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Abstract
Autoregressive state transitions, where predic-
tions are conditioned on past predictions, are
the predominant choice for both determinis-
tic and stochastic sequential models. How-
ever, autoregressive feedback exposes the evo-
lution of the hidden state trajectory to po-
tential biases from well-known train-test dis-
crepancies. In this paper, we combine a la-
tent state space model with a CRF observa-
tion model. We argue that such autoregres-
sive observation models form an interesting
middle ground that expresses local correla-
tions on the word level but keeps the state evo-
lution non-autoregressive. On unconditional
sentence generation we show performance im-
provements compared to RNN and GAN base-
lines while avoiding some prototypical failure
modes of autoregressive models.1

1 Introduction

Sequential autoregressive models express pre-
dictions of observations based on past predic-
tions. They are the predominant architecture for
text generation in a maximum likelihood setup
(Graves, 2013; Sutskever et al., 2014) and are used
in machine translation (Bahdanau et al., 2015;
Vaswani et al., 2017), summarization (Rush et al.,
2015), and dialogue systems (Serban et al., 2016).

An immediate consequence of combining au-
toregressive modeling and maximum likelihood
training is that past observations enter the loss
functions as ground-truth, not predicted observa-
tions (Goodfellow et al., 2016). This discrepancy
is often summarized as teacher-forcing and the
bias it implies is referred to as exposure-bias (Ran-
zato et al., 2016; Goyal et al., 2016).

1Code and generated sentences available at https://
github.com/schmiflo/crf-generation

The standard methodology to turn a sequen-
tial model into an autoregressive one is to intro-
duce a feedback loop, where one provides the last
predicted token as a feature to the computation
of the next state (Graves, 2013). The ground-
truth observations become effectively input fea-
tures for the evolution of the hidden state trajec-
tory at training time. Several attempts have been
made to introduce robustness with respect to the
model’s predictions by leaving the maximum like-
lihood framework, either implicitly (Bengio et al.,
2015; Bowman et al., 2016) or explicitly (Goyal
et al., 2016; Leblond et al., 2018). Neverthe-
less, the same feedback mechanisms have been
adopted in latent sequential models where they
obfuscate the true stochasticity of transitions dur-
ing training. Non-autoregressive sequence mod-
els have recently regained attention for uncondi-
tional (Schmidt and Hofmann, 2018; M. Ziegler
and M. Rush, 2019) and conditional (Lee et al.,
2018) generation.

We argue that there is an interesting interme-
diate regime between feedback-driven autoregres-
sive models and completely non-autoregressive
models, namely modeling temporal correlations as
part of the observation model. We propose a neu-
ral CRF observation model that leverages word-
embeddings to explain local word correlations in a
global sequence score. We show how training and
generation can be performed efficiently. The result
is an autoregressive model that keeps the hidden
state evolution less affected by observation noise
while generating coherent word sequences.

2 Related Work

Conditional Random Fields (CRF) were originally
introduced by Sha and Pereira (2003) to overcome

https://github.com/schmiflo/crf-generation
https://github.com/schmiflo/crf-generation
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label bias, a shortcoming of locally normalized
observation models. They have been applied and
integrated into neural-network architectures (Ma
and Hovy, 2016; Huang et al., 2017) in various se-
quence labeling tasks (Goldman and Goldberger,
2017) where the observation space exhibits small
cardinality (typically tens to hundreds).

The importance of global normalization for se-
quence generation has only lately been empha-
sized, most notably by Wiseman and Rush (2016)
for conditional generation in a learning-as-search-
optimization framework and by (Andor et al.,
2016) for parsing.

Word-embeddings have been reported as excel-
lent dense representations of sparse co-occurrence
statistics within several learning frameworks
(Mikolov et al., 2013; Pennington et al., 2014).
Using embeddings in pairwise potentials has been
proposed by Goldman and Goldberger (2017), but
they do not compute the true log-likelihood during
training as we do. Similar techniques have been
applied for various message passing schemata
(Kim et al., 2017; Domke, 2013).

