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A variational optimization approach is used to
optimize kinematic dynamos in a unit sphere and
locate the enstrophy-based critical magnetic Reynolds
number for dynamo action. The magnetic boundary
condition is chosen to be either pseudo-vacuum or
perfectly-conducting. Spectra of the optimal flows
corresponding to these two magnetic boundary
conditions are identical since theory shows that they
are relatable by reversing the flow field. A no-slip
boundary for the flow field gives a critical magnetic
Reynolds number of 62.06, while a free-slip boundary
reduces this number to 57.07. Optimal solutions are
found possessing certain rotation symmetries (or anti-
symmetries) and optimal flows share certain common
features. The flows localize in a small region near the
sphere’s centre and spiral upwards with very large
velocity and vorticity, so that they are locally nearly
Beltrami. We also derive a new lower bound on the
magnetic Reynolds number for dynamo action, which,
for the case of enstrophy-normalisation, is five times
larger than the previous best bound.
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1. Introduction
In stars and planets, it is believed that the magnetic field is generated through motions of
electrically conducting fluid in their interior. Continuous stretching and folding of the field lines
sustains the magnetic field against magnetic diffusion. This process is known as the dynamo
mechanism [1] and can be modeled by the set of magnetohydrodynamic (MHD) equations. The
kinematic part of this subject, known as the kinematic dynamo problem, prescribes a flow field
u, and asks whether there exists a seed magnetic field B0, such that it is able to be sustained or
grow exponentially with time. Motivation for this is that the magnetic field is too weak to act back
on the flow at early stages of a dynamo, so the fluid momentum equation is decoupled from the
magnetic field. Study of this reduced model helps us to understand how a flow field amplifies a
seed magnetic field. Some flows have been found capable of sustaining dynamo action [2–5].

Although there seems to be no general criterion for a working dynamo [6], several anti-
dynamo theorems were proven to exclude simple flows that cannot sustain a dynamo. Two of
them are well-known. One excludes the possibility to generate a 2D magnetic field, i.e. B is either
independent of any one of the Cartesian coordinates xi or axisymmetric in spherical coordinates
(also known as Cowling’s theorem, see [1,7]). The other one is known as the toroidal velocity
theorem which rules out dynamos maintained by purely toroidal flows in a sphere or planar
flows in a Cartesian geometry [1,8,9]. These anti-dynamo theorems show that the flow field must
be complex enough to create a dynamo.

A great deal of effort has been made on searching for the most efficient dynamo: [10] optimized
the Kumar-Roberts flows [4]; [11] optimized a group of axially-symmetric flows based on Dudley-
James flows [5] and concluded that they are close to the optimal; [12] studied a type of purely
poloidal flows; [13] searched for the best dynamo among laminar ABC flows. However, all of
these optimizations are carried out within a certain family of flows. A general question emerges
naturally, what is the spatial structure of the optimal flow among all permissible solutions, and
what ingredients constitute its optimality? This has been formulated as a variational optimization
problem in a periodic box [14], in a cube [15], in a unit sphere with general flows [16] and in
a unit sphere with axisymmetric flows [17]. Much efficiency has been gained by the optimal
solutions compared to previous working dynamos in the sense of the magnetic Reynolds number
Rm, which is a nondimensional parameter measuring the ratio between magnetic induction and
diffusion.

This letter is a companion of [16] henceforth C18, in which we will report optimal solutions
with different boundary conditions. The exterior of the unit sphere is considered either perfectly-
conducting or with high permeability. A no-slip or free-slip boundary is used for the velocity field.
Similar solutions to those of C18 are found in a no-slip setting, while solutions with a new 3-fold
rotation symmetry are found in a free-slip setting. Optimal flows are localized and Beltrami-like,
in the sense that u and∇× u are almost aligned. Various helicities are calculated. We also extend
the discussion on bounds for a working dynamo given in [18].

