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BUBBLING ANALYSIS AND GEOMETRIC CONVERGENCE

RESULTS FOR FREE BOUNDARY MINIMAL SURFACES

by Lucas Ambrozio, Reto Buzano, Alessandro Carlotto
& Ben Sharp

Abstract. — We investigate the limit behaviour of sequences of free boundary minimal hyper-
surfaces with bounded index and volume, by presenting a detailed blow-up analysis near the
points where curvature concentration occurs. Thereby, we derive a general quantization identity
for the total curvature functional, valid in ambient dimension less than eight and applicable to
possibly improper limit hypersurfaces. In dimension three, this identity can be combined with
the Gauss-Bonnet theorem to provide a constraint relating the topology of the free boundary
minimal surfaces in a converging sequence, of their limit, and of the bubbles or half-bubbles that
occur as blow-up models. We present various geometric applications of these tools, including a
description of the behaviour of index one free boundary minimal surfaces inside a 3-manifold
of non-negative scalar curvature and strictly mean convex boundary. In particular, in the case
of compact, simply connected, strictly mean convex domains in R3 unconditional convergence
occurs for all topological types except the disk and the annulus, and in those cases the possible
degenerations are classified.

Résumé (Analyse des bulles et résultats de convergence géométrique pour des surfaces minimales
à bord libre)

Nous étudions le comportement à la limite de suites de surfaces minimales à bord libre
d’indice et de volume bornés, en présentant une analyse détaillée de la dégénérescence au
voisinage des points de concentration de courbure. Nous en déduisons une identité générale
de quantification pour la fonctionnelle de courbure totale, valable en dimension inférieure à 8

et applicable à des hypersurfaces limites qui peuvent être impropres. En dimension 3, cette
identité peut être combinée au théorème de Gauss-Bonnet pour fournir une contrainte reliant
la topologie des surfaces minimales à bord libre dans une suite convergente, celle de leur limite,
et celle des bulles ou demi-bulles qui apparaissent comme modèles d’explosion. Nous présentons
diverses applications de ces outils, notamment une description du comportement des surfaces
minimales à bord libre d’indice 1 dans une variété de dimension 3 de courbure scalaire positive
ou nulle et à bord strictement convexe en moyenne. En particulier, dans le cas de domaines
de R3 compacts, simplement connexes et strictement convexes en moyenne, il y a convergence
inconditionnelle pour tous les types topologiques exceptés le disque et l’anneau et, dans ces cas,
nous classifions les dégénérescences possibles.

Mathematics Subject Classification (2010). — 53A10, 53C42, 49Q05.
Keywords. — Surfaces minimales à bord libre, analyse des bulles, quantification, compacité
géométrique.
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1. Introduction

In the last decade we have witnessed various significant developments in the study
of free boundary minimal hypersurfaces, new conceptual links have emerged and di-
verse tools have been employed to produce novel existence results in different geomet-
ric settings. The expansion of this research direction has brought back attention to
a number of classical open problems in the field and has motivated the extension of
various foundational results to this setting.

Differently from the case of closed minimal surfaces, the free boundary theory is
already very rich in the context of compact subdomains of R3, in fact even in the spe-
cial but important instance of the unit ball: various constructions have been presented
by Fraser and Schoen [18] (genus zero and any number of boundary components), by
Folha, Pacard and Zolotareva [16] (genus zero or one and any sufficiently large num-
ber of boundary components), by Ketover [30] and Kapouleas and Li [28] (arbitrarily
large genus and three boundary components) and by Kapouleas and Wiygul [29]
(arbitrarily large genus and one boundary component). In higher dimension, infinite
families of examples have been found, in the Euclidean unit ball, by Freidin, Gulian
and McGrath [20]. On the other hand, more general constructions like the min-max
à la Almgren-Pitts or the degree-theoretic approach à la White have led to further
results that are widely applicable: in that respect we shall mention here the results by
Li [31], Li-Zhou [32], De Lellis-Ramic [12] and Maximo-Nunes-Smith [36]. To those
developments, one should add the older works that mostly appeal to the parametric
approach (see [10, 11, 44, 21, 25, 26, 27, 46, 19] and references therein, among others).

Motivated by all these examples, we wish to proceed here in the compactness
analysis of free boundary minimal hypersurfaces that was presented in [3]. In their
earlier work [17], Fraser and Li proved that the set of free boundary minimal surfaces
of fixed topological type is strongly compact in any Riemannian 3-manifold with non-
negative Ricci curvature and convex boundary, where one considers smooth graphical
convergence with multiplicity one. This sort of conclusion cannot be expected in
higher dimension, or when the curvature assumptions are relaxed, and thus one needs
to approach the problem from a different perspective.

J.É.P. — M., 2019, tome 6



Bubbling analysis for free boundary minimal surfaces 623

First of all, we recall some basic definitions and notation. Given a compact
Riemannian manifold (Nn+1, g) of dimension n + 1 > 3, with non-empty bound-
ary ∂N , let Mn be a codimension one properly embedded submanifold: we say
that Mn is a free boundary minimal hypersurface in (Nn+1, g) if it is a critical point
for the n-dimensional area functional under variations satisfying the sole constraint
that ∂M ⊂ ∂N or, equivalently, ifM has zero mean curvature and meets the ambient
boundary orthogonally. In order to avoid ambiguities, let us remark that properness
is always understood here in the strong sense thatM ∩∂N = ∂M (which is consistent
with [17, 32, 3, 4] among others). We let M denote the class of smooth, connected, and
properly embedded free boundary minimal hypersurfaces and consider the subclasses
given by

M(Λ, I) := {M ∈M : H n(M) 6 Λ, index(M) 6 I},

so with the additional requirements that area and Morse index be bounded from above
(cf. [43]); and for p an integer greater or equal than one

Mp(Λ, µ) := {M ∈M : H n(M) 6 Λ, λp > −µ},

so with area bounded from above and pth eigenvalue λp of the Jacobi operator bounded
from below (cf. [2]).

In [3], Ambrozio-Carlotto-Sharp proved a compactness theorem for Mp(Λ, µ) when
the ambient dimension is less than eight: given a sequence of free boundary minimal
hypersurfaces {Mk} in Mp(Λ, µ), there is some smooth limit to which the sequence
sub-converges smoothly and graphically (with finite multiplicity m) away from a dis-
crete set Y on the limit where curvature concentration occurs. These results apply,
as a special case, to all classes of the form M(Λ, I) (since this is clearly the same
as MI+1(Λ, 0)). A significant part of the present article is aimed at an accurate de-
scription of the local picture around those points of bad convergence, in analogy with
the results obtained, for the closed case, by Buzano and Sharp in [5]. We then spec-
ify these results to the three dimensional scenario, and derive various sorts of new
geometric results based on these tools.

As a first step in this program, we quantify the lack of smooth compactness (via a
blow-up argument) by a finite number of non-trivial, complete, properly embedded
minimal hypersurfaces of finite total curvature Σn ↪→ Rn+1 as in [5], except this time
it is possible that only ‘half’ of Σ is captured at a boundary point of bad convergence.
In order to formalize this picture, let us introduce some terminology: we employ the
word bubble to denote a complete, connected and properly embedded minimal hyper-
surface of finite total curvature in Rn+1; we employ the word half-bubble to denote
a complete, connected, properly embedded minimal hypersurface that is contained
in a half-space and has (non-empty) free boundary with respect to the boundary
of this half-space, and has finite total curvature. In both cases, the total curvature
is understood to be the integral of the n-th power of the length of the second fun-
damental form, the corresponding functional being denoted by A (·). Furthermore,
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624 L. Ambrozio, R. Buzano, A. Carlotto & B. Sharp

we shall say that a (half-)bubble is non-trivial if it is not flat, namely if it is not a
(half-)hyperplane.

Roughly speaking, the blow-up limits one obtains are non-trivial bubbles at interior
points of bad convergence, while at boundary points of bad convergence one may get
either non-trivial bubbles or non-trivial half-bubbles. This assertion is formalized and
expanded in the following two statements, the first one (Theorem 1) collecting the
global outcome and the second one (Theorem 5) describing the local picture.

Theorem 1. — Let 2 6 n 6 6 and (Nn+1, g) be a compact Riemannian manifold with
boundary. For fixed Λ, µ ∈ R>0 and p ∈ N>1, suppose that {Mk} is a sequence in
Mp(Λ, µ). Then there exist a smooth, connected, compact embedded minimal hyper-
surface M ⊂ N meeting ∂N orthogonally along ∂M , m ∈ N and a finite set Y ⊂M
with cardinality |Y | 6 p− 1 such that, up to subsequence, Mk →M locally smoothly
and graphically on M rY with multiplicity m. Moreover there exists a finite number
of non-trivial bubbles or half-bubbles {Σj}Jj=1 with J 6 p− 1 and

A (Mk) −→ mA (M) +

J∑
j=1

A (Σj) (k −→∞).

For k sufficiently large, the hypersurfacesMk of this subsequence are all diffeomorphic
to one another. Finally, if M ∈M then M ∈Mp(Λ, µ).

Remark 2. — Concerning the very last clause, we shall recall that the class Mp(Λ, µ)

(and, more generally, the whole class M) is in general not closed under smooth graph-
ical convergence with multiplicity one: easy examples of non-convex domains in R3

show that the limit of elements in M may be not properly embedded, and in fact
have a large contact set with the boundary of the ambient manifold. Following [3], we
introduce the following general assumption:

(P) if M ⊂ N has zero mean curvature and meets the boundary of the ambient
manifold orthogonally along its own boundary, then it is proper.

For instance, this condition is implied by the geometric requirement that ∂N is
mean convex (i.e., H > 0) and has no minimal components, which is condition (C)

in [3]. If we assume that (Nn+1, g) satisfies assumption (P), then the limitM must be
properly embedded, and thus M ∈Mp(Λ, µ) always holds. Without this assumption,
an improper contact set with ∂N may occur, and even the definition of Morse index
becomes delicate and much less canonical than in the proper case (for a discussion of
the improper case, motivated by min-max constructions, see [22]).

Let us now add some comments on the significance and straightforward geometric
implications of Theorem 1. In ambient dimension three (corresponding to n = 2),
the total curvature of any bubble is an integer multiple of 8π (cf. [37, 38]) and thus
the total curvature of any half-bubble is an integer multiple of 4π: hence Theorem 1
implies that for a sequence of surfaces that eventually satisfy A (Mk) 6 4π − δ for
some δ > 0, the set Y must be empty and the convergence to M is smooth and
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Bubbling analysis for free boundary minimal surfaces 625

graphical everywhere (but possibly with higher multiplicity, which however will not
happen if the limit is two-sided).

As a second direct application, we can prove a uniform bound on the total curva-
ture, and of the Morse index, of any given set Mp(Λ, µ):

Corollary 3. — Let 2 6 n 6 6 and (Nn+1, g) be a compact Riemannian manifold
with boundary. Given Λ, µ ∈ R>0 and p ∈ N>1 there exist:

(1) a constant C = C(p,Λ, µ,N, g) such that the total curvature of any element in
Mp(Λ, µ) is bounded from above by C,

(2) a constant I = I(p,Λ, µ,N, g) such that the Morse index of any element in
Mp(Λ, µ) is bounded from above by I, so that Mp(Λ, µ) ⊂M(Λ, I).

Lastly, a key point in the statement of Theorem 1 is that the topology (in fact: the
diffeomorphism type) of the hypersurfaces in the sequence {Mk} eventually stabilizes.
Following the notation of [3], given two smooth manifoldsM1,M2 (possibly with non-
empty boundary), we write M1 ' M2 if they are diffeomorphic, and for a subset
S ⊂ M we let S/' denote the set of corresponding equivalence classes modulo
diffeomorphisms.

Corollary 4. — Let 2 6 n 6 6 and (Nn+1, g) be a compact Riemannian manifold
with boundary. Given Λ, µ ∈ R>0 and p ∈ N>1 the quotient Mp(Λ, µ)/' is finite.

This is the unconditional, general counterpart of [3, Cor. 7], which was proved to
hold true under suitable geometric assumptions on the ambient manifold, namely
requiring that the Ricci curvature of (N, g) be non-negative and ∂N be strictly con-
vex or that the Ricci curvature of (N, g) be non-negative and ∂N be convex (and
strictly mean convex). The fact that one can get rid of extra hypotheses relies, roughly
speaking, on the fact that we can get a good understanding of the structure of each
hypersurfaceMk near the points where its curvature is large, at least for k big enough.
The last assertion is justified by the aforementioned local description result:

Theorem 5. — With the setup as in Theorem 1, for each y ∈ Y there exist a
finite number of point-scale sequences {(pik, rik)}Jyi=1 where

∑
y∈Y Jy 6 p − 1 with

Mk 3 pik → y, rik → 0, and finite numbers of non-trivial bubbles and half-bubbles
{Σi}

Jy
i=1, such that the following is true.

– For all i 6= j, we have

rik
rjk

+
rjk
rik

+
distg(p

i
k, p

j
k)

rik + rjk
−→∞.

Taking normal coordinates centered at pik, then M̃ i
k := Mk/r

i
k converges locally

smoothly and graphically, away from the origin, to a disjoint union of (half-)hyper-
planes and at least one non-trivial bubble or half-bubble. The convergence to any
non-trivial component of the limit occurs with multiplicity one.

J.É.P. — M., 2019, tome 6



626 L. Ambrozio, R. Buzano, A. Carlotto & B. Sharp

– Given any other sequence Mk 3 qk and %k → 0 with qk → y and

min
i=1,...Jy

(%k
rik

+
rik
%k

+
distg(qk, p

i
k)

%k + rik

)
−→∞,

then taking normal coordinates at qk, M̂k := Mk/%k converges to a collection of
parallel (half-)hyperplanes.
When n = 2, any blow-up limit of M̃ i

k is always connected. The convergence is locally
smooth, and of multiplicity one. Moreover we always have

(∗)
distg(p

i
k, p

j
k)

rik + rjk
−→∞.

Notice that condition (∗) has, in fact, a transparent geometric interpretation: it en-
sures that one can separate the bubble regions, so that in a certain sense there is no
interaction between different regions of high curvature. More precise corollaries of this
fact will be discussed later.

