)≤ cap(v, e)

⇒
ideal(m, resM,δ, t)
ideal(m′, resM,δ, t)

=
resM(v, s, m.id).vrs(m.idx).idBW

resM(v, s′, m′.id).vrs(m′.idx).idBW

Proof. Given m, m′ ∈MR, s, s′ ∈ V , v ∈ H, i, e ∈ I , resM ∈ ResMap, t ∈ N
with

m.path[m.ptr] = m′.path[m′.ptr] = ve
i

s = src(m), s′ = src(m′)

and that s and s′ have modest demands, i.e.,

(a) inDem(v, s, i, resMv , t), inDem(v, s′, i, resMv , t)≤ cap(v, i)
(b) egDem(v, s, e, resMv , t), egDem(v, s′, e, resMv , t)≤ cap(v, e).

By this it follows that both inScalFctr and egScalFctr are equal to 1 and
therefore adjReqDem = reqDem for m and m′, respectively. By the definition
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of tubeRatio

ideal(m, resM,δ, t)
= reqRatiotransit · linkRatiotransit · tubeRatio ·δ · cap(v, e)

=
adjIdDem(v, r, resM, t)

trDem
·

min{cap(v, i), trDem}
min{cap(v, i), stDem}+min{cap(v, i), trDem}

·
min{cap(v, i), tubeDem(v, i, e, resM, t)}

∑

i′∈I min{cap(v, i′), tubeDem(v, i′, e, resM, t)}
·δ · cap(v, e)

=
adjIdDem(v, r, resM, t)

stDem+ trDem
·

tubeDem(v, i, e, resM, t)
∑

i′∈I min{cap(v, i′), tubeDem(v, i′, e, resM, t)}
·δ · cap(v, e)
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