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Abstract 
Density and land use are two fundamental components controlled in a city’s master plan. Together, they 
affect spatial and temporal distributions of the cooling demand of tropical high-density cities. This work 
studied how the design of density and land use impacts the cost-effectiveness of district cooling systems. To 
approach this, we took the street layout plan of Downtown Singapore and generated hundreds of designs of 
density and land use using Grasshopper and the quasi-Monte Carlo Saltelli sampler. Five independent input 
variables were used for sampling. They feature the spatial distribution of floor area ratio and three land use 
types including residential, office, and retail. We assessed the cost-effectiveness for the district cooling 
systems in each sample with a simulation program called the City Energy Analyst. To determine the effects 
of various designs on the cost-effectiveness of the district cooling systems, we performed the Sobol’ 
sensitivity analysis. We found that the Global land use ratios and the spatial distributions of density have the 
dominant role, while the spatial distributions of land use have a minor influence on the cost-effectiveness of 
district cooling systems. Urban planners and designers may use the result of this study in the design of 
density and land use in a district of high-density cities serviced by district cooling systems. 
 
 
Keywords: density; land use; district cooling systems; capital expenditure; operational expenditure; energy-
driven urban design 
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1. Introduction 
Floor area density and land use assignment are of great importance in the field of urban design. In the 
master plan of many cities, their corresponding metrics are often witnessed in the form of floor area ratio and 
land use ratios for a mixed-use development. The example master plan in Figure 1 presents the control of 
floor area ratio in numbers and land use in colors (Urban Redevelopment Authority, 2014). At the building 
level, they constrain the architectural design by restricting the quantity of gross floor area for each land use 
type. For example, for two sites of the same high floor area ratio, the more residential-dominated site may 
tend to have much slimmer building volume design for the purposes of natural sunlight accessibility.  At a 
larger scale of district or city, floor area density and land use assignment together spatially shape the 
morphological cityscape and, more importantly, temporally affect the flow of human and all forms of traffic 
along the street or the piping network. For example, the locations of job and home create the flows of 
commuters; the utility consumers with various needs and schedules affect the distribution of utilities. 
 

 
Figure 1. Density and land use control in an exemplary master plan (Urban Redevelopment Authority, 2014). 

In tropical high-density cities, district cooling systems (DCS) which rely on a centralized cooling production 
are efficient means of cooling energy supply (UNEP, 2015). As shown in Figure 2, the basic components of a 
DCS include district cooling plant(s), pumps, and piping networks. The latter two comprising the distribution 
network of a DCS help circulate the chilled water between the district cooling plant and the end-users. The 
DCS cost-effectiveness is associated with both the DCS capital and operational expenditures. The former is 
determined by the sizing of each DCS component and its pricings. Besides that spent to fulfill the district’s 
cooling demand, the latter also includes that spent on the thermal loss and pressure drop in the distribution 
network. The peak thermal loss in the DCS distribution, though much lower than that in the district heating 
system, can surpass as much as 10% of the cooling supply (Li et al., 2017; McCabe et al., 1995), while the 
pressure drop may contribute up to 10% of the total DCS electricity consumption (Guelpa et al., 2016; Li et 
al., 2017). 
 

 
Figure 2. Basic components of district cooling systems (DCS). 

 
The impacts on the DCS cost-effectiveness by the distribution of floor area density and land use can be 
explained in the following aspects. First, the sizing of each DCS component is based on its annual peak 
cooling demand to accommodate. Spatially, the floor area density influences the building volumes which 
affects the solar radiation received on the building surfaces and the (peak) cooling demand (Cheng et al., 
2006). Temporally, the combination of various land use types influences a district’s fluctuating cooling 
demand throughout each hour of the day and, thus, affects the DCS design as well as its cost-effectiveness. 
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Second, in the pipes of chilled water distribution, the pressure drop is influenced by the mass flow, pipe 
length and diameter (Rogenhofer, 2018). The design of floor area density and land use distribution directly 
affects the district’s cooling demand distribution and indirectly affects the pipe diameters and mass flow rate. 
The pipe diameters indicate the capital expenditures on the pipe selection. Finally, in the distribution of 
chilled water, the thermal loss to be compensated by the additional cooling energy generated by the district 
cooling plant comes in two ways – the conductive and convective of heat transfer (Keçebaş et al., 2011). The 
temperature gap between the chilled water and the soil leads to the former and the pipe diameter affects the 
latter (Bergman et al., 2017). For the existing studies, Chow et al. optimized the land use types for the 
success of district cooling system implementation in three case studies in Hong Kong (Chow et al., 2004). 
Best et al. explored the impact of various combinations of land use on the performance of the district energy 
supply system (Best et al., 2015). Using a test case in California, they managed to demonstrate the ratio of 
certain land use should be restricted for higher performance of the energy supply system. However, the 
studies above including those focusing on peak-shaving or valley-filling did not consider the potential impact 
of the spatial distributions of the land use. 
 
Figure 3 summarizes the links between the design of floor area density and land use distribution and the 
affected DCS expenditures. The affected capital expenditures include that spent on the piping, chiller & 
cooling towers, and pumps (denoted as 𝐶𝐴𝑃𝐸𝑋!"!"#$ , 𝐶𝐴𝑃𝐸𝑋!"&!" , and 𝐶𝐴𝑃𝐸𝑋!"#! ). The affected 
operational expenditures include that spent on the thermal loss, pressure drop, and cooling demand 
(denoted as 𝑂𝑃𝐸𝑋!"#!!, 𝑂𝑃𝐸𝑋Δ!, and 𝑂𝑃𝐸𝑋qc). In this work, the five indicators of DCS cost-effectiveness are 
the annualized 𝐶𝐴𝑃𝐸𝑋!"!"#$, 𝐶𝐴𝑃𝐸𝑋!"&!", and 𝐶𝐴𝑃𝐸𝑋!"#! together with the annual 𝑂𝑃𝐸𝑋!"#$$ and 𝑂𝑃𝐸𝑋Δ! 
divided by the district’s annual cooling demand. Denoted as 𝑎𝐶𝐴𝑃𝐸𝑋!"!"#$ , 𝑎𝐶𝐴𝑃𝐸𝑋!"&!" , 𝑎𝐶𝐴𝑃𝐸𝑋!"#! , 
𝑎𝑂𝑃𝐸𝑋!"#$$, and 𝑎𝑂𝑃𝐸𝑋Δ!, their calculations can be found in Section 2.4.3. 
 

