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Abstract. The structural anisotropy of snow characterizes
the spatially anisotropic distribution of the ice and air mi-
crostructure and is a key parameter for improving parame-
terizations of physical properties. To enable the use of the
anisotropy in snowpack models as an internal variable, we
propose a simple model based on a rate equation for the tem-
poral evolution. The model is validated with a comprehensive
set of anisotropy profiles and time series from X-ray microto-
mography (CT) and radar measurements. The model includes
two effects, namely temperature gradient metamorphism and
settling, and can be forced by any snowpack model that pre-
dicts temperature and density. First, we use CT time series
from lab experiments to validate the proposed effect of tem-
perature gradient metamorphism. Next, we use SNOWPACK
simulations to calibrate the model with radar time series
from the NoSREx campaigns in Sodankylä, Finland. Finally
we compare the simulated anisotropy profiles against field-
measured full-depth CT profiles. Our results confirm that the
creation of vertical structures is mainly controlled by the ver-
tical water vapor flux through the snow volume. Our results
further indicate a yet undocumented effect of snow settling
on the creation of horizontal structures. Overall the model is
able to reproduce the characteristic anisotropy variations in
radar time series of four different winter seasons with a very
limited set of calibration parameters.

1 Introduction

Deposited snow is a porous material that continuously un-
dergoes microstructural changes in response to the external,
thermodynamic forcing imposed by the atmosphere and the
underlying soil. In some cases, the microstructure can de-

velop a significant structural anisotropy; i.e., the nonspher-
ical ice particles develop a preferential orientation, often
in the vertical or horizontal direction. Among other mi-
crostructural properties, a significant amount of work was re-
cently dedicated to understanding the impact of the structural
anisotropy, which is a key parameter to improve predictions
of different snow properties like the thermal conductivity
(Izumi and Huzioka, 1975; Calonne et al., 2011; Shertzer and
Adams, 2011; Riche and Schneebeli, 2013; Calonne et al.,
2014), mechanical (Srivastava et al., 2010, 2016; Wiese and
Schneebeli, 2017), diffusive, and permeable properties (Zer-
matten et al., 2011; Calonne et al., 2012, 2014), and the
electromagnetic permittivity (Leinss et al., 2016, and refer-
ences therein). In particular the thermal conductivity shows a
strong dependence on the structural anisotropy (Löwe et al.,
2013; Calonne et al., 2014). Depending on snow type, the
thermal conductivity can vary by an order of magnitude at a
given density: this variability is discussed with respect to the
theoretical limits defined by a microstructure of either verti-
cal or horizontal series of ice plates (Sturm et al., 1997).

The structural anisotropy is commonly characterized by
different variants of geometrical or structural fabric ten-
sors. These can be computed from mean intercept lengths
(Srivastava et al., 2016), contact orientations (Shertzer and
Adams, 2011), surface normals (Riche et al., 2013), or other
second-order orientation tensors that can be constructed from
the two-point correlation function of a two-phase medium
(Torquato and Lado, 1991; Torquato, 2002). The correlation
functions can be evaluated in terms of directional correlation
lengths which define characteristic length scales of the mi-
crostructure (e.g., Vallese and Kong, 1981; Mätzler, 1997;
Löwe et al., 2013) and from which the anisotropy can be de-
rived. For snow, the microstructure can be obtained by stere-

Published by Copernicus Publications on behalf of the European Geosciences Union.
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ology (e.g., Alley, 1987; Mätzler, 2002) or from computer
tomography, CT (Schneebeli and Sokratov, 2004).

However the inclusion of the structural anisotropy in cur-
rent snowpack models is still missing due to (i) the lack of
a prognostic model for the anisotropy evolution and (ii) the
lack of in situ data for validation. Motivated by recent
progress of anisotropy measurements using radar (Leinss
et al., 2016) as a solution for (ii) it is the aim of the present
paper to overcome (i) and to suggest a minimal, dynamical
model tailored to direct use in common operational snow-
pack models.

The model is based on a simple rate equation which incor-
porates temperature gradient metamorphism and snow set-
tling. Each contribution is formulated in terms of common
macroscopic state variables (temperature, temperature gradi-
ent, and strain rate) which are provided by detailed snowpack
models like SNOWPACK (Bartelt and Lehning, 2002; Lehn-
ing et al., 2002a, b), CROCUS (Brun et al., 1989, 1992), or
SNTHERM (Jordan, 1991). The magnitude of each contri-
bution is controlled by free parameters which we calibrated
with laboratory CT data and radar time series from Finland
from which the anisotropy evolution over four winter seasons
between October 2009 and May 2013 was obtained with 4 h
resolution. The model links temporally high-resolution but
vertically averaged anisotropy time series from radar with
vertically high-resolution but temporally sparse CT measure-
ments and is validated against field-measured, full-depth CT
anisotropy profiles.

The paper is structured as follows: Sect. 2 discusses rele-
vant processes which influence the structural anisotropy and
casts them into rate equations. Section 3 presents experi-
mental data and their integration for model forcing, cali-
bration, and validation. Section 4 validates the influence of
temperature gradient metamorphism (TGM) on the modeled
anisotropy, presents the seasonal evolution of the anisotropy
according to the full model, and validates these results with
field-measured CT profiles. Section 5 discusses capabilities
and deficits of the model and of anisotropy measurements.
Section 6 concludes the paper, and the data availability sec-
tion lists where to find the data. The Appendix details the
preprocessing of meteorological data and the calibration of
SNOWPACK.

The Supplement provides additional figures about the pro-
cessing work flow, meteorological data and radiation bal-
ance, correlation lengths derived from CT data, an analysis
of SNOWPACK ensemble members, visualizations of snow
properties, and results of anisotropy model variants.

2 A dynamical model for the structural anisotropy

2.1 Definition of the anisotropy

For quantifying the structural anisotropy, we follow the def-
inition in Leinss et al. (2016) and use the normalized dif-

Figure 1. Different structures and their anisotropy according to
Eq. (1). Snow shows only a small anisotropy and can never reach
the extreme cases of horizontal planes or vertical needles.

ference of a characteristic horizontal length scale ax and a
vertical length scale az:

A=
ax − az

1
2 (ax + az)

. (1)

Different characteristic length scales can be chosen. Com-
monly exponential correlation lengths ai = pex,i are used as
defined in Mätzler (2002). According to Eq. (1), the struc-
tural anisotropy ranges from −2 (vertical needles) to +2
(horizontal planes) withA= 0 for randomly shaped or spher-
ical particles (Fig. 1).

As detailed in Leinss et al. (2016), a normalized difference
is convenient compared to the definition via an aspect ra-
tio (A′ = az/ax) because equally prolate and oblate particles
with interchanged semiaxes then have the same magnitude
for the anisotropy, and averaging them results in isotropy
(A= 0). The normalized difference and the frequently used
grain size aspect ratio A′ are however equivalent and can be
related by

A= 2
1−A′

1+A′
orequivalentlyA′ =

2−A
2+A

≈ 1−A. (2)

This relation is helpful for a comparison with literature val-
ues. For snow a common range is A′ ≈ 0.75. . .1.3 but larger
values might occur (Alley, 1987; Davis and Dozier, 1989;
Schneebeli and Sokratov, 2004; Fujita et al., 2009; Calonne
et al., 2014). In this range, equal to A≈+0.3. . .− 0.3, the
approximation in Eq. (2) deviates less then 5 % from A′ with
respect to A′.

For conciseness, we refer to “horizontal structures” when
the horizontal length scales are larger then the vertical ones,
ax , ay > az; hence A> 0. Accordingly, “vertical structures”
describe snow with vertical length scales larger than horizon-
tal ones, az > ax , ay , equivalent to A< 0.

2.2 Evolution of the anisotropy

Quite generally, the anisotropy evolves from horizontal struc-
tures in new snow, over isotropic structures in decomposing
rounded grains, to vertical structures under the influence of
temperature gradient metamorphism (Schneebeli and Sokra-
tov, 2004; Calonne et al., 2014) and might return to isotropy
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during melt processes. To describe this evolution we assume
the following rate equation:

∂

∂t
A(z, t)= ȦTGM(z, t)+ Ȧstrain(z, t). (3)

The first term accounts for the growth of vertical structures
due to temperature gradient metamorphism (TGM), the most
common type of snow metamorphism. The second term ac-
counts for the formation of horizontal structures due to mi-
croscopic grain rearrangement causing the settling (strain) of
snow. Further terms could be added to account for a possi-
ble rounding of grains by melt metamorphism. For simplic-
ity we start with the assumption of an additive decomposition
of these processes; though naturally, all these processes are
coupled (e.g. Wiese and Schneebeli, 2017).

Since snow models commonly focus on the evolution of
microstructural properties in individual snow layers (Bartelt
and Lehning, 2002), we describe the anisotropy evolution in
each layer with a Lagrangian viewpoint where the reference
frame is attached to a material element. Therefore, we drop
the z dependence in Eq. (3). Further, we restrict our model
to flat terrain and do not consider any forces acting parallel
to the snow layers (in the x or y direction). This implies that
gravity and temperature gradient are strictly applied in the
z direction.

2.3 Temperature gradient metamorphism

During TGM, ice crystals preferably grow into the opposite
direction of the heat and water vapor flux, irrespective of
whether the heat flux is applied in the horizontal or verti-
cal direction (Yosida, 1955, pp. 52–56). The underlying wa-
ter transport mechanism, mediated by a vapor flux from ice
grain to ice grain, is often termed “hand-to-hand” transport as
suggested by Yosida (1955, pp. 31–34). Pinzer et al. (2012)
confirmed this mechanism and demonstrated a rapid reorga-
nization of the ice matrix within a few days. The rapid re-
organization renders the perception of a slowly growing ice
grain misleading as “only the ‘memory’ of the grain, encoded
in the temporal correlation of the structure, survives” (Pinzer
et al., 2012). Thereby, large vertical structures have a higher
chance to survive while small structures quickly disappear.

To mimic this structural reorganization, we model the
growth of vertical structures proportional to the magnitude
of the water vapor mass flux: ȦTGM ∝ |JV|. We use the ab-
solute value |Jv| because the anisotropy does not contain any
information about the growth direction but only about the
growth orientation.