Local correlations such as our pairwise poten-
tials have been used by (Noraset et al., 2018), yet
as an auxiliary loss and not for model design.

Other approaches to tackle teacher-forcing
have been proposed in an adversarial setting
(Goyal et al., 2016), in search based optimiza-
tion (Leblond et al., 2018) and in a reinforcement
learning setting (Rennie et al., 2016).

3 Model

Latent sequential models for text generation typi-
cally consist of two parts: A mechanism for gener-
ating a latent hidden state trajectory h = h1:T , and
an observation model. The latter predicts the data
w = w1:T given the latent states. The most sim-
ple dependency structure for such a model is that
of an Hidden Markov Model, which breaks into
transitions p(ht|ht−1) and observations p(wt|ht).
In contrast, models with autoregressive transitions
factorize as

p(w,h) =

T∏
t=1

p(wt|ht)p(ht|ht−1, wt−1) . (1)

The result is a next-state distribution with depen-
dencies identical to deterministic RNN transitions
ht = F (ht−1, wt−1) and indeed similar neural
networks can be used to parametrize a simple, e.g.,
Gaussian distribution (Fraccaro et al., 2016).

As a negative consequence, we inherit teacher-
forcing. This comes with aforementioned biases
and also conflicts with our notion of uncertainty
in p(ht|ht−1, wt−1) which during training solely
depends on the continuous parameters (i.e. a mean
and a variance), but is greatly affected by the dis-
crete sampling noise in wt−1 at test time.

Autoregressive observation model We con-
sider an alternative to autoregressive feedback
mechanisms such as (1), where predictions are di-
rectly injected into states. We write

p(w,h) = p(w|h)
T∏
t=1

p(ht|ht−1) (2)

assuming only Markovian transitions and focus
on finding a powerful observation model instead.
Crucially, since the state space model is not af-
fected by previous outputs, word coherence may
be lost when simply factorizing as in p(w|h) =∏
t p(wt|ht), i.e. with independent soft-max fac-

tors p(wt|ht) ∝ expψ(wt,ht) whereψ(wt,ht) =
x(wt)

>ht. However, a natural extension can be
found by reformulating local normalization as a
form of global normalization without correlations
across time

p(w|h) =
T∏
t=1

expψ(wt,ht)∑
w′t

expψ(w′t,ht)
(3)

=
expS(w,h)∑
w′ expS(w

′,h)
(4)

where S =
∑T

t=1 ψ(wt,ht) contains no depen-
dencies between wt and wt′ for t 6= t′. As soon as
we add word-correlations to S, we obtain a truly
global observation model that cannot be expressed
in the form of (3).

3.1 CRF Observation Model
Equation (4) describes a conditional random field
(CRF) with an energy function S (Sha and Pereira,
2003). We consider up to pairwise interactions be-
tween consecutive words

S(w;h)=
T∑
t=1

ψ(wt;ht)+ψ(wt−1, wt;ht−1:t) (5)

The potentials ψ reflect the independence assump-
tions among w and determine the complexity of
the normalizer Z =

∑
w′ expS(w

′). Fortunately,
for chain-like interactions such as (5), efficient dy-
namic programming routines are available.
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Figure 1: Schematic comparison of differently normalized architectures. We sketch trellis diagrams for V =
{w1, w2, w3} and T = 4. Dashed lines indicate autoregressive dependencies in the log-likelihood computation.
Left: Standard RNN with soft-max observations. Since the model is locally normalized, the trellis diagram does
not unfold across time-steps. Middle: Our proposed CRF model. The potentials only span across pairs, but the
normalization is global and can be computed exactly and efficiently. Right: An intractable globally normalized
model in which fully-connected potentials ψ(h(w)) are obtained from an RNN. Computing a single p(w) would
require running the RNN |V |T times. We highlight four runs for illustration.

