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ABSTRACT

Over the past decades, the dominant approach towards building automatic

speech recognition (ASR) systems has been a complex combination of sepa-

rately optimized pre-processing, acoustic model and language model compo-

nents. The recently proposed end-to-end models for ASR present a significant

simplification over conventional ASR systems. End-to-end models transcribe

input speech to output text with a single neural network that is optimized

in a single training stage. While the single model and training stage are a

welcome simplification of the ASR system, they are also mostly incompatible

with past research that went into optimizing the separate components of

conventional ASR systems. Furthermore, the monolithic neural network struc-

ture in end-to-end models remains a black box with millions of parameters,

and the contribution of specific parameters to the model accuracy is hardly

understood. In consequence, the accuracy of conventional ASR systems is

still higher, and end-to-end models require new strategies to improve.

This thesis has the objective to advance the state-of-the art in end-to-end

models for ASR, with a focus on improving noise robustness and model

interpretability. The contributions cover novel training strategies and neural

network architectures, and three main contributions can be identified. First, a

curriculum learning strategy is presented that improves the noise robustness

over conventional training methods. The network training follows a signal-

to-noise ratio (SNR) curriculum that starts training at low SNR levels and

gradually exposes the network to higher SNR levels as training proceeds.

Second, a sensory attention mechanism is integrated into the end-to-end

model, adding only a fraction of the total parameters to the model. The

attention mechanism allows the model to extract information from multiple

input sensors and dynamically tune its attention towards less noisy sensors

for improved accuracy. The attentional signal is highly interpretable as it

correlates with the sensor noise level. Third, the entire model architecture is

changed, replacing the deterministic neural network parameters with prob-

abilistic parameters. All network parameters are sampled from probability

distributions with a learned degree of uncertainty, and the uncertainty in-

formation is interpreted as a proxy measure for parameter importance. The

parameter importance information is used in parameter pruning for saved

computation and domain adaptation for increased noise robustness.
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ZUSAMMENFASSUNG

Im Laufe der letzten Jahrzehnte bestanden Systeme für die automatische

Spracherkennung aus einer komplexen Kombination von separat optimierten

Komponenten für die Datenvorverarbeitung, akustische Modellierung und

sprachliche Modellierung. In jüngerer Zeit wurden Spracherkennungssysteme

vorgestellt die auf dem
”
end-to-end” Prinzip basieren und eine deutliche Ver-

einfachung gegenüber konventionellen Spracherkennungssystemen darstellen.

In
”
end-to-end” Modellen geschieht die Umwandlung von Sprache zu Text

mithilfe eines einzigen künstlichen neuronalen Netzwerkes, welches in einer

einzigen Lernphase optimiert wird. Sowohl Modell als auch Lernphase verein-

fachen das Spracherkennungssystem, sind allerdings auch inkompatibel mit

Jahren an Forschung, welche die separaten Komponenten in konventionellen

Spracherkennungssystemen optimiert hat. Zusätzlich ist das neuronale Netz-

werk eine Art
”
Blackbox“ mit Millionen an Parametern, und die Bedeutung

einzelner Parameter für die Spracherkennungsfähigkeit des Modells ist kaum

verstanden. In der Konsequenz bleiben konventionelle Spracherkennungssys-

teme bei der Genauigkeit überlegen, und
”
end-to-end“ Modelle benötigen

neue Strategien zur Verbesserung.

Diese Arbeit legt den Fokus auf die Verbesserung von
”
end-to-end“ Model-

len für die Spracherkennung, insbesondere was die Robustheit in verrauschten

Umgebungen und was die Interpretierbarkeit des Modells betrifft. Die wissen-

schaftlichen Beiträge umfassen neue Strategien für neuronale Netzwerke in

den Gebieten Lernphase und Architektur, und drei Haupt-Beiträge sind zu

nennen. Der erste Beitrag präsentiert eine Curriculum-basierte Strategie für

das Lernen von neuronalen Netzwerken, welche die Robustheit in verrausch-

ten Umgebungen gegenüber konventionellen Lernmethoden verbessert. Die

Lernphase des Netzwerks folgt einem Curriculum welches die Lernphase mit

besonders rauschbehafteten Sprachdaten beginnt, und im weiteren Verlaufe

der Lernphase das Signal-zu-Rausch Verhältnis der Sprachdaten zu höheren

Werten hin erweitert. Der zweite Beitrag behandelt einen Mechanismus für

sensorische Aufmerksamkeit (
”
sensory attention mechanism“) welcher sich

zur Integration in das
”
end-to-end“ Modell eignet und nur einen Bruchteil

der ursprünglichen Anzahl der Parameter zum Modell hinzufügt. Der
”
atten-

tion mechanism“ erlaubt es dem Modell von mehreren Sensoren gleichzeitig

Informationen zu extrahieren, und in dynamischer Weise die Aufmerksamkeit

auf weniger rauschbehaftete Sensoren zu lenken um eine erhöhte Genauig-
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keit zu erzielen. Das Aufmerksamkeits-Signal ist intuitiv interpretierbar und

korreliert mit dem Niveau des Rauschens, welchem ein Sensor ausgesetzt ist.

Der dritte Beitrag ändert die gesamte Architektur des Modelles und ersetzt

deterministische Parameter des neuronalen Netzwerkes mit probabilistischen

Parametern. Alle Netzerkparameter werden aus Wahrscheinlichkeitsvertei-

lungen gezogen die einen erlerntes Ausmaß an Zufälligkeit aufweisen. Das

Ausmaß der Zufälligkeit wird als stellvertretende Größe für die Wichtigkeit

von Parametern betrachtet. Diese Information der Wichtigkeit von Parame-

tern wird für zwei Experimente benutzt. Zum einen für das Ersetzen von

Parametern mit Nullwerten (
”
parameter pruning“), wenn Rechenoperatio-

nen eingespart werden sollen. Zum anderen für die Umgebungs-Anpassung

akustischer Modelle (
”
domain adaptation“), wenn die Robustheit gegenüber

Rauschen verbessert werden soll.
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1
INTRODUCTION

This introductory chapter is split into two parts. The first Section 1.1 intro-

duces the basic ASR task and the historical development of ASR systems

towards end-to-end speech recognition. The following Section 1.2 discusses

the background and novelty of the three main contributions of the thesis.

1.1 automatic speech recognition

The research field of automatic speech recognition (ASR) is clearly defined

by its main task: to map input speech to an output text transcription.

The standard ASR procedure for an example input-output pair is shown

in Figure 1.1. The speech input consists of audio samples recorded by a

microphone, and the text output consists of text tokens, e.g. characters

or words. Both input and output are sequences of variable length. Given

typical audio sampling rates, e.g. 16kHz, it is evident that the input and

output sequences also have different lengths. Any ASR system will therefore

have to map a longer sequence of inputs, to a shorter sequence of outputs.

The mapping of a speech signal to a single word is referred to as isolated

word recognition. In this classification task, each sample of the audio signal is

considered to contribute to a single word label. The mapping of a speech signal

to a sequence of text tokens is referred to as continuous speech recognition.

Typically, there is no precise alignment available that would assign single

text labels to segments of audio samples. In addition to classification, the

ASR system also has to account for the speech-to-text alignment, which

makes continuous speech recognition the more difficult task. From a broader

perspective, continuous speech recognition can be interpreted as a sequence-

to-sequence task, and is therefore related to other sequence-to-sequence tasks

such as machine translation (text-to-text) [1] or speech synthesis (text-to-

speech) [2].

Over the past decades, ASR research has steadily improved the recognition

accuracy under growing task complexity. Three main developments can be

identified: (1) a shift from template-matching to statistical modeling methods,

(2) a substitution of the simpler isolated word recognition task with the

continuous speech recognition task and (3) an increase in vocabulary sizes

1



2 introduction

THE CURRENT BOOM STARTED SIXTEEN MONTHS AGO
Output

Text transcription

Input

Speech waveform

ASR system

Figure 1.1: The standard ASR procedure. The ASR system maps an input

speech waveform to an output text transcription. Note the difference

in sequence length. In this example, the speech waveform consists

of 66146 audio samples, sampled at a 16kHz sample rate. The text

output consists of 37 characters, or 7 words.

from 10 words to virtually unlimited. The following paragraph presents a few

important milestones in ASR history, and the interested reader is referred

to [3] and [4] for more complete reviews.

In 1952, researchers at the Bell laboratories built the Audrey ASR system

that performed spoken digit recognition with an algorithm that analyzed

formant trajectories [5]. The vocabulary consisted of 10 units that represented

the digits zero to nine. The Audrey system was limited to isolated digit recog-

nition. For sequences of multiple digits, the speech recordings were split into

isolated digit utterances by compulsory speaking pauses. Over the next years,

isolated word recognition represented the main task in ASR research, and

template-matching became a popular approach for classification. However, the

temporal variability of word utterances presented a challenge for comparing

word templates. In 1968, template-matching was significantly improved when

the dynamic time warping (DTW) algorithm was first proposed for ASR [6].

The DTW algorithm aligns speech utterances with different durations to

facilitate the comparison step in template-matching. By 1970, a DTW-based

system was introduced for a 200 words vocabulary [7]. A major leap forward

was established in 1971 when DARPA started the five year program Speech

Understanding Research for continuous speech recognition and a 1000 words

vocabulary. By 1976, Harpy from CMU [8] was the only system that met the

DARPA performance requirements [3]. The Harpy system combined template-

matching with finite state machines and used graph search techniques to find
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the most likely text transcription. At the same time, Hidden Markov mod-

els (HMMs) were explored as an alternative statistical approach to ASR [9,

10], and also combined with language models to improve the recognition

accuracy [11]. The HMMs provided a statistical modeling framework for

continuous speech recognition, and have become the dominant approach to

ASR since the 1980s. By 1989, IBM built an HMM-based continuous speech

recognition system with a 5000 words vocabulary [12]. From thereon, the

vocabulary size grew to virtually unlimited size, e.g. the Switchboard dataset

from 1993 has a vocabulary of 45,000 words and is still used today.

Over the past decades, HMM-based ASR systems have received a steady

stream of improvements. One improvement that is particularly interest-

ing from a neural network perspective is the emerging of deep neural net-

work (DNN)-HMM hybrids in 1990 [13]. Even though neural networks had

been applied to ASR before, they were mostly restricted to isolated word

recognition [14]. For continuous speech recognition, a major challenge re-

mained unsolved: to derive an objective that allows neural network training

when the temporal alignment between speech signal and text labels is not

available. As a workaround, the hybrid approach combines DNNs for acoustic

modeling with the HMM framework. The speech signal is split into frame

segments of equal length, and for each frame, the DNN outputs a probability

distribution over HMM states. The HMM states correspond to fragments

of phonetic output units, and the output distribution is decoded in the

HMM framework to generate text output. The HMM decoding deals with

the temporal alignment and integrates external information from language

models. Despite their early proposal, the real breakthrough for hybrids came

only in 2012, when computational resources and training strategies had

improved enough to train competitive DNNs [15]. This new generation of

DNN-HMM hybrids achieved lower error rates than previous HMM systems

that used Gaussian mixture models (GMMs) for acoustic modeling. Nowa-

days, DNN-HMM hybrids still represent the state of the art in ASR [16].

However, DNN-HMM hybrids are complex systems: they consist of multiple

components which are optimized in different training stages [17]. For example,

the DNN training alone is already a multi-stage process. To train the DNN

on speech frames, each frame requires a target label - the HMM state. The

labels are generated by a process called forced alignment. This alignment

process requires a GMM-HMM ASR system that is trained in an iterative

fashion until the alignment quality is empirically considered sufficient [15–17].

In recent years, end-to-end models have been proposed [18–27] that present

a significant simplification over DNN-HMM hybrids in both model archi-
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tecture and training process. End-to-end models transcribe input speech

to output text within a single neural network that is optimized in a single

training stage. The training process does not require an external alignment

from speech frames to output labels. Instead, two approaches can be iden-

tified to deal with the alignment problem: (1) novel training objectives or

(2) attention-based neural network architectures. Objective functions such as

Connectionist temporal classification (CTC) [28] or recurrent neural network

transducer (RNN-T) [29] consider all possible alignments with efficient dy-

namic programming approaches. Encoder-decoder models use an attention

mechanism that learns an alignment function automatically during train-

ing [30]. The choice of the end-to-end approach has theoretical and practical

implications on the ASR system, e.g. the suitability for language modelling

or online speech recognition [21]. At this point of the introduction, the reader

is referred to Chapter 2 for an extensive description of the CTC approach

and a comparison to the RNN-T and encoder-decoder models.

While the relative simplicity of end-to-end models sounds very compelling,

there is a significant cost attached: as of 2019, conventional DNN-HMM

hybrids still achieve superior accuracy and remain the state of the art method

in ASR [16]. A large part of the performance gap may be explained by

the strict end-to-end criteria of a single training stage and network model.

These criteria are very restrictive and make end-to-end models incompatible

with decades of research that went into optimizing ASR systems based on

DNN-HMM hybrids. Consequently, end-to-end models require new methods

to improve, and this thesis proposes three contributions that are described in

Section 1.2.
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1.2 contributions

This thesis advances the state of the art in end-to-end models for ASR. The

overall goals are improving noise robustness and model interpretability while

respecting the end-to-end criteria of a single training stage and a single neural

network model. This thesis provides three contributions that are explained

in the following three sections.

1.2.1 Curriculum Learning for Improved Noise Robustness

The performance of ASR systems has improved significantly over the past

decades, reaching human-level performance in clean conditions without back-

ground noise [20]. However, the performance in noisy environments still leaves

room for improvement [20, 31]. Over the past decades, a multitude of meth-

ods has been proposed to improve the noise robustness of ASR systems [32].

Some methods that have been successfully used with conventional DNN-HMM

hybrids include multi-channel enhancement techniques [33, 34], denoising

methods [35], source separation methods [36, 37], feature transformation

methods such as fMLLR [38] or auditory level features [39]. However, most

of these strategies add components to the ASR system that require disjoint

optimization stages. While disjoint optimization is typical for conventional

DNN-HMM hybrids, it is not compatible with the end-to-end ASR paradigm.

For end-to-end models, the two main options to improve noise robustness

are (1) novel neural network architectures and (2) novel training methods.

Recent research has shown improved noise robustness when formerly hand-

tuned feature-processing stages are replaced with learnable neural network

layers. Typical examples include feature extraction at the raw waveform

level via convolutional neural networks (CNNs) [40–43] or convolutional

front-ends (CFEs) for noise robust feature processing [20, 44]. When suitable,

entire pre-processing algorithms such as multi-channel enhancement with

beamforming may be modelled with neural networks and integrated into the

end-to-end model [45]. As an alternative to architectural changes, training

on noisy data is an established method of increasing the noise robustness.

In related work on DNN training methods, noisy training sets with a range

of SNR values e.g. 10 dB - 20 dB [46] or 0 dB - 30 dB [40] are used during

training. This training strategy is referred to as multi-condition training.

Other training methods such as dropout [47] - originally intended to improve

regularisation in neural networks - have been shown to also improve noise

robustness for ASR applications.
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This thesis chapter considers a single input channel and introduces a novel

curriculum learning strategy to improve the accuracy of end-to-end models

in noisy conditions. While curriculum learning has been proposed before to

increase the accuracy of neural networks [48], this is the first contribution that

leverages curriculum learning for noise robust ASR. The proposed curriculum

learning method follows a SNR curriculum that starts network training at

0 dB SNR, and then gradually expands the range towards 50 dB SNR as

training continues. This SNR range is significantly larger than the range

in previous works. The curriculum learning strategy results in models with

improved accuracy in noisy conditions when compared to conventional multi-

condition training methods. All experiments and results are described in

Chapter 3.

1.2.2 Attention-driven Multi-Sensor Selection

Most ASR research with end-to-end models has focused on single-channel

input only. The single-channel setup is the most simple input configuration,

as it consists of a single microphone sensor that records a single audio

modality. However, real-world ASR systems (Amazon Echo, voice control

systems in cars etc.) leverage multiple sensors to deal with speech in noisy

conditions. The additional hardware cost from multiple sensors is offset by

two advantages. First, multi-sensor setups can be exploited by multi-channel

processing or sensor fusion strategies to increase the recognition accuracy.

Second, multiple sensors are inherently redundant, and increase the robustness

and fault tolerance of the ASR system. Motivated by these useful advantages,

this thesis chapter is therefore dedicated to combine multi-sensor input with

end-to-end models.

When considering only the audio modality, multi-channel processing gener-

ally integrates multiple input channels into a single, enhanced channel that

provides a cleaner signal for classification. In this context, conventional beam-

forming algorithms are widely used for multi-channel setups [34], but they

introduce a separate beamforming processing stage which is typically not com-

patible with the end-to-end paradigm. Alternate approaches for multi-channel

integration are based on methods that leverage CNNs for channel combina-

tion [49–51], that learn a beamforming function with neural networks [52–57],

and attention mechanisms that focus on higher SNR channels [58]. While

these methods are differentiable and suitable for joint optimization in an

end-to-end model, they were usually combined with conventional hybrid ASR

approaches. Two recent studies [45, 59] have examined multi-channel ASR
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and meet the criteria of end-to-end models. In both studies, inputs from

the multiple channels are combined into a single representation that is used

for the ASR task. In one case, a neural beamformer is used to combine the

channels [45] and in the second case, a sensory attention mechanism [59] is

used instead. While both approaches show promising performance compared

to conventional beamforming, the neural beamformer shows benefits such as

invariance to channel re-ordering and robustness to channel configurations.

When increasing the scope to multi-modal sensor setups, then the audio-

visual input configuration is the most explored one, and the ASR task is

replaced with the audio-visual speech recognition (AVSR) task. The additional

video modality is especially useful in noisy acoustic conditions, where a video

recording of the speakers mouth region can be used for lip reading to provide

a high transcription quality. In order to integrate information from both

modalities, an AVSR system has to combine the information from audio

and video streams. This process is generally referred to as sensor fusion.

Two recent studies have covered end-to-end models for AVSR [60, 61], and

both combined the audio and video streams with a feature concatenation

layer in the neural network. The concatenation layer performs sensor fusion

by stacking features together, and leaves the network to learn its preferred

feature dimensions. The concatenation operation is also used in other audio-

related tasks with audio-visual input, e.g. speech enhancement [62] and source

separation [63]. Other network operations that may be used for sensor fusion

are convolutions or averaging, and have been explored in a video classification

scenario [64].