 
Figure 3. Links between urban density, land use, and the cost-effectiveness of DCS components. 

 
Sensitivity analysis identifies and some quantify the importance of the input variables to the output variability 
(Mavromatidis et al., 2018). It has been widely used in studies on building design and building energy 
performance (Tian, 2013). Three methods of sensitivity analysis have been commonly used on investigations 
in building energy performance through simulations (Kristensen & Petersen, 2016). They are local sensitivity 
analysis, Morris Method, and Sobol’ method. Without giving out the actual ranking of the input variables, 
local sensitivity analysis identifies a group of the more sensible ones (Kristensen & Petersen, 2016). The 
latter two gives out the ranking, while the Sobol’ method even quantifies the importance. The effect indices 
comes in two orders:  the first-order effects and the second-order effects. The former quantifies the impacts 
of the input variables independently, while the latter also considers the interactions between the input 
variables (Petersen et al., 2019). Methods to balance the main disadvantage of the Sobol’ method, high 
computational cost, are as follows. One can adopt an efficient quasi-Monte Carlo sampling technique; 
simulate a small number of samples and apply a predictive model to amplify simulated dataset; or use fast 
simulation tools (Shmueli et al., 2017; Tian, 2013). 
 
The City Energy Analyst, an open-source toolbox, performs building energy modeling at the district scale 
(Fonseca et al., 2016). Besides cooling demand forecasting, it is able to calculate the thermal loss and 
pressure drop in the process of DCS cooling energy distribution using the route of a given piping network. 
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The CEA simulations are performed on hourly-basis over a year of 8,760 hours. With a connection to a 
parametric geometric urban design model in Grasshopper (Shi, 2019), CEA is able to automate iterations of 
energy simulations for the sensitivity analysis. Examples of similar energy simulation tools include the 
Ladybug and Honeybee (Roudsari & Pak, 2013) Grasshopper plugins and the Urban Modeling Interface 
(UMI) (Reinhart et al., 2013). Both tools can forecast the cooling demand for a given scenario of urban 
design. However, neither of them is able to design the DCS piping network or calculate the thermal loss and 
pressure drop in the process of cooling energy distribution. 
 
This study targets at providing urban designers with insights on how to spatially distribute floor area density 
and land use for the DCS cost-effectiveness. These insights can be used at the early stages of urban design 
for a tropical high-density district serviced by district cooling systems (DCS). We aim to answer the following 
two research questions, taking Singapore as an example. (1) To what extent do the distributions of density 
(floor area ratio) and land use influence the cost-effectiveness of a DCS? (2) How to spatially distribute the 
urban density and land use for a cost-effective DCS, at the early stage of urban design processes? 
 
 
Nomenclature 

DCS  district cooling system 
𝐶𝐴𝑃𝐸𝑋  capital expenditure [USD] 
𝑂𝑃𝐸𝑋  operational expenditure [USD] 
𝑎𝐶𝐴𝑃𝐸𝑋 annualized capital expenditure cost-effectiveness [USD/MWh] 
𝑎𝑂𝑃𝐸𝑋  annual operational expenditure cost-effectiveness [USD/MWh] 
CEA  City Energy Analyst 
 
 
2. Methods 
The methodological framework of this research had a five-step workflow (Figure 4). The first four steps are 
detailed in this section. The fifth step is presented in Section 3. Section 2.1 describes the sources of data 
used in this study. Section 2.2 describes the input variables of our experiments after preprocessing. Section 
2.3 describes the methods used for the experimental design. Finally, Section 2.4 describes the tools used to 
assess the performance of the DCS cost-effectiveness. 
 

 
Figure 4. The five-step workflow and the tools used in this study. 

	
2.1. Data collection 
We gathered the GIS data about the street layout and the floor area ratio for each block of Downtown 
Singapore (Figure 5). These data were retrieved from the Singapore Master Plan 2014 (Urban 
Redevelopment Authority, 2014). We took this information as the reference to set the input parameters and 
boundaries of design variables. By doing so, we limit the variations of urban density and land use 
distributions within the development framework envisioned by the local planning authority. This framework 
included the street layout connections to the surroundings and the restrictions on the floor area development. 
In addition, in the Master Plan, there was little data available concerning the building footprints in the blocks, 
since this area was planned yet with few occupying buildings. Such data included the shape of the building 
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footprints and their site coverage, which were necessary as input urban design parameters. We referred to 
and extracted data from the relevant existing studies in Singapore for the missing data and details are 
explained in Section 2.2.2 (Shi et al., 2019).  
 

 
Figure 5. The location of the case study at Downtown Singapore and the Singapore Master Plan 2014 

2.2. Input urban design parameters 
This subsection serves to introduce the input variables and parameters that build up the parametric 
geometric model for the sampling of sensitivity analysis. Besides those related to density (Section 2.2.2) and 
land use (Section 2.2.3), for the design of district cooling systems, those regarding the street layout were 
also required (Section 2.2.1). 
 
2.2.1.  Street layout 
We used the data of Section 2.1 to extract all street segments (in-between intersections) of Downtown 
Singapore. For each street segment, we extracted the information about their length and width. This 
information was important for the DCS design for two reasons provided the piping network usually follows 
the street layout. The first was that it affected the length and diameter of the piping network. The second 
reason was that it affected the cooling energy demand of each end-user by providing the space in-between 
buildings for mutual shading and solar radiation.  
 
2.2.2.  Density and buildings 
We used Density gradient to measure the spatial distribution of density (floor area ratio). In this study, 
Density gradient (ranging from - ∞ to ∞) described the proximity of high or low floor area ratio to the DCS 
cooling plant. When all the blocks serviced by the DCS cooling plant had the same floor area ratio, the 
Density gradient was zero. When the blocks closer to and further away from the DCS cooling plant had a 
higher floor area ratio, the Density gradient was respectively above and below zero. The more the Density 
gradient was away from zero, the more the difference in floor area ratio among the blocks was. The concept 
of the Density gradient is furthermore illustrated in Figure 6. 
 
