
ETH Library

Profiling Symbolic Execution

Master Thesis

Author(s):
Arquint, Linard

Publication date:
2019

Permanent link:
https://doi.org/10.3929/ethz-b-000392350

Rights / license:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://orcid.org/0000-0002-6230-8014
https://doi.org/10.3929/ethz-b-000392350
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Profiling Symbolic Execution

Master’s Thesis

Linard Arquint
arquintl@student.ethz.ch

Advisor

Dr. Malte Schwerhoff

Supervisor

Prof. Dr. Peter Müller

Programming Methodology

Institute for Programming Languages and Systems

Department of Computer Science

ETH Zürich

October 1, 2019

Abstract

Symbolic execution [28] explores a program path-wise and queries a SAT modulo
theory (SMT) solver with many formulae along the way. In comparison to a reg-
ular program execution, symbolic execution differs in several aspects: Symbolic
instead of concrete values are used and all (feasible) program paths are explored.
Already analyzing on which path most time was spent in a symbolic execution is
a difficult question, especially without tool support.

This thesis presents a profiler for the symbolic execution engine Silicon [35]. The
profiler consists of two parts, a logger to record a symbolic execution and an
application to visualize the log. The log format is generic in the sense that it only
makes basic assumptions about symbolic execution. Therefore, other symbolic
execution engines should also be able to record their execution in the same log
format and thus can reuse the visualization application. In addition, the logger
can easily be extended to log additional steps of the symbolic execution.

Particular input programs for Silicon have been used to evaluate the profiler. The
evaluations show that the profiler identifies similar performance culprits as man-
ual inspection concludes. Furthermore, the profiler is a large timesaver reducing
the time to analyze a symbolic execution from a couple of days, as needed for a
manual inspection, to just a few hours.

i

Acknowledgements

I would like to express my special thanks to my advisor Dr. Malte Schwerhoff.
He has guided me to the successful completion of my thesis and has brought
up many ideas for additional features of the Visualizer. Additionally, the meetings
with him have greatly helped me to see the big picture of the thesis and not getting
lost or stuck in minor details.

I would also like to acknowledge Prof. Dr. Peter Müller for being my supervisor. I
am very thankful for introducing me to this thesis’ topic and giving me the oppor-
tunity of pursuing the Master’s thesis in his group.

My gratitude also goes to my parents, Helen and Philipp, and girlfriend, Kristina,
for their unfailing support and continuous encouragement throughput my years of
study as well as while conducting research for this thesis.

Finally, thank you Jonas for enjoying the daily coffee together. The discussions
with you were not only entertaining but have also provided me with fresh ideas
when I needed them.

Zürich, October 2019

Linard Arquint

iii

Contents

Abstract i

Acknowledgements iii

Contents v

List of Figures vii

1 Introduction 1
1.1 Problem Statement . 2

1.1.1 State of the Art . 2
1.1.2 Motivation . 3
1.1.3 Contributions . 4

1.2 Background . 4

2 SymbEx Logger 7
2.1 Previous Work . 8
2.2 The new SymbEx Logger . 10

2.2.1 Logging in the Presence of Verification Failures 13
2.2.2 Log Output . 13

2.3 Continuous Integration . 14

3 Visualizer 17
3.1 Input Preprocessing . 18
3.2 Record Completion . 18
3.3 Duration Calculation . 20
3.4 Scope Creation . 23
3.5 Scopes . 25

3.5.1 Scope Filtering . 25
3.6 Graphical Representation . 30

3.6.1 JavaScript Console Integration 35
3.7 Bottlenecks . 37
3.8 Continuous Integration . 38

v

vi Contents

4 Evaluation 39
4.1 SymbEx Logger Evaluation . 39
4.2 Visualizer Evaluation . 42

4.2.1 Quantitative Evaluation . 42
4.2.2 Qualitative Evaluation . 43

5 Conclusions 53

6 Future Work 55

A Technical Details 57
A.1 SymbEx Logger Configuration . 57
A.2 SymbEx Logger Unit Tests . 57

B Scope Filtering Analysis 61

C Profiling Minutes 63

Bibliography 79

List of Figures

1.1 Overview of Viper’s architecture showing the front-ends on the top and
the two back-ends, one based on verification condition generation and
the other, Silicon, on symbolic execution. This figure is taken from [32]. 5

2.1 Symbolic execution log for the Viper program in listing 2.2, showing
the ID of each record on the left. The log’s structure follows the sym-
bolic execution, but nesting information is only implicitly available by
interpreting open and close scope records. 11

2.2 Record types of the new SymbEx Logger 12

3.1 Pipeline for processing the exported symbolic execution log, generat-
ing the intermediate data structure, and visualizing it. The intermedi-
ate data structure can be exported as well as imported. 17

3.2 General structure of a scope. The characteristical records are shown
and have corresponding timestamps t0−7. To calculate the scope’s
duration, the individual path segments a− e have to be considered. . . 21

3.3 A path for a particular scope is characterized by the open scope
record, a close scope record and zero or more branch or join points in
between. 21

3.4 Scope representation for the symbolic execution log in figure 2.1. Hor-
izontal arrows denote the sub-scope, vertical arrows the successor,
and dashed arrows the inter-level successor relation. 23

3.5 Sample of a scope data structure. Scope 1 is sub-scope of 0 and has
two successors, namely scopes 2 and 3. Scope 2 has 5 as inter-level
successor. Scope 3 is marked for removal. 26

3.6 Removal of scope 3 corresponding to case 1. 27
3.7 Removal of scope 3 corresponding to case 2. 27
3.8 Non-permitted removal of scope 3 in a special situation of case 2. . . . 27
3.9 Removal of scope 3 corresponding to case 3. 28
3.10 Removal of scope 3 corresponding to case 4. 28
3.11 Scope data structure needing two filtering passes. 29
3.12 Visualization of the symbolic execution of a small Viper program. . . . 31

vii

viii List of Figures

3.13 Selection of two path segments, drawn with a pink border, in the Visu-
alizer. 32

3.14 Histogram of the execution time for the selected path segments in the
Visualizer. 32

3.15 Flamegraph of the execution time for the selected path segments in
the Visualizer. 33

3.16 Detail of the Trace-Viewer [17] showing branching of a symbolic exe-
cution. 34

3.17 Settings popup of the visualizer offering various configuration possibil-
ities. 35

4.1 Average execution time of each pipeline step based on symbolic exe-
cution logs of 16 Viper programs. 43

4.2 Profiling minutes for analyzing the symbolic execution of the Viper
program composite.vpr . 45

4.3 Page 1 of the profiling minutes for the symbolic execution of the Viper
program borrow first.rs.vpr . 47

4.4 Page 2 of the profiling minutes for the symbolic execution of the Viper
program borrow first.rs.vpr . 48

4.5 Page 1 of the profiling minutes for the symbolic execution of the Viper
program Knuth shuffle.rs.vpr . 49

4.6 Page 2 of the profiling minutes for the symbolic execution of the Viper
program Knuth shuffle.rs.vpr . 50

4.7 Profiling minutes for the symbolic execution of the Viper program RSLSpin-
lock.sil . 51

B.1 Scope data structure that does not permit the removal of scope 3. . . 61

C.1 Profiling minutes for analyzing the symbolic execution of the Viper
program Slow.sil . 64

C.2 Profiling minutes for a second analysis of Slow.sil including a direct
comparison to a very similar but faster variant of the program. 65

C.3 Page 1 of the profiling minutes for analyzing the symbolic execution of
the Viper program RelAcqDblMsgPassSplit.sil 66

C.4 Page 2 of the profiling minutes for analyzing the symbolic execution of
the Viper program RelAcqDblMsgPassSplit.sil 67

C.5 Page 1 of the profiling minutes for analyzing the symbolic execution of
the Viper program AVLTree.nokeys.sil 68

C.6 Page 2 of the profiling minutes for analyzing the symbolic execution of
the Viper program AVLTree.nokeys.sil 69

C.7 Page 1 of the profiling minutes for analyzing the symbolic execution of
the Viper program 100 doors generic.rs.vpr 70

C.8 Page 2 of the profiling minutes for analyzing the symbolic execution of
the Viper program 100 doors generic.rs.vpr 71

List of Figures ix

C.9 Page 1 of the profiling minutes for analyzing the symbolic execution of
the Viper program Ackermann function.rs.vpr 72

C.10 Page 2 of the profiling minutes for analyzing the symbolic execution of
the Viper program Ackermann function.rs.vpr 73

C.11 Page 1 of the profiling minutes for analyzing the symbolic execution of
the Viper program Fibonacci sequence.rs.vpr 74

C.12 Page 2 of the profiling minutes for analyzing the symbolic execution of
the Viper program Fibonacci sequence.rs.vpr 75

C.13 Page 1 of the profiling minutes for analyzing the symbolic execution of
the Viper program Towers of Hanoi spec.rs.vpr 76

C.14 Page 2 of the profiling minutes for analyzing the symbolic execution of
the Viper program Towers of Hanoi spec.rs.vpr 77

1
Introduction

The Software Fail Watch [38] estimates that software failures in 2017 have re-
sulted in costs of more than 1.7 trillion USD world-wide. Therefore, increasing
the reliability of software is of interest globally and across industries. Testing is
today the standard method for checking program correctness. However, testing
only allows checking correctness for finitely-many potential program executions
by providing particular input values and checking the results against expected
output.

In contrast, program verification reasons about a program taking all its potential
executions into account. It tries to find a proof for the absence of failures, for
example that an assertion cannot be violated. Hence, program verification has
gained interest, also thanks to advances in the performance of SAT modulo the-
ory (SMT) solvers. A formula can be given to an SMT solver, which can either
prove its satisfiability, give a counterexample, which violates it, or respond with
unknown. Thus, an SMT solver is an important component of most program verifi-
cation frameworks, because it is used to discharge proof obligations.

Symbolic execution. This thesis focuses on verification based on symbolic ex-
ecution [28]. Symbolic execution is a program analysis technique following the
simple principle of analyzing a program by breaking it up into many steps, often
corresponding to individual statements and expressions. Besides for verification,
it was proposed in the past for several different applications, such as test case
generation [15, 24] or taint analysis [23, 34]. During symbolic execution, a step-
wise execution of an input program is performed and symbolic instead of concrete
values are used. For each step, a matching rule is selected from a set of symbolic
execution rules. Each rule describes the effect of executing a step on the sym-
bolic execution state. Therefore, at each program point, the symbolic execution

1

2 1. Introduction

state captures the constraints on the symbolic values resulting from executing the
input program up to this point.

Symbolic execution in the context of program verification uses the collected con-
straints on symbolic values to construct formulae for an SMT solver. It queries
the SMT solver with many (and ideally comparably simple) formulae while explor-
ing the program path-wise. Hence, symbolic execution typically queries the SMT

solver often, but with relatively simple formulae, in contrast to, for example, tools
based on weakest precondition calculi.

In the context of this thesis, the entire verification software using symbolic exe-
cution including the SMT solver is denoted by symbolic execution framework. In
contrast, the symbolic execution engine is the entire symbolic execution frame-
work except the SMT solver.

Profiling. The second part of this thesis’ title is profiling. Profiling is the act
of analyzing a program to find potential performance bottlenecks, such as mem-
ory consumption or execution time, with the goal of optimizing them. A profiler
is typically used to gather the required information at runtime, i.e. while the pro-
gram is being executed. Processing the gathered data and visualizing them to
the user can either happen simultaneously with the program execution or after-
wards, which is known as online and offline profiling, respectively. The visualiza-
tion should be understandable and goal-oriented: a user has to be able to map
each element in the visualization to some program part and understand why it
exists and how it is influenced by the program. The visualization should provide
insights that enable users to optimize their programs.

As a result, profiling symbolic execution is concerned with finding performance
bottlenecks in a symbolic execution of a particular input program. Symbolically
executing an input program causes many additional operations that are not di-
rectly visible in the input program’s text, for example manipulating the symbolic
state. Therefore, potential bottlenecks, identified by profiling, can reside in the in-
put program, in the symbolic execution framework, or be the result of their combi-
nation. Nevertheless, identifying potential bottlenecks is the first step in resolving
performance problems and speeding up the process of program verification.

1.1 Problem Statement

1.1.1 State of the Art

Symbolic execution is employed for various applications, reaching from test case
generation [15,24] over block chain analysis [23] to program verification [35]. Tool
support for debugging a symbolic execution has already been proposed in the
past: Aurecchia [4] has explored debugging that focuses on visualizing symbolic
execution states and providing a visual representation of a counterexample if the

1.1. Problem Statement 3

program verification fails. Hentschel et al. [27] visualize in their symbolic execu-
tion debugger SED the reachable program states of the input program. SED uses
KeY [7] as underlying symbolic execution engine, which in addition is capable of
showing all symbolic execution steps performed during the proof construction.
SED and the debugger by Aurecchia both aim to speed up the process of finding
defects in an input program. Bornholt and Torlak [8] have presented the symbolic
profiler SymbPro. Their work focuses on ranking locations of potential bottle-
necks and visualizing them as a flamegraph. However, the profiler presented in
this thesis centers on a visualization of the entire symbolic execution and tries to
steer the user’s attention to steps of the symbolic execution that take longer than
others.

1.1.2 Motivation

Several symbolic execution frameworks, such as Rosette [37], EXE [15], its suc-
cessor KLEE [14], or Silicon [35], have been proposed in the past. Although sim-
ilarities exist, for example that they explore paths, neither standard approaches
nor common tools for debugging or profiling exist. However, tool support is crucial
for analyzing the execution time of a symbolic execution and finding performance
culprits. From the perspective of an author verifying his program, a symbolic ex-
ecution framework is a black-box taking a certain amount of time to symbolically
execute the program. The total execution time is composed of the time spent in
the symbolic execution engine as well as in the underlying SMT solver. Several
papers [5, 14–16] have reported that the SMT solver significantly influences the
verification’s execution time. In addition, several optimization techniques have
been proposed trying to speed up SMT queries, for example by caching or shrink-
ing them [14, 15]. However, the symbolic execution engine itself performs poten-
tially costly operations, for example managing the symbolic state. Furthermore,
the time spent in the SMT solver directly results from the SMT queries that the
symbolic execution engine repeatedly issues.

Therefore, we see the potential for a symbolic execution profiler that is capable of
visualizing the individual steps that a symbolic execution engine performs. The
profiler should enable more users to understand the operations of a symbolic exe-
cution engine and the verification’s execution time of a particular input program by
not requiring expert knowledge about the used framework. Furthermore, these
insights can be used to optimize the input program or the symbolic execution
engine. As reported, a good starting point for a profiler is to determine the split
between work done by the SMT solver and the symbolic execution engine. Al-
ready simple information, such as the total execution duration of each part, could
be used to evaluate whether a particular symbolic execution was significantly in-
fluenced by the SMT solver. Additionally, the same information could be used to
monitor the performance gains for a potential optimization.

4 1. Introduction

1.1.3 Contributions

Logger. First of all, profiling requires extensive data about a program execution.
Chapter 2 starts with an illustration why the existing logging infrastructure of Sil-
icon is not able to collect the required data. Hence, it motivates the creation of
a new logging infrastructure, the first major contribution of this thesis. It records
not only the duration of individual symbolic execution steps but also their rela-
tions between each other, to correctly represent the symbolic execution and to
enable a visualization of the symbolic execution that is understandable and goal-
oriented. Also part of the contribution is a logging data format that allows to store
the collected data and to later visualize them.

Visualizer. As a second contribution, this thesis presents a visualization pipeline
(chapter 3) that processes the collected symbolic execution log to generate an
intermediate data representation. Based on the intermediate data representa-
tion, the program paths and, additionally, metrics of the symbolic execution are
graphically displayed to the user. Furthermore, an application programming in-
terface (API) is provided to efficiently perform queries on the data. The API is
especially useful to prototype and evaluate additional visualization features be-
fore actually implementing them with a proper user interface (UI).

Implementation. As a third contribution, this thesis adds an implementation
of the new logging infrastructure to Silicon, replacing the old one, as well as
an implementation of the visualization pipeline as a JavaScript application for all
common web browsers.

1.2 Background

Although most concepts presented in this thesis apply to other verifiers based on
symbolic execution, the focus lies on Silicon [35].

Silicon is one of two back-ends of the Viper infrastructure [32] and is capable
of verifying input programs written in the Viper language. Figure 1.1 gives an
overview over the Viper infrastructure. The second back-end is based on verifica-
tion condition (VC) generation and compiles a Viper program to a Boogie program
and forwards it to Boogie [30]. Several front-ends compile different source lan-
guages to the intermediate language Viper, which supports specifications. Hence,
the intermediate language is agnostic to the source language. Furthermore, it
facilitates verification by providing reasoning about permissions and having con-
trolled heap access based on permissions.

Silicon performs a modular program verification by verifying each procedure and
separation logic predicate [33] individually. Furthermore, the program, respec-
tively its control flow graph (CFG), is explored path-wise. Whenever branching oc-
curs, for example due to if-else statements or ternary operators, Silicon branches

1.2. Background 5

Figure 1.1: Overview of Viper’s architecture showing the front-ends on the top
and the two back-ends, one based on verification condition generation and the
other, Silicon, on symbolic execution. This figure is taken from [32].

the execution and individually explores each path. Silicon repeatedly queries the
underlying SMT solver along the paths, for example to check whether a branch is
feasible or an assertion can be violated. As underlying SMT solver, Silicon uses
Microsoft Research’s Z3 [20].

Assuming Silicon performs only branching, the explored paths form a tree struc-
ture. However, Silicon joins the execution if two branches have semantically equiv-
alent heaps and thus differ only in their path conditions and symbolic expressions.
This situation occurs if the evaluation of an expression results in branching, be-
cause expressions are pure, i.e. do not modify the heap. Joining reduces the
number of paths explored, but increases the complexity of path conditions, be-
cause the path conditions of each branch have to be combined by conditionals.
In presence of branching and joining, the resulting symbolic execution, i.e. the ex-
plored paths, can no longer be represented as a tree, but form a directed acyclic
graph (DAG) instead.

In the remainder of this thesis, chapter 2 shows the limitations of the old symbolic
execution logger and motivates the creation of a new one. The Visualizer, which
takes a symbolic execution log as input and provides a UI that enables users to
analyze the log, is described in chapter 3. We evaluate the profiler in chapter 4
and conclude (chapter 5) that it is a large timesaver in comparison to manually

6 1. Introduction

inspecting a symbolic execution. Chapter 6 presents some topics that could be
explored in future work.

2
SymbEx Logger

Gathering information about a program execution is crucial for profiling. For pro-
filing a symbolic execution of a particular input program, the steps performed by
the symbolic execution framework need to be recorded, because it is a priori un-
known which steps are relevant. Logging a symbolic execution has two major
properties:

Firstly, records might not only follow one by one, but can be nested. This infor-
mation about nesting should be captured in the log in order that steps can be dis-
tinguished from sub-steps. Earlier work by Colombo [18] identified an adjustable
level of detail as a main design principle:

The user should always have the choice to select the level of detail of
the information that is displayed. The amount of data is too large to
be comprehended otherwise.

Having hierarchical information in the collected log, a UI can use it to allow users
to show or hide details of a step and therefore adjusting the level of detail. Thus,
a user can quickly find an important top-level step and zoom in by revealing its
details. This first property is not unique to symbolic execution, but also applies
to a regular execution of a program, because, for example, statements also have
sub-steps, i.e. subexpressions.

Secondly, symbolic execution might branch as well as join and execute several
branches. Hence, a meaningful log needs to remember which branch logged
which records. The resulting log is therefore non-linear, in contrast to a regular
execution of a program.

This thesis explores offline profiling, meaning that complete information about an
execution is collected first, before analyzing it.

7

8 2. SymbEx Logger

Listing 2.1: Viper program with an if-else statement
method m1(i: Int) returns (res: Int)
{

var j: Int
j := 2

5 if (i < j) {
j := 3

} else {
j := 4

}
10 res := j

}

2.1 Previous Work

Silicon already has a logging infrastructure called SymbEx Logger [13]. During
the symbolic execution, it keeps track of inserted records and tries to correctly
capture sub-records. The implementation has both aforementioned properties of
symbolic execution logs.

However due to the complexity of the logger’s implementation, refactoring or ex-
tending Silicon often resulted in breaking the logger. When we have started work-
ing on this thesis, the logger was unable to correctly track branching. Further-
more, it required various hacks to support branching that lead, in certain situa-
tions, to wrong results.

Listing 2.1 shows a simple Viper program to illustrate the logging mechanism. Sili-
con branches at line 5, because both branches (i < j and i >= j) are feasible.
For if-else statements, Silicon does not join the symbolic execution. Therefore,
res := j will be execute twice, once on each branch. To correctly represent
this in the log, a branching record will be inserted into the log. A branching record
keeps track of the records for each of its two branches. For this particular exam-
ple, the scope of the two branches extends to the end of the method, because
no joining occurs. The records for the assignments j := 3 resp. j := 4 and
res := j will occur on each branch.

Listing 2.2 shows a Viper program, for which the old SymbEx Logger does not
correctly record the symbolic execution. The corresponding log is shown in list-
ing 2.3, where an increased level of indentation indicates that a record is a sub-
step. inhale b ? acc(x.f) : acc(x.g) adds a permission to the field f

resp. g of object x depending on condition b. Due to the fact that permissions
are involved in this ternary operator, this is impure branching and Silicon will not
join the two branches before executing line 7. In the log, a branching record is
located on line 4 as sub-step of the inhale execution. Furthermore, the evalu-
ation of condition b and of acc(x.f) as well as acc(x.g) are correctly logged.

