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Abstract 
Density and land uses are two fundamental components controlled in a city’s master plan. Together, they 
affect both spatial and temporal distributions of the cooling demand in a district. This work studies how the 
design of density and land use impacts the cost-effectiveness of district cooling systems in high-density 
cities. To approach this, we take the street layout plan of Downtown Singapore and generate hundreds of 
designs of density and land uses using Grasshopper and the quasi-Monte Carlo Saltelli sampler. Five 
independent input variables are used for sampling. The three land uses featured are residential, office, and 
retail. We assess the cost-effectiveness for the district cooling systems in each sample with a simulation 
program called the City Energy Analyst. To determine the effects of various designs on the cost-
effectiveness of the district cooling systems, we perform the Sobol’ sensitivity analysis. We find that the 
District land use ratio followed by the spatial distribution of density has the dominant role, while the spatial 
distribution of land uses has a minor influence on the cost-effectiveness of district cooling systems. Urban 
planners and designers may use the results of this study in the design of density and land use for a district of 
high-density cities serviced by district cooling systems. 
 
Keywords: floor area density; land use; district cooling systems; capital cost; operational cost; energy-driven 
urban design 
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Nomenclature 

DCS  district cooling system 

𝐶𝐴𝑃𝐸𝑋  capital cost [USD] 

𝑂𝑃𝐸𝑋  operational cost [USD] 
𝑎𝐶𝐴𝑃𝐸𝑋 annualized capital cost-effectiveness [USD/MWh] 

𝑎𝑂𝑃𝐸𝑋  annual operational cost-effectiveness [USD/MWh] 
CEA  City Energy Analyst 
CH  chiller 
CT  cooling tower 
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1. Introduction 
The design of floor area density and land uses for each block is of great importance in the realm of urban 
planning and design. They define the gross floor area and building functions of a given block. Floor area 
density and land uses are often measured by floor area ratio and land use ratio. Floor area ratio equals the 
ratio of the gross building floor area in a block to the area of that block. Land use ratio equals the ratio 
between the gross floor areas of each land use type in a block. Figure 1 presents an example master plan 
with the floor area ratio illustrated in numbers and the land uses in colors (Urban Redevelopment Authority, 
2014). At the block scale, the design of floor area density and land uses may affect the architectural design. 
For example, for blocks of the same high floor area ratio, the residential-dominated block may tend to have 
much slim building volume design for the purposes of natural sunlight accessibility. At a larger district scale, 
it adds another dimension to the design of floor area density and land uses - their inter-block relationships. 
The spatial distribution of the floor area ratio and land use ratios shapes the morphological cityscape. Also, it 
creates the flow of humans and all forms of traffic along the street or the utility networks. For example, the 
locations of job and home create the flows of commuters; the utility consumers with various needs and 
schedules affect the distribution of utilities. 
 

 
Figure 1. Density and land use control in an exemplary master plan (Urban Redevelopment Authority, 2014). 

In high-density cities, district cooling systems (DCS) which rely on a centralized cooling production are 
efficient means of cooling supply (UNEP, 2015). As shown in Figure 2, the basic components of a DCS 
include a district cooling plant (chillers and cooling towers), pumps, and a piping network. The piping network 
links the district cooling plant to its end-users. The DCS cost-effectiveness is associated with both the capital 
and the operational costs. The capital cost is determined by the sizing of each DCS component and the 
pricings. The operational cost includes that spent on the thermal loss and pressure drop in the distribution 
additional to that spent on the effective cooling supply. The peak thermal loss, though much lower than that 
in a district heating system, can surpass as much as 10% of the cooling supply (Li et al., 2017), while the 
pressure drop may contribute up to 10% of the total DCS electricity consumption (Guelpa et al., 2016; Li et 
al., 2017). 

 
Figure 2. Basic components of district cooling systems (DCS). 

For a district, the design of floor area density and land uses affects the DCS costs by affecting the spatial 
and temporal distributions of the cooling demand. Regarding capital costs, the sizing of each DCS 
component is based on the annual peak of the temporal distribution of the district’s cooling demand. The 
peak can be affected by the building volume design for the solar radiation received (Cheng et al., 2006) or 
the cooling demand profiles of various land uses aggregated. Regarding operational costs, the thermal loss 
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comes in the form of conductive and convective of heat transfer (Keçebaş et al., 2011). They are affected by 
the distance that the chilled water needs to travel and pipe diameters, respectively (Bergman et al., 2017). 
The pressure drop is affected by the mass flow, pipe length and diameter (Rogenhofer, 2018). All these 
factors are directly related to the spatial and temporal distributions of the district’s cooling demand. Figure 3 
summarizes the interdependencies between the design of floor area density, land uses and the affected 
capital and operational costs of district cooling systems.  