 

 
Figure 6. Route distance between buildings and the DCS cooling plant, Density gradient, and their 

calculations (A). 
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As illustrated in Figure 6, the Density gradient equaled the difference in floor area ratio between the furthest 
and the closet block to the DCS cooling plant divided by the route distance between these two blocks. The 
route distance between two nodes on a piping network measured the total length of all pipe segments 
connecting these two nodes. The range of floor area ratio for each block was kept between 3 and 25, based 
on the minimum requirement for a block to be qualified as high-density and the highest floor area ratio found 
in the Singapore Master. The longest route distance found in the Downtown Singapore between the DCS 
cooling plant located at the centroid of the district and the furthest block was approximately 1,010 m. In 
consequence, the lower and upper limits of the Density gradient were respectively set between ±  (25-
3)/1010 =  ±  0.02718 m-1. The gross floor area of this district envisioned by the local planning authority was 
approximately 5,000,000 sqm. This number of floor area remained constant for all samples to be generated 
throughout this study. The floor area ratio of each block could be calculated based on both the district’s 
gross floor area and the Density gradient. 
 
 
2.2.3. Land use 
Three land use - residential, office, and retail – were used in this study as they are the most dominant land 
use in the Master Plan of Singapore (Urban Redevelopment Authority, 2014). Two variables, Residential 
gradient, and Office gradient were respectively used to measure the distribution of the land use of residential 
and office. As illustrated in Figure 7, land use gradients were calculated with a similar method as that of 
Density gradient. Instead of floor area ratio, in calculating land use gradient, we used land use ratio. The 
lower and upper limits of land use ratios were between 0 and 1.  Thus, the lower and upper limits of the two 
land use gradients were between ±  (1-0)/1010 =  ±  0.00099 m-1. Two more input variables, Initial 
residential ratio and Initial office ratio, were needed as the input variables for the sensitivity analysis. As the 
initial states of either Residential gradient or Office gradient, they were the corresponding land use ratios of 
the blocks furthest from the DCS cooling plant. These four input variables together helped to calculate the 
share of the floor area of residential and office in a block over the block’s gross floor area. When the sum of 
these two land use ratio was larger than 1, both of them were proportionally reduced as illustrated in Figure 7 
until the sum equaled 1. The land use ratio of retail of each block was calculated as 1 subtracted by the sum 
of the land use ratio of residential and office. Additionally, the share of the floor area of a particular land use 
type in the entire district over the district’s gross floor area was named as Global land use ratio. Table 1 
summarizes the major urban design parameters mentioned above and the five independent input variables 
are indicated.  
 

Table 1. A summary of the major urban design parameters involved. 
Urban design 
parameters 

Input 
variables Boundary Definition 

Floor area ratio [-] - [2, 25] Ratio of gross floor area in a block/district to the site 
area of that block/district 

Density gradient [m-1] Yes [±  0.02718]  

Land use ratio [-] - [0, 1] Ratio between the floor area of each land use type in a 
block 

Route distance [m] - [0, 1010] The total length of all pipe segments connecting two 
nodes 

Residential gradient 
[m-1] Yes [±  0.00099] 

The residential land use ratio of the block closest to 
the district cooling plant minus the equivalent of the 

block furthest from the district cooling plant, then 
divided by the route distance between the two blocks 

Office gradient [m-1] Yes [±  0.00099] Same as above 
Global land use ratio 

[-] - sum = 1 Ratio between the gross floor area of each land use 
type in the district 

Initial residential 
ratio [-] Yes [0, 1] The residential land use ratio of the block furthest from 

the district cooling plant 
Initial office ratio [-] Yes [0, 1] Same as above 
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Figure 7. Residential and office land use gradient, the ratio of retails, and their calculations; Density and land 
use ratios assigned to each block/building. The A for Urban density distribution stands for the A that can be 

found in Figure 6. 

	
2.3. Experimental design 
2.3.1. Parametric geometric modeling in Grasshopper 
Based on the input parameters and the five independent variables explained in the previous section, we built 
the parametric geometric model of the district serviced by a DCS in the Grasshopper tool. The model 
coupled (Shi, 2019) with the City Energy Analyst (CEA) allowed the iteration of urban form generation, 
energy simulations, and performance assessment for the sensitivity analysis. Figure 8 provides two 
examples of districts generated by this parametric geometric model built in Grasshopper. The one on the left 
side (Figure 8a) has a Density gradient of 0.02046, a Residential gradient of -0.00040, an Office gradient of -
0.00049, a Global ratio of the three land use of 0.77 : 0.20 : 0.03 (residential : office : commercial). The one 
on the right side (Figure 8b) has a Density gradient of -0.02174, a Residential gradient of -0.00059, an Office 
gradient of -0.00043, and a Global ratio of the three land use of 0.13 : 0.76 : 0.11 (residential : office : 
commercial). Both examples have a gross floor area of 5,000,000 sqm. Both examples show how floor area 
ratio and land use ratio of each block were manipulated by the five design input variables and the district’s 
gross floor area restriction. 
 

 
Figure 8. Two examples of districts generated by the parametric geometric model in Grasshopper. 

	

Residential

Office

Retail

+

=
DCS cooling plant

A

Spatial distributions of density and land use
assigned according to the route distance to the DCS cooling plant along the pipes

y

Building

Street

ra
tio

 ra
tio

 ra
tio

DCS cooling plant

DCS cooling plant

DCS cooling plant

Figure 6

B

COM = max [ 0, 1- (RES+OFF) ] 

Slope=Gradient

Slope=Gradient

  1

Reduce propotionally, when > 1

  0

  1

  0

  1

  0

  1

  0

  1

  0

 Sptial distribution of land use

initial

initial

 Sptial distribution of density



	

8	
	

2.3.2.  Sampling for the sensitivity analysis 
To complete a full performance assessment of one sample, it may take from four to six hours. To apply 
Sobol’ method sensitivity analysis and overcome its heavy computational expenses, we used the quasi-
Monte Carlo sampler (Saltelli et al., 2010) using SALib (Herman & Usher, 2017) and an artificial neural 
network to amplify the number of the simulated samples with JMP Pro 13 (SAS Institue Inc., 2016). For the 
sampling, the sample size was set at N = 35 and makes a total number of N · (2k+2) = 420 samples, where k 
equaled 5, the number of input variables. Figure 9 illustrates the probability density function of the sampled 
values for the five independent input variables defined in Section 2.2.  
 