Two properties set our model apart from
feedback-driven autoregressive models. First, al-
though ψ captures only pairwise interactions, a
state ht will not only affect future observations but
also all past observations through the global cou-
pling. Second, our model implicitly considers all
possible sequences w also at training time due to
the global normalizer Z.

3.2 Sampling
Given a trained model, we can perform ances-
tral sampling via h ∼ p(h) and w ∼ p(w|h).
However, CRFs are undirected graphical models
not designed with generation in mind and there-
fore we first need to derive ancestral sampling
for p(w|h). We can always write p(w|h) =∏
t p(wt|w1:t−1,h) and find the factors

p(wt|w1:t−1,h)=e
ψ(wt−1,wt)+ψ(wt)βt+1(wt)

βt(wt−1)
(6)

where

βt(wt−1) =
∑
wt

eψ(wt−1,wt)+ψ(wt)βt+1(wt) (7)

with special cases β1(w0) = 1 and βT+1(wT ) =
Z are the backwards probabilities we anyway need
to compute for (4). Not surprisingly, multiplying
(6) for t = 1 : T lets all β terms cancel except
for 1/Z and we recover (4). However, this form
is more amendable to sampling2 and reveals an in-
teresting property of globally normalized models:
While the chain rule always allows to write such

2In fact, one can train on (6) instead of (4). However, in
our experiments we found the latter global normalization to
be much more stable numerically.

models autoregressively, we must expect a factor
– here βt+1(wt) – that implicitly marginalizes out
future observations to assess compatibility with a
specific next word wt. Tractability of this factor
is key to obtain a tractable model and is traded for
expressiveness. While locally normalized models
are on one end of the spectrum, a globally nor-
malized with fully-connected potentials ψ(h(w))
is on the other end. Such models employ an RNN
in each potential to obtain an un-normalized score
ψ from states h and have been investigated in con-
ditional generation where argmax-decoding rather
than sampling is requried (Wiseman and Rush,
2016). Figure 1 shows the dependencies of the two
extremes with our model in the middle.

3.3 Embedding-based Local Correlations
Often pairwise potentials can be parametrized di-
rectly, i.e. as ψ(wi, wj) = Aij for some param-
eter matrix A ∈ RV×V . However, in our setting
this is problematic for two reasons. First, |V |2 pa-
rameters are impractical in terms of model size for
most vocabularies. Second, computations involv-
ing A are central to the complexity of computing
log-likelihood during training. Namely, to com-
pute the normalizer Z, we need to compute all β
quantities in (7). Identifying βt(wt−1) as a |V |-
dimensional vector βt, we can write the summa-
tion in (7) as a matrix-vector product

βt = T(ot � βt+1) (8)

where � is an element-wise product, ot are the
unary potentials ψ(wt) written as a vector and
T = expA element-wise. We observe, comput-
ing Z naively requires O(|V |2T ) operations.
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To overcome the above shortcomings, we pro-
pose to factorize T as

T = X>S(ht−1,ht)Y (9)

into context-independent d-dimensional embed-
dings X,Y ∈ Rd×|V | and a context-dependent
d × d interaction matrix computed by a neural
network S : Rd′ × Rd′ → Rd×d. This reduces
the memory requirement to O(d|V |) and compute
time to O(d|V |T ), which is comparable to com-
puting standard soft-max logits. As an additional
benefit we can initialize X and Y with pre-trained
word-embeddings, a technique often reported to
improve convergence. Sine A does not have more
structure than being strictly positive element-wise,
it is sufficient to use strictly positive activation
functions around the layers in (8) to obtain a valid
factorization.