 
Figure 3. Links between urban density, land use, and DCS capital and operational costs. Chillers and 

cooling towers are denoted as CH and CT, respectively. 

 
1.1. State-of-the-art 
1.1.1.  Related works and the knowledge gap 
Studies on the interdependencies between urban design and energy efficiency fall into either category of the 
passives and the actives (Shi, Fonseca, et al., 2017b). The passives focus on manipulating the urban design 
parameters for energy demand reductions. In contrast, the actives focus on adjusting the urban design 
parameters to improve the efficiency of urban energy systems, like the district cooling systems. Compared to 
the extensive research performed for the passives, fewer have touched the actives. Among them, some 
dedicate to the interdependencies between various performance metrics of the district thermal networks and 
the design of floor area density and land uses. Table 1 summarizes these recent related studies (Best et al., 
2015; Cajot et al., 2016; Chow et al., 2004; Fonseca et al., 2017; Yan et al., 2017) by the performance 
metrics and the two aspects (overall quantity and spatial distribution) of the design of floor area density and 
land uses.  
 

Table 1. A summary of recent studies on the design of density, land use, and the performance of district 
thermal systems. V stands for input variables; C stands for constants; and X stands for not discussed. 
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C X V X 
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V X V X 

(Fonseca et 
al., 2017) 

System Coefficient of Performance, 
or electricity consumption 

 
C X V X 

(Yan et al., 
2017) 

Annualized capital costs; annual 
operational costs 

 
C V V V 

(Cajot et al., 
2016) 
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Table 1 reveals that the knowledge gap mainly lies on the interdependencies between the performance of 
district thermal networks and the spatial distributions of floor area density and land uses. However, we 
realize that Cajot et al. attentively established a potential link regarding this knowledge gap (Cajot et al., 
2016). The performance metrics used were annualized capital and annual operational costs of the district 
thermal system. One advantage of using the monetary costs as the performance metrics is that they provide 
a common ground for comparing the affected aspects including the sizings of the components, thermal loss, 
and pressure drop. Unfortunately, they did not further elaborate on these links for quantified 
interdependencies or urban design suggestions. Also, their model of district thermal systems used the direct 
linear distances between the centralized plant and end-users instead of the actual routes of the piping 
network, which usually follows the street layout. This over-simplification ignores the potential thermal loss 
and pressure drop in the actual routes of chilled water distribution and, thus, hurts the reliability of their 
results. 
 
1.1.2.  Experimental design method 
Sensitivity analysis identifies the importance of a model’s input variables on the variability of its outputs (Yan 
et al., 2017). It has been widely used in studies on the interdependencies between building design and 
building energy performance (Tian, 2013). Sensitivity analysis methods use either local or global techniques. 
Local sensitivity analysis concentrates on the importance of a single input variable while keeping the other 
parameters fixed (Kristensen & Petersen, 2016). The results of Local sensitivity analysis can be misleading if 
the model is of unknown linearity (Delgarm et al., 2018). In contrast, Global sensitivity analysis produces 
robust results in the presence of non-linearity. It also considers the interactions between multiple input 
variables and tests their simultaneous effects on the model’s outputs. Morris Method (Morris, 1991) and 
Sobol’ method (Sobol′, 2001) are commonly used Global sensitivity analysis methods for investigations on 
building energy performance (Kristensen & Petersen, 2016). Morris method is able to identify the important 
input variables and produce a ranking by their importance. Sobol’ method even quantifies the importance of 
the input variables with two levels of effect indices. However, the main disadvantage of the Global sensitivity 
analysis is the high computational cost (Delgarm et al., 2018). One can adopt an efficient quasi-Monte Carlo 
sampling technique; simulate a small number of samples and apply a predictive model to amplify simulated 
dataset; or use fast simulation tools (Shmueli et al., 2017; Tian, 2013). 
 
To generate large-number samples of urban geometries for the sensitivity analysis, Grasshopper on Rhino 
3D (Robert McNeel & Associates, 2019) is a popular choice of tool (Natanian et al., 2019; Zhang et al., 2019). 
Grasshopper offers a user-friendly visual programming platform for parametric design modeling. It helps 
produce thousands of design scenarios based on the combinations of given design parameters within 
seconds. Also, Grasshopper provides the possibilities of tool coupling. Through a connection to any 
simulation tool of performance assessment, it expands Grasshopper’s capabilities to facilitate the analytical 
design workflow.  
 