2. Model and Method

(a) Formulation of the kinematic dynamo problem
Consider a spherical domain V filled with electrically conducting fluid. The pre-Maxwell
equations simplify to a single induction equation

∂B

∂t
=∇× (u×B) + η∇2B, (2.1)

assuming that the steady flow u is non-relativistic. Here η is the magnetic diffusivity. This
equation will be nondimensionalised using the spherical radius L as a length scale, the magnetic
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diffusion time L2

η as a time scale and SL as a velocity scale, where S is the root-mean enstrophy,

S =

√
1

V

∫
V
(∇× u)2 dV =

√
1

V

∫
V
ω2 dV , (2.2)

in which ω=∇× u is the vorticity. The nondimensional form of (2.1) reads

∂B

∂t
=Rm∇× (u×B) +∇2B, (2.3)

where the enstrophy-based magnetic Reynolds number is defined to be

Rm =
SL2

η
. (2.4)

The reason for adopting this definition rather than the more commonly used energy-based
definition was made clear by [18]: any flow that is able to grow the magnetic field infinitely can
be rescaled to a new flow with arbitrarily small kinetic energy, which still sustains a dynamo.

The linearity of (2.3) in B admits exponential solutions with a form of B(x, t) =B0(x)e
γt,

where B0 is an eigenvector and γ is the complex growth rate. The non-normality of (2.3) allows
for a transient period at the beginning, but the eigenmode with the largest real part Re(γ) will
eventually dominate the solution. To determine whether a flow u generates a working dynamo,
it suffices to check whether the magnetic field is growing or decreasing exponentially at a much
longer time compared to transient phases. The growth (or decay) rate, i.e. Re(γ), can also be
calculated in such a way. For an admissible flow, the critical magnetic Reynolds number is defined
to be one such that Re(γ) = 0. The critical magnetic Reynolds number Rcm for dynamo action is
defined to be

Rcm := inf
u∈Du

Re(γ)≥0

Rm, (2.5)

where Du is the domain of u, such that u is incompressible and satisfies any required boundary
condition.

All fluid flows we consider must satisfy a non-penetration boundary condition r̂ · u|r=1 = 0.
We consider two extreme cases of flows, either inviscid flows that are free-slip on the boundary
and thus satisfy no further condition; and viscous flows that meet a solid boundary and are thus
subject to the further no-slip boundary condition u|r=1 = 0. It would be possible to consider flows
that satisfy a stress-free boundary condition, but we have not done so in our work. We expect that
such flows would give an optimum slightly above the free-slip case and intermediate between
the free-slip and no-slip case. Two magnetic boundary conditions are examined: pseudo-vacuum
(N) and perfectly-conducting (T). A pseudo-vacuum setting is to approximate the physical
conditions arising from a boundary made from very high permeability material, sometimes
termed ’ferromagnetic material’ [19]. This requires that the magnetic field is purely radial on the
boundary, i.e. r̂ ×B|r=1 = 0. Then automatically we have r̂ · (∇×B) |r=1 = 0. When the fluid
is surrounded by a perfect conductor, the usual assumption is that the magnetic field is zero in
the perfect conductor since no current can exist [20]. Continuity of Br requires that r̂ ·B|r=1 = 0.
A boundary condition for∇×B can be obtained from

r̂× J = r̂× [σE + u×B]. (2.6)

Due to continuity of r̂×E across the boundary and boundary conditions for u, we have r̂×
J |r=1 = r̂× (∇×B)|r=1 = 0. [21] showed that there is a duality between these two magnetic
boundary conditions in the sense that the spectra of the induction operator are identical. This
immediately leads to the conclusion that Rcm should be identical with both magnetic boundary
conditions.
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(b) Variational optimization approach
The objective function of our optimization is set to be the logarithm of the magnetic energy at
a time t= T (2 – 4 magnetic diffusion time in our optimization), which is long compared to the
transient phases. The flow field u and initial magnetic field B0 will be optimized. Combined with
the constraints on field magnitudes, solenoidal conditions and the induction equation, we build
the Lagrangian as:

L= ln
〈
B2
T

〉
− λ1

(〈
(∇× u)2

〉
− 1
)
− λ2

(〈
B2

0

〉
− 1
)

− 〈Π∇ · u〉 −
∫T
0

〈
p†∇ ·B

〉
dt

−
∫T
0

〈
B† · [∂tB −Rm∇× (u×B) +∇×∇×B]

〉
dt ,

(2.7)

where 〈·〉 := 1
V

∫
V · d

3x. In contrast to the all-space inner product used in C18, we only integrate
inside the spherical domain since there is no need to include the magnetic field outside. We also
switch back from the formulation in terms of Ampere’s law and Faraday’s law in C18 to the use of
induction equation due to simplification of the magnetic boundary condition. B0 and BT are the
magnetic field at time t= 0 and t= T respectively. λ1, λ2,Π , p† and B† are Lagrange multipliers.
The enstrophy of the flow field and the initial magnetic energy are fixed to unity.