In winter, the vapor flux direction is usually positive (up-
wards) but can be reversed in spring, when the eventually
melting snow surface is warmer than the underlying snow-
pack. With strong diurnal cycles, the flux direction can also
alternate on a daily basis, but apparently these oscillating
temperature gradients seem not to cause growth of faceted
crystals: according to Pinzer and Schneebeli (2009) the mor-

phology of the snow structure evolves slower and “did not
show any sign of conventional TGM”. Therefore, we exclude
the effect of daily alternating temperature gradients by aver-
aging temperature gradients over 24 h:

ȦTGM ∝ |〈JV〉24 h|. (4)

As indicated in Fig. 1, perfect needle microstructures
do not exist in reality. Therefore, we assume a minimal
anisotropy Amin that can be practically attained by adding an
empirical, quadratic weighting function. This function also
amplifies the decay of horizontal structures modeled for new
snow which should transform faster because small grains
evaporate relatively quickly. The function also slows down
the evolution of vertical structures which are modeled for
snow which has experienced already strong TGM and has
therefore relatively large grains. With these considerations,
we model the growth of vertical structures by

ȦTGM(t)=−α1|〈Jv〉24 h| ·


(A−Amin)

2

A2
min

A≥ Amin.

0 A<Amin.

(5)

The positive prefactor α1 defines the coupling strength of
the right-hand side to the anisotropy change rate and must be
determined from experiments. It has units of square meters
per kilogram.

The vapor flux is mediated by diffusion, which is driven
by a water vapor pressure gradient induced by a tempera-
ture gradient. Therefore, the vertical water vapor mass flux
Jv (kg m−2 s−1) follows from Fick’s law applied to the wa-
ter vapor mass density ρv(T ) (kgm−3):

Jv(T ,
∂T

∂z
)=−Dvs

∂ρv

∂z
=−Dvs

∂ρv(T )

∂T

∂T

∂z
. (6)

The vapor mass density ρv is given by the water vapor
pressure, pS(T ), which is supposed to be at the saturation
point in the pores between the ice crystals. Density and satu-
ration pressure are related by the equation for ideal gases,

ρv(T )= pS(T )/(RVT ), (7)

whereRV = R/Mw = 461Jkg−1 K−1 is the specific gas con-
stant for water vapor, Mw = 0.018kgmol−1 the molar mass
of water, and R = 8.314Jmol−1 K−1 the universal gas con-
stant. The saturation pressure over ice can be well approx-
imated using different formulas (Marti and Mauersberger,
1993) and is given in Bartelt and Lehning (2002) by

pS(T )≈ p0S · exp
[
L/RV

(
T −1

0 − T
−1
)]
, (8)

with the latent heat of ice sublimation L= 2.8MJkg−1 and
the triple-point pressure and temperature of water, p0S =

611.73Pa and T0 = 273.16K.
Because the saturation pressure, Eq. (8), depends only on

temperature, Eq. (6) can be written in terms of temperature
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T and temperature gradient ∂T
∂z

(Lehning et al., 2002b):

Jv(T ,
∂T

∂z
)=−Dvs · ρv(T ) ·

[
L

RvT 2 −
1
T

]
∂T

∂z
. (9)

The effective diffusion constant for water vapor in snow,
Dvs, is close to the diffusion constant in air, Dv,air = 2.1×
10−5 m2 s−1 (Massman, 1998), and ranges between 1 and
10 × 10−5 m2 s−1 (Sokratov and Maeno, 2000; Colbeck,
1993) and is reviewed in Pinzer et al. (2012). As the vapor
flux seems to be almost independent of grain size or mi-
crostructure (Pinzer et al., 2012, Sect. 4.3 and Fig. 11), we
assume a constant diffusion constant,Dvs = 2×10−5 m2 s−1.

2.4 Gravitational settling

Gravitational settling and densification of snow has been as-
sumed to create horizontal structures as indicated by po-
larimetric radar observations (Leinss et al., 2016). They ob-
served that the radar signal did not increase instantaneously
with new snow but with a time delay of a few days after
snowfall, thereby suggesting a settling effect (Leinss et al.,
2016, Sect. 5.4). In the absence of detailed, quantitative
work about the anisotropy evolution of new snow, we start
with the simplest assumption of an affine deformation where
all structural length scales inherit the macroscopically im-
posed strain. Then, the strain rate and the vertical correlation
lengths would be related by ε̇(t)= ȧz/az. However, because
in the heterogeneous microstructure only the air pores can
be squeezed while ice particles might build new vertical con-
tact points, an affine deformation needs to be mitigated. To
account for non-affine effects, we introduce an empirical cor-
rection factor α2 and hence proceed with

ε̇(t)=
1
α2

ȧz(t)

az(t)
. (10)

Then, the anisotropy change rate, modeled by a strain-
induced shortening of the correlation length az, can be ex-
pressed as

Ȧ(t)strain =
d
dt
A
(
az(t),ax

)
=

(
∂A

∂az

)
ȧz(t). (11)

With Eqs. (1) and (10) this can be rewritten as

Ȧstrain(t)= α2ε̇(t)

(
A2

4
− 1

)
. (12)

For large |A| → 2 the term A2/4− 1 approaches zero and
ensures that the anisotropy cannot grow beyond the two ex-
treme values of A=±2, even for very large strain rates. Be-
cause compression should increase the vertical contact be-
tween ice grains, it seems unrealistic that large values of A
can actually be reached. Therefore, we modify this term and
introduce an empirical upper threshold, Amax. For negative

Figure 2. Modeled anisotropy evolution for TGM with α1 =
1.01m2 kg−1 and settling with α2 = 1.68 for the different tabled
conditions (1–7). In (a), 1 and 1′ differ only by the initial anisotropy.
The dark red line (8) corresponds to ∇T = 100Km−1 and T =
−80 ◦C. The vapor flux Jv is given (∗) in units of 10−8 kg m−1s−1.

values of A, no modification is applied. This leads to

Ȧstrain(t)= α2ε̇(t)


(
A2

4 − 1
)

A≤ 0.(
A2

A2
max
− 1

)
A> 0.

(13)

2.5 Initial condition

For the model an initial anisotropyAini of new snow needs to
be specified. The lag between the accumulation of new snow
and the anisotropy increase (Leinss et al., 2016, Sect. 5.4)
indicates that Aini should be very close to zero but slightly
positive as new snow already settles during accumulation.
Furthermore, we think that most nonspherical snow crystals
align preferably horizontally by gravity at the time of depo-
sition. This assumption is supported by observations where
dendrites were only found with horizontal orientation in ar-
tificial snow (Löwe et al., 2011) as well as in natural snow
(Mätzler, 1987, Fig. 2.15). To account for initial settling and
alignment, we choose Aini = 0.05.

2.6 Model behavior and numerical solution

The model is summarized in Fig. 2, which shows the
anisotropy evolution for different parameters as obtained
by numerical integration of the rate equation using the ex-
plicit Euler method (no difference was observed for the clas-
sic Runge–Kutta method). Depending on temperature, the
timescales of the anisotropy evolution under TGM (Fig. 2a)
range between 10 and 300 d because the water vapor flux can
vary by 2–3 orders of magnitude (table below Fig. 2). Ex-
treme values close to Amin are only reached after hundreds
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of days. The comparison of the two runs (1) and (1′) shows
that for the same temperature settings negative anisotropies
evolve slower than positive anisotropies. The dark red line (8)
shows that even when strong temperature gradients are ap-
plied for many years no significant anisotropy change can
be observed under conditions used for sample archiving in
the lab. Compared to TGM the settling-induced anisotropy
(Fig. 2b) is modeled to evolve much faster (hours to days).
As both the strain rate ε̇ and the A2 terms in Eq. (13) are al-
ways negative, snow settling always increases the anisotropy.
The particular choice for the upper and lower limits of the
anisotropy, namelyAmin =−0.7 andAmax = 0.3, will be fur-
ther discussed below.

3 Datasets and methods

A comprehensive set of laboratory and field data was used
to calibrate, drive, and evaluate the model. Here, we describe
the different datasets and the forcing, calibration and evalua-
tion of a large ensemble of SNOWPACK runs.

Except for an independent set of laboratory CT data, all
field data were acquired in northern Finland 5 km south of
the town of Sodankylä at or close to the test site “intensive
observation area” (IOA). The IOA is shown in Fig. 3. Table 2
lists all measurements, sensors, and their locations. The mea-
surements were supported by the Nordic Snow Radar Experi-
ment (NoSREx-I to NoSREx-III) (Lemmetyinen et al., 2013,
2016).

At the IOA, snow pit measurements were performed on a
weekly basis. The measurements include snow temperature
and snow classification. In addition near-infrared (NIR) im-
ages of the snow structure were taken on selected dates. For
each NIR image we calculated the ratio to a reference image
of a Styrofoam panel. The ratio images were used to cross-
check CT data and snow type classification and for interpre-
tation of the modeled results.

3.1 Anisotropy determined by computer tomography

For validation of the model we used anisotropy data derived
from 3-D scans of snow samples analyzed by X-ray micro-
tomography (CT). Our analysis includes published data of
time series acquired during temperature gradient metamor-
phism experiments in the lab and snow samples taken in the
field during the NoSREx campaign.

The field samples were casted using diethyl phthalate
(DEP) for transportation as described in Heggli et al. (2009)
and scanned with a nominal resolution (voxel size) rang-
ing between 10 and 20 µm. The resulting 3-D grayscale
images were filtered using a Gaussian filter (sigma= 1.2
voxel length, total filter kernel width= 4 voxel lengths). The
smoothed images were then segmented into binary ice–air
images. For segmentation, an intensity threshold was chosen

Figure 3. All field, all radar, and most meteorological data were ac-
quired at the intensive observation area (IOA). The remaining me-
teorological data were measured at the meteorological mast 180 m
east of the IOA and at the automatic weather station (AWS) 600 m
north of the IOA. Anisotropy validation profiles were extracted at
the locations CT-1, CT-2a/b, CT-3, and CT-4. The depth-averaged
anisotropy for “sector 1” was measured every 4 h with a tower-based
radar (SnowScat) which also measured the snow water equivalent in
combination with the gamma water instrument, GWI, as detailed in
Leinss et al. (2015). Sensor abbreviations are explained in Table 2.

at the minimum between the DEP peak and the ice peak in
the histograms of the grayscale images.