Artificial neural network has been widely utilized in solving predictive problems for studies on building energy 
consumptions (Mohandes et al., 2019). It has been used in studies involving various metrics of urban 
development, though not yet with a focus on the DCS cost-effectiveness (M. Silva et al., 2018). Despite 
being considered as a “black-box”, artificial neural network has demonstrated its great success in terms of 
the accuracy of predictions (Mohandes et al., 2019; Shmueli et al., 2017; M. C. Silva et al., 2017). Usually, 
three layers - namely the input layer, the hidden layer, and the output layer - make up an artificial neural 
network. The relationships between the inputs and the outputs are decided by an activation function. For 
building energy studies, Linear Function and Hyperbolic Tangent Function are observed as the commonly 
used activation function (Mohandes et al., 2019). The coefficient of multiple determination (R square) and the 
mean absolute deviation are the most commonly used measurements for prediction accuracy (Mohandes et 
al., 2019). The latter describes the average positive difference of the predicted dataset from the simulated 
dataset. One of the common drawbacks of artificial neural networks is its tendency to overfit the data, and 
KFold crossvalidation is recommended for a small dataset as in this study (Shmueli et al., 2017). KFold 
crossvalidation subdivides a dataset into K subsets. Each of the subsets rotates to serve to validate once as 
the other K-1 subsets serve to train the model of prediction. After a series of rounds of trials for the best R 
square and mean absolute deviation, the number of neurons, hidden layers, and KFold as well as the 
activation function were witnessed using the following settings: one hidden layer and 5 neurons with the 
Hyperbolic Tangent Function; the number of KFold set at 5. The results maight have slight variations from 
one run to another since the artificial neural network networks were constructed with the technique of Monte 
Carlo sampling (SAS Institue Inc., 2016).  
 
 

 
Figure 9. Distribution of the sampled values for the five input variables, Density gradient [-], Residential 

gradient [-], Initial residential ratio [-], Office gradient [-], and Initial office ratio [-]. 

	
2.4. District cooling systems design and assessment 
In this paper, for the cooling demand forecasting, district cooling systems design, and the performance 
assessment, we used the CEA v2.9.2 (The CEA team, 2019).  
 
2.4.1.  Cooling demand forecasting 
The cooling demand forecasting served to provide the inputs for the DCS design, simulation, and 
performance assessment. It was conducted for each iteration with the inputs including the building 
geometries and their spatial locations, as well as the occupancy types (land use), which were from the 
parametric geometric model in Section 2.3. Other inputs including the ratio of air-conditioned area, the 
temperature set points, the HVAC technology selection for each DCS component, the properties of the 
building envelope, the weather conditions in Singapore came from the CEA v2.9.2 Database. The occupancy 
schedules were adjusted from that of ASHRAE (ASHRAE Project Committee 90.1., 2019). The output of 
cooling demand forecasting was the hourly cooling demand of each building for every hour over a typical 
year. 
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2.4.2.  District cooling systems design 
Piping network design 
In this study, we had the piping network of a DCS follow the street layout, with the connection to each end-
user located at the centroid of the building and the cooling plant located in the centroid of the entire district. 
The piping network design used in all iterations in this study was illustrated as in Figure 10. It had the 
shortest total length of all pipe segments. A branched layout without loops was used. The network was 
determined with the Steiner spanning tree algorithm (Cormen et al., 2009) implemented in the CEA v2.9.2 
(The CEA team, 2019). 
 

 
Figure 10. The piping network layout used throughout the simulations in this study. 

Cooling energy production and distribution 
This step input the results of cooling demand forecasting and the piping network design as well as a series of 
other parameters (Table 2) concerning the simulations of cooling energy production and distribution. In all 
420 iterations, the technology selection for each DCS component was kept the same. The DCS cooling plant 
contained vapor compression chillers and cooling towers, the sizes of which were decided based on the 
peak cooling demand and the thermal loss along the network. The pipe width of each segment of the piping 
network was decided based on the peak mass flow rate. The size of pumps was decided based on the peak 
pressure drop along the piping network.  
 

Table 2. DCS Input parameters in this study 
Parameter Value Unit Note 

Thermal conductivity of 
polyurethane 0.023 W/mK - 

Supply Temperature in 
DCS networks ~5.4 °C - 

Plant COP ~4.4 - Including operation of all devices at the cooling plant 
 
2.4.3.  Performance assessment 
To assess the performance of each of the 420 samples, we used the five indicators of DCS cost-
effectiveness. They were the annualized capital expenditures of piping network, cooling plant (chillers and 
cooling towers), and pumps (denoted as 𝑎𝐶𝐴𝑃𝐸𝑋!"!"#$ , 𝑎𝐶𝐴𝑃𝐸𝑋!"&!" , and 𝑎𝐶𝐴𝑃𝐸𝑋!"#!) as well as the 
annual operational expenditures of plant and pump (denoted as 𝑎𝑂𝑃𝐸𝑋!"#$$, 𝑎𝑂𝑃𝐸𝑋Δ!). All the five indicators 
were normalized to the annual cooling demand, and the unit was USD/MWh. The sum of the five indicators 
was named the Global DCS expenditure [USD/MWh].  
 
The 𝐶𝐴𝑃𝐸𝑋 of the pipes, cooling plants, and pumps were based on their required sizes and the technology 
prices stored in the CEA database. The 𝑎𝐶𝐴𝑃𝐸𝑋  was calculated from 𝐶𝐴𝑃𝐸𝑋  using Equation 1, where 
𝑖 stands for the interest rate and 𝑛 stands for the estimated lifetime (25 years for all technologies, except for 
20 years for the cooling towers) as stored in the CEA Database (The CEA team, 2019). 𝑎𝑂𝑃𝐸𝑋!"#$$ was the 
cost of the annual electricity consumed for generating the cooling energy that compensates the thermal loss 
along the distribution system. 𝑎𝑂𝑃𝐸𝑋!"#! was the cost of the annual electricity consumed for overcoming the 
pressure drop along the distribution system. The marginal electricity price used in this study was 0.15 
USD/KWh (Energy Market Authority, 2018). 
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DCS cooling plant
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𝑎𝐶𝐴𝑃𝐸𝑋!"#!!"#"$% = 𝐶𝐴𝑃𝐸𝑋!"#!!"#"$% ∙  
!(!!!)!