From the perspective of end-to-end models, the integration of multiple

sensors of arbitrary modalities is feasible as long as the fusion operation is

differentiable. This condition is met for standard fusion operations such as

concatenation or convolution. However, these fusion operations are static: once

the network weights are learned towards each sensor, they are not changed

any more, and a network may develop preferences towards a particular

sensor. In real world scenarios, where the signal recorded by the preferred

sensor may be temporarily more noisy than expected, an adaptive strategy is

advantageous. One such strategy is the sensory attention mechanism, which

can be considered as a dynamic fusion operation. The sensory attention

mechanism first weighs and then sums multiple input sensors into a single

representation. The sensor-specific attention weights are computed by neural

networks that are integrated into the end-to-end model such that a single

training process is sufficient. This attention mechanism allows the model

to dynamically tune its attention towards less noisy sensors for improved
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accuracy. The attention weights are highly interpretable, as their magnitude

indicates how much the model is focusing on a specific sensor. The dynamic

tuning and understandable attention weights are both properties that are

well aligned with the thesis goals of improving noise robustness and model

interpretability.

This thesis chapter explores a sensory attention mechanism to process multi-

sensor input within end-to-end models. The sensory attention mechanism

follows an improved design strategy compared to [59], with three main

differences. First, it is defined in a modality-independent way, extending the

scope from multi-channel ASR to multi-modal AVSR. Second, it uses default

neural network units such as long short-term memorys (LSTMs) instead of a

custom-designed neural network cell. Third, it supports a new operation mode

that is invariant to the re-ordering of the audio channels in a multi-channel

ASR setup. The proposed attention mechanism is embedded into a sensor

transformation attention network (STAN). STANs provide a novel end-to-end

framework that supports multi-sensor input of arbitrary modalities.

In terms of evaluation, this study covers both multi-channel ASR with

real-world noise and multi-modal AVSR with synthetic noise. The multi-

modal experiment presents two novelties, as this is the first study that

evaluates sensory attention for AVSR or for a synthetic noise environment.

The synthetic noise allows to establish a ground truth for the sensor noise

level and to measure the correlation between noise level and attentional

signal.

The experimental sections compare the sensory attention mechanism

against end-to-end strategies for multi-sensor processing, notably sensor

concatenation and sensor averaging, and also conventional beamforming al-

gorithms. Across all experiments, the sensory attention mechanism performs

on par or better than concatenation or averaging, with the additional benefit

of providing a highly interpretable attentional signal. Compared to conven-

tional beamforming algorithms, the sensory attention mechanism achieves

higher error rates, but remains compatible with the end-to-end paradigm and

significantly reduces the model complexity. The complete set of experiments

and results is described in Chapter 4.

1.2.3 Parameter Uncertainty for End-to-end Models

End-to-end models for ASR are parametric models: they provide tunable

parameters for optimization, which correspond to the weights and biases

of neural network units. Conventional end-to-end models use deterministic
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parameters, i.e. each parameter is a real value. Recent end-to-end models

are composed of 10M (EESEN [22]) over 30M (Wav2Letter [43]) to 100M

(DeepSpeech2 [20]) parameters.

While deterministic parameters encode the parameter magnitude, there

is no direct encoding of the parameter uncertainty or the parameter impor-

tance to solve the task it was trained on. However, parameter importance

is valuable information for neural networks. For parameter pruning, the

importance information could help to select less important parameters for

pruning and minimize the impact of the pruning process on task performance.

Continual learning scenarios like speaker or domain adaptation are further

areas that benefit from the importance information1. Domain adaptation is

a process that improves the performance of ASR systems on unseen speech

domains, e.g. when a network is trained on clean speech but is tested on noisy

speech. Usually, the trained network is adapted on a small adaptation set,

and the training set is not accessible during adaptation. During adaptation,

the trained parameters get overwritten and the performance on the original

training domain might be reduced. This phenomenon is referred to as catas-

trophic forgetting in literature [65]. By conditioning parameter updates on

the importance information, the adaptation process could generate a single

model that achieves high accuracy on the training and adaptation domains.

Recent work has explored parameter uncertainty in neural networks by

encoding parameters in a probabilistic fashion [66–68]. Probabilistic neural

networks sample parameters from probability distributions learned on training

data, and each parameter exhibits a learned degree of uncertainty. The

inherent parameter uncertainty makes probabilistic networks less sensitive to

parameter perturbations and less prone to overfitting [66, 68]. The relation

between the magnitude of a parameter and its uncertainty allows one to

establish parameter-specific SNR levels. Previous studies show that there

is a high correlation between parameter SNR and parameter importance as

demonstrated in pruning experiments for tasks other than ASR [66, 67]. To

the best of the authors knowledge, only one study investigated probabilistic

neural networks for end-to-end ASR [68]. The probabilistic network was

derived in a variational inference framework from a Bayesian perspective.

The evaluation was carried out using a single probabilistic network on the 5h

TIMIT dataset with a focus on parameter pruning.

This thesis chapter proposes an alternative derivation of probabilistic

networks from a parameter perspective, without requiring a Bayesian inter-

1 The following description only mentions domain adaptation for the sake of readability, but
could also be applied to speaker adaptation.
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pretation of the model. The set of ASR tasks is extended to include domain

adaptation from clean speech to noisy speech. In order to prevent forgetting

of the original task, a novel SNR-based regularization scheme is proposed to

condition parameter updates on parameter importance. Furthermore, this

is the first study that evaluates probabilistic neural networks with distinct

SNR levels. Networks with different SNR levels are studied with respect to

how they tolerate pruning of parameters and how the level of catastrophic

forgetting changes across these networks during domain adaptation. The

complete study on parameter uncertainty is described in Chapter 5.



2
END-TO -END SPEECH RECOGNIT ION WITH

CONNECTION IST TEMPORAL CLASS IF ICAT ION

This thesis evaluates all three contributions on end-to-end models that are

based on the CTC approach. Therefore, this chapter is dedicated to presenting

the CTC objective function [28, 69] in a more detailed fashion. Note that

despite only being evaluated on CTC models, the thesis contributions are

compatible with other models that full-fill the end-to-end criteria, such as

RNN-T and encoder-decoder architectures. The interested reader is referred

to [21] for a comparative study on all three models, and to Section 2.4 for a

shorter discussion on the differences.

2.1 model components

The ASR task is defined as the mapping of a speech signal to a text output.

The speech input is assumed as a length-T sequence x = {x1, ..., xT} of

audio samples xt ∈ R. The target output is assumed as a length-U sequence

y = {y1, ..., yU} of text tokens yu ∈ v, and the vocabulary v = {v1, ..., vN}
consists of n = 1...N unique text tokens vn

1.

A CTC model maps the speech input sequence x to a length-T∗ output

sequence h = {h1, ..., hT∗} of probability vectors hτ ∈ RN. Every vector

hτ consists of n = 1...N entries, hvn
τ , and each entry corresponds to the

probability of the text token vn at time step τ. The probabilities are expected

to sum up to 1 at each time step τ, so ∑N
n=1 hvn

τ = 1. The mapping function

hθ : x 7→ h is usually modelled by neural networks that provide a set of

tunable parameters θ. The output sequence length, T∗, can be shorter than

the input sequence length, T, when typical ASR processing steps (splitting a

waveform into frames, downsampling etc.) are used.

To summarize, x is the input sequence, hθ is the neural network, h is the

network output sequence and y is the target output sequence. Note that

in literature, the mapping function hθ is typically referred to as encoder or

acoustic model [21].

1 For example, when using characters as vocabulary, then v = {A, ..., Z} and N = 26.

11
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2.2 training

During training, the CTC objective attempts to maximize the conditional

probability P(y|h), i.e. the probability of the target sequence y given the

network output sequence h. The key challenge in computing this probability

lies in both h and y having different sequence lengths of T∗ and U, respectively.

To match the length of y to h, CTC introduces two measures. First, the

blank token ε, which corresponds to an empty output, may be introduced

at arbitrary steps of y. Second, the tokens in y may be repeated arbitrarily

before advancing to the next token. After sufficient insertion of blank tokens

and repetitions, a length-T∗ modification of y is referred to as an alignment.

By definition, an alignment is a length-T∗ sequence a = {a1, ..., aT∗} of text

tokens aτ ∈ {v1, ..., vN , ε}. An example is shown in Figure 2.1. A mapping

function A : a 7→ y is defined between a to y, that first removes repeated

tokens and then blank tokens in a. The order is crucial, as a blank token

between two identical tokens allows to model text with double tokens2.

When U < T∗, there are many possible alignments a that correspond to

the same desired target sequence y (see appendix A.1 for a discussion of

the combinatorics). The set of all alignments that map to the desired target,

{a ∈ A−1(y)}, is referred to as the set of valid alignments. When computing

the probability of the target sequence, CTC considers all valid alignments as

defined in Eq. (2.1):

P(y|h) = ∑
a∈A−1(y)

P(a|h) (2.1)

To compute the probability P(a|h) of a single alignment a given the net-

work output h, CTC assumes conditional independence between the network

outputs over time, resulting in Eq. (2.2).

P(a|h) =
T∗

∏
τ=1

haτ
τ (2.2)

Plugging Eq. (2.2) in Eq. (2.1) yields the final CTC probability as defined in

Eq. (2.3):

P(y|h) = ∑
a∈A−1(y)

T∗

∏
τ=1

haτ
τ (2.3)

The summation over all paths in Eq. (2.3) can be computed by an efficient

dynamic programming algorithm. To train the neural network, the conditional

2 e.g. HELLO or GOOD
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Alignments
𝒂 = {𝑎1 , 𝑎2 , 𝑎3 , 𝑎4 , 𝑎5}

𝑇∗ = 5

𝑨−𝟏(𝒚)Target sequence
𝒚 = 𝐶, 𝐴, 𝑇

𝑈 = 3

# 𝒂𝟏 𝒂𝟐 𝒂𝟑 𝒂𝟒 𝒂𝟓

1 C C C A T

2 C C A A T

3 C C A T T

4 C C A T 𝜖

5 C C A 𝜖 T

6 C C 𝜖 A T

7 C A A A T

8 C A A T T

9 C A A T 𝜖

10 C A A 𝜖 T

# 𝒂𝟏 𝒂𝟐 𝒂𝟑 𝒂𝟒 𝒂𝟓

11 C A T T T

12 C A T T 𝜖

13 C A T 𝜖 𝜖

14 C A 𝜖 T T

15 C A 𝜖 T 𝜖

16 C A 𝜖 𝜖 T

17 C 𝜖 A A T

18 C 𝜖 A T T

19 C 𝜖 A T 𝜖

20 C 𝜖 A 𝜖 T

# 𝒂𝟏 𝒂𝟐 𝒂𝟑 𝒂𝟒 𝒂𝟓

21 C 𝜖 𝜖 A T

22 𝜖 C C A T

23 𝜖 C A A T

24 𝜖 C A T T

25 𝜖 C A T 𝜖

26 𝜖 C A 𝜖 T

27 𝜖 C 𝜖 A T

28 𝜖 𝜖 C A T

𝑨(𝒂)

Figure 2.1: The 28 valid alignments when mapping the length-3 target sequence

y = {C, A, T} to the length-5 alignment a = {a1, a2, a3, a4, a5}.

probability in Eq. (2.3) provides a derivative with respect to the final network

output layer, i.e.
δP(y|h)

δhvn
τ

. The dynamic programming algorithm and the

computation of the derivatives are both discussed in [28].

2.3 inference

During inference, the network receives a speech input sequence x and outputs

the token probability sequence h. To generate a hypothetic text transcription

ỹ from h, a decoding function D : h 7→ ỹ is used. In literature, various

decoding algorithms have been proposed for CTC models, e.g. greedy decod-

ing [28] or beam search [22]. The greedy decoding algorithm is used in most

experiments of this thesis and therefore presented in the following paragraph.

At each time step τ, the greedy decoding algorithm picks the most likely

token vn in hτ. An example is shown in Figure 2.2. Formally, greedy decoding

selects the most likely alignment a∗, following Eq. (2.4):

a∗ = arg max
a

P(a|h) (2.4)

To generate the hypothetic text transcription ỹ, the repetitions and blank
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𝒂∗ =

𝒉

෥𝒚 =

𝒚 =

෥𝒚 = 𝐴(𝒂∗)

𝑇𝐸𝑅 = 0.25

…

I 𝜖 𝜖 A M M J J O 𝜖 N

I A M J J O N

I A M J O N

Figure 2.2: The CTC inference process with greedy decoding for a synthetic

example with vocabulary v = {SPACE, A, I, J, M, N, O, ε} and tar-

get text I AM JON. The network output h is decoded in a greedy

fashion by picking the token with the highest probability at each

time step τ, depicted by the red rectangle. The resulting alignment

a∗ is the alignment with maximum probability. The hypothetic text

transcription ỹ is obtained by removing repeated tokens and blank

tokens ε. The hypothesis is compared to the target sequence y and

yields a token error rate (TER) of 0.25 in this example.
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labels are removed from a∗ by the mapping function A as defined in Eq. (2.5)

ỹ = A−1(a∗). (2.5)

After decoding, the hypothesis ỹ and target sequence y can be compared

with the token error rate (TER) defined in Eq. (2.6):

TER =
S + D + I

N
(2.6)

The numerator corresponds to the Levenshtein distance [70], also called edit

distance. This distance measure is defined as the minimum number of substitu-

tions S, deletions D or insertions I that are required to modify the hypothesis

ỹ to the target sequence y. The denominator corresponds to the number of

tokens N in the target sequence y and is used for normalization purposes.

The TER may be interpreted as word error rate (WER) or character error

rate (CER) when the tokens correspond to words or characters, respectively.

2.4 properties

The CTC approach to ASR has three defining properties:

1. The alignment between input and output sequences is monotonic. When

advancing to the next input time step, the output token is either kept

the same or advanced to the next one. This is a reasonable assumption

for the ASR task. Also, the monotonic alignment property is helpful

for online (also referred to as streaming) speech recognition, because

input time steps can be processed with low latency and immediately be

discarded once the results have been sent to the decoder. Note that for

non-monotonic sequence-to-sequence tasks, e.g. machine translation,

CTC is not useful.

2. CTC sums over all possible, valid alignments. Note that the term valid

only refers to the correct order of tokens, but not to the correct temporal

position of these tokens in the speech signal. Some valid alignments may

not be linguistically correct, e.g. when all tokens are assigned to the

first few time steps of the speech signal instead of the time steps when

they are actually spoken. On trained CTC models, these linguistically

incorrect alignments usually have lower probability than alignments

that seem linguistically more correct [28].

3. The CTC alogrithm makes a conditional independence assumption

between output tokens as defined in Eq. (2.2). This is not a reasonable
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assumption for ASR, because language modeling shows that previous

tokens can be used to guess the next token. However, CTC models

may be integrated with external language models during decoding, as

shown in [18–20, 22]. Combining a CTC model with a separately trained

language model would not comply with the strict end-to-end criteria

of a single training stage and single neural network model. However,

part of the literature sticks to the term end-to-end model even when

an external language model is included (e.g. [20]).

Other end-to-end approaches include RNN-T and encoder-decoder models.

Both variants remove the conditional independence assumption, and are

therefore able to implicitly learn a language model. The RNN-T approach

shares the monotonic alignment property with CTC, and also considers

all valid alignments as CTC does. In contrast, the encoder-decoder model

generates a single, non-monotonic alignment with an attention mechanism.

Recent research has shown that RNN-T models outperform CTC models in

offline and online ASR scenarios [21, 71]. On a final note, it is mentioned

that the thesis contributions are compatible with both RNN-T and encoder-

decoder approaches.



3
A CURRICULUM LEARNING METHOD FOR

IMPROVED NOISE ROBUSTNESS IN AUTOMATIC

SPEECH RECOGNIT ION

This thesis chapter adapts text from published work in [72] and presents

general training methods for improving noise robustness in single-channel

ASR. In particular, a novel training strategy presented that exploits the

benefits of curriculum learning [48] for noise robust ASR. By first training

the network on low SNR levels down to 0 dB and gradually increasing the

SNR range to encompass higher SNR levels up to 50 dB SNR, the trained

network shows improved noise robustness over conventional multi-condition

training methods.

The remainder of this chapter is organized as follows: Section 3.1 presents

several baseline methods and the curriculum learning method for improved

noise robustness. The evaluation setup is detailed in Section 3.2, with results

given in Section 3.3. The results are discussed in Section 3.4 and concluding

remarks are presented in Section 3.5.

3.1 training methods for improved noise robustness

3.1.1 Baseline

The baseline method takes advantage of conventional multi-condition train-

ing [73] to increase the noise robustness of the network. Pink noise is added

to a clean dataset to create samples with the desired SNR as depicted in

Figure 3.1. Each training sample is randomly chosen to be of an SNR level

in the range 0 to 50 dB with 5 dB steps. This wide range is larger than the

SNR ranges used in previous work (e.g. 0 to 30 dB as in [40]). An extensive

hyperparameter search showed that using such a large range resulted in the

best performance on the test datasets. The noise mixing is done once at the

waveform-level before filterbank audio features are computed. This one set

of training data is presented to the network over all training epochs. The

resulting network will be referred to as NOISY model. For completeness, a

CLEAN model is included, i.e. a network that is only trained on clean speech.

17
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Augmented
Audio

features

Database
audio

samples

Audio
features

Classifier

Gaussian 
noise

Random 
pink noise 
segment

+ +

Mixture at random
SNR from 0..50dB Noise injection

Before training During training

Figure 3.1: The baseline NOISY training method, depicted by grey boxes, first

creates a noise corrupted version of the training set (before training),

and then re-uses the same, noise-corrupted training set for every

training epoch (during training). The GAUSS method adds Gaussian

noise injection during training (blue box).