2.1. Previous Work 9

Listing 2.2: Viper program with an impure conditional expression.
field f: Int
field g: Int

method m2(b: Bool) returns (res: Int)
5 {

inhale b ? acc(x.f) : acc(x.g)
res := 1

}

Listing 2.3: Symbolic execution log of the old SymbEx Logger for the Viper pro-
gram in listing 2.2. An increased level of indentation indicates that a record is a
sub-step. ”Condition”, ”Branch 1”, and ”Branch 2” were inserted to better distin-
guish their sub-steps.
method m2

exec inhale b ? acc(x.f) : acc(x.g)
eval b ? acc(x.f) : acc(x.g)
Branching

5 Condition
eval b

Branch 1
eval acc(x.f)
exec res := 1

10 ...
Branch 2

eval acc(x.g)
exec res := 1

...

However, a record representing the execution of res := 1 is added to each
branch as well (on lines 9 and 13). Hence, it looks like as if res := 1 is also a
sub-step of the inhale execution. This is incorrect and results from the fact that
res := 1 has to be placed on each branch and both branches are part of the
branching record, which in turn is a sub-step of the inhale execution.

Correctly reconstructing the symbolic execution based on this (faulty) log is non-
trivial. Additional reasoning or metadata would be necessary to capture the fact
that the assignment is actually a statement following the inhale statement in-
stead of being a subexpression of the inhale statement.

Instead of performing these log transformations to correctly reproduce the sym-
bolic execution, we decided to change the logger to generate a log that correctly
reflects the symbolic execution in the first place. We initially assumed that the ex-
isting logger is capable enough of collecting the necessary data about a symbolic

10 2. SymbEx Logger

execution, thus replacing it with a new logger was unexpected.

2.2 The new SymbEx Logger

The key idea of the new SymbEx Logger is that almost every operation during
the symbolic execution is a scope – it has a fixed start and end point in time, it
contains some payload (e.g. the statement that it represents), and it might contain
sub-scopes. The only exception are branching records: They are still inserted
into the log whenever the symbolic execution branches. The main problem of the
old SymbEx Logger is, that branches are considered scopes as well. Therefore,
branches have to respect proper nesting and hence have to end before the parent
scope ends. Specifically for listing 2.3, this means that the two branches cannot
continue after the inhale statement, because they are sub-scopes of it. As
a consequence, the old SymbEx Logger has no other choice than adding the
records for res := 1 as sub-scopes of the inhale statement.

By not treating branching records and branches as scopes, they do not have to
maintain proper nesting and can continue. This treatment might appear artifi-
cial at first. However, it becomes a natural concept when thinking of a branch-
ing record as a single point in time, i.e. the point where the symbolic execution
branches.

Figure 2.1 shows the log of the new SymbEx Logger for the symbolic execution of
the same Viper program (from listing 2.2). Records starting with the prefix ”Data”
are data records and store the payload of a symbolic execution operation. They
correspond to the records of the old SymbEx Logger. Directly following each data
record there always is a single open scope record. It references the data record
and marks the beginning of the scope. The scope continues until it is eventually
ended by a close scope record referencing the same data record. If branching
occurs in the scope, there might be multiple close scope records for this specific
record. For example, the data record with ID 2, representing the execution of the
inhale statement, is closed on the first branch by record 14 and on the second
branch by record 22. However, there has to be exactly one close scope record
for each open scope record on each path.

The key difference to the old SymbEx Logger emerges as well in figure 2.1: Due
to the fact that branching is not treated as a scope, the branches can continue in-
dependently of scopes. Consider for example the first branch: The inhale state-
ment’s scope 2 is closed by record 14 and scope 15 of the res := 1 statement
starts at record 16. The branch itself starts somewhere during the execution of
scope 2 but continues and outlasts scope 15.

Figure 2.2 shows the three basic types of records in the new logger. As already
seen in the example log, a data record describes a symbolic execution operation.
Beside a label, data records have additional fields to keep track of further informa-
tion, for example whether it represents an SMT query or whether the sub-scope

2.2. The new SymbEx Logger 11

Data Method m20

Open Scope 01

Data exec inhale cond2

Open Scope 23

Data eval cond4

Open Scope 45

Data eval b6

Open Scope 67

Close Scope 68

Branching9

Data eval acc(x.f)10

Open Scope 1011

Close Scope 1012

Close Scope 413

Close Scope 214

Data exec res := 115

Open Scope 1516

. . .

Close Scope 1517

Data eval acc(x.g)18

Open Scope 1819

Close Scope 1820

Close Scope 421

Close Scope 222

Data exec res := 123

Open Scope 2324

. . .

Close Scope 2325

Close Scope 026

Figure 2.1: Symbolic execution log for the Viper program in listing 2.2, show-
ing the ID of each record on the left. The log’s structure follows the sym-
bolic execution, but nesting information is only implicitly available by interpret-
ing open and close scope records. ”cond” is used as an abbreviation for
b ? acc(x.f) : acc(x.g).

12 2. SymbEx Logger

Data Record Open / Close Scope Record Branching Record

• Label
• Is SMT query

• Reference data record
• Time

Per branch:
• Is reachable
• Start time
• List of records

Figure 2.2: Record types of the new SymbEx Logger

contains joining. Having such information explicitly available in the log simplifies
a later analysis, because an analysis does not need to make assumptions based
on the label (i.e. whether a record represents an SMT query) or to detect joins in
the sub-scopes.

Open and close scope records do not only act as markers for the beginning and
end of a scope, but they also provide the start respectively end time. Furthermore,
they reference the data record to which they belong. This reference exists for
convenience reasons and can be used for checking consistency. However, each
scope has to either be fully contained in another scope or not at all, meaning that
a scope cannot start in one parent scope and end in a different one. Therefore,
close scope records can unambiguously be matched with open scope records.

Branching records do not simply keep track of the individual branches, but pro-
vide additional information too. For each branch, a flag indicates whether it is
reachable or not. In addition, the start time of each branch is stored as well. As
it will be shown in section 3.3, each branch’s start time is necessary to correctly
calculate the duration of a scope.

The new logger not only produces a log output that more closely resembles the
steps that the symbolic execution framework has performed but can also be con-
figured to log only a certain subset of records (see section A.1 in the appendix). In
addition, the new logger heavily simplifies its implementation, because the burden
of keeping track of the individual scopes is completely removed from the logger
by just inserting open and close scope records into the log. Therefore, calls to
the logger infrastructure can almost directly be converted to corresponding log
insertions. Furthermore, the logger does not need to keep a stack of currently
open scopes as was previously necessary. The logger just needs to keep track
of all branching records, so that records are added to the currently active branch.

The logger’s simplification should result in better maintainability for upcoming
changes in Silicon. Section 2.3 presents additional measures that were taken
to ease maintenance. Although the new logger was simplified compared to the
old one, the difficulty of deciding which record is a sub-scope of which other
record is not just gone. As chapter 3 will show, several postprocessing steps are
performed on a symbolic execution log. One of them uses the open and close
scope records to make the sub-scope relation explicit. Hence, some work that

2.2. The new SymbEx Logger 13

the old SymbEx Logger performed was shifted to a postprocessing step.

2.2.1 Logging in the Presence of Verification Failures

The discussion so far has assumed that the verification of the input program suc-
ceeds. Under this assumption, all scopes will properly be closed in the resulting
log. However, if the verification fails, Silicon quits its symbolic execution and re-
ports the verification failure. Therefore, some scopes will not properly be closed,
meaning that an open scope record will be present but the corresponding close
scope is missing on some paths. Instead of completing the log, the specifications
for log files have been weakened to allow incomplete logs. Thus, scope comple-
tion can be deferred to the post-processing of the log (see section 3.2), keeping
the logger itself simple.

2.2.2 Log Output

As soon as Silicon finishes the verification, the collected log is serialized. Firstly,
all references to other records are replaced by their IDs. Although there is a
proposal for supporting references to objects in JavaScript object notation (JSON)
(RFC 6901 [12]), it is not yet in wide use. Therefore, we convert references to
IDs making the resulting serialization fully compliant with the latest JSON format
standard (RFC 8259 [10]). Next, all records are serialized to a flat JSON array,
with each entry conforming to the interface in listing 2.4. The serialized log is
reported by Silicon to interested clients. This report feature is used for integrating
the new SymbEx Logger into ViperServer, a HyperText transfer protocol (HTTP)
server interface for Viper. In particular, ViperServer and the logger’s integration
enable clients to be decoupled from Silicon, simply submit verification tasks, and
still have access to the resulting symbolic execution log. Furthermore, a client
can decide on its own what to do next with the received log. Besides writing it
to disk, a client might process the log and generate visualizations. The current
implementation reports the entire log as a single execution trace report and uses
spray-json [36], a JSON implementation in Scala. Serializing the entire report at
once has the disadvantage that its serialization has to fit into memory, which is not
the case for large reports. This issue could be mitigated by reporting partitions of
the entire log and thus serializing only a fraction of the entire log at a time.

Note that the serialization does not distinguish between data, open and close
scope, or branching records. Instead, individual fields indicate the record’s origi-
nal role. For example, lines 6 and 7 in listing 2.4 indicate whether a record is an
open or close scope record. A record corresponding to a branch point stores an
array of BranchInfo (line 9). Each array entry corresponds to a single branch
and stores whether the branch is reachable (line 14). Furthermore, the start time,
at which the symbolic execution has started exploring the branch, is stored as
well (line 15). Line 16 lists the IDs of the records that lie on the branch.

14 2. SymbEx Logger

Listing 2.4: Interface for each log record’s serialization
export default interface Record {

id: number;
kind: string;
value: string;

5 isJoinPoint?: boolean;
isScopeOpen?: boolean;
isScopeClose?: boolean;
isSyntactic?: boolean;
branches?: BranchInfo[];

10 data?: Data;
}

export interface BranchInfo {
isReachable: boolean;

15 startTimeMs: number;
records: number[];

}

export interface Data {
20 refId?: number;

isSmtQuery?: boolean;
timeMs?: number;
[key: string]: any;

}

Information that does not describe the symbolic execution’s structure is sepa-
rately placed in data (line 10). Open and close scope records store there the ID
of the data record to which they belong (line 20). Furthermore, line 23 allows ad-
ditional key-value pairs being present in the data object. This feature is currently
used for attaching statistical information of the SMT solver to individual records,
but additional data can be attached as well.

Various field names end in a question mark indicating that these fields are op-
tional. This is a simple optimization for reducing the log’s size, because most
records require only a subset of all fields.

2.3 Continuous Integration

Although the SymbEx Logger implementation was heavily simplified in this work,
keeping the logger up-to-date with Silicon is crucial. For this reason, unit tests
check, for certain input programs, whether the obtained logs correspond to the
expected logs. This functionality was already present in the old SymbEx Logger
but was now significantly improved. Checking that an obtained log is identical
to an expected log leads to many false positives when only small changes or

2.3. Continuous Integration 15

optimizations are performed in Silicon, or if Silicon is extended to log additional
symbolic execution operations. Therefore, the unit tests were adapted to use the
expected logs just as a minimal log, meaning that an obtained log can contain
more records, but has to have at least the records from the expected log and
preserve the sub-scope relationship. More details about the comparison of the
log output can be found in the appendix (section A.2).

In addition, the expected logs provided to the unit tests do not simply correspond
to the current output of the SymbEx Logger. The expected logs only contain
records representing members (functions, methods, and predicates), statements,
as well as structural records (branching and joining). We believe that this is a
good tradeoff between being flexible enough for upcoming changes and strict
enough to detect regressions.

3
Visualizer

The Visualizer is a TypeScript application taking the log of a symbolic execution
as input and graphically displays it. In addition, it allows users to interact with it.
The application can be opened and run in any common web browser.

Figure 3.1 shows the entire pipeline from reading the input file containing the
symbolic execution log, up to graphically visualizing the log. The intermediate
data structure, created in step 4, can be exported as a JSON file. When importing
a JSON file containing the intermediate data structure, the first four pipeline steps
will be skipped.

Input Processing
1

Node Completion
2

Duration Calculation
3

Scope Creation
4

DAG Building
5

Display
6

Scope Export Scope Import

Figure 3.1: Pipeline for processing the exported symbolic execution log, generat-
ing the intermediate data structure, and visualizing it. The intermediate data struc-
ture can be exported as well as imported. Not shown are several transformations
that are performed on the intermediate data structure immediately before visual-
izing it. These transformations include filtering syntactic nodes and highlighting
the duration-wise longest path.

17

18 3. Visualizer

This chapter presents certain important steps from the pipeline and ends with
features provided by the graphical visualization.

3.1 Input Preprocessing

The Visualizer utilizes the web browser’s file selection dialog in order that users
can select a JSON file containing the symbolic execution log of a previous verifica-
tion. This allows easy repetition of profiling a certain verification and it decouples
profiling from the verification toolchain. Because the log format is not specially tai-
lored to the symbolic execution by Silicon, other symbolic execution frameworks
should also be able to record logs the same way. Therefore, the Visualizer is
agnostic to the symbolic execution framework creating the log.

Besides loading the log file, the second part of the input preprocessing is replac-
ing ID references by an actual reference to the referenced record. As seen in the
previous chapter, each record stores the ID of the next record(s) in the log file,
because the JSON standard does not allow references. After preprocessing the
input, each record stores a reference to its successor(s).

3.2 Record Completion

As mentioned in the previous chapter, the symbolic execution log can be incom-
plete, especially when a verification failure occurs. An incomplete log is charac-
terized by missing close scope records. The algorithm shown in listing 3.1 lo-
cates scopes that are not correctly closed and inserts corresponding close scope
records.

The algorithm takes a preprocessed root record as input and assumes that at
least the root’s scope is complete. This assumption holds for the current Silicon
implementation, because member records, including their open and close scope
records, are handled differently compared to regular data records. The algorithm
iterates over all records including the newly created records in topological sort
order (line 2). Line 1 creates stackMap, a mapping from records to scope stacks.
The function complete is invoked for each scope. First, the scope stack is re-
trieved from the mapping (on line 5). The scope stack corresponds to the scopes
that are open before taking the current record into account. If the record is an
open scope record then the scope is pushed onto the stack. In contrast, if it is a
close scope record, the stack is popped, because the inner-most (i.e. the stack’s
top) scope was just closed. Lines 11 and 12 check for each direct successor,
whether it respects the scope stack or a close scope record is missing. Finally on
lines 14 and 15, the current stack is duplicated and set as initial stack for each
direct successor.

The function starting on line 17 takes a direct successor as well as the current
stack and returns a (potentially different) successor. Line 18 first checks whether

3.2. Record Completion 19

Listing 3.1: The record completion algorithm.
let stackMap := [root.id -> []];
topSort(root).forEach(complete);

func complete(record) do
5 let stack := stackMap[record.id];

if record.isScopeOpen then
stack.push(record.refId);

else if record.isScopeClose then
stack.pop();

10

record.successors := record.successors
.map(insertSuccessors(stack));

record.successors.forEach((successor) =>
15 stackMap[successor.id] = stack.copy());

func insertSuccessors(stack, successor) do
if !successor.isScopeClose then

return successor;
20 let stackCopy := stack.copy();

let expectedRefId = stackCopy.pop();
let newRecords := [];
while expectedRefId != successor.refId do

newRecords.add(new ScopeCloseRecord());
25 expectedRefId := stackCopy.pop();

linkRecords(newRecords, successor);
if newRecords.isEmpty then

return successor;
return newRecords[0];

the successor is a close scope record. If it is not, the same successor is sim-
ply returned. The algorithm only checks for close scope records whether they
conform to the scope stack. On line 20, the current stack is duplicated because
there might be multiple successors and each successor should start with the
same stack. The inner-most scope ID is retrieved on line 21. In case the succes-
sor closes a different scope than expected by the stack, a close scope record is
missing and is created on line 24. There might be multiple missing close scope
records. Thus, the while loop adds them until the successor corresponds to the
closing of the inner-most scope. Line 26 invokes another function that sets the
successor relation for each newly created close scope record, such that each new
record has the next new record as successor respectively the last new record has
successor as successor. The function either returns the original successor, if
no new records have been created, or the first created record (lines 27–29).

20 3. Visualizer

Each newly inserted close scope record gets a unique ID, a reference to the
data node (the stack’s top at the time of creation), and a timestamp marking the
scope’s end time. Terminating the symbolic execution in case of a verification
failure is assumed to take zero time. Hence, the new close scope records get
the same timestamp as the next close scope record that was already present
(i.e. successor). Based on the algorithm’s initial assumption that the outer-most
scope is complete, there is not only always a next close scope record but it also
is sufficient to only check for missing close scope records when hitting a close
scope record.

3.3 Duration Calculation

Thanks to the previous step, the duration calculation step can assume a complete
log. Using the timestamps from open and close scope records and calculating
a duration is more involved than it looks like at the first glance. In particular,
the following factors have to be considered, all illustrated in figure 3.2: Firstly, a
scope can have multiple close scope records, as represented by the timestamps
t6 and t7 in the figure. Considering the paths between the open scope and all
close scope records of a specific scope, some path segments might be shared
and therefore should only be counted one. For example, segments a and c are
shared by all paths. Next, a branching record stores for each branch a time-
stamp at which the exploration started. These timestamps have to be used as
starting times for the individual branches, because the symbolic execution might
have spent time in other scopes after a close scope record. In figure 3.2, the
branches could continue after the close scope records and the duration of the
second branch should therefore be calculated as t7 − t5. Last but not least, the
scope might include joining. Considering the same figure, the duration of seg-
ment b should be computed as t3−min{t1, t2}, because the symbolic execution
has sequentially explored both branches when reaching the join point at t3.

The implemented algorithm first collects all data records. It then individually cal-
culates the duration for each data record respectively the corresponding scope.
For a selected scope s, the algorithm iterates backwards over the data structure
to collect all records characterizing the duration of s per path. As shown in fig-
ure 3.3, such a path ends in a close scope record ending scope s. Its start is
marked by the (unique) open scope record of s. Between them, there can be
zero or more branch and join points, each specifying an end and start time for
the previous respectively next path segment. After a pass over all records, the
algorithm will have collected the records characterizing the durations of all paths.

3.3. Duration Calculation 21

Open Scope t0

Branching t1, t2

.

Join t3

Branching t4, t5

Close Scope t6 Close Scope t7

a

b

c

d e

Figure 3.2: General structure of a scope. The characteristical records are shown
and have corresponding timestamps t0−7. To calculate the scope’s duration, the
individual path segments a− e have to be considered.

Open Scope

. . .

Close Scope

zero or more
branch or join
points

Figure 3.3: A path for a particular scope is characterized by the open scope
record, a close scope record and zero or more branch or join points in between.

22 3. Visualizer

(t0, min{t1, t2}), (min{t1, t2}, t3), (t3, min{t4, t5}), (t4, t6)

(t0, min{t1, t2}), (min{t1, t2}, t3), (t3, min{t4, t5}), (t5, t7)

(t0, min{t1, t2}), (min{t1, t2}, t3), (t3, min{t4, t5}), (t4, t6)

(t0, min{t1, t2}), (min{t1, t2}, t3), (t3, min{t4, t5}), (t5, t7)

(3.1)

(t0, min{t1, t2}), (min{t1, t2}, t3), (t3, min{t4, t5}), (t4, t6)

(((
((((

(
(t0, min{t1, t2}),(((((

((((min{t1, t2}, t3),(((((
((((t3, min{t4, t5}), (t5, t7)

(((
((((

(
(t0, min{t1, t2}),(((((

((((min{t1, t2}, t3),(((((
((((t3, min{t4, t5}),����(t4, t6)

(((
((((

(
(t0, min{t1, t2}),(((((

((((min{t1, t2}, t3),(((((
((((t3, min{t4, t5}),����(t5, t7)

(3.2)

(min{t1, t2} − t0)︸ ︷︷ ︸
a

+ (t3 −min{t1, t2})︸ ︷︷ ︸
b

+ (min{t4, t5} − t3)︸ ︷︷ ︸
c

+ (t6 − t4)︸ ︷︷ ︸
d

+ (t7 − t5)︸ ︷︷ ︸
e

(3.3)

Equation 3.1 shows the four paths in figure 3.2 expressed in terms of their seg-
ments. Each segment is a tuple of the segment’s start and end, which are de-
clared as the corresponding record (omitted in the equation) and its timestamp.
As mentioned in the introduction of this section, simply calculating the duration
per path and summing them up results in a wrong duration for scope s. Therefore,
the algorithm performs a merge step that identifies and removes duplicate path
segments. The merge iterates over all segments of all paths and removes seg-
ments with the same start and end record and timestamp. Equation 3.2 shows
the remaining path segments after merging. Based on the unique path segments,
the scope’s duration can be calculated by subtracting each segment’s start from
its end timestamp and adding them, as seen in equation 3.3. a− e refer to the
path segments as annotated in figure 3.2.

Iterating over the entire data structure (once) for each data record as well as keep-
ing track of potentially large amounts of data (characterizing records along each
path) contribute to the significant execution time of this step. Subsection 4.2.1
evaluates the execution time for calculating the durations in comparison to all
other pipeline steps. As an optimization, the implemented algorithm does not
perform a single merge step at the very end, i.e. after collecting all paths, but it
performs it at every branch point. Duplicate segments can therefore be pruned
as early as possible reducing the algorithm’s memory footprint.