Remark 6. — Thanks to recent work [33] by V. Lima, extending to the free boundary
setting the results by Eijiri-Micallef [13] and Cheng-Tysk [8], we know that (a) a uni-
form bound both on the area and on the topology of a sequence of orientable free
boundary minimal surfaces implies a uniform bound on the Morse index, and (b)
when n > 3 a uniform bound on the area and on the total curvature implies a uniform
bound on the Morse index. It follows that both our main theorems can be rephrased
with those assumptions, instead. Moreover, we note that when n = 2 the theorem by
V. Lima can be regarded as a partial converse to the results in [4], where the Morse
index is proved to be bounded from below by an affine function of the genus and the
number of boundary components of the surface in question, under suitable curvature
conditions on the ambient manifold.

For the rest of this introduction, let us focus on the case of ambient dimension
three. In that case, one can rely on the Gauss-Bonnet theorem, and on the vari-
fold convergence of the boundaries (see Proposition 43 and Corollary 46 for precise
statements) to rewrite the quantization identity in the form

χ(Mk) = mχ(M) +
1

2π

J∑
j=1

∫
Σj

KΣj dH
2,

which holds true, with the setup as in Theorem 1, for all k sufficiently large. Actually,
the second summand on the right-hand side can also be expressed only in terms of
topological data (see Section 2.3 for a detailed discussion), so that we can derive the
formula we will employ in all of our applications:

Corollary 7. — In the setting of Theorem 1, specified to n = 2, we have for all k
sufficiently large

χ(Mk) = mχ(M) +

J∑
j=1

(χ(Σj)− bj),

J.É.P. — M., 2019, tome 6



Bubbling analysis for free boundary minimal surfaces 627

where χ(Σj) denotes the Euler characteristic of Σj and bj denotes the number of its
ends.

This is the starting point for our primary geometric applications. We present three
instances, which are meant to illustrate the method, and leave other possible exten-
sions in the form of remarks.

Here is the first application we wish to discuss: since we can fully classify bubbles
and half-bubbles of Morse index less than two (see Corollary 22 and Corollary 24) we
can then get novel, unconditional, geometric convergence results for sequences of free
boundary minimal surfaces of low index. Furthermore, we can specialize the general
blow-up analysis presented in Theorem 5 to give an accurate description of the possible
degenerations that may occur when the convergence is not smooth everywhere.

Theorem 8. — Let (N3, g) be a compact Riemannian manifold, with non-empty
boundary ∂N . Assume that:

(a) either the scalar curvature of (N, g) is positive and ∂N is mean convex with no
minimal component;

(b) or the scalar curvature of (N, g) is non-negative and ∂N is strictly mean convex.
Then, for any Λ > 0 the following assertions hold:
(1) The class M(Λ, 0) is sequentially compact in the sense of smooth multiplic-

ity one convergence. Similarly, any subclass of M(Λ, 1) of fixed topological type is
sequentially compact, in the sense of smooth multiplicity one convergence, for all
given topological types except those of the disk and of the annulus. In particular, un-
conditional sequential compactness holds for any class of non-orientable surfaces of
given topological type.

(2) Let {Mk} be a sequence of disks (respectively: annuli) in M(Λ, 1). Then:
– either a subsequence converges smoothly, with multiplicity one, to an em-

bedded minimal disk (respectively: annulus) of index at most one,
– or there exists a subsequence converging smoothly, with multiplicity two and

exactly one vertically cut catenoidal half-bubble as per Definition 25 (respec-
tively: exactly one catenoidal bubble), to a properly embedded, free boundary
stable minimal disk. As a result, if N contains no stable, embedded, minimal
disks then strong compactness holds.

All conclusions still hold true without assuming any a priori upper area bound if N
is simply connected and, in case (b), if moreover there is no closed minimal surface
in N .

Similar results can be obtained for sequences whose Morse index is bounded from
above by any given integer k ∈ N, and whose area is also uniformly bounded. On
the other hand, we can also prove strong compactness theorems for sequences of free
boundary minimal surfaces that satisfy certain quantitative lower bounds on either
their area or on the length of their boundaries. Roughly speaking, this relies on the
fact that for 3-manifolds of positive scalar curvature and mean convex boundary we

J.É.P. — M., 2019, tome 6



628 L. Ambrozio, R. Buzano, A. Carlotto & B. Sharp

have area estimates for the possible stable limits, as per Lemma 49, and an effective
multiplicity estimate in terms of the number of ends of the bubbles and half-bubbles
that occur as blow-up models (cf. [1, Prop. 13]).

Theorem 9. — Let (N3, g) be a compact Riemannian manifold, with non-empty
boundary ∂N , and let {Mk} be a sequence in M(Λ, 1) for some Λ > 0.

(1) Assume that the scalar curvature of (N, g) is bounded from below by % > 0 and
∂N is mean convex with no minimal component. If

lim sup
k→∞

H 2(Mk) >
8π

%

then, up to extracting a subsequence, {Mk} converges smoothly to some element of
M(Λ, 1) with multiplicity one.

(2) Assume that the scalar curvature of (N, g) is non-negative and the mean cur-
vature of ∂N is bounded from below by σ > 0. If

lim sup
k→∞

H 1(∂Mk) >
4π

σ

then, up to extracting a subsequence, {Mk} converges smoothly to some element of
M(Λ, 1) with multiplicity one.
All conclusions still hold true without assuming any a priori upper area bound if N
is simply connected and, in case (2), if moreover there is no closed minimal surface
in N .

When considering sequences of free boundary minimal surfaces of bounded index
and area, one may witness some ‘loss of topology’ in the limit: Theorem 1, and in
particular Corollary 7 can further be employed to fully understand and quantify this
loss. Let us focus, for simplicity, on the case where the ambient is orientable and all
free boundary minimal surfaces are orientable as well (which occurs, for instance, in
simply connected Euclidean domains). Given a (half-)bubble Σ we let the constant
δ(Σ) be defined by the equation

χ(Σ) = 2− 2δ(Σ)− b(Σ),

where b(Σ) denotes the number of ends of Σ. Notice that when Σ is a full bubble then
δ(Σ) equals the genus of Σ (cf. equation (2.7)), but this is patently not the case for
half-bubbles: for instance if Σ is a vertically cut half-catenoid (see Definition 25) then
χ(Σ) = 1, b(Σ) = 2 and δ(Σ) = −1/2 (which also shows that δ(·) is not integer-valued,
and may be negative).

Theorem 10. — Let (N3, g) be a compact, orientable Riemannian manifold with non-
empty boundary ∂N . Consider a sequence of orientable, embedded, free boundary min-
imal surfaces {Mk} ⊂Mp(Λ, µ) for some fixed constants Λ ∈ R, µ ∈ R and p ∈ N>1

independent of k, and assume it has an orientable limit M ∈Mp(Λ, µ), in the sense

J.É.P. — M., 2019, tome 6



Bubbling analysis for free boundary minimal surfaces 629

of smooth graphical convergence with multiplicity m > 1 away from a finite set Y of
points. Then for all sufficiently large k ∈ N one has

2m · genus(M) +m · boundaries(M) + 2

J∑
j=1

δ(Σj) 6 2 · genus(Mk) + boundaries(Mk).

The inequality above is strict unless

m = 1 +

J∑
j=1

(bj − 1).

Under assumption (P) the number of non-trivial bubbles plus half-bubbles is at most
m− 1, and if it equals m− 1 then each bubble is a catenoid and each half-bubble is a
vertically cut half-catenoid.

Let us conclude this introduction with a brief description of the structure of the
present article. In Section 2 we present some preliminary results concerning half-
bubbles: after a general discussion relating their Morse indices and topology to those
of their doubles, we employ these facts to derive various classification results of in-
dependent interest. Section 3 and 4 are devoted to the bubbling and neck analysis,
respectively, and lead to a complete proof of Theorem 1 and Theorem 5 above. Lastly,
the global geometric applications are then collected in Section 5.

Acknowledgements. — This project was completed while A. C. was visiting the Math-
ematisches Forschungsinstitut Oberwolfach, and he would like to thank the director
Gerhard Huisken and the staff members for the warm hospitality and excellent work-
ing conditions.

2. Preliminary results on half-bubbles

Let Σn ⊂ Rn+1 be a half-bubble in the sense above. Let us denote by Π1 the closed
half-space bounded by Π that contains the interior of Σ and by Π2 the other closed
half-space bounded by Π. The terminology half-bubble can be justified as follows:
if we reflect Σ across Π in Rn+1 we get a minimal hypersurface without boundary,
which a priori is only C1, but a posteriori is C1,α by means of a standard applica-
tion of De Giorgi-Nash estimates, hence smooth by Schauder theory. Such a minimal
hypersurface shall be denoted by Σ̌ and be referred to as the double of Σ.

In relation to the geometric applications we are about to present, we need to
compare the Morse index of Σ (as a free boundary minimal surface, thus with suitable
boundary conditions) and the Morse index of Σ̌. In fact, our results will follow as a
specification of a more general discussion.

2.1. Schrödinger-type operators on involutive manifolds. — Let (Σ̌n, g) be a com-
plete Riemannian manifold, without boundary (in Section 2.2 we will then specify our
discussion to the ambient manifold Σ̌ presented in the previous paragraph, namely

J.É.P. — M., 2019, tome 6



630 L. Ambrozio, R. Buzano, A. Carlotto & B. Sharp

a bubble with its induced metric). Suppose there exists a Riemannian involution
τ : (Σ̌, g)→ (Σ̌, g), namely a smooth isometry satisfying the two conditions:

τ ◦ τ = id, τ 6= id .

Given a linear functional space X consisting of functions defined on (Σ̌, g) let us
then introduce the subspaces of even and odd functions with respect to the action
of τ :

XE = {ϕ ∈ X : ϕ ◦ τ = ϕ} , XO = {ϕ ∈ X : ϕ ◦ τ = −ϕ} .
In particular, notice that

C∞ = C∞E ⊕ C∞O .

This direct sum is orthogonal in L2 when restricted to the subspace of smooth, com-
pactly supported functions. In fact, we have

L2 = L2
E ⊕⊥ L2

O .

Given a function V ∈ C∞E we wish to study a Schrödinger-type operator of the form

TV ϕ = ∆gϕ+ V ϕ,

together with the associated quadratic form

QV (ϕ,ϕ) = −
∫

Σ̌

ϕTV ϕdH
n =

∫
Σ̌

(|∇ϕ|2 − V ϕ2) dH n,

which a priori is defined on the set of smooth, compactly supported functions.

Definition 11. — In the setting above, we define

Ind(QV ), IndE (QV ), IndO(QV )

as the largest dimension of a linear subspace of

C∞c , (C∞c )E , (C∞c )O

respectively, where the quadratic form QV is negative definite.

Thereby, the following inequality is straightforward:

Lemma 12. — In the setting above,

Ind(QV ) > IndE (QV ) + IndO(QV )

and
Ind(QV ) = 0 ⇐⇒ IndE (QV ) = 0 and IndO(QV ) = 0.

Proof. — Since V is even and τ is an isometry, it is immediate to check that the
operator TV preserves the decomposition of C∞ into even and odd functions. Thus,
if ϕE ∈ (C∞c )E and ϕO ∈ (C∞c )O then

(2.1) QV (ϕE , ϕO) = 0,

and hence, by bilinearity, given any ϕ ∈ C∞c and writing ϕ = ϕE + ϕO one has

QV (ϕ,ϕ) = QV (ϕE , ϕE ) +QV (ϕO , ϕO),

which easily implies the claims. �
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In fact, we claim that the inequality above is actually an equality. With that goal
in mind, we restrict to the case of finite Morse index and recall a simple but useful
result:

Proposition 13 (cf. [14, Prop. 2]). — In the setting above, the following two state-
ments are equivalent:

(1) the index of the quadratic form QV is finite;
(2) there exists a finite dimensional subspace W of L2 having an orthonormal basis

ϕ1, . . . , ϕk consisting of eigenfunctions of TV with eigenvalues λ1, . . . , λk respectively.
Each λi is negative and QV (ϕ,ϕ) > 0 whenever ϕ ∈ C∞c ∩W⊥. In this case k equals
the Morse index of QV .

Remark 14. — If V is assumed to be bounded, then the basis provided in Proposi-
tion 13 actually consists of elements of finite Dirichlet energy, i.e., functions belonging
to W 1,2, the closure of C∞c with respect to the Sobolev norm determined by

(2.2) ‖ϕ‖2W 1,2 := ‖ϕ‖2L2 + ‖∇ϕ‖2L2 .

Based on this fact and in view of the geometric applications we wish to present,
we assume from now onwards that the function V ∈ C∞E is uniformly bounded.

It is convenient to introduce the relevant notion of (point) spectrum in this setting.

Definition 15. — In the setting above, we define

spec(QV ) :=
{
critical values of the map ϕ ∈W 1,2 r {0} 7→ QV (ϕ,ϕ)

‖ϕ‖2L2

}
;

specE (QV ) :=
{
critical values of the map ϕ ∈ (W 1,2)E r {0} 7→ QV (ϕ,ϕ)

‖ϕ‖2L2

}
;

specO(QV ) :=
{
critical values of the map ϕ ∈ (W 1,2)O r {0} 7→ QV (ϕ,ϕ)

‖ϕ‖2L2

}
.

To avoid ambiguities: λ ∈ spec(QV ) if and only if we can find an associated critical
point ϕ ∈W 1,2 r {0}, which satisfies

(2.3)
∫

Σ̌

(∇ϕ · ∇ζ − V ϕζ) dH n = λ

∫
Σ̌

ϕζ dH n, ∀ ζ ∈ C∞c ,

whence it is standard to get that ϕ is actually smooth and solves, in a classical sense,
the eigenvalue equation

∆gϕ+ V ϕ+ λϕ = 0

which also implies that ∆gϕ ∈ L2.
Similar arguments can be applied to the other two cases as well, with an important

caveat. By definition, we have λ ∈ specE (QV ) (respectively λ ∈ specO(QV )) if equa-
tion (2.3) is satisfied for every even (respectively odd) test function ζ ∈ C∞c . However,
we also have by symmetry arguments (cf. equation (2.1)) that the same equation is
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satisfied for every odd (respectively even) test function, and hence for any ζ ∈ C∞c
(in either of the two cases). Therefore, we shall actually conclude

λ ∈ specE (QV ) ⇐⇒ ∃ϕ ∈ C∞E r {0} such that ∆gϕ+ V ϕ+ λϕ = 0,

and

λ ∈ specO(QV ) ⇐⇒ ∃ϕ ∈ C∞O r {0} such that ∆gϕ+ V ϕ+ λϕ = 0.