(!!!)!!!
 (1) 

 
 
3. Results and analysis 
3.1. Second-order effects 
Table 3 displays the Second-order effects in the Sobol’ SA with the prediction of artificial neural networks in 
JMP pro 13 and Table 4 shows the two indicators for the performance of the artificial neural network 
prediction by R square [-] and mean absolute deviation [USD/MWh]. The second-order effects of the five 
input variables on the five indicators of DCS cost-effectiveness are displayed respectively. Initial residential 
ratio and Initial office ratio were the first and the second most influential ones. Density gradient was the most 
important while Residential gradient and Office gradient had much less influence over the DCS cost-
effectiveness. The results also showed that the input variables related to the temporal distributions 
(residential and Initial office ratios) of cooling demand were more dominant than those related to the spatial 
distributions (Density gradient, Residential gradient, and Office gradient) of cooling demand. 
 

Table 3. The Second-order effects [-] of the five input variables on the five indicators of DCS cost-
effectiveness. 

 𝒂𝑪𝑨𝑷𝑬𝑿𝒑𝒊𝒑𝒊𝒏𝒈 𝒂𝑪𝑨𝑷𝑬𝑿𝑪𝑯&𝑪𝑻 𝒂𝑪𝑨𝑷𝑬𝑿𝒑𝒖𝒎𝒑 𝒂𝑶𝑷𝑬𝑿𝒒𝒍𝒐𝒔𝒔 𝒂𝑶𝑷𝑬𝑿𝚫𝒑 
Density gradient 0.268 0.014 0.443 0.011 0.329 

Residential gradient 0.032 0.032 0.175 0.028 0.054 
Initial residential ratio 0.699 0.7 0.049 0.94 0.258 

Office gradient 0.005 0.034 0.057 0.002 0.056 
Initial office ratio 0.109 0.345 0.377 0.124 0.258 

 
Table 4. The performance of the artificial neural network prediction by R square [-] and mean absolute 

deviation [USD/MWh]. 
 𝒂𝑪𝑨𝑷𝑬𝑿𝒑𝒊𝒑𝒊𝒏𝒈 𝒂𝑪𝑨𝑷𝑬𝑿𝑪𝑯&𝑪𝑻 𝒂𝑪𝑨𝑷𝑬𝑿𝒑𝒖𝒎𝒑 𝒂𝑶𝑷𝑬𝑿𝒒𝒍𝒐𝒔𝒔 𝒂𝑶𝑷𝑬𝑿𝚫𝒑 

R square 0.96 0.89 0.54 0.97 0.85 
mean absolute deviation 0.004 0.119 0.013 0.006 0.01 

 
 
3.2. The cost-effectiveness indicators 
Table 5 summarizes the minimum and the maximum values found for the five indicators of DCS cost-
effectiveness. The difference between the minimum and the maximum of each indicator ranged from ~ 60% 
in 𝑎𝐶𝐴𝑃𝐸𝑋!"#! to ~173% in 𝑎𝑂𝑃𝐸𝑋!"#$$. As each indicator’s contribution to the Global DCS expenditure was 
dramatically different, the impacts of the temporal and spatial distributions of the cooling demand on the DCS 
cost-effectiveness shall be analyzed by the DCS components, respectively. Table 6 summarizes the share of 
the five DCS cost-effectiveness indicators in the Global DCS expenditure combined with that on fulfilling the 
cooling demand (𝑎𝑂𝑃𝐸𝑋qc) across the 420 samples and Table 7 includes the five indicators only. Except 
𝑎𝑂𝑃𝐸𝑋qc, 𝑎𝐶𝐴𝑃𝐸𝑋!"&!" was the only DCS cost-effectiveness that has a prominent role out of the five. The 
rest was close to negligible. 
 

Table 5. The range of normalized 𝑎𝐶𝐴𝑃𝐸𝑋 and 𝑂𝑃𝐸𝑋 of the 420 samples by pipe, plant, and pump by 
annual cooling energy demand in [USD/MWh]. 

 𝒂𝑪𝑨𝑷𝑬𝑿𝒑𝒊𝒑𝒊𝒏𝒈 𝒂𝑪𝑨𝑷𝑬𝑿𝑪𝑯&𝑪𝑻 𝒂𝑪𝑨𝑷𝑬𝑿𝒑𝒖𝒎𝒑 𝒂𝑶𝑷𝑬𝑿𝒒𝒍𝒐𝒔𝒔 𝒂𝑶𝑷𝑬𝑿𝜟𝒑 
min 0.1317 4.486 0.2341 0.0121 0.1599 
max 0.231 7.3726 0.3749 0.033 0.4108 

(% more than min) (~75%) (~72%) (~60%) (~173%) (~157%) 
 
 

Table 6. The range of the share of the five DCS cost-effectiveness indicators and the expenditure on fulfilling 
the cooling demand (𝑂𝑃𝐸𝑋qc) out of the total of the six across the 420 samples [-]. 

 𝒂𝑪𝑨𝑷𝑬𝑿𝒑𝒊𝒑𝒊𝒏𝒈 𝒂𝑪𝑨𝑷𝑬𝑿𝑪𝑯&𝑪𝑻 𝒂𝑪𝑨𝑷𝑬𝑿𝒑𝒖𝒎𝒑 𝒂𝑶𝑷𝑬𝑿𝒒𝒍𝒐𝒔𝒔 𝒂𝑶𝑷𝑬𝑿𝚫𝒑 𝒂𝑶𝑷𝑬𝑿𝒒𝒄 
min 0.02% 0.52% 0.03% 0% 0.03% 72.51% 
max 0.73% 24.73% 1.45% 0.09% 0.78% 99.39% 
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Table 7. The range of the share of the five DCS cost-effectiveness indicators out of the total of the five 
across the 420 samples [-]. 