Two-point correlation functions were calculated from the
binary images for each direction (Löwe et al., 2013). Then,
the correlation lengths, pex,x , pex,y , and pex,z were derived as
described in Mätzler (2002). Because of the symmetry in the
x–y plane, the lengths pex,x and pex,y were averaged, and the
corresponding CT anisotropy follows, analogue to Eq. (1):

ACT
=

0.5(pex,x +pex,y)−pex,z
1
2

[
0.5(pex,x +pex,y)+pex,z

] . (14)

To validate the anisotropy evolution under TGM and to
determine the free parameter α1 we used the laboratory data
listed in Table 1. The samples TGM-17 (Kaempfer et al.,
2005), TGM-2 (Löwe et al., 2013), DH-1, and DH-2 (Riche
et al., 2013) were analyzed for their exponential correlation
lengths in Löwe et al. (2013). In addition we used digitized
data of the sample C-1 analyzed by Calonne et al. (2014).

For validation of the full model applied on field-measured
conditions, almost complete vertical snow profiles were ex-
tracted in Finland and preserved for later analysis in Switzer-
land. Five profiles named CT-1, CT-2a, CT-2b, CT-3, and
CT-4, were sampled at the locations shown in Fig. 3 on the
dates listed in Table 2. The structural anisotropy was de-
termined with a vertical resolution of 1–2 mm. The profiles
contain some gaps of a few centimeters where the samples
were not overlapping or sample taking was not possible due
to very soft new snow (CT-4), ice crusts, or large fragile

www.the-cryosphere.net/14/51/2020/ The Cryosphere, 14, 51–75, 2020
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Table 1. List of snow samples from laboratory TGM experiments
with temperature, temperature gradient, initial ice volume fraction,
initial snow type and sub-type, specific surface area (SSA), and du-
ration of the experiment. The corresponding anisotropy evolution is
shown in Fig. 5.

Sample T ∇T fv(0) Type SSA 1t
◦C K m−1 – – m2 kg−1 d

TGM-2 −10 100 0.22 DFdc 29.0 11.7
TGM-17 −8 50 0.33 RGsr 21.7 16.0
DH-1 −20 50 0.19 DFdc 22.1 87.5
DH-2 −20 50 0.29 DFbk 20.0 80.5
C-1 −4 43 0.35 RG 20.8 27.7

depth hoar crystals (CT-1). Data of the profiles CT-2a and 2b
were combined. Examples of the analyzed 3-D snow struc-
ture are shown in Leinss et al. (2016, Figs. 14 and 15). Other
derived parameters have already been published in Proksch
et al. (2015).

3.2 Anisotropy determined by polarimetric radar

Depth-averaged anisotropy time series were obtained from
polarimetric radar measurements acquired by the ground-
based radar instrument SnowScat. SnowScat was developed
and built to analyze the backscatter intensity of snow be-
tween 9.2 and 17.8 GHz (Lemmetyinen et al., 2016), ESA
ESTEC contract 42000 20716/07/NL/EL (available on re-
quest from ESA). Technical details of the instrument are
given in Werner et al. (2010).

The method for measuring the depth-averaged anisotropy
from radar data is detailed in Leinss et al. (2016). Here we
briefly outline the method. Microwaves with a sufficiently
long wavelength penetrate the snowpack with negligible scat-
tering losses and accumulate a signal delay by the refrac-
tive index of snow. For snow with a spatially anisotropic mi-
crostructure the signal delay depends on the polarization of
the electric field. The signal delay difference between two
polarized radar echoes perpendicular to each other can then
be precisely measured interferometrically by determining the
co-polar phase difference, CPD (Leinss et al., 2016). From
the CPD, the depth-averaged radar anisotropy, ACPD

avg , can be
derived when snow depth and density are known.

When this method is applied at sufficiently high frequen-
cies (10–20 GHz), ACPD

avg can be determined with an accuracy
of a few percent. The frequency limits are determined such
that the radar penetration depth in snow is sufficiently high
(upper limit), the system’s phase accuracy is much smaller
than the total measured CPD, and the penetration into soil
(and polarimetric effects of soil) is negligible (lower limit).

About 3200 anisotropy measurements with a temporal res-
olution of 4 h were acquired at the IOA during the four win-
ter seasons 2009–2013. The anisotropy measurements were
taken for 13 frequency bands (bandwidth of 2 GHz) cover-

ing the full frequency spectrum of SnowScat (9.2–17.8 GHz).
Because the CPD is rather small for the incidence angle
θ = 30◦, we used only anisotropy measurements made at
θ = 40, 50, and 60◦. To reduce phase noise, CPD measure-
ments from 17 different azimuth angles were averaged before
derivation of the anisotropy. Because microwaves frequen-
cies above 10 GHz have almost no penetration into wet snow,
the anisotropy during snowmelt could not be measured.

3.3 Anisotropy determined by SNOWPACK

For comparison of modeled results with radar data and to
simulate the depth-resolved anisotropy evolution, we forced
the anisotropy model with snow properties simulated by the
model SNOWPACK (v. 3.4.5). The model was forced by
meteorological and soil data and was calibrated with snow
height and snow temperature measurements. The following
subsections provide intermediate details of the retrieval, pre-
processing, and filtering of these measurements. More de-
tails are provided in Appendices A1 and A2. Plots of input,
output, and control data of SNOWPACK are provided in the
Supplement.

3.3.1 Meteorological data

For the snow–atmosphere boundary conditions, SNOW-
PACK requires the following meteorological input data: air
temperature (TA), soil temperature (TSG), relative humid-
ity (RH), wind speed (VW), wind direction (DW), incom-
ing shortwave radiation (ISWR) and/or reflected (outgoing)
shortwave radiation (OSWR), incoming longwave radiation
(ILWR) and/or snow surface temperature (TSS), precipita-
tion (PSUM) and/or snow height (HS), and optionally the
precipitation phase (PSUM_PH). For monitoring purposes,
up to five internal snow temperature measurements (TS1,
. . . , TS5) at different heights can be provided for comparison
with modeled snow temperatures. Most input data were mea-
sured redundantly by more than one sensor at the IOA (Ta-
ble 2). Precipitation and wind velocity were measured at the
automatic weather station (AWS), 600 m north of the IOA.
The radiation balance was measured close to the AWS at the
sounding station and at the radiation tower. A very similar,
well-calibrated dataset is available by Essery et al. (2016).

To provide physically correct and consistent conditions,
the meteorological data were filtered, combined, and inter-
polated if gaps could not be filled with equivalent datasets
(details in Appendix A1). Plots of both measured raw data
and filtered SNOWPACK input data are provided in the Sup-
plement Figs. S3–S10. SNOWPACK additionally filters and
preprocesses the input data and provides them for control
(Figs. S11–S14).

3.3.2 Soil data

For the lower boundary condition, SNOWPACK requires a
description of at least one soil layer. To precisely define the
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Table 2. List of field data for model input, calibration, and valida-
tion. For each site, sensor abbreviations and full sensor names, or
dataset abbreviation and type of measurements, are given.

Intensive observation area (IOA): 67.36185◦ N, 26.63355◦ E

SnowScat SnowScat instrument, tower-based radar
for depth-averaged measurements of anisotropy
and of the snow water equivalent (SWE)

GWI Gamma water instrument for SWE measurement
by gamma ray absorption

Disdr Disdrometer: precipitation classification and
precipitation phase (liquid, solid)

SDAT1 Sensor for snow height and air temperature
SMT A,B Two sensors for soil moisture (at −2, −10 cm),

and for soil temperature (at −2 cm)
CT-no. Snow profile no.1, . . . , 4, analyzed by CT
CT-1 Profile 1, sampled on 3 Mar 2011
CT-2a/b Profile 2a/b, sampled on 21 Dec 2011
CT-3 Profile 3, sampled on 1 Mar 2012
CT-4 Profile 4, sampled on 28 Feb 2013
Snow pit Snow classification, density, SWE, grain size,

snow temperature (manual measurements)

Meteorological mast (arcmast): 67.36205◦ N, 26.63723◦ E

Arcsnow Snow height, air temperature (1 m above ground),
snow temperature at 10, 20, . . . , 110 cm height

Arcsoil Soil moisture, soil temperature at −5, −10, . . . , −50 cm

Automatic weather station (AWS): 67.36662◦ N, 26.62898◦ E

Snow height, air temperature (2 m above ground),
wind speed and direction, precipitation, humidity.

Sounding station (near AWS): 67.36660◦ N, 26.62975◦ E

CM11 Kipp & Zonen sensor CM11, 305–2800 nm,
incoming and outgoing shortwave radiation.

Radiation tower (near AWS): 67.36664◦ N, 26.62825◦ E

CG4 Kipp & Zonen sensor CG4, 4500–42000 nm,
incoming and outgoing longwave radiation

temperature of the soil–snow interface we defined a single,
5 cm thin soil layer whose lower temperature (TSG) was pro-
vided by the average of four soil temperature sensors at −5
and−10 cm (sensor: arcsoil at meteorological mast) and two
measurements at −2 cm depth (sensor: SMT at IOA).

For soil moisture we averaged data from six sensors, two
from the meteorological mast (arcsoil:−5,−10 cm) and four
from the IOA (SMT A and B, each at −2 and −10 cm).
Soil moisture and temperature were provided averaged over
1 week around the simulation start time (1 September).

The soil composition is described in Lemmetyinen et al.
(2013) as very fine mineral soil composed of 70 % sand, 1 %
clay, and 29 % silt. For this mineral soil, we assumed a solid
volume fraction of 75 % and zero ice fraction in autumn. We
estimated a density of 1800 kg m−3, a heat conductivity of
1.5 W m−1 K−1 (from ToolBox, 2003a), and a heat capacity
of 1000 J kg−1 K−1 (from ToolBox, 2003b). A soil albedo
of 0.2 was determined from the ratio of incoming and re-
flected shortwave radiation data.

Figure 4. Snow temperature was measured with an array of hor-
izontally oriented temperature sensors at the meteorological mast.
Image modified after Lemmetyinen et al. (2013).

3.3.3 Snow temperature data

Snow temperature, used for SNOWPACK calibration, was
measured at the meteorological mast, 180 m east of the IOA,
with an array of 11 horizontally oriented temperature sensors
located at 10, 20, . . . , 110 cm above the ground (Fig. 4).