Lemma 16. — In the setting above,

spec(QV ) = specE (QV ) ∪ specO(QV ).

Moreover, under the assumption that the operator TV has finite Morse index on (Σ̌, g),
we have

Ind(QV ) = IndE (QV ) + IndO(QV ).

Proof. — For the first claim, notice that the inclusion ⊇ is obvious so let us discuss
the other one. Let then λ ∈ spec(QV ) and write ϕ = ϕE +ϕO (the L2 decomposition
of an associated eigenfunction into even and odd parts), thus by linearity

0 = ∆gϕ+ V ϕ+ λϕ = (∆gϕE + V ϕE + λϕE )︸ ︷︷ ︸
∈L2

E

+ (∆gϕO + V ϕO + λϕO)︸ ︷︷ ︸
∈L2

O

hence each of the two summands must vanish and thus (since either ϕE 6= 0 or ϕO 6= 0)
we get λ ∈ specE (QV ) or λ ∈ specO(QV ) as it was claimed.

For the second part, recall that by Proposition 13 there exist (under the assumption
that TV has finite Morse index) finitely many (say k) eigenfunctions ϕ1, . . . , ϕk ∈ L2

that correspond to the negative eigenvalues λ1, . . . , λk (where it is understood that
each eigenvalue can be repeated if it comes with multiplicity). Following the argument
we just presented, replace each ϕj by means of the couple ϕjE , ϕ

j
O and set

V = spanR
{
ϕ1, . . . , ϕk

}
, Ṽ = spanR

{
ϕ1

E , ϕ
1
O , . . . , ϕ

k
E , ϕ

k
O

}
.

Now, since ϕj = ϕjE + ϕjO for any j ∈ {1, . . . , k} we have

dimR(Ṽ ) > k

and thus there are at least k functions in the collection
{
ϕ1

E , ϕ
1
O , . . . , ϕ

k
E , ϕ

k
O

}
which

are not zero, and eigenfunctions either for specE (QV ) or for specO(QV ), with negative
eigenvalues. Thereby, the inequality one gets, combined together with Lemma 12,
enables us to complete the proof. �

2.2. The Morse index of half-bubbles. — The discussion presented in the previous
section directly applies, as a special case, to the study of the Jacobi operator that
is associated to the symmetrized complete minimal hypersurface that is obtained by
reflecting a half-bubble.

Given a half-bubble Σ we define, in analogy with Definition 11 above, its Morse
index considering the Jacobi form

Q|A|2(u, u) :=

∫
Σ

(|∇u|2 − |A|2u2) dH n.
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More precisely, we give the following:

Definition 17. — In the setting above, we define index(Σ) to be the largest dimension
of a linear subspace of C∞c (Σ) where Q|A|2 is negative definite.

Notice that here the support of ϕ ∈ C∞c (Σ) can intersect ∂Σ, so that we are imposing
no condition along ∂Σ, and index(Σ) is the (standard) Morse index of Σ as a free
boundary minimal hypersurface.

Lemma 18. — A two-dimensional half-bubble has finite Morse index and this equals
IndE (Q|Ǎ|2) where Σ̌ is the double of Σ. The same conclusion holds true in all di-
mensions for any half-bubble Σ having Euclidean volume growth, meaning that there
exists a constant C = C(Σ) such that H n(Σ ∩BR(0)) 6 CRn for all R > 0.

Proof. — The argument for the first part (n = 2) goes as follows: by definition Σ

has finite total curvature, so its double Σ̌ will also have finite total curvature, hence
finite Morse index (again by [14]); thus Lemma 12 implies that the corresponding
even Morse index (that is to say: the Morse index on even test functions, as per
Definition 11) is also finite. Now, going back to the definitions it is clear that by
restriction index(Σ) > IndE (Q|Ǎ|2).

For the converse inequality, we argue by contradiction as follows. If it were
index(Σ) > IndE (Q|Ǎ|2), we could consider a basis

{
ϕ1, . . . , ϕI

}
for a subspace of

C∞c (Σ), having dimension equal to I := IndE (Q|Ǎ|2) + 1, where Q|A|2 is negative
definite. If we extend each function by even symmetry, we obtain a family of even
functions

{
ϕ̌1, . . . ϕ̌I

}
where the Jacobi form of Σ̌ is negative definite; each function is

smooth away from ∂Σ and we can consider for each i ∈ {1, . . . , I} an approximating
sequence of smooth functions

{
ϕ̌ik
}
that also have compact support, and such that

ϕ̌ik → ϕ̌i uniformly as one lets k → ∞. We claim that for any k large enough the
family

{
ϕ̌1
k, . . . ϕ̌

I
k

}
is linearly independent, which would then violate the definition

of IndE (Q|Ǎ|2) and conclude the proof. If the claim were false, we could write down
(for every k ∈ N) a linear equation of the form∑

i

aikϕ̌
i
k = 0, where

∑
i

(aik)2 = 1,

whence passing to the limit for k → ∞, we end up finding a (non-trivial) linear
relation involving

{
ϕ1, . . . , ϕI

}
, that is impossible since this family of functions was

chosen to be a basis. In higher dimensions, one can follow the same argument modulo
invoking the main theorem of J. Tysk in [45]. �

We can instead consider the Morse index of Σ with Dirichlet boundary conditions:

Definition 19. — In the setting above, we define index•(Σ) to be the largest dimen-
sion of a linear subspace of C∞c (Σ̊) where Q|A|2 is negative definite.

Here Σ̊ := Σ r ∂Σ is the interior of Σ, and so this is the standard notion of Morse
index for minimal surfaces with respect to variations that fix the boundary. Following
the same conceptual scheme as above, we have the following ancillary result:
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Lemma 20. — A two-dimensional half-bubble has finite Morse index with Dirichlet
boundary conditions and this equals IndO(Q|Ǎ|2), where Σ̌ is the double of Σ.
The same conclusion holds true in all dimensions for any half-bubble Σ having
Euclidean volume growth, meaning that there exists a constant C = C(Σ) such that
H n(Σ ∩BR(0)) 6 CRn for all R > 0.

Proof. — Arguing as for the lemma above, let us focus on n = 2. When Σ is a two-
dimensional half-bubble, the finiteness of index•(Σ) 6 index(Σ) follows straight from
Lemma 18. That being said, it is clear that we also have the inequality index•(Σ) 6
IndO(Q|Ǎ|2) by odd extension. The converse inequality relies instead on the fact that
odd functions must vanish along ∂Σ = Fix(τ) so that one can consider a linearly
independent set of IndO(Q|Ǎ|2) elements spanning a subspace on which Q|Ǎ|2 < 0,
restrict each such function to Σ and then truncate using a compactly supported cutoff
function. We omit the standard details. �

Based on Lemma 18 and 20 one can rephrase the inequality index•(Σ)6 index(Σ) as

(2.4) IndE (Q|Ǎ|2) > IndO(Q|Ǎ|2),

hence, using the second part of Lemma 16, we get the estimate

(2.5) 2 IndO(Q|Ǎ|2) 6 Ind(Q|Ǎ|2) 6 2 IndE (Q|Ǎ|2).

From there, we can derive some interesting characterizations for the cases when the
Morse index of Σ̌ (which is, in our notation, Ind(Q|Ǎ|2)) equals 0, 1 or 2:

Corollary 21. — In the setting above, we have

Ind(Q|Ǎ|2) = 0 ⇐⇒ IndE (Q|Ǎ|2) = 0 and IndO(Q|Ǎ|2) = 0;(1)
Ind(Q|Ǎ|2) = 1 ⇐⇒ IndE (Q|Ǎ|2) = 1 and IndO(Q|Ǎ|2) = 0;(2)

Ind(Q|Ǎ|2) = 2 ⇐⇒

{
IndE (Q|Ǎ|2) = 2 and IndO(Q|Ǎ|2) = 0 or
IndE (Q|Ǎ|2) = 1 and IndO(Q|Ǎ|2) = 1.

(3)

So far our discussion is applicable to hypersurfaces of dimension n > 2, and we
shall now specify them to the special case n = 2 where some interesting consequences
can be drawn. Indeed, we can turn classification results for complete minimal surfaces
in R3 into classification results for free boundary minimal hypersurfaces contained in
a half-space. The first one is a Bernstein-type theorem for half-bubbles:

Corollary 22. — A two-dimensional, stable half-bubble is isometric to a half-plane.

Proof. — It suffices to combine Part (1) of Corollary 21, inequality (2.4) and the
characterization of stable minimal surfaces in R3 (see [6, 15, 39]). �

Remark 23. — In fact, the stability estimates by Schoen-Simon allow to obtain a
higher-dimensional counterpart of the previous result: Let Σn ⊂ Rn+1, 2 6 n 6 6 be
a half-bubble. If Σ is stable and has Euclidean volume growth, then Σ is a hyperplane.
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Similarly, we get a simple result in the index one case:

Corollary 24. — A two-dimensional, index one half-bubble is isometric to a half-
catenoid.

Proof. — It suffices to combine inequality (2.4), parts (2) and (3) of Corollary 21, the
characterization of index one minimal surfaces in R3, see [34], and the non-existence
result for index two complete minimal surfaces in R3, see [9]. �

In fact, inspired by recent work of Chodosh-Maximo [9] we may wonder whether
there exist two-dimensional half-bubbles whose Morse index equals two. Obviously,
a negative result would follow by proving that a half-bubble of Morse index 2 has
vanishing Morse index with Dirichlet boundary conditions. Yet, this does not directly
follow from the results above.

2.3. Geometry of half-bubbles. — Let us discuss now some basic facts about the
geometry and topology of half-bubbles. First of all, keeping in mind the quantization
identity presented in Theorem 1, we wish to express the total curvature of a half-
bubble in terms of its topology. Clearly, in ambient dimension three (n = 2) we can
apply the Gauss equations to get

(2.6) 2A (Σ) = A (Σ̌) = −2

∫
Σ̌

KΣ̌ dH
2,

while by Gauss-Bonnet (cf. Jorge-Meeks [24]), denoting by γ(Σ̌) the genus of Σ̌ and
by b(Σ̌) the number of its ends, we have

(2.7)
∫

Σ̌

KΣ̌ dH
2 = 2π(χ(Σ̌)− b(Σ̌)) = 2π(2− 2γ(Σ̌)− 2b(Σ̌)).

It is then important to relate such data to the topological data of the half-bubble Σ.
There are two easy examples of half-bubbles to be kept in mind throughout the follow-
ing discussion, which we will prove in Lemma 29 to be, roughly speaking, prototypical.

Definition 25. — In the flat Euclidean space R3 we introduce the following termi-
nology:

– the half-catenoid given by{
(x1, x2, x3) ∈ R3 : (x3)2 = cosh((x1)2 + (x2)2), x3 > 0

}
will be called horizontally cut half-catenoid;

– the half-catenoid given by{
(x1, x2, x3) ∈ R3 : (x3)2 = cosh((x1)2 + (x2)2), x1 > 0

}
will be called vertically cut half-catenoid.

Before proceeding further, it is helpful to recall some information about the as-
ymptotic structure of complete minimal surfaces in R3.

Remark 26. — Let S be a complete, embedded minimal surface of R3. Then:
– S has finite total curvature if and only if it has finite Morse index (cf. [14]);
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– if S satisfies either of these two equivalent assumptions then it is regular at
infinity (cf. [42]), namely it can be decomposed, outside any sufficiently large compact
set, into a finite number of connected components (named ends) and each such end
can be described as a graph (over a plane in R3) of a defining function having an
expansion of the form

u(x′) = a log |x′|+ b+
c1x

1

|x|2
+
c2x

2

|x|2
+O(|x′|−2), |x′| −→ ∞

in suitable coordinates x = (x1, x2, x3), where x′ = (x1, x2).
Notice that if Σ is a half-bubble then both facts apply to its double Σ̌ and hence,
a posteriori, one can talk about the ends of a half-bubble and this notion is well-
defined. Furthermore, each end of a half-bubble will have a precise asymptotic de-
scription of the type above.

Remark 27. — We can somewhat strengthen Lemma 18 and extend to half-bubbles
the aforementioned equivalence result by Fischer-Colbrie:

Proposition 28. — A two-dimensional half-bubble has finite index if and only if it
has finite total curvature. The same conclusion holds true in all dimensions provided
Euclidean volume growth is assumed.

One of the two implications has been proved above in Lemma 18, while the other
follows by combining Lemma 16 and the inequalities in (2.5).

Let us now proceed in our discussion, relating all half-bubbles to one of the two
models given in Definition 25.

Lemma 29. — Let Σ be a half-bubble and let Σ̌ denote its double in R3. Then one of
the following two alternative cases occurs:

(1) the number of ends of Σ̌ equals double the number of ends of Σ, and their Euler
characteristics are related by the equation

χ(Σ̌) = 2χ(Σ);

(2) the number of ends of Σ̌ equals the number of ends of Σ, and their Euler
characteristics are related by the equation

χ(Σ̌) = 2χ(Σ)− b(Σ).

In either case, one has that χ(Σ̌)− b(Σ̌) = 2(χ(Σ)− b(Σ)).

Clearly, both cases do occur: (1) is exemplified by the horizontally cut half-catenoid,
while (2) is exemplified by the vertically cut half-catenoid.