Augmented
Audio

features

Database
audio

samples

Audio
features

Classifier

Gaussian 
noise

Random 
pink noise 
segment

+ +

Mixture at random
SNR from 0..50dB Noise injection

During training

Figure 3.2: The VANILLA-per-epoch noise mixing (PEM) training method,

depicted by green boxes, creates a newly mixed, noise corrupted

training set for every training epoch. Therefore, each sample will

be presented at different SNR levels and with different noise seg-

ments over the epochs. The GAUSS-PEM method adds Gaussian noise

injection during training (blue box).
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3.1.2 Gaussian Noise Injection

Gaussian noise injection is a well-known method for improving generalisation

in neural networks [74]. It is used here to improve the noise robustness of the

network.

During training, artificial Gaussian noise is added to the filterbank features

created from the different SNR samples, as shown in Figure 3.1. The additive

noise is drawn from a zero-centered Gaussian distribution N (µ = 0, σ = 0.6).

A hyperparameter search showed that using a Gaussian with a standard

deviation of σ = 0.6 yielded the lowest error rates. The resulting network is

referred to GAUSS model in the rest of the paper.

3.1.3 Per-epoch Noise Mixing (PEM)

The per-epoch noise mixing (PEM) is a method for adding noise to the

waveform level during training. In every training epoch, each training sample

is mixed with a randomly sampled noise segment at a randomly sampled SNR

as depicted in Figure 3.2. The training procedure consists of the following

steps:

1. Mix every training sample with a randomly selected noise segment

from a large pink noise pool to create a resulting sample at a randomly

chosen SNR level between 0 to 50 dB.

2. Extract audio features (e.g. filterbank features) for the noise-corrupted

audio to obtain the training data for the current epoch.

3. Optional : add Gaussian noise drawn from the distribution N (µ =
0, σ = 0.6) to the audio features.

4. Train on the newly generated training data from steps 1 to 3 for one

epoch.

5. After the epoch is finished, discard this training data to free up storage.

6. Repeat from step 1 until training terminates.

The PEM method has several key advantages over conventional pre-training

preprocessing methods. Firstly, it enables unlimited data augmentation on

large speech datasets. With conventional methods, augmenting training

data at the waveform level with real-world noise at various SNR values is

prohibitively expensive in terms of processing time and training data size.
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PEM allows use to overcome these restrictions by training on the GPU and

pre-processing the next-epoch training data in parallel on the CPU. After an

epoch was trained on, the training data gets discarded to free storage for the

next epoch.

Secondly, PEM shows the network more unique training data: every training

sample is presented at a selection of SNRs and with as many noise samples as

can be extracted from the noise file and as needed by the number of epochs to

reach a steady-state accuracy level. Thirdly, other noise types, different SNR

training ranges, and even different audio features could be quickly tested as

the training data can be easily augmented online. Finally, PEM allows to

dynamically change the SNR level during training, which renders advanced

training paradigms such as curriculum learning (Section 3.1.4) feasible.

In contrast to the plain Gaussian noise injection, the PEM method per-

mits more control over the training data. Real-world noise is added to the

acoustic waveform at controlled SNRs levels, ensuring that the training data

corresponds to realistic noise corruption. The realism of these samples can be

verified by listening tests. Of course, PEM can also be combined with Gaus-

sian noise addition (optional step three). The networks trained with PEM

only and PEM with Gaussian noise injection are referred to as VANILLA-PEM

and GAUSS-PEM models, respectively.

3.1.4 Curriculum Learning

Neural networks have been shown to perform best when tested on the SNR

levels they are trained on [73]. Under domain mismatch conditions, per-

formance degrades: when tested on noisy conditions, a network trained on

clean conditions fares worse than a network trained on noisy conditions.

Also, networks trained on a vast SNR range generally do worse on a single

SNR than networks optimized for this specific SNR. In order to achieve high

accuracy under both high and low SNR with a single network, this work

proposes a novel training paradigms based on curriculum learning. While

curriculum learning has been used in image classification (scheduled denoising

autoencoders, [75]) as well as speech recognition (SortaGrad [20], a method

that sorts samples by sequence length for faster accuracy convergence), this

is the first work targeted at improving the robustness of end-to-end ASR

models under noisy conditions.

The novel accordion annealing (ACCAN) training method applies a multi-

stage training schedule: in the first stage, the neural network is trained on

the lowest SNR samples. In the following stages, the SNR training range
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Model Stage 1 Stage 2 Stage 3 ... Stage 10

ACCAN 0 0, 5 0, 5, 10 ... 0, ..., 50

ACCAN REV 50 50, 45 50, 45, 40 ... 50, ..., 0

Table 3.1: The SNR schedules for the ACCAN and ACCAN REV models: SNR ranges

[dB] of the training stages © 2017 IEEE

is expanded in 5 dB steps towards higher SNR levels. A typical schedule is

shown in Table 3.1. In every stage, training repeats until the WER on the

development set no longer improves. At the end of each stage, the weights of

the best network are stored and used as the starting point for the next stage.

Both training and validation sets share the same range of SNR levels. The

ACCAN approach seems counter-intuitive as noisy training data should be

harder to train on than clean data. However, the noise allows the network

to explore the parameter space more extensively at the beginning [48]. This

study also includes a reversed ACCAN method which expands from high

SNR to low SNR. The networks trained with ACCAN and reversed ACCAN

will be referred to as the ACCAN and ACCAN REV models.

3.2 experimental setup

audio database All experiments were carried out on the Wall Street

Journal (WSJ) corpus (LDC93S6B and LDC94S13B) [76] in the following

configuration:

• training set: train-si84, 14 hours, 7138 samples,

• development set: test-dev93, 1 hour, 503 samples,

• test set: test-eval92, 0.7 hours, 333 samples.

For noise corruption, two different noise types were used: pink noise gen-

erated by the Audacity [77] software and babble noise from the NOISEX

database [78].

data preparation and language model The target text tran-

scriptions were extracted with EESEN [22] routines. All experiments are

character-based and use 58 labels (letters, digits, punctuation marks etc.)

During test time, the network output was decoded with the Weighted finite
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state transducer (WFST) approach from the EESEN framework, which lever-

ages a tokenizer (map network output to character tokens), a lexicon (correct

spelling mistakes) and a trigram language model (correct for most probable

word sequences) to correct the network output text. The language model

is trained on an expanded vocabulary in order to avoid out-of-vocabulary

words occurring in the standard WSJ language model [22].

audio features The audio waveforms were pre-processed to 123-

dimensional filterbank features (25ms frames, 10ms frame shift, 40 Mel-spaced

filterbanks, energy term, first and second order delta features). The features

were generated by preprocessing routines from EESEN [22]. Each feature

dimension is zero-mean and unit-variance normalized. Example filterbank

features for clean and noisy conditions (pink noise and babble noise at 0dB

SNR) are plotted in Figure 3.3.

neural network configuration The ASR pipeline is depicted

in Figure 3.4 and uses a LSTM-based acoustic model combined with a

WFST-based language model similar to the EESEN pipeline [22]. In order to

automatically learn the alignments between speech frames and label sequences,

the CTC [28] objective was adopted. The Lasagne library [79] was used to

build and train a 5-layer neural network as the acoustic model. The first

4 layers consisted of bidirectional LSTM [80] units with 320 units in each

direction. The fifth and final layer was a fully connected layer with 59 outputs,

corresponding to the 58 character labels + one blank label required by CTC.

The neural network contained 8.5M tunable parameters. All layers were

initialized with the Glorot uniform strategy [81]. Every experiment started

with the exact same weight initialization. During training, the Adam [82]

stochastic optimization method was used with the standard learning rate

1e− 3. To prevent overfitting and to increase noise robustness, dropout [47]

was used (dropout probability=0.3). Every epoch of training, the WER on

the development set was monitored with a greedy decoding approach: at

every frame, the most likely label was picked.

With all training strategies except ACCAN, the network was trained

for a generous 150 epochs. The network weights from the epoch with the

lowest WER were kept for evaluation. Generally, the improvements in WER

saturated well before 150 epochs were reached. The ACCAN method used

a patience of 5 as to switch between SNR stages, i.e. if the WER did not

improve for 5 epochs on the current SNR stage, the training continued on the

next SNR stage. By respecting the stage-switching policy, ACCAN reached
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Figure 3.3: Filterbank features for a clean waveform from the WSJ test set

(top) and when mixed at 0dB SNR with pink noise (middle) or

babble noise (bottom). The features were normalized to zero mean

and unit variance per each of the 40 filterbank channels. The 1st

and 2nd order delta features are not plotted here.
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CTC acoustic model
4x320 bidir LSTM

59 Dense

Audio
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Figure 3.4: The ASR pipeline transcribes audio filterbank features to a text

output. The CTC acoustic model emits sequences of characters

that are decoded and corrected with a WFST-based tokenizer

(remove CTC blank labels and repetitions), lexicon (correct for

spelling errors) and trigram language model (select more likely

word sequences).

the final SNR stage with the full SNR range at epoch 190. Saturation kicked

in at epoch 240. While ACCAN trained for more epochs than the others, it

only trained for 50 epochs on the full SNR range.

3.3 results

The results are reported for the test-eval92 subset of the WSJ dataset. The

evaluation was carried out in 16 different conditions: clean condition and

with added pink noise or babble noise at 15 SNR levels from 50dB to -20

dB in 5 dB steps. The results in Tables 3.2 and 3.3 report the average WER

over the following SNR ranges:

• Full SNR range: [clean signal, 50dB to -10dB]

• High SNR range: [50dB to 0dB]

• Low SNR range: [0dB to -10dB]

• Range of interest (ROI): [20dB to -10dB]

The ROI is included, as subjective hearing tests showed that this range seems

to well reflect common scenarios in public environments, where a clean speech

signal is most often not available. Detailed results for each SNR individually

are given in Table 3.4 for pink noise and Table 3.5 for babble noise. Results

for -15dB and -20dB are reported too, but should be considered as extreme
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cases. WER improvements are given as relative improvements in the text,

and the relative WER compared to the baseline model CLEAN is reported in

Figures 3.5 (a) and (b).

3.3.1 Noise Addition Methods

This section summarizes results from all models without curriculum learn-

ing: CLEAN, NOISY, GAUSS, VANILLA-PEM and GAUSS-PEM. The CLEAN model

(trained on clean speech only) achieves 13.8% WER with a trigram lan-

guage model and a 8.5M parameter network, while in literature [18], a 13.5%

WER was reported using 3x larger, 26.5M parameter network and a similar

decoding process. This confirms that the evaluated ASR pipeline is fully

functional.

baseline clean and noisy The model NOISY starts with a 25%

higher WER on the clean test set than the model CLEAN. For SNRs lower

than 25dB, the NOISY model is significantly more noise robust. The WER

seems to drastically increase at 25dB for the CLEAN, while NOISY sees the

increase onset at a lower 10dB SNR. However, all other methods outperform

the models NOISY and CLEAN by a significant margin at high and low SNRs.

vanilla-pem vs. gauss: Compared to the baseline NOISY model, VANILLA-

PEM achieves a 23% decrease in WER on high SNR, while GAUSS only reduces

WER by 15% (both pink noise and babble noise). This results in VANILLA-

PEM being able to outperform the baseline CLEAN model on clean speech, while

GAUSS is not able to do the same. On low SNR, both models reduce WER

by around 20% on the pink noise test set. On babble noise, PEM achieves a

higher 22.5% WER decrease compared to the 15.5% decrease provided by

GAUSS.

gauss-pem: The GAUSS-PEM model achieves the overall lowest WER on

the high and low SNR range. It beats the baseline NOISY model by between

26.5% and 28.7% on high SNR, on low SNR and on the ROI for both pink

noise and babble noise. The results on the high SNR range are notable:

GAUSS-PEM is able to outperform the baseline CLEAN network at every single

SNR step in the high SNR range, even on clean speech. The GAUSS-PEM model

is therefore much more noise robust while at the same time it even improves

clean speech scores. Around 35dB to 25dB, GAUSS-PEM (other models, too)

reaches its minimum WER. This is expected, as the mean SNR of the training
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Table 3.2: Average absolute WER [%] for given SNR ranges after decoding,

pink noise conditions. Printed bold: lowest WER. © 2017 IEEE

SNR range

Model Full High Low ROI

CLEAN 54.7 29.0 109.6 67.9

NOISY 46.0 23.3 88.6 51.7

GAUSS 37.4 19.8 71.1 42.1

VANILLA-PEM 35.6 17.8 70.6 40.8

GAUSS-PEM 34.1 16.6 64.7 37.2

ACCAN 34.4 18.1 59.5 36.0

ACCAN REV 35.2 17.8 66.3 38.8

Table 3.3: Average absolute WER [%] for given SNR ranges after decoding,

babble noise conditions. Printed bold: lowest WER. © 2017 IEEE

SNR range

Model Full High Low ROI

CLEAN 53.0 32.0 113.7 72.1

NOISY 53.3 29.9 114.0 68.4

GAUSS 45.4 25.4 96.3 56.9

VANILLA-PEM 41.0 22.8 88.3 52.3

GAUSS-PEM 39.5 21.6 83.7 49.0

ACCAN 39.6 21.5 80.2 47.0

ACCAN REV 39.5 21.5 82.9 48.2
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Model

SNR [dB] CLEAN NOISY GAUSS VANILLA

PEM

GAUSS

PEM

ACCAN ACCAN

REV

Clean 13.8 17.3 15.7 13.3 13.6 15.9 14.6

50 14.4 17.4 15.8 13.2 13.5 15.8 14.4

45 14.0 17.3 15.7 13.2 13.6 15.4 14.3

40 13.8 16.9 15.6 12.7 13.4 15.3 14.1

35 13.7 16.5 14.8 12.6 13.2 15.0 13.3

30 13.7 16.4 14.4 12.6 12.6 15.0 13.4

25 16.1 16.2 14.5 12.9 12.4 15.2 13.9

20 18.9 16.8 15.3 13.6 12.8 15.9 14.4

15 25.9 19.0 16.9 15.1 14.2 16.1 15.4

10 40.1 23.4 20.2 18.9 17.0 18.5 18.5

5 61.8 36.5 28.9 26.2 22.3 22.9 24.4

0 86.4 59.8 45.5 45.0 37.6 33.7 40.2

-5 109.0 90.0 72.8 73.5 66.3 58.8 67.8

-10 133.4 116.2 94.9 93.4 90.2 85.9 90.9

-15 147.2 126.7 99.0 96.9 95.9 95.6 97.0

-20 152.8 129.5 98.9 97.1 96.8 96.2 97.2

Table 3.4: Testing against pink noise: absolute WER [%] on single SNRs after

decoding. Printed bold: lowest WER. © 2017 IEEE
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Model

SNR [dB] CLEAN NOISY GAUSS VANILLA

PEM

GAUSS

PEM

ACCAN ACCAN

REV

Clean 13.8 17.3 15.7 13.3 13.6 15.9 14.6

50 14.2 17.1 15.6 13.2 13.8 15.7 14.4

45 14.2 16.9 15.7 12.9 13.7 15.3 14.2

40 13.9 16.7 15.7 12.7 13.4 14.9 14.0

35 14.2 16.1 15.3 12.3 13.4 15.1 14.1

30 14.5 15.7 15.0 12.7 13.3 15.1 14.0

25 15.7 15.8 15.4 12.8 13.7 15.0 14.0

20 18.8 17.8 16.5 14.0 14.6 15.5 14.6

15 26.6 23.1 19.5 17.4 16.9 17.5 16.5

10 43.9 35.5 27.5 25.6 22.9 21.8 21.9

5 74.2 60.6 45.9 44.2 37.4 33.4 35.5

0 102.2 94.1 77.4 72.7 64.1 57.2 63.5

-5 116.6 119.4 102.6 93.2 89.8 86.1 88.7

-10 122.4 128.4 109.0 99.1 97.3 97.2 96.6

-15 122.3 129.3 109.8 99.5 97.3 98.8 97.6

-20 121.4 129.2 110.6 99.8 97.4 99.1 97.6

Table 3.5: Testing against babble noise: absolute WER [%] on single SNRs after

decoding. Printed bold: lowest WER. © 2017 IEEE
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Figure 3.5: The WER [%] relative to the CLEAN model when testing vs. (a) pink

noise and (b) babble noise. The ACCAN model achieves the lowest

error rate of all models from 0 to -10 dB SNR for pink noise, and

for 5 to -5 dB for babble noise.
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SNR range is 25dB and the network seems to optimize for SNR levels close

to this value [73].

3.3.2 Curriculum Learning

To further increase the noise robustness, the novel curriculum learning strategy

ACCAN was proposed. The results for the ACCAN model are compared to the

GAUSS-PEM model, as this was the most noise robust non-curriculum learning

model. The evaluation shows increased noise robustness for ACCAN on pink

noise and babble noise: the WER decreases between 3.3% (ROI, pink noise)

and 4.1% (ROI babble noise). For pink noise, the biggest decrease is seen at

0dB (10.5% WER decrease) and -5dB (11.3% decrease). For babble noise,

the biggest WER decreases are found at 10dB (4.9%), 5dB (10.9%) and 0dB

(10.7%).

The average WER of the ACCAN model on the high SNR range is worse

on pink noise (relative 8.8% increase in WER), but better on babble noise

(relative 0.4% decrease in WER) when compared to GAUSS-PEM. Ultimately,

the absolute WER in clean speech of ACCAN (15.9%) is better than the baseline

NOISY model (17.3%) but worse than the GAUSS-PEM model (13.6%).

3.4 discussion

All proposed training methods lead to networks with increased noise robust-

ness in the low SNR range in comparison with the standard NOISY baseline

model. The noise robustness is increased on a network level and it does not

rely on complex preprocessing frameworks.

The increased noise robustness is seen against both pink and babble noise

types. This is remarkable, as the networks only saw the pink noise type

during training. The results show that waveform-level noise mixing as used in

PEM is especially strong in transferring noise robustness to noise types not

seen in training. The feature level Gaussian noise injection is less effective

on unseen noise types. Also, PEM enabled us to train noise robust networks

that - at the same time - achieve lower WER on clean speech than a network

trained only on clean speech. The uncompromising data augmentation by

PEM should be a decisive factor to achieve these results. For example, while

the baseline NOISY model was trained on 1.7GB of unique data (waveform

level), the PEM-enabled models trained on up to 408GB (240 epochs for

ACCAN * 1.7GB) of unique training data (waveform level). By permanently

sampling different noise segments, the network is forced to not rely only on
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constant noise features for classification, but to develop a better internal

representation of the speech data. This representation could be refined further

by using other noise types besides pink noise for training, such as babble

noise, street noise, restaurant noise. Also, SNR steps smaller than 5dB could

be used to allow more than 11 different SNR levels during training.