3.4. Scope Creation 23

0: Method 2: exec inhale cond 4: eval cond 6: eval b

19: eval acc(x.g)10: eval acc(x.f)

15: exec res := 1 24: exec res := 1

Figure 3.4: Scope representation for the symbolic execution log in figure 2.1. Hor-
izontal arrows denote the sub-scope, vertical arrows the successor, and dashed
arrows the inter-level successor relation. ”cond” is used as an abbreviation for
b ? acc(x.f) : acc(x.g).

3.4 Scope Creation

The data structure so far consists of data records (now with durations), and open
and close scope records. The parent scope relation is only implicitly encoded in
the data structure and should be made explicit in this step.

Consider again the example from listing 2.2 and figure 2.1. Figure 3.4 shows the
desired scope representation after converting the symbolic execution log. Hori-
zontal arrows denote the sub-scope, vertical arrows the successor, and dashed
arrows the inter-level successor relation. A scope level is assigned to each scope
and the scope level is increased by one whenever following the sub-scope rela-
tion. The root scope, for example scope 0 in figure 2.1, has by definition a scope
level of zero. An inter-level successor is a successor that is located on a lower
scope level than the current scope. This ensures that every scope either has
successors or inter-level successors unless it is the last scope.

In order to achieve the desired output, the scope creation algorithm keeps an
array of scopes. The array’s index corresponds to the scope level and each level
stores the last scope of that level. The algorithm iterates over all records and
creates a scope for each data record if it does not exist yet. Listing 3.2 shows
in the first function, how the successor and sub-scope relation is established. It
first checks whether the newly created scope, newScope, should be placed on a
level that already has another scope. If there is already a previous scope (line 3),
then newScope becomes its successor and replaces it in the scopes array (on
line 6). In the other case, i.e. newScope starts a new scope level, there is a case
distinction: In case the new scope should be inserted at the root level (line 8)
then there are no relations that should be established and the scope is simply
inserted into the array at index 0. Otherwise (lines 10–15), the parent scope is

24 3. Visualizer

Listing 3.2: Parts of the scope creation algorithm.
func addSuccessorLinks(scopes, newScope, scopeLevel) do

if scopeLevel < scopes.length then
let predecessor := scopes[scopeLevel];
if !predecessor.successors.contains(newScope) then

5 predecessor.successors.add(newScope);
scopes[scopeLevel] := newScope;

else if scopeLevel == 0 then
scopes[0] := newScope;

else
10 let parentScope := scopes[scopeLevel - 1];

if parentScope.hasSubScope then
insertWithDummyScope();

else
parentScope.subScope := newScope;

15 scopes.add(newScope);

func addInterLevelSuccLinks(scopes, newScope, scopeLevel) do
if scopeLevel + 1 < scope.length then

scopes.slice(scopeLevel + 1, scopes.length)
20 .forEach(scope => {

if !scope.interLevelSucc.contains(newScope) then
scope.interLevelSucc.add(newScope);

});
scopes := scopes.slice(0, scopeLevel + 1);

retrieved from the array and its sub-scope is set to newScope. However in case
the parent scope already has a sub-scope, a dummy scope has to be created1.
The dummy scope will have the previous sub-scope as well as newScope as
successors and becomes the sub-scope of the parentScope. This indirection is
necessary, because only a single scope can be set as sub-scope.

The second function in listing 3.2 shows how the inter-level successor relation
is made. It has to be done only when the scope level decreases compared to
an earlier iteration. Applied to the example in figure 2.1, this means scopes

has length four when the scope for exec res := 1 is created and inserted at
level 1. Therefore, the last scopes at levels 2 and 3 should get an inter-level
successor. Line 19 of the algorithm hence selects these scope levels and line 22
adds newScope as inter-level successor if it is not set yet. Afterwards, line 24
only retains the first scopeLevel entries of the array, because the other scopes
do not matter anymore for creating scopes for subsequent data records.

In case the log contains branching, the algorithm ensures that each branch gets
an independent copy of the scopes array. Hence, each branch sets the succes-

1The details of insertWithDummyScope are omitted in the code listing.

3.5. Scopes 25

Listing 3.3: Interface of the mapAfter iterator function.
function mapAfter<T>(
callbackfn: (

scope: Scope,
successorsResult: T[],

5 interLevelSuccessorsResult: T[],
subScopeResult: T) => T): T;

sors and inter-level successors on the correct scopes. In terms of the example
in figure 2.1, after creating scope 6, the array is duplicated and handed to each
branch. As a consequence, the creation of scopes 10 and 19 only modifies the
individual branch’s copy of the array and when creating the scopes 15 and 24,
the array clearly indicates that they are inter-level successors of scope 10 respec-
tively 19.

3.5 Scopes

Scopes, as created in section 3.4, represent an intermediate data structure. It is a
DAG-like data structure, where each scope can potentially have another DAG as its
sub-scope. The implementation provides several iterator functions to simplify the
traversal of the data structure. One such iterator function is mapAfter, as defined
in listing 3.3. Its use-case is to transform the entire data structure to a result of the
generic type T. It can be called on any scope, but it is typically invoked on the root
scope. mapAfter traverses the data structure in a depth-first manner and invokes
callbackfn for each scope. In addition, callbackfn provides the results for the
scope’s sub-scope, successors and inter-level successors. mapAfter is used at
several places throughout the Visualizer’s pipeline. In particular, it is used for
removing certain scopes from the data structure, which is discussed in more
details in the next subsection.

3.5.1 Scope Filtering

This subsection discusses one particular scope iterator function: scope filtering
based on a predicate. In the current pipeline, this iterator function is used to
remove scopes that are marked as being syntactic. All dummy records created by
the scope creation algorithm (see section 3.4) are marked syntactic. Furthermore,
a symbolic execution framework is free to declare log records syntactic. Scope
filtering acts as a case study to demonstrate the involved difficulties of a, at first
sight easy, problem.

Recall the visualization of scopes in figure 3.5, which will be used throughout this
discussion: Scope 1 has scope 0 as parent scope and scope 4 as sub scope.
Furthermore, scope 1 has two successors, namely scope 2 and 3. Scopes 2

26 3. Visualizer

10

32

5

4

Figure 3.5: Sample of a scope data structure. Scope 1 is sub-scope of 0 and has
two successors, namely scopes 2 and 3. Scope 2 has 5 as inter-level successor.
Scope 3 is marked for removal.

and 3 each have scope 5 as inter-level successor. Additionally, the notion of
scopes filled with blue color is introduced to mark scopes that should be removed.

The problem of scope filtering is as follows: Each scope for which the predicate
returns false should be removed from the data structure, if structurally possible.

The algorithm requires multiple iterations and uses mapAfter (see section 3.5)
in each iteration to modify the data structure. For each scope, the predicate is
invoked to evaluate whether the scope should be kept or filtered out. The predi-
cate’s return value for each scope is cached to ensure that the return value does
not change from iteration to iteration. Otherwise, the predicate’s return value for a
particular scope could change in each iteration thus invalidating any guarantees
on the number of iterations (as done towards the end of this subsection).

In case a scope should be removed, these four cases2 can occur:

1. The scope neither has sub-scopes nor successors.

2. The scope has successors but no sub-scopes.

3. The scope has sub-scopes but no successors.

4. The scope has sub-scopes as well as successors.

The following evaluation of these cases only considers changes to the sub-scope,
successor, and inter-level successor relations. The implementation changes all
inverse relations as well. For brevity, these changes will not be mentioned.

Case 1. Consider the situation as in figure 3.6. The scope with ID 3 should
be removed. To do so, scope 1 has to remove scope 3 as a successor and
add all inter-level successors of scope 3 (i.e. scope 4) as its own inter-level
successors. In addition, scope 2 has to change its inter-level successor from
scope 3 to scope 4.

2The presence and number of inter-level successors do not matter for the case distinction,
because each case can handle any configuration of inter-level successors.

3.5. Scopes 27

10

3

2

4

f ilter−−→
10 2

4

Figure 3.6: Removal of scope 3 corresponding to case 1.

10

3

2

5

4

6

f ilter−−→

10 2

5

4

6

Figure 3.7: Removal of scope 3 corresponding to case 2.

0 3

5

4

6

Figure 3.8: Non-permitted removal of scope 3 in a special situation of case 2.

Case 2. Figure 3.7 shows scope 3 which again should be removed but has
scope 5 as successor. Scope 1 and 2 have to change their successor respec-
tively inter-level successor from scope 3 to scope 5. Scope 6 is left unchanged,
because it does not have any inter-level predecessors.

However, there is a special situation with case 2, in which no scope removal is
permitted. Consider scopes as shown in figure 3.8. If scope 3 only had a sin-
gle successor, removing scope 3 would be possible. However, by having multiple
successors, scope 0 would have to change its sub-scope from scope 3 to scope 5
and scope 6. This is not permitted by the data structure and is the same reason
for creating a dummy scope during scope creation (see section 3.4). Therefore,
the removal of scope 3 is not performed. Nevertheless, scope 3 might be re-
moved in the next iteration of the algorithm.

28 3. Visualizer

10

3

2

4

7

98

f ilter−−→

10 2

4

7

98

Figure 3.9: Removal of scope 3 corresponding to case 3.

10

10

3

2

5

4

7

6

98
f ilter−−→ 10

10 2

5

4

7

6

98

Figure 3.10: Removal of scope 3 corresponding to case 4.

Case 3. In case a scope should be removed that has a sub-scope, then it should
be replaced by its sub-scope. This situation is shown in figure 3.9. The scope
with ID 3 has a sub-scope consisting of the DAG 7, 8, and 9. To achieve this, the
successor of scope 1 has to be changed from scope 3 to scope 7. Furthermore,
each inter-level predecessor of scope 3 has to switch to scope 7 as well.

Case 4. Last but not least, case 4 corresponds to removing a node which has
successors as well as a sub-scope. This is depicted in figure 3.10. Scope 3
should be replaced by its sub-scope, similarly to case 3. However, the last suc-
cessors of the sub-scope, in this case scopes 8 and 9, have to be changed as
follows: Their inter-level successors now become (direct) successors.

The transformations for removing a scope are mostly limited to the neighboring
scopes, i.e. scopes having a reference to the scope that should be removed.
The only exception is case 4, where the last successors in the sub-scope of the
scope that should be removed are modified as well. However, the presented local
transformation rules cannot perform the intended removal if the special situation

3.5. Scopes 29

11

10

12

0 3

5

4

76

98

f ilter−−→
1

11

10

12

3

5

4

7

8
f ilter−−→

2
11 12

3

5

4

8

Figure 3.11: Scope data structure needing two filtering passes.

of case 2 occurs. This is the reason why a single iteration of the algorithm is not
sufficient in the general case.

Figure 3.11 shows an example that requires more than one iteration over the data
structure. After the first iteration, scopes 3, 7, and 10 are still present, because
they could not be removed. Nevertheless, the parent scopes of these remaining
and still to be removed scopes were removed in the first iteration. Hence in the
second iteration, scopes 7 and 10 are successors and no longer roots of their
sub-DAGs. Thus, these scopes can be removed in the second iteration.

In fact, it can be shown that only two iterations are necessary in the worst case. A
third iteration would not result in any change in the data structure. The interested
reader is referred to the detailed analysis of this claim in appendix B.

30 3. Visualizer

3.6 Graphical Representation

At the end of the entire pipeline, the resulting scope data structure will be ren-
dered as scalable vector graphics (SVG), allowing it to be displayed in any com-
mon web browser. Each scope is mapped to a rectangle and the individual
rectangles are linked according to the successor relation defined on scopes.
Already short symbolic execution durations lead to a massive amount of data.
Thus, several design choices have been made to create comprehensive but at
the same time understandable visualizations: The first and most important one,
taken from [18], is that the user selects the level of details. This is implemented
by initially showing only the top-level rectangle, as an overview, and the user can
unfold sub-steps by clicking on the rectangle. Next, a particular level might con-
tain so many rectangles that the user is unable to identify significant ones. Thus,
the height of each rectangle is selected based on a user-supplied function, which
should increase a rectangle’s height based on its significance. Furthermore, vari-
ous navigation features are supported, for example zooming or isolating a specific
rectangle.

Figure 3.12 shows the visualization of the symbolic execution of a Viper program,
containing a few branches. The top-level rectangle representing a method was ex-
panded to show its content, which mostly corresponds to revealing the individual
statements. The height of each rectangle is selected with respect to its scope’s
duration, which is the default. This allows users to quickly identify the scope that
contributes most to the total execution time. In addition, there is a white hover
tip that lists several key metrics for the hovered rectangle, for example the total
duration and number of SMT queries. Furthermore, the number of invocations
and total duration of some particular algorithms of Silicon are listed in the hover
tip. The algorithms for removing permission as well as merging and consolidat-
ing symbolic state have been selected, because we have evaluated that they
sometimes significantly contribute to the execution time of Viper programs. Thus,
having a short summary about their execution in the hover tip allows to quickly
detect abnormalities.

Navigation. The Visualizer incorporates several features to facilitate navigation.
The first one, clicking to reveal the content of a scope, was already described in
this section’s introduction. In addition, the visualizer allows dragging and zooming
with finger gestures. Zooming is also possible using the plus and minus buttons in
the bottom right corner. The initial zoom and pan settings can be restored using
the restore button in the same corner. Moreover, shift-clicking a scope will isolate
it from all surrounding scopes, allowing a more focused inspection of a particular
scope. Lastly, scopes can be alt-clicked for selecting a specific path through the
program.

3.6. Graphical Representation 31

Figure 3.12: Visualization of the symbolic execution of a small Viper program.

Path Selection. Due to the presence of joins, simply selecting a path end does
not uniquely identify all scopes on the path. Therefore, the notion of weights is
introduced. Weights influence the path selection, which chooses the path with the
largest sum of weights. Alt-clicking a rectangle will assign the weight of one to it
and allows the user to readjust the selected path by placing additional weights in
the graph. An additional advantage of using weights is that the user can select
one or multiple path segments of the entire symbolic execution path. A path
segment starts at a rectangle with weight one and extends to the next rectangle
with weight one, i.e. the selection toggles at every rectangle with weight one.

Figure 3.13 shows as pink filled rectangles the three scopes that were alt-selected,
i.e. having weight one. All rectangles that do not have weight one but lie on a se-
lected path segment are rendered with a pink border. As shown, the second path
segment extends to the end of the path, because there is no forth rectangle on
the path with a weight of one.

The implemented technique of using weights has the benefit that it requires only
a few clicks and can iteratively be refined by the user in comparison to defining
a path fraction by clicking on all scopes that should be part of it. Furthermore, it
is not straight-forward whether sub-scopes are automatically included when the
user clicks on their parent scope or not. If not, the user would have to unfold the
sub-scopes first and click on all of them.

The user can not only choose between a histogram (as in figure 3.14) or a flame-
graph (figure 3.15) to visualize the scopes on the selected path segments but
he can also define a function that maps each scope to a value that should be
used for the visualization. The histogram includes only scopes that are visible

32 3. Visualizer

Figure 3.13: Selection of two path segments, drawn with a pink border, in the
Visualizer.

Figure 3.14: Histogram of the execution time for the selected path segments in
the Visualizer.

3.6. Graphical Representation 33

Figure 3.15: Flamegraph of the execution time for the selected path segments in
the Visualizer.

and non-expanded. This allows users to steer the scopes that are included in
the histogram by expanding or collapsing scopes. The main purpose of the his-
togram is to give an impression of the evolution of a particular parameter along a
path. The flamegraph improves this idea by being able to simultaneously render
different scope levels. Therefore, visually collapsed or expanded scopes do not
influence the flamegraph, because all scopes along the selected path are ren-
dered. In the histogram, the horizontal axis represents the selected path and the
parameter’s magnitude is shown vertically. The flamegraph is slightly differently
organized, the horizontal axis also shows the ordering of scopes along the path.
However, the parameter’s magnitude is horizontally rendered as well. Vertically,
the flamegraph shows the sub-scope relation.

Although path selection copes with joins by the symbolic execution, the current
implementation does not consider scopes on branches that will be joined later on
for the histogram as well as the flamegraph. Instead, it will display their parent
scopes and omit the sub-scope. The implementation could easily be extended to
show scopes in the context of joining as well. However, it is not clear yet whether
or how such scopes should be treated. On the one hand, showing the scopes of
just one branch might result in wrong impressions, because the work performed
on all branches is required at the join point for being able to resume symbolic exe-
cution. On the other hand, showing the scopes of all branches that will be joined,
in the histogram or flamegraph, would imply some temporal ordering amongst
them, because they need to be drawn in some ordering on the x-axis. Although
such an ordering actually exists when the symbolic execution engine executes
one branch after the other, the execution state will be reset to the state at the
branch point for each branch. Hence in terms of state, the individual branches
were explored in parallel und should also be drawn as such in the histogram or
flamegraph.

Initial experiments with flamegraph visualizations have confirmed that the sequen-
tial representation of branches is misleading: Imagine rendering an entire sym-
bolic execution with two branches as a flamegraph. Further assume that the
branches were sequentially explored, because otherwise a meaningful visual rep-
resentation is even harder. The built-in flamegraph engine of Google Chrome,
called Trace-Viewer [17], takes a set of start and end timestamps and rearranges
them as a flamegraph. Visualizing an entire symbolic execution this way results in

34 3. Visualizer

Figure 3.16: Detail of the Trace-Viewer [17] showing branching of a symbolic
execution.

a flamegraph that first shows the scope of the first branch with its sub-scopes be-
low it. Figure 3.16 shows a detail of a symbolic execution exploring two branches
(shown in green). Following the first branch, the scope of the second branch is
rendered, with its sub-scopes below it. Interpreting this flamegraph easily leads
to the conclusion, that the second branch follows the first branch. This is correct
considering the time axis and the order that the symbolic execution framework
has done its work. However, it does not give any insights into the control flow
of the execution and might even confuse users, that the state after execution of
the first branch was used as input to the second branch. That is why the Visu-
alizer only displays flamegraphs for specific paths and currently omits scopes of
branches that get joined.

Configuration. The Visualizer offers in the bottom right corner a settings button
that opens a settings popup (see figure 3.17). It currently offers three different set-
tings. First of all, the JavaScript function that is used to define the relative height
of rectangles can be changed. By default, the function returns the maximum of
three and the scope’s duration. Three is an empirically evaluated parameter that
ensures a good tradeoff between a truthful visualization of the actual durations
as well as readability of scope descriptions for scopes with really short durations.

Secondly, the function that is used to compute the values for the histogram and
the flamegraph can be configured. The user can use all fields of a scope, for
example a scope’s duration (as in figure 3.17), use a statistical parameter of the
SMT solver, or access custom data that he added to the log records during the
symbolic execution. However, the settings popup does not yet suggest such val-
ues. Collecting and displaying a list of these values should be an easy extension
of the Visualizer. For now, the user has to know the names of the statistical pa-
rameters, for example by looking them up in the log file. The default is using the
value quant-instantiations-delta from the SMT solver’s statistics. In case
the function returns null for a specific scope, i.e. indicating that the scope does
not have such a value, an aggregated value will be used instead. The aggregated
value is computed by adding up all aggregated values of the sub-scopes. How-
ever, there is no difference in computing the aggregated value for scopes that
contain joining of symbolic execution branches and scopes that do not.

Thirdly, the user can switch between showing a histogram or a flamegraph for

3.6. Graphical Representation 35

Figure 3.17: Settings popup of the visualizer offering various configuration possi-
bilities.

the selected path. Clicking on the save button will apply the settings and redraw
the visualizations, while keeping the same path selection as well as zooming and
panning values.

Level of Completeness. Visualizing a symbolic execution log that does not
contain the time-wise relevant scopes can lead to wrong impressions of potential
bottlenecks, because the actual bottlenecks might be missing. Such incomplete-
nesses in the logged scopes can be detected, because each scope stores its
duration. Consider for example the case that a scope takes 100ms but only has
a single sub-scope with a duration of 10ms. Calculating the percentage between
the sum of sub-scope durations and the scope’s duration reveals that only 10%
of the scope’s duration has been logged. This level of completeness is shown by
the Visualizer when sub-scopes are revealed. Knowing the level of completeness
helps in detecting incompletenesses and to indicate that the verification should
be rerun, but with additional logging.

3.6.1 JavaScript Console Integration

In addition to the configurations that can be applied using the visual settings
popup, the JavaScript console that web browsers typically offer in their developer
options can be used as well. There are at least two different use-cases: On the
one hand, the default visualization that is created by the pipeline can be adapted.

36 3. Visualizer

Listing 3.4: Query in the JavaScript console to count the number of statements
in the entire data structure.
> root.sum((n) => n.label.startsWith("execute") ? 1 : 0)
< 14

Listing 3.5: API documentation of function sum displayed in the JavaScript con-
sole.
> root.sum.help()
< Iterates over the given node and its subDag (i.e.

successors at the top-most layer are ignored). For each
considered node, callbackfn will be called to calculate

5 that node’s value (not considering any successor /
subDag).
The value resulting from a node, is calculated as
follows: nodeRes = max(callbackfn(node), subDagRes) +
successorsRes

10 callbackfn: (node: DagNode<P>) => number: function to
be called for each node
cacheGet: (node: DagNode<P>) => number: nullable
function to get cached result
cacheSet: (node: DagNode<P>, val: number) => void:

15 nullable function to store val in cache
returns the sum

For example, specific scopes can be highlighted or a marker can be inserted
on an edge between two scopes if certain properties are fulfilled. On the other
hand, queries to calculate a value can be executed on the entire data structure.
For instance, the number of branches can be computed, which might give some
insights into the overall shape of a symbolic execution.