Proof. — Based on Remark 26 applied to the symmetrized bubble Σ̌ we have that
either each of its ends is contained in one of the half-spaces Π1 and Π2 (provided we
remove from Σ̌ a sufficiently large ball centered at the origin) or instead all of them
intersect Π. By symmetry, it is clear that in the first case the number of ends of Σ̌

equals double the number of ends of Σ and we can justify the equation for the Euler
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characteristic using the Gauss-Bonnet theorem: since Σ is assumed to have finite total
curvature we can write for Σr := Σ ∩ {|x| 6 r}∫

Σ

KΣ dH
2 = lim

r→∞

∫
Σr

KΣ dH
2

and we can compute the limit on the right-hand side along a sequence of generic radii
{ri}, so that the intersection Σ∩{|x| = ri} is transverse and thus consisting of finitely
many, smooth closed curves, hence∫

Σri

KΣ dH
2 = 2πχ(Σ)− 2πb(Σ) + o(1)

(where we have used the fact that the geodesic curvature of ∂Σ ⊂ Σ is zero at all
points). Thus the conclusion comes straight from combining this equation with (2.6)
and (2.7). This is the scenario corresponding to case (1).

If instead all ends of Σ̌ intersect the plane Π then we are in case (2) and the claim
concerning χ(Σ̌) comes, once again, by an elementary computation: this time we have,
along a sequence of generic radii∫

Σri

KΣ dH
2 = 2πχ(Σ)− πb(Σ)− πb(Σ) + o(1)

by keeping the contributions of both the geodesic curvature and of the exterior angles
(at the non-smooth points of Σr) into account. In that respect, notice that there are
exactly 2b(Σ) exterior angles, each of them being π/2 + o(1) as i→∞. Thereby, the
conclusion follows. �

We can extend to half-bubbles some further classification results that are well-
known for complete minimal surfaces in R3. This discussion parallels the one presented
in the previous subsection, which was based on index-theoretic criteria instead.

Corollary 30. — A two-dimensional half-bubble with one end is isometric to either
a half-plane or to a horizontally cut half-catenoid.

Proof. — Denoted by Σ the half-bubble in question and Σ̌ its double, Lemma 29
implies that either Σ and Σ̌ have the same number of ends (one) or Σ̌ will have
two ends. By classical results of Schoen (see [42]) the first case happens if and only
if Σ̌ is a plane, and the second if Σ̌ is a catenoid. The conclusion in the former case
is straightforward, so let us discuss the latter. The only way Σ has exactly one end
(which we are assuming) is that it is cut with a plane that is parallel to its two ends.
But then the only way such a cut gives rise to a free boundary minimal surface is
when the plane in question passes through the center of the catenoid, which proves
the claim. �

Corollary 31. — A two-dimensional half-bubble whose Euler characteristic equals
one is isometric to either a half-plane or to a vertically cut half-catenoid.
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Proof. — Like we did above, we need to consider two cases and apply the equations
provided by Lemma 29 for the Euler characteristics. If we are in case (1), the sym-
metrized bubble Σ̌ satisfies χ(Σ̌) = 2 and this is not possible because the standard
Jorge-Meeks formula for the Euler characteristic (cf. the second equality in (2.7))
forces χ(Σ̌) 6 1. Instead, in case (2) we would get that the bubble Σ̌ has genus zero,
which allows to invoke [35]: Σ̌ is either a plane or a catenoid. At this stage, the conclu-
sion comes at once by considering all possible planes of symmetry of a catenoid. �

3. Bubbling analysis

In this section, we prove Theorem 5 and in Section 4 we complete the proof of
Theorem 1. Before we begin either of these proofs notice that given y ∈ Y r ∂N the
bubbling and neck analysis in [5] goes through precisely as before since it is of a local
nature. In particular the conclusions of Theorems 1 and 5 hold over smooth domains
U b N r∂N such that Y ∩∂U = ∅ and y ∈ Y r∂N respectively, which implies that
the proofs of both of these theorems is complete in the case that Y ∩ ∂N is empty.
We need only focus on the setting y ∈ Y ∩ ∂N from now on.

Our main result here is a blow-up theorem (Theorem 33 below) which will detect a
non-trivial bubble or half-bubble in all regions of coalescing index at ∂N . This result
is based on a localized version of the compactness result for free boundary minimal
hypersurfaces from [3]. Once we have proved Theorem 33, we can then follow a scheme
related to the bubbling analysis for closed minimal hypersurfaces developed in [5, §3]
to construct various point-scale sequences which will detect all the non-trivial bubbles
and half-bubbles that develop at points of curvature concentration on ∂N , yielding
Theorem 5.

In order to obtain the quantization result in Theorem 1 from our proof of Theo-
rem 5, it remains to show that no curvature is lost in annular neck regions between
the bubble scales. This last step will be carried out in Section 4.

In order to state our results in a unified manner, we will use the following notation
and conventions throughout. Consistently with Section 2 denote by Π1(a) := {x1 > a}
a closed half-space of Rn+1 containing the origin and by Π(a) its boundary (though
we drop the dependence on a when it is irrelevant). We will consider a relatively open
sub-domain CRn+1

% (a) ⊂ Π1, defined by CRn+1

% (a) = [a, a+ %)×BRn
% (0). We will allow

% =∞ in the sequel at which point the domain is simply Π1(a). Now equip CRn+1

% with
a smooth metric g such that it is Euclidean at (a, 0, . . . , 0) and for all z ∈ CRn+1

% ∩Π,
∂x1(z) is the inward unit normal to Π with respect to g. We say that (CRn+1

% , g) is an
adapted domain and in the sequel we will allow the parameters % and g to vary under
these constraints, and a will largely remain fixed.

Such domains (CRn+1

% , g) can be used to analyze local properties of free boundary
minimal hypersurfaces in arbitrary N without loss of generality via the use of a Fermi-
coordinate neighborhood at the boundary of N : Let −ν be the inward pointing normal
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to ∂N and γ1(N) > 0 be so that

F : [0, γ)× ∂N −→ N

(t, z) 7−→ ExpNz (−tν)

is injective for t ∈ [0, γ1).
Consider a normal coordinate neighborhood of q in ∂N , {xi}n+1

i=2 . For ease of nota-
tion, we will now choose γ0(N) > 0 to be smaller than both γ1 defined above, and
the injectivity radius of ∂N so that, first of all, these boundary normal coordinates
are defined on B∂Nγ (q) for any q ∈ ∂N and γ 6 γ0. Second of all, for all q ∈ ∂N

and γ 6 γ0, we may now extend these to a Fermi-coordinate neighborhood Cγ(q) ∼=
[a, a+ γ)×BRn

γ (0) via the exponential map giving x1 = a+ ExpN(0,x2,...,xn+1)(−tν) for
0 6 t < γ.

Notice that the metric g in these coordinates coincides with the Euclidean metric
at (a, 0, . . . , 0). Moreover ∂x1(z) = −ν(z), in particular g1j(z) = 0, for all z ∈ ∂N =

{x1 = a} and j > 2. In particular Cγ(q) ∼= CRn+1

γ (a) is an adapted domain.
For V ⊂ (CRn+1

% , g) consider the set MV (which shall depend on both CRn+1

% and
the background metric g) of smooth, connected and properly embedded minimal hy-
persurfaces P ⊂ V , furthermore requiring that if P ∩Π 6= ∅ then P is free boundary
with respect to Π. At the level of regularity, we always tacitly assume V to be the
intersection of a smooth domain in Rn+1 with Π1. Any variational properties of P are
computed with respect to compactly supported variations in V — i.e., free bound-
ary variations on V ∩ Π as well as Dirichlet conditions on ∂V r Π. Following our
introduction, we define

MV
p (Λ, µ)

=
{
P ∈MV : ∀x ∈ CRn+1

% , R > 0, H n(P ∩BRn+1

R (x)) 6 ΛRn, and λp(P ) > −µ
}
.

We recall from [3, Th. 29] that if 2 6 n 6 6 and {Mk} ⊂ Mp(Λ, µ) ⊂ M then
there exists a smooth, connected, compact embedded minimal hypersurface M ⊂ N

meeting ∂N orthogonally along ∂M , m ∈ N and a finite set Y ⊂M with cardinality
|Y | 6 p− 1 such that, up to subsequence, Mk →M locally smoothly and graphically
on M r Y with multiplicity m. To avoid ambiguities, let us remark that from now
on we will always assume that Y is the minimal such set, so that in particular the
convergence is never smooth about any y ∈ Y .

We will require the following local version of that compactness theorem.

Lemma 32. — Let 2 6 n 6 6 and {(Ck, gk)} be a sequence of adapted domains where
we set Ck = CRn+1

%k
(a) with {%k} monotonically increasing, and choose ε > 0 small

enough that BRn+1

ε (0) b C1. We will assume that gk → g smoothly for some limit
metric g on any relatively open subset V b Ck. Suppose we have a sequence Pk ∈
MCk
p (Λ, µ) (for some fixed constants Λ, µ ∈ R>0 and a positive integer p independent

of k) such that Pk ∩BRn+1

ε (0) 6= ∅. Then, up to subsequence:
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(1) For any relatively open V such that BRn+1

ε (0) ⊂ V b Ck for some k, there
exists a smooth, connected, and embedded minimal hypersurface P ⊂ V where Pk → P

locally smoothly and graphically, with multiplicity m ∈ N, for all x ∈ P r Y , where
Y ⊂ P is a finite set with cardinality |Y | 6 p− 1.

If ∂P 6= ∅, then P meets Π orthogonally along ∂P and if P ∈ MV , then P ∈
MV
p (Λ, µ).
Finally, Y 6= ∅ if and only if there exists {yk} ⊂ V with yk → y ∈ P , and rk → 0

so that index(Pk ∩BRn+1

rk
(yk)) > 1. In either case we say that y ∈ Y .

(2) Assuming that %k →∞, then there exists a limit M which is a smooth, embed-
ded minimal hypersurface in (Π1, g). If we additionally assume lim infk→∞ λp(Pk)>0,
then P ∈MΠ1 implies P ∈MΠ1(Λ, p− 1).

Further, assuming g = g0 is the Euclidean metric, then P is either a bubble or a
half-bubble; if P is not properly embedded, then P ≡ Π.

Finally, if Y 6= ∅, then P must be a plane in Π1 or a half-plane orthogonal to Π.

Proof. — Part (1): All the steps in the proof of [3, Th. 29] are local, hence can be
adopted almost verbatim with only some cosmetic changes to conclude all but the
final statement concerning the equivalent characterization of the condition Y 6= ∅.
To prove that assertion, let us first observe that since P is smooth and V is compact
we can pick r > 0 so that P ∩ BRn+1

r (z) ∩ V is strictly stable for all z ∈ P . Thus, if
Y = ∅ then the convergence would be smooth everywhere, hence in particular for k
large enough each hypersurface Pk would be stable in all balls of radius r/2 centered
at points in V (as defined above) by smooth convergence. Hence no sequence as in
the statement can actually exist. Instead, for the converse implication one just needs
to invoke the interior and free boundary curvature estimates of Schoen-Simon [41]
(cf. [3, Th. 19]).

Part (2): We can apply Part (1) to some compact exhaustion {V`} of Π1 to conclude
the first statement via a diagonal sequence argument.

If P is proper, i.e., P ∈MΠ1 , then by Part (1) P ∈MV
p (Λ, µ) for all V ⊂ Π1. We

now check that in this case in fact index(P ) 6 p−1. Assuming the contrary guarantees
the existence of a set V with λp(P ∩V ) = α < 0 and therefore, following the argument
in [2, p. 2599–2600], we find that eventually λp(Pk ∩ V ) 6 α/2, contradicting the
assumption that lim infk→∞ λp(Pk) > 0.

If g = g0 is the Euclidean metric, then we distinguish two cases. If P is proper, then
exploiting the assumption of Euclidean volume growth, we conclude by Proposition 28
that it has finite total curvature. If on the other hand P is not proper, i.e., an interior
point of P lies in Π, then by a maximum principle argument P = Π, and therefore P
trivially has finite total curvature.

Finally, if Y 6= ∅ then we may as well assume that P is properly embedded (if not
then P = Π and we are done). Since P is properly embedded and Π1 is simply
connected, P is two-sided. When we couple this with the lack of smooth convergence,
we conclude that the convergence must be of multiplicity m > 2 (via Allard’s interior
and boundary regularity cf. [3, Ths. 5, 17]) which allows for the construction of a
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positive Jacobi field over compact subsets W b Π1 (not necessarily vanishing at the
boundary of W ). In turn, this implies that λ1(P ∩W ) > 0 and the limit is stable
over all such W (here we use the standard argument to establish the positiveness
of a first eigenfunction, noting that both an interior and boundary Hopf maximum
principle will be required); hence P is stable in Π1. The conclusion follows by the
usual classification of stable hypersurfaces with Euclidean volume growth when P

has no boundary [41], and Remark 23 when P has a free boundary on Π. �

We can now establish the first main result of this section as a consequence of the
above statement as well as the localized compactness theory developed in [5, §2] for
the case of closed hypersurfaces.

We have already seen in Lemma 32 that bad points of convergence y ∈ Y corre-
spond to coalescing regions of index, so these are the points that we analyze in detail
here. We will denote by Br(p) a normal coordinate neighborhood of p ∈ N and by
Cr(q) a Fermi-coordinate neighborhood of q ∈ ∂N .

Theorem 33. — Let {Mk} ⊂ Mp(Λ, µ) ⊂ M so that (up to subsequence) Mk → M

for M as in [3, Th. 29] and choose δ > 0 so that

2δ < min
{

inf
yi 6=yj∈Y

distg(yi, yj), injN , γ0

}
.

Assume the existence of sequences {%k}, {rk} ⊂ R>0 satisfying rk → 0, %k 6 δ,
%k/rk → ∞ and {pk ∈ Mk} with pk → y ∈ ∂N . We assume furthermore that Pk is
some connected component of Mk ∩B%k(pk) and it satisfies

– Pk ∩Brk+(rk)2(pk) is unstable for all k,
– Pk ∩Brk/2(z) is stable for all z ∈ Pk ∩B%k(pk).
After possibly passing to a further subsequence, we are in one of the following cases:

Case I: distg(pk, ∂N)/rk → ∞. — Choose normal coordinates for N centered at pk
on the geodesic balls B%k(pk) and consider the rescaled hypersurfaces P̃k ⊂ BRn+1

%k/rk
(0)

defined by
P̃k :=

1

rk

(
Pk ∩B%k(pk)− pk

)
.