The PEM methods allows to dynamically change the SNR level during

training. This facilitated the implementation of the novel ACCAN training

strategy, that achieved the best noise robustness performance. The multi-

stage training starts at low SNRs levels, where annealed networks are able to

explore the parameters space with moderate influence of the speech signal.

During gradual exposure to higher SNRs in the training process, accordion

annealed networks refine their internal model of speech step by step, while

they seemingly acquire higher noise robustness at the lower SNR levels. The

inverse way of going through the SNR range, i.e. high to low SNR, did not

yield increased noise robustness. The immediate presence of clean speech

signals may have forced the network to converge faster to a more complex

acoustic model instead of exploring the parameter space.

3.5 conclusion

This thesis chapter proposed new training methods for improving the noise

robustness of end-to-end ASR models for a large-vocabulary continuous

speech recognition (LVCSR) task. The networks were trained for a wide SNR

range with the use of the PEM training method which adds noise at the

waveform level and the Gaussian noise injection method which adds Gaussian

noise at the feature level. By combining the Gaussian noise injection and PEM

methods into the Gauss-PEM method, an average 28% WER reduction was

achieved on the 20dB to -10 dB SNR range when compared to a conventional

multi-condition training method. At the same time, the WER was lower

on clean speech than for a network that was trained solely on clean speech.

The ACCAN training strategy enhanced the Gauss-PEM method with a

curriculum learning strategy and resulted in performance up to 11.3% lower

WER at low SNRs compared to Gauss-PEM method.

In the larger context of this thesis, this initial study showed that there is

tremendous potential to increase the noise robustness of end-to-end models.

However, the restrictions to single-channel input and no architectural changes

were rather arbitrary, and present a potential limitation towards further

reducing error rates. Also, the overall goals of this thesis are not only reducing

error rates, but also improving the interpretability of end-to-end models. From
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a critical point of view, the proposed training methods mainly increased the

amount of training data, without making the model more interpretable. The

next thesis chapter will remove the mentioned restrictions by considering

multi-channel input and architectural changes, and also attempt to improve

the model interpretability.



4
ATTENTION -DR IVEN MULTI - SENSOR SELECT ION

This thesis chapter explores end-to-end models in the context of multi-channel

ASR and multi-modal AVSR. To deal with multiple input sensors, a sensory

attention mechanism is proposed that is embedded in a sensor transformation

attention network (STAN). STANs support multi-sensor inputs of the same or

different modalities in a single end-to-end framework. The sensory attention

mechanism enables STANs to tune their attention towards less noisy sensors

for improved accuracy in noisy conditions. The attentional signal is highly

interpretable and correlates with the sensor noise level.

The remainder of this chapter is organized as follows. First, the STAN

framework and the sensory attention mechanism are described (Section 4.1).

The evaluation covers multi-modal AVSR with synthetic noise (Section 4.2),

and multi-channel ASR with real world noise, using either filterbank features

(Section 4.3) or spectrogram features (Section 4.4) as input. A final conclusion

closes this chapter (Section 4.5). The text in this chapter has been adapted

from published work in [83] (Sections 4.1, 4.2, 4.3) and in [84] (Section 4.4).

33
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4.1 multi-sensor attention model

The STAN architecture depicted in Figure 4.1 includes the following building

blocks: (1) input sensors, (2) sensor transformation functions and (3) a

sensory attention mechanism. The attention mechanism combines multiple

input sensors into a single, merged representation by first weighting and then

summing transformed feature frames from individual sensors.

We assume a multi-sensor setup with i = 1, ..., N sensors. All sensors

record time series that are binned into k = 1, ..., K frames, such that every

sensor si provides a D f -dimensional feature vector f i
k ∈ RD f for each frame

k. The merged representation m ∈ RDt is generated by the steps described

in Eq. (4.1) to (4.4):

ti
k = Ti( f i

1..k) (4.1)

zi
k = Zi(ti

1..k) (4.2)

αi
k =

exp(zi
k)

∑N
j=1 exp(zj

k)
(4.3)

mk =
N

∑
i=1

αi
k · ti

k (4.4)

The transformation function Ti converts the feature vectors f i
k to trans-

formed feature vectors ti
k ∈ RDt (Eq. 4.1). If no transformation is desired,

then Ti is the identity function f i
k = ti

k. The attention scoring function Zi

produces scalar attention scores zi
k ∈ R1 based on the transformed features of

sensor i (Eq. 4.2). The attention weights αi
k ∈ R1 are computed by performing

a softmax operation over all attention scores zi
k ∈ {z1

k , ..., zN
k } (Eq. 4.3), and

therefore ∑N
i=1 αi

k = 1. Each transformed feature vector ti
k is then scaled by

the corresponding attention weight αi
k and merged through a summation

operation (Eq. 4.4). The resulting - transformed, scaled and merged - feature

vectors mk are then presented to the classifier.

The sensory attention model implements the scoring functions Zi which

can be modelled using neural networks. In this study, the scoring function Zi

is implemented with LSTM units 1 [80] followed by one dense unit (weight

1 Any number from 10 to 200 LSTM units perform equally well in preliminary experiments.



4.1 multi-sensor attention model 35

W, bias b) with a SELU non-linearity 2 [85] (Eq. 4.5). LSTM units are a

convenient choice because past history is automatically considered.

Zi(ti
1..k) = SELU(W · LSTM(ti

1..k) + b) (4.5)

The proposed sensory attention mechanism has the following useful properties:

1. As a soft attention mechanism, it is differentiable and trainable with

back-propagation, and therefore compatible with end-to-end models.

2. At each frame k, the attention weights αi
k sum up to 1 across all sensors.

Therefore, the attention weight indicates the contribution of single

sensors to the combined representation of a frame.

3. The attention scores (zi
k) and weights (αi

k) are computed on every frame.

Their values reflect the dynamic per frame adjustment for temporal

changes in signal quality due to noise, sensor failure or other sensor

corruptions.

4. The attention scoring function of each sensor is independently evaluated,

and existing sensors may be removed or new sensors may be added

after training.

5. The scoring function Zi of each sensor may be identical when their

parameters are shared (θZ1 = θZ2 = ... = θZN ). In the shared case,

the attention mechanism would then be invariant to sensor re-ordering

because the same scoring function is used for all sensors.

The same arbitrary choice of functions can be made for the transformation

functions Ti as in the scoring functions Zi. This study proposes dense units

or identity functions. However, other network types such as CNNs [86] might

work just as well or even better.

2 The choice of the SELU activation function is arbitrary. In preliminary studies, different
variants (ReLU, LeakyReLU, SELU) were found to work equally well. The normalization
effect from SELU is not required.
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Figure 4.1: STAN architecture for a setup with two input sensors. The input

feature vectors f i
k are transformed and then weighted and summed to

generate the merged representation mk that is used for classification.

The sensory attention mechanism dynamically adapts its attention

weights to create a cleaner merged representation. © 2019 IEEE
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4.2 experiments with multi-modal input

The impact of non-stationary noise on the attention mechanism in a multi-

modal setting is evaluated on the audio-visual GRID dataset. These experi-

ments use controlled noise levels to establish the ground truth in measuring

the correlation between the attention weights and the SNR of the input

sensors.

4.2.1 Dataset

The GRID dataset [87] provides audio and video (facial) recordings of 1000

sentences each spoken by 34 speakers. The recording setup consisted of a single

camera and microphone. Each sentence contains 6 vocabulary units out of a

word vocabulary of 51 classes (commands, colors, prepositions, adverbs, letters

and digits). The samples were shuffled and split by 80/10/10% into training,

validation and test sets. The raw audio was converted to 123 dimensional

filterbank features (40 Mel-spaced filterbanks, energy coefficient, 1st and 2nd

order delta features, 50ms frames, 25ms frame shift). The video recordings

were processed to extract 17x8 pixel-sized mouth crops by using the Dlib face

detector and a pre-trained model of the 68 facial landmark annotator [88, 89].

An example of the audio and video input features is presented in Figure 4.2.

The pre-processed features of both modalities were presented to the networks

with the same frame rate and no further temporal alignment efforts were

applied. Both feature types were zero-mean and unit-variance normalized on

a per-sample basis. The task in the GRID experiments is AVSR: sequences

of audio and video input features are transcribed to sequences of words. The

WER was used as the performance metric.

4.2.2 End-to-end Models

Five models are evaluated: the uni-modal, single-sensor (1) AUDIO and (2)

VIDEO models and the multi-modal, two-sensor (3) CONCAT, (4) AVG and (5)

STAN models. All models convert each of their input sensors with individual

transformations Ti (Eq. 4.1) that are implemented with 50 dense units fol-

lowed by a SELU non-linearity [85], therefore ti
k ∈ R50. The multi-modal

networks combine the transformed features ti
k from each sensor by concate-

nation (CONCAT), averaging (AVG) or with the sensory attention mechanism

(STAN). The STAN attention scoring functions {Z1, Z2} are both implemented

with 20 LSTM units followed by a single dense unit with a SELU non-linearity
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Figure 4.2: The input features for a randomly selected sample from the GRID

multi-modal experiments. The left plot shows the 123D filterbank

features for the audio modality before normalization. The right plot

shows the mouth-cropped video frame before normalization and

downscaling. All 75 frames of the sequence are plotted for audio,

and only the 25th frame of the sequence is plotted for video.
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Figure 4.3: The STAN model architecture for multi-modal input on the GRID

experiments. The grey boxes correspond to elements that are part of

the sensory attention mechanism. The blue and red arrows show the

audio and video pathways, respectively. The scoring functions use

relatively fewer units and parameters than the classifier. The CONCAT

and AVG models would replace the sensory attention mechanism by

concatenation and averaging operations respectively.
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(Eq. 4.5), see Figure 4.3. Because the sensors provide distinct feature modali-

ties, the parameters of the scoring functions are not shared, i.e. θZ1 6= θZ2 .

All models use the same classifier architecture consisting of 2 layers of bidirec-

tional LSTM cells with 200 units per direction followed by a 52-dimensional

output projection, but are individually optimized. The models are trained

in an end-to-end fashion with the CTC objective [28] and the ADAM op-

timizer [82] for 150 epochs. The model achieving the lowest WER on the

validation set is used for evaluation. Note that there is no modality-specific

pre-training, and instead all models are trained from scratch with randomly

initialized weights.

4.2.3 Noise Models

The clean data provided by either modality provides reasonable information

to solve the ASR task on GRID, and a STAN model with clean multi-modal

input did not show much attentional switching in consequence. To encourage

attention switching, synthetic noise is added to each feature frame f i
k. The

noise is sampled from a zero-centered uniform distribution with standard

deviation σ(k), that is referred to as the noise level. Three different noise

models are used: (1) random walk noise, (2) cross noise and (3) hi-lo noise,

with examples shown in Figure 4.4.

The random walk noise model adds noise with a time-varying noise level,

σ(k), to each sensor and is used for both training and testing. The random

walk process q(k) is drawn separately for each sensor, and q(k) is then

normalized to the range [0, 1] and scaled by the maximum noise level σmax
as shown in Eqs. (4.6) and (4.7). As a result, each sensor has its own distinct

noise level at each time step.

q(k) =
k

∑
i=1

ni, with ni ∼ N (0, 1) (4.6)

σ(k) = σmax ·
q(k)−min{q1, ..., qK}

max{q1, ..., qK} −min{q1, ..., qK}
(4.7)

The resulting random walk process yields an average noise level of E(σ(k)) =
σmax/2. The training noise level σmax = 8 is chosen such that the average

WER is close to 16% when using a single modality. This allowed the multi-

sensor models to have a good chance of improvement by considering the

other modality, while at the same time a single modality still provided rea-

sonable WER with 5 correct words out of 6. This noise level was necessary

to encourage attentional switching for STANs.
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The cross and hi-lo noise variants are only used during testing to evaluate

the generalization of the attention mechanism. The cross noise applies a

linearly increasing noise level σ(k) = σmax · k/K to one sensor, and a linearly

decreasing noise level σ(k) = σmax · (1− k/K) to the other sensor. The hi-lo

noise applies a constant noise level σ(k) = σmax to one sensor, and the noise

level σ(k) = 0 to the other sensor. The sensor that sees the increasing (cross

noise) or maximum (hi-lo) noise level is alternated for every test sample. In

consequence, either sensor sees the increasing or maximum noise level for 50%

of all test samples. All models are tested with the same alternation pattern.

4.2.4 Attention Metrics

Because the noise level of both sensors is known at any time, the inter-

pretability of the attention weights can be quantified. One proposed metric,

attention correlation (ATTCORR), measures the correlation between the

noise level and the attention weights for a specific sensor. The sensor index i
(audio=1, video=2), noise level σi and attention weights αi are used to define

the ATTCORR as a correlation coefficient with values between -1 and 1:

ATTCORRi = corr
((

1− 2 · σi

∑2
j=1 σj

)
,
(
2 · αi − 1

))
(4.8)

A value of 1 corresponds to perfect correlation, and a value of 0 corresponds to

chance level. Another quantitative metric is the attention accuracy (ATTACC)

which measures the accuracy of identifying the higher (or lower) SNR sensor

by their attention weights:

ATTACC [%] = 100 · fcorrect

ftotal
(4.9)

where fcorrect is the number of frames with correct SNR sensor identification

and ftotal is the total number of frames of the evaluation set. Sensors are

considered as correctly identified on a frame when the lower SNR sensor is

attributed a lower attention weight. An ATTACC value of 100% corresponds

to perfect identification, and a value of 50% corresponds to chance level.

4.2.5 Results

The models are trained in noisy conditions with added random walk noise

(σmax = 8), and evaluated in clean and noisy conditions with random walk,
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cross or hi-lo noise added. Table 4.1 reports the WER for all five models; and

the ATTACC and ATTCORR scores for the STAN model.

The multi-modal networks perform significantly better than the uni-modal

networks in both clean and noisy conditions. The STAN and AVG models are

mostly on par and achieve the lowest WER, except for the hi-lo noise where

STAN shows a relative WER improvement of up to 36.1% (σmax = 8) over

AVG. Across all noise types and all noise levels, STAN shows a relative WER

improvement of 9.1% to 36.9% over CONCAT, 56.8% to 77.7% over AUDIO and

64.1% to 82.8% over VIDEO.

The STAN model computes highly interpretable attention weights as shown

in Figure 4.4. Both ATTACC and ATTCORR metrics start at chance level

for σmax = 1e− 5 and increase to scores between 75.3% to 99.8% (ATTACC)

and 0.68 to 0.83 (ATTCORR) for σmax = 8. Failures in correct prediction

of the lower SNR sensors mainly arise when both sensors have similar noise

levels, or noise levels change too rapidly. These cases are mostly seen for the

random walk noise. Even though the model is trained only on random walk

noise, the attention mechanism generalizes well to the cross and hi-lo noise

types.

4.2.6 Discussion

This initial study evaluated STANs in a noisy AVSR task. The attention

mechanism increased the total number of network parameters by only a small

amount, and enabled the STAN model to robustly process multi-modal input

from audio and video sensors. Across all experiments, STANs achieved error

rates on par or better than single-sensor models or multi-sensor models with

concatenation and averaging strategies. The attention mechanism improved

the noise robustness by dynamically tuning towards the higher SNR sensor,

and the tuning process yielded highly interpretable attention weights that

correlate with the sensor SNR levels. These results align well with the overall

thesis goals of increasing noise robustness and model interpretability.

One particular design decision in this study was the use of synthetic noise.

While synthetic noise does not reflect real-world scenarios, it allowed to

establish the ground truth of sensor noise levels, and therefore to quantify the

correlation between noise level and attention weights. Given the promising

results on synthetic noise, the next sections will also evaluate STANs on

real-world noise.
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Figure 4.4: Attention response on a randomly selected sample from the multi-

modal GRID dataset. The top row depicts the noise levels applied

to each input, and the bottom row depicts the attention weights

computed by STAN. The green bars indicate frames where the relative

SNR value of the correct sensor is identified. (a) shows the response

to random walk noise resulting in ATTACC of 72%. Note how the

attention weights dynamically change, mostly in correlation with

the noise level. (b) and (c) show responses to cross and hi-lo noise,

with ATTACCs of 92% and 100% respectively. © 2019 IEEE
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min, max, Random walk noise, σmax

Metric chance level Model 1e-5 4 8

WER [%] 0, 100, 98

AUDIO 2.8 ± 0.1 7.9 ± 0.3 18.5 ± 0.5

VIDEO 5.2 ± 0.5 9.4 ±0.7 22.3 ± 0.9

CONCAT 1.1 ± 0.2 2.9 ± 0.6 9.4 ± 1.2

AVG 1.0 ± 0.1 2.3 ± 0.2 8.2 ± 0.4

STAN 1.0 ± 0.1 2.4 ± 0.1 8.0 ± 0.2

ATTACC [%] 0, 100, 50 STAN 50.6 ± 0.1 59.7 ± 1.4 75.3 ± 1.1

ATTACC/scale -100, +100, 0 STAN 1.2 ± 0.1 19.4 ± 2.8 50.6 ± 2.2

ATTCORR1 -100, +100, 0 STAN 1.2 ± 0.1 33.7 ± 2.8 68.0 ± 1.2

ATTCORR2 -100, +100, 0 STAN 1.3 ± 0.1 33.8 ± 2.7 68.2 ± 1.2

min, max, Cross noise, σmax

Metric chance level Model 1e-5 4 8

WER [%] 0, 100, 98

AUDIO 2.8 ± 0.1 7.5 ± 0.3 19.1 ± 0.6

VIDEO 5.2 ± 0.5 9.2 ± 0.7 22.0 ± 0.8

CONCAT 1.1 ± 0.2 2.6 ± 0.5 8.8 ± 1.2

AVG 1.0 ± 0.1 2.1 ± 0.2 7.4 ± 0.4

STAN 1.0 ± 0.1 2.2 ± 0.1 7.1 ± 0.3

ATTACC [%] 0, 100, 50 STAN 49.2 ± 0.1 65.1 ± 2.1 87.6 ± 1.5

ATTACC/scale -100, +100, 0 STAN -1.6 ± 0.1 30.2 ± 4.2 75.1 ± 3.0

ATTCORR1 -100, +100, 0 STAN -0.5 ± 0.1 53.6 ± 3.2 83.4 ± 1.8

ATTCORR2 -100, +100, 0 STAN -0.5 ± 0.1 53.6 ± 3.2 83.4 ± 1.8

min, max, Hi-lo noise, σmax

Metric chance level Model 1e-5 4 8

WER [%] 0, 100, 98

AUDIO 2.8 ± 0.1 10.7 ± 0.3 23.8 ± 0.5

VIDEO 5.2 ± 0.5 13.3 ± 0.6 30.8 ± 0.4

CONCAT 1.1 ± 0.2 3.2 ± 0.6 8.4 ± 1.2

AVG 1.0 ± 0.1 2.8 ± 0.2 8.3 ± 0.7

STAN 1.0 ± 0.1 2.6 ± 0.1 5.3 ± 0.2

ATTACC [%] 0, 100, 50 STAN 50.0 ± 0.1 87.3 ± 2.4 99.8 ± 0.1

ATTACC/scale -100, +100, 0 STAN 0.0 ± 0.1 74.6 ± 4.8 99.7 ± 0.1

ATTCORR1 -100, +100, 0 STAN - - -

ATTCORR2 -100, +100, 0 STAN - - -

Table 4.1: Results of the GRID experiments, averaged over 10 runs. All val-

ues are reported in the format mean ± standard deviation. The

ATTCORR values are not computed for the hi-lo noise because

the correlation function is not defined for constant functions. The

lowest WER is printed bold. The ATTCORR and ATTACC values

are rescaled to the range [−100, 100] in the interest of readabil-

ity. © 2019 IEEE
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4.3 multi-channel speech recognition with natural noise

The STAN architecture is further evaluated on the multi-channel CHiME-4

dataset which includes real-world noise. The reported experiments include

a comparison of STANs against concatenation, averaging and beamforming

models. Without any re-training, the experiments also evaluate the robustness

of the STAN models with respect to reversed channel orders, channel addition

and channel removal.