By taking the variation of (2.7), we find the gradients of Lwith respect to u and B0:

∂L
∂u

= 2λ1∇2u+Rm

∫T
0
B × (∇×B†) dt+∇Π, (2.8)

∂L
∂B0

=−2λ2B0 +B†0, (2.9)

where the adjoint field B† is solved backward in time though the adjoint equation

− ∂B†

∂t
=−Rmu×

(
∇×B†

)
−∇×∇×B† +∇p† (2.10)

with terminal condition
B†T =

2BT〈
B2
T

〉 . (2.11)

Equations (2.8) and (2.9) are used to update u and B0 iteratively. The enstrophy and initial
magnetic energy are fixed to unity through the choice of λ1 and λ2 at each iteration. Details of the
derivation and discussion of this method can be found in C18 (see also [22,23]).

(c) Numerical implementation
The induction equation (2.3) and adjoint equation (2.10) are solved using a Galerkin spectral
method. u and B are expanded in spherical harmonics in the angular directions and in orthogonal
polynomials in the radial direction, which satisfy the appropriate boundary conditions, see
Appendix A. The procedure and examples of constructing these polynomial bases can be found
in [24–26]. The divergence free property of u and B are guaranteed through a toroidal-poloidal
decomposition of the vector fields. A Crank-Nicolson scheme is used for the diffusion term and a
second order Adams-Bashforth scheme is used for the induction term. Numerical implementation
details can be found in C18.

3. Results and Discussion

(a) Critical magnetic Reynolds number
The critical magnetic Reynolds number for dynamo action has attracted a lot of interest over the
past decades. Parametric flows are optimized to numerically locateRcm in subclasses of u, such as



5

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

Kumar-Roberts flows, Dudley-James flows and laminar ABC flows. On the other hand, various
analytic lower bounds for dynamo action have also been derived. Backus [2] (see also [27]) found
a bound on the maximum strain rate of the flow, which gives a bound on Rm defined in terms of
the maximum strain rate; Childress [28] derived a bound for the maximum velocity; Klapper and
Young [29] derived a bound for the fast dynamo growth rate involving topological enstrophy;
Proctor [30] derived a lower bound of

D≥ πη2

4L
, (3.1)

where D=
∫
V eijeij d

3x (eij stands for the strain rate tensor) is proportional to viscous
dissipation if u= 0 at ∂V . This fits into our no-slip setting, since D is then proportional to the
enstrophy, S. Either by following the same derivation as in [30] or using definition (2.4), we are
able to bound Rm by

Rm ≥
√

3

8

1

SL2
=

√
3

8
≈ 0.61, (3.2)

as in C181.
This theoretical bound is actually far below the critical valueRcm obtained from optimizations.

We run optimizations at differentRm, starting from a random flow field and initial magnetic field,
to locate the critical value Rcm above which there exists a flow u such that the growth rate is non-
negative. In C18, an insulating boundary condition is used for the magnetic field, which leads
to Rcm ≈ 64.45. Using a pseudo-vacuum (N) or a perfectly-conducting (T) magnetic boundary
condition reduces this number to 62.06 and 57.07 in no-slip and free-slip settings of u respectively.
These values are at least three times lower than the best existing dynamo. We find three branches
of converged solutions in the free-slip case (named with superscripts (1), (2) and (3), among which
(1) is the optimum), as were found in [15]. The other two branches give slightly higher Rcm, see
Table 1.

Table 1: Basic characteristics of optimal solutions in Fig.1 and Fig.2. The critical magnetic Reynolds
number Rcm, the root-mean-square (r.m.s.) velocity 〈u2〉

1
2 , the vortex helicity 〈u · ω〉, poloidal to

toroidal energy ratios (with subscript p and t) are shown. Note that the vortex helicity changes
its sign under a reflection transformation since it is a pseudo-scalar. N(1) stands for the optimal
we find in the free-slip case; N(2) and N(3) are two other converged branches, among which N(2)

is simply a variation of the optimal found in no-slip cases. T(2) and T(3) are omitted because of
the duality between the magnetic boundary conditions. ’ns’ and ’fs’ denote no-slip and free-slip
boundary conditions respectively.