1.1.3.  Assessment tools 
A suitable simulation program for the sensitivity analysis should be able to forecast a district’s cooling 
demand, size the DCS’ chillers, cooling towers, pumps, and piping networks, as well as simulate the 
pressure drop and the thermal loss in distributing the chilled water. These intermediate results are needed 
for calculating the affected DCS costs and DCS cost-effectiveness indicators (Details in Section 2.4.3). An 
open-source toolbox named the City Energy Analyst (CEA) meets these requirements. It performs building 
energy modeling at the district scale (Fonseca et al., 2016). The CEA simulations are performed on hourly-
basis over a year of 8,760 hours. With a connection to a parametric geometric urban design model in 
Grasshopper, CEA is able to automate large-number iterations of energy simulations for the sensitivity 
analysis. Examples of energy simulation tools include the Ladybug and Honeybee (Roudsari & Pak, 2013) 
and the Rhino-based Urban Modeling Interface (umi) (Reinhart et al., 2013). Both tools can forecast the 
cooling demand for a given scenario of urban design. However, neither of them is able to design the DCS. 
Letellier-Duchesne et al. built an extension to the demand simulation module of umi (Letellier-Duchesne et 
al., 2018). Similar to CEA, it is able to perform district thermal system design and optimization for costs, 
carbon dioxide emissions, etc. Though very promising, the current version of this extension is not yet 
capable of calculating any thermal loss in the distribution network (Letellier-Duchesne & Nagpal, 2017). 
 
1.2. Contributions 
This paper aims at the bridging the knowledge gap discussed in Section 1.1.1. The main contributions of this 
research are summarized as follows. (1) Model integration. We integrate a model for the design of floor area 
density and land uses with a detailed engineering model for urban energy system design and assessment. 
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Links of high granularity between urban design including the spatial distributions of floor area ratio, land use 
ratios and the sizing of DCS components, thermal loss, and pressure drop are to be established. In addition, 
to compare the weights of these links, we measure the affected aspects of DCS in the form of monetary 
costs. In this way, the model is able to answer research questions like: to what extent, do the design of floor 
area density and land uses affect the various aspects of DCS cost-effectiveness? (2) Insights for energy-
driven urban design. We target at providing urban designers with insights for answering questions like: how 
to design the floor area density and land uses for a cost-effective DCS, at the early stage of urban design 
processes? These insights can be used at the early stages of urban design for a high-density urban district 
serviced by a DCS. To approach this, we further the established links for quantified active interdependencies. 
(3) Metrics for spatial distributions of floor area density and land uses. Being parsimonious to the number of 
input variables for less computational expenses, we introduce the concept of Density gradient and Land use 
gradient to describe the spatial distributions of floor area ratios and land use ratios. Their calculations are 
detailed in Section 2.2.2 and Section 2.2.3.  
 
We structure the paper as follows. In Section 2, we detail the methods to approach the two research 
questions using Downtown Singapore as an example. The results are presented and explained in Section 3. 
Then, we extend a discussion in Section 4 and finally, conclude the findings in Section 5. 
 
 
2. Methods 
 

 
Figure 4. The five-step workflow and the tools used in this study. 

The methodological framework of this work has a five-step workflow as presented in Figure 4. The first four 
steps are detailed in this section and the fifth step is presented in Section 3. Section 2.1 describes the 
sources of data used. Section 2.2 describes the input variables of the experiments after preprocessing. 
Section 2.3 describes the method used for the experimental design. Finally, Section 2.4 describes the tool 
(City Energy Analyst) used for performance assessment on the DCS cost-effectiveness. 

 
2.1. Data collection 

 
Figure 5. The location of the case study at Downtown Singapore and the Singapore Master Plan 2014. 

200 m
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We gather GIS data about the floor area ratio for each block in the selected district of Downtown Singapore 
(Figure 5). These data are retrieved from the Singapore Master Plan (2014) (Urban Redevelopment 
Authority, 2014). We use them to set the boundary conditions of our study. By doing so, we limit the 
variations of the input design variables within the development framework envisioned by the local planning 
authority of Singapore. Besides, we extract the street layout in the district. However, the Singapore Master 
Plan has little data available regarding the building footprints, as this district is in planning yet with few 
occupying buildings. We extract these missing data about the building footprints and their site coverage from 
a study on urban geometries in the high-density areas of Singapore (Shi et al., 2019). 
  