4.3.1 Dataset

The CHiME-4 dataset [31] for ASR provides real and simulated noisy speech

data from a tablet device with 6 microphones. The data was recorded in

four noisy environments: public transport, a cafe, a street junction and

pedestrian area. The real data was recorded with the tablet device, and

the simulated data was generated by mixing clean speech utterances from

the WSJ0 [76] dataset with environment background recordings. The tablet

device is equipped with 5 microphones facing the speaker and 1 microphone

facing away from the speaker (backward channel #2, the noisiest of all).

Bothreal data (tr05 real, 1600 samples) and simulated data (tr05 simu, 7138

samples) are used for training, and the evaluation is carried out on the real

noisy data subsets (et05 real, 1320 samples and dt05 real, 1640 samples).

The samples were pre-processed into 123-dimensional filterbank features

(40 Mel-spaced filterbanks, energy coefficent, 1st and 2nd order delta features,

25ms frames, 10ms frame shift) and normalized to zero-mean and unit variance

per sample. The output labels consist of 59 alphabet units (characters, digits

etc.) that are obtained with the EESEN pre-processing routines [22]. The

task in the CHiME-4 experiments is ASR: sequences of input features are

transcribed to sequences of characters. The CER is used as the performance

metric.

4.3.2 Models

In total, five different models are evaluated: CONCAT-2CH, AVG-2CH, STAN-

2CH, STAN-5CH and BEAMFORMIT-5CH. The two-channel models are trained

on channels (2,5), with the low SNR backwards channel 2 and the high SNR

front channel 5 [31]. The five-channel models are trained on the five front

channels (1,3,4,5,6). Each input channel provides pre-processed filterbank

features, and because it was not necessary to use further transformations, the
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Train Test # et05 dt05 Attention weights, dt05 real

ID Model channels channels Parameters real real ᾱ1 ᾱ2 ᾱ3 ᾱ4 ᾱ5 ᾱ6

(a) CONCAT-2CH 2,5 2,5 13.51M 30.4 20.4 - - - - - -

(a) AVG-2CH 2,5 2,5 13.15M 36.3 24.6 - - - - - -

(a) STAN-2CH 2,5 2,5 13.17M 30.4 19.9 - 0.22 - - 0.78 -

(b) CONCAT-2CH 2,5 5,2 13.51M 57.8 43.1 - - - - - -

(b) AVG-2CH 2,5 5,2 13.15M 36.3 24.6 - - - - - -

(b) STAN-2CH 2,5 5,2 13.17M 30.4 19.9 - 0.22 - - 0.78 -

(c) AVG-2CH 2,5 1,3,4,5,6 13.15M 24.9 17.2 - - - - - -

(c) AVG-2CH 2,5 1,2,3,4,5,6 13.15M 27.0 18.5 - - - - - -

(c) STAN-2CH 2,5 2 13.17M 61.3 47.3 - 1.00 - - - -

(c) STAN-2CH 2,5 5 13.17M 28.8 19.3 - - - - 1.00 -

(c) STAN-2CH 2,5 1,3,4,5,6 13.17M 25.7 17.4 0.19 - 0.18 0.19 0.23 0.21

(c) STAN-2CH 2,5 1,2,3,4,5,6 13.17M 26.4 17.8 0.17 0.07 0.17 0.19 0.21 0.19

(d) STAN-5CH 1,3,4,5,6 1,3,4,5,6 13.17M 26.5 17.7 0.17 - 0.17 0.21 0.23 0.22

(d) BEAMFORMIT-5CH 1,3,4,5,6 1,3,4,5,6 13.15M 24.2 15.9 - - - - - -

(d) ATTMULTI-E2E [59] 1,3,4,5,6 1,3,4,5,6 ∼8M 38.0 26.8 - - - - - -

(d) MASK_NET(ATT) [45] 1,3,4,5,6 1,3,4,5,6 ∼18M 26.8 18.2 - - - - - -

Table 4.2: Results for the CHiME-4 multi-channel ASR experiments. The CER

[%] is given for the et05 real and dt05 real subsets. The attention

weights for STAN-2CH and STAN-5CH are averaged over all frames of

the dt05 real subset. The lowest CER and highest attention weight

are printed bold. All models are trained and tested on matched

channel configurations, and the CONCAT, AVG and STAN-2CH models

are additionally tested on new channel configurations without re-

training. © 2019 IEEE

identity transformation function Ti (ti
k = f i

k) is chosen. The models apply

different channel combination strategies: the CONCAT-2CH model concatenates

both input channels for classification, and the AVG-2CH averages both in-

put channels before classification. The averaging strategy corresponds to

assigning fixed attention weights αi
k = 1/2 to the input frames. The STAN

models, depicted in Figure 4.5, compute data-dependent attention weights

and implement the channel scoring functions Zi with 20 LSTM units followed

by a single dense unit with a SELU non-linearity (Eq. 4.5), resulting in 11k

additional parameters over the AVG model (+0.09% relative). Because the

input channels are of the same modality, the same scoring function Z is

applied to each channel i, therefore θZ1 = ... = θZN . The BEAMFORMIT-5CH

model uses a delay-and-sum beamformer [90] which first produces enhanced
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waveforms in a separate pre-processing stage so it is not considered as an

end-to-end model.

All five models use the same classifier architecture based on 5 layers of

bidirectional LSTM cells with 350 units per direction followed by a 59-

dimensional output projection, but are individually optimized. The models

are trained in an end-to-end fashion for 150 epochs with the ADAM optimizer

and the CTC objective. The model with the lowest CER on the development

set was used for evaluation.

The evaluation further includes results from related models on multi-

channel end-to-end ASR without additional lexicons or language models. The

ATTMULTI-E2E [59] combines multiple input channels into a single represen-

tation with a sensory attention mechanism based on weighted summation.

Their attention mechanism shows two main differences to the one used in the

STAN models: (1) it uses a custom designed neural network cell to compute

attention scores while STANs use generic LSTM and dense units and (2) it

is not invariant to the re-ordering of input channels, while ours is invariant

due to the choice of θZ1 = ... = θZN . The MASK_NET(ATT) [45] model uses

an attention mechanism that selects the reference microphone for a neural

beamformer. In contrast to the ATTMULTI-E2E and STAN models, the channels

are not combined by a sensory attention mechanism, but rather by a neural

beamformer. The neural beamformer is able to exploit spatial information,

which is not considered by ATTMULTI-E2E and STAN. Both ATTMULTI-E2E and

MASK_NET(ATT) use a CTC+Encoder/Decoder hybrid model that is trained

with a joint CTC-attention multi-task objective, while the STAN model is

trained with an encoder (i.e. the acoustic model) and single CTC objective.

4.3.3 Results

The evaluation is carried out on the et05 real and dt05 real subsets and

the CER results are reported in Table 4.2. For STAN-2CH and STAN-5CH, the

results include the average attention weight
(
ᾱi = 1

K ∑K
k=1 αi

k
)

of every input

channel obtained on the dt05 real subset (K = 985619 frames). Note that the

way the attention weights are reported corresponds to the physical CHiME-4

channels, and does not reflect the input channel order.

4.3.3.1 Two-channel Models & Matched Channel Order

The models are trained and tested on the channel order (2,5) (see Table 4.2(a)).

The STAN-2CH and the CONCAT-2CH models perform best and achieve similar

error rates. STAN-2CH shows a relative CER improvement between 16.3% to
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Figure 4.5: STAN model architecture for two-channel input on the CHiME-4

experiments. The grey boxes correspond to elements that are part

of the sensory attention mechanism. The red and green arrows

show the Channel 2 and 5 pathways respectively. There is only

one network for audio scoring that computes attention scores for

all input channels. The scoring functions use relatively fewer units

and parameters (11k) than the classifier (13.5M). The CONCAT and

AVG models would replace the sensory attention mechanism by

concatenation and averaging operations respectively.

19.1% over AVG-2CH. Seemingly, STAN-2CH benefits from the automatically

learned channel weighting. The average attention weight assigned to channel

5 is 3.5x higher than for the noisy channel 2: ᾱ5 = 3.5 · ᾱ2, and the relation

α5
k > α2

k holds true for 94.2% of all K = 985619 frames. In other words,

by comparing attention weights alone, the higher SNR channel 5 can be

identified with 94.2% accuracy.

4.3.3.2 Two-channel Models & Reversed Channel Order

The models were originally trained on channel order (2,5) but are then tested

on the reversed channel order (5,2) without any re-training (Table 4.2(b)).

As expected, the STAN-2CH and AVG-2CH models show error rates that are

identical to the train channel order, as both are invariant to channel order.

CONCAT-2CH performs worse with the reversed channels and shows a relative

CER increase of 90.1% to 111.3% compared to the train channel order.
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4.3.3.3 Channel Addition and Removal

The STAN-2CH and AVG-2CH models were originally trained on channels (2,5),

but are then tested on new channel configurations without any re-training

(Table 4.2(c)). Both models allow the re-use of the same classifier because

the merged feature dimensionality does not change with the number of input

channels. The CONCAT-2CH model is not considered here as it does not allow

to re-use of the classifier: the concatenated feature dimensionality grows

with the number of input channels, but the classifier expects the same input

dimensionality as during training.

Interestingly, both AVG-2CH and STAN-2CH show improved CER scores

when tested with the new channel configurations (1,3,4,5,6) and (1,2,3,4,5,6),

without any re-training. Compared to the channel configuration (2,5), STAN-

2CH shows relative CER improvements between 10.6% to 15.5% and AVG-2CH

shows relative CER improvements between 24.8% to 31.4%. Both models

now achieve similar CER, and the previous advantage of STAN-2CH in the

two-channel tests is reduced. This is expected, as the benefit of dynamic

channel weighting should be smaller when the merged representation mainly

(1,2,3,4,5,6) or only (1,3,4,5,6) consists of the five front channels with similar

signal quality. The average attention weights computed by STAN-2CH seem

reasonable with the five front channels at equal levels. When available, the

backwards facing channel 2 can be identified by its significantly lower average

attention weight ᾱ2. The operation of the STAN-2CH attention mechanism is

further illustrated on a sample using channel configuration (1,2,3,4,5,6) and

with channel corruption on channels 2 and 3 in Figure 4.6. More examples

are shown in the Appendix A.2.

The single-channel tests are only performed for STAN-2CH, and keeping

only channel 5 results in similar CER compared to the default (2,5) configu-

ration. This is no surprise considering that the sensory attention mechanism

already favored channel 5. When keeping only channel 2, the CER becomes

significantly worse.

4.3.3.4 Related Work

All models in this comparison are trained and tested on the five front

channels (Table 4.2(d)). STAN-5CH shows error rates that are similar to

MASK_NET(ATT) [45] and that are significantly lower than ATTMULTI-E2E [59].

The BEAMFORMIT-5CH model achieves the lowest overall error rates with

relative CER improvements of 8.7% to 10.2% over STAN-5CH and 5.8% to

8.6% over STAN-2CH. While the BEAMFORMIT-5CH model shows lower error
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rates than the sensory attention mechanism, the underlying beamforming

algorithm uses significantly more processing time. In order to generate the

enhanced output from the five input channels on a sample of average length

6s, the beamforming algorithm takes 3554ms (CPU) while the attention

mechanism of STAN-5CH only takes 195ms (CPU) or 25ms (GPU), i.e. 25x to

142x faster (Skylake Xeon CPU with 4.3GHz, GTX 1080 GPU).

4.3.4 Discussion

The proposed experiments evaluated STANs on a noisy ASR task with

real-world noise. The CHiME-4 dataset provided multi-sensor input from

a single audio-modality, and allowed to establish a two-channel scenario

where both channels had different SNR levels due to their orientation towards

and away from the speaker. This SNR information served as the ground

truth to assess the proper function of the STAN attention mechanism. The

parameterization of the STAN attention mechanism was kept similar to the

previous experiments with synthetic noise (20 LSTM units and 1 dense unit),

and added only 11k parameters to a 13.5M parameter network. Despite the

increased difficulty in this real-world task, the sensory attention mechanism

continued to compute attention weights that correlated with the channel

SNR level. In the two-channel scenario, the tuning of the attention weights

reduced error rates significantly over the simple averaging of the channels.

The dynamic tuning could also adapt to reversed channel orders, while the

concatenation model was restricted to its learned channel preference and

resulted in higher error rates than the STAN model.

The STAN model was initially trained on a two-channel scenario, but

showed remarkable flexibility as it was able to deal with channel addition

and removal after training and without any re-training. However, increasing

the number of channels showed reduced effectiveness of the channel tuning,

as the average model achieved error rates on par with the STAN model for

five-channel and six-channel configurations. In the five-channel scenario, the

input consisted of the five front channels with similar SNR, eliminating the

incentive for SNR-based channel tuning. In the six-channel scenario, the five

front channels outnumbered the single backward channel, making averaging

already an effective solution. Based on these results, it seems reasonable to

assume that STAN are most effective when the number of noisy channels is

as high or higher than the number of cleaner channels.

A final evaluation step covered a five-channel scenario and compared the

STAN attention mechanism with conventional beamforming. Ultimately, the
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comparison shows a trade-off situation between model complexity and error

rates. While the beamforming model achieved lower error rates, it also used

a separate enhancement stage that is incompatible with the end-to-end

paradigm and increases the model complexity over STANs.

Given recent advances in reducing the amount of hand-tuning in feature

pre-processing, the next Section 4.4 will address the open question whether the

attention mechanism can cope with input features that are less pre-processed

than the filterbank features used in this section.
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Figure 4.6: Operation of STAN-2CH on a sample with channel configuration

(1,2,3,4,5,6). (a) Filterbank features for the 6 input channels and

the merged representation. (b) Attention weights αi
k for the 6 input

channels. The attention weights show three distinct tiers: the cleaner

channels (1,4,5,6) are assigned the highest attention weights that

are roughly equal for all 4 channels. The weights of noisy channel

2 lie between those of (1,4,5,6) and the highly corrupted channel

3 (isolated case of microphone failure). The merged representation

appears to be hardly corrupted by channels 2 and 3. © 2019 IEEE
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4.4 multi-channel speech recognition with a convolu-

tional front-end architecture

The previous Sections 4.2 and 4.3 made fairly conservative choices in terms

of audio input features (filterbank features) and end-to-end model (LSTM

blocks only). While filterbank features have been a standard choice as input

for end-to-end models [22, 59], the spectrogram features have recently found

increasing use in end-to-end models, especially in large-scale models [19,

20]. Spectrogram features are obtained with fewer processing steps than

filterbank features, as only the log-magnitude spectrogram is required. This

reduces the computational burden on the pre-processing stage. Also, various

end-to-end models have recently integrated learnable CFEs into the model

architecture [20, 44]. In the example of Deep Speech 2 [20], the CFE improved

the noise robustness, and also allowed for a down-sampling in the temporal

dimension, reducing the amount of time steps that the ASR systems has to

process. In this section, these more recent developments are taken into account,

and STANs are evaluated on an end-to-end ASR system with spectrogram

input features and an integrated CFE block.

4.4.1 Neural Network Architecture

The acoustic model receives as input, the merged representation generated

by the STAN sensory attention mechanism detailed in Section 4.1. The

end-to-end model is composed of a CFE followed by a stack of LSTM units.

The CFE is made of three convolutional blocks. Each block performs a

function f that includes a 2D convolution, a 2D instance normalization [91]

and a clipped ReLU non-linearity σ(x) = min{max(x, 0), 20}) [92]:

f (x) = σ(InstanceNorm2d(Conv2d(x))) (4.10)

The CFE operates on spectrogram features. As the CFE uses a temporal

stride of 2 in the first layer, it effectively halves the sequence length and

reduces training time. The proposed CFE implementation is closely related

to Deep Speech 2, where a similar CFE configuration helped to improve

error rates especially in noisy conditions [20]. The main difference of the

proposed implementation is the use of instance normalization (sample-wise

normalization) instead of batch normalization (batch-wise normalization),

and the mean and variance statistics from training are not applied during

normalization at test time. On the four different noise environments of

CHiME-4, using mean and variance statistics computed across samples from
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different environments for normalization, decreased the model performance

in preliminary experiments, and therefore instance normalization is used.