3.4 Training
As is standard for latent sequential models, we use
variational inference for training (Blei et al., 2017;
Zhang et al., 2018). We introduce a parametrized
approximate inference model q(h|w) to maximize
the evidence lower bound (ELBO) for a sam-
pled trajectory instead of maximizing the marginal
across all trajectories:

log p(w) =

∫
p(w,h)dh (10)

≥ Eq
[
log p(w|h) + log

p(h)

q(h|w)

]
(11)

The first term of (11) measures reconstruction
while the second measures the discrepancy be-
tween the trajectories implied by the inference
model q and the generative model p. The ex-
act form of p(h) depends on its factorization and
if it is autoregressive but for us simply p(h) =∏
t p(ht|ht−1), which casts us as an autoregres-

sive extension of Schmidt and Hofmann (2018).

Inference model Like (Fraccaro et al., 2016),
we choose q to factorize as the true posterior

q(h|w) =
T∏
t=1

q(ht|ht−1, wt:T ) (12)

where w1:T is encoded using an RNN running
backwards in time to parameterize mean and vari-
ance of a Gaussian for q(ht|ht−1, wt:T ). For
optimization we follow existing work (Fraccaro

et al., 2016; Goyal et al., 2017) and use the
re-parametrization trick (Rezende et al., 2014;
Kingma et al., 2016) to perform a stochastic gra-
dient step on (11) with Adam (Kingma and Ba,
2014) using a single trajectory.

4 Experiments

Exposure-bias can be summarized as over-
confident conditioning on “pseudo” predictions
during training. The strength of the bias depends
on the informativeness of such predictions, which
in turn depends on the remaining context provided.

We test our proposed method on unconditional
generation which does not provide context such as
a source sentence to narrow down possible outputs
a priori. Hence, potential biases are more pro-
nounced and generation is isolated from effects in-
duced by i.e. a translation or summarization task.

Setup Unconditional generation is still consid-
ered a challenging task for both, GANs and la-
tent stochastic models, (Fedus et al., 2018) and
standard RNNs form a very competitive baseline
(Semeniuta et al., 2018). To obtain a homoge-
neous text dataset of low complexity we extract the
plain text (text and hypothesis) from the Standard
SNLI dataset (Bowman et al., 2015) (For details
and samples see Appendix A).

Baselines We compare against a GRU (an
LSTM performed on par) standard RNN of match-
ing state size denoted DRNN. We also include
SeqGAN3 (Yu et al., 2017), a popular GAN ar-
chitecture for unconditional generation. Further,
we restrict our model to unary potentials to ob-
tain a non-autoregressive state space model similar
to that of Schmidt and Hofmann (2018), denoted
SSM. Finally, 2-GRAM is a bi-gram language
model and ORACLE is held-out data, which rep-
resents the gold-standard for unconditional gener-
ation.

Parameterization We use 16-dimensional la-
tent states, pre-train 100-dimensional GloVe em-
beddings and use word and context vectors for
Y and X. For S we found a diagonal matrix
to perform best. In this case, the symmetry of
T is broken by larger unary potentials. While
we find larger word embedding dimensionality to
improve performance, the model does not benefit
from more latent dimensions as an RNN does from

3We use the hyper-parameters recommended by the au-
thors even though the state size is larger than ours.
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hidden dimensions, a known issue of deep latent
variable models (Schmidt and Hofmann, 2018;
M. Ziegler and M. Rush, 2019).

4.1 Qualitative Results
Table 1 shows selected output generated by our
model (See Appendix B for more output). While

a dog runs .
the children are alone .
the man is being beaten .
the man is inside working onstage .
the dog is outside with his girlfriend .
two dogs going swimming in an open-air festival .
a young lady wearing a pink shirt is studying .

Table 1: Output of our model of different length.

many of our sentences are grammatical and mimic
those of the dataset we note that the corpus is
not large enough to learn common sense and all
models including the baselines sometimes gener-
ate output such as two men are burning snow.

4.2 Quantitative Results
Perplexity under external language models is the
standard metric to evaluate unconditional output
(Fedus et al., 2018) and we use Kneser-Ney-
smoothed models up to4 n = 3 estimated on the
training data using SRILM (Stolcke, 2002).