Unfortunately, for this configuration with all sensors at-
tached to the same support stick, we cannot exclude that
some air-filled gaps occurred between the sensor elements.
Furthermore, it was reported for another, similar sensor con-
figuration that the sensor configuration interfered with snow
accumulation and caused the formation of an up to 30 cm
deep pit in the snow around the sensor. Such sensor biases
can be detected by comparing the lowest snow temperature
(at +10 cm above ground) with the measured soil tempera-
ture (see Fig. S17), because for a deep, well-insulating snow-
pack, both temperatures should not vary more than a few
kelvin. Manual snow temperature measurements provide an
additional validation source for the sensor array measure-
ments.

3.3.4 Calibration and configuration

SNOWPACK provides a variety of settings to adjust for the
local environment and to configure the simulation. Addition-
ally, the radiation balances required some calibration because
it was not directly measured at the IOA. To best replicate
measured snow height and temperatures, we run for all four
seasons more than 5000 simulations with different settings
each time (but keeping the same settings for all four sea-
sons) and graded the accuracy of the simulation results by
comparison of simulated snow height and snow temperature
with measured snow height and temperature (details in Ap-
pendix A3). To avoid systematic deviations of SWE or snow
density, we first run SNOWPACK driven by calibrated pre-
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Table 3. Most relevant settings for SNOWPACK which produced
the best results.

SNOW_EROSION TRUE
WIND_SCALING_FACTOR 2.0, . . . , 2.5
ATMOSPHERIC_STABILITY NEUTRAL
THRESH_RAIN 0.7, . . . , 1.2 ◦C, (or PSUM_PH)
ISWR ISWR× 0.75, . . . , 0.93
ILWR ILWR× 0.93, . . . , 0.97
SW_MODE INCOMING, (BOTH)

cipitation (Appendix A1). Then, we run the best 237 simula-
tions again but with enforced snow height; i.e., SNOWPACK
tries to estimate the precipitation which is required to repro-
duce the measured snow height. For a sanity check we ver-
ified the simulated SWE. Table 3 summarizes the most im-
portant settings which improved the simulation results signif-
icantly. Little difference was found between a fixed threshold
for the precipitation phase (THRESH_RAIN) and estima-
tion of the precipitation phase (PSUM_PH) from disdrom-
eter data (Appendix A1). When enforcing snow height, snow
height was better predicted but SWE was slightly overes-
timated when reducing the default value HEIGHT_ NEW_
ELEM= 0.02.

Tree canopy was not considered (CANOPY = FALSE) be-
cause the test site was not covered by trees. Still, surround-
ing trees could have affected the radiation balance which was
calibrated by multiplication with constant factors and selec-
tion of the best simulation results. Incoming shortwave ra-
diation (ISWR) was reduced (Table 3), which agrees with
the fact that the IOA was partially shadowed by trees but
shortwave radiation was measured on a tower above the
trees. Outgoing shortwave radiation (OSWR) was internally
estimated by SNOWPACK based on the simulated albedo
(SW_MODE= INCOMING instead of BOTH). The incom-
ing longwave radiation (ILWR) needed only a little reduc-
tion. Outgoing longwave radiation was not used by SNOW-
PACK. The reduction of shortwave radiation agrees with the
model by Essery et al. (2016); however, they modeled an in-
crease in the longwave radiation by a few percent whereas
we reduced it by a few percent such that SNOWPACK results
agree better with snow depth and temperature measurements.

3.3.5 Coupling the anisotropy model to SNOWPACK

The proposed model for the anisotropy is designed for im-
mediate implementation into snowpack models which pro-
vide the following variables for each layer of snow: snow
temperature T , vertical snow temperature gradient ∂T /∂z,
and strain rate ε̇. SNOWPACK provides these parameters
but does not consider the structural anisotropy of snow. To
keep the implementation simple enough, we post-processed
the output of SNOWPACK and did not intend to feed the
anisotropy back into SNOWPACK.

SNOWPACK merges two adjacent snow layers when they
have similar properties and when their thickness falls below a
certain threshold. To keep track of the anisotropy evolution of
merged layers, we wrote an algorithm to detect when snow
layers get merged. We defined the anisotropy of a merged
layer by the average anisotropy of the two original layers
weighted by their thickness.

Extremely large temperature gradients could naturally oc-
cur at the snow surface under extreme conditions but we do
not expect that the anisotropy will grow proportionally to
such extreme gradients. Extreme temperature gradients could
also wrongly occur in simulated data. To exclude such tem-
perature gradients, we set a maximum threshold for simu-
lated temperature gradients of |1T/δz| ≤ 200 K m−1.

3.3.6 Ensemble runs

To consider the uncertainty of different SNOWPACK config-
urations, we run a sensitivity analysis of the model and de-
termined α2 for the ensemble of the best 237 SNOWPACK
simulations. Each ensemble member consists of four sea-
sons simulated with the same SNOWPACK configuration.
For each ensemble member, α2 was determined once for each
season independently and once for all seasons together. The
ensemble members differed slightly in the following config-
uration settings: scaling of radiation balance, rain threshold,
wind scaling factor, shortwave reflected radiation based on
albedo simulation or measurements, precipitation phase esti-
mation, and different thresholds for the height of new snow
elements (5 mm, 1, 2 cm). All 237 simulations had the fol-
lowing settings in common: snow height was enforced, at-
mosphere was neutral, and snow erosion was allowed. An
analysis of the accuracy of the corresponding SNOWPACK
ensemble members is shown in Fig. S19.

4 Results

4.1 Validation by laboratory experiments

For validation of the TGM formulation we analyzed
anisotropy time series from the five laboratory CT exper-
iments listed in Table 1. The time series are shown in
Fig. 5a and b. All experiments indicate that the anisotropy
did not reach a stationary value at the end of the experi-
ment but would further decrease with time. Extrapolating the
curves would probably reach a stable state around Amin =

−0.6, . . .,−0.8, which indicates that Amin must be smaller
than the lowest observed value of −0.45. Therefore, we
choose a practical minimum threshold of Amin =−0.7. We
note that such low values have been observed in neither lab
experiments nor nature, because the experiment would need
to last many hundreds of days and in nature snow would ei-
ther evaporate or TGM would occur combined with settling.

A simple check of anisotropy evolution with respect to the
vapor flux dependence can be done when ignoring the lim-

The Cryosphere, 14, 51–75, 2020 www.the-cryosphere.net/14/51/2020/



S. Leinss et al.: Modeling the evolution of the structural anisotropy of snow 59

Figure 5. (a) Anisotropy time series ACT(t) of the laboratory
experiments from Table 1. Dashed lines indicate modeled re-
sults. (b) Zoom into the first 15 d after the start of the experi-
ment. (c) When ignoring the lower threshold Amin and with α1 =
1.0 m2 kg−1 the simulated data already agree well with CT data. (d)
With a lower threshold Amin =−0.7 and with α1 = 1.01m2 kg−1,
the agreement of model and measurements indicates that the growth
of vertical structures is proportional to the water vapor flux.

iting factor (A−Amin)
2/A2

min in Eq. (5) and setting α1 =

1.0m2 kg−1. By time integration one obtains Amod
TGM(t)=

A(0)−α1|Jv|t , which agrees well with the experimental data
as shown in Fig. 5c. Because the laboratory CT data were ob-
tained with different temperatures and temperature gradients
(Table 1), this relation indicates that the growth of vertical
structures is almost linearly dependent on the vapor flux Jv.
Then we applied the full Eq. (5), including the limiting factor
with Amin =−0.7, which yields α1 = 1.01m2 kg−1 by mini-
mizing the RMSE (= 0.048) between the laboratory CT data
and the simulated data. Figure 5d shows a slight improve-
ment of the results compared to Fig. 5c.

An interesting detail appears in Fig. 5(b) at an early stage.
The anisotropy seems to be quite stable for a few days and
vertical structures do not start growing before 2–3 d after the
start of the experiment.

4.2 Seasonal evolution of the anisotropy

No laboratory data about the anisotropy evolution of new
snow are presently available. Therefore, we calibrated the
parameter α2 by running the full model on the output of
SNOWPACK and compared the depth-averaged anisotropy

measured by radar with the depth-averaged anisotropy of the
model results.

The radar-measured anisotropy time series, ACPD
avg , are

shown in the lower panels (b, d) of Figs. 6 and 7 as a line
of solid black dots. The corresponding standard deviation
of radar measurements acquired with different frequencies
and incidence angles of the radar antenna is indicated by
red error bars. Radar measurements were considered reliable
enough for model calibration when the snowpack was dry
and the standard deviation σ(ACPD

avg ) was below 0.05. Gray
dashed lines limit the radar measurements used for model
calibration; radar measurements excluded from calibration
are shown as gray dots. The beginning and the end of the
period considered to be the dry snow period are indicated
by vertical blue lines. During the dry snow period, a few
short melt events can be recognized in the depth-resolved
anisotropy profiles as gray areas.

In the radar measurements the maximum anisotropy never
grows much beyond+0.2, even in December 2011 where air
and soil temperature were around 0 ◦C so that the growth of
vertical structures by TGM was limited and mainly settling
of the thick snowpack occurred. From that we estimate the
value for Amax ≈ 0.3± 0.1 and used this value in the model.

The depth-resolved, modeled anisotropy is shown in color
in the upper panels, (a) and (c), of Figs. 6 and 7. Yellow
and red indicate horizontal structures and shades of blue in-
dicate vertical structures. The model is based on the output
of the best snowpack simulation. As we do not model the
anisotropy evolution of wet snow, wet snow is grayed out.
When the simulated anisotropy profiles are vertically aver-
aged one obtains the simulated, depth-averaged anisotropy,
Amod

avg , which is shown as a green line in the lower panels, (b)
and (d).

To evaluate the uncertainty of the free parameter α2 we
determined it for each season independently and also for all
seasons together by minimizing the RMSE between Amod

avg
and ACPD

avg . In addition to the RMSE, the model accuracy was
measured with the Nash–Sutcliffe model efficiency coeffi-
cient and also with the Pearson r correlation coefficient. Ta-
ble 4 summarizes the results. The depth-resolved profiles and
depth-averaged time series in Figs. 6 and 7 show the results
for α2 = 1.68 determined for all seasons together, which re-
sults in an RMSE of 0.033 and a Pearson r correlation coef-
ficient of 0.89.

The sensitivity of α2 on slightly different SNOWPACK
settings is represented by the ensemble of gray lines in panels
(b) and (d) of Figs. 6 and 7. The last column of Table 4 sum-
marizes the ensemble results. The ensemble of gray lines cor-
responds to α2 = 1.87± 0.25 where the uncertainty is speci-
fied by the standard deviation.