 𝒂𝑪𝑨𝑷𝑬𝑿𝒑𝒊𝒑𝒊𝒏𝒈 𝒂𝑪𝑨𝑷𝑬𝑿𝑪𝑯&𝑪𝑻 𝒂𝑪𝑨𝑷𝑬𝑿𝒑𝒖𝒎𝒑 𝒂𝑶𝑷𝑬𝑿𝒒𝒍𝒐𝒔𝒔 𝒂𝑶𝑷𝑬𝑿𝚫𝒑 𝒂𝑶𝑷𝑬𝑿𝒒𝒄 
min 1.94% 83.18% 3.76% 0.16% 2.26% - 
max 4.22% 91.49% 5.63% 0.6% 7.84% - 

 
3.3. Analysis by district cooling system components 
3.3.1.  Global DCS expenditure 
We used the k-means method in JMP pro 13 to produce four clusters of Global land use ratios. Figure 11 
plots the performance of the 420 samples in Global DCS expenditure per cluster and per gradient. The 
Global land use ratio (indicating land use temporal distributions) was more impactful than the Density 
gradient, Residential gradient, and Office gradient (more indicating the land use spatial distributions). Also, 
different Global land use ratios might result in similar Global DCS expenditures (the clusters in grey and 
green). Another observation is that the cluster (red) with a higher Global DCS expenditure had more 
commercial land use (0.53), while the cluster (yellow) with a lower Global DCS expenditure had more 
residential land use (0.68). 

 
Figure 11. The Global expenditure [USD/MWh] by Density gradient [-], Residential gradient [-], and Office 

gradient [-], clustered by four groups of Global land use ratios. 

3.3.2.  Piping network 
The sensitivity analysis results showed that both Initial residential ratio and Density gradient had a major 
influence over 𝑎𝐶𝐴𝑃𝐸𝑋!"!"#$, the annualized capital expenditure of the DCS piping network, accounting for 
~2% to ~4% of the Global DCS expenditures. Figure 12 plots the 𝑎𝐶𝐴𝑃𝐸𝑋!"!"#$ of the 420 samples by Global 
residential ratio and Density gradient. Generally, 𝑎𝐶𝐴𝑃𝐸𝑋!"!"#$  increased as the Global residential ratio 
increased. For the samples with the same Global residential ratio, 𝑎𝐶𝐴𝑃𝐸𝑋!"!"#$ tent to increase as the 
Density gradient decreased. Samples with a Global residential ratio under 0.65 and an appropriate Density 
gradient could possibly bring the 𝑎𝐶𝐴𝑃𝐸𝑋!"!"#$ down by at least 20% compared to the worst-performing one 
to lower than the mean 𝑎𝐶𝐴𝑃𝐸𝑋!"!"#$ across the 420 samples, as shown in Figure 12. 

 
Figure 12. 𝒂𝑪𝑨𝑷𝑬𝑿𝒑𝒊𝒑𝒊𝒏𝒈 [USD/MWh] by overall residential ratio [-] and Density gradient [-]. 
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The diameter of each pipe segment and its pricing affected the 𝑎𝐶𝐴𝑃𝐸𝑋!"!"#$, since the length of each pipe 
segment remained the same across the 420 samples. Figure 13 (a) shows that the average pipe diameter 
decreased as the Global residential ratio increased. According to the pricing table of pipes in the CEA 
database, the unit pipe price did not proportionally decrease with the pipe diameter: the unit price of thinner 
pipes was higher than that of thicker ones. This explained why the 𝑎𝐶𝐴𝑃𝐸𝑋!"!"#$ increased with the Global 
residential ratio. Additionally, Figure 13 (a) shows that the average pipe diameter decreased as Density 
gradient increased for the samples with the same Global residential ratio. Figure 13 (b) shows that samples 
with the same Global residential ratio have similar annual cooling demand. Higher Density gradient meant 
more built area and more cooling demand were spatially distributed in proximity to the district cooling plant. 
Thus, high Density gradient reduced the amount of cooling energy to be distributed to the further side of the 
piping network and decreased the need for installing thicker pipes resulting at lower 𝑎𝐶𝐴𝑃𝐸𝑋!"!"#$. 

 
Figure 13. (a) Average pipe diameter [m] by Global residential ratio [-] and Density gradient [-]; (b) Annual 

cooling demand [MWh] by Global residential ratio [-]. 

	
3.3.3.  Centralized chiller and cooling tower 
The results of sensitivity analysis showed that both Initial residential ratio and Initial office ratio substantially 
influenced 𝑎𝐶𝐴𝑃𝐸𝑋!"&!", the annualized capital expenditure of the centralized chiller and cooling tower. It 
accounted for as much as ~83% to ~91% of the Global DCS expenditures. Figure 14 (a) plots the 
𝑎𝐶𝐴𝑃𝐸𝑋!"&!"  of the 420 samples by their Global residential ratio and Global office ratio. Generally, 
𝑎𝐶𝐴𝑃𝐸𝑋!"&!" decreased at various rates as the Global residential ratio increased. The decrease rate almost 
plateaued when the Global residential ratio was between ~0.25 and ~0.5. Samples with a Global residential 
ratio at this range could possibly bring the 𝑎𝐶𝐴𝑃𝐸𝑋!"&!" down by ~15% to ~25% compared to the worst-
performing one. This plateau meant more flexibility for various combinations of Global land use ratios. A 
much higher Global residential ratio significantly reduced the 𝑎𝐶𝐴𝑃𝐸𝑋!"!"#$ yet undermined the possibilities 
for mixed-use design. Additionally, for the samples with the same Global residential ratio, 𝑎𝐶𝐴𝑃𝐸𝑋!"&!" tent 
to increase with the Global office ratio.  
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Figure 14. 𝒂𝑪𝑨𝑷𝑬𝑿𝑪𝑯&𝑪𝑻 [USD/MWh] by Global residential ratio [-] and Global office ratio [-]. 

 
The 𝑎𝐶𝐴𝑃𝐸𝑋!"&!" depended on the usage or the capacity factor of the centralized chiller and cooling tower. 
The capacity factor was calculated as the ratio of actual cooling energy generated divided by the maximum 
cooling energy generated if the system continuously functioned at its nominal capacity over the same period 
of time (see Equation 2). We calculated the capacity factor for the DCS chillers (CH). It generally increased 
as the Global residential ratio increased while the Global office ratio decreased in Figure 14 (b). This was 
due to certain land use combinations (e.g., higher Global residential ratio, lower Global office ratio) helped to 
shave the peak or fill the valley of cooling demand, which affected the nominal capacity design of a DCS 
cooling plant.  
 