Then P̃k must converge smoothly on any compact set with multiplicity one to a non-
trivial bubble Σ ⊂ Rn+1 with Σ ∩BRn+1

3/2 (0) unstable.
Case II: distg(pk, ∂N)/rk → c > 0. — Let qk ∈ ∂N be so that distg(qk, pk) =

distg(pk, ∂N) and sk a point on the geodesic connecting qk to pk which is a dis-
tance crk from qk. Choose a Fermi-coordinate neighborhood (so that a = −c) C%k(qk)

and consider the rescaled hypersurfaces P̃k ⊂ CRn+1

%k/rk
(−c) defined by

P̃k :=
1

rk

(
Pk ∩ C%k(qk)− sk

)
.

In this case P̃k must converge smoothly on any compact set with multiplicity one to
either a full or half-bubble Σ ⊂ Π1(−c), non-trivial in both cases, with Σ ∩BRn+1

3/2 (0)

unstable. In the case that n = 2, Σ must be a non-trivial half-bubble.
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Moreover, in each of the above cases, we must have λ1(Pk ∩ (B2rk(pk)))→ −∞.
Finally, suppose that there is another point-scale sequence (p̂k, r̂k) with r̂k > rk for

all k and such that
– Pk ∩ (Br̂k+(r̂k)2(p̂k) rB2rk(pk)) is unstable for all k,
– there exists some C <∞ with Br̂k(p̂k) ⊂ BCrk(pk) for all k,

then we also have λ1(Pk ∩ (B2r̂k(p̂k) rB2rk(pk)))→ −∞.

Remark 34. — Suppose that we are in the setting of Case II, and consider B%k(pk)∩
C%k(qk). Letting Φk : B%k(pk) → BRn+1

%k/rk
(0) and Ψk : C%k(qk) → CRn+1

%k/rk
(−c) denote

the blown-up normal and Fermi-coordinates respectively, one can easily check that

Φk ◦Ψ−1
k : Ψk(B%k(pk) ∩ C%k(qk)) −→ Φk(B%k(pk) ∩ C%k(qk))

converges locally smoothly on Π1 to the identity as k → ∞. Therefore the resulting
blow-up and conclusions in Case II can actually be taken exactly as in Case I with
respect to normal coordinates centered at pk, or indeed as stated in the Theorem.

Remark 35. — Referring to the statement above, we further note that in these coor-
dinates geodesic balls in N , Br(p), are directly comparable to Euclidean balls: for any
T > 0 there exists a sequence {βk(T )} with βk(T ) ↘ 1 so that for all p ∈ BTrk(sk),
if we denote p̃ ∈ CRn+1

T (−c) the point corresponding to p in these rescaled coordinates
then, by abusing notation,

BRn+1

rβ−1
k

(p̃) ⊂ Br(p) ⊂ BRn+1

rβk
(p̃).

This equivalence will be exploited along the course of the following proof when trans-
ferring certain variational properties (typically: eigenvalue bounds) back and forth
between geodesic balls and coordinate balls. As it is well-known, the same equiva-
lence holds true in geodesic normal coordinates as well.

Proof. — Case I: We can follow the arguments exactly as in [5, Cor. 2.6] to conclude
all the statements of the theorem.

Case II: In these Fermi-coordinates, we are now in a position to apply Lemma 32
and it remains to check that the limit P is in fact a non-trivial (namely: it is not
flat) and that the final statement of the theorem, concerning the point-scale sequence
(p̂k, r̂k), also holds.

Concerning the first assertion, observe that by Lemma 32 it suffices to check that P
is not stable. We have Y = ∅ since P̃k is stable on all balls of radius 1/4 (by virtue
of our assumption), hence P̃k converges smoothly and graphically on every compact
subset of Π1 to a connected minimal hypersurface P and if ∂P 6= ∅ then P meets Π

orthogonally. Furthermore either P is properly embedded or P = Π. As the ambient
space is simply connected, we can always conclude that P is two-sided and that this
convergence happens with multiplicity one.

Towards a contradiction, suppose that either P = Π or

λ1(P ∩BRn+1

3/2 (0)) > 0,
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so that in particular P is strictly stable on BRn+1

4/3 (0). Notice that if P = Π then
the above is trivially true for variations in the whole of Rn+1 (i.e., not just in Π1).
In either case, by smooth multiplicity one convergence we have that P̃k is strictly stable
on BRn+1

4/3 (0) which implies (scaling back and using the second part of Remark 34)
that Pk is stable on Brk+r2k

(pk), a contradiction. In particular P cannot be planar,
and we have

λ1(P ∩BRn+1

3/2 (0)) 6 −2λ∗ < 0

for some λ∗ > 0, and hence for all k sufficiently large

λ1(P̃k ∩BRn+1

3/2 (0)) 6 −λ∗ < 0.

Hence a rescaling argument implies

λ1(Pk ∩ (B2rk(pk))) −→ −∞.

Obviously, the fact that for n = 2 we must obtain a half-bubble relies on the half-
space theorem [23] (i.e., there cannot be a non-trivial bubble contained in an open
half-space.)

Finally, the argument for the last part is similar to the above except we always
choose normal coordinates to carry out our blow-ups using Remark 34. At the rk scale
we have that Br̂k(p̂k) is similar to the balls

BRn+1

β±1
k r̃k

(p̃k)

with 1 6 r̃k 6 C and p̃k ∈ BRn+1

C (0), at which point we can conclude that r̃k → r̃ ∈
[1, C] and p̃k → p̃ ∈ BRn+1

C (0). Assuming that (BRn+1

2r̃ (p̃)rBRn+1

2 (0))∩P is stable (or
empty), we arrive at a contradiction in a similar fashion as above: first this implies
that BRn+1

3r̃/2 (p̃)rBRn+1

2 (0)∩P is strictly stable (or empty). But this domain contains
the blown-up initial domain on which we are assuming that Pk is unstable. Thus this
must be non-empty, and by the smooth multiplicity one convergence we would obtain
that (BRn+1

3r̃/2 (p̃) rBRn+1

2 (0)) ∩ P̃k is strictly stable, a contradiction.
Thus, we have proved that

λ1((BRn+1

3r̃/2 (p̃) rBRn+1

2 (0)) ∩ P ) 6 −2λ∗ < 0

as before, for some λ∗ > 0. A rescaling argument concludes the final statement of the
Theorem, once again appealing to Remark 35. �

The previous result can be regarded as a first step towards a proof of Theorems 1
and 5. Indeed, in the given setup, assume that δ is sufficiently small so that

2δ < min
{

inf
yi 6=yj∈Y

dg(yi, yj), injN , γ0

}
.

We know that the first part of Theorem 1 (namely: the smooth graphical conver-
gence with multiplicity m away from the finite set Y ), holds true by [3] and therefore,
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we patently derive∫
Mkr

(⋃
yi∈Y

Bδ(yi)
) |Ak|ndH n −→ m

∫
Mr

(⋃
yi∈Y

Bδ(yi)
) |A|ndH n.

Furthermore, as remarked at the beginning of this section, the full result of Theorem 5
holds for any y ∈ Y r∂N , and if U b N r∂N is a smooth domain with Y ∩∂U = ∅
then the bubbling analysis carried out in [5] yields

A (Mk ∩ U) −→ mA (M ∩ U) +

JU∑
j=1

A (Σj) (k −→∞),

where JU denotes the (non-trivial) full bubbles forming at point in Y ∩ U .
Putting these two threads together, we obtain in fact

(3.1) lim
δ→0

lim
k→∞

∫
Mkr

(⋃
yi∈Y ∩∂N Bδ(yi)

) |Ak|ndH n = m A (M) +

JN∑
j=1

A (Σj),

where JN denotes the (non-trivial) full bubbles forming at yi ∈ Nr∂N . It remains to
understand what is happening on the small balls Bδ(yi) as δ → 0 and for yi ∈ ∂N . In
order to study the behaviour here, we extract various point-scale sequences and look
at their blow-up limits using Theorem 33. During this process, we may iteratively pass
to subsequences, but for the sake of simplicity we will not always state this explicitly.
The important point here is that there will only be finitely many steps where this
happens, so no diagonal argument is needed.

For fixed y ∈ Y ∩ ∂N consider the intersection Mk ∩ Bδ(y): it is possible that
this consists of more than one component but for k sufficiently large there are at
most m. Note that by the choice of y we must have that Mk ∩ Br(y) is unstable for
all fixed r > 0 and k large enough. The rough plan from here is to extract point-scale
sequences (pk, rk) with pk → y and rk → 0, and so that λ1(Mk ∩ (B2rk(pk)))→ −∞
for any such sequence. A bubbling argument as in [5] will tell us that we can capture
all the coalescing index in this way and that the process stops after at most p − 1

such point-scale sequences were constructed. This is the moral of Theorem 5, which
we are indeed about to prove.

Proof of Theorem 5. — We prove the result for some fixed y ∈ Y ∩∂N by constructing
point-scale sequences as follows. Clearly we can repeat the steps precisely as below
for each such y so we do not concern ourselves with this.

The first point-scale sequence. — Let

r1
k = inf

{
r > 0 : Mk ∩Br(p) is unstable for some p ∈ Bδ(y) ∩Mk

}
.

Note that r1
k defined above is strictly positive, and we can pick p1

k ∈ Bδ(y) ∩ Mk

so that Mk ∩ Br1k+(r1k)2(p1
k) is unstable. Notice that Mk ∩ Br1k/2(z) is stable for all

z ∈Mk∩Bδ(y) by definition. We must have r1
k → 0 and p1

k → y by the characterization
of Y given in Lemma 32.

We deduce the following properties.
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(a) For every k there exists at least one connected component of the intersection
Mk ∩ Bδ/2(p1

k) satisfying the hypotheses of Theorem 33 with %k = δ/2 and rk = r1
k.

Thus we can perform a blow-up using normal coordinates centered at p1
k, namely

(3.2) M̃1
k ∩Bδ/r1k(0) :=

1

r1
k

(
Mk ∩Bδ(p1

k)− p1
k

)
and such a sequence of connected components smoothly converges on every compact
set with multiplicity one to a limit Σ1

1 which is a non-trivial bubble or half-bubble
and intersects the ball of radius two about the origin. In Case I of Theorem 33 the
convergence happens locally smoothly on Rn+1 and Σ1

1 is always a non-trivial full
bubble, while in Case II of Theorem 33 the convergence happens locally smoothly on
some half-space and Σ1

1 is either a bubble or half-bubble, non-trivial in either case.
(b) For every k all (other) connected components are still stable on all balls cen-

tered at any point z ∈ Mk ∩ Bδ/2(p1
k) and of radius r1

k/2 so we can directly invoke
Lemma 32 which ensures smooth convergence with multiplicity one(1) when we rescale
according to equation (3.2).

Let us denote by
{

Σ1
i

}
i∈I(1)

the finite collection of limit hypersurfaces in Rn+1 we
construct in this fashion. In particular, we obtain

(3.3)

lim
R→∞

lim
k→∞

∫
Mk∩BRr1

k
(p1k)

|Ak|ndH n = lim
R→∞

lim
k→∞

∫
M̃1
k∩B

Rn+1
R (0)

|Ã1
k|ndH n

= lim
R→∞

∑
i

∫
Σ1
i∩BRn+1

R (0)

|A|ndH n

=
∑
i

A (Σ1
i ).

Theorem 33 also implies that λ1(Mk ∩ (B2rk(pk))) → −∞. Using the half-space
theorem [23], we further obtain that there is only one limit Σ1 in dimension n = 2,
and that it must be a half-bubble in Case II.

The second point-scale sequence. — Let C2
k be the set of balls Br(p) such that

– Mk ∩ (Br(p) rB2r1k
(p1
k)) is unstable and p ∈ Bδ(y) ∩Mk,

– if B2r(p) ∩ B2r1k
(p1
k) 6= ∅, then the connected component Q of B10r(p) ∩ Mk

containing p is disjoint from B2r1k
(p1
k) and Q ∩Br(p) is itself unstable.

If C2
k = ∅, regardless of the existence of further possible regions of coalescing index,

we stop and leave it to the reader to check that in this case no further non-trivial
bubbles can be found at y (we advise the reader to check this upon a second reading).
We may pass directly to the neck analysis at this point.

On the other hand, if C2
k 6= ∅, we can set

r2
k = inf

{
r > 0 : Br(p) ∈ C2

k

}
(1)When n > 3 there may be hyperplanes appearing as smooth limits here, but there is always at

least one non-trivial (half-)bubble.
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and then, straight from the definition, we obtain r2
k > r1

k and we can find points
p2
k ∈ Bδ(y) ∩Mk such that Br2k+(r2k)2(p2

k) ∈ C2
k and Mk ∩ (Br2k+(r2k)2(p2

k) r B2r1k
(p1
k))

is unstable. If r2
k does not converge to zero as one lets k → ∞, then we stop the

construction of point-scale sequences at y. If instead r2
k → 0, then we ask whether or

not

(3.4) lim sup
k→∞

(r2
k

r1
k

+
distg(p

1
k, p

2
k)

r2
k

)
=∞.

If the answer to this question is negative (that is, if such a quantity stays bounded
as k →∞) then there exists C <∞ such that Br2k(p2

k) ⊂ BCr1k(p1
k) and r2

k 6 Cr
1
k for

all k. Thus we ignore this point-scale sequence since its blow-up limit is the same as
for the previous point-scale sequence. We do however still keep track of the regions
B2r2k

(p2
k) in order to find the next point-scale sequence and observe that, by appealing

to the last part of Theorem 33

λ1(Mk ∩ (B2r2k
(p2
k) rB2r1k

(p1
k))) −→ −∞.