Considering that it is a hypothesis that settling increases
the anisotropy, it is remarkable that the modeled anisotropy
and the radar-measured anisotropy show a highly consistent
trend: the model is able to catch many details of the radar-
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Figure 6. Structural anisotropy simulated for the first two seasons 2009/2010 and 2010/2011. (a, c) Depth-resolved anisotropy (in color)
based on post-processed SNOWPACK data with model parameters α1 = 1.01m2 kg−1, α2 = 1.68,Amin =−0.7, andAmax = 0.3. Wet snow
is grayed out. The sampling date of the validation profile CT-1 is indicated by the dashed line. (b, d) Modeled, depth-averaged anisotropy
Amod

avg (green: ensemble median; gray: ensemble members) and radar-measured anisotropy ACPD
avg used for calibration of α2 (black). Gray

dots indicate radar measurements excluded from calibration because of a too big standard deviation (red error bars).

Table 4. Results for the parameter α2 determined for each season
independently and for all seasons together. The agreement between
model and radar anisotropy is given by the Pearson’s correlation co-
efficient (r), the Nash–Sutcliffe model efficiency coefficient (NS),
and the root-mean-square error (RMSE). The last row contains the
mean and standard deviation of α2 from the ensemble runs.

Season α2 r NS RMSE α2,ens± σ

2009/2010 1.41 0.61 0.25 0.024 1.72± 0.28
2010/2011 2.23 0.97 0.70 0.029 2.57± 0.72
2011/2012 1.02 0.96 0.92 0.018 1.04± 0.09
2012/2013 2.08 0.88 0.39 0.031 2.22± 0.36
2009–2013 1.68 0.89 0.55 0.033 1.87± 0.25

measured anisotropy time series. Nevertheless, in some early
winter periods, especially in the season 2010/2011, stronger
deviations occur, likely because of melt events and differ-
ently modeled snow height and layer thicknesses.

From the simulated anisotropy profiles it is evident that
snow layers at the bottom of the snowpack mainly show
vertical structures (blue, A< 0) while the upper snow lay-

ers (and the first snow every season), which are stronger af-
fected by snow settling, show generally horizontal structures
(yellow and red, A> 0). An exception is the snow surface,
which shows a more isotropic (and sometimes an even verti-
cal) structure compared to the underlying upper snow layers
which experienced more overburden pressure. The occasion-
ally appearing vertical structures at the snow surface are ex-
pected from the strong temperature gradients at the surface,
especially during clear-sky winter nights. During such condi-
tions, TGM transforms the top layers faster than intermediate
layers.

A small but very interesting detail, especially in the radar
measurements, is that the anisotropy does not grow instan-
taneously with accumulating new snow but shows a delayed
increase within a few days (e.g., in March 2010, March 2011,
December 2011, and February 2013). We think this delay
could result from a settling-related effect: initially fallen
crystals have an intrinsic particle orientation which is not per-
fectly aligned horizontally when first sticking to the surface.
Upon initial metamorphism and settling, which takes some
characteristic time, these crystals may further align horizon-
tally under the influence of gravity with a measurable im-
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Figure 7. Structural anisotropy simulated for the seasons 2011/2012 and 2012/2013. Labels CT-2, CT-3, and CT-4 indicate the sampling
dates of the CT validation data. Further descriptions are given in the caption of Fig. 6.

pact on the anisotropy. The delay seems to be more pro-
nounced in the radar measurements than in the model where
the anisotropy often increases too quickly after snowfall. The
length of this delay was determined to be about 2–4 d on av-
erage in Leinss et al. (2016, Sect. 5.4).

4.3 Validation with CT profiles from the field

The seasonally modeled depth-resolved anisotropy was vali-
dated with vertically resolved field-measured anisotropy CT
profiles. The dates when the CT profiles were obtained in the
field are indicated by vertical black dashed lines labeled with
CT-1, CT-2, CT-3, and CT-4 in Figs. 6 and 7.

In Fig. 8 the modeled anisotropy profiles (blue lines) are
compared to the CT-based anisotropy (gray dots; black line
indicating the 5 cm running mean). Table 5 lists correla-
tion coefficients between the modeled anisotropy and the
individual CT anisotropy data points derived from pex (left
columns) as well as the correlation coefficients with the 5 cm
running mean of the pex-based anisotropy (right columns).
For both, the Pearson r correlation coefficients are around
0.8 and higher except for CT-2 (r = 0.50) for which the snow
structure does not show much vertical variability except for
a thin layer of depth hoar at the bottom of the snowpack. Un-
fortunately for CT-1, Fig. 8a, no snow samples were taken

Table 5. Correlation coefficients between modeled anisotropy pro-
files and CT anisotropy profiles as shown in Fig. 8. The first three
columns are the correlation with respect to the individual anisotropy
data points; the rightmost three columns are correlations with re-
spect to the 5 cm running mean of the CT-measured anisotropy.

Correlation coefficients relative to CT data, pex

CT single samples CT: 5 cm running mean

Profile r NS RMSE r NS RMSE

CT-1 0.79 −0.18 0.15 0.84 −0.32 0.14
CT-2 0.50 0.10 0.15 0.85 0.49 0.12
CT-3 0.86 0.74 0.10 0.96 0.91 0.06
CT-4 0.91 0.69 0.12 0.92 0.75 0.11

for the lowest 10 cm for which the lowest anisotropy values
were modeled. The most positive anisotropy values in the CT
data of A= 0.3 with some scatter up to 0.4 and higher agree
with our estimation of Amax = 0.3± 0.1.
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Figure 8. Comparison of simulated anisotropy (Amod, blue line),
with field-measured CT anisotropy profiles (ACT,pex , gray dots;
black line: 5 cm running mean). Right axis: snow layer classifica-
tion according to Fierz et al. (2009) and measured snow height (HS,
horizontal black dashed line). The anisotropy determined from the
correlation length pc is shown as a green line (5 cm running mean).
The locations where the CT profiles were taken are shown in Fig. 3.

4.3.1 Anisotropy determined from pc

In general, the anisotropy could also be calculated from other
correlation lengths. For example, the anisotropyACT,pc is de-
rived from pc which is defined by the slope at the origin of
the correlation function. By definition, pc describes charac-
teristics on the smallest length scales, e.g., the specific sur-
face area (Löwe et al., 2011), and is not sensitive to the ex-
tent of large structures. Therefore, ACT,pc (green dashed line
in Fig. 8) indicates a less distinct anisotropy thanACT,pex . Es-
pecially for depth hoar, where both anisotropies differ most,
the often used relation pex ≈ 0.75pc is not valid (Mätzler,
2002; Krol and Löwe, 2016) and we obtained rather a rela-
tion of pex ≈ 0.8. . .1.2pc (Fig. S1). The comparison of the
anisotropy profiles based on pex and pc shows that pex is
more sensitive to characterize the anisotropy.

5 Discussion

A main motivation of this paper was to show that it is possi-
ble to model the radar-measured anisotropy solely based on
meteorological data. This was achieved in detail and demon-
strates that polarimetric radar measurements at sufficiently

high frequencies (10–20 GHz) can be used to monitor the
depth-averaged evolution of the anisotropy nondestructively
(Leinss et al., 2016) and even from space (Leinss et al.,
2014). Beyond that our results confirm that the creation of
vertical structures is mainly controlled by the recrystalliza-
tion rate of water vapor. The results further indicate a yet
undocumented effect of settling on the creation of horizontal
structures. It is remarkable that the model, which completely
neglects any grain size parameter like SSA, is able to pre-
dict the temporal evolution of a microstructural parameter,
the anisotropy, solely based on macroscopic fields and with
a very limited set of free parameters which we determined
from laboratory CT data and radar measurements.

5.1 Seasonal model results and snow conditions

Snow conditions observed in the field differed significantly
between the different winter seasons; therefore, we provide
a short summary for every season before discussing the evo-
lution of the simulated and radar-measured anisotropy with
respect to observed snow and weather conditions. For refer-
ence, snow height, air temperature, and soil temperature are
plotted in Fig. 10.

In the first season, 2009/2010, snowfall started in early Oc-
tober and accumulated up to 30 cm during relatively moder-
ate temperatures (and some short melt events) until the mid-
dle of December when temperatures dropped well below zero
and the soil froze.

The corresponding modeled mean anisotropy varies
strongly in October–November, Fig. 6b, where model and
radar data disagree because microwave penetration was re-
duced by temporary melt events, gray in Fig. 6a, and melt
metamorphism was not considered in the model anyway. The
precision of the radar measurements was also limited by the
10–15 cm thin snowpack. After the middle of November new
snow dominates the modeled anisotropy which then agrees
better with the radar measurements. At the end of Decem-
ber cold temperatures transformed the early winter snow-
pack into vertical structures. Each of the following snowfall
events temporarily increased the average anisotropy, Fig. 6b.
The NIR image from 23 February 2010, Fig. 9a, confirms the
model results of metamorphic snow (depth hoar) in the lower
30 cm of the snowpack and shows multiple distinguishable
layers above. No CT validation data are available for the first
season.

In the second season, 2010/2011, conditions are charac-
terized by a shallow snowpack with less than 30 cm of snow
until January, accompanied with cold temperatures. The soil
froze already in the middle of November and a layer of 20 cm
depth hoar was present during the entire season.

The modeled mean anisotropy, Fig. 6d, clearly shows ver-
tical structures until January but the radar data indicate a
less strong anisotropy. During this period, the uncertainty of
the radar data, indicated by the standard deviation (≈ 0.03,
red error bars), is higher compared to other periods which
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Figure 9. NIR photography of the snowpack. The image NIR-0 was acquired in the first season on 23 February 2010 where no CT data are
available. The other images NIR-1, NIR-2, NIR-3, and NIR-4 correspond to the CT profiles CT-1, CT-2, CT-3, and CT-4. The intensity of the
NIR photography is mainly determined by grain size but also shows the metamorphic state of the snowpack. The NIR photography provides
an independent measure for the absolute depth of individual snow layers and helps to identify strong structural transition in the snowpack.

could hint at some systematic measurement errors (Sect. 5.3).
The modeled, depth-resolved results show that these vertical
structures persisted through the entire winter season. In the
NIR image, Fig. 9b, these structures appear as a 20 cm thick
depth hoar layer at the bottom of the snowpack, which could
not be sampled for CT analysis due to its brittle structure. For
the upper 50 cm, the model overestimates the CT-measured
anisotropy but still agrees with the general trend of the CT
data from 3 March 2011, Fig. 8a.