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑓𝑎𝑐𝑡𝑜𝑟!!!""#$ =
!""#$% !""#$%& !"!#$% !"#"$%&"'

!"# !"#$ · !! !!"#$/!"#  ·  !"#$%&' !"#"!$%&   
  (2) 

 
Besides, the sensitivity analysis results showed that both Initial residential ratio and Initial office ratio had a 
major influence on the annual DCS operational expenditure on compensating the thermal loss in distributing 
the cooling energy (𝑎𝑂𝑃𝐸𝑋!"#$$ ). Figure 15 plots the 𝑎𝑂𝑃𝐸𝑋!"#$$  of the 420 samples by their Global 
residential ratio and Global office ratio. 𝑎𝑂𝑃𝐸𝑋!"#$$ increased as the Global residential ratio and Global office 
ratio increased. Keeping the Global residential ratio under ~0.5 can reduce the 𝑎𝑂𝑃𝐸𝑋!"#$$ by ~30%. This 
was because higher Global residential ratio came with thinner pipes (See Figure 13 (a)), and thinner pipes 
had more thermal loss. This was due to that the proportional insulation thickness (and hence thermal 
resistance) of thinner pipes was lower per every unit of mass flow, in comparison to thicker pipes. However, 
𝑎𝑂𝑃𝐸𝑋!"#$$ was almost negligible, as the temperature difference between the chilled water and the soil was 
relatively small and this indicator merely accounted for less than 1% of the Global DCS expenditures. 
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Figure 15. 𝒂𝑶𝑷𝑬𝑿𝒒𝒍𝒐𝒔𝒔 [USD/MWh] by Global residential ratio [-] and Global office ratio [-]. 

3.3.4.  Pumps 
The sensitivity analysis results showed that Density gradient, Initial office ratio, and Residential gradient 
have a major influence over 𝑎𝐶𝐴𝑃𝐸𝑋!"#!, the annualized capital expenditure of the DCS pumps. However, 
no obvious trend was witnessed for the 𝑎𝐶𝐴𝑃𝐸𝑋!"#! by any of the input variables and it merely accounted 
for ~ 4% to ~6% of the Global DCS expenditures. For the annual operational expenditure of DCS pumps, 
denoted as 𝑎𝑂𝑃𝐸𝑋Δ!, the sensitivity analysis results showed that Initial office ratio, Initial residential ratio, 
and Density gradient were of substantial importance. Figure 16 plots the 𝑎𝑂𝑃𝐸𝑋Δ! of the 420 samples by 
Global office ratio, Global residential ratio, and Density gradient. Samples with a Global residential ratio 
under ~0.75 or a Global office ratio above ~0.1 could possibly bring the 𝑎𝑎𝑂𝑃𝐸𝑋Δ! down by at least ~50% 
compared to the worst-performing one. For these samples with the same Global residential ratio or Global 
office ratio, 𝑎𝑂𝑃𝐸𝑋Δ! tent to decrease by up to ~50% as the Density gradient increased (more built area in 
proximity to the DCS cooling plant). However, similar to 𝑎𝐶𝐴𝑃𝐸𝑋!"#!, 𝑎𝑂𝑃𝐸𝑋Δ! merely accounted for ~2% to 
~8% of the Global DCS expenditures. 
 
The behavior of 𝑎𝑂𝑃𝐸𝑋Δ! can be explained in two ways. One is that, of the 420 samples, those more 
dominated by residential uses had thinner pipes and more extended periods of high mass flow rate, which 
both caused a higher pressure drop in the process of distributing the cooling energy. The other way is that 
for samples with the same/similar Global land use ratios and cooling demand, those with more end-users 
further away (lower Density gradient) from the DCS cooling plant tent to have more pressure drops. 
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Figure 16. 𝒂𝑶𝑷𝑬𝑿𝚫𝒑 [USD/MWh] by Global residential ratio [-] and Density gradient [-]. 

	
4. Discussion 
4.1. Global residential land use ratio 
Three observations concerning the land use ratios for the DCS cost-effectiveness are summarized as 
follows. The first observation is that Global land use ratios have a more dominant role than the spatial 
distribution of density and land use on the DCS cost-effectiveness. This indicates that the Global office ratio 
shall be reduced to decrease 𝑎𝐶𝐴𝑃𝐸𝑋!"&!" and 𝑎𝑂𝑃𝐸𝑋!"#$$, but kept above 0.1 to decrease 𝑎𝑂𝑃𝐸𝑋!"#!. In 
addition, the Global residential ratio shall be kept above 0.25 as high Global residential ratio significantly 
reduces the 𝑎𝐶𝐴𝑃𝐸𝑋!"&!" and improves the Global DCS cost-effectiveness. In the meantime, to reduce the 
𝑎𝐶𝐴𝑃𝐸𝑋!"!"#$, the 𝑎𝑂𝑃𝐸𝑋!"#$$, and the 𝑎𝑂𝑃𝐸𝑋Δ! as well as to increase the flexibility for a mixed-use design, 
the Global residential ratio can be kept below 0.75. 
 
Among the three land use, the residential land use is observed to be of great importance for the DCS cost-
effectiveness. For tropical cities that need cooling only, the 𝑎𝐶𝐴𝑃𝐸𝑋!"#$% contributes the majority (up to 91% 
in this study) to the Global DCS cost-effectiveness. It is highly dependent on the capacity factor of the DCS 
cooling plant, which is the outcome of the combinations of the cooling demand by the end-users of various 
land use. For the example of Singapore in this study, a higher Global residential ratio increases the capacity 
factor and the DCS cost-effectiveness. Yet in the range between 0.25 and 0.75 for high-density mixed-use 
development, a compromise can be established between the DCS cost-effectiveness and the land use 
design flexibility. However, the result is context-specific, since different human habits, climates, geolocations, 
air-conditioned areas, and building management consideration can all affect the peak cooling demand and 
the capacity factor. 
 
An appropriate high residential land use ratio in high-density mixed-use areas helps to achieve urban design 
goals like proximity to workplaces and all-day vitality in the public space. However, as a matter of fact, in the 
newly built high-density mixed-use areas, the land use ratios are often quite limited. A recent study on the 
megaprojects selected eight case studies across countries and cultures: only two of the eight have a Global 
residential ratio above 0.25 (Christiaanse et al., 2019). The inclusion of residential land use to the high-
density areas of the city is subject to the game of multiple stakeholders beyond DCS operators. 
 