2.2. Input urban design parameters 
This subsection serves to introduce the input variables and parameters that build up the parametric 
geometric model for the sampling of sensitivity analysis in Grasshopper.  
 
2.2.1.  Street layout and blocks 
We use the data of Section 2.1 to extract the centerlines of all the street segments (between intersections) 
and the borderlines of all the blocks in the selected district of Downtown Singapore. The layout of the DCS 
piping network follows these centerlines. All buildings are contained inside these borderlines. 
 
2.2.2.  Floor area density 
We use Density gradient to measure the spatial distribution of floor area density (floor area ratio). In this work, 
Density gradient describes the proximity of high or low floor area ratio to the DCS cooling plant. As in 
Equation 1 and Figure 6, the Density gradient equals the difference in floor area ratio between the furthest (𝒇) 

and the closet (𝒑) block to the DCS cooling plant divided by the Route distance between these two blocks. 
The Route distance between two nodes on a piping network measures the total length of all pipe segments 
connecting these two nodes. The floor area ratio for each block ranges between 3 and 25, based on the 
minimum requirement for a block to be qualified as high-density and the highest floor area ratio found in the 
Singapore Master Plan (Urban Redevelopment Authority, 2014). The longest Route distance found in the 
district of study is ~1,010 m. In consequence, the lower and upper limits of the Density gradient are set 

between ± (25-3)/1010 =  ± 0.02718 m-1. Within this range, when all the blocks serviced by the DCS 

cooling plant have the same floor area ratio, the Density gradient equals zero. Otherwise, when the Density 
gradient is above (below) zero, the blocks nearer to the DCS cooling plant will have a higher (lower) floor 
area ratio.  
 

𝐷𝑒𝑛𝑠𝑖𝑡𝑦 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 =  
𝐹𝑙𝑜𝑜𝑟 𝑎𝑟𝑒𝑎 𝑟𝑎𝑡𝑖𝑜𝑝−𝐹𝑙𝑜𝑜𝑟 𝑎𝑟𝑒𝑎 𝑟𝑎𝑡𝑖𝑜𝑓

𝑅𝑜𝑢𝑡𝑒 𝑑𝑖𝑠𝑡𝑟𝑎𝑛𝑐𝑒𝑓
  (1) 

 
 

 
Figure 6. Route distance [m], Density gradient [m-1], and their calculations. The point closest and furthest to 

the DCS cooling plant is denoted as 𝒑 and 𝒇, respectively. 

Throughout this work, the district’s gross floor area remains constant at ~5,000,000 sqm, envisioned by the 
local planning authority in the Master Plan (Urban Redevelopment Authority, 2014). Also, each block 
contains one building with the site coverage set at 0.47. The building footprint follows a podium building 
pattern, which is offset by the block’s borderline. These settings for the buildings are based on the average 
site coverage and the most dominant building pattern of the 178 blocks surveyed in the high-density areas of 
Singapore (Shi, Hsieh, et al., 2017). Together with a given Density Gradient, the floor area ratio and the 
gross floor area for each of the 𝑛 blocks in the district can be calculated with Equation 2 and Equation 3. 
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 𝐹𝑙𝑜𝑜𝑟 𝑎𝑟𝑒𝑎 𝑟𝑎𝑡𝑖𝑜𝑛 = 

5000000𝑠𝑞𝑚−∑ (1010𝑚−𝑅𝑜𝑢𝑡𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑏)×𝐷𝑒𝑛𝑠𝑖𝑡𝑦 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 ×𝐵𝑙𝑜𝑐𝑘 𝑎𝑟𝑒𝑎𝑏
𝑛
𝑏=1

∑ 𝐵𝑙𝑜𝑐𝑘 𝑎𝑟𝑒𝑎𝑏
𝑛
𝑏=1

+ (1010 − 𝑅𝑜𝑢𝑡𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑛) ×

𝐷𝑒𝑛𝑠𝑖𝑡𝑦 𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡  (2) 
 

𝐺𝑟𝑜𝑠𝑠 𝑓𝑙𝑜𝑜𝑟 𝑎𝑟𝑒𝑎𝑛 = 𝐹𝑙𝑜𝑜𝑟 𝑎𝑟𝑒𝑎 𝑟𝑎𝑡𝑖𝑜𝑛  ×  𝐵𝑙𝑜𝑐𝑘 𝑎𝑟𝑒𝑎𝑛 (3) 
 
2.2.3. Land uses 
Three land uses - residential, office, and retail - are used in this study as they are usually the most common 
and dominant land uses in high-density cities. Two variables - Residential gradient and Office gradient - are 
used to measure the spatial distribution of residential and office land uses. As in Figure 7 and Equation 4, 
Residential gradient and Office gradient are calculated with a similar method as that of the Density gradient. 