In the third season, 2011/2012, snowfall started late but
with intense snowfall 50 cm of snow accumulated in Decem-
ber during very mild air temperatures, often above −5 ◦C.
Except for a few days in early December, TGM was almost
not present and field measurements report finer grain size
compared to other winter seasons (Leppänen et al., 2015).
Then, between January and early February, temperatures
dropped gradually from −10 to −30 ◦C and strong TGM
set in which transformed the finely grained snow visible in
Fig. 9c into the faceted crystals shown in Fig. 9d.
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Figure 10. Snow height and air and soil temperature at different
locations (IOA, AWS; MetM is meteorological mast).

The modeled mean anisotropy and also the radar measure-
ments show the highest observed values, A≈+0.2, because
in December vertical structures were almost completely ab-
sent. Only a thin layer of depth hoar is visible in the mod-
eled results, Fig. 7a, which is confirmed by NIR and CT data,
Figs. 9c and 8b. With the strong TGM in January–February,
the initial snowpack transforms quickly into a 30 cm thick

layer with vertical structures which emerges as a strong
anisotropy reversal in Fig. 7b. Then, in the middle of Febru-
ary, an additional 30 cm of new snow fell on top of the trans-
formed layers, resulting in the steplike anisotropy transition
in the profile CT-3 shown in Fig. 8c. Until April, several mi-
nor snowfall events appear as little oscillations in the depth-
averaged and radar-measured anisotropy, Fig. 7b.

At the end of the third season, gray snow layers appear in
Fig. 7a from 10 to 13 April 2012 after accumulation which
indicate that wet snow and rain fell on top of the snowpack,
which partially refroze afterwards. The event induced strong
settling in the SNOWPACK model which in turn increased
the modeled anisotropy (green line, Amod

avg ≈ 0.06). In con-
trast, the radar measurements reach zero for a moment (no
penetration into wet snow) but returned to the previous values
ACPD

dvt ≈ 0.03. We think that the anisotropy increase induced
by settling was compensated by an anisotropy reduction from
melt metamorphism which is currently not included in the
model.

In the last season, 2012/2013, conditions are character-
ized by four major snowfall events. During the first event in
November occasionally surface melt occurred. After the last
event in February, very little precipitation was measured and
cold temperatures persisted until early April.

The modeled mean anisotropy in November is above
+0.2, but because of frequent surface melt no reliable radar
measurements were possible (gray dots in Fig. 7d). Still, for
a few days in the middle of November, anisotropy values
up to +0.2 are visible in the radar measurements but they
quickly approached zero, likely because of decreasing mi-
crowave penetration into wet snow. With very cold temper-
atures around −20 ◦C at the end of November, the snow-
pack refreezes and the positive anisotropy recovers but then
quickly decays due to strong TGM, resulting in a 30 cm
thick layer of depth hoar which continued to evolve dur-
ing the remaining season, Fig. 7c. This depth hoar layer
reached the lowest anisotropy values observed in the field
ACT,pex ≈−0.4 as shown in CT-4 in Fig. 8d.

Interesting in March and April 2013, and also in other sea-
sons, are the modeled vertical structures at the snow surface.
These result from strong temperature gradients at the snow
surface which does not experience any overburdened pres-
sure and can therefore quickly transform into vertical struc-
tures or possibly surface hoar as classified by SNOWPACK
(Figs. S20).

5.2 Quality of meteorological input data

For the best modeled anisotropy results it is critical that both
meteorological input data and snow properties simulated by
SNOWPACK are as correct as possible. For most of the me-
teorological data this was ensured by using redundant sen-
sors; only precipitation was adjusted by SWE measurements
(details in Appendix A1; for raw data see Figs. S3–S6). The
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results of SNOWPACK were assessed with snow depth and
snow temperature.

For February 2011 we noticed that when air temperatures
dropped below −30 ◦C measured snow temperatures were
10–20 K lower than modeled snow temperatures (black vs.
red lines, second column in Fig. S17). We think that this
is a measurement error because temperatures 10 cm above
ground should not deviate strongly from measured soil tem-
peratures, especially below a 60 cm thick snowpack. Simi-
lar for February 2010, snow temperatures measured 50 cm
above ground were 10 K lower than modeled temperatures.
The reason could be a few centimeters deep snow pit at the
sensor array as mentioned in Sect. 3.3.3. Fortunately, for both
events, modeled temperature at the bottom of the snowpack
agrees closely with measured soil temperatures (red vs. gray
line, second-to-last row in Fig. S17). Hence, we are confident
that SNOWPACK simulated quite reasonable snow tempera-
tures.

Snow temperature, especially in the upper layers, is
strongly affected by the radiation balance which in turn af-
fects settling, snowmelt, and TGM. Therefore, wrongly in-
terpolated gaps in the radiation data cause deviations in the
modeled anisotropy. For example, in the first season, several
gaps of multiple days in the longwave radiation data between
December 2009 and January 2010 were interpolated. Likely,
too high incoming longwave radiation in the first week of
January 2010, resulting in modeling of a too warm snow sur-
face, could explain why the anisotropy in January 2010 did
not decrease as indicated by the radar measurements, Fig. 6b.
In the second season, several gaps of multiple days in the
longwave radiation data between November 2010 and Jan-
uary 2011 seem to be correctly interpolated as both snow
height and SWE agree very well; nevertheless, the simulated
anisotropy deviates from the radar data. In the third season,
radiation data were complete during winter. In the fourth sea-
son, the radiation balance for the rain-on-snow event in late
November 2012 was manually corrected (Appendix A2).

Missing shortwave reflection data were no problem, be-
cause shortwave reflection was estimated based on the simu-
lated albedo. The incoming shortwave radiation data did not
contain any significant gaps.

5.3 Precision of radar measurements

Deviations between model and radar data could result from
measurement errors and assumptions in the electromagnetic
model to derive the anisotropy from the CPD. Uncertain-
ties in the radar data could affect the strain parameter α2
and Amax. Of these, only α2 was solely determined by radar
whereas the value for Amax is also constrained by CT data.

The uncertainty of α2 = 1.0. . .2.5 results very likely from
model deficits rather than from radar measurements. The
anisotropy measured with radar at different frequencies and
incidence angles agrees within the standard deviation (shown
in Figs. 6 and 7) with the underlying model (Leinss et al.,

2016, Sect. 5.2). Systematic errors could result from un-
certainties of the snow depth, especially for a very thin
snow cover, but these measurements were excluded from
model calibration. Systematic errors could also result from
snow density estimations ρsnow ≈ 0.2±0.05 which, however,
would result in an anisotropy error of less than 10 % (Leinss
et al., 2016, Fig. 3).

5.4 Anisotropy model deficits

As a first approach, we avoided the inclusion of any other
microstructural parameter in the anisotropy model. A more
sophisticated description may discern different grain types,
shapes, and sizes and its potential impact on the transfor-
mation into vertical structures. The microstructure is only
reminiscent in the quadratic dependence (A−Amin)

2 of the
change rate which causes horizontal structures to transform
much faster than vertical structures. Further, and similar to
SNOWPACK, we did not consider any coupling between
TGM and settling as observed by Wiese and Schneebeli
(2017). Instead we fitted the free parameter α2 to radar data
and determined the uncertainty α2 ≈ 1.0. . .2.5 by indepen-
dent fits for each season and for different SNOWPACK en-
semble members (Table 4). As the settling rate depends on
the resistance of the bonded ice matrix to compression and as
the resistance should depend on the anisotropy we think that
α2 may contain a higher-order dependence on anisotropy.
However, to keep the number of free parameters small we
have used a constant value for α2. Interestingly, and likely
because of the bounds Amin and Amax, model results do not
differ significantly within the uncertainty range of α2 (com-
pare Figs. 6 and 7 with Fig. A3 in Appendix). Therefore, we
conclude that the mean value α2 ≈ 1.7 is a reasonably good
approximation which can be used for most snowpacks. Vary-
ing the values of Amin and Amax within the estimated uncer-
tainty range of ±0.1 does not affect the general dynamics
of the model. Within this range the modeled results hardly
changed more than ±0.05.

Our analysis is presently limited to the prediction of
anisotropy from the output of a snowpack model (no feed-
back). If the (existing) feedback of the anisotropy onto me-
chanical properties of snow was allowed for, the parameters
in the strain term will certainly change. We also point out
that currently no comprehensive laboratory data exist which
are able to confirm the predicted relation between settling of
fresh snow and the creation of horizontal structures.

In the model we also neglected any melt metamorphism
which could transform the microstructure very quickly. We
think that for our Finnish data, melt metamorphism can be
neglected as no strong melt events occurred except during
the spring snowmelt where no radar data are available. There-
fore, the calibration of a melt-metamorphism equation would
lack sufficient calibration data. Nevertheless, we would like
to propose a potential starting point for a model. Generally,
one would expect that the rounding of ice grains in the pres-

www.the-cryosphere.net/14/51/2020/ The Cryosphere, 14, 51–75, 2020



66 S. Leinss et al.: Modeling the evolution of the structural anisotropy of snow

ence of water drives anisotropic structures back to isotropy.
In the absence of observations, one may refer to Lehning
et al. (2002a) and Brun et al. (1992) and borrow a rate equa-
tion model for the anisotropy decay due to melt metamor-
phism in the form

Ȧmelt =−α3A · θ
v
w

3
, (15)

with the empirical constant α3 ≈ 2× 10−3 d−1 and the liq-
uid water volume fraction θv

w in % Vol. Due to lack of suffi-
cient data, we estimated the parameter α3 from the only event
(April 2012) where refreezing occurred after strong surface
melt. As a result, Eq. (15) induces almost isotropic condi-
tions at the end of the melt season (Fig. S26).