The CFE is followed by a stack of bidirectional LSTM units and the final

output layer is an affine transform to the class labels. The CTC [28] objective

is used to automatically learn the mapping and alignment between input

features and label sequences. The model is tested with strict end-to-end

criteria and without use of external lexicons or language models. The CTC

output is decoded in a greedy fashion: at each time step, the most likely label

is selected.

4.4.2 Dataset

All experiments are carried out as ASR tasks on the CHiME-4 data-set [31]

(please refer to Section 4.3.1 for a dataset description). Both real data

(tr05 real, 1600 samples) and simulated data (tr05 simu, 7138 samples) are

used for training.

The audio samples are pre-processed into 161-dimensional spectrogram

features with the short-time Fourier transform (STFT). First, the STFT-

coefficients are computed (20 ms frame length, 10ms frame shift, Hamming

window) and then the log of the magnitude of the STFT-coefficients is kept.

The features are further normalized to zero mean and unit variance per

sample. The output labels consist of 59 distinct labels such as characters and

digits and are obtained with the EESEN pre-processing routines [22].

4.4.3 Models

In total, 5 different models are evaluated: NOISY, BEAMFORMIT, MVDR, AVG and

STAN. All of these models are trained and tested for 10 different random

initializations. The NOISY model is trained and evaluated only on channel

5. It provides a baseline for a model optimized on the best-performing

channel. All other models are trained and tested on the front channels

1/3/4/5/6, but differ in their channel combination strategies. The BEAMFORMIT

model uses a delay-and-sum beamformer [90], while the MVDR model uses a

minimum variance distortionless response (MVDR) beamformer based on

the implementation provided by the CHiME authors [31]. Both beamformers

produce enhanced waveforms in a separate pre-processing stage that is not

optimized towards the ASR objective, and so their corresponding models

are not considered as end-to-end models. The STAN model is depicted in

Figure 4.7 and uses the STAN attention mechanism (Section 4.1) to merge



54 attention-driven multi-sensor selection

Classifier
5x256 bidir LSTM

59 Dense

Merge
Weighted sum

Audio scoring
1x10 unidir LSTM

1 Dense

CFE
Convolutional blocks
3x{conv,norm,ReLU}

Audio
Spectrogram features

Channels 1,3,4,5,6

Figure 4.7: The STAN model architecture for five-channel input on the CHiME-4

experiments. The gray boxes correspond to elements that are part

of the sensory attention mechanism. There is only one network for

audio scoring that scores all input channels. The scoring functions

use relatively fewer units and parameters (7k) than the CFE (1M) or

classifier (7.3M). The AVG model would replace the sensory attention

mechanism by an averaging operation.

the input channels. In order to assess the effectiveness of this attention

mechanism, the STAN model is compared against an averaging model, AVG,

that assigns fixed attention weights αc
t = 1/5 for the five input channels.

The simple channel concatenation strategy is not included here, because it

is not inherently invariant to channel re-ordering (see [59]). Also, results

from the previous Section 4.3 showed that concatenation complicates channel

addition or removal after training because the acoustic model expects a

fixed input dimensionality. The results include the ATTMULTI-E2E [59] and

MASK_NET(ATT) [45] models for comparison, and both models have been

described in Section 4.3.

4.4.4 Training Parameters

All models are optimized separately, but use the same acoustic model ar-

chitecture presented in Section 4.4.1: a CFE with 3 layers of convolutional

blocks (Table 4.3) followed by 5 layers of bidirectional LSTMs with 256 units

in each direction. The final output layer is an affine transform to the 59

output classes. The STAN model uses 10 LSTM units followed by a single

dense unit with a SELU non-linearity to implement the attention scoring

function Z (Equation 4.5), resulting in 7k additional parameters. The models

were trained in an end-to-end fashion with the CTC objective [28] and the

ADAM optimizer [82] for 150 epochs. The model with the lowest CER on

the development set was used for evaluation.
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Layer Channels Kernel Stride

L1 32 41x11 2x2

L2 32 21x11 2x1

L3 96 21x11 2x1

Table 4.3: 2D convolution filters of the CFE. First dimension is frequency and

second dimension is time.

4.4.5 Results

The CER obtained on the CHiME-4 development and evaluation sets are

reported in Table 4.4. The CER values reflect the average CER and standard

deviation collected over 10 runs per model.

4.4.5.1 Real Noisy Data

The BEAMFORMIT model achieves the lowest overall error rates on both real

noisy subsets et05 real and dt05 real, and the STAN model is almost on par,

with error rates that are relatively by 1.3% to 2.7% higher. Compared to

the other models, STAN shows a relative CER improvement of 0.4% to 1.9%

over the AVG model and 19.0% to 20.8% over NOISY. The MVDR model shows

better results than the single channel NOISY model, but is not competitive

with the other approaches on real noisy data.

Results from related work report higher error rates. The STAN model shows

a relative CER improvement of 12.7% to 16.5% over MASK_NET(ATT) and

38.4% to 43.3% over ATTMULTI-E2E. The higher error rates of MASK_NET(ATT)

and ATTMULTI-E2E may originate from their hybrid CTC+Encoder/Decoder

acoustic model unlike our simple CTC model. The number of parameters of

the STAN model (8.031M) also compares favorably against those of ATTMULTI-

E2E (∼8M) and MASK_NET(ATT) (∼18M). Note that the latter implements

the neural beamformer part with an estimated ∼10M parameters, while the

sensory attention mechanism only uses 7k parameters.

4.4.5.2 Simulated Noisy Data

The MVDR model clearly achieves the lowest CER on both simulated noisy

subsets et05 simu and dt05 simu and yields significantly lower error rates than

it did on the real noisy data. For MVDR beamforming, better performance on

simulated data was also reported by the CHiME-4 authors and explained with
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the absence of reverberation in the simulated data [31]. The MASK_NET(ATT)

model performs significantly better than STAN on dt05 simu, but worse on

et05 simu. The BEAMFORMIT model performed worse than the single channel

NOISY model on et05 simu. This result may be explained by the separate

optimization of the beamforming and acoustic model components. A hearing

inspection also led to the hypothesis that the simulated noisy data itself could

explain the unexpected findings: at times, the simulation process introduces

residual speech artifacts on channels 1/3/4/6 but produces a cleaner channel

5 signal3.

4.4.5.3 New Channel Configurations

The flexibility and interpretability of the sensory attention mechanism is

demonstrated through additional experiments on dt05 real. The CER of the

STAN and AVG models are tested for the cases of channel re-ordering, channel

addition and channel removal. The models are not re-trained for these new

channel configurations. The CER results are reported in Table 4.5 along with

the average attention weight
(
ᾱc = 1

T ∑T
t=1 αc

t
)

of every channel c of STAN,

computed over all T = 989608 frames of dt05 real. The results are collected

from 10 runs per model. Note that the way that the attention weights are

reported corresponds to the physical tablet channels, and does not reflect

the channel order. The AVG model assigns equal attention weights to all N
channels, i.e. αc

t = 1
N .

As expected, both models are invariant to channel re-ordering and yield

identical CER for channel orders 6/5/4/3/1 and 1/3/4/5/6. Adding the

noisy channel 2 (1/2/3/4/5/6) leads to a smaller increase in CER for STAN.

In fact, STAN suppresses channel 2 as seen by the lower attention weight

α2
t of this channel when compared to the other channels. This indicates a

good generalization of the sensory attention mechanism because it was not

trained on the data from channel 2. For all channel configurations, channel

2 has the lowest attention weight and channel 5 has the highest attention

weight whenever either one is present. When removing channels, STAN has

an increased advantage and shows a relative CER improvement of up to

11.9% over AVG in the channel configuration 2/5. For this configuration, the

results show that the attention mechanism is quite accurate: α5
t > α2

t holds

true for 96.2% of all frames. In other words: by comparing attention weights

alone, the SNR channel 5 can be identified with 96.2% accuracy. The high

interpretability of the attention weights is further confirmed by the plots of

3 e.g. sample ’M06 447C0216 STR’ from et05 simu
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the input features and attention weights for the channel configuration 2/5 in

Figure 4.8.

CH2

CH5

Merged

(a) spectrogram features

0 100 200 300 400 500 600
Frames t

0.0

0.5

1.0
(b) attention weights

−2

0

2

α2
t ,α5

t

Figure 4.8: Operation of STAN on a sample with channel configuration 2/5. (a)

Spectrogram features for the two input channels and the merged

representation. (b) Attention weights for the two input channels.

The merged representation is dominated by channel 5, as evident

by the higher attention weights of this channel which has less noise.

4.4.6 Discussion

The STAN end-to-end model was evaluated in the context of multi-channel

ASR and an acoustic model architecture similar to Deep Speech 2. Instead

of the filterbank features that were used in previous experiments, this model

operates on spectrogram features that require less pre-processing. The network
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Table 4.4: CER [%] results on CHiME-4 ASR experiments. The CER is given

as the average ± standard deviation over 10 runs. The best results

are printed in bold. For models from related work, only one run is

available, and the parameter counts were estimated.

Model Parameters dt05 real dt05 simu et05 real et05 simu

NOISY 8.024M 19.2 ± 0.4 19.2 ± 0.4 28.9 ± 0.4 24.6 ± 0.5

AVG 8.024M 15.5 ± 0.6 17.8 ± 0.6 23.5 ± 0.6 23.7 ± 0.7

STAN 8.031M 15.2 ± 0.1 17.2 ± 0.2 23.4 ± 0.2 22.4 ± 0.4

BEAMFORMIT 8.024M 14.8 ± 0.3 17.3 ± 0.3 23.1 ± 0.3 26.0 ± 0.4

MVDR 8.024M 17.9 ± 0.2 12.5 ± 0.2 28.0 ± 0.5 15.8 ± 0.3

ATTMULTI-E2E [59] ∼8M 26.8 26.5 38.0 32.9

MASK_NET(ATT) [45] ∼18M 18.2 15.3 26.8 23.7

Table 4.5: CER [%] results on the dt05 real subset of CHiME-4 for new channel

configurations. The CER is given as the average ± standard deviation

over 10 runs. The attention weights for STAN are first averaged over

all frames of dt05 real, and then averaged over all 10 runs. The

standard deviations for the attention weights are not given for space

constraints, but the maximum standard deviation seen is 0.017. The

lowest CER and highest attention weight are printed in bold.

CER [%] STAN attention weights

Channels AVG STAN ᾱ1 ᾱ2 ᾱ3 ᾱ4 ᾱ5 ᾱ6

1/3/4/5/6 15.5 ± 0.6 15.2 ± 0.1 0.19 - 0.18 0.22 0.23 0.18

6/5/4/3/1 15.5 ± 0.6 15.2 ± 0.1 0.19 - 0.18 0.22 0.23 0.18

1/2/3/4/5/6 16.6 ± 0.6 16.0 ± 0.1 0.17 0.12 0.16 0.19 0.21 0.16

2/3/4/5 17.9 ± 0.6 16.8 ± 0.1 - 0.18 0.23 0.28 0.30 -

2/3/5 19.4 ± 0.6 17.8 ± 0.2 - 0.26 0.32 - 0.42 -

2/5 22.6 ± 0.9 19.9 ± 0.2 - 0.38 - - 0.62 -

2 45.9 ± 0.3 45.8 ± 0.3 - 1.00 - - - -

5 17.6 ± 0.5 17.6 ± 0.2 - - - - 1.00 -
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also embeds additional convolutional layers to down-sample and process the

input. Both architectural changes are especially interesting for online ASR,

where the reduction of the computational load is welcome to save hardware

resources and compute time.

In a five-channel scenario and compared to the filterbank STAN model

from the previous Section 4.3, the spectrogram STAN model reduced CER

by relatively 11.7% to 16.4% on real noisy data. The results showed that the

STAN attention mechanism still managed to produce interpretable attention

weights on spectrogram features. Despite the fact that the attention weights

correlated well with the SNR level, the STAN model achieved error rates

almost on par and only slightly better than the averaging model. These

findings confirms previous results from the five-channel and six-channel

experiments in Section 4.3. However, the sensor removal experiments also

show input configurations where STANs are more effective. The two-channel

experiment uses a higher SNR front channel and a lower SNR back channel,

and the STAN model achieves 11.9% relatively lower CER than the averaging

model. Notably, STANs were not trained on the noisy channel 2, but the

attention mechanism still managed to generalize.

On a final note, the results further confirm the importance of multi-channel

processing to increase the noise robustness of end-to-end models. The multi-

channel STAN model achieved a 20.0% to 20.9% relatively lower CER than

a single channel model. Similar improvements are seen with the model using

the Beamformit algorithm, but the underlying beamforming algorithm is

not compatible with the end-to-end paradigm. The MVDR algorithm for

beamforming only achieved good results for the simulated noisy data, were

the speaker position is fixed. For real-world noisy data, MVDR was not

competitive with either STANs or the model using the Beamformit algorithm.
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4.5 conclusion

This thesis chapter presented the STAN end-to-end model that embeds a

sensory attention mechanism for multi-sensor setups. The STAN model is

trainable in an end-to-end fashion and compatible with uni-modal and multi-

modal multi-sensor input. The attention mechanism is built with default

neural network units and increases the total amount of parameters by only

a small amount. By processing sensor input only, the attention mechanism

dynamically tunes its attention towards higher SNR sensors. Experiments

on multi-modal AVSR and multi-channel ASR showed that STANs achieve

lower error rates over single sensor configurations. Across all experiments,

the sensory attention mechanism of STANs also performed on par or better

than averaging or concatenation strategies for multi-sensor combination, with

the additional benefit of computing highly interpretable attention weights.

Notably, the sensory attention mechanism was able to robustly process

different modalities and feature types, i.e. video features and different audio

features such as filterbank and spectrogram features. Given the small increase

in neural network parameters and competitive performance in all experiments,

the sensory attention mechanism provides an effective solution to leverage

multi-sensor input for increased noise robustness in end-to-end models.

However, the sensory attention mechanism may be further optimized.

In fact, it was formulated in a modality-independent way to guarantee

compatibility with arbitrary input modalities. The compatibility comes at a

cost, and for uni-modal scenarios such as multi-channel ASR, there may be

modality-specific optimizations to exploit. In particular, future work could

include spatial information in the attention mechanism, as is also used by

most beamforming algorithms for better multi-channel enhancement.



5
PARAMETER UNCERTAINTY FOR END-TO -END

MODELS

In the previous two chapters, the noise robustness of end-to-end models has

been increased by training the acoustic model with a curriculum learning

strategy (Chapter 3) and by leveraging multi-sensor input with sensory

attention (Chapter 4). The curriculum learning strategy did not make any

changes to the underlying neural network model, and the sensory attention

mechanism introduced only a small number of additional neural network units

at the input stage - other than that, the acoustic model was left unchanged.

In this chapter, the acoustic model architecture is more radically changed by

using parameter uncertainty throughout all of the acoustic model weights. The

proposed architectural change improves the networks performance in domain

adaptation for improved noise robustness, but also acts as a regularizer and

a helpful tool for parameter pruning.

The text in this chapter is adapted from published work in [93] and

the remainder of this chapter is organized as follows. The neural network

with parameter uncertainty through probabilistic parameters is presented

in Section 5.1, and the baseline experiments are described in Section 5.2.

The probabilistic network is further evaluated for parameter pruning in

Section 5.3 and domain adaptation in Section 5.4. A final conclusion is given

in Section 5.5.

5.1 probabilistic end-to-end models

5.1.1 Random Variable Parameters

We consider end-to-end models for ASR that transcribe speech input to

text output with a single neural network. A conventional end-to-end model

consists of a set of n = 1, ..., N deterministic parameters θ = {θ1, ..., θN} that

represent the weights and biases of the neural network units. In this work,

we consider probabilistic parameters Θ = {Θ1, ..., ΘN} for the model. While

there are many possible ways to define the random variables Θn, we choose a

Gaussian distribution such that Θ ∼ N (µ, σ). Note that every parameter Θn
is described with a parameter-specific mean µn and standard deviation σn.

61
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Figure 5.1: An illustration of network connections for deterministic (left) and

probabilistic parameters (right). When using deterministic param-

eters, each connection value is represented by a real value. When

using probabilistic parameters, each connection value is represented

by a probability distribution (e.g. a Gaussian distribution as used

in this work.)

The mean and standard deviation represent the expected parameter value

and its uncertainty. When using probabilistic neural networks, the network

connections are modeled by probability distributions instead of real values as

depicted in Figure 5.1.

Similar to related work [66–68], we define a parameter-specific signal-to-

noise ratio:

SNRn =
|µn|
σn

(5.1)

Note that a parameter with SNRn → ∞ could be interpreted as a deterministic

parameter. The results of previous studies [66–68] imply that SNR levels can

be used to identify the important parameters that are useful for solving a

task. The SNR level can be computed for a specific parameter on a local level,

or for the whole network on a global level, e.g. by computing the average or

median SNR level of all parameters.
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5.1.2 Training with Random Variables

The training process optimizes both the mean µ ∈ RN and standard deviation

σ ∈ RN of the n = 1, ..., N network parameters. The standard deviation σ is

parameterised with the proxy parameter β ∈ RN and the softplus function [94]

σ = log(exp(β) + 1) to ensure that σ is positive (see Figure 5.2). A training

procedure similar to [66] is used that updates network parameters as described

in Eq. (5.2)-(5.5):

ε ∼ N (0, 1) (5.2)

θ = µ + log(exp(β) + 1) · ε (5.3)

L = f (θ, x, y) (5.4)

µ′, β′ ← optimizer(µ, β,∇Lµ,∇Lβ) (5.5)

The following procedure is repeated for every mini batch: First, noise samples

ε ∈ RN are drawn from a standard normal distribution (Eq. (5.2)). The noise

samples are scaled by σ and shifted by µ to compute the parameters θ ∈ RN

(Eq. (5.3)). For the forward pass, the parameters θ and the network input

x and target labels y are used to compute the loss L (Eq. (5.4)). For the

backward pass, the gradients ∇Lµ,∇Lβ are computed and the parameters

µ, β are updated with an optimizer (Eq. (5.5)).

The first two steps described in Eq. (5.2) and (5.3) are referred to as the

reparameterization trick in the literature [95] and yield the same effect as

sampling θ from N (µ, σ(β)), but they keep the sampling operation differ-

entiable wrt. µ, β. Training with probabilistic parameters is not different

from training with deterministic parameters with respect to the loss function

(Eq. (5.4)) and the optimizer (Eq. (5.5)). Note that the loss function and the

optimizer can be of arbitrary choice.