For this reason, the root scope that is currently rendered is attached to the
window object. The iterator functions discussed in section 3.5 are at disposal
and allow the creation of concise queries, as seen in listing 3.4. Furthermore,
each iterator function has a help function to print a short documentation (see list-
ing 3.5). Currently, the user has to know what queries are possible and how to
create them. Assembling a list of common queries and providing them as a tool-
box to choose from would be a great addition to the Visualizer, especially helping
new users.

To ease the adaptation of the visualization, scopes provide convenient functions
to change a scope attribute, an attribute of a link to another scope, to add a
marker on a link with certain attributes, or to add an area on a scope with at-
tributes. Attributes are arbitrary key-value pairs that will directly be mapped to

3.7. Bottlenecks 37

Listing 3.6: SVG attribute change of a scope rectangle.
root.eachBefore(callbackfn);
function callbackfn(scope) {
let smtExecTime = scope.getTotalSmtQueryExecutionTimeMs();
if (smtExecTime > 50) {

5 scope.setNodeAttribute("opacity", "1");
}

}

SVG attributes. As an example, listing 3.6 sets the opacity of all scopes to 100%
if they have an aggregated SMT solver execution time over 50ms.

3.7 Bottlenecks

During the development as well as evaluation of the Visualizer, several bottle-
necks have been identified. As already mentioned in section 3.3, calculating
each scope’s duration based on all program paths from the open scope record
to the close scope records contributes most to the execution time of the entire
pipeline, despite the employed optimization to prune duplicate path segments as
early as possible.

The rendering of scopes has a decent performance, because only a specific
scope level is handed to the layout engine to compute the rectangles’ positions
and sizes. Hence, revealing the sub-scopes by clicking on a scope mostly con-
sists of laying out the sub-scopes and rendering them in their own coordinate
system.

Another limitation is stack size of the evaluating JavaScript engine. Although this
affects the entire pipeline, if the stack size is exceeded then it typically occurs
at the beginning of the pipeline until scopes have been created. After scope
creation, the number of elements in the data structure is significantly reduced,
because open and close scope as well as data records are combined to a single
scope object. Hence, the recursion depth when iterating over the data structure
reduces as well. Furthermore, the default stack size heavily depends on the
JavaScript engine. Experiments have shown that Google Chrome exposes about
the same stack size limit as Node.js uses by default. On the contrary, the Apple
Safari web browser allows a stack of more than twice the size of Google Chrome.

The stack size limitation can be relaxed by using Node.js with a manually config-
ured stack size to preprocess the symbolic execution log and create the scope
representation out of it. The scopes can then be written to disk and later on
imported in the web browser of choice. In addition, this speeds up opening a
symbolic execution log, because preprocessing and conversion to scopes has to
be done only once.

38 3. Visualizer

3.8 Continuous Integration

The continuous integration for the Visualizer consists of a Docker container [22]
providing the environment for compilation and testing, which includes Node.js as
well as Google Chrome. It can be run on any build server being able pulling and
executing images from Docker Hub [21]. The tests feature various unit tests for
the different data structure iterators and the scope creation algorithm.

4
Evaluation

First, the new SymbEx Logger is evaluated in terms of performance overhead
as well as its extensibility (4.1). It is followed by the Visualizer’s evaluation (4.2),
which includes a quantitative assessment and several case studies of specific
Viper programs.

4.1 SymbEx Logger Evaluation

Although the work of the logger framework during the symbolic execution is kept
to a minimum, creating log records, inserting them into the log, and creating a
log report at the end of the symbolic execution affects the verification’s execution
time. Table 4.1 shows the execution times of various Viper programs, which were
generated either manually or by different Viper front-ends. These programs were
provided by the Programming Methodology group and successfully verify with a
timeout of 100s if logging is disabled. Silicon’s execution time with and without
logging are shown, as well as the file size of the resulting log file. Before verifying
these programs, a simple warm up of the Java virtual machine (JVM) was per-
formed by verifying nine rather short Viper programs. Each program, for which
the execution time was measured, was verified five times with and without logging.
The execution time of the median runs are shown in table 4.1. Six Viper programs
resulted in out of memory exceptions when logging was enabled. Thus, the table
does not show an execution time and log size for them. This problem has not
been addressed in this thesis, but, as mentioned in subsection 2.2.2, it could be
mitigated by splitting the log into several parts and reporting them individually.

By default, logging is disabled during a verification. Enabling logging increases
the verification duration on average by 61% for the considered Viper programs.
However, there are some outliers for which verification becomes faster after en-

39

40 4. Evaluation

Table 4.1: Silicon median execution time without logging, with logging, and result-
ing log file size for various Viper programs.

Program median [s] median with logs [s] median log size [MB]

composite.vpr 13.88 18.40 4.30
RelAcqDblMsgPassSplit.sil 3.27 2.52 2.50

RelAcqMsgPass.sil 1.19 0.97 1.30
Knuth shuffle.vpr 4.97 9.12 9.90

ansi-term-external-call.vpr 64.02 154.49 121.40
nested-loops-3.vpr 25.78 33.19 13.60

paths.vpr 16.01 97.38 28.20
ArrayInt true 13.vpr 30.37 – –
ArrayInt true 14.vpr 36.74 – –

ArrayInt true simple 13.vpr 14.53 24.67 64.40
ArrayInt true simple 14.vpr 17.44 27.03 76.60

Chromosome true 13.vpr 19.49 25.93 88.70
Chromosome true 14.vpr 23.38 34.70 105.00

Chromosome true simple 13.vpr 46.76 – –
Chromosome true simple 14.vpr 59.33 – –

PokerHand part1 13.vpr 121.23 – –
PokerHand part1 14.vpr 109.87 – –

test-fast.sil 7.70 9.58 1.10
test-slow.sil 14.94 18.22 1.50

0075 AVLTree.nokeys.sil 18.28 46.90 87.90
AVLTree.nokeys.sil 20.71 59.77 100.70

testHistogramFull-old.sil 4.37 5.84 2.90
testTreeWand.sil 17.90 30.21 73.70

first-final.rs.vpr 19.70 21.73 24.60
Knuth shuffle.rs.vpr 5.51 7.01 8.10

Heapsort generic.rs.vpr 114.59 116.31 104.30
borrow first.rs.vpr 2.08 2.76 4.60

Selection sort generic.rs.vpr 31.47 39.73 37.70
Binary search shared mono.rs.vpr 21.66 32.62 27.10

Fibonacci sequence.rs.vpr 7.58 9.42 15.00
Towers of Hanoi spec.rs.vpr 1.67 2.60 3.80

Ackermann function.rs.vpr 4.77 7.02 10.60
Binary search shared.rs.vpr 12.13 16.56 18.40

100 doors generic.rs.vpr 7.52 11.40 12.60
Selection sort.rs.vpr 51.81 52.88 46.90
Langtons ant.rs.vpr 22.11 21.98 31.50

4.1. SymbEx Logger Evaluation 41

Listing 4.1: Code snippet to add a comment record indicating the beginning of
the removePermissions algorithm.
val rmPermRecord = new CommentRecord(
"removePermissions", s, v.decider.pcs)

val sepIdentifier = SymbExLogger.currentLog()
.openScope(rmPermRecord)

Listing 4.2: Code snippet to close the scope referenced by sepIdentifier.
SymbExLogger.currentLog().closeScope(sepIdentifier)

abling logging. This partially explains the relative high standard deviation of 96%.
In addition, the amount of data that is logged per time unit highly depends on
the program. For example, in case the entire verification consists just of a single
long SMT query then a single record will be present in the log. Not only will the
resulting log file be pretty small but the logging overhead will also be minimal.

Extending SymbEx Logger. One key property of the SymbEx Logger is easy
extension to include additional log records. Such an extension might not only
be necessary in case Silicon changes but can also be necessary when further
insights have to be gathered for a specific input program. Following is an ex-
ample of adding a record for the removePermissions algorithm in Silicon’s
QuantifiedChunkSupporter. It demonstrates that the SymbEx Logger fulfills
this requirement. At the beginning of the method removePermissions, a new
comment record with the comment ”removePermissions”, the current state, and
path conditions is created and inserted into the log (see listing 4.1). This marks
the beginning of the removePermissions’s scope and hence the scope has to
subsequently be marked as closed. Closing the scope is done at the end of the
algorithm and is shown in listing 4.2.

Creating, opening, and closing scopes, as demonstrated, is very simple and can
be placed anywhere during the symbolic execution. The current member’s log
can be accessed by calling SymbExLogger.currentLog(). However, one has
to be careful not to violate the wellformedness property of scopes: Every scope
that is opened has to be closed before the parent scope is closed.

In Silicon, this property can easily be maintained thanks to its architecture based
on continuation passing. Each symbolic execution operation that opens a scope
will close it at the beginning of its continuation. Thus, not only proper scope nest-
ing is achieved but also any state required to close the scope (i.e. sepIdentifier
in listing 4.2) can be kept locally.

42 4. Evaluation

4.2 Visualizer Evaluation

The Visualizer operates on JSON input as specified in section 2.2. Hence, it is
agnostic not only to the symbolic execution framework creating the log but also
to the source language of the input program to the symbolic execution framework.
However, only a logger for Silicon producing the desired log format is currently
implemented. The log format is not specially tailored to Silicon and therefore other
symbolic execution framework should easily be able to record logs the same way.

4.2.1 Quantitative Evaluation

This subsection evaluates the Visualizer’s performance in terms of loading time
for various symbolic execution log files that have been collected from the same
Viper programs as used in section 4.1. Node.js with a manually configured stack
size of its JavaScript engine was used to execute all pipeline steps except the last
one (i.e. scope rendering). 8185kB was experimentally evaluated to be the largest
stack size for which a call stack size exceeded JavaScript exception is thrown
when exceeding the stack size. Since the command line option --stack_size

only configures the size of the stack region that the Chrome V8 JavaScript engine
can use without actually increasing it, choosing a larger stack size than 8185kB
leads to segmentation faults of Node when the entire stack is filled up. Increasing
the actual stack region provided by the operating system (OS) to Node likely re-
quires recompiling Node with a larger stack size configuration. However, this path
was not further explored and 8185kB was used as stack size instead. From the
30 Viper programs in table 4.1 that successfully produced a symbolic execution
log file, only 16 can be processed by the pipeline without exceeding a timeout of
1h or the stack size. The recursion depth as well as the algorithm to calculate
the scope durations could be improved in future work to increase the number of
symbolic execution logs that can be processed by the Visualizer.

The last pipeline step, displaying the scopes as SVG, was performed and mea-
sured in the Apple Safari web browser. The JavaScript console window was
closed while executing this pipeline step, because rendering the SVG can take
over four times longer when the console window is visible. The pipeline was run
five times for each program and the median execution time for each step was
used to compute the average over all programs. Figure 4.1 shows the average
execution time for each pipeline step. As already mentioned in section 3.3, cal-
culating the duration for each scope is by far the slowest part of the pipeline and
takes about 90% of the total execution time. A more efficient algorithm replac-
ing the current duration calculation would therefore potentially result in a large
speed-up.

The other limitation of the Visualizer is stack space. Rewriting the current iterator
functions to use a more iterative instead of recursive approach would allow the
processing of log files that are currently too large. Some effort has already been

4.2. Visualizer Evaluation 43

Read File [s]

Load Log [s]

Record Completion [s]

Duration Calculation [s]

Scope Creation [s]

Scope Writing [s]

DAG Building [s]

Syntactic Scope Filtering [s]

Display [s]

0 50 100 150 200 250

3.59

0.23

0.09

0.04

0.58

207.44

0.61

17.07

0.09

Figure 4.1: Average execution time of each pipeline step based on symbolic exe-
cution logs of 16 Viper programs.

made by using more loops and less recursion as well as to cache intermediate
values, but there is more work to be done.

In conclusions, the Visualizer provides a decent loading and processing time for a
symbolic execution log. Furthermore, the intermediate data representation based
on scopes can be exported and later imported. Thus, the most time consuming
step of calculating durations can be skipped. The Visualizer is currently limited by
the time to calculate durations and the recursion depth of the algorithms needed
to traverse the log.

4.2.2 Qualitative Evaluation

The Visualizer’s goal is to assist in finding performance problems in the programs
that are verified as well as in the symbolic execution framework itself. Hence, this
subsection evaluates the Visualizer’s usefulness by listing the specific steps that
were performed in the Visualizer and the insights that one has gained by doing
so. 11 Viper programs have been profiled and corresponding profiling minutes
have been created. This subsection discusses four of them that turned out to
be interesting. The profiling minutes of the other Viper programs can be found
in appendix C. Furthermore, two examples have been in parallel and manually
analyzed by Moritz Knüsel [29]. For these examples, the results provided by
manual inspection and inspection with the Visualizer will be compared.

44 4. Evaluation

Composite.vpr The first considered Viper program is composite.vpr. It was se-
lected, because Knüsel was in parallel analyzing it. Hence, tool support provided
by the new SymbEx Logger and the Visualizer can be compared to manual find-
ings. Figure 4.2 shows the profiling minutes for analyzing the symbolic execution
of this program. It lists the steps performed in the Visualizer to answer a specific
question. In conclusion, symbolically evaluating one of the three postconditions
of the method call to addToTotal takes up more than 50% of the entire method’s
execution time. For producing this specific postcondition, 96% of the time is spent
in the SMT solver for various SMT queries. Diving deeper into the analysis of the
subexpressions shows that the execution time of the postcondition’s production
is dominated by four SMT solver queries, each taking around 500ms.

Knüsel came, by manual inspection, to the conclusion that Silicon spends most
of the verification duration in a loop in the method removePermissions in the
QuantifiedChunkSupporter. Although the SMT solver queries took never the
full 500ms in his case, the dominant queries do come from the same algorithm in
Silicon. Therefore, the Visualizer points in the same direction as manual inspec-
tion to conduct further analyses. The manual inspection took him a couple of
days to identify the removePermissions algorithm as a potential performance
problem. In comparison, analyzing the Viper program with the Visualizer was
possible in about two hours.

During the analysis of this Viper program, the logger was not extended yet to
record removePermissions invocations, as described in section 4.1. Further-
more, the SMT solver’s statistical information was not included in the log yet and
the Visualizer was not able to display a histogram or flamegraph yet. Hence,
steps using these features are not present in the profiling minutes.

Rerunning the verification and analysis with the most recent logger and Visualizer
features shows that removePermissions is invoked 40 times, making up for
71% of the entire method’s execution time. In terms of quantifier instantiations,
the method call to addToTotal stands out by having a value of over 155’000,
which is almost exclusively split among evaluating preconditions (74’000) and
postconditions (80’000). This shows that the logger can easily be extended, as
well as that the Z3 statistics can contain insightful information. However, it is
often not a priori obvious which Z3 metric is most relevant and correlates best
with the SMT solver’s execution time. Even if a relevant metric was found, its
meaning might not directly emerge from its name. Unfortunately, the Z3 metrics
are undocumented and it thus remains difficult to interpret them.

In contrast, Knüsel has added log output for quantifier instantiations in Z3 itself
and recompiled Z3. This leads to similar results as analyzing the quantifier in-
stantiation metric in the Z3 statistics, because both act as indicators for axioma-
tisations producing too many instances [19]. To gain further insights into the
operations of the SMT solver, the dedicated Axiom Profiler [6] can be used.

4.2. Visualizer Evaluation 45

Question Step Answer

What method has the longest execution time? Open the Visualizer Method addRight (8241ms)

How much time is spent in SMT solver? Look at yellow area 78%

How many branches exist? Count the columns 5

Which stmt has the longest exec time? Code does not show anything, but switching to
relative heights shows it nicely

addToTotal(this, n.total, X)

“addToTotal“ is a stmt, but why does it take so
long?

Click on node to reveal content One node “method call addToTotal” is
revealed

“addToTotal“ is a method call, but why does it take
so long?

Click on node to reveal content Several consume and one produce node
significantly contribute to the execution time

What is consumed and produced? Shift click on method call node to enlarge it First, arguments are evaluated, then the precondition
is consumed (after expanding the definitions) and
afterwards the postcondition is produced

What is the largest time contributor? Look at tallest node produce (forall x: Ref :: { (x in X) }
(x in X) ==> dom(x.intf) == Set(x) && …

How much does it contribute? Manually calculate its fraction to the method call’s
execution time

52% of method call’s execution time

How much does it spend in SMT solver? Manually calculate the fraction of SMT solver time
(2122ms) to the node’s duration

96% of produce’s execution time

Why? Expand the “produce“ node with shift click The evaluation of the expression takes up most of
the time

What steps are involved in the evaluation? Expand the two enclosed ”evaluation“ nodes There is an implication which involves joining

What happens in the “join context”? Expand the “joining null“ node with shift click There are two branches. If the left hand side is
assumed false, then there is almost no work done.
The join overhead is negligible too and does not
involve the SMT solver. Almost the entire execution
time is spent for the evaluation of the right hand side

Why does the implication’s right hand side take so
long?

Expand right hand side evalution The right hand side involves a short-circuiting
operator (&&), which leads to a second implication.
This takes up most of the execution time

What happens during the implication’s evaluation? Expand “evaluation v@257@01 …“ The “join context” takes up almost the entire
execution time

What happens in the “join context”? Expand the “joining null“ node Again, the right hand side takes up most of the time
(obviously)

Why does right hand side take 2171ms? Expand “evaluate (forall z$0 …“ “evaluate fdEq(select(out(x.intf),
z$0), out_of_node(x, z$0))“ is the major time
contributor

What happens in the before mentioned evaluation? Expand “evaluate fdEq(select…“ “evaluate out_of_node(x, z$0)“ takes
2081ms

Why does “evaluate out_of_node“ take so
long?

Shift click on it to expand it It again contains a “join context”

What happens in the “join context”? Expand the “joining null“ node The execution time is almost evenly split among
“consume acc(x.left)”, “consume
acc(x.right)”, “consume acc(x.parent)”, and
“consume acc(x.total)”, each having 2 SMT
solver queries taking up 97% of the time

Are the 2 SMT solver queries equally long? Expand the “consume“ nodes no, the first one of the form “decider assert QA
r :: (inv@_x_@01(r) in X@5@01 ? W : Z)
- pTaken@_y_@01(r) == Z” (_x_ ∈ {233, 238,
243, 248} and _y_ ∈ {259, 261, 263, 265}) takes
between 486 and 527ms long, the second one is of
very short duration

Figure 4.2: Profiling minutes for analyzing the symbolic execution of the Viper
program composite.vpr

46 4. Evaluation

borrow first.rs.vpr The Viper front-end Prusti [3] was used to generate Viper
code, having about 480 lines of code (LOC). As opposed to the previous Viper
program, invocations of the removePermissions algorithm are not expected to
appear in the resulting symbolic execution log, because Prusti does not make
use of quantified permissions. Quantified permissions are permissions to a (po-
tentially unbounded) number of heap locations [26].

Figure 4.3 and 4.4 show the steps performed with the Visualizer to answer ques-
tions and derive further questions. This Viper program is characterized by its
large amount of SMT queries. However, the individual queries are of very short
duration, taking on average only 1.9ms and at most 7ms. On the longest path in
terms of execution duration, Silicon performs two state consolidations. During a
state consolidation, Silicon rewrites its state to a semantically equivalent one to
overcome incompletenesses. A state consolidation is cubic in the size of the state
modulo SMT queries. Considering the flamegraphs for the time spent in the SMT

solver and for the SMT statistics num-allocs-delta and propagations-delta,
the scopes corresponding to the two state consolidations appear as substantial
as well.

Silicon offers an option --enableMoreCompleteExhale that uses more com-
plex algorithms to handle its state. In consequence of this, state consolidations
are no longer necessary. After enabling these more complex algorithms, the
same Viper program verifies 23% faster and issues 28% less SMT queries. The av-
erage duration per SMT query is unchanged and the maximum duration increases
to 24ms, which is still a very short duration. Structurally, the symbolic execution
explores the same number of paths and encounters the same amount of branch
points independent of enabling or disabling more complex exhales.

Knuth shuffle.rs.vpr Knuth shuffle is an implementation of an algorithm to ran-
domly shuffle the elements of an array. Prusti was again used as front-end to com-
pile the 74 LOC to 963 LOC of Viper code. Profiling the corresponding symbolic
execution of Silicon is shown in figure 4.5 and 4.6. In general, this example looks
similar to the previous Rust example. Both spend over 65% of the total execution
time in the SMT solver and issue many small queries. However, Knuth shuffle
contains one relatively big query of 125ms and all other queries take less than
25ms. Nevertheless, 125ms is still a very short duration for an SMT query in com-
parison to other examples. The flamegraph attracted attention to the evaluation
of 0 <= self.val_int, taking 201ms, for which only really short subevalua-
tions are present in the flamegraph. The same observation can be confirmed
by using the Visualizer’s main view: The evaluation of 0 <= self.val_int has
two sub-scopes, the first one for evaluating 0 and the second one for evaluating
self.val_int, each taking zero respectively 1ms. Hence, the created symbolic
execution log is incomplete in the sense that not all subevaluations were logged.
The Visualizer indicates this by showing a level of completeness of zero.

4.2. Visualizer Evaluation 47

Question Step Answer

What is the longest member and how long does it
take?