Turning to the initial anisotropy Aini in the model, we as-
sumed a constant value close to zero. Model results support
this assumption and provide reasonable results for Aini be-
tween 0.00 and 0.05. The profiles CT-2 and CT-3, Fig. 8b
and c, also show a slightly positive anisotropy, 0.05± 0.05,
for the surface layer 2–3 d after snowfall and support the as-
sumption that the initial anisotropy must be small. Within
the given range for Aini, a weak temperature dependence for
Aini might exist, but no representative data are available. We
think that stronger cohesion between crystals near the melt-
ing point could lead to a more isotropic structure (but with
faster settling) compared to cold temperatures where crys-
tals align rather by gravity and their anisotropic shape. A
temperature dependence for the shape of snow growing in
the atmosphere (Libbrecht, 2005) also influences the intrinsic
anisotropy of crystals. This may have an impact on the subse-
quent evolution of the anisotropy in the snowpack since dif-
ferent crystals (e.g., dendrites and graupel as extreme cases)
likely exhibit different settling rates and a different response
to TGM.

Finally we note that the crystallographic fabric of snow,
i.e., the angular distribution of the orientation of the c axis
of the hexagonal ice crystals (the crystal lattice orientation),
was also ignored. The c axis affects not only the dielec-
tric anisotropy but also the crystal growth dynamics. For
the radar data it was ignored because the crystallographic
fabric (anisotropy) has a very weak effect on the dielectric
anisotropy: 1A� 0.02 (Leinss et al., 2016, Appendix A).
For the model, we considered neither the evolution of the
snow crystallographic fabric nor its influence on the evolu-
tion of the structural anisotropy. Only very few studies ex-
ist about the crystallographic fabric in snow (Calonne et al.,
2016) or its evolution (Riche et al., 2013). Furthermore, the
dominant growth direction of snow crystals depends on tem-
perature (Lamb and Hobbs, 1971; Lamb and Scott, 1972)
and is not necessarily parallel to the temperature gradient
(Miller and Adams, 2009) as it can be clearly observed in
Pinzer et al. (2012, Supplement movie). The competing ef-
fect of growth direction by crystal orientation versus struc-
tural optimization to increase entropy production by increas-
ing the vertical thermal conductivity as suggested by Staron
et al. (2014) might be a reason why a lower limit Amin of

the anisotropy during TGM exists and why no perfectly ver-
tically oriented snow structure has been documented so far.

5.5 An undocumented effect of settling?

From the radar time series a clear increase in the anisotropy
a few days after snowfall is revealed in Leinss et al. (2016,
Sect. 5.4) and also in Chang et al. (1996, Fig. 7). Likewise,
spaceborne data indicate an increase in the CPD (and hence
the dielectric anisotropy) proportional to the amount of new
snow which must have settled after deposition (Leinss et al.,
2014, Fig. 12). In our model this settling-induced creation
of horizontal structures is well predicted by describing the
anisotropy changes proportional to the strain rate. The mod-
eled effect is however not independently confirmed yet and
existing studies about the anisotropy evolution under strain
provide very limited insight to confirm our hypothesis.

For example, Wiese and Schneebeli (2017) did not ob-
serve any significant growth of horizontal structures during
compaction of relatively dense and coarse snow (ρsnow ≈

250kgm−3, SSA= 13 m2 kg−1) which had also sintered
for several months after initial sample preparation by siev-
ing. Still, most samples showed a slight horizontal struc-
ture at the beginning of the experiment. Different to Wiese
and Schneebeli (2017) and with the aim to study new
snow of relatively low density (ρsnow ≈ 100kgm−3 and
SSA= 70 mm−1

= 76 m2 kg−1), Schleef and Löwe (2013)
avoided any sintering and observed indications for “the
anisotropic nature of densification” by attributing observed
density changes “solely to a squeeze of the structure in the
vertical direction, i.e., to axial strains”. The affine compres-
sion in our model reflects this squeeze.

From our modeled results and from the above-described
experiments and findings, we conclude that a so far undoc-
umented effect during settling exists which creates horizon-
tal structures, at least during an initial phase after new snow
deposition. Unfortunately, a reanalysis of the dataset from
Schleef and Löwe (2013) and Schleef et al. (2014) compris-
ing 700 CT images is beyond the scope of the present study,
also because the present calculation of the anisotropy from
CT images may break down in new snow (see discussion be-
low).

5.6 Anisotropy calculations from CT

Deviations between model and CT data could also result
from ambiguities in the definition of anisotropy for a given
microstructure. To understand this we recall that the rele-
vant structural quantity for the dielectric tensor is a second-
rank fabric tensor which is defined by an integral over the
anisotropic correlation function of the material (Rechtsman
and Torquato, 2008). Under the assumption that the cor-
relation function possesses ellipsoidal symmetry, i.e., has
the form C(r/`(cosθ)) with a single size scaling function
`(cosθ) that depends only on the polar angle θ , this inte-
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gral can be exactly evaluated. The resulting fabric tensor can
then be expressed in terms of the ratios of correlation lengths.
If ellipsoidal symmetry was strictly true, any derived length
scale (pex, pc, . . .) could be used for the anisotropy calcu-
lation and should lead to the same result. This is, however,
not the case since Fig. 8 shows that the anisotropies based
on the two correlation lengths pex and pc differ. On physi-
cal grounds, it is reasonable though that pex rather than pc
is better suited to characterize the structural anisotropy for
microwave measurements: pex characterizes the snow struc-
ture on length scales which are (still small but) closer to the
wavelength of the radar. In contrast, density fluctuations on
the smallest scales (namely those characterized by pc) solely
characterize local properties of the ice–air interface (Löwe
et al., 2011) which are irrelevant features for radar wave-
lengths. The experiments from Löwe et al. (2011) provide yet
another hint for the violation of an (strict) ellipsoidal symme-
try: it was shown the two-point correlation function contains
at least two characteristic length scales which exhibit differ-
ent ratios in different coordinate directions, again incompat-
ible with the ellipsoidal form. In summary, there is evidence
that the current (approximative) calculation of the anisotropy
from a CT image using exponential correlation lengths is not
equally well justified for different snow types. This may also
explain observed differences between modeled and CT-based
anisotropy and definitely needs to be taken into account in a
potential future assessment of strain effects on the anisotropy
evolution in snow.

6 Conclusions

In this paper, a model for the temporal evolution of the struc-
tural anisotropy of snow was designed. The model is based
on simple rate equations and requires solely macroscopic
fields as input variables, namely strain rate, temperature, and
temperature gradient, ideally depth-resolved. These variables
are provided by most of the more advanced snowpack mod-
els; here we used SNOWPACK.

To describe the evolution of the anisotropy, the model con-
siders only two contributions: temperature gradient meta-
morphism (TGM), which was confirmed to create verti-
cal structures, and snow settling for which we think that
the strain leads to preferentially horizontally oriented ice
grains in the snow microstructure. The TGM formulation
was validated with existing CT data from laboratory exper-
iments. The strain formulation was calibrated with 4 years
of anisotropy data obtained from polarimetric radar mea-
surements acquired in Sodankylä in Finland between 2009
and 2013. For calibration, we drove SNOWPACK with me-
teorological data and used the output to model the depth-
resolved anisotropy. Then, we minimized the difference be-
tween the depth average of the modeled anisotropy and the
depth-averaged radar anisotropy by adjusting a single-fit pa-
rameter. For sensitivity analysis the fit parameter was deter-

mined for each season separately but we also determined it
globally for the entire set of all four seasons. Additionally, we
run an ensemble of different SNOWPACK configurations to
evaluate the model sensitivity to slightly different snowpack
properties. We conclude that the same fit parameter can be
used for any snowpack because model results improved only
marginally when the parameter was adjusted for every season
individually. Finally, the modeled, depth-resolved anisotropy
profiles were validated with field-measured CT anisotropy
profiles. The modeled anisotropy varies between values of
about ±0.3 and agrees with the radar data with a root-mean-
square error (RMSE) of 0.03 (Pearson r = 0.8± 0.2) and
with CT data with an RMSE of less than 0.15 (Pearson
r = 0.7± 0.2).

The results have immediate implications:

1. The model performance allows for improved
parametrization of different snow properties like
thermal, mechanical, and electromagnetic properties.

2. Our results indicate a yet undocumented effect of set-
tling on the creation of horizontal structures in new
snow.

3. The detailed agreement between the radar-measured
anisotropy and the anisotropy modeled from meteoro-
logical data demonstrates that polarimetric radar mea-
surements at sufficiently high frequency (10–20 GHz)
can be used to monitor the evolution of the structural
anisotropy.

The simplicity of the model facilitates an immediate im-
plementation into common snow models to simulate the
anisotropy, at least during dry snow conditions. We could
show with laboratory CT data that for dry snow the growth
of vertical structures is proportional to the vertical water va-
por flux. Unfortunately, experiments with wet snow meta-
morphism at the melting point are difficult and only very few
studies exist; therefore, we could only hypothesize about a
formulation for the anisotropy evolution during snowmelt,
which limits our model to dry snow applications.

The observation that the compression of new snow leads
to horizontal structures may stimulate new laboratory exper-
iments to reveal the mechanisms underlying the evolution of
anisotropy in new snow and its feedback on mechanical prop-
erties as a function of crystal type. The fact that model, radar
measurements, and CT data are consistent gives confidence
in the interpretation of the radar-measured anisotropy. De-
pending on the system geometry, the anisotropy can only be
measured depth-averaged (remote-sensing systems) or even
depth-resolved with in situ systems as done for a fast charac-
terization of firn cores (Fujita et al., 2009). Similarly, radar
systems mounted on rails could be used to scan the snow-
pack layer by layer and nondestructively which allows for
monitoring of the evolution of the depth-resolved anisotropy.
Radar satellites can directly measure the co-polar phase dif-
ference (CPD) which is proportional to the depth-averaged
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anisotropy of a dry snowpack. For single radar acquisitions
the CPD can be difficult to interpret and can even be zero
for a snowpack with equal portions of layers with positive
and negative anisotropies. In contrast, with radar time series,
quantitative information, e.g., about new snowfall, can be ob-
tained because we showed that the transformation by TGM
is often slower than the anisotropy increase during accumu-
lation of new snow (Leinss et al., 2014).

Finally, the large observation time spanning four win-
ter seasons with a sampling interval of 4 h constitutes a
unique data source to study the evolution of the anisotropy
of snow. We think that the developed model and the deter-
mined parameters are relevant for future consideration of the
anisotropy in snow models. In addition, the SNOWPACK
model was calibrated with considerable effort to provide a
valuable dataset to study microwave properties of snow, es-
pecially within the framework of the Nordic Snow and Radar
Experiment (NoSREx-I–III) in Finland, Sodankylä.