B.C. Rcm

〈
u2
〉 1

2 〈u · ω〉
〈
u2
p

〉
/
〈
u2
t

〉 〈
B2
p

〉
/
〈
B2
t

〉
ns, N 62.06 0.114 0.080 1.542 0.785

ns, T 62.05 0.115 0.082 1.515 0.302

fs, N(1) 57.07 0.155 0.117 0.789 0.819

fs, N(2) 58.40 0.141 −0.097 1.086 0.878

fs, N(3) 57.73 0.156 −0.112 0.757 0.989

fs, T(1) 57.07 0.155 0.117 0.793 0.238

(b) Optimal solutions
Streamlines of the two optimal flows are shown in Fig.1a and1b along with their spectra as a
function of spherical harmonic degree l in Fig.1e and Fig.1f. Their corresponding eigenmodes
with the largest growth rate are shown in Fig.2. One common feature of these two flows is that
1In C18 the value

√
6

2 given should read
√

6
4 ; the numerical value of 0.61 stated remains correct.
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(a) no-slip, |u| (b) free-slip, |u|

(c) no-slip, % (d) free-slip, %

0 5 10 15 20 25
l

10-15

10-10

10-5

100

S
l

toroidal
poroidal

(e) no-slip, spectrum

0 5 10 15 20 25
l

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

S
l

toroidal
poroidal

(f) free-slip, spectrum

Figure 1: First row: Streamlines of optimal flows obtained when Rm is set to its critical value in
each case, i.e. 62.06 and 57.07 respectively. The color scale gives velocity magnitude (red is most
intense); Second row: ρ= cosine of the angle between u and ∇× u; Third row: The spectra of
u as a function spherical harmonic degree l. (a), (c), (e): no-slip; (b), (d), (f): free-slip. The axis of
rotational symmetry is chosen to be vertical in (a)-(d).
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they localize and spiral in a tiny region and their magnitude outside this region is quite small. In
the no-slip case, two identical flow patterns spiral along with each other, while in a free-slip case
there is a vertical spiraling pillar and u separates into 3 folds above it. For the optimal flow fields,
we don’t discriminate between two magnetic boundary conditions, since the optimum in one case
will be the optimum in the other case just by by reversing it [21]. However, the eigenmodes BT

would be totally different due to different boundary conditions. The optimizations are unaware
of the duality between the magnetic boundary conditions, but verified it nevertheless. Some basic
characteristics are listed in Table 1. Due to the effect of the boundary condition, u has much
higher poloidal to toroidal energy ratio in no-slip cases than free-slip cases. The same reasoning
also applies to converting from a pseudo-vacuum boundary to a perfectly-conducting boundary.

(a) ns, N, |BT | (b) fs, N, |BT |

(c) ns, T, |BT | (d) fs, T, |BT |

Figure 2: Field lines of eigenmodes BT corresponding to flows in Fig.1 with different magnetic
boundary conditions. ’ns’ and ’fs’ denote no-slip and free-slip boundary conditions for the flow
respectively; N and T stand for two magnetic boundary conditions used. The color scale gives the
magnetic field magnitude (red is most intense).

We find certain symmetries in the optimal solutions. In the no-slip setting, u possesses a
π rotation symmetry and the two corresponding eigenmodes, BT , for N and T boundary
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conditions, are anti-symmetric under the same rotation operation. When the boundary condition
is changed to free-slip, the optimal u manifests itself with a 3-fold rotation symmetry, with
the same for its eigenmodes. Optimal pairs (u,BT ) are degenerate under rotation or reflection
transformations, so we are allowed to rotate them such that the z−axis coincides with the
symmetry axis. In this situation, a π rotation symmetry implies that only m= even (m is the
order of spherical harmonics) modes exist, while a π rotation anti-symmetry leads to onlym= odd

modes. In the case of a 3-fold rotation symmetry, only m= 3k, k ∈N, modes are allowed. With a
no-slip boundary condition u has a π rotation symmetry, thus by "selection rules" in [31], the
magnetic field modes are separated into two independent classes, m= even and m= odd. Our
results indicate that them= oddmode gives a higher growth rate. In the case of free-slip boundary
condition, B is separated into three independent classes,m= 3k,m= 3k + 1 and 3k + 2. The first
one turns out to be preferable. It is obvious that u possesses no reflectional symmetry since its
mean helicity is nonzero.