If on the other hand (3.4) holds, after passing to a subsequence for which the
lim sup is actually a limit, we distinguish two cases:

Case 1: The second fraction in (3.4) tends to infinity. — In this case, the various (non-
trivial) bubbles and half-bubbles are forming separately. We define %k via

2%k := distg(p
1
k, p

2
k)

and note that %k/r2
k →∞. Therefore, for every k the hypotheses of Theorem 33 apply

to at least one component of Mk ∩B%k(p2
k) and thus (arguing as we did when dealing

with the first point-scale sequence) we get that

M̃2
k ∩BRn+1

%k/r2k
(0) :=

1

r2
k

(
Mk ∩B%k(p2

k)− p2
k

)
smoothly converges (on compact sets) with multiplicity one to a collection

{
Σ2
i

}
i∈I(2)

which consist of either bubbles or a half-bubbles.(2) Note that we also have

λ1(Mk ∩B2r2k
(p2
k)) = λ1(Mk ∩ (B2r2k

(p2
k) rB2r1k

(p1
k))) −→∞

by the same theorem. Again, if n = 2, then the limit surface must be connected and
a non-trivial half-bubble if we are in Case II of Theorem 33. Moreover, as in (3.3), we
have

(3.5) lim
R→∞

lim
k→∞

∫
Mk∩BRr2

k
(p2k)

|Ak|n dH n =
∑
i

A (Σ2
i ).

(2)Once again, when n > 3 there may be hyperplanes appearing as smooth limits here, but there
is always at least one non-trivial (half-)bubble.
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Case 2: The second fraction in (3.4) is bounded by some C0 < ∞. — In this case, the
second (non-trivial) bubble or half-bubble is forming on or near the first. We say that
these bubbles are forming in a string. Before describing the global and final picture,
which shall be obtained (as always for a string of bubbles) by blowing-up centered at
the first point p1

k in the string, let us analyze the structure of the second bubble in
the string.

We consider the blow-up sequence with centers p2
k and scales r2

k, that is we define

M̃2
k ∩BRn+1

δ/r2k
(0) :=

1

r2
k

(
Mk ∩Bδ(p2

k)− p2
k

)
.

If we let Pk denote the connected component of Mk ∩B2r2k
(p2
k) containing p2

k, our
definition of the class C2

k ensures that we have stability of Pk on all balls centered
at z ∈ Pk and radius r2

k/2, while we have instability (again, of Pk) on the ball of
center p2

k and radius r2
k + (r2

k)2. Hence, an argument along the lines of the proof
of Theorem 33 ensures convergence of Pk to a non-trivial (half-)bubble in Rn+1, the
convergence happening smoothly with multiplicity one. Also, notice (for completeness)
that at this scale some connected components of M̃2

k (actually the components which
correspond to the elements

{
Σ1
i

}
i∈I(1)

) must converge to a hyperplane, but there can
be no point(s) of bad convergence as far as the convergence of Pk is concerned.

That being said, the usual scaling argument gives

λ1(Mk ∩ (B2r2k
(p2
k) rB2r1k

(p1
k))) 6 λ1(Q2

k ∩ (B2r2k
(p2
k) rBRr1k(p1

k))) −→ −∞

for any R.
A posteriori, it is clear (by virtue of the uniform boundedness of the ratio

distg(p
1
k, p

2
k)/r2

k) that we could equivalently blow-up around p1
k, again with the same

scale r2
k though, which would result in obtaining the very same limit hypersur-

faces in Rn+1 modulo Euclidean isometries. We will always employ this convention
when dealing with strings of (half-)bubbles. Denote by

{
Σ2
i

}
i∈I(2)

the set of minimal
hypersurfaces one obtains by performing this blow-up, namely when letting k →∞ in

1

r2
k

(
Mk ∩Bδ(p1

k)− p1
k

)
.

We further have

(3.6) lim
δ1→0

lim
R→∞

lim
k→∞

∫
Mk∩BRr2

k
(p1k)rB

δ1r
2
k

(p1k)

|Ak|n dH n =
∑
j

A (Σ2
j ),

while note that we have not yet controlled the term

(3.7) lim
δ1→0

lim
R→∞

lim
k→∞

∫
Mk∩Bδ1r2k

(p1k)rB
Rr1
k

(p1k)

|Ak|ndH n.

However, we will see that Mk is a neck or half-neck of order (η(R, δ1), L(R, δ1)) in
this region. We will deal with neck regions like this in the following section, where we
will see that the above limit actually vanishes.
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When n = 2, the half-space theorem shows that a (half-)plane and a non-trivial
component would necessarily have to intersect, a contradiction. Hence, Case 2 cannot
occur in dimension n = 2; we necessarily have to be in Case 1.

Further point-scale sequences. — We continue with the above described scheme iter-
atively. Suppose we have extracted ` − 1 point-scale sequences (including the ones
that we have ignored) for y. Then we continue (or not) under the following rules:
let U `−1

k =
⋃`−1
s=1B2rsk

(psk) and define an admissible class of balls with r`−1
k < δ by

letting C`k be the set of balls Br(p) such that
– Mk ∩ (Br(p) r U `−1

k ) is unstable and p ∈ Bδ(y) ∩Mk,
– if B2r(p)∩U `−1

k 6= ∅ then the connected component Q of B10r(p)∩Mk contain-
ing p is disjoint from U `−1

k and Q ∩Br(p) is itself unstable.
Now, if C`k = ∅ we stop the process here. If not, set

r`k = inf
{
r > 0 : Br(p) ∈ C`k

}
.

and pick p`k ∈ Bδ(y) ∩ Mk so that Br`k+(r`k)2(p`k) belongs to C`k (in particular
Mk ∩

(
Br`k+(r`k)2(p`k) r U `k

)
is unstable).

Again, we must have r`k > r`−1
k (since the class of admissible balls gets smaller).

If r`k 6→ 0 then we discard (p`k, r
`
k) and the process stops. If we do have r`k → 0, then

we ask whether or not it is true that

(3.8) min
i=1,...,`−1

lim sup
k→∞

(r`k
rik

+
distg(p

`
k, p

i
k)

r`k

)
=∞.

If the answer is negative, then there exists C <∞ such that Br`k(p`k) ⊂ BCrsk(psk) and
rsk 6 Cr

s
k for all k and some s < ` so that any blow-up corresponding to the sequence

will yield a limit scenario that has already been captured at an earlier step. As before
we keep track of the regions B2r`k

(p`k) and we also note that

λ1(Mk ∩ (B2r`k
(p`k) r U `−1

k )) −→ −∞

by the last part of Theorem 33.
If on the other hand (3.8) holds, then after passing to a subsequence for which the

lim sup in (3.8) is actually a limit, we distinguish the following cases:

Case 1′: The second fraction in (3.8) tends to infinity for all i. — In this case, the
(half-)bubble is forming separately from the previously extracted (half-)bubbles and
strings of bubbles. We can follow Case 1 from above, except that this time we blow-up
centered at p`k in a ball of radius %`k satisfying

2%`k = min
i<`

distg(p
`
k, p

i
k).

We blow-up at scale r`k to obtain some collection
{

Σ`i
}
i∈I(`) whose elements are either

bubbles or half-bubbles, non-trivial in both cases, with

λ1(Mk ∩ (B2r`k
(p`k) r U `−1

k )) = λ1(Mk ∩B2r`k
(p`k)) −→ −∞
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and

(3.9) lim
R→∞

lim
k→∞

∫
Mk∩BRr`

k
(p`k)

|Ak|n dH n =
∑
i∈I(`)

A (Σ`i).

Case 2′: The second fraction in (3.8) is bounded for some i. — We first note that if
this is the case for some index i and Σi is an element in a string of (half-)bubbles,
then the property also holds for any other index s corresponding to other non-trivial
(half-)bubbles Σs in the same string. See [5, p. 4389] for more details on this obser-
vation. It is possible that the second fraction in (3.8) could be bounded for indices
corresponding to elements in two or more distinct strings, i.e., at this scale these
previously distinct strings appear together, in which case we refer to the union of
these strings as one new string. Note that this shows in particular that we must have
r`k/r

i
k →∞ for any i corresponding to elements in this string. Call the earlier indices

of the string i1, . . . , im (so that ` = im+1).
Similarly as in Case 2 above, we now blow-up centered at the first point in the

string (which is pi1k ), but at a scale r`k. As above, this is impossible when n = 2, while
for n > 3 Theorem 33 yields a collection of non-trivial (half-)bubbles Σ`j and also
implies

λ1(Mk ∩ (B2r`k
(p`k) r U `−1

k )) 6 λ1(Mk ∩ (B2r`k
(p`k) rBRrimk

(pi1k ))) −→ −∞

as well as

(3.10) lim
δ1→0

lim
R→∞

lim
k→∞

∫
Mk∩BRr`

k
(p
i1
k )rB

δ1r
im
k

(p
i1
k )

|Ak|ndH n = A (Σ`).

Again, there is a neck region between the previously largest (half-)bubble in the
string with index im and the new `-th (half-)bubble, which we still have not controlled.
We will deal with it in the following section.

Notice that at each stage of the point-scale selection and blow-up process we are
accounting for a new subdomain onMk where λ1 → −∞, thus this process stops after
at most p− 1 iterations, until we have exhausted all point-scale sequences. Each new
scale yields either a non-trivial bubble forming on one of the previous bubbles (in a
string), or it is occurring on its own scale. Each time we are accounting for all the
total curvature except on the (half-)neck regions between consecutive elements in a
string as in (3.7).

If we take a distinct point-scale sequence (qk, %k) as in the final clause of the state-
ment of the theorem, then if we blow-up at this scale and we end up with something
non-trivial in the limit, then we must have captured some more coalescing index in
an admissible ball, but this cannot happen since by construction we have exhausted
all unstable regions in the process. �

Another important point of notation is determined in the next definition. Notice
that at each bubble point y we can classify the point-scale sequences into finitely
many different strings, recalling that when n = 2 each string has only one element,
or equivalently there are no strings.
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Definition 36. — Given a point-scale sequence (pik, r
i
k) corresponding to a non-trivial

bubble forming at y, and in a string whose first non-trivial bubble forms at the
points p1

k we are in one of three scenarios
(1) This is the final (or only) bubble in a string and there are no other strings

forming at y. Set ξk = 1 (so in fact it is independent of k).
(2) This is the final (or only) bubble in a string and the closest distinct string

forming at y has its first bubble forming at points qjk and final bubble scale sjk.
Setting ξk = distg(p

i
k, q

j
k) we have ξk/(rik + sjk)→∞.

(3) This is not the final bubble in a string, and the next non-trivial bubble occurs
at scale ξk = ri+1

k and we have ξk/rik →∞.
In any of the above cases we say that ξk is the intermediate scale.

The neck region(3) of this bubble scale is defined to be

Mk ∩ (Bδξk(p1
k) rBRrik(p1

k))

for δ sufficiently small, R, k sufficiently large.

The neck regions are precisely those that we have not analyzed yet; we will deal
with these in the next section. A first corollary of Theorem 5, which we will further
improve, is the following.

Corollary 37. — With the setup as in Theorem 5, denoting by {Σj}Jj=1 the collection
of all the non-trivial bubbles and half-bubbles, we have

lim
k→∞

A (Mk) > mA (M) +

J∑
j=1

A (Σj).

Proof. — This follows directly from combining (3.1), (3.3), (3.5), (3.6), (3.9), and
(3.10) and noting that the regions considered in these equations are mutually disjoint.

�

4. Neck analysis

The goal of this section is to finish the proof of Theorem 1 improving the inequal-
ity in Corollary 37 to an equality, by showing that no further total curvature can
concentrate in the neck regions (see Definition 36).

Thus we content ourselves with proving that the limits of the form (3.7) are zero. In
fact we will prove a little more than this: that the ends of each bubble or half-bubble
must be parallel to TyM (in a suitable sense), see Lemma 42. We will prove that in
either case, for δ small enough and R, k large enough, these regions are described in
precisely three different scenarios which we describe now.

(3)A point of notation; the neck region in a bubbling analysis should not be confused with the
(perhaps more geometric) neck appearing as part of the bubble. For instance if one considers a
blown-down catenoid in Euclidean space, centered at the origin and converging smoothly to a double
plane away from the origin (say at scale rk → 0), the neck region would refer to Bδ r BRrk for k
large, R large and δ small. This should not be confused with the degenerating ‘neck’ of the catenoid.
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Definition 38. — LetM ∈M. For p ∈M we say thatM ∩Bδ(p)rBε(p) is a neck of
order (η, L) if we have ε < δ/4 and M ∩ (Bδ rBε) is uniformly graphical over some
plane which we may assume (after a rotation) to be defined by {xn+1 = 0} in normal
coordinates about p. More precisely there exist functions u1, . . . uL such that

M ∩ (Bδ rBε) =
L⋃
i=1

{(x1, . . . , xn, ui(x1, . . . , xn))}

and also

(4.1) η := sup
i=1,...,L

sup
x∈BδrBε

|∇ui(x)|+ sup
ε<%<δ/2

∫
M∩(B2%rB%)

|A|ndH n <∞.

For the below definitions we will deal with Euclidean balls in Fermi-coordinate
neighborhoods (see the beginning of Section 3). For simplicity we now translate these
neighborhoods so that Π1 = {x1 > 0} from now on. In particular we will deal with
Euclidean half-balls

B+
δ = BRn+1

δ (0) ∩Π1 ⊂ [0, γ)×BRn
γ (0) = CRn+1

γ (0),

and notice that these correspond to some simply connected domain (though not a
geodesic ball) in N which we denote B̂Nδ (p) ⊂ Cγ(p) for all p ∈ ∂N .

Definition 39. — Let M ∈M. For p ∈ ∂N ∩M we say that M ∩B+
δ rB+

ε is a half-
neck of order (η, L) if we have ε < δ/4 and M ∩ (B+

δ r B+
ε ) is uniformly graphical

over some plane which we may assume (after a rotation) to be defined by {xn+1 = 0}
in Fermi-coordinates about p. More precisely there exist functions u1, . . . uL such that

M ∩ (B+
δ rB+

ε ) =
L⋃
i=1

{(x1, . . . , xn, ui(x1, . . . , xn))}

and also

(4.2) η := sup
i=1,...,L

sup
x∈B+

δ rB+
ε

|∇ui|+ sup
ε<%<δ/2

∫
M∩(B+

2%rB
+
% )

|A|n dH n <∞.