Look at the top-most scope method m_borrow_first$
fooopensqu0closesqu$ (1911ms)

How much time is overall spent in the SMT solver? Look at the yellow area and the hover info 1427ms (75%)

How many SMT queries are there overall? Look at the hover info 749

How much time is spent for merging state? Look at the red area and the hover info 326ms (108 merges)

How much time is spent for state consolidation? Look at the hover info 894ms (3 consolidations)

How much time is spent for removing permissions? Look at the hover info 0ms (0 removals)

It looks like the execution contains many branches;
how many branch points exist?

Enter `root.sum((n) => Math.max(0,
n.successors.length - 1) + Math.max(0,
n.interLevelSuccessors.length - 1)) +
1` in JS CLI

82

How many paths are there? Enter `root.mapAfter((n,
successorsResult,
interLevelSuccessorsResult,
subDagResult) => { if (subDagResult !=
null) { return subDagResult} if
(successorsResult.length > 0) { return
successorsResult.reduce((a,b) => a +
b);} if
(interLevelSuccessorsResult.length > 0)
{ return
interLevelSuccessorsResult.reduce((a,b)
=> a + b);} return 1;}, false)` in JS CLI

606135

How many statements are there? Enter `root.sum((n) =>
n.label.startsWith("execute") ? 1 : 0)`
in JS CLI

238

How many SMT queries are on the longest path? Enter `var smtCount = 0;
root.transformLongestPath((n) =>
n.getMaxPathValue((n) => [n.durationMs,
true]), (n) => { if (n.isSmtQuery)
{ smtCount++; } return n; }); smtCount`
in JS console

566

How much time is spent in SMT solver on the longest
path?

Enter `var smtDuration = 0;
root.transformLongestPath((n) =>
n.getMaxPathValue((n) => [n.durationMs,
true]), (n) => { if (n.isSmtQuery)
{ smtDuration+=n.durationMs; } return
n; }); smtDuration` in JS conosle

1066ms

What is the distribution of the durations on the
longest path?

Enter `root.transformLongestPath((n) =>
n.getMaxPathValue((n) => [n.durationMs,
true]), (n) => { n.weight = 1; return
n; });` to select longest path, enter `root.redraw()`,
and enter `return d.durationMs;` as histogram
function in the settings popup

2 state consolidations stand out (having an executino
time of 232 resp. 376ms)

What scope has the longest duration on the longest
path (beside the method itself)?

Enter `var maxDuration = 0;
root.transformLongestPath((n) =>
n.getMaxPathValue((n) => [n.durationMs,
true]), (n) => { if (!
n.label.startsWith("method m_borrow”)
&& n.durationMs > maxDuration)
{ maxDuration=n.durationMs; } return n;
}); maxDuration` in JS console

496ms: execute package
acc(DeadBorrowToek$(-1), write) && …

What is the longest duration of an SMT query on the
longest path?

Enter `var maxSmtDuration = 0;
root.transformLongestPath((n) =>
n.getMaxPathValue((n) => [n.durationMs,
true]), (n) => { if (n.isSmtQuery &&
n.durationMs > maxSmtDuration)
{ maxSmtDuration=n.durationMs; } return
n; }); maxSmtDuration` in JS console

7ms

What is the longest duration of an SMT query in the
entire method?

Enter `var maxSmtDuration = 0;
root.eachBefore((n) => { if
(n.isSmtQuery && n.durationMs >
maxSmtDuration)
{ maxSmtDuration=n.durationMs; }});
maxSmtDuration` in JS console

7ms

Figure 4.3: Page 1 of the profiling minutes for the symbolic execution of the Viper
program borrow first.rs.vpr

48 4. Evaluation

Question Step Answer

Does the flamegraph reveal some interesting insights
for the longest path?

Compare the flamegraphs obtained via `return
t.isSmtQuery ? t.durationMs : null;` and
`return
t.getValue(“data.additionalData.smtStat
istics.num-allocs-delta”);` entered as the
histogram function in the settings popup

Using only durations of SMT queries changes almost
nothing compared to `return t.durationMs;`;
same with using the SMT statistical parameter “num-
allocs-delta”

How does the “decisions” SMT statistics evolve on
the longest path?

Set the histogram function to `return
t.getValue(“data.additionalData.smtStat
istics.decisions");`

The second state consolidation dominates even
more, but this is most likely due to the increasing
decisions value

How does the “propagations-delta” SMT statistics
evolve on the longest path?

Set the histogram function to `return
t.getValue(“data.additionalData.smtStat
istics.propagations-delta");`

The same two state consolidations stand out (144
resp. 655)

How does the “quant-instantiations-delta” SMT
statistics evolve on the longest path?

Set the histogram function to `return
t.getValue("data.additionalData.smtStat
istics.quant-instantiations-delta");`

There are around 6 nodes with values between 19
and 25

How does the “conflicts-delta” SMT statistics evolve
on the longest path?

Set the histogram function to `return
t.getValue("data.additionalData.smtStat
istics. conflicts-delta");`

There are around 7 significant statements, however
only the second state consolidation remains
significant. The values for these significant stmts are
between 5 and 20 (the entire method has 128)

What is the execution time of the longest path? Enter `root.subDag.getMaxPathValue((n) =>
[n.durationMs, true])` in JS console

1436ms

Figure 4.4: Page 2 of the profiling minutes for the symbolic execution of the Viper
program borrow first.rs.vpr

Similarly to the previous Viper program, the effects of enabling more complex
exhales on the symbolic execution have been evaluated as well: The symbolic
execution time of the longest method more than doubles to 9s. In addition, the
time spent in the SMT solver significantly increases to 84% of the method’s total
execution time. The average duration of an SMT query is 4.4ms and the maximal
duration decreases to 27ms. However, the number of SMT queries increases by
44%. Considering the conflicts-delta parameter of the SMT statistics, the
aggregated value for the entire method increases from 373 to over 9400. This
indicates that the SMT solver’s search space considerably increases [19].

RSLSpinlock.sil Taken from the Relaxed Separation Logic paper [39], RSLSpin-
lock is a hand-encoded Viper program from the paper’s figure 7. Knüsel has found
a matching loop by manual inspection of Z3’s log. Furthermore, he was able to
support his claim with the Axiom Profiler [6]. The problem of matching loops is
that the SMT solver does not terminate: It is able to instantiate axiom after ax-
iom, therefore it looks like the SMT solver progresses. However, the SMT solver
recursively instantiates the same axioms. Detecting such instances of recursive
behavior is non-trivial and even the Axiom Profiler can only hint at matching loops
without absolute certainty.

Knowing that the verification can get stuck in the SMT solver, a timeout of 1000s
was used for running Silicon. This timeout results in an exception that will be
thrown by Silicon after 1000s. Although the resulting symbolic execution log will
be incomplete, the Visualizer is able to process it (as seen in section 3.2).

Profiling the resulting symbolic execution log (figure 4.7) shows that only 2.2% of
the entire verification’s duration is spent in the SMT solver, somehow contradicting
the claim that the SMT solver gets stuck in a recursive loop. Only checks to find

4.2. Visualizer Evaluation 49

Question Step Answer

What is the longest member and how long does it
take?

Look at the top-most scope method m_Knuth_shuffle$
$knuth_shuffle$opensqu0closesqu$
(4432ms)

How much time is overall spent in the SMT solver? Look at the yellow area and the hover info 2876ms (65%)

How many SMT queries are there overall? Look at the hover info 1191

How much time is spent for merging state? Look at the red area and the hover info 2802ms (63%) (210 merges)

How much time is spent for state consolidation? Look at the hover info 0ms (0 consolidations)

How much time is spent for removing permissions? Look at the hover info 0ms (0 removals)

It looks like the execution contains many branches;
How many branch points exist?

Enter `root.sum((n) => Math.max(0,
n.successors.length - 1) + Math.max(0,
n.interLevelSuccessors.length - 1)) +
1` in JS CLI

29

How many paths are there? Enter `root.mapAfter((n,
successorsResult,
interLevelSuccessorsResult,
subDagResult) => { if (subDagResult !=
null) { return subDagResult} if
(successorsResult.length > 0) { return
successorsResult.reduce((a,b) => a +
b);} if
(interLevelSuccessorsResult.length > 0)
{ return
interLevelSuccessorsResult.reduce((a,b)
=> a + b);} return 1;}, false)` in JS CLI

1799

How many statements are there? Enter `root.sum((n) =>
n.label.startsWith("execute") ? 1 : 0)`
in JS CLI

328

How many SMT queries are on the longest path? Enter `var smtCount = 0;
root.transformLongestPath((n) =>
n.getMaxPathValue((n) => [n.durationMs,
true]), (n) => { if (n.isSmtQuery)
{ smtCount++; } return n; }); smtCount`
in JS console

977

How much time is spent in SMT solver on longest
path?

Enter `var smtDuration = 0;
root.transformLongestPath((n) =>
n.getMaxPathValue((n) => [n.durationMs,
true]), (n) => { if (n.isSmtQuery)
{ smtDuration+=n.durationMs; } return
n; }); smtDuration` in JS conosle

2426ms (84% of the total SMT solver’s execution
time)

What is the distribution of the durations on longest
path?

Enter `root.transformLongestPath((n) =>
n.getMaxPathValue((n) => [n.durationMs,
true]), (n) => { n.weight = 1; return
n; });` to select longest path, enter
`root.redraw()`, and choose `return
d.durationMs;` for histogram

There are 3 statements standing out:
“execute inhale acc(usize(_8), write)
&& … “(244ms)
“execute unfold acc(usize(_36.tuple_0))”
(375ms)
“execute unfold acc(usize(_36.tuple_1))”
(635ms)
Some strange observations: `evaluate 0 <=
self.val_int` takes long (201ms) but has only
really short subscopes
`execute unfold acc(usize(_36.tuple_1))`
is even more extreme, only 4% are shown -> very
good visible in flamegraph but not so match in path
view

What scope has the longest duration on the longest
path (beside the method itself)?

Enter `var maxDuration = 0;
root.transformLongestPath((n) =>
n.getMaxPathValue((n) => [n.durationMs,
true]), (n) => { if (!
n.label.startsWith("method m_Knuth_”)
&& n.durationMs > maxDuration)
{ maxDuration=n.durationMs; } return n;
}); maxDuration` in JS console

635ms

What is the longest duration of an SMT query on the
longest path?

Enter `var maxSmtDuration = 0;
root.transformLongestPath((n) =>
n.getMaxPathValue((n) => [n.durationMs,
true]), (n) => { if (n.isSmtQuery &&
n.durationMs > maxSmtDuration)
{ maxSmtDuration=n.durationMs; } return
n; }); maxSmtDuration` in JS console

prover assert _20@34@01 == $t@267@01
(125ms)

What is the longest duration of an SMT query in the
entire method?

Enter `var maxSmtDuration = 0;
root.eachBefore((n) => { if
(n.isSmtQuery && n.durationMs >
maxSmtDuration)
{ maxSmtDuration=n.durationMs; }});
maxSmtDuration` in JS console

125ms

Figure 4.5: Page 1 of the profiling minutes for the symbolic execution of the Viper
program Knuth shuffle.rs.vpr

50 4. Evaluation

Question Step Answer

What is the longest duration of an SMT query in the
entire method except “prover assert
_20@34@01 == $t@267@01”?

Enter `var maxSmtDuration = 0;
root.eachBefore((n) => { if
(n.isSmtQuery && n.label !== “prover
assert _20@34@01 == $t@267@01” &&
n.durationMs > maxSmtDuration)
{ maxSmtDuration=n.durationMs; }});
maxSmtDuration` in JS console

25ms

Do the SMT statistics show some interesting insights
for the longest path?

Compare the histograms obtained via `return
t.isSmtQuery ? t.durationMs : null;` and
`return
t.getValue(“data.additionalData.smtStat
istics.num-allocs-delta”);` entered in the
settings popup

Only the first two above mentioned statements stand
out, because due to the strange observation in the
third significant statement. After switching to the
“num-allocs-delta” SMT statistics, only the first
significant statement remains

How does the “propagations-delta” SMT statistics
evolve on the longest path?

Set the histogram function to `return
t.getValue(“data.additionalData.smtStat
istics.propagations-delta");`

Only first significant statement from above remains

How does the “quant-instantiations-delta” SMT
statistics evolve on the longest path?

Set the histogram function to `return
t.getValue(“data.additionalData.smtStat
istics.quant-instantiations-delta");`

2 statements with values above 20 dominate:
“execute assert ref$m_Knuth_shuffle$
$VecWrapper$opensqu0closesqu$
$_beg_$__TYPARAM__T__$_end_$inv__TY
__ref$m_Knuth_shuffle$
$VecWrapper$opensqu0closesqu$
$_beg_$__TYPARAM__T__$_end_$$bool$
(_28) && (usize$inv__$TY$__usize$$bool$
(_29) && usize$inv__$TY$__usize$$bool$
(_30))” (value: 50)
“execute inhale m_Knuth_shuffle$$
$opencur$$opencur$impl$closecur$
$closecur$$opensqu1closesqu$$
lenopensqu0closesqu$__$TY$__m_Knuth
_shuffle$
$VecWrapper$opensqu0closesqu$
$_beg_$__TYPARAM__T__$_end_$$int$
(old[l24](_28.val_ref)) == old[l24]
(m_Knuth_shuffle$$$opencur$
$opencur$impl$closecur$$closecur$
$opensqu$1$closesqu$$
lenopensqu0closesqu$__$TY$__m_Knuth
_shuffle$
$VecWrapper$opensqu0closesqu$
$_beg_$__TYPARAM__T__$_end_$$int$
(_28.val_ref))” (value 21)

How does the “conflicts-delta” SMT statistics evolve
on the longest path?

Set the histogram function to `return
t.getValue("data.additionalData.smtStat
istics. conflicts-delta");`

3 statements stand out with values above 30:
“execute unfold acc(usize(_30))” (value 45)
“execute fold acc(usize(_31))” (value 33)
“execute fold acc(usize(_6), read$
())” (value 36)
The entire method has a value of 373

What is the execution time of the longest path? Enter `root.subDag.getMaxPathValue((n) =>
[n.durationMs, true])` in JS console

3852ms

Figure 4.6: Page 2 of the profiling minutes for the symbolic execution of the Viper
program Knuth shuffle.rs.vpr

assertion violations have so far been logged as interactions with the SMT solver.
The SMT solver internally keeps a stack of assumptions that is used to perform
these checks. Therefore, there are further interactions with the SMT solver to push
or pop assumptions. These interactions have not been logged so far, because it
was assumed that all heavy work is only performed when checking for satisfiability.
However, the SMT solver can in principle already perform work when additional
assumptions are pushed onto its stack. Knüsel has noticed that matching loops
occur while pushing assumptions to the SMT solver, which is unexpected.

To make the logger collect durations for these interactions with the SMT solver
as well, a comment record for each push and pop operation has been added
for this Viper program. Rerunning verification as well as profiling shows that the
last logged operation is a push, taking up 70% of the method’s execution time.
Considering the histogram for the duration-wise longest path shows that the last
push is by far lasting the longest, accounting for over 99.9% of the duration of all

4.2. Visualizer Evaluation 51

Question Step Answer

What is the longest member and how long does it
take?

Look at the top-most scope “method lock” (999026ms)

How much time is overall spent in the SMT solver? Look at the yellow area and the hover info 22521ms (2.2%)

How many SMT queries are there overall? Look at the hover info 196

How much time is spent for merging state? Look at the red area and the hover info 0ms (1 merge)

How much time is spent for state consolidation? Look at the hover info 0ms (1 consolidation)

How much time is spent for removing permissions? Look at the hover info 21669ms (39 removals)

On the level of statements, one large scope stands
out, which one is it?

Look at the largest scope “execute inhale (forall r$65: Ref ::
{ (r$65 in tmpRefSet$0) } (r$65 in
tmpRefSet$0) ==> acc(AcqConjunct((!true
? down(r$65) : r$65), 1),
perm(AcqConjunct(temp(r$65),
1))))” (971996ms)

Why does it take 97% of the method’s execution
time?

Shift click on this scope The execute scope will appear as the only scope

What happens while symbolically executing this
statement?

Click on the “execute” scope One sub-scope “produce” with the same expression
as in “execute inhale” appears, taking the same
amount of time

What happens while symbolically executing the
production of the mentioned expression?

Click on the “produce” scope Nothing happens because the log does not contain
any subscopes

Does the Z3 statistic about quantified instantiations
provide any indication?

Enter `root.transformLongestPath((n) =>
n.getMaxPathValue((n) => [n.durationMs,
true]), (n) => { n.weight = 1; return
n; });` to select longest path, then set histogram
function to `return
t.getValue(“data.additionalData.smtStat
istics.quant-instantiations-delta");` in
the settings popup

No trend becomes visible, e.g. that this property
increases along the selected path

What is the execution time of the longest path? Enter `root.subDag.getMaxPathValue((n) =>
[n.durationMs, true])` in JS console

998719ms

How many branch points exist? Enter `root.sum((n) => Math.max(0,
n.successors.length - 1) + Math.max(0,
n.interLevelSuccessors.length - 1)) +
1` in JS CLI

172

How many statements are there? Enter `root.sum((n) =>
n.label.startsWith("execute") ? 1 : 0)`
in JS CLI

101

How many SMT queries are on the longest path? Enter `var smtCount = 0;
root.transformLongestPath((n) =>
n.getMaxPathValue((n) => [n.durationMs,
true]), (n) => { if (n.isSmtQuery)
{ smtCount++; } return n; }); smtCount`
in JS console

185

How much time is spent in SMT solver on the longest
path?

Enter `var smtDuration = 0;
root.transformLongestPath((n) =>
n.getMaxPathValue((n) => [n.durationMs,
true]), (n) => { if (n.isSmtQuery)
{ smtDuration+=n.durationMs; } return
n; }); smtDuration` in JS conosle

22456ms

What scope has the longest duration on the longest
path (beside the method itself)?

Enter `var maxDuration = 0;
root.transformLongestPath((n) =>
n.getMaxPathValue((n) => [n.durationMs,
true]), (n) => { if (!
n.label.startsWith("method lock") &&
n.durationMs > maxDuration)
{ maxDuration=n.durationMs; } return n;
}); maxDuration` in JS console

971996ms

What is the longest duration of an SMT query on the
longest path?

Enter `var maxSmtDuration = 0;
root.transformLongestPath((n) =>
n.getMaxPathValue((n) => [n.durationMs,
true]), (n) => { if (n.isSmtQuery &&
n.durationMs > maxSmtDuration)
{ maxSmtDuration=n.durationMs; } return
n; }); maxSmtDuration` in JS console

1523ms

What is the longest duration of an SMT query in the
entire method?

Enter `var maxSmtDuration = 0;
root.eachBefore((n) => { if
(n.isSmtQuery && n.durationMs >
maxSmtDuration)
{ maxSmtDuration=n.durationMs; }});
maxSmtDuration` in JS console

1523ms

Figure 4.7: Profiling minutes for the symbolic execution of the Viper program
RSLSpinlock.sil

52 4. Evaluation

push operations together. Interestingly, reducing the timeout to 100s leads to a
symbolic execution, in which the long running push operation occurs two state-
ments earlier. This is not directly resulting from the lower timeout, because the
statement takes over 69s with a timeout of 100s (and will then be killed) and suc-
cessfully completes after only 78ms when the timeout is set to 1000s. Although
this behavior looks non-deterministic, repeated verification leads to similar results
for a given timeout configuration.

This example nicely shows that the logger can easily be extended, either to adapt
it to non-terminating verifications or to increase the amount of details in the log.
However, selecting additional log records is very simple when knowing that push-
ing assumptions onto the stack can take long. This information is normally not
available. Nevertheless, missing long-running steps do not remain unnoticed
thanks to the level of completeness metric provided by the Visualizer. Adding
more records, rerunning the symbolic execution, and using the Visualizer to fur-
ther narrowing down the missing step can quickly be done. Thus, the Visualizer
speeds up the process of finding suspicious operations (in terms of their exe-
cution duration), even if different input programs require different techniques or
logger additions.

5
Conclusions

The new logger implementation for Silicon heavily simplifies recording a symbolic
execution. It does not only produce a log format that is suitable for later pro-
cessing but also better preserves the relationships of individual log records, in
comparison to previous work. Furthermore, the log format is generic, meaning
that it is not specifically targeted at Silicon. Other symbolic execution frameworks
should also be able to produce logs in the same format and hence could reuse
the post-processing pipeline. The simplified logger implementation, together with
the unit test infrastructure, eases maintenance and should ensure that the logger
can easily be adapted to upcoming changes of Silicon. Lastly, the logger’s inte-
gration into ViperServer allows various client applications to access the produced
log. In comparison to just letting Silicon write a log file to disk, this increases the
flexibility of the overall Viper architecture. In particular, it allows plugins for Vi-
sual Studio Code [31] to verify programs using Silicon and access the resulting
symbolic execution logs. This enables further projects to build upon the symbolic
execution log or to integrate the Visualizer as a plugin into Visual Studio Code
and ship it together with the Viper IDE [25].

The Visualizer performs offline processing of a symbolic execution log. Part of
the processing pipeline is an intermediate data representation called Scopes.
Scopes can be exported so that parts of the processing can be skipped when
visualizing the same log multiple times. The last pipeline’s step creates an SVG

from the scopes. It uses the JavaScript library D3.js [9] as well as D3-DAG [11],
which adds support for DAGs to D3.js. However, D3-DAG initially only supported
drawing circles for each node in a data structure. Therefore, this thesis con-
tributed several new algorithms to D3-DAG, that add support for rectangles as
well as for drawing them with different relative heights. These contributions have
been part of D3-DAG since version 0.3.0 [2] and an interactive example [1] allows

53

54 5. Conclusions

to experiment with the various configuration options.