In conclusion, our approach demonstrates that high-
precision measurements from polarimetric radar systems are
able to measure, even from space, very weak but objective
microstructural signatures which can be exploited to infer the
macroscopic physical properties remotely.
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Appendix A: Preprocessing of meteorological data and
SNOWPACK calibration

A1 Preprocessing of meteorological data

In order to provide SNOWPACK physically consistent input
data, all meteorological data were preprocessed, filtered, and
combined, and gaps were interpolated if they could not be
filled by datasets of equivalent sensors. Figure S2 shows a
processing flow chart of the meteorological data which were
used to create the three input files required by SNOWPACK
(soillayer*.sno, config*.ini, meteoin*.smet). We combined
data measured at the IOA, meteorological mast, and AWS.
All raw data were downsampled to a 1 h sampling interval.
Invalid data were removed and redundant datasets were av-
eraged. Data gaps were interpolated with algorithms which
considered diurnal and seasonal cycles and also the type and
statistics of existing data series. For comparison, Supple-
ment figures show raw data (Figs. S3–S6) and processed data
(Figs. S7–S10).

Snow height (HS) and air temperature (TA) were mea-
sured by at least one sensor at each of the three sites (IOA,
AWS, meteorological mast), but some of the data series con-
tained gaps of a few days. The measurements of the three
sensors were very similar (see Figs. S3–S6): standard de-
viation snow height σHS = 2.6cm and maximum difference
1HS95 % < 10cm for 95 % of measurements. Standard de-
viation of air temperature σTA < 0.6K and maximum devia-
tion of air temperature 1T95 % < 2.0K for 95 % of measure-
ments. Therefore, the data were averaged when data from
more than one sensor were available. By this redundancy,
we obtained almost complete time series of snow depth and
air temperature. Remaining gaps of a few days were interpo-
lated.

Four different soil temperature measurements (TSG) were
averaged: they were each measured at two locations 2 cm be-
low the surface a few meters apart at the IOA (SMT: soil
temp B, soil temp C) and at two sites near the meteorological
mast at −5 and −10 cm depth. The soil temperature of all
four sensors differed by less than 1.5 K for 95 % of measure-
ments and had a standard deviation of 0.5 K.

Soil moisture showed signification variations between the
six different sensors (each with two sensors at −2 and
−10 cm depth at the two locations SMT-A and SMT-B at
IOA and also two sensors at −5 and −10 cm depth at
the meteorological mast). However, all sensors showed the
same trends with 5 % Vol–15 % Vol liquid water content dur-
ing summer, 1 % Vol–3 % Vol liquid water content during
winter, and 15 % Vol–35 % Vol liquid water content during
snowmelt.

Relative humidity (RH), wind speed (VW), wind direc-
tion(DW), and maximum wind speed (VWM) were only
measured at the AWS and gaps of a few days were filled by
a combination of linear interpolation, average data from the
four seasons, and diurnal cycles.

Precipitation (PSUM) was measured 600 m north of the
IOA. In order to calibrate the precipitation data to the IOA,
we adjusted the precipitation data such that the cumulated
precipitation of the AWS (SWEAWS,cal) closely follows the
reference snow water equivalent (SWEREF), composed by
SWE data measured by SnowScat during dry snow condi-
tions and data from the GWI during snowmelt (Leinss et al.,
2015). Calibration was done by amplifying or decreasing
existing precipitation when the cumulated precipitation of
the AWS, SWEAWS,raw, was lower or higher than SWEREF.
A comparison of raw precipitation (PAWS, blue), calibrated
precipitation (PREF, red), and precipitation change (green)
is shown at the top together with the SWE data (below) in
Fig. A1. SNOWPACK runs with calibrated and uncalibrated
precipitation showed that the calibration of precipitation im-
proved the results for the simulated snow height. Some minor
inaccuracies in precipitation data can be detected by compar-
ing measured and modeled snow height, Fig. S16.

The precipitation phase (PSUM_PH) was measured by the
disdrometer located at the IOA (data from https://litdb.fmi.fi,
last access: 9 January 2020). However, the data were not di-
rectly used because the disdrometer frequently misclassified
snow as rain. Therefore, the disdrometer data were only used
to check the rain/snow threshold (THRESH_RAIN). Accord-
ing to the disdrometer data combined with air temperature
data from the AWS, we determined a rain/snow threshold of
T = 0.73 ◦C or alternatively a linear range from Tsnow = 0.06
to Train = 1.40 ◦C (Fig. A2).

A2 Calibration and interpolation of radiation data

To provide consistent solar radiation data, data acquired by
different sensors between January 2009 and September 2015
were homogenized and gaps were interpolated. Plots of the
original raw data and the homogenized and filled data are
provided in the Figs. S15 (all radiation data), S3–S6 (sea-
sonal raw data), and S7–S10 (seasonal filled data). The in-
coming shortwave radiation data were almost complete and
were interpolated only for a few isolated days. The reflected
shortwave radiation data were modeled by SNOWPACK
based on the simulated albedo.

The longwave radiation balance was measured at the radi-
ation tower. Longwave radiation data contained a few gaps
up to 20 d long (one gap of 52 d in autumn 2011 is ir-
relevant because this gap is before the onset of snowfall).
Data gaps shorter than 12 d were interpolated by the Gaus-
sian average of neighboring data points (FWHM= 1 d, ker-
nel size= 12 d). Remaining gaps of up to 8 d were linearly
interpolated. Additionally, to reconstruct the diurnal radia-
tion cycles, the average radiation of each hour of the year
was high-pass filtered (Gaussian window of 6 d) and added
to the smoothly interpolated data gaps. To provide SNOW-
PACK the possibility to correctly model snow melting and
settling during 21–23 November 2012, the longwave incom-
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Figure A1. Top: precipitation from the AWS, adjusted precipita-
tion (PREF), and difference between both. Below: SWE time series
derived from different methods are shown: snow pit data (black bul-
lets), GWI (green), and SnowScat (black). Blue and red lines are the
cumulated precipitation of the AWS and the adjusted precipitation
PREF. Vertical dashed–dotted lines indicate snow freeze and melt
(light blue) and the period of snow-covered ground (gray).

ing radiation was increased by 45 Wm−2. Webcam observa-
tion confirms foggy conditions during this period.

A3 SNOWPACK calibration

For comparison of the natural snowpack with the modeled
snowpack under different configuration settings, we com-
pared measured and modeled snow height and snow tem-
perature. Snow temperature was measured at five internal
snow temperature sensors at 10, 20, 30, 40, and 50 cm above
ground. For snow height and snow temperature we evaluated
six statistical descriptors for each of the four seasons: the
smallest (negative) difference, the largest (positive) differ-
ence, the absolute deviation for which 95 % of all absolute
deviations are smaller, the root-mean-square error, the mean
difference, and the Nash–Sutcliffe model coefficient. In ad-
dition to individual seasons, we calculated these descriptors

Figure A2. From the precipitation phase measured by the disdrom-
eter we determined a mean rain/snow threshold of 0.73 ◦C using
a robust least-absolute-deviation (LAD) fit (blue line). A linear fit
provides the same threshold but a slightly lower slope. Before fit-
ting, we set a filter boundary (green dotted line) of 0.73±3 ◦C. Data
outside the boundary are considered to be misclassified precipita-
tion.

for the data of all four seasons together. This provided in total
2×(4+1)×6= 60 quantities for comparisons. To determine
the “best” simulation(s), we compared these 60 quantities of
every SNOWPACK run with all of the other 5000+ SNOW-
PACK runs and calculated a score which describes how many
times these 60 comparisons show a better result (smaller er-
ror, larger Nash–Sutcliffe coefficient) than all other runs. The
total score was divided by the total number of runs which
results in a score between 0 and 60. A score of 60 indi-
cates that a single run outperforms every other run indepen-
dent of which statistical variable is analyzed. The maximum
achieved score was 51.3, and the lowest score 9.3.

In addition to the relative scoring by pair-wise compar-
ison of all SNOWPACK runs, we used a second scoring
scheme which defined fixed height and temperature thresh-
olds for each of the six statistical descriptors. The thresholds
are listed in Table A1. The sum of all fulfilled conditions for
all years simultaneously and for all individual years again
achieved a maximum score of 60. The score by comparison
and score by threshold show an approximately linear rela-
tion. Histograms over all SNOWPACK runs with the score
by threshold and the distribution of statistical descriptors are
shown in Fig. S18.

For SNOWPACK calibration, we varied the follow-
ing parameters: scaling of shortwave and longwave
radiation by various constant factors, various thresh-
olds for the snow/rain threshold (THRESH_RAIN),
various factors for the WIND_SCALING_FACTOR
with SNOW_EROSION=TRUE/FALSE, five differ-
ent settings for the ATMOSPHERIC_STABILITY,
creation of shortwave reflected radiation from albedo
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Table A1. Thresholds for snow height (HS) and snow temperature
(TS) which were used to score the different SNOWPACK runs.

Statistical descriptor Threshold value for

Evaluated for all/each year(s) HS (cm) TS (◦C)

Smallest negative difference > −10.0 −10.0
Largest positive difference < 12.0 10.0
Max. abs. difference (95 %) < 5.0 3.0
Root-mean-square error < 2.5 2.5
Mean difference < 1.0 0.20
Nash–Sutcliffe coefficient > 0.98 0.77

(RSWR::create= ISWR_ALBEDO) on/off, calibrated or
uncalibrated precipitation PSUM (see Sect. A1), with or
without provided precipitation phase (PSUM_PH in *.smet
files), filling of longwave radiation gaps with the generator
ILWR::allsky_lw::type=Konzelmann or our method de-
scribed in Sect. A2, and SW_MODE=BOTH/INCOMING.

We found that radiation scaling was crucial to produce cor-
rect results. Additionally, snow erosion with a wind scaling
factor around 2 significantly improved the results. With at-
mospheric stability normal we got much better results com-
pared to other atmospheric models. Interestingly, only the
model MO_MICHLMAYR required not much modification
of the radiation in contrast to the other atmospheric models.
Setting SW_MODE= INCOMING instead of BOTH did not
change the results except near the end of snowmelt where a
slight change was observable. As can be seen, for our test
site, SNOWPACK works better when the reflected shortwave
radiation is estimated via the albedo than vice versa.
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Figure A3. Modeled solution of all four seasons when the parameter α2 is optimized for every season (row 1–4, Table 4).
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