In addition, we propose to estimate some impor-
tant aggregate statistics easily verifiable against
the real data. We choose length l and percentage of
unique sentences ρUNI to assess diversity and per-
centage of token repetitions ρREP to adress a failure
mode often found in generative models (Tu et al.,
2016). Table 2 shows the results.

PPL2 PPL3 ρREP l ρUNI

SSM+CRF 40.1 41.9 0.35 8.4 98
SSM 158.5 172.2 9.20 8.9 100
DRNN 47.1 43.5 0.78 8.7 99
SEQGAN-20E 22.4 23.1 0.63 5.7 58
SEQGAN-200E 53.0 57.0 6.88 7.1 80
2-GRAM 34.4 46.3 0.27 8.0 82
ORACLE 26.7 17.7 0.17 8.9 99

Table 2: Our model SSM+CRF evaluated against the
baselines on 100K generated sentences each: Perplex-
ity of output under external language model PPLn, per-
centage of repeated tokens per sentence ρREP, length l,
and percentage of unique sentences ρUNI. All statistics
should be compared to ORACLE, a held-out data split.

4We find that the data is too sparse to train 4-gram lan-
guage models as measured on a test-set.

5 Discussion and Future Work

In terms of perplexity our model clearly improves
over SSM, outperforms DRNN as measured by
bigram statistics, and is on par with it in terms
of trigram statistics. Of course, 2-GRAM excels
in terms of bigram statistics, yet falls behind on
longer statistics. This confirms that our model can
learn beyond pairwise interactions through the la-
tent chain. In addition, through our explicit model
of pairwise interaction we obtain repetitions ρREP

significantly closer to the real data distribution.
For SEQGAN we report after 20 epochs (as

used by the authors) and 200 epochs. We observe
in general shorter output with more repetition (i.e.
of words are, is and up) and note that depending
on training time the stellar fluency is traded with a
significant bias on length l and very poor diversity
ρUNI, a tendency also observed by Xu et al. (2018)
and possibly related to the choice of temperature
parameter (Caccia et al., 2018). While it is not our
goal to provide a deeper analysis of GANs here,
the example shows how unconditional generation
can reveal tradeoffs not present in a conditional
setting.

Future Work We have shown that autoregres-
sive predictions expressed in the observation
model instead of hidden states deliver better re-
sults on a simple corpus. In particular, mistakes at
the bigram-level, such as repetitions, are avoided
and we suspect that more densely connected CRFs
allow to extend these promising results to more
complex patterns found in more complex corpora.
In future work we plan to investigate if CRF vari-
ants such as (Belanger et al., 2017) or (Krähenbühl
and Koltun, 2012) can be adapted to allow efficient
sampling and to scale to word vocabulary sizes.

6 Conclusion

We have shown an alternative methodology to au-
toregressive modeling that avoids exposure-bias in
hidden states by design through a globally nor-
malized observation model. We derived a sam-
pling method and an efficient embedding-based
parameteriation of CRFs to trade expressiveness
with tractability. On an unconditional generation
task, we obtain better results than a determinis-
tic RNN in a low-dimensional setting and more
consistent results than a GAN baseline. Finally,
we have pointed into directions on how to capture
more complex correlations.



3405

References
Daniel Andor, Chris Alberti, David Weiss, Aliaksei

Severyn, Alessandro Presta, Kuzman Ganchev, Slav
Petrov, and Michael Collins. 2016. Globally nor-
malized transition-based neural networks. CoRR,
abs/1603.06042.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In ICLR.

David Belanger, Bishan Yang, and Andrew McCallum.
2017. End-to-end learning for structured prediction
energy networks. In ICML.

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and
Noam Shazeer. 2015. Scheduled sampling for se-
quence prediction with recurrent neural networks.
In NIPS.

David M Blei, Alp Kucukelbir, and Jon D McAuliffe.
2017. Variational inference: A review for statisti-
cians. Journal of the American Statistical Associa-
tion.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In EMNLP.

Samuel R. Bowman, Luke Vilnis, Oriol Vinyals, An-
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