Land use gradient equals the difference in land use ratio between the furthest (𝒇) and the closet (𝑝) block to 
the DCS cooling plant divided by the Route distance between these two blocks. The land use ratio of the 
block furthest from the DCS cooling plant is named as the Initial land use ratio. Initial residential ratio and 
Initial office ratio are used as input variables in addition to Residential gradient and Office gradient. As land 
use ratios range between 0 and 1, the lower and upper limits of the two Land use gradients are set between 

± (1-0)/1010 =  ± 0.00099 m-1. Also, the Initial residential ratio and Initial office ratio are set between 0 and 

1. 
 

𝐿𝑎𝑛𝑑 𝑢𝑠𝑒 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 =  
𝐿𝑎𝑛𝑑 𝑢𝑠𝑒 𝑟𝑎𝑡𝑖𝑜𝑝−𝐿𝑎𝑛𝑑 𝑢𝑠𝑒 𝑟𝑎𝑡𝑖𝑜𝑓

𝑅𝑜𝑢𝑡𝑒 𝑑𝑖𝑠𝑡𝑟𝑎𝑛𝑐𝑒𝑓
  (4) 

 
 

 
Figure 7. Residential gradient [-], Office gradient [-], Retail ratio [-], District land use ratio [-], and their 

calculations. The point closest and furthest to the DCS cooling plant is denoted as 𝒑 and 𝒇, respectively. 

With all four input variables on land uses, the Residential ratio and Office ratio of each of the 𝑛 blocks in the 
district are calculated with Equation 5. Need to notice, when the sum of residential ratio and office ratio is 
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larger than 1, both of them have to be proportionally reduced until their sum equals 1, as in Figure 7, 
Equation 6, and Equation 7. The Retail ratio of each block is calculated as 1 subtracted by the sum of the 
Residential ratio and Office ratio, as in Equation 8. Also, the share of each land use type over the district’s 
gross floor area is named as the District land use ratio. Table 2 summarizes the major urban design 
parameters mentioned so far and the five independent input variables are indicated.  
 

𝐿𝑎𝑛𝑑 𝑢𝑠𝑒 𝑟𝑎𝑡𝑖𝑜𝑛
′ = 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑙𝑎𝑛𝑑 𝑢𝑠𝑒 𝑟𝑎𝑡𝑖𝑜𝑝 +  𝐿𝑎𝑛𝑑 𝑢𝑠𝑒 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 ×  (1010𝑚 − 𝑅𝑜𝑢𝑡𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑛) (5) 

 

𝑅𝑒𝑠𝑖𝑑𝑒𝑛𝑡𝑖𝑎𝑙 𝑟𝑎𝑡𝑖𝑜𝑛 =
𝑅𝑒𝑠𝑖𝑑𝑒𝑛𝑡𝑖𝑎𝑙 𝑟𝑎𝑡𝑖𝑜𝑛

′

max(1, 𝑅𝑒𝑠𝑖𝑑𝑒𝑛𝑡𝑖𝑎𝑙 𝑟𝑎𝑡𝑖𝑜𝑛
′ +𝑂𝑓𝑓𝑖𝑐𝑒 𝑟𝑎𝑡𝑖𝑜𝑛

′ )
 (6) 

 

𝑂𝑓𝑓𝑖𝑐𝑒 𝑟𝑎𝑡𝑖𝑜𝑛 = {
𝑂𝑓𝑓𝑖𝑐𝑒 𝑟𝑎𝑡𝑖𝑜𝑛

′ , 𝑖𝑓 𝑅𝑒𝑠𝑖𝑑𝑒𝑛𝑡𝑖𝑎𝑙 𝑟𝑎𝑡𝑖𝑜𝑛
′ + 𝑂𝑓𝑓𝑖𝑐𝑒 𝑟𝑎𝑡𝑖𝑜𝑛

′ ≤ 1
 

1 − 𝑅𝑒𝑠𝑖𝑑𝑒𝑛𝑡𝑖𝑎𝑙 𝑟𝑎𝑡𝑖𝑜𝑛 , 𝑖𝑓 𝑅𝑒𝑠𝑖𝑑𝑒𝑛𝑡𝑖𝑎𝑙 𝑟𝑎𝑡𝑖𝑜𝑛
′ + 𝑂𝑓𝑓𝑖𝑐𝑒 𝑟𝑎𝑡𝑖𝑜𝑛

′ > 1
  (7) 