The Visualizer was evaluated on several Viper programs. The gained insights
have steered the user in the same direction as a manual inspection concluded.
Hence, it speeds up the process of finding performance culprits. In fact, the eval-
uation has shown that using the new SymbEx Logger together with the Visualizer
for profiling the symbolic execution of a Viper program reduces the time to find
performance culprits from a couple of days to just a few hours compared to a man-
ual inspection. However, as the evaluation has also shown, the initial log output
is often not sufficient and additional log records need to be added in order to find
the responsible operation in the symbolic execution. Fortunately, these additions
correspond to simple and short code segments that have to be inserted into Sili-
con. After a potential culprit was identified, further analyses are necessary to find
and fix problems. These steps are typically very problem-specific. For example,
multiple symbolic executions are performed each using a slightly modified version
of the input program. Thus, the effects of the modifications on the symbolic exe-
cution, including the SMT solver, can be evaluated. Although the Visualizer does
not assist in creating these modifications, it speeds up the process of evaluating
the resulting symbolic execution logs.

6
Future Work

In this chapter, we briefly discuss some topics that could be explored in future
work. Firstly, the performance limitations of the new SymbEx Logger as well as
the Visualizer could be addressed. This mainly increases the maximal symbolic
execution time of Viper programs that can be profiled.

Secondly, additional Viper programs could be evaluated. This might reveal not
only similarities according to which these programs could be categorized but also
visualization features that are currently missing in the Visualizer. Besides adding
new features, the design of the existing visualization features could be improved,
especially in terms of readability of labels in presence of many rectangles. Improv-
ing the design might include switching to a different layout framework, because
the current choice turned out to require a lot of work to achieve a desired place-
ment of rectangles.

Next, the current Visualizer analyzes SMT queries and is capable of showing the
distribution along a path based on their duration or a statistical parameter from
the SMT solver. However, the similarity of SMT queries is not evaluated at all. We
estimate that not only SMT queries on the same path but also on different paths
might expose similarities. Identifying almost identical SMT queries might be a
good indicator for repeated work by the symbolic execution engine. The identified
queries might therefore be a performance culprit. Furthermore, analyzing the
differing parts of two SMT queries that are almost identical but have significantly
different execution times might provide insights about why one of them takes so
much longer.

Lastly, Bornholt and Torlak [8] have explored the approach of calculating a score
for each symbolic execution step in their symbolic profiler, SymPro. The score in-
dicates the potential of the step being a performance culprit and is based on five
different metrics. Based on the score for each symbolic execution step, SymPro

55

56 6. Future Work

compiles a list with the highest ranking steps. A similar approach might be a great
addition to the Visualizer. The score allows to give weight to different metrics and
could provide additional insights. The most difficult part of implementing such
a technique in the Visualizer is the definition of the metrics that should be con-
sidered. Once defined, the function calculating the score for a given scope can
simply be used as the function computing the rectangles’ height in the settings
popup (see section 3.6). Thus, the rectangles’ height will no longer be chosen
according to their duration (today’s default) but to their score. The highest ranked
scope is therefore as visible as the scope with the longest duration today. Be-
sides defining such a function, no changes to the Visualizer are required. In
particular, the Visualizer already allows to specify custom functions to calculate
the rectangles’ height as well as the values that are used in the histogram and
flamegraph.

A
Technical Details

A.1 SymbEx Logger Configuration

By default, Silicon does not collect a symbolic execution log, because, as eval-
uated in section 4.1, enabling the SymbEx Logger increases the verification’s
execution time on average by 61%. Therefore, two command line arguments
have been added to configure the creation of a symbolic execution log:

writeLogFile Specifies that symbolic execution logs should be gathered and
will create a report of type ExecutionTraceReport, containing the log, when the
verification has ended.

logConfig Expects a path to a log configuration file. The configuration file speci-
fies not only which records should be included or ignored in the log but also which
additional data, such as heap information or path conditions, should be logged.

A.2 SymbEx Logger Unit Tests

Simply comparing the symbolic execution log of a Viper program to an expected
log is not robust at all. The test will already fail when the logger is extended to
log a single additional scope, as done for example in section 4.1. Therefore, the
comparison is weakened to accept the actual symbolic execution log if it contains
at least the same content as the expected log.

Consider the short Viper program in listing A.1. This program is symbolically ex-
ecuted with Silicon as part of the unit test. The resulting symbolic execution log
is then converted to a simple text-based representation, as seen in listing A.2.
The text-based representation lists data and branching records with a certain

57

58 A. Technical Details

Listing A.1: Short Viper program to test the resulting symbolic execution log.
method test(b: Bool, x: Ref)
{

var a: Int
inhale (b ? acc(x.f) : acc(x.g))

5 a := 1
}

Listing A.2: Text-representation of the symbolic execution log of the Viper
program in listing A.1. Note that line 6 uses cond as an abbreviation for
(b ? acc(x.f, write) : acc(x.g, write)).
method test

WellformednessCheck null
execute var a: Int
execute inhale (b ? acc(x.f, write) : acc(x.g, write))

5 produce (b ? acc(x.f, write) : acc(x.g, write))
conditional expression cond

evaluate b
decider assert !(b@82@01)

prover assert !(b@82@01)
10 decider assert b@82@01

prover assert b@82@01
Branch b@82@01:

comment: Reachable
decider assume b@82@01

15 produce acc(x.f, write)
evaluate x
evaluate write
comment Merge

single merge <= x@83@01.f -> $t@85@01 # W
20 decider assume x@83@01 != Null

execute a := 1
evaluate 1

Branch !(b@82@01):
comment: Reachable

25 decider assume !(b@82@01)
produce acc(x.g, write)

evaluate x
evaluate write
comment Merge

30 single merge <= x@83@01.g -> $t@86@01 # W
decider assume x@83@01 != Null

execute a := 1
evaluate 1

A.2. SymbEx Logger Unit Tests 59

Listing A.3: Text-representation of the expected symbolic execution log of the
Viper program in listing A.1.
method test

execute var a: Int
execute inhale (b ? acc(x.f, write) : acc(x.g, write))

Branch b@82@01:
5 comment: Reachable

execute a := 1
Branch !(b@82@01):

comment: Reachable
execute a := 1

indentation level. Open and close scope records are used to compute the inden-
tation level but otherwise do not appear in the text-based representation. The
text-based representation is very similar to how the old SymbEx Logger collected
records. In fact, it suffers from the same problem as shown in section 2.1: The
executions of the assignment statement a := 1 appear on the lines 21 and 32 in
listing A.2. They are more indented than the execution of the inhale statement
on line 4. Therefore, it looks like the executions of the assignment statement are
sub-steps of executing the inhale statement. As discussed, such a represen-
tation of the symbolic execution would not be suitable as input to the Visualizer
and motivated the creation of the new SymbEx Logger. Nevertheless, this repre-
sentation can be used to compare two symbolic execution logs. Although some
information is lost during the conversion to the text-based representation, it is a
compact and human-readable representation of the symbolic execution log. This
is especially handy when a unit test fails and the differences need to be analyzed.

To improve the robustness and be resilient also to the removal of some records,
the expected symbolic execution log only contains a subset of the currently logged
records. The subset consists of records representing Viper members, i.e. pro-
cedures and predicates, executions of statements, branching and joining. List-
ing A.3 shows the text-representation of the expected symbolic execution log for
the same Viper program (listing A.1). For example, evaluations or interactions
with the SMT solver, i.e. prover assert entries, are not part of the expected
symbolic execution log. We estimate that the selected subset is a good tradeoff
between robustness and detecting regressions.

The comparison of an actual and expected symbolic execution log is currently
done as follows: Each line in the text-representation of the actual log has to
be more indented than the corresponding line in the expected output if it exists.
This is a simplification of checking that a record was logged in the correct scope.
Therefore, future work could improve the check by comparing the stack of open
scopes at each line in the text-representation of the actual log against the corre-
sponding stack in the expected symbolic execution log.

B
Scope Filtering Analysis

This appendix gives an intuition to why the scope filtering algorithm only requires
two iterations and performing a third iteration would not result in any further
change to the data structure.

Assume an arbitrary scope data structure with some scopes being marked for re-
moval. By applying one of the rules presented in subsection 3.5.1, each marked
scope can be removed in the first iteration, if structurally possible. Only marked
scopes that are the root of a sub-DAG and have at the same time at least two suc-
cessors cannot be removed in the first iteration. Figure B.1 shows a scope data
structure that corresponds to this special situation, because scope 3 is marked,
has two successors, and is the root of the sub-DAG formed by scopes 3, 5, and 6.

Due to the fact that mapAfter is used in each iteration to traverse the scopes,
scopes will be visited in post-order depth-first manner. Hence, when visiting a
scope x in the first iteration corresponding to the special situation, its successors
have already been visited. Therefore, only its parent scope y or predecessors
can change between visiting x during the first iteration and the start of the second
iteration.

0 3

5

4

6

Figure B.1: Scope data structure that does not permit the removal of scope 3.

61

62 B. Scope Filtering Analysis

One can now consider four different situations for the second iteration:

1. x lost its parent scope and got instead predecessors. As a consequence, x
is no longer classified as a special situation, because it is no longer root of
a sub-scope. x can be removed in the second iteration by applying the rule
of case 2 (as defined in subsection 3.5.1).

2. x got a new parent scope z compared to the initial data structure and z
is marked. This case can never occur, because it requires that z had a
sub-scope in the original data structure containing y and x. Hence, only
rules 3 and 4 are applicable to y and z. These two rules do not include
any special situation that does prevent the removal of a scope. That is why
the existence of z after the first iteration implies that z is not marked, which
corresponds to the next situation.

3. x got a new parent scope z compared to the initial data structure and z is
not marked. Thus, x still corresponds to the special situation and no change
occurs. Any other marked scope has to change in the entire data structure
(i.e. correspond to the first situation) in order that a second iteration is even
necessary.

4. x still has the same parent scope y. This corresponds to the previous
situation and no change occurs.

In conclusion, only the first situation results in a change to the data structure in the
second iteration. By application of rule 2, x will be removed in the second iteration.
Because x did initially correspond to the special situation (otherwise it would have
already been removed in the first iteration), x does only have successors and no
sub-scope.

In the third iteration, it is guaranteed that no change to the structure happens. The
only candidate scopes that could be removed have to be marked, correspond to
the special situation, and have a parent scope that has changed in the second
iteration. However, such candidate scopes do not exist, because the second and
third condition cannot simultaneously be met: In order for the parent scope to
have changed in the second iteration, the old parent scope itself had to corre-
spond to the special situation. By definition of the special situation, such a scope
cannot have a sub-scope, hence it cannot have been the parent scope of the
candidate scope. Thus, no scope can be removed in the third or any subsequent
iteration.

C
Profiling Minutes

In addition to subsection 4.2.2, this appendix provides profiling minutes and con-
clusions for the symbolic execution of further Viper programs.

Slow.sil Moritz Knüsel has created two versions of the same Viper program
that only syntactically differ in a macro. However, the verification’s duration is
significantly influenced by this macro. Slow.sil takes more than 15s to symboli-
cally execute. In contrast, the faster variant verifies in less than 9s. Figure C.1
shows the profiling minutes for the Viper program slow.sil. The symbolic execution
spends 88% of the execution time in the SMT solver. Continuously unfolding the
duration-wise longest scope reveals an invocation of the removePermissions

algorithm taking 1s, which consists of two significant SMT queries of each 500ms.
An individual invocation of the algorithm and the SMT queries are rather short.
However, the sum of all removePermissions invocations and SMT queries sig-
nificantly influence the overall method’s symbolic execution time.

Interestingly, the user’s attention is not steered by the Visualizer towards the men-
tioned macro. Therefore, the logger was extended to include data about the path
conditions, state, and heap. After rerunning the symbolic execution of slow.sil
and the faster variant of it, a second analysis has been performed. Additional
metrics have been evaluated in direct comparison to the faster variant, as seen
in figure C.2.

In conclusions, the faster variant has 27% less SMT queries. When considering
only the WellformednessCheck scope, in which the macro is used, the faster
variant also has 28% less entries in the path conditions. The number of store
entries is roughly the same for both program variants when considering the entire
symbolic execution as well as just the WellformednessCheck. However, looking
at the maximal sum of ”oldHeap” entries on any path of the symbolic execution,

63

64 C. Profiling Minutes

Question Step Answer

What member takes the longest? Load genericNodes.json Method “link_DAG__fnext” takes over 15s

Why does the method take so long? Select the method “link_DAG__fnext” “WellformednessCheck” uses most time (over
15s)

What part of Wellformedness Check takes so long? Click on the “WellformednessCheck” node Last postcondition in “WellformednessCheck”
takes up 89% of the time

How much time is spent in SMT solver? Hover over the last postcondition 14 of 15.7s with 152 queries

Is there some pattern among SMT queries? Set `SHOW_AGGREGATED_HISTOGRAM` to false

Enter `root.transformLongestPath((n) =>
n.getMaxPathValue(true, (currentNode)
=> currentNode.durationMs), (n) =>
{n.weight = 1; return n;})` and
`root.redraw()` in JS console

Some queries reach high “num-allocs-delta” values
and queries with large values show some increasing
trend. The maximum is at 292671

Are there other interesting SMT solver statistical
parameters?

Look at JSON data to see all available keys

Choose the parameter “max-memory” An increasing trend is shown

Choose the parameter “quant-instantiations-delta” The larger values appear at the same place and with
similar shape as when selecting “num-allocs-delta”

Choose the parameter “mk-bool-var-delta” The larger values appear at the same place and with
similar shape as when selecting “num-allocs-delta”

What SMT query contributes the most in terms of
“num-allocs-delta”, “quant-instantiations-delta”, and
“mk-bool-var-delta”?

Hover over tallest bar in histogram “prover assert QA r :: inv@108@01(r) in
g@3@01 ==> 1/2 - pTakenn@109@01(r) ==
Z”

Is there a large node contributing? Follow the longest path and select the tallest node Many joins happen, at the end there’s
“removePermissions” with 1s having 2 assertions
of each 500ms (similar to the above SMT query):
“decider assert QA r :: inv@161@01(r)
in g@3@01 ==> 1/2 - pTaken@162@01(r) ==
Z”
“decider assert (from@4@01 == from@4@01
? W : Z) - pTaken@163@01(from@4@01) ==
Z”

Figure C.1: Profiling minutes for analyzing the symbolic execution of the Viper
program Slow.sil

slow.sil has twice as many as the faster variant. This indicates that the syntactical
difference of the macro results in a different symbolic heap for the two programs.
In addition, the symbolic heap difference results in a different number of SMT

queries that are issued by Silicon.

RelAcqDblMsgPassSplit.sil As seen in the profiling minutes (figures C.3 and
C.4), a relative low amount of time is spent in the SMT solver in comparison to
all other analyzed Viper programs. The verification of the considered method is
very short. Nevertheless, the number of branch points as well as resulting paths
is very high, especially in the ratio to the number of statements. However, the
duration-wise longest path still contributes 60% to the total execution time.

AVLTree.nokeys.sil Figures C.5 and C.6 contain the profiling minutes for the
Viper program AVLTree.nokeys.sil. The symbolic execution performs many but
small SMT queries, that last on average only 2.7ms. Interestingly, there is a
decider assert taking over 1.2s. However, during the decider assert only
4ms are spent in the SMT solver. Looking at Silicon’s source code reveals that
the procedure deciderAssert first checks whether a term is known to be true
before querying the SMT solver. Hence, iterating over all assumptions in the path
conditions takes 1.2s, indicating that the path conditions are very complex. The
number of branch points as well as the huge amount of paths point in the same di-

65

Question Step Answer

What’s the number of branches in the
“link_DAG__fnext” method?

Execute `root.getSubDagWidth()` in the JS
console

14

What’s the result for the same command in fast.sil? Execute `root.getSubDagWidth()` in the JS
console

14

How many “decider assert” nodes exist in the
method?

Execute `root.sum((n) =>
n.label.startsWith("decider assert”)?
1:0)` in the JS console

182

What is the result for the same command in fast.sil? Execute `root.sum((n) =>
n.label.startsWith("decider assert”)?
1:0)` in the JS console

132 (27% less than in slow.sil)

Can a similar difference be observed in terms of
“removePermission” nodes?

Execute `root.sum((n) =>
n.label.startsWith("comment
removePermissions")?1:0)` in the JS console

25

What is the result for the same command in fast.sil? Execute `root.sum((n) =>
n.label.startsWith("comment
removePermissions")?1:0)` in the JS console

25

Why does slow.sil have more SMT solver queries
while having the same amount of
“removePermissions” nodes?

Add “store”, “oldHeap”, and “pcs” to log and manually
save report, because ViperServer cannot handle the
report size; Look at the “WellformednessCheck”
node

“store” has 3 entries: “g”, “from”, and “to”
“pcs” has 25 entries

Add “store”, “oldHeap”, and “pcs” to log and manually
save report, because ViperServer cannot handle the
report size; Look at the “WellformednessCheck”
node

“store” has 3 entries: “g”, “from”, and “to”
“pcs” has 18 entries (28% less than in slow.sil)

Do the path conditions explode? Shift click on the “WellformednessCheck” node
and execute `root.getMaxPathValue(false,
(n) => { if (n.data == null) { return
0; } if (n.data.additionalData == null)
{ return 0; } if
(n.data.additionalData.get("pcs") ==
null) { return 0; } return
n.data.additionalData.get("pcs").length
; })`

59539 (60218 when executing the same query on
the method’s node)

What’s the result for the same command in moritz/
fast.sil?

Shift click on the “WellformednessCheck” node
and execute `root.getMaxPathValue(false,
(n) => { if (n.data == null) { return
0; } if (n.data.additionalData == null)
{ return 0; } if
(n.data.additionalData.get("pcs") ==
null) { return 0; } return
n.data.additionalData.get("pcs").length
; })`

48106 (48535 when executing the same query on
the method’s node) (19% less than in slow.sil)

Does “store” explode? Shift click on the “WellformednessCheck” node
and execute `root.getMaxPathValue(false,
(n) => { if (n.data == null) { return
0; } if (n.data.additionalData == null)
{ return 0; } if
(n.data.additionalData.get("store") ==
null) { return 0; } return
n.data.additionalData.get("store").leng
th; })`

1911 (2063 when executing the same query on the
method’s node)

What’s the result for the same command in moritz/
fast.sil?

Shift click on the “WellformednessCheck” node
and execute `root.getMaxPathValue(false,
(n) => { if (n.data == null) { return
0; } if (n.data.additionalData == null)
{ return 0; } if
(n.data.additionalData.get("store") ==
null) { return 0; } return
n.data.additionalData.get("store").leng
th; })`

1902 (2045 when executing the same query on the
method’s node)

Does “oldHeap” explode? Shift click on the “WellformednessCheck” node
and execute `root.getMaxPathValue(false,
(n) => { if (n.data == null) { return
0; } if (n.data.additionalData == null)
{ return 0; } if
(n.data.additionalData.get("oldHeap")
== null) { return 0; } return
n.data.additionalData.get("oldHeap").le
ngth; })`

1014 (1014 when executing the same query on the
method’s node)

What’s the result for the same command in moritz/
fast.sil?

Shift click on the “WellformednessCheck” node
and execute `root.getMaxPathValue(false,
(n) => { if (n.data == null) { return
0; } if (n.data.additionalData == null)
{ return 0; } if
(n.data.additionalData.get("oldHeap")
== null) { return 0; } return
n.data.additionalData.get("oldHeap").le
ngth; })`

504 (504 when executing the same query on the
method’s node)

Figure C.2: Profiling minutes for a second analysis of Slow.sil including a direct
comparison to a very similar but faster variant of the program.

66 C. Profiling Minutes

Question Step Answer

What is the longest member and how long does it
take?

Look at the top-most scope Method “thread0” (332ms)

How much time is overall spent in the SMT solver? Look at the yellow area and the hover info 146ms (43%)

How many SMT queries are there overall? Look at the hover info 85

How much time is spent for merging state? Look at the red area and the hover info 12ms (15 merges)

How much time is spent for state consolidation? Look at the hover info 0ms (0 consolidations)

How much time is spent for removing permissions? Look at the hover info 0ms (0 removals)

It looks like the execution contains many branches;
how many branch points exist?

Enter `root.sum((n) => Math.max(0,
n.successors.length - 1) + Math.max(0,
n.interLevelSuccessors.length - 1)) +
1` in JS CLI

160

How many paths are there? Enter `root.mapAfter((n,
successorsResult,
interLevelSuccessorsResult,
subDagResult) => { if (subDagResult !=
null) { return subDagResult} if
(successorsResult.length > 0) { return
successorsResult.reduce((a,b) => a +
b);} if
(interLevelSuccessorsResult.length > 0)
{ return
interLevelSuccessorsResult.reduce((a,b)
=> a + b);} return 1;}, false)` in JS CLI

1129617

How many statements are there? Enter `root.sum((n) =>
n.label.startsWith("execute") ? 1 : 0)`
in JS CLI

31

How many SMT queries are on the longest path? Enter `var smtCount = 0;
root.transformLongestPath((n) =>
n.getMaxPathValue((n) => [n.durationMs,
true]), (n) => { if (n.isSmtQuery)
{ smtCount++; } return n; }); smtCount`
in JS console

42

How much time is spent in SMT solver on longest
path?