Remark 40. — We can reflect a half-neck of order (η, L) across Π = {x1 = 0} to
obtain a neck of order (2η, L) at p as per Definition 38, except now the minimal
surface lies inside a Riemannian manifold with a Lipschitz-regular metric across Π —
in particular the full neck we obtain will be at least W 2,∞-regular, and in general no
more (though smooth away from Π). We therefore have more than enough regularity
to analyze the local properties of a half-neck via the reflected full neck.

Consider the reflection σ about the plane {x1 = 0} in Rn+1 and define a metric on
ČRn+1

γ = BRn
γ (0)× (−γ, γ) via

ǧ =

{
g if x1 > 0

σ∗g if x1 < 0.

This metric is smooth away from {x1 = 0} and Lipschitz on ČRn+1

γ (it is smooth if
∂N is totally geodesic in N near p).
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Now, if u is a free boundary minimal graph over Ω ⊂ CRn+1

γ ∩{xn+1 = 0}, describing
some piece of a free boundary minimal surface Σ ⊂ CRn+1

γ then we have that Σ is
parametrized by

(x1, . . . , xn) 7−→ (x1, . . . , xn, u(x1, . . . , xn))

and
∂u

∂x1
(0, x2, . . . xn) = 0

for all boundary points where u is defined i.e., on Ω ∩ {x1 = 0}.
Defining, for x = (x1, . . . xn) ∈ Ω,

ǔ(x) =

{
u(x) if x1 > 0

u ◦ σ(x) if x1 < 0,

we see that ǔ is a C1 minimal graph over Ω̌ = Ω ∪ σ(Ω) describing Σ̌ = Σ ∪ σ(Σ)

with respect to a Lipschitz ambient metric. Thus in particular ǔ ∈ W 2,∞(Ω̌) since u
was smooth up to the boundary and is C1 across the boundary. We cannot improve
on the regularity of ǔ since it solves an elliptic equation of the form Lǔ = f(ǔ,∇ǔ),
where L is an elliptic operator whose coefficients are C0-close to those of the Euclidean
Laplacian and f ∈ L∞ but no more, unless ∂N is totally geodesic near p in which
case the coefficients of L and f become smooth, and we conclude full regularity via a
boot-strapping argument.

The below definition looks similar to the preceding one, however it is in fact encap-
sulating something very different. This will correspond to a bubble with a compact
boundary, and in fact its ends will be graphical over Ty∂N whereas the previous defi-
nition corresponds to a bubble with a non-compact boundary component whose ends
will be graphical over a plane orthogonal to Π.

Definition 41. — Let M ∈ M. For p ∈ ∂N ∩M we say that M ∩ B+
δ r B+

ε is a
compact neck of order (η, L) if we have ε < δ/4 and M ∩ (B+

δ r B+
ε ) is uniformly

graphical over {x1 = 0} in Fermi-coordinates about p (see the beginning of Section 3).
More precisely there exist functions u1, . . . uL such that

M ∩ (B+
δ rB+

ε ) =
L⋃
i=1

{(ui(x2, . . . , xn+1), x2, . . . , xn+1)}

and also

(4.3) η := sup
i=1,...,L

sup
x∈B+

δ rB+
ε

|∇ui|+ sup
ε<%<δ/2

∫
M∩(B+

2%rB
+
% )

|A|n dH n <∞.

We can now continue the proof of Theorem 1 by studying regions of the form
Mk ∩ (Bδ(p

y
k) r BRryk (pyk)) — each neck region is of this form, and many different

necks will appear in general, but the usual covering argument will allow us to study
only one such region in detail. This result is similar in spirit to [48, Th. 1.1].

Lemma 42. — With the setup as Theorems 1 and 5, given y ∈ Y ∩ ∂N , then each
bubble that appears has ends which are parallel to TyM in the following sense:
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(1) Given a point-scale sequence (pik, r
i
k) corresponding to a non-trivial bubble, we

let ξk be the intermediate scale (see Definition 36). Then for δ sufficiently small,
R, k sufficiently large, the neck region

Mk ∩ (Bδξk(pk) rBRrk(pk))

is described by a neck, half-neck, or compact neck of order (η, L) with

lim
δ→0

lim
R→∞

lim
k→∞

η −→ 0.

(2) If we let sk → 0 be any sequence then by blowing up at coordinates centered at
y to give M̂k ⊂ Bδ/sk(y) via

M̂k =
1

sk
(Mk ∩Bδ(y)),

the limit is a collection of bubbles (possibly all hyperplanes or even empty) all of whose
ends are parallel to TyM .

The above Lemma nearly completes the proof of Theorem 1 and we also obtain
the following possible types of behaviour.

Case A. — If y ∈ N r ∂N then we are in the setting of [5] and see only full bubbles
whose ends are parallel to TyM . Obviously, this case corresponds to Definition 38.

Case B. — If y ∈ ∂N ∩ ∂M then the above Lemma tells us that the bubbles and
half-bubbles that occur have ends parallel to TyM , and as a result the half-bubbles
have ends which are orthogonal to Π. The possible scenarios correspond to Definition
38 and Definition 39.

In particular, notice that the free boundary of each half-bubble has at least two
non-compact components. This last assertion follows from Corollary 30 (which can
be rephrased as: if a half-bubble has exactly one non-compact boundary component
then it must be a hyperplane).

Case C. — If y ∈ ∂N r ∂M then this time the above Lemma tells us that the only
bubbles and half-bubbles that occur have ends which are parallel to Π. The pos-
sible scenarios correspond to Definition 38 and Definition 41. Notice that in this
case the free boundary of each half-bubble is compact. This cannot occur under the
assumption (P). In this case we also trivially have that, for all η sufficiently small
∂Mk ∩Bη(y)→ 0 as varifolds.

In particular notice that in Cases B and C, it is possible for both full and half-
bubbles to occur at a single point y.

Proof of Lemma 42. — In fact the second statement of the Lemma is relatively
straightforward given the first, so we shall not discuss it. The more technical part is
the first one — which shows that the minimal hypersurfaces in the neck regions are
behaving exactly like the ends of the bubbles — and thus these ends are parallel to
any larger-scale blow-up we wish to execute.
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In Case I of Theorem 33, which corresponds to an enclosed full bubble, the neck
analysis as carried out in [5, §4] holds in precisely the same way, so we will not give
any further details here and Lemma 42 is proved in this case.

It remains to deal purely with the setting of Case II in Theorem 33, and in fact we
only deal with the case when the blow-up limit is a half-bubble (since the full-bubble
case has been dealt with implicitly above).

Thus, employing the very same notation as in the statement of Theorem 33, we see
that the ball of radius (2c+1)rik about qk contains the bubble region and we therefore
take a Fermi-coordinate neighborhood about qk as described at the beginning of
Section 3. Following the scheme in [5, p. 4390] in the proof of Claim 1, will see that
the neck region is either contained in a half-neck or a compact neck of order (η, L)

(after a rotation) and

lim
δ→0

lim
R→∞

lim
k→∞

η = 0.

If the half-bubble has ends which are parallel to Π then this argument is similar
to [5, §4]. The blow-up argument in the neck region is more straightforward in this
case since everything is happening above (and converging to) a fixed plane {x1 = 0},
thus in particular no maximum-principle argument is required to prove that we have
a compact neck of order (η, L) with η → 0.

If the half-bubble has ends which are orthogonal to Π then using [3, §3], we con-
struct a free boundary foliation near qk which will allow us to change coordinates and
run a maximum principle argument as in [5, p. 4391] to conclude that the neck region
is a half-neck of order (η, L) and with η → 0. We leave the details to the reader,
noting that a Hopf-boundary maximum principle is required in this setting. �

Proof of Theorem 1. — We will show that no total curvature is lost in the neck regions.
The claimed curvature quantization result then follows from this fact and Corollary 37.

When we are dealing with a neck region or a compact neck region then the ar-
gument is exactly as in [5, p. 4392–4395]. In the case that we have a half-neck the
reflection procedure as described in Remark 40 turns the half-neck into a neck as
per Definition 38, still with η → 0. Notice that the graphs will no longer be smooth
across {x1 = 0}, but they will be W 2,∞-regular which allows us to run the argument
as in [5, p. 4392–4395], to conclude that no total curvature is lost in such regions (in
exactly the same fashion — notice that this result does not require more regularity
than we have).

The final statement of the theorem follows from a covering argument: since {Mk}
is converging (up to extracting subsequences, and possibly after a blow-up in the case
of the bubble regions) to uniquely determined limit objects, given k1, k2 large integers
we can cover the bubble regions, the neck regions, and large-scale regions of bothMk1

andMk2 with finitely many charts that are all pairwise diffeomorphic. Thus, it follows
thatMk1 shall be diffeomorphic toMk2 , which means that all elements of the sequence
{Mk} are eventually pairwise diffeomorphic to one-another. �
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5. Geometric applications

Let us recall from Theorem 1 that, under the assumption that a sequence of free
boundary minimal hypersurfaces {Mk} converge to M with multiplicity m > 1 we
have the quantization formula

lim
k→∞

A (Mk) = mA (M) +

J∑
j=1

A (Σj).

We now discuss how to turn it into a topological relation involving Mk,M and the
non-trivial bubbles (or half-bubbles) that arise in the blow-up procedure. A key point
in that respect is the following assertion, of independent interest, which follows from
[3, Th. 29].

Proposition 43. — In the setting of Theorem 1, let us regard ∂Mk and ∂M as integer
(n − 1)-dimensional varifolds µk and µ, respectively, where it is understood that µk
has unit multiplicity while µ has multiplicity m as in the convergence statement. Then
µk → µ in the standard weak sense of varifolds, namely for any f ∈ C(G)

lim
k→∞

∫
G
f dµk =

∫
G
f dµ,

where G denotes the Grassmann bundle of unoriented (n−1)-planes over the ambient
boundary ∂N .

Proof. — The result is trivial if Y ∩ ∂N = ∅ (for in that case Theorem 1 ensures
smooth convergence, possibly multi-sheeted, of the boundaries), so let us assume on
the contrary that this intersection is not empty. We claim that for all y ∈ Y ∩ ∂N

lim
%→0

lim
k→∞

∫
B%(y)∩∂N

dµk = 0,

and in fact that there exists some constant σ, depending only on (N, g), M and m,
such that for all k sufficiently large

(5.1)
∫
B%(y)∩∂N

dµk 6 σ%
n−1.

Assuming the claim and given f ∈ C(G), let η% ∈ C∞c (N) be a smooth non-negative
ambient function which equals one in all geodesic balls centered at a point of Y ∩∂N
and of radius %, and is supported in the union of the geodesic balls with the same
centers and radii 2%. Set f% = (1− η%)f , we can write by the triangle inequality∣∣∣∣∫

G
f dµk −

∫
G
f dµ

∣∣∣∣
6

∣∣∣∣∫
G
f dµk −

∫
G
f% dµk

∣∣∣∣+

∣∣∣∣∫
G
f% dµk −

∫
G
f% dµ

∣∣∣∣+∣∣∣∣ ∫
G
f% dµ−

∫
G
f dµ

∣∣∣∣.
By (5.1) the first summand satisfies

lim
k→∞

∣∣∣∣∫
G
f dµk −

∫
G
f% dµk

∣∣∣∣ 6 sup |f | · σ(2%)n−1.
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By smooth graphical convergence away from y ∈ Y , and for any % > 0, the second
summand satisfies

lim
k→∞

∣∣∣∣∫
G
f% dµk −

∫
G
f% dµ

∣∣∣∣ 6 lim
k→∞

sup |f | · |[µk − µ](∂N rB%(y))| = 0.

Since µ has finite mass (for M is a smooth free boundary minimal surface) we have

lim
%→0

∣∣∣∣∫
G
f% dµ−

∫
G
f dµ

∣∣∣∣ = 0

by Lebesgue’s dominated convergence theorem. Combining these three simple facts,
we obtain the varifold convergence of µk to µ.

It remains to justify the claim (5.1). Pick y ∈ Y ∩ ∂N and for % sufficiently small
choose a Fermi-coordinate neighborhood so that B2%(y) ⊂ C3%(y) (where we are em-
ploying the notation presented at the beginning of Section 3). On this neighborhood,
set X1 = −∂x1 and choose a non-negative φ ∈ C∞c (B2%(y)) so that φ ≡ 1 on B%(y)

and |∇φ| 6 4/%. Notice that on C3%(y) there exists σ1 > 0 (only depending on (N, g))
so that |∇X1| 6 σ1. Set X = φX1 and using the fact thatMk is a properly embedded
free boundary minimal hypersurface, so that the outward unit conormal νk of Mk

satisfies (in this neighborhood) νk = X1, we see that for all k sufficiently large∫
B%(y)∩∂N

dµk 6
∫
B2%(y)∩∂Mk

φdH n−1 =

∫
B2%(y)∩∂Mk

g(X, νk) dH n−1

=

∣∣∣∣∫
Mk∩B2%(y)

divMk
(X) dH n

∣∣∣∣ 6 (2σ1 +
8

%

)∫
Mk∩B2%(y)

dH n 6 σ%n−1,

where in the final step we have used that Mk → mM as varifolds as well as the
monotonicity formulas for free boundary minimal hypersurfaces (see e.g. [3, Cor. 16]),
which holds even if M fails to be properly embedded at y. This completes the proof.

�

Corollary 44. — Let 2 6 n 6 6 and (Nn+1, g) be a compact Riemannian man-
ifold with boundary. Given Λ, µ ∈ R>0 and p ∈ N>1 there exists a constant C =

C(p,Λ, µ,N, g) such that H n−1(∂M) 6 C for any M ∈Mp(Λ, µ).

Now, let us specify this result to the case n = 2: if M ⊂ N is a free boundary
minimal surface (with respect to ∂N) we can regard its geodesic curvature (namely:
the geodesic curvature of ∂M as a subset of M) as a well-defined function on the line
bundle G.