Rotation of u allows us to identify its leading modes when the z−axis is the symmetry axis.
We denote modes in the form of up or t

l,m , where l and m are the degree and order of spherical
harmonics, p and t represent poloidal and toroidal fields respectively. In no-slip cases three modes
are dominant: ut1,0 represents a differential rotation around the symmetry axis, up1,0 stands for
the simplest meridional circulation, and up3,2 represents convection rolls and non-sectorial flows.
These three modes contribute about 70% of the total enstrophy. We may interpret that u consists of
the simplest differential rotation and meridional circulation, coupled with complex enough higher
order convective rolls. Compared to the Kumar-Roberts flow [4], in which up2,0 and up2,2 are used,
the combination of up1,0 and up3,2 seems to be more effective. This is similar to the dominant
modes found in C18. The optimal flows in free-slip cases have more complex structures with less
dominant simple modes, and higher order components of meridional circulations are included.

(c) Helicities
The vortex helicity hω = 〈u · ω〉 is thought to promote dynamo action by converting toroidal field
into poloidal field. However, maximizing the mean helicity does not always lead to enhanced
dynamo action [6] and a helical flow alone is not sufficient for dynamo action [20]. Following [32],
we consider several other helicities. The mean velocity flux helicity hu = 〈u · a〉 is proportional
to the number of linkages of flow lines, where a is the vector potential of u. Since the normal
component of u vanishes at the boundary, hu is gauge-invariant. The mean cross helicity
defined as hBω = 〈B · u〉 determines the number of linkages of magnetic force with vortex
lines. Analogously, define ζ = 〈A · u〉, which characterizes the number of lines of magnetic force
linked with flow lines. A is the magnetic vector potential and hζ is also gauge-invariant. Lastly,
hB = 〈B ·A〉 is known as the magnetic helicity. Among these definitions, ζ is a polar-scalar, while
the others are all pseudo-scalars. Calculation of all these quantities (normalized by their upper
bounds given by the Cauchy-Schwartz inequality) is shown in Table 2. Note that the values of
|hω| are relatively high (∼ 0.7 or higher). This indicates that u and∇× u should be well aligned
with each other.

A Beltrami flow is a flow such that

∇× u= αu, (3.3)

in which α can be spatially dependent. We calculate

%(x) =
u · (∇× u)

|u| · |∇× u| , (3.4)

namely the cosine of the angle between u and ∇× u, which is shown in Fig.1c and 1d. In the
no-slip case Fig.1c, u and∇× u are well aligned in the central region and two extending parts
below. The angle is verified to be within several degrees in these regions and even less than one
degree in the most central part. In the free-slip case Fig.1d, there are also two regions where u is
Beltrami like. Since these Beltrami regions are coincident with those where u has large magnitude,
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Table 2: Left five columns are relative mean vortex helicity, velocity flux helicity, ζ = 〈A · u〉, cross
helicity and magnetic helicity. Last three columns are the r.m.s. of a (vector potential of u), A
(vector potential of B) and u. Meanings of the boundary conditions can be found in Table 1.

B.C. hω hu ζ hBω hB

〈
a2
〉 1

2
〈
A2
〉 1

2
〈
u2
〉 1

2

ns, N 0.703 0.701 5× 10−5 −4× 10−4 −0.477 0.016 0.239 0.114

ns,T 0.711 0.713 −2× 10−4 −2× 10−5 −0.247 0.016 0.301 0.115

fs, N(1) 0.757 0.647 −0.014 0.089 −0.562 0.028 0.262 0.155

fs, N(2) −0.688 −0.601 1× 10−4 8× 10−4 0.476 0.024 0.255 0.141

fs, N(3) −0.715 −0.578 0.026 0.059 0.505 0.030 0.252 0.156

fs, T(1) 0.756 0.651 0.108 0.041 −0.221 0.028 0.272 0.155

we conclude that they function as engines for generation and maintenance of the magnetic field.
Velocity magnitude in the outer region is much smaller and u manifests itself according to the
geometry and boundary condition. Although a new flow structure appears when the boundary
condition is changed from no-slip to free-slip, the critical magnetic Reynolds number does not
change much. This indicates that the boundary condition on u does not significantly affect the
dynamo efficiency. The magnetic boundary condition has even less effect since the optimal no-
slip flows with all three magnetic boundary settings (N, T and an insulating boundary in C18)
have the same spatial structure.