Enter `var smtDuration = 0;
root.transformLongestPath((n) =>
n.getMaxPathValue((n) => [n.durationMs,
true]), (n) => { if (n.isSmtQuery)
{ smtDuration+=n.durationMs; } return
n; }); smtDuration` in JS conosle

68ms

What is the distribution of the durations on the
longest path?

Enter `root.transformLongestPath((n) =>
n.getMaxPathValue((n) => [n.durationMs,
true]), (n) => { n.weight = 1; return
n; });` to select the longest path, enter
`root.redraw()`, and choose `return
d.durationMs;` as the histogram function in the
settings popup

One statement stands out:
“execute v := a.val” (70ms)
It only has “evaluate a.val” as a sub-scope, which
also takes 70ms but no further subscopes are visible
in the flamegraph

What scope has the longest duration on the longest
path (beside the method itself)?

Enter `var maxDuration = 0;
root.transformLongestPath((n) =>
n.getMaxPathValue((n) => [n.durationMs,
true]), (n) => { if (!
n.label.startsWith("method thread0”) &&
n.durationMs > maxDuration)
{ maxDuration=n.durationMs; } return n;
}); maxDuration` in JS console

70ms

What is the longest duration of an SMT query on the
longest path?

Enter `var maxSmtDuration = 0;
root.transformLongestPath((n) =>
n.getMaxPathValue((n) => [n.durationMs,
true]), (n) => { if (n.isSmtQuery &&
n.durationMs > maxSmtDuration)
{ maxSmtDuration=n.durationMs; } return
n; }); maxSmtDuration` in JS console

3ms

What is the longest duration of an SMT query in the
entire method?

Enter `var maxSmtDuration = 0;
root.eachBefore((n) => { if
(n.isSmtQuery && n.durationMs >
maxSmtDuration)
{ maxSmtDuration=n.durationMs; }});
maxSmtDuration` in JS console

3ms

Figure C.3: Page 1 of the profiling minutes for analyzing the symbolic execution
of the Viper program RelAcqDblMsgPassSplit.sil

67

Question Step Answer

Does the flamegraph reveal some interesting insights
for the longest path?

Set the histogram function to `return
t.getValue(“data.additionalData.smtStat
istics.num-allocs-delta”);` in the settings
popup and analyze the flamegraph

2 different statements stand out with values above
1000:
“execute assert acc(l.init, wildcard)
&& acc(l.acq, wildcard)” (value 1400)
“execute inhale !is_ghost(a) && heap(a)
== 0 && …” (value 3355)

How does the “decisions-delta” SMT statistics evolve
on the longest path?

Set the histogram function to `return
t.getValue(“data.additionalData.smtStat
istics.decisions-delta");`

1 statement is significant with value 33:
“execute inhale !is_ghost(a) && heap(a)
== 0 && …”

How does the “propagations-delta” SMT statistics
evolve on the longest path?

Set the histogram function to `return
t.getValue(“data.additionalData.smtStat
istics.propagations-delta");`

2 statements with values above 10 stand out:
“execute assert acc(l.init, wildcard)
&& acc(l.acq, wildcard)” (value 12)
“execute inhale !is_ghost(a) && heap(a)
== 0 && …” (value 26)

How does the “quant-instantiations-delta” SMT
statistics evolve on the longest path?

Set the histogram function to `return
t.getValue(“data.additionalData.smtStat
istics.quant-instantiations-delta");`

There are a couple of statements and decider
assertions that stand out, but none of them is above
the value 11

How does the “conflicts-delta” SMT statistics evolve
on the longest path?

Set the histogram function to `return
t.getValue("data.additionalData.smtStat
istics. conflicts-delta");`

There are a couple of statements and decider
assertions that stand out, but none of them is above
the value 8

What is the execution time of the longest path? Enter `root.subDag.getMaxPathValue((n) =>
[n.durationMs, true])` in JS console

200ms

Figure C.4: Page 2 of the profiling minutes for analyzing the symbolic execution
of the Viper program RelAcqDblMsgPassSplit.sil

rection. Before exploring ideas how to speed up the deciderAssert procedure,
a second profiling should be performed for analyzing the path conditions.

100 doors generic.rs.vpr This as well as the next three programs have been
compiled from Rust sources using the Viper front-end Prusti [3]. By spending
about 78% of the verification’s execution time in the SMT solver, this program is
dominated by SMT queries. There are many but again small SMT queries having
an average of just 2.6ms and 41ms as maximum. Considering the execution time
as well as several SMT statistics, two statements stand out. These two statements
apply a syntactically long magic wand assertion [35]. Magic wands have not been
further considered in this thesis.

Ackermann function.rs.vpr This Viper program was profiled as seen in fig-
ures C.9 and C.10. It is as well dominated by the SMT queries, taking up 78%
of the total verification’s execution time. All SMT queries are of very short dura-
tion, taking on average only 1.8ms. Even the SMT query with the longest duration
spends only 21ms in the SMT solver. In terms of duration, the flamegraph does
not hint at any significant operation. Considering various SMT statistical param-
eters, several fold or unfold scopes appear as significant. In addition, these
scopes contain significant merge operations that combine symbolic state infor-
mation about equal heap resources. In fact, all merge operations of the method
together contribute 78% of the execution time. It is slightly more than what is
spent in the SMT solver. This indicates that most SMT queries have been issued
by Silicon’s state merging algorithm.

Fibonacci sequence.rs.vpr Figures C.11 and C.12 show the profiling minutes
for the Viper program Fibonacci sequence.rs.vpr. It looks very similar to the previ-

68 C. Profiling Minutes

Question Step Answer

What is the longest member and how long does it
take?

Look at the top-most scope method “remove” (8166ms)

How much time is overall spent in the SMT solver? Look at the yellow area and the hover info 5037ms (62%)

How many SMT queries are there overall? Look at the hover info 1887

How much time is spent for merging state? Look at the red area and the hover info 701ms (9%) (256 merges)

How much time is spent for state consolidation? Look at the hover info 0ms (0 consolidations)

How much time is spent for removing permissions? Look at the hover info 0ms (0 removals)

It looks like the execution contains many branches;
how many branch points exist?

Enter `root.sum((n) => Math.max(0,
n.successors.length - 1) + Math.max(0,
n.interLevelSuccessors.length - 1)) +
1` in JS CLI

176

How many paths are there? Enter `root.mapAfter((n,
successorsResult,
interLevelSuccessorsResult,
subDagResult) => { if (subDagResult !=
null) { return subDagResult} if
(successorsResult.length > 0) { return
successorsResult.reduce((a,b) => a +
b);} if
(interLevelSuccessorsResult.length > 0)
{ return
interLevelSuccessorsResult.reduce((a,b)
=> a + b);} return 1;}, false)` in JS CLI

40240

How many statements are there? Enter `root.sum((n) =>
n.label.startsWith("execute") ? 1 : 0)`
in JS CLI

113

How many SMT queries are on the longest path? Enter `var smtCount = 0;
root.transformLongestPath((n) =>
n.getMaxPathValue((n) => [n.durationMs,
true]), (n) => { if (n.isSmtQuery)
{ smtCount++; } return n; }); smtCount`
in JS console

220

How much time is spent in SMT solver on the longest
path?

Enter `var smtDuration = 0;
root.transformLongestPath((n) =>
n.getMaxPathValue((n) => [n.durationMs,
true]), (n) => { if (n.isSmtQuery)
{ smtDuration+=n.durationMs; } return
n; }); smtDuration` in JS conosle

515ms

What is the distribution of the durations on the
longest path?

Enter `root.transformLongestPath((n) =>
n.getMaxPathValue((n) => [n.durationMs,
true]), (n) => { n.weight = 1; return
n; });` to select longest path, enter
`root.redraw()`, and choose `return
d.durationMs;` for histogram

There are four statements with values above 100ms;
By far the largest contribution comes from “execute
close(r)” (1456ms) which includes a decider
assertion “decider assert this@723@01 ==
m@801@01” taking 1292ms. The decider assertion
only has one small SMT query of 4ms

What scope has the longest duration on the longest
path (beside the method itself)?

Enter `var maxDuration = 0;
root.transformLongestPath((n) =>
n.getMaxPathValue((n) => [n.durationMs,
true]), (n) => { if (!
n.label.startsWith("method remove”) &&
n.durationMs > maxDuration)
{ maxDuration=n.durationMs; } return n;
}); maxDuration` in JS console

The above mentioned “execute close(r)”

What is the longest duration of an SMT query on the
longest path?

Enter `var maxSmtDuration = 0;
root.transformLongestPath((n) =>
n.getMaxPathValue((n) => [n.durationMs,
true]), (n) => { if (n.isSmtQuery &&
n.durationMs > maxSmtDuration)
{ maxSmtDuration=n.durationMs; } return
n; }); maxSmtDuration` in JS console

6ms

What is the longest duration of an SMT query in the
entire method?

Enter `var maxSmtDuration = 0;
root.eachBefore((n) => { if
(n.isSmtQuery && n.durationMs >
maxSmtDuration)
{ maxSmtDuration=n.durationMs; }});
maxSmtDuration` in JS console

57ms

Figure C.5: Page 1 of the profiling minutes for analyzing the symbolic execution
of the Viper program AVLTree.nokeys.sil

69

Question Step Answer

Does the flamegraph reveal some interesting insights
for the longest path?

Compare the flamegraphs obtained via `return
t.isSmtQuery ? t.durationMs : null;` and
`return
t.getValue(“data.additionalData.smtStat
istics.num-allocs-delta”);` entered as
histogram function in the settings popup

3 other statements stand out with values above
20000:
“execute unfold acc(valid(this))”
“execute n1,r := pruneMax(this.left)”
“execute unfold acc(valid(r))”

How does the “decisions-delta” SMT statistics evolve
on the longest path?

Set the histogram function to `return
t.getValue(“data.additionalData.smtStat
istics.decisions-delta");`

It roughly has the same shape and same significant
statements as considering num-allocs-delta

How does the “propagations-delta” SMT statistics
evolve on the longest path?

Set the histogram function to `return
t.getValue(“data.additionalData.smtStat
istics.propagations-delta");`

In terms of “propagations-delta”, 3 statements are
significant:
“execute bf := getBalanceFactorI(this,
rd)” (value 195)
“execute nl, r :=
pruneMax(this.left)” (value 301)
“execute unfold acc(valid(r))” (value 623)

How does the “quant-instantiations-delta” SMT
statistics evolve on the longest path?

Set the histogram function to `return
t.getValue(“data.additionalData.smtStat
istics.quant-instantiations-delta");`

2 statements mainly stand out:
“execute unfold acc(valid(this))” (value
17)
“execute unfold acc(valid(r))” (value 17)

How does the “conflicts-delta” SMT statistics evolve
on the longest path?

Set the histogram function to `return
t.getValue("data.additionalData.smtStat
istics. conflicts-delta");`

2 statements mainly stand out:
“execute unfold acc(valid(this))” (value
59)
“execute unfold acc(valid(r))” (value 48)

What is the execution time of the longest path? Enter `root.subDag.getMaxPathValue((n) =>
[n.durationMs, true])` in JS console

2210ms

Figure C.6: Page 2 of the profiling minutes for analyzing the symbolic execution
of the Viper program AVLTree.nokeys.sil

ously analyzed program and is as well dominated by SMT queries. Again, it looks
as if most SMT queries have been issued during an execution of the state merging
algorithm.

Towers of Hanoi spec.rs.vpr The profiling minutes in figures C.13 and C.14
show again that a majority (71%) of the verification’s duration is spent in the SMT

solver. The flamegraph based on the duration of the individual scopes steers
the attention to three statements. However, all of them last less than 100ms
and thus do not significantly contribute to the total symbolic execution time. As
for the other Viper programs created by the Prusti front-end, the only potential
optimization opportunity might be located in the state merging algorithm. These
have all been duration-wise relatively short programs though. Therefore, further
analyses should be conducted with programs having longer verification durations
to confirm that the same observations regarding state merging apply.

70 C. Profiling Minutes

Question Step Answer

What is the longest member and how long does it
take?

Look at the top-most scope “m_100_doors_generic$
$doors1$opensqu0closesqu$” takes 7422ms

How much time is overall spent in the SMT solver? Look at the yellow area and the hover info 5780ms (ca. 78%)

How many SMT queries are there overall? Look at the hover info 2200 queries

How much time is spent for merging state? Look at the red area and the hover info 4834ms (ca. 65%)

How much time is spent for state consolidation? Look at the hover info 776ms (3 consolidations)

How much time is spent for removing permissions? Look at the hover info 0ms (0 removals)

It looks like the execution contains many branches;
how many branch points exist?

Enter `root.sum((n) => Math.max(0,
n.successors.length - 1) + Math.max(0,
n.interLevelSuccessors.length - 1)) +
1` in JS CLI

73

How many paths are there? Enter `root.mapAfter((n,
successorsResult,
interLevelSuccessorsResult,
subDagResult) => { if (subDagResult !=
null) { return subDagResult} if
(successorsResult.length > 0) { return
successorsResult.reduce((a,b) => a +
b);} if
(interLevelSuccessorsResult.length > 0)
{ return
interLevelSuccessorsResult.reduce((a,b)
=> a + b);} return 1;}, false)` in JS CLI

10677

How many statements are there? Enter `root.sum((n) =>
n.label.startsWith("execute") ? 1 : 0)`
in JS CLI

624

How many SMT queries are on the longest path? Enter `var smtCount = 0;
root.transformLongestPath((n) =>
n.getMaxPathValue((n) => [n.durationMs,
true]), (n) => { if (n.isSmtQuery)
{ smtCount++; } return n; }); smtCount`
in JS console

980

How much time is spent in SMT solver on the longest
path?

Enter `var smtDuration = 0;
root.transformLongestPath((n) =>
n.getMaxPathValue((n) => [n.durationMs,
true]), (n) => { if (n.isSmtQuery)
{ smtDuration+=n.durationMs; } return
n; }); smtDuration` in JS conosle

2897

What is the distribution of the durations on the
longest path?

Enter `root.transformLongestPath((n) =>
n.getMaxPathValue((n) => [n.durationMs,
true]), (n) => { n.weight = 1; return
n; });` to select longest path, enter
`root.redraw()`, and choose `return
d.durationMs;` as the histogram function in the
settings popup

In the flamegraph, 2 statements are significant (each
taking 352 resp. 398ms), both of them are dominated
by their state consolidations

What is the longest duration of an SMT query on the
longest path?

Enter `var maxSmtDuration = 0;
root.transformLongestPath((n) =>
n.getMaxPathValue((n) => [n.durationMs,
true]), (n) => { if (n.isSmtQuery &&
n.durationMs > maxSmtDuration)
{ maxSmtDuration=n.durationMs; } return
n; }); maxSmtDuration` in JS console

41

What is the longest duration of an SMT query in the
entire method?

Enter `var maxSmtDuration = 0;
root.eachBefore((n) => { if
(n.isSmtQuery && n.durationMs >
maxSmtDuration)
{ maxSmtDuration=n.durationMs; }});
maxSmtDuration` in JS console

41

Figure C.7: Page 1 of the profiling minutes for analyzing the symbolic execution
of the Viper program 100 doors generic.rs.vpr

71

Question Step Answer

Does the histogram reveal some insights for the
longest path?

Compare the flamegraphs obtained via entering
`return t.isSmtQuery ? t.durationMs :
null;` and `return
t.getValue(“data.additionalData.smtStat
istics.num-allocs-delta”);` as the histogram
function in the settings popup

The two significant statements from before appear as
significant in both versions and have similar shape

How does the “decisions” SMT statistics evolve on
the longest path?

Set the histogram function to `return
t.getValue(“data.additionalData.smtStat
istics.decisions");`

One statement appears to be significant

How does the “propagations” SMT statistics evolve
on the longest path?

Set the histogram function to `return
t.getValue(“data.additionalData.smtStat
istics.propagations”);`

One statement appears to be significant

How does the “propagations-delta” SMT statistics
evolve on the longest path?

Set the histogram function to `return
t.getValue(“data.additionalData.smtStat
istics.propagations-delta");`

“execute apply
acc(DeadBorrowToken${23))…” and “execute
apply acc(DeadBorrowToken$(25))…” appear
to be significant

How does the “quant-instantiations-delta” SMT
statistics evolve on the longest path?

Set the histogram function to `return
t.getValue("data.additionalData.smtStat
istics.quant-instantiations-delta");`

The 2 so far significant statements do also appear
but not as the most significant ones. There are about
5 significant statements in total considering this
statistical parameter

How does the “conflicts-delta” SMT statistics evolve
on the longest path?

Set the histogram function to `return
t.getValue("data.additionalData.smtStat
istics. conflicts-delta");`

The 2 most significant statements are again
“execute apply
acc(DeadBorrowToken${23))…” and “execute
apply acc(DeadBorrowToken$(25))…”
The first statement has a much larger value (483)
compared to the second significant statement (79)

Figure C.8: Page 2 of the profiling minutes for analyzing the symbolic execution
of the Viper program 100 doors generic.rs.vpr

72 C. Profiling Minutes

Question Step Answer

What is the longest member and how long does it
take?

Look at the top-most scope “m_Ackermann_function$
$ack2$opensqu0closesqu$” takes 3168ms

How much time is overall spent in the SMT solver? Look at the yellow area and the hover info 2474ms (78%)

How many SMT queries are there overall? Look at the hover info 1395

How much time is spent for merging state? Look at the red area and the hover info 2487ms (78%)

How much time is spent for state consolidation? Look at the hover info 0ms (0 times)

How much time is spent for removing permissions? Look at the hover info 0ms (0 times)

It looks like the execution contains many branches;
how many branch points exist?

Enter `root.sum((n) => Math.max(0,
n.successors.length - 1) + Math.max(0,
n.interLevelSuccessors.length - 1)) +
1` in JS CLI

14

How many paths are there? Enter `root.mapAfter((n,
successorsResult,
interLevelSuccessorsResult,
subDagResult) => { if (subDagResult !=
null) { return subDagResult} if
(successorsResult.length > 0) { return
successorsResult.reduce((a,b) => a +
b);} if
(interLevelSuccessorsResult.length > 0)
{ return
interLevelSuccessorsResult.reduce((a,b)
=> a + b);} return 1;}, false)` in JS CLI

14

How many statements are there? Enter `root.sum((n) =>
n.label.startsWith("execute") ? 1 : 0)`
in JS CLI

369

How many SMT queries are on the longest path? Enter `var smtCount = 0;
root.transformLongestPath((n) =>
n.getMaxPathValue((n) => [n.durationMs,
true]), (n) => { if (n.isSmtQuery)
{ smtCount++; } return n; }); smtCount`
in JS console

746 (53% of all SMT queries)

How much time is spent in SMT solver on the longest
path?

Enter `var smtDuration = 0;
root.transformLongestPath((n) =>
n.getMaxPathValue((n) => [n.durationMs,
true]), (n) => { if (n.isSmtQuery)
{ smtDuration+=n.durationMs; } return
n; }); smtDuration` in JS conosle

1292ms

What is the distribution of the durations on the
longest path?

Enter `root.transformLongestPath((n) =>
n.getMaxPathValue((n) => [n.durationMs,
true]), (n) => { n.weight = 1; return
n; });` to select longest path, enter
`root.redraw()`, and choose `return
d.durationMs;` as the histogram function in the
settings popup

No significant statements are visible

What is the duration of the longest scope(beside the
method itself)?

Enter `var maxDuration = 0;
root.transformLongestPath((n) =>
n.getMaxPathValue((n) => [n.durationMs,
true]), (n) => { if (!
n.label.startsWith("method
m_Ackermann") && n.durationMs >
maxDuration)
{ maxDuration=n.durationMs; } return n;
}); maxDuration` in JS console

70ms

What is the longest duration of an SMT query on the
longest path?

Enter `var maxSmtDuration = 0;
root.transformLongestPath((n) =>
n.getMaxPathValue((n) => [n.durationMs,
true]), (n) => { if (n.isSmtQuery &&
n.durationMs > maxSmtDuration)
{ maxSmtDuration=n.durationMs; } return
n; }); maxSmtDuration` in JS console

7ms

What is the longest duration of an SMT query in the
entire method?

Enter `var maxSmtDuration = 0;
root.eachBefore((n) => { if
(n.isSmtQuery && n.durationMs >
maxSmtDuration)
{ maxSmtDuration=n.durationMs; }});
maxSmtDuration` in JS console

21ms

Figure C.9: Page 1 of the profiling minutes for analyzing the symbolic execution
of the Viper program Ackermann function.rs.vpr

73

Question Step Answer

Does the flamegraph provide some interesting
insights for the longest path?

Compare the flamegraphs obtained via `return
t.isSmtQuery ? t.durationMs : null;` and
`return
t.getValue(“data.additionalData.smtStat
istics.num-allocs-delta”);` as the histogram
function in the settings popup

There is almost no difference in shape of the
flamegraphs

How does the “decisions” SMT statistics evolve on
the longest path?

Set the histogram function to `return
t.getValue(“data.additionalData.smtStat
istics.decisions");`

There are no significant nodes, however nodes tend
to become larger to the right

How does the “decisions-delta” SMT statistics evolve
on the longest path?

Set the histogram function to `return
t.getValue(“data.additionalData.smtStat
istics.decisions-delta");`

There are 6 statements with a value above 700.
However, the largest value for a single SMT query is
121

How does the “propagations-delta” SMT statistics
evolve on the longest path?