Remark 45. — When M ⊂ N is a free boundary minimal surface we shall denote by
{τ, ν, ε} a local orthonormal frame at any boundary point, so that τ is tangent, ν is
outward-pointing and conormal, and ε is normal toM ⊂ N . Furthermore, notice that
{τ, ε} can be extended to a local tangent frame for the ambient boundary ∂N .

With that notation, recall that

κ = g(Dτν, τ) = − II(τ, τ),
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where D denotes the Levi-Civita connection on N , τ is a tangent vector to ∂M ⊂ ∂N
at the point in question, and the last equality relies on our sign conventions concerning
the second fundamental form II of ∂N ⊂ N (which are consistent with [3]). Thus,
considering a smooth extension of this function (which is a priori only defined on
the subbundle whose base is ∂M ⊂ ∂N), Proposition 43 has the following geometric
consequence:

Corollary 46. — In the setting of Theorem 1 specified to ambient dimension three,
we have

lim
k→∞

∫
∂Mk

κ(Mk) dH 1 = m

∫
∂M

κ(M) dH 1.

Hence, combining the quantization identity with the Gauss-Bonnet theorem,
Lemma 29 and Corollary 46 (which ensures that the geodesic boundary terms cancel
out) we obtain a proof of Corollary 7 stated in the introduction: the equation

χ(Mk) = mχ(M) +

J∑
j=1

(χ(Σj)− bj),

holds for all k sufficiently large.
We now prove our three geometric results, Theorems 8, 9 and 10.

Proof of Theorem 8. — Let {Mk} be a sequence of embedded, free boundary minimal
surfaces in (N, g). In either case we are considering, [3, Th. 2] applies to provide
subsequential convergence (smooth away from at most finitely many points). In the
stable case, there is no bubbling and thus (possibly extracting a subsequence, which
we shall not rename), we get

(5.2) χ(Mk) = mχ(M)

for k large enough. Now, if the convergence happened with multiplicity m > 2 then
(by virtue of Lemma 50) the limit M would be a disk and thus the right-hand side
would be greater or equal than 2 but, on the other hand, the Euler characteristic of
any connected surface with boundary is at most one (with equality only in the case of
the disk). Thus, equation (5.2) gives a contradiction unless the convergence is smooth
with multiplicity one.

Let us now discuss the index one case instead. The case when the convergence is
smooth, but with multiplicity, is dealt with as we did for the stable case. Else, let us
consider the case when bubbling occurs: by Theorem 1 there would be a non-trivial
bubble (or a non-trivial half-bubble) and by the index estimate given by [1, Lem. 12]
(which also holds here as a direct consequence of Theorem 5), it must have index
at most one. Therefore, our classification results (specifically: Corollary 24 for half-
bubbles) imply that the surface in question is either a catenoid or a vertically cut
half-catenoid. Again, the limit surface must be a free boundary stable minimal disk.
We now use this information in the identity given in Corollary 7 and get the bounds

χ(Mk) > 0 or χ(Mk) > 1
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depending on whether the first or the second alternative occurs, respectively. Hence
we get strong multiplicity one convergence provided we assume χ(Mk) < 0 for all k.

Let us now examine the cases when the Euler characteristic of the surfaces in
our sequence equals zero or one. The smooth convergence of the local rescalings, as
described by Theorem 5 implies (by the multiplicity estimate given by [1, Prop. 13],
which can be transplanted here with the very same proof) that m 6 2 and hence
m = 2. If we apply Corollary 7, we see at once that for k ∈ N sufficiently large
χ(Mk) = 0 implies the presence of a catenoidal bubble, and instead χ(Mk) = 1

implies a vertically cut catenoidal half-bubble. Yet, we claim that the former case is
only possible when one considers surfaces having the topological type of an annulus,
but not in the case of Möbius bands. Let us see why. Eventually, each surface Mk

shall lie in a given tubular neighborhood of the limit surfaceM , which is a disk (hence
two-sided, cf. Lemma 50). Such a tubular neighborhood is then diffeomorphic to the
product of the disk times an open interval I, hence it cannot contain any proper
one-sided surface with boundary on ∂D × I and thus in particular it cannot contain
any free boundary minimal Möbius band.

Let us then justify the final assertion in the statement of the theorem. Under the
topological assumption that N be simply connected, we know that all free boundary
minimal surfaces it contains must be two-sided (hence orientable themselves). It fol-
lows that Lemma 49 applies to provide area estimates, and at that stage one can just
follow the argument above. �

Proof of Theorem 9. — Possibly by extracting a subsequence, which we shall not re-
name, we can assume (which will be always implicit in the sequel of this proof) that

lim
k→∞

H 2(Mk) >
8π

%

or, respectively,
lim
k→∞

H 1(∂Mk) >
4π

σ
and, like in the proof of Theorem 8, that the sequence Mk converges to some limit
minimal surface M as described by Theorem 1.

Arguing by contradiction, thus assuming that the convergence is not smooth with
multiplicity one, by Theorem 1 and [1, Lem. 12] there can be at most one non-trivial
bubble or a non-trivial half-bubble, and that must be a catenoid or a half-catenoid.
If the convergence is smooth but there is no bubbling then m = 2 (we have stability
when passing to the double cover) hence, thanks to Lemma 50 we get

(5.3) lim
k→∞

H 2(Mk) 6
8π

%

or, respectively,

(5.4) lim
k→∞

H 1(∂Mk) 6
4π

σ
.

If instead bubbling occurs, the characterization of a two-sided disk as limit surface
(cf. Lemma 50) and of the catenoid or vertically cut half-catenoid as blow-ups, allow
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to employ the multiplicity estimate ([1, Prop. 13]) to gain m 6 2, hence necessarily
m = 2. By varifold convergence (at the interior, see [3] and at the boundary, by Propo-
sition 43) we get the same area/length bounds as the two cases above, namely (5.3)
or (5.4) respectively. This is incompatible with our postulated area/length bounds,
so it must be m = 1. �

Proof of Theorem 10. — The inequality follows by combining Corollary 7 with the
multiplicity estimate, [1, Prop. 13]. In case equality occurs, in particular we must
have equality in the multiplicity estimate, so

m = 1 +

J∑
j=1

(bj − 1),

and the properness assumption (P) implies (once again, see Section 2.3 ) that bj =

b̌j > 2, where the last inequality relies on the fact that the plane is the only complete,
embedded minimal surface in R3 of finite total curvature having one end (cf. [42], but
this would also follow from the half-space theorem of Hoffman and Meeks [23]). Hence
there are at most m− 1 summands, each corresponding either to a non-trivial bubble
or to a non-trivial half-bubble. If there are exactly m− 1 summands then bj = b̌j = 2

for each j = 1, . . . , J and the conclusion comes again from the characterization of
the catenoid as the only complete, embedded minimal surface in R3 with exactly two
ends, also contained in [42]. �

Remark 47. — If one drops assumption (P), thereby allowing improper free boundary
minimal surfaces, then the equality case might (at least in principle) allow for a larger
number of half-bubbles, by virtue of the potential presence of horizontally cut half-
catenoids (cf. Corollary 30).

Appendix. Area estimates

The next lemma collects some known estimates for free boundary minimal surfaces
of index zero or one:

Lemma 48. — Let (N3, g) be a compact Riemannian manifold, with non-empty bound-
ary ∂N and let M ⊂ N be a properly embedded, two-sided, free boundary minimal sur-
face. Let % := inf R (where R denotes the scalar curvature of (N, g)) and σ := inf H

(where H denotes the mean curvature of ∂N ⊂ N), both assumed to be non-negative
numbers.

(1) If M is stable, then
%

2
H 2(M) + σH 1(∂M) 6 2πχ(M) 6 2π.

(2) If M has index one and is orientable, then
%

2
H 2(M) + σH 1(∂M) 6 2π(8− boundaries(M)) 6 16π.
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Proof. — For Part (1), the well-known Schoen-Yau rearrangement trick, the Gauss-
Bonnet theorem and the free boundary condition allow to derive from the stability
inequality the estimate

(A.1) 1

2

∫
M

(R+ |A|2) dH 2 +

∫
∂M

H dH 1 6 2πχ(M),

where R indicates the scalar curvature of (N, g), A is the second fundamental form
of M ⊂ N and H is the (ambient) mean curvature of ∂N ⊂ N . However,

(A.2) χ(M) =

{
2− 2 genus(M)− boundaries(M) if M is orientable,
1− genus(M)− boundaries(M) if M is not orientable,

and thereby the conclusion follows at once.
The proof of Part (2) relies, instead, on the well-known Hersch trick. For com-

pleteness, we are going to outline the argument here. Throughout this proof, we let γ
denote the genus of M and r the number of its boundary components, furthermore
let λ1 < 0 be the first eigenvalue of the Jacobi operator

Lθ = ∆Mθ + (Ric(ε, ε) + |A|2)θ

and θ1 > 0 an associated positive eigenfunction, so that{
Lθ1 = −λ1θ1 on M ;

∂θ1/∂ν = − II(ε, ε)θ1 on M.

By the index one assumption, considering the stability form

Q(θ, θ) =

∫
M

(
|∇θ|2 − (RicN (ε, ε) + |A|2)θ2

)
dH n +

∫
∂M

II(ε, ε)θ2 dH n−1

we have Q(φ, φ) > 0 for all φ ∈ C∞(M) satisfying
∫
M
φ θ1 dH 2 = 0. In order to

choose appropriate test functions, we follow the approach suggested, to a somewhat
different purpose, by Ros and Vergasta in [40] (see also [7, Th. 5.1]). Let us cap each
boundary component of M with a closed disk and consider a smooth extension of
the metric to obtain (M, g) a closed orientable surface of genus γ: by Riemann-Roch
there exists a holomorphic map φ : (M, g)→ (S2, g0) of degree bounded from above by
b(γ + 3)/2c, and possibly by composing with a conformal diffeomorphism of the two-
sphere with its round metric g0 we can assume that indeed each of its components
satisfies the orthogonality relation

∫
M
φiθ1 dH 2 = 0 for i = 1, 2, 3, where we are

identifying such S2 with the unit sphere in R3. As a result, considering the stability
inequalities for each of these three functions and adding them we get

1

2

∫
M

(R+ |A|2) dH 2 +

∫
∂M

H dH 1 6
∑

i=1,2,3

∫
M

|∇φi|2 dH 2 + 2πχ(M),
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where we have used the fact that φ2

1 + φ
2

2 + φ
2

3 = 1. At that stage, we can estimate
the first summand on the right-hand side in terms of the degree of φ:∑
i=1,2,3

∫
M

|∇φi|2 dH 2 6
∑

i=1,2,3

∫
M

|∇φi|2 dH 2 = deg(φ)
∑

i=1,2,3

∫
S2

|(dxi)T |2 dH 2

= 8πdeg(φ),

where (dxi)
T denotes the component of the Euclidean one-form dxi that is tangent

to round S2; hence we derive
1

2

∫
M

(R+ |A|2) dH 2 +

∫
∂M

H dH 1 6 8πdeg(φ) + 2πχ(M).

Expressing the Euler characteristic and the degree of this map in terms of the topo-
logical data of M we get

%

2
H 2(M) + σH 1(∂M) 6 2π ·

{
4(k + 1) + 2− 2(2k)− r = 6− r if γ = 2k

4(k + 1) + 2− 2(2k − 1)− r = 8− r if γ = 2k − 1,

hence in particular the left-hand side is always bounded from above by 16π, which
completes the proof. �

Also, we will employ the following area bounds for index one free boundary minimal
surfaces.

Lemma 49. — Let (N3, g) be a compact Riemannian manifold, with non-empty bound-
ary ∂N and let M ⊂ N be a connected, properly embedded, two-sided and orientable
free boundary minimal surface of index 0 or 1. Assume that:

– either the scalar curvature of (N, g) is positive and ∂N is mean convex;
– or the scalar curvature of (N, g) is non-negative, ∂N is strictly mean convex and

there is no closed minimal surface in N .
Then there is an upper bound of the area of M which only depends on the manifold
(N, g).

Proof. — Consider first the case of stable surfaces. Under the first assumption we
get from Lemma 48 that the area of M is bounded from above by 4π/%. Under the
second assumption, we get that the length of ∂M is bounded from above by 2π/σ,
and then the conclusion comes by invoking the isoperimetric inequality by White, see
[47, Th. 2.1]. The same argument applies to index one surfaces. �

In studying those free boundary minimal surfaces arising as higher-multiplicity
limits we shall need the following classification result, which is the free boundary
analogue of [1, Lem. 14].

Lemma 50. — Let (N3, g) be a compact Riemannian manifold, with non-empty bound-
ary ∂N and let M ⊂ N be a properly embedded, free boundary minimal surface arising
as the limit (in the sense of smooth convergence with multiplicity m > 2 away from a
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finite set Y of points) of a sequence of embedded, free boundary minimal surfaces in
(N, g). Assume that:

– either the scalar curvature of (N, g) is positive and ∂N is mean convex;
– or the scalar curvature of (N, g) is non-negative and ∂N is strictly mean convex.

Then M is two-sided and diffeomorphic to a disk D2 satisfying the geometric bound
%

2
H 2(M) + σH 1(∂M) 6 2π.

Proof. — Let us first consider the case when M is two-sided: the geometric assump-
tion we made implies that M must be stable (cf. [3, §5]) and thus the stability in-
equality, cf. (A.1), together with (A.2) imply that it has positive Euler characteristic
so that it must be a disk. We now claim that the case when M is one-sided does not
occur. If M were one-sided, we could consider the construction of the twofold cover
M̃ ⊂ Ũ (as discussed, for the free boundary case, in [3, §6]). The local picture around
any given point is unchanged, so one still has that the convergence of M̃k to M̃ hap-
pens with the same multiplicity m > 2. Thus M̃ would be stable and the argument
above would apply. Hence M̃ would be a disk, but a disk is not the double cover of
any compact surface with boundary because any (continuous) automorphism of the
disk has a fixed point. Thus, this contradiction proves the claim. Lastly, the geometric
bounds above comes directly from case (1) of Lemma 48. �
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