5.1.3 Testing with Random Variables

During inference, probabilistic parameters provide a choice to either use

an expected parameter value or to sample parameters. In this work, the

inference forward pass is carried out with the mean parameter µ to produce

the network output o as described in Eq. (5.6) and (5.7):

θ = µ (5.6)

o = f (µ, x) (5.7)
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Figure 5.2: The softplus function maps the neural network parameter β ∈ R to

the positive-only standard deviation σ ∈ R+.

Related work has explored parameter sampling during inference [66, 67] to

generate model ensembles for improved accuracy.

5.1.4 Deterministic vs. Probabilistic Parameters

The proposed probabilistic parameters render the model architecture and

training process more complex. First, there is a 2x increase in the number

of parameters because the Gaussian distribution that defines each network

connection requires 2 parameters in the form of a mean and a standard

deviation. Second, during training time, there is an additional sampling

step to generate the parameter values. However, the additional complexity

brings the benefit of using the SNR level as a proxy measure for parameter

importance. Notably, the cost function remains unchanged when using the

probabilistic parameters. This is an important feature that makes the proposed

probabilistic networks compatible with any end-to-end objective for ASR,

and also with other tasks than ASR.

5.1.5 Related Work

Probabilistic neural network models have been mostly explored from a vari-

ational inference perspective [66–68, 96]. The embedding in a Bayesian
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framework allows these approaches to introduce additional loss terms that are

interpreted as parameter complexity cost terms [66, 67] or minimum descrip-

tion length cost terms [68, 96]. In contrast, this work develops probabilistic

networks from a parameter-based perspective, and there are no additional loss

terms that could be developed by a Bayesian interpretation of the network.

To the best of the authors knowledge, only one study evaluated probabilistic

networks for end-to-end ASR [68]. This study used a LSTM-based CTC model

with 140k parameters on the 5h TIMIT dataset. The effect of parameter

pruning was evaluated for a single probabilistic network, and no adaptation

scenario was considered. In contrast, this study evaluates multiple probabilistic

networks with different SNR levels for both pruning and domain adaptation

scenarios. Even the non-ASR studies investigated only SNR-based pruning,

but no continual learning scenarios such as domain adaptation.

Probabilistic networks with Gaussian parameters are closely related to

the weight noise regularizer for recurrent neural networks (RNNs) [97]. This

regularizer adds noise from a normal distribution N (0, σr) to the network

parameters before the forward pass is carried out in training. The standard

deviation σr is a single scalar hyperparameter used for all network parameters

and is not updated during training [21, 98]. In contrast, this study uses

a separate standard deviation per parameter and performs gradient-based

updates on the standard deviation in training.

5.2 baseline experiments

5.2.1 Datasets

All experiments are carried out as ASR tasks on the WSJ [76] and CHiME-

4 [31] datasets presented in Table 5.1. The WSJ dataset provides single

channel read speech data recorded in clean conditions. The CHiME-4 dataset

provides read speech data recorded from a 6-channel tablet in noisy conditions

(bus, street junction, cafe and pedestrian area). In this work, only the channel

5 data is used that leads to the lowest error rates on CHiME-4.

The audio data was pre-processed into 123-dimensional filterbank features

(25ms frames, 10ms frame shift, 40 Mel-spaced filterbanks, energy coefficient,

1st and 2nd order delta) and normalized to zero-mean and unit-variance per

sample. Both the WSJ and CHiME-4 datasets use the same alphabet of 59

tokens (characters, digits etc.) as output labels which were obtained with the

EESEN pre-processing routines [22]. The CER is used as the performance

metric.
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Dataset Subset # hours Speech domain Comment

WSJ train si284 81.0 clean -

WSJ test dev93 1.0 clean -

WSJ test eval92 0.7 clean -

CHiME-4 tr05 simu real 18.0 noisy only CH5

CHiME-4 dt05 real 2.5 noisy only CH5

CHiME-4 et05 real 2.0 noisy only CH5

Table 5.1: Datasets used for experimentation. © 2019 IEEE

5.2.2 Model Architecture

All models share the same basic architecture depicted in Figure 5.3: 5 layers of

bidirectional LSTMs [80] with 320 units in each direction and a final 640x59

projection to the output labels. The deterministic models use default LSTM

units and consist of a parameter set θD with LSTM weights wLSTM, biases

bLSTM and projection weights wPROJ (Eq. (5.8), ∼11M parameters).

θD = {wLSTM, bLSTM, wPROJ} (5.8)

The probabilistic models use LSTMs with Gaussian weights and consist of

a parameter set θP with LSTM weight means µLSTM, parameterised weight

standard deviations βLSTM, biases bLSTM and projection weights wPROJ

(Eq. (5.9), ∼22M parameters).

θP = {µLSTM, βLSTM, bLSTM, wPROJ} (5.9)

The parameters wLSTM, µLSTM and wPROJ are initialized with the Xavier

uniform initialization [81] according to Eq. (5.10). The same random seed is

used to ensure that probabilistic and deterministic models start training with

identical weight and weight mean, i.e. wLSTM = µLSTM. All biases bLSTM are

initialized to 0. The parameterized standard deviation βLSTM is initialized

according to Eq. (5.11). This initialization results in an average SNR of 1.0
for the LSTM weight parameters, and gives the same convergence speed

during training as a network that uses the deterministic parameters. The

convergence characteristics of different SNR level initializations on the WSJ

dataset is shown in Figure 5.4. Networks with lower SNR initializations take

longer to converge due to their high noise level, and may even fail to converge

when the noise level of the initialization is too high.
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Figure 5.3: The model architecture used for experimentation. The deterministic

model uses default LSTM units and consists of ∼ 11M parameters.

The probabilistic model uses LSTM units with Gaussian weights

and deterministic biases and consists of ∼ 22M parameters.

Aij ∼ U
(
−
√

6
i + j

,

√
6

i + j

)
, A ∈ Ri×j (5.10)

Bij = log

(
exp(

1
2

√
6

i + j
)− 1)

)
, B ∈ Ri×j (5.11)

5.2.3 Training

All of the followingly presented models are trained for 25 different random

initializations. The models differ in training set, parameter type and loss

function. An overview is given in Table 5.2. The baseline deterministic models

D/WSJ, D/CHiME and D/MIX use deterministic LSTM units (Eq. (5.8)); and

are trained on train si284, tr05 simu real and the combined train si284 +

tr05 simu real subsets respectively. The probabilistic models P/WSJ/λβ use

LSTMs with Gaussian weights (Eq. (5.9)) and are trained on train si284.

All models are trained with the CTC loss function LCTC [28] and the Adam

optimizer (learning rate 1e-3) [82] for 25 epochs, and the model from the

epoch with the lowest CER on test dev93 is selected for evaluation. For the
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Figure 5.4: CER on the WSJ validation set test dev93 during training on

train si284. The deterministic model (black) converges fastest. The

probabilistic models (colored) converge faster when the average SNR

at initialization is higher. The probabilistic model with average SNR

of 0.33 did not converge, so training was stopped.

probabilistic models, lower SNR parameters are enforced by using weight

decay Lβ = ||β||22 on the parameterized weight standard deviation βLSTM.

The decay term Lβ is scaled by the factor λβ such that the complete loss

function is L = LCTC + λβLβ. The hyperparameter λβ is tuned by a grid

search in the range 5e-7 to 1e-5.

All neural network models have been implemented in PyTorch [99]. The

default LSTM units make use of the fastest publicly available LSTM imple-

mentation (cuDNN kernel [100]). The Gaussian weight LSTM units use a

modified version of the cuDNN kernel wrapper that implements an additional

parameter sampling step as defined in Eq. (5.2). Despite the additional sam-

pling, the models with Gaussian weight LSTMs train only 4% slower than

the models with default LSTMs1.

5.2.4 Testing

All models are tested with strict end-to-end criteria and without the use of

external language models. The CTC output is decoded in a greedy fashion:

1 measured with a GTX 1080 GPU during WSJ training, default 5x320 bidir LSTM model.
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Model Type Training set Cost function λβ range

P/WSJ/λβ Probabilistic train si284 LCTC + λβLβ 0 ... 1e-5

D/WSJ Deterministic train si284 LCTC -

D/CHiME Deterministic tr05 simu real LCTC -

D/MIX Deterministic
train si284,

tr05 simu real
LCTC -

Table 5.2: The models used for baseline training.

at every time step, the label with the highest probability is selected. The

probabilistic models are tested with the mean weights µLSTM, i.e. the LSTM

parameters are not sampled during testing.

5.2.5 Results for Probabilistic Models

As a first evaluation step, the impact of the loss scaling term λβ on the CER

performance of the probabilistic models P/WSJ/λβ is analyzed. The term

λβ controls the strength of the regularizer Lβ that increases the standard

deviation of the probabilistic parameters. After the training is completed for

25 runs, the CER results of the models D/WSJ and P/WSJ/λβ are reported

in Figure 5.5. The loss scaling term λβ is varied from 0 to 1e-5 and the

CER is measured on the WSJ test eval92 subset. For 0 ≤ λβ ≤ 2e− 6, the

probabilistic models P/WSJ/λβ achieve 3.1% to 4.6% relatively lower median

CER than the deterministic model D/WSJ. For λβ > 2e− 6, the CER of the

probabilistic models increases monotonically from 6.5% CER (λβ = 2e− 6)

up to 10.3% CER (λβ = 5e− 5). The results indicate that the loss scaling

term λβ has a strong influence on the CER performance.

In a second evaluation step, the SNR statistics of the Gaussian LSTM

weights are analyzed. After the training is completed for 25 runs, the SNR

statistics are computed. The median SNR level of the probabilistic parameters

is plotted as a function of the loss scaling term λβ in Figure 5.6. The median

SNR of P/WSJ/λβ is decreasing monotonically from 3.0 (λβ = 0) to 0.6

(λβ = 1e− 5). In other words, with increasing λβ, the network gets more noisy.

This indicates that the SNR level is indeed controllable by the additional cost

term Lβ on the parameterized standard deviation βLSTM. Also, the strong

increase of the CER results for λβ > 2e− 6 may now be explained by the

low SNR level of these networks.
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Figure 5.5: CER [%] results for testing on WSJ test dev93 when varying the

loss scaling term λβ. For 0 ≤ λβ ≤ 2e− 6, the probabilistic model

P/WSJ/λβ outperforms the deterministic model D/WSJ by a small

margin. For λβ > 2e− 6, the CER is increasing, and also the range

of possible CER results is increasing.
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Figure 5.6: Median SNR of the Gaussian LSTM weights as a function of the

loss scaling term λβ, collected from 25 runs. With increasing λβ,

the probabilistic network weights decrease in SNR. In other words,

the network gets noisier when λβ increases.
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Model Median Mean±Std Min Max

P/WSJ/0 3.0 3.7±3.0 6.1e-9 123.8

P/WSJ/1e-6 1.8 2.3±1.9 1.6e-8 73.6

P/WSJ/4e-6 1.0 1.2±1.1 3.8e-9 61.4

Table 5.3: SNR statistics for the LSTM weights of the probabilistic models

obtained after a completed training on train si284. The statistics are

computed over 25 runs following the definition SNR =
|µLSTM |
σLSTM .

For further evaluation, three probabilistic models with λβ =0, 1e-6 and

4e-6 are selected. The model P/WSJ/0 is the baseline probabilistic model

where only the CTC loss LCTC isused. The model P/WSJ/1e-6 achieves the

lowest CER of all models and the model P/WSJ/4e-6 achieves CER similar

to D/WSJ, but at a low SNR. The final selection of models with λβ =0, 1e-6

and 4e-6 covers median SNR levels of 3.0, 1.8 and 1.0 as reported in Table 5.2.

Interestingly, despite median SNR levels of 1.0 to 3.0, the SNR range is much

larger and goes from around 0 up to 61.4 (P/WSJ/4e-6), 73.6 (P/WSJ/1e-6)

and 123.8 (P/WSJ/0). Plotting the cumulative distribution function (CDF) of

the parameter SNR levels in Figure 5.7 reveals that in any model, parameters

at SNR>50 are rather rare.

A final SNR analysis shows the SNR level over LSTM layers in Figure 5.8.

While P/WSJ/0 shows a monotonically increasing SNR levels from 2.5 to 3.5

between the first and the last network layer, both P/WSJ/1e-6 and P/WSJ/4e-

6 maintain a stable SNR level close to the respective median SNR throughout

all layers.
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Figure 5.7: The cumulative distribution function (CDF) of the parameter SNR

levels for the models P/WSJ/0, P/WSJ/1e-6 and P/WSJ/4e-6. The

range of SNR levels is decreasing when λβ increases. Even though

parameters with SNR > 50 do exist in any model, they are rare

compared to lower SNR parameters.
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Figure 5.8: The median SNR level as a function of the LSTM layer in the

network, collected over 25 runs. The default probabilistic model

P/WSJ/0 shows a monotonically increasing median SNR from the

first to the last layer. The noisier models P/WSJ/1e-6 and P/WSJ/4e-

6 stay close to the median SNR level throughout all LSTM layers.
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WSJ CHiME-4

Model test eval92 test dev93 et05 real dt05 real

D/MIX 6.3±0.2 8.6±0.2 33.8±0.4 21.8±0.3
D/CHiME 18.0±0.4 22.0±0.3 37.3±0.4 26.7±0.3

D/WSJ 6.6±0.3 9.2±0.4 57.1±0.6 44.7±0.6

P/WSJ/0 6.3±0.2 8.8±0.2 56.4±0.6 43.9±0.7

P/WSJ/1e-6 6.3±0.4 8.7±0.5 56.0±0.5 43.5±0.6

P/WSJ/4e-6 7.0±0.6 9.5±0.7 56.2±0.5 44.0±0.7

Single-E2E [58] - - 40.9 29.5

ESPnet [44] 7.6 10.1 - -

Table 5.4: Baseline CER [%] results for clean speech (WSJ) and noisy speech

(CHiME-4). The CER is given as average ± standard deviation over

25 runs. For the models Single-E2E and ESPnet, there is only one

run available. The lowest CER on each subset is printed bold.

5.2.6 Results for Domain-mismatch Conditions

The baseline evaluation results on the WSJ and CHiME-4 test and develop-

ment sets are reported in Table 5.4. All results are given after the training

is completed for 25 runs. The deterministic model D/MIX trained on both

clean speech (WSJ) and noisy speech (CHiME-4) achieves the lowest CER

across all evaluation scenarios. The other models are trained on either clean

speech or noisy speech, and they only achieve low error rates in the same

noise conditions they were trained on.

When considering only models trained on clean speech (WSJ), the prob-

abilistic models P/WSJ/0 and P/WSJ/1e-6 perform slightly better than the

deterministic model D/WSJ, with an average CER reduction of 4.5% on

test eval92 and test dev93. The model P/WSJ/4e-6 is still competitive, but

reports higher standard deviations due to higher noise level of the network.

Recent work on end-to-end models with deterministic weights and without

external language models reports similar error rates. The models from recent

work are represented by Single-E2E [58] (trained on tr05 simu real, channel

5) and ESPnet [44] (trained on train si284).
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5.3 pruning experiments

5.3.1 Setup

The pruning experiment is carried out on the models that were trained on

WSJ train si284, i.e. D/WSJ, P/WSJ/0, P/WSJ/1e-6 and P/WSJ/4e-6. The

LSTM weight parameters, which account for > 99% of the model parameters,

are pruned while the rest of the model parameters is left unchanged. For the

deterministic models, the LSTM weights wLSTM are ordered by magnitude

and the lowest X percent of magnitude weights are pruned, i.e. set to zero.

For the probabilistic models, the LSTM mean weights µLSTM are ordered

by SNR and the lowest X percent of SNR weight means are pruned. The

models are tested on test dev93 without any retraining after pruning. The

probabilistic models use the LSTM mean weights µLSTM for testing.

5.3.2 Results

The pruning results are reported in Figure 5.9. For sparsity levels smaller than

50% (Figure 5.9 (a)), all models achieve similar CER within the boundary of

one standard deviation. For sparsity levels between 50% to 95% (Figure 5.9

(b)), all probabilistic models are able to achieve significantly lower error rates

with the same sparsity level than the deterministic model D/WSJ.

Probabilistic models with lower SNR tolerate higher sparsity levels than

models with higher SNR, and P/WSJ/4e-6 tolerates the highest sparsity

levels. With a 75% sparsity level, P/WSJ/4e-6 achieves 11.7% CER, which is

a relative CER reduction of 57.5% compared to the 27.5% CER of D/WSJ.
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Figure 5.9: Weight pruning results when testing on the WSJ test dev93 subset,

for 0...50% sparsity (a) and 0...95% sparsity (b). The CER is given

as average ± standard deviation over 25 runs. All probabilistic

models show lower CER at similar sparsity levels than the deter-

ministic model D/WSJ. The probabilistic model with the lowest SNR

P/WSJ/4e-6 shows the smallest CER increase under pruning.
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5.4 domain adaptation experiments

5.4.1 Setup

The adaptation experiment is carried out on the following models that were

trained on train si284: D/WSJ, P/WSJ/0, and P/WSJ/4e-6. The models were

originally trained on clean speech data from WSJ, and now they are adapted

to noisy speech data from the CHiME-4 dataset by further training on the

dt05 real subset. The models are adapted for 25 epochs with the CTC loss

LCTC and the Adam optimizer (learning rate 1e-3). Note that the same

number of epochs and the same learning rate is used for adaptation and

baseline training. This strategy is different from conventional adaptation

setups that use fine-tuning with fewer epochs and smaller learning rates for

adaptation (e.g. [101]). In order to analyze the effect of Gaussian weights, we

only adapt the weights wLSTM (deterministic models) or the weight mean

µLSTM (probabilistic models) of the LSTM cells. The biases bLSTM and the

projection weights wPROJ are left unchanged.