Similarly, whether a residential building should be connected to the district cooling system (DCS) or not 
remains a decision of the residents, the real estate developers, and the service providers. For example, the 
sellable air-conditioner ledge of the split-units is not subject to the restriction of the gross floor area in 
Singapore. Thus, it hurts the interests of the real estate developer by connecting the residential building to 
DCS and removing the sellable air-conditioner ledge (Shi et al., 2017). Even from the perspective of the 
service provider, residential land use is not always preferred for the lower electricity tariff at night in 
Singapore. The DCS service provider may produce and store the cooling energy at night and sell it out to 
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end-users during the peak time, instead of directly fulfilling the cooling demand of the residential buildings at 
night. In addition, the occupancy schedule of residential land use is often versatile, and it is difficult to predict 
the residents’ behavior. This may affect the peak cooling demand and the system capacity factor, which may 
affect the DCS cost-effectiveness for the DCS operators. 
 
 
4.2. Spatial distributions of density and land use 
Besides the Global land use ratios, the spatial distribution of density is also comparatively influential to the 
DCS cost-effectiveness. The Density gradient is observed to be able to affect the 
𝑎𝐶𝐴𝑃𝐸𝑋!"!"#$,  𝑎𝐶𝐴𝑃𝐸𝑋!"#!, and 𝑎𝑂𝑃𝐸𝑋Δ! for up to 55%. Though these three indicators contribute only 8% 
to 16% to the Global DCS cost-effectiveness, keeping more built area in proximity to the DCS cooling plant is 
in line with other urban design strategies as well. For example, transit-oriented development tends to have 
higher density immediately next to the transit station for higher accessibility and real estate values (Cervero 
& Guerra, 2011). Moreover, integrating a transit station design with a DCS cooling plant underneath can 
maximize the usage of the public land and alleviate the conditions of land scarcity in the high-density areas. 
Also, for example, in Downtown Singapore, the underground pedestrian tunnels connecting the buildings 
from the transit station may be partially integrated into the Common Service Tunnel Plan. Such integration 
helps to enhance the advantages of the common service tunnel, such as easy repair and maintenance, and 
also justify the massive investment in a shorter term. 
 
The role of the spatial distributions of land use on DCS cost-effectiveness though exists, yet is much less 
critical than that of the density distribution. Among the 420 samples, for those with the same Global land use 
ratio and density distribution, the impact of land use distribution on DCS cost-effectiveness is witnessed to 
be less than 2%. This allows high flexibility to the urban designer for assigning the land use ratios for each 
block without considering its proximity to the DCS cooling plant. 
 
4.3. Limitations 
The limitations of this research came in four aspects and shall be addressed in future studies. (1) Regarding 
the cooling demand forecasting, three points need to be noticed. The first point is that the Podium building 
pattern used in this research is minimal while in a high-density area, various types of building patterns (e.g. 
courtyard, slabs, etc.) shall be included for more accurate cooling demand forecasting. The annual peak 
cooling demand is crucial for the capital expenditure of the centralized chiller and cooling towers, which 
contribute to the majority of the Global DCS cost-effectiveness. The other point is about the cooling demand 
simulation tool. For a building consisting of more than one use type (land use), it should be able to conduct 
the cooling demand forecasting in multiple zones, as different use type may have various ratio air-
conditioned area, set-point, etc. As a drawback of CEA simulations in this study, for a mixed-use building, 
the inputs for the main use type were assigned to the entire building regardless of the characters of the other 
use types. The last point is that the occupancy schedule of each land use was adopted from the standards of 
ASHRAE. A more accurate set of occupancy schedules tailored for the Singaporean context should be used 
in future studies. (2) Regarding the DCS design, all the DCS components are assigned with a given 
technology. However, other technologies (e.g. pipes with various insulations, seawater-sourced chillers, etc.) 
shall be included for considerations. (3) Though neural network predictions were used, the sample size for 
the simulations in the sensitivity analysis is relatively small at 420. However, this is highly dependent on 
computing complexity. (4) Concerning the various stakeholders in the entire urban design process, we 
focused on the interests of the DCS operators only, while the perspectives of the real estate developers and 
the residents also matter. Thus, cooling energy distribution within each block and heat exchangers shall be 
included in future studies. 
 
5. Conclusions 
This paper presented an investigation on the interdependencies between density, land-use, and the cost-
effectiveness of district cooling systems in tropical high-density cities. Two research questions were 
answered as follows, taking Downtown Singapore as an example. 
 
To what extent do the distributions of floor area ratio, as well as the ratios and distributions of land use, 
influence the DCS cost-effectiveness? From the perspective of DCS operators, the influence of these factors 
could reach ~60% to ~75% for 𝑎𝐶𝐴𝑃𝐸𝑋 and ~150% to ~175% for 𝑎𝑂𝑃𝐸𝑋. The sensitivity analysis showed 
that the Global land use ratio, especially the Global residential ratio, had the most dominant impact on the 
Global DCS cost-effectiveness, followed by the spatial distribution of floor area ratio with impacts on the 
𝑎𝐶𝐴𝑃𝐸𝑋 on pipes and pumps as well as the operation expenditure on pumps for up to 55%. The impact of 
the spatial distributions of land use on the DCS cost-effectiveness exists, yet it is almost negligible as the 
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operational expenditures on the thermal loss and pressure drop in the cooling energy distribution are minor.  
Land use design that shaves the peak or fills the valley of the temporal distribution of cooling demand 
remains the most viable method for improving the DCS cost-effectiveness. 
 
At the early stage of urban design processes, how can the distribution of land use and density help to reach 
better DCS cost-effectiveness? Based on the analysis and discussion in this research, out of the three types 
of land use studied, we found that a Global office ratio should be kept above 0.1; Global residential ratio 
should be kept between 0.25 and 0.75. However, the inclusion of residential buildings to the DCS network is 
subject to further evaluations, like the interests of other stakeholders or the operating conditions (e.g., the 
electricity tariff differences between the day and the night). The other one is on the distribution of floor area 
ratio, though less impactful than the Global land use ratio. A high floor area ratio is advised to be spatially 
distributed in proximity to the DCS cooling plant along the piping network. By contrast, the spatial 
distributions of land use have a relatively minor influence on the DCS cost-effectiveness. 
 
Additionally, this paper demonstrated the use of the City Energy Analyst, coupled with a parametric 
geometric model in Grasshopper. To reduce the time of every iteration, we used the neural network 
predictions with a commercial tool, the JMP pro, in the Sobol’ sensitivity analysis. The outcomes of this 
research can be used by urban planners and designers in high-density areas of tropical cities serviced by 
district cooling systems. 
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