In Table 2, ζ and hBω are close to zero in the no-slip and N(2) cases due to symmetry properties
of u and BT . Moreover, ζ and hBω are much smaller than hω , hu and hB . This might be a general
feature for efficient dynamo actions, but requires more careful investigation. Generally speaking,
none of these quantities is likely to be a single index to quantify dynamo efficiency.

4. Requirement for Dynamo Action
Although dynamo efficiency does not have a single measure, there exists analytical lower bounds
for dynamo action in certain conditions. In this section we derive new analytical lower bounds
for the critical magnetic Reynolds number Rmc and compare it with our numerical solutions.
We assume that the conductor is surrounded by an insulator and u= 0 at the boundary r= 1 for
simplicity. It was proved in [18] that the lower bound on Rcm is zero when the r.m.s. velocity is
fixed. This is achieved with a flow where u is almost everywhere zero, but very large in a tiny
volume with concomitant steep gradients in u. Let E be twice the flow energy and D be the
appropriate norm for smoothness defined as

E =

∫
V
u2 d3x , D=

∫
V
|∇u|2 d3x . (4.1)

It was shown in [18] that by choosing u to be normalised such that Fs =EsD1−s = 1 for 0≤ s≤ 1,
then if s > 1

2 , we have Rcm = 0. Examples of this constraint are clearly that if s= 1, Fs constrains
energy, whereas s= 0 constrains enstrophy. In this section we show that when s≤ 1

2 , there exists
a nonzero lower bound on Rcm. The proof also shows that we can find bounds for higher order
norms of u.

From (2.3) we can derive the energy equation and bound it using Hölder’s inequality

dM

dt
=Rm

∫
V
(u×B) · (∇×B) d3x−

∫
V
|∇×B|2 d3x

≤Rm
(∫

V
|u|q d3x

) 1
q
(∫

V
|∇×B|2 d3x

) 1
2
(∫

V
|B|p d3x

) 1
p

−
∫
V
|∇×B|2 d3x ,

(4.2)
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where M = 1
2

∫
R3 B

2 d3x. The indices p and q are chosen such that

1

p
+

1

q
=

1

2
, q≥ 3 and 2≤ p≤ 6. (4.3)

Using the Lp interpolation inequality, we have

(∫
V
|B|p d3x

) 1
p

≤
(∫

V
|B|2 d3x

) 6−p
4p
(∫

V
|B|6 d3x

) p−2
4p

. (4.4)

Now an "embedding theorem" for function f sufficiently smooth and decaying fast enough at
infinity is (∫

R3
|f |6 d3x

) 1
6

≤C
(∫

R3
|∇f |2 d3x

) 1
2

, (4.5)

where the constant C has the sharpest value ( 2π )
2
3 3−

1
2 ≈ 0.4273 [33,34]. This bounds the last

integration in (4.4). In addition we have the well-known Poincaré inequality∫
R3
|B|2 d3x≤

(
1

π

)2 ∫
V
|∇×B|2 d3x . (4.6)

Since
∫
R3 |∇B|2 d3x=

∫
V |∇×B|2 d3x [30], using the fact that the radial component of B ·∇B

is continuous at the boundary (this is due to the continuity of B and ∂rBr at the boundary), the
energy growth rate can now be bounded by

dM

dt
≤

[
Rm · C

3p−6
2p

(
1

π

) 6−p
2p
(∫

V
|u|q d3x

) 1
q

− 1

] ∫
V
|∇×B|2 d3x . (4.7)

Thus among velocity fields normalised so that
(∫
V |u|

q d3x
)1/q

= 1, we require for dynamo
action

Rm ≥C
6−3p
2p π

6−p
2p . (4.8)

This bound is plotted in Fig. 3 as a function of q. Recall from (4.3) that q≥ 3. As q→∞, this bound
has a limit of π, which is the same as Childress’s bound with Rm defined in terms of maximum
velocity, i.e. the L∞ norm of u [28].