As a measure to counter catastrophic forgetting, auxiliary loss terms are

included that penalize the overwriting of weights. The penalties are different

for deterministic and probabilistic models and their effect is plotted for a

typical example in Figure 5.10. For the deterministic model, we propose

an auxiliary L2 penalty LL2 between updated weight value wLSTM and pre-

adaptation weight value wLSTM∗:

LL2 = (wLSTM − wLSTM∗)2 (5.12)

The L2 penalty prevents catastrophic forgetting by forcing weight updates

to stay close to the original value. For the probabilistic models, we include

an auxiliary SNR penalty LSNR between updated mean weight value µLSTM

and pre-adaptation mean weight value µLSTM∗:

LSNR = SNR(µLSTM − µLSTM∗)2 (5.13)

The inclusion of the SNR value in the loss term penalizes updates on pa-

rameters with higher SNR, which are assumed to be more important than

lower SNR parameters to solve the original clean speech task. Note that

besides the use of SNR information, the SNR penalty from Eq. (5.13) is

similar to the L2 penalty from Eq. (5.12). The auxiliary penalties are scaled

with the parameter λaux that is varied between {0, 0.1, ..., 727.9, 1000.0} in

30 geometrically spaced steps, and the full loss function for adaptation is

L = LCTC + λauxLaux.
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Figure 5.10: The plot shows the auxiliary L2 (green) and SNR (blue) penalties

when overwriting a pre-trained weight value wLSTM∗, µLSTM∗ = 3.

The L2 penalty only depends on the difference between parameter

and update value. The SNR penalty rescales the update cost with

the SNR level. As a result, the higher SNR=2 parameter in curve

a) is more costly to overwrite then the lower SNR=0.5 parameter

in curve c). Therefore, the higher SNR parameter is more likely

to be preservered during adaptation.

5.4.2 Results

The CER of the adapted models is evaluated for every epoch of adaptation on

the subsets test eval92 (clean speech) and et05 real (noisy speech), and the

results are reported in Figure 5.11. The results show three tiers of adaptation

characteristics. The trade-off between error rates on clean speech and noisy

speech is smallest for the lower SNR model P/WSJ/4e-6, intermediate for the

higher SNR model P/WSJ/0 and highest for the deterministic model D/WSJ. In

other words, D/WSJ is more prone to forgetting the original clean speech task

than both probabilistic models, and a lower parameter SNR further reduces

forgetting. When allowing for 8.0% CER on test eval92, then P/WSJ/4e-6

reaches 42.7% CER on et05 real, while D/WSJ reaches 50.2% CER, a relative

reduction of 15%.
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Figure 5.11: Adaptation results when adapting networks trained on clean

speech, to noisy speech. Large dots show pre-adaptation error

rates. Black dots denote models adapted with λaux = 0 (no ad-

ditional penalty), while colored dots correspond to models with

λaux > 0 (L2 or SNR penalty active). Every dot represents a dif-

ferent epoch of adaptation and a different λaux. The probabilistic

networks show less forgetting on the original clean speech data

during adaptation. The low SNR probabilistic model P/WSJ/4e-6

shows the least amount of forgetting. © 2019 IEEE
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5.5 conclusion

This thesis chapter evaluated end-to-end models for ASR that use LSTM

units with probabilistic weight parameters. The parameters are sampled

from a Gaussian distribution with a parameter-specific mean and standard

deviation. Despite the probabilistic formulation, the model is trainable with

the same cost function as a model with deterministic parameters.

Experimental results show that probabilistic models achieved error rates

on par or better than deterministic models. Despite an additional parameter

sampling step, probabilistic parameters only lead to a 4% increase in training

time compared to deterministic parameters. When pruning weights on an

already trained model, the probabilistic models tolerated higher sparsity

levels at lower error rates than the deterministic models. Also, during an

adaptation experiment from clean to noisy speech, the probabilistic models

showed less forgetting on the original clean speech task than deterministic

models. A key advantage of probabilistic models is the availability of the

parameter-specific SNR, which is highly correlated with the importance of a

parameter for the task it was trained on. The parameter-specific SNR helped

to identify less important parameters for pruning and to restrict updates on

important parameters during adaptation.

The average SNR of the end-to-end model parameters is controllable by an

additional loss term that enforces higher standard deviation. When comparing

probabilistic models with different SNR levels, the results show that models

with lower SNR exhibit improved pruning and adaptation characteristics. One

reason for these findings might be that noisier parameters exhibit a higher

degree of uncertainty, and therefore tolerate larger amounts of the parameter

updates that appear in both pruning and adaptation. Future studies could

evaluate probabilistic neural networks on larger speech datasets; and also

with acoustic models that are based on neural network units other than

LSTMs, e.g. CNNs.





6
CONCLUS ION

6.1 summary

This thesis advances the state-of-the art in end-to-end models for ASR, with

the overall goals of improving noise robustness and model interpretability.

The thesis introduced three contributions.

First, a novel training method was proposed that improves the noise

robustness of the end-to-end model with a curriculum learning strategy. The

network training follows a SNR schedule that starts training at low SNR

levels, and then gradually exposes the network to higher SNR levels. The

curriculum training method did not require any changes in the neural network

architecture. Compared to conventional multi-condition training methods,

the curriculum learning strategy improved the recognition accuracy in noisy

conditions.

The second contribution evaluated end-to-end models in the context of

multi-modal, multi-sensor setups. To deal with multi-sensor input, the neural

network architecture was modified to include a sensory attention mechanism.

Despite adding relatively few parameters, the sensory attention mechanism

allowed the network to extract information from multiple sensors and dy-

namically tune its attention towards less noisy sensors. In synthetic and

real-world noisy conditions, the sensor tuning increased the accuracy and

the model interpretability, as the attentional signal was highly correlated

with the sensor noise level. Furthermore, the attention mechanism robustly

dealt with adding and removing sensors after training. Compared to standard

multi-sensor processing strategies such as concatenation and averaging, the

attention mechanism performed on par or better across all experiments, with

the additional benefit of identifying relative sensor SNR levels. Compared

to conventional beamforming algorithms, the sensory attention mechanism

resulted in higher error rates, but remained compatible with the end-to-end

paradigm and significantly reduced the model complexity.

The third contribution introduced the most significant modification to the

neural network architecture, replacing the deterministic network parameters

with probabilistic parameters. The network parameters are sampled from

probability distributions that are learned during training and exhibit a

parameter-specific degree of uncertainty. The parameter uncertainty was

81
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used as a proxy measure for parameter importance, greatly improving the

interpretability of the millions of parameters found in end-to-end models.

The importance information served as valuable information in a parameter

pruning scenario for saved computation and a domain adaptation scenario

for increased noise robustness.

6.2 applications and outlook

The overall goals of this thesis were closely aligned with real-world applica-

tions of ASR systems. Modern ASR systems deal with noisy speech in various

environments (e.g. in cars, conference rooms, living rooms etc.), and noise

robustness is a key factor in avoiding customer frustrations. In these noisy

conditions, many ASR systems rely on multi-sensor input and multi-sensor

processing for improved accuracy. Prominent examples use multiple micro-

phones (7 for Amazon Echo, 6 for Apple HomePod, 2 for Google Home),

and multi-modal input configurations are actively explored (audio-visual

conference transcription devices from Microsoft). Given the pervasiveness

of multi-sensor input, the previous research focus of end-to-end models on

single-channel input is limiting their usefulness in real-world applications. In

this context, the proposed sensory attention mechanism brings end-to-end

models closer to the application side. Beyond the plain accuracy improvement,

the sensory attention mechanism also had two further positive implications

that are relevant when dealing with physical sensor hardware. First, the

attentional signal allowed to identify useful sensors with high SNR level.

Second, the attention mechanism allowed to change the input configuration

without any re-training, including sensor removal and addition. For real

devices with sensor hardware, the attentional signal could help identifying

failing sensors that need replacement or sub-optimal sensors that may be

removed to save hardware and computation resources. From a more critical

point of view, there still remains further potential to improve the sensory

attention mechanism. The modality independent formulation might be use-

ful for compatibility reasons, but also presents a limitation compared to

more specialized algorithms. One such example is multi-channel audio input

where beamforming algorithms use phase information for improved signal

enhancement. In the current form, the sensory attention mechanism does not

exploit phase information and future studies might improve on this aspect.

Ultimately, this thesis contribution was only one of a few studies ( [45, 59])

that evaluated end-to-end models for ASR in the context of multi-sensor

input. Given the small amount of studies, it seems reasonable that there are
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more datasets, network architectures and sensor combination strategies to

explore.

This thesis also proposed a novel domain adaptation strategy for end-to-end

models. Domain adaptation is an important tool to increase the accuracy

of ASR systems on different speech domains, e.g. speech in different noisy

conditions (cafe, airplane, office, living room etc.). End-to-end models are a

particularly challenging scenario for domain adaptation, as the adaptation

process overwrites network parameters. The overwriting process leads to

catastrophic forgetting of the old domain. In practice, a network that was

originally trained on clean speech has reduced accuracy on clean speech

after adaptation to noisy speech. One could now introduce a separate set of

domain-specific parameters to avoid catastrophic forgetting, but would then

have to recognize the domain and select the corresponding parameter set

during inference. Such an approach effectively creates a model ensemble. This

thesis explored an alternative strategy for domain adaptation that is inspired

by continual learning. From the view of continual learning, a single model is

supposed to learn one task after the other, and to perform well on all tasks.

In ASR, tasks can be considered as different speech domains. The single

model is clearly superior compared to the ensemble, as the single model does

not require to recognize the domain and then select the appropriate model.

In the context of domain adaptation for end-to-end models in ASR, this

contribution represents a first step with continual learning strategies. However,

there remains significant potential for future studies and improvements on

three levels. First, the proposed study only evaluated continual learning for

two consecutive domains, but real-world applications might require to learn

many more consecutive domains. Second, other continual learning scenarios on

ASR, e.g. speaker adaptation, have not yet been explored in this study. Third,

the domain adaptation strategy used the parameter SNR as a proxy measure

for parameter importance. However, the parameter SNR only allowed to

predict the effect of small, local changes on single parameters. In consequence,

the network was forced to explore a constrained space around the parameter

value during adaptation. Future work could explore strategies that allow to

predict the effect of larger jumps in the parameter space and also the effect

when groups of parameters are changed at the same time.

The previous two paragraphs have put the sensory attention mechanism

and parameter uncertainty studies in the larger context of their respective re-

search fields and applications. However, this thesis provides a unique occasion

to compare the impact of two very different network modifications on the

model interpretability. In fact, the model interpretability was enhanced on
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two different levels: either at the activation level for sensory attention, or on

the parameter level for parameter uncertainty. The activation level is particu-

larly useful for model verification, i.e. checking if a model is doing something

that is intuitively reasonable. The key to activation level interpretability is

to build a network architecture that produces interpretable activations at

intermediate computation steps. The sensory attention mechanism follows

this design rule by computing activations that are interpretable as sensory

attention weights. However, the activations are no defining property of a

neural network, and they can only represent intermediate computation results

that are generated by the interaction of a data sample and a neural network.

This means that activation-level methods cannot increase the interpretability

of neural network parameters alone. To gain more insights on the parameter

level, this thesis proposed to use parameter uncertainty as a proxy measure

for parameter importance. With parameter uncertainty, the parameters are

now interpretable without any further computation on data samples, and

by looking at isolated parameters alone. The parameter-specific uncertainty

allowed to predict the effect of parameter changes, and therefore to modify a

neural network in a selective fashion during pruning and adapation. Based

on this argumentation, the parameter level is particularly useful for model

modification. Given the different use cases of model verification and mod-

ification, it remains the decision of the end user to select the appropriate

network modification. In theory, both approaches should also be compatible,

and future work could attempt to use both approaches for increased model

interpretability at the activation and parameter level.

Finally, all gains in model interpretability that were achieved in this

thesis required a modification in the neural network. While the activation

level gains could be achieved with standard neural network units and default

deterministic parameters, the parameter level gains required to entirely change

the neural network definition. Deterministic parameters are inherently limited

in interpretability, as they only provide isolated values without any further

information. The parameter uncertainty study used probabilistic parameters

and could at least give some information on the distribution of parameters.

This implies that future improvements in parameter interpretability may

have to deprecate deterministic parameters, and further explore probabilistic

parameters in the context of Bayesian neural networks [66] or generative

models for parameter sampling [102].
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a.1 valid alignments in ctc

The CTC loss considers all valid alignments from the length-T∗ network

output h to the length-U target sequence y. The number of valid alignments

increases quickly with T∗: for the word CAT, i.e. y = {C, A, T} and U = 3, the

number of alignments is 28 for T∗ = 5; 1716 for T∗ = 10; and 1.43x10e-9 for

T∗ = 100. This section discusses the combinatorics to compute the number

of valid alignments for the simplified case when there are no repetitions in

the target sequence.

We assume a length-U target sequence y = {y1, ..., yU} of text tokens yu
without repeated elements 1, and a length-T∗ alignment a = {a1, ..., aT∗}
of text tokens aτ ∈ {y1, ..., yU , ε}, with the blank token ε. An alignment

a is considered valid when it can be mapped to the target sequence y by

the mapping function A : a 7→ y. The number of valid alignments, Nval, is

defined by the binomial coefficient following Eq. (A.1). While this formula has

been presented before in [103], no derivation was given. For the more complex

case of repeated labels, [69] gives a formula, but also without derivation. The

following paragraphs describe the derivation of Eq. (A.1) in 4 steps.

Nval =

(
T∗ + U
T∗ −U

)
(A.1)

step 1. We first consider all valid mappings from sequences without

blank labels. For y = {C, A, T} and T∗ = 5, two example alignments would

be {C, A, A, A, T} or {C, C, A, A, T}. In other words, every time step τ ∈
{1, ..., T∗} is assigned a non-blank token yu ∈ y. Because only valid mappings

are considered, every token yu has to occur at least once, e.g. the alignment

{A, A, A, T, T} would be non-valid. This corresponds to finding a solution to

the equation y1 + ... + yU = T∗, where every element yu ≥ 1. This is solved

with a stars-and-bars approach [104], and the number of alignments in step 1

is defined in Eq. (A.2):

1 For example, with character tokens this includes targets such as CAT or BEHIND, but not
HELLO or PENDING.
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N I =

(
T∗ −U + U − 1

U − 1

)
=

(
T∗ − 1
U − 1

)
. (A.2)

step 2. We now consider alignments with blank tokens. The number

of blank tokens b = T∗ −U − k is the number of time steps T∗ minus the

number of individual target tokens U and minus the number of multiple token

occurrences k. In this intermediate step, only combinations are considered, i.e.

permutations such {C, A, A, T, ε} and {ε, C, A, A, T} are counted only once.

We sum over all alignments from k = 0 (e.g. {C, A, T, ε, ε}) to k = T∗ −U
(e.g. {C, A, A, A, T}) as defined in Eq. (A.3):

N I I =
T∗−U

∑
k=0

(
k + U − 1

U − 1

)
=

(
T∗

U

)
(A.3)

step 3. The intermediate step 2 did not differentiate between paths with

different positions of blank token insertions, i.e. permutations were only

counted once. In this step, we consider these permutations. Recall that every

alignment has the length T∗. For every sequence of length T∗, we have to

pick the positions of b = T∗ −U − k blank tokens. This corresponds to the

b-permutations without repetition in a set of T∗ elements, and the number

of valid alignments is now defined in Eq. (A.4)

N I I I =
T∗−U

∑
k=0

(
k + U − 1

U − 1

)
︸ ︷︷ ︸
combinations

(
T∗

T∗ −U − k

)
︸ ︷︷ ︸
permutations

(A.4)

However, Eq. (A.4) allows blank insertion that are non-valid, i.e. {C, A, ε, A, T},
and can therefore only be used as an estimate for the upper bound of valid

alignments.

step 4. We correct Eq. (A.4) to only include the count of valid blank

permutations. Assume the exemplary non-blank combination {C, C, A, A, T}.
Possible blank insertion buckets are denoted with an underscore ′ ′, resulting

in { , C, , C, , A, , A, , T, }. The number of buckets corresponds to B =
U + k + 1. Note that each bucket can be filled with multiple blank tokens

if b = T∗ −U − k is sufficiently high. We find that out of B buckets, only

Bval = U + 1 buckets accept blank tokens without making the alignment

non-valid. In the example above, denoting valid buckets with ′+′ and non-
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valid buckets with ′−′ would generate {+, C,−, C, +, A,−, A, +, T, +}. The

stars-and-bars method yields Eq. (A.5) for valid blank permutations:(
b + Bval

U

)
=

(
T∗ −U − k + U

U

)
=

(
T∗ − k

U

)
. (A.5)

Replacing the permutations term in Eq. (A.5) yields the accurate number of

valid alignments defined in Eq. (A.6):

Nval =
T∗−U

∑
k=0

(
k + U − 1

U − 1

)(
T∗ − k

U

)
(A.6)

The relation in Eq. (A.6) may be simplified by identity 5.26 from [105] to

match Eq. (A.1).
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a.2 multi-channel attention examples

In the following section, the STAN-2CH attention weights and merged repre-

sentations for 3 additional samples from the subsets dt05 real and et05 real of

the CHiME-4 dataset are plotted. The samples are summarized in Table A.1,

with corrupted channels given after visual and listening inspection.

Sample key Subset Corrupted channels Figure

M03 22HC010P STR dt05 real 2 Figure A.1

M03 423C020N PED dt05 real None Figure A.2

F05 441C020G STR et05 real 2, 4 Figure A.3

Table A.1: Sample keys and corrupted channels (based on visual inspection and

listening tests), ordered by the number of corrupted channels.
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Figure A.1: Corrupted channels - ch2. This sample is representative for most of

the real noisy data: the backward channel 2 is slightly corrupted,

while the other channels seem similar. The STAN model assigns

lower attention weights to channel 2.
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Figure A.2: Corrupted channels - none. This sample shows the attention re-

sponse when no channel is corrupted. This represents a rare case in

the dataset where the backwards channel 2 delivers similar quality

to the front channels. In consequence, the STAN model computes

similar attention weights for all channels.
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Figure A.3: Corrupted channels - 2, 4. Channel 2 is the backwards channel with

typically lower SNR and reduced attention weights. After listening

inspection, channel 4 sounds like there was a technical recording

issue for this sample. On both noisy channels, STAN reduces the

attention weights.
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[16] C. Lüscher, E. Beck, K. Irie, M. Kitza, W. Michel, A. Zeyer, R.
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