Set the histogram function to `return
t.getValue(“data.additionalData.smtStat
istics.propagations-delta");`

There are 9 significant statements (with values
above 300); 8 of them are “execute unfold
acc(…)”; 6 of them cause “Merge” scopes with
values over 300

How does the “quant-instantiations-delta” SMT
statistics evolve on the longest path?

Set the histogram function to `return
t.getValue("data.additionalData.smtStat
istics.quant-instantiations-delta");`

There are 9 significant statements (with values
above 100); 8 of them are “execute unfold
acc(..)”, which is very similar to above’s metric

How does the “conflicts-delta” SMT statistics evolve
on the longest path?

Set the histogram function to `return
t.getValue("data.additionalData.smtStat
istics.conflicts-delta");`

2 statements stand out (having values of 24 resp.
27): “execute fold acc(isize(_22),
write)” and “execute fold acc(isize(_21),
write)”. However, their “merge” scopes are split up
into 8 resp. 9 SMT queries of each value 3; The
largest value per SMT query on longest path is 11

Figure C.10: Page 2 of the profiling minutes for analyzing the symbolic execution
of the Viper program Ackermann function.rs.vpr

74 C. Profiling Minutes

Question Step Answer

What is the longest member and how long does it
take?

Look at the top-most scope “method m_Fibonacci_sequence$
$recursive_fibonacci$opensqu0closesqu
$” (2336ms)

How much time is overall spent in the SMT solver? Look at the yellow area and the hover info 1832ms (78% of the entire execution duration)

How many SMT queries are there overall? Look at the hover info 959

How much time is spent for merging state? Look at the red area and the hover info 1810ms (77% of the entire execution duration) 144
merges

How much time is spent for state consolidation? Look at the hover info 0ms 0 consolidations

How much time is spent for removing permissions? Look at the hover info 0ms 0 permission removals

It looks like the execution contains many branches;
how many branch points exist?

Enter `root.sum((n) => Math.max(0,
n.successors.length - 1) + Math.max(0,
n.interLevelSuccessors.length - 1)) +
1` in JS CLI

27

How many paths are there? Enter `root.mapAfter((n,
successorsResult,
interLevelSuccessorsResult,
subDagResult) => { if (subDagResult !=
null) { return subDagResult} if
(successorsResult.length > 0) { return
successorsResult.reduce((a,b) => a +
b);} if
(interLevelSuccessorsResult.length > 0)
{ return
interLevelSuccessorsResult.reduce((a,b)
=> a + b);} return 1;}, false)` in JS CLI

634

How many statements are there? Enter `root.sum((n) =>
n.label.startsWith("execute") ? 1 : 0)`
in JS CLI

306

How many SMT queries are on the longest path? Enter `var smtCount = 0;
root.transformLongestPath((n) =>
n.getMaxPathValue((n) => [n.durationMs,
true]), (n) => { if (n.isSmtQuery)
{ smtCount++; } return n; }); smtCount`
in JS console

845 (88% of all queries)

How much time is spent in SMT solver on the longest
path?

Enter `var smtDuration = 0;
root.transformLongestPath((n) =>
n.getMaxPathValue((n) => [n.durationMs,
true]), (n) => { if (n.isSmtQuery)
{ smtDuration+=n.durationMs; } return
n; }); smtDuration` in JS conosle

1600ms

What is the distribution of the durations on the
longest path?

Enter `root.transformLongestPath((n) =>
n.getMaxPathValue((n) => [n.durationMs,
true]), (n) => { n.weight = 1; return
n; });` to select longest path, enter
`root.redraw()`, and choose `return
d.durationMs;` as the histogram function in the
settings popup

Many small nodes, no significant ones

What is the duration of the longest scope on the
longest path (beside the method itself)?

Enter `var maxDuration = 0;
root.transformLongestPath((n) =>
n.getMaxPathValue((n) => [n.durationMs,
true]), (n) => { if (!
n.label.startsWith("method m_borrow”)
&& n.durationMs > maxDuration)
{ maxDuration=n.durationMs; } return n;
}); maxDuration` in JS console

71ms

What is the longest duration of an SMT query on the
longest path?

Enter `var maxSmtDuration = 0;
root.transformLongestPath((n) =>
n.getMaxPathValue((n) => [n.durationMs,
true]), (n) => { if (n.isSmtQuery &&
n.durationMs > maxSmtDuration)
{ maxSmtDuration=n.durationMs; } return
n; }); maxSmtDuration` in JS console

23ms

What is the longest duration of an SMT query in the
entire method?

Enter `var maxSmtDuration = 0;
root.eachBefore((n) => { if
(n.isSmtQuery && n.durationMs >
maxSmtDuration)
{ maxSmtDuration=n.durationMs; }});
maxSmtDuration` in JS console

23ms

Figure C.11: Page 1 of the profiling minutes for analyzing the symbolic execution
of the Viper program Fibonacci sequence.rs.vpr

75

Question Step Answer

Does the flamegraph reveal some interesting insights
for the longest path?

Compare the flamegraphs obtained via `return
t.isSmtQuery ? t.durationMs : null;` and
`return
t.getValue(“data.additionalData.smtStat
istics.num-allocs-delta”);` as the histogram
function in the settings popup

In both flamegraphs, no significant nodes visible

How does the “decisions-delta” SMT statistics evolve
on longest path?

Set the histogram function to `return
t.getValue(“data.additionalData.smtStat
istics.decisions-delta");`

There are 2 statements with a value above 1000:
“execute fold acc(usize(_21), write)”
and “execute inhale acc(usize(_26)) &&
acc(usize(_29) && acc(usize(_30)))”

How does the “propagations-delta” SMT statistics
evolve on longest path?

Set the histogram function to `return
t.getValue(“data.additionalData.smtStat
istics.propagations-delta");`

There is one statement with a value above 1000:
“execute inhale acc(usize(_26)) &&
acc(usize(_29) && acc(usize(_30)))”

How does the “quant-instantiations-delta” SMT
statistics evolve on longest path?

Set the histogram function to `return
t.getValue("data.additionalData.smtStat
istics.quant-instantiations-delta");`

There is one statement with a value above 100:
“execute inhale acc(usize(_14)) &&
acc(usize(_15))”

How does the “conflicts-delta” SMT statistics evolve
on longest path?

Set the histogram function to `return
t.getValue("data.additionalData.smtStat
istics. conflicts-delta”);`

There are about 7 statments standing out, 2 having
values above 20:
“execute exhale
acc(usize(_17.val_ref.enum_0_0, read$
())” (value 25)
“execute fold acc(usize(_21))” (value 36)

What is the execution time of the longest path? Enter `root.subDag.getMaxPathValue((n) =>
[n.durationMs, true])` in JS console

2032ms

Figure C.12: Page 2 of the profiling minutes for analyzing the symbolic execution
of the Viper program Fibonacci sequence.rs.vpr

76 C. Profiling Minutes

Question Step Answer

What is the longest member and how long does it
take?

Look at the top-most scope Method “m_Towers_of_Hanoi_spec$
$move_$opensqu0closesqu$” (1750ms)

How much time is overall spent in the SMT solver? Look at the yellow area and the hover info 1251ms (71%)

How many SMT queries are there overall? Look at the hover info 630

How much time is spent for merging state? Look at the red area and the hover info 1351ms (109 merges) (77%)

How much time is spent for state consolidation? Look at the hover info 0ms (0 consolidations)

How much time is spent for removing permissions? Look at the hover info 0ms (0 removals)

How many branch points exist? Enter `root.sum((n) => Math.max(0,
n.successors.length - 1) + Math.max(0,
n.interLevelSuccessors.length - 1)) +
1` in JS CLI

10

How many paths are there? Enter `root.mapAfter((n,
successorsResult,
interLevelSuccessorsResult,
subDagResult) => { if (subDagResult !=
null) { return subDagResult} if
(successorsResult.length > 0) { return
successorsResult.reduce((a,b) => a +
b);} if
(interLevelSuccessorsResult.length > 0)
{ return
interLevelSuccessorsResult.reduce((a,b)
=> a + b);} return 1;}, false)` in JS CLI

24

How many statements are there? Enter `root.sum((n) =>
n.label.startsWith("execute") ? 1 : 0)`
in JS CLI

230

How many SMT queries are on the longest path? Enter `var smtCount = 0;
root.transformLongestPath((n) =>
n.getMaxPathValue((n) => [n.durationMs,
true]), (n) => { if (n.isSmtQuery)
{ smtCount++; } return n; }); smtCount`
in JS console

569

How much time is spent in SMT solver on the longest
path?

Enter `var smtDuration = 0;
root.transformLongestPath((n) =>
n.getMaxPathValue((n) => [n.durationMs,
true]), (n) => { if (n.isSmtQuery)
{ smtDuration+=n.durationMs; } return
n; }); smtDuration` in JS conosle

1136ms (90% of the total SMT solver time)

What is the distribution of the durations on the
longest path?

Enter `root.transformLongestPath((n) =>
n.getMaxPathValue((n) => [n.durationMs,
true]), (n) => { n.weight = 1; return
n; });` to select the longest path, enter
`root.redraw()`, and choose `return
d.durationMs;` as the histogram function in the
settings popup

There are 3 statements taking longer than 60ms:
- “execute unfold acc(i32(_10.tuple_0))”

(63ms)
- “execute inhale acc(i32(_8)) &&
acc(i32(_11)) && acc(i32(_12)) &&
acc(i32(_13))” (79ms)

- “execute inhale acc(i32(_18)) &&
acc(i32(_21)) && acc(i32(_22)) &&
acc(i32(_23))” (77ms)

While the latter two statements include many small
SMT queries, the first one consists of a relatively
long SMT query:
“prover assert _6@50@01 == $t@151@01”
taking 52ms

What is the duration of the longest scope on the
longest path (beside the method itself)?

Enter `var maxDuration = 0;
root.transformLongestPath((n) =>
n.getMaxPathValue((n) => [n.durationMs,
true]), (n) => { if (!
n.label.startsWith("method m_Towers_”)
&& n.durationMs > maxDuration)
{ maxDuration=n.durationMs; } return n;
}); maxDuration` in JS console

79ms

What is the longest duration of an SMT query on the
longest path?

Enter `var maxSmtDuration = 0;
root.transformLongestPath((n) =>
n.getMaxPathValue((n) => [n.durationMs,
true]), (n) => { if (n.isSmtQuery &&
n.durationMs > maxSmtDuration)
{ maxSmtDuration=n.durationMs; } return
n; }); maxSmtDuration` in JS console

52ms

What is the longest duration of an SMT query in the
entire method?

Enter `var maxSmtDuration = 0;
root.eachBefore((n) => { if
(n.isSmtQuery && n.durationMs >
maxSmtDuration)
{ maxSmtDuration=n.durationMs; }});
maxSmtDuration` in JS console

52ms

What is the longest duration of an SMT query in the
entire method except “prover assert _6@50@01
== $t@151@01”?

Enter `var maxSmtDuration = 0;
root.eachBefore((n) => { if
(n.isSmtQuery && n.label !== “prover
assert _6@50@01 == $t@151@01” &&
n.durationMs > maxSmtDuration)
{ maxSmtDuration=n.durationMs; }});
maxSmtDuration` in JS console

10ms

Figure C.13: Page 1 of the profiling minutes for analyzing the symbolic execution
of the Viper program Towers of Hanoi spec.rs.vpr

77

Question Step Answer

Does the flamegraph reveal some interesting insights
for the longest path?

Set the histogram function to `return
t.getValue(“data.additionalData.smtStat
istics.num-allocs-delta”);` in the settings
popup

The same 3 statements as before are significant

How does the “decisions-delta” SMT statistics evolve
on the longest path?

Set the histogram function to `return
t.getValue(“data.additionalData.smtStat
istics.decisions-delta");`

3 statements stand out, however only 2 of them as
before:
- “execute inhale acc(i32(_8)) &&
acc(i32(_11)) && acc(i32(_12)) &&
acc(i32(_13))” (value 891)

- “execute inhale acc(i32(_15)) &&
acc(i32(_16))” (value 632)

- “execute inhale acc(i32(_18)) &&
acc(i32(_21)) && acc(i32(_22)) &&
acc(i32(_23))” (value 1355)

How does the “quant-instantiations-delta” SMT
statistics evolve on the longest path?

Set the histogram function to `return
t.getValue(“data.additionalData.smtStat
istics.quant-instantiations-delta");`

Other statements appear as significant, however
there is no statement with a value above 14.

How does the “conflicts-delta” SMT statistics evolve
on the longest path?

Set the histogram function to `return
t.getValue("data.additionalData.smtStat
istics. conflicts-delta");`

The flamegraph’s shape looks totally different and
the sum of “conflicts-delta” on the longest path make
up only a fraction of the sum of “conflicts-delta” of the
entire method. Furthermore on the longest path, a
different significant method shows up (as observed
so far)

What is the execution time of the longest path? Enter `root.subDag.getMaxPathValue((n) =>
[n.durationMs, true])` in JS console

1592ms

Figure C.14: Page 2 of the profiling minutes for analyzing the symbolic execution
of the Viper program Towers of Hanoi spec.rs.vpr

Bibliography

[1] Linard Arquint. D3-DAG: Arquint. https://observablehq.com/
@arquintl/d3-dag-arquint. [Online; accessed 13-September-
2019].

[2] Linard Arquint. Layout Algorithm for Rectangles. https://github.com/
erikbrinkman/d3-dag/pull/22. [Online; accessed 13-September-
2019].

[3] V. Astrauskas, P. Müller, F. Poli, and A. J. Summers. Leveraging Rust Types
for Modular Specification and Verification. Technical report, ETH Zurich,
2019.

[4] Alessio Aurecchia. Visual Debugging for Symbolic Execution, 2018.

[5] Roberto Baldoni, Emilio Coppa, Daniele Cono D’elia, Camil Demetrescu,
and Irene Finocchi. A Survey of Symbolic Execution Techniques. ACM
Comput. Surv., 51(3):50:1–50:39, May 2018.

[6] Nils Becker, Peter Müller, and Alexander J. Summers. The Axiom Profiler:
Understanding and Debugging SMT Quantifier Instantiations. In Tomáš Voj-
nar and Lijun Zhang, editors, Tools and Algorithms for the Construction and
Analysis of Systems, pages 99–116, Cham, 2019. Springer International
Publishing.

[7] Bernhard Beckert, Reiner Hähnle, and Peter H. Schmitt. Verification of
Object-oriented Software: The KeY Approach. Springer-Verlag, Berlin, Hei-
delberg, 2007.

[8] James Bornholt and Emina Torlak. Finding Code That Explodes Under Sym-
bolic Evaluation. Proc. ACM Program. Lang., 2(OOPSLA):149:1–149:26,
October 2018.

[9] Mike Bostock. Data-Driven Documents. https://d3js.org. [Online;
accessed 13-September-2019].

79

https://observablehq.com/@arquintl/d3-dag-arquint
https://observablehq.com/@arquintl/d3-dag-arquint
https://github.com/erikbrinkman/d3-dag/pull/22
https://github.com/erikbrinkman/d3-dag/pull/22
https://d3js.org

80 Bibliography

[10] Tim Bray. The JavaScript Object Notation (JSON) Data Interchange Format.
RFC 8259, RFC Editor, December 2017.

[11] Erik Brinkman. d3-dag. https://github.com/erikbrinkman/
d3-dag. [Online; accessed 13-September-2019].

[12] Paul C. Bryan, Kris Zyp, and Mark Nottingham. JavaScript Object Notation
(JSON) Pointer. RFC 6901, RFC Editor, April 2013.

[13] Andreas Buob. Recording Symbolic Execution, 2015.

[14] Cristian Cadar, Daniel Dunbar, and Dawson Engler. KLEE: Unassisted and
Automatic Generation of High-coverage Tests for Complex Systems Pro-
grams. In Proceedings of the 8th USENIX Conference on Operating Sys-
tems Design and Implementation, OSDI’08, pages 209–224, Berkeley, CA,
USA, 2008. USENIX Association.

[15] Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski, David L. Dill, and Daw-
son R. Engler. EXE: Automatically Generating Inputs of Death. In Proceed-
ings of the 13th ACM Conference on Computer and Communications Secu-
rity, CCS ’06, pages 322–335, New York, NY, USA, 2006. ACM.

[16] Cristian Cadar and Koushik Sen. Symbolic Execution for Software Testing:
Three Decades Later. Commun. ACM, 56(2):82–90, February 2013.

[17] Catapult-Project. Catapult Tracing ReadMe. https://github.
com/catapult-project/catapult/blob/master/tracing/
README.md. [Online; accessed 04-September-2019].

[18] Ivo Colombo. Debugging Symbolic Execution, 2012.

[19] Leonardo de Moura. Which statistics indicate an efficient run of Z3?
https://stackoverflow.com/a/6847467/1990080. [Online; ac-
cessed 09-September-2019].

[20] Leonardo De Moura and Nikolaj Bjørner. Z3: An Efficient SMT Solver. In Pro-
ceedings of the Theory and Practice of Software, 14th International Confer-
ence on Tools and Algorithms for the Construction and Analysis of Systems,
TACAS’08/ETAPS’08, pages 337–340, Berlin, Heidelberg, 2008. Springer-
Verlag.

[21] Docker. Docker Hub. https://hub.docker.com. [Online; accessed
01-October-2019].

[22] Docker. What is a Container? https://www.docker.com/
resources/what-container. [Online; accessed 01-October-2019].

https://github.com/erikbrinkman/d3-dag
https://github.com/erikbrinkman/d3-dag
https://github.com/catapult-project/catapult/blob/master/tracing/README.md
https://github.com/catapult-project/catapult/blob/master/tracing/README.md
https://github.com/catapult-project/catapult/blob/master/tracing/README.md
https://stackoverflow.com/a/6847467/1990080
https://hub.docker.com
https://www.docker.com/resources/what-container
https://www.docker.com/resources/what-container

Bibliography 81

[23] Jonas Felber. Precise And Scalable Fund Tracking On Ethereum, 2019.

[24] Patrice Godefroid, Nils Klarlund, and Koushik Sen. DART: Directed Auto-
mated Random Testing. In Proceedings of the 2005 ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, PLDI ’05,
pages 213–223, New York, NY, USA, 2005. ACM.

[25] Programming Methodology Group. Download Viper. https://www.
pm.inf.ethz.ch/research/viper/downloads.html. [Online; ac-
cessed 25-September-2019].

[26] Programming Methodology Group. Viper Tutorial. http://viper.ethz.
ch/tutorial. [Online; accessed 30-September-2019].

[27] Martin Hentschel, Richard Bubel, and Reiner Hähnle. The Symbolic Exe-
cution Debugger (SED): a platform for interactive symbolic execution, de-
bugging, verification and more. International Journal on Software Tools for
Technology Transfer, 21(5):485–513, Oct 2019.

[28] James C. King. Symbolic Execution and Program Testing. Commun. ACM,
19(7):385–394, July 1976.

[29] Moritz Knüsel. Optimization of a Symbolic-Execution-Based Program Veri-
fier, 2019.

[30] K. Rustan M. Leino. This is Boogie 2. June 2008.

[31] Microsoft. Visual Studio Code. https://code.visualstudio.com.
[Online; accessed 25-September-2019].

[32] Peter Müller, Malte Schwerhoff, and Alexander J. Summers. Viper: A Ver-
ification Infrastructure for Permission-Based Reasoning. In Proceedings of
the 17th International Conference on Verification, Model Checking, and Ab-
stract Interpretation - Volume 9583, VMCAI 2016, pages 41–62, New York,
NY, USA, 2016. Springer-Verlag New York, Inc.

[33] Matthew Parkinson and Gavin Bierman. Separation Logic and Abstraction.
In Proceedings of the 32Nd ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, POPL ’05, pages 247–258, New York, NY,
USA, 2005. ACM.

[34] Edward J. Schwartz, Thanassis Avgerinos, and David Brumley. All You Ever
Wanted to Know About Dynamic Taint Analysis and Forward Symbolic Exe-
cution (but Might Have Been Afraid to Ask). In Proceedings of the 2010 IEEE
Symposium on Security and Privacy, SP ’10, pages 317–331, Washington,
DC, USA, 2010. IEEE Computer Society.

https://www.pm.inf.ethz.ch/research/viper/downloads.html
https://www.pm.inf.ethz.ch/research/viper/downloads.html
http://viper.ethz.ch/tutorial
http://viper.ethz.ch/tutorial
https://code.visualstudio.com

82 Bibliography

[35] Malte Hermann Schwerhoff. Advancing Automated, Permission-Based Pro-
gram Verification Using Symbolic Execution. PhD thesis, ETH Zurich, 2016.

[36] spray. spray-json. https://github.com/spray/spray-json. [On-
line; accessed 18-September-2019].

[37] Emina Torlak and Rastislav Bodik. A Lightweight Symbolic Virtual Machine
for Solver-aided Host Languages. In Proceedings of the 35th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI
’14, pages 530–541, New York, NY, USA, 2014. ACM.

[38] Tricentis. Software Fail Watch: 5th Edition. Technical report, Tricentis GmbH,
Vienna, Austria, 2017.

[39] Viktor Vafeiadis and Chinmay Narayan. Relaxed Separation Logic: A Pro-
gram Logic for C11 Concurrency. In Proceedings of the 2013 ACM SIG-
PLAN International Conference on Object Oriented Programming Systems
Languages & Applications, OOPSLA ’13, pages 867–884, New York, NY,
USA, 2013. ACM.

https://github.com/spray/spray-json