4 5 6 7 8 9 10
q

2.4

2.5

2.6

2.7

2.8

2.9

Rm

Figure 3: The lower bound of Rm given by Eq.(4.8).
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Using the same argument as in (4.4) and (4.5), we have(∫
V
|u|q d3x

)2/q

≤C
3q−6

q Es(q)D1−s(q) =C
3q−6

q Fs(q), (4.9)

where s(q) = 6−q
2q ≤

1
2 . This proves our claim that when s≤ 1

2 , there exists a lower bound on Rm.
Let q= 6, corresponding to s= 0 (recall this is the enstrophy-normalised case),then (4.9) gives(∫

V
|u|6 d3x

)1/6

≤C
(∫

V
|∇u|2 d3x

)1/2

=C

(∫
V
|∇× u|2 d3x

)1/2

. (4.10)

Substituting the above estimate into (4.7) gives a bound

Rm ≥C−3/2
√

3/4 =
π

2
33/4

√
3/4≈ 3.1009 (4.11)

when the normalization
〈
(∇× u)2

〉
= 1 is used. This value improves the bound (3.2) by a factor

of five and is also about ten times smaller than the critical Rm for transient growth found in C18,
a factor suggested by [30]. The present proof is for the case of insulating boundary conditions,
and an equivalent proof for other boundary conditions exists but requires a suitable amendment
of (4.5) for a finite domain. We have not presented the result with this added complication.

5. Summary
In this study, we find the optimal kinematic dynamo in a sphere with various boundary
conditions. A slightly smaller Rcm is obtained compared to C18. The optimal flow in the no-slip
cases turns out to be a small variation of the solution in C18, although the magnetic boundary
conditions are totally different. This indicates that the magnetic boundary condition plays a
secondary role compared to the flow boundary condition. In free-slip cases, a new type of solution
with a 3-fold rotation symmetry has been found. Optimal flows have a common feature that they
are localized in a small region where a Beltrami property is observed. This supports the view that
helicity is, although not absolutely necessary, rather critical for efficient dynamo action. We also
provide a new lower bound estimation of the magnetic Reynolds number for higher order (q≥ 3)
norms of u or Fs =EsD1−s with s≤ 1

2 .
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A. Galerkin Basis

(a) The velocity field
The velocity field u is decomposed into poloidal and toroidal vectors

u=
∑
n,l,m

amn,lt
m
n,l + bmn,ls

m
n,l, (A 1)
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where tmn,l =∇×
(
ψln(r)Y

m
l (θ, φ)r̂

)
and smn,l =∇×∇×

(
χln(r)Y

m
l (θ, φ)r̂

)
and Yml (θ, φ) are

real-valued spherical harmonics fully normalised such that

∫2π
0

∫π
0

[
Yml

]2
sin θ dθ dφ= 1. (A 2)

The radial basis functions ψln(r) and χln(r) (n≥ 1) are chosen to be polynomials and constructed
in terms of the Jacobi polynomials Pα,βn (x), (i) in the no-slip case (first used in C18)

ψln(r) = rl+1
(
P
(0,l+ 1

2 )
n

(
2r2 − 1

)
− P (0,l+ 1

2 )
n−1

(
2r2 − 1

))

χln(r) = rl+1
3∑
i=1

ciP
(0,l+ 1

2 )
n+2−i

(
2r2 − 1

) (A 3)

where

c1 = 2l + 4n+ 1

c2 =−2(2l + 4n+ 3)

c3 = (2l + 4n+ 5)

(A 4)

and (ii) in the free-slip case

φln(r) = rl+1
(
c1P

(0,l+ 1
2 )

n

(
2r2 − 1

)
+ c2P

(0,l+ 1
2 )

n−1

(
2r2 − 1

))
χln(r) = rl+1

(
1− r2

)(
c3P

(1,l+ 1
2 )

n

(
2r2 − 1

)
+ c4P

(1,l+ 1
2 )

n−1

(
2r2 − 1

)) (A 5)

where

c1 = (2n− 1)(n+ l)

c2 =−(2n+ 1)(n+ l + 1)

c3 = n2(2n+ 2l + 1)

c4 =−(n+ 1)2(2n+ 2l + 3)

(A 6)

such that after suitable normalisation, the vector modes satisfy (a) corresponding boundary
conditions; (b) regularity at the origin (c) orthonormality of the form〈

∇× smn,l ·∇× sm
′

n′,l′

〉
=
〈
∇× tmn,l ·∇× tm

′

n′,l′

〉
= δn,n′δl,l′δm,m′〈

∇× smn,l ·∇× tm
′

n′,l′

〉
= 0.

(A 7)

(b) The magnetic field
The magnetic field B is expanded in a similar manner as above

B =
∑
n,l,m

dmn,lT
m
n,l + emn,lS

m
n,l, (A 8)

where Tmn,l =∇×
(
Ψ ln(r)Y

m
l (θ, φ)r̂

)
and Smn,l =∇×∇×

(
Υ ln(r)Y

m
l (θ, φ)r̂

)
. The radial basis

functions Ψ ln(r) and Υ ln(r) (n≥ 1) are constructed as (i) in the pseudo-vacuum (N) case (first used
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in [23])

Ψ ln(r) = rl+1
(
1− r2

)
P
(2,l+ 1

2 )
n−1

(
2r2 − 1

)
Υ ln(r) = rl+1

(
c1P

(0,l+ 1
2 )

n

(
2r2 − 1

)
+ c2P

(0,l+ 1
2 )

n−1

(
2r2 − 1

)) (A 9)

where

c1 = (2n− 1)(n+ l)

c2 =−(2n+ 1)(n+ l + 1).
(A 10)

and (ii) in the perfectly-conducting (T) case

Ψ ln(r) = rl+1
(
c1P

(2,l+ 1
2 )

n

(
2r2 − 1

)
+ c2P

(2,l+ 1
2 )

n−1

(
2r2 − 1

)
+ c3P

(2,l+ 1
2 )

n−2

(
2r2 − 1

))
Υ ln(r) = rl+1

(
c4P

(1,l+ 1
2 )

n+1

(
2r2 − 1

)
+ c5P

(1,l+ 1
2 )

n

(
2r2 − 1

)
+ c6P

(1,l+ 1
2 )

n−1

(
2r2 − 1

))
.

(A 11)

Note that the last term in the definition of Ψ ln(r) should be ignored when n= 1. The coefficients
are defined as

c1 = n(4n+ 1 + 2l)(2n+ 5 + 2l)

(8l2n2 + 16ln3 + 8n4 + 8ln2 + 8n3 − 2l2 − 10ln− 8n2 − 2l − 5n+ 3)

c2 =−2(4n+ 3 + 2l)(16l3n3 + 48l2n4 + 48ln5+

16n6 + 24l3n2 + 120l2n3 + 168ln4 + 72n5 − 4l3n+ 60l2n2 + 164ln3 + 100n4−

6l3 − 30l2n+ 6ln2 + 30n3 − 21l2 − 44ln− 26n2 − 15l − 12n)

c3 = (n+ 1)(2n− 1 + 2l)(4n+ 5 + 2l)

(8l2n2 + 16ln3 + 8n4 + 16l2n+ 56ln2 + 40n3 + 6l2 + 54ln+ 64n2 + 12l + 35n+ 6)

c4 = (4n+ 2l + 3)(4ln+ 4n2 + 2l + 6n− 1)n

c5 =−4n(n+ 2)(4n+ 5 + 2l)(2n+ 3 + 2l)

c6 = (n+ 2)(4n+ 2l + 7)(4ln+ 4n2 + 6l + 14n+ 9).

(A 12)

Similarly, these vector modes defined above, after suitable normalisation, satisfy (a)
corresponding boundary conditions; (b) regularity at the origin (c) orthonormality of the form〈

Smn,l · S
m′

n′,l′

〉
=
〈
Tmn,l · T

m′

n′,l′

〉
= δn,n′δl,l′δm,m′〈

Smn,l · T
m′

n′,l′

〉
= 0.

(A 13)
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