 

𝑅𝑒𝑡𝑎𝑖𝑙 𝑟𝑎𝑡𝑖𝑜𝑛 = 1 − (𝑅𝑒𝑠𝑖𝑑𝑒𝑛𝑡𝑖𝑎𝑙 𝑟𝑎𝑡𝑖𝑜𝑛 + 𝑂𝑓𝑓𝑖𝑐𝑒 𝑟𝑎𝑡𝑖𝑜𝑛 ) (8) 
 
 

Table 2. A summary of the major urban design parameters involved. 

Design parameters Variables Boundary Definition/calculation 

Floor area ratio [-] - [3, 25] 
Ratio of gross floor area in a block/district to the 

area of that block/district 

Density gradient [m-1] V [± 0.02718] See Equation 1 

Land use ratio [-] - [0, 1] 
Ratio between the floor area of each land use 

type in a block 
Route distance [m] - [0, 1010] See Figure 6 

Residential gradient [m-1] V [± 0.00099] See Equation 4  

Office gradient [m-1] V [± 0.00099] See Equation 4 

District land use ratio [-] - sum = 1 
Ratio between the gross floor area of each land 

use type in the district 

Initial residential ratio [-] V [0, 1] 
The residential land use ratio of the block 
furthest by Route distance from the district 

cooling plant 
Initial office ratio [-] V [0, 1] Same as above 

 
2.3. Experimental design 
2.3.1. Parametric geometric modeling in Grasshopper 
Based on the five independent inputs variables and other input parameters detailed in Section 2.2, we build 
the parametric geometric model of the district in Grasshopper. The model coupled with the City Energy 
Analyst (CEA) allows the iteration of urban form generation, energy simulations, and performance 
assessment for the sensitivity analysis. Figure 8 provides two examples of the district generated by this 
parametric geometric model in Grasshopper. These two examples show how the design of floor area density 
and land uses is manipulated by the five independent input design variables. 

 
Figure 8. Two examples of the district generated by the parametric geometric model in Grasshopper.  

2.3.2.  Sampling for the sensitivity analysis 
The Sobol’ sensitivity analysis is of heavy computational expenses as it requires thousands of samples to 
converge. It takes up to six hours to complete a full performance assessment for each sample with the City 
Energy Analyst (CEA). To reduce the computational expenses, we adopt a quasi-Monte Carlo sampler 
(Saltelli et al., 2010) using SALib (Herman & Usher, 2017) and an artificial neural network to amplify the 

(a) (b)

Density gradient = 0.02046

Residential gradient = -0.00040

Office gradient = -0.00049

District land use ratio

= 0.13: 0.76 : 0.11

(residential : office : retail)

Density gradient = -0.02174

Residential gradient = -0.00059

Office gradient = -0.00043

District land use ratio

= 0.77 : 0.20 : 0.03 

(residential : office : retail)
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number of the simulated samples with JMP Pro 13 (SAS Institute Inc., 2016). First, following the 
recommendations of (Herman & Usher, 2017), the sample size is set at N = 35 making a total number of 
N · (2k+2) = 420 samples, where k equals 5 (the number of input variables). Figure 9 illustrates the 
probability density function of the sampled values for the five independent input variables. Second, using 
these sampled input variables, we use the parametric geometric model built in Section 2.3.1 to generate the 
urban geometries and then execute the performance assessment with CEA. Next, we use the simulated 
results to inform the artificial neural network that propagates the size of the dataset for the sensitivity 
analysis. 
 

 
Figure 9. Distribution of the sampled values for the five input variables, Density gradient [-], Residential 

gradient [-], Initial residential ratio [-], Office gradient [-], and Initial office ratio [-]. 

Artificial neural networks have been widely utilized in solving predictive problems for studies on building 
energy efficiencies (Mohandes et al., 2019). Though not yet with a focus on the DCS cost-effectiveness, it 
has been used in studies involving various metrics of urban development (Silva et al., 2018). An artificial 
neural network consists of three layers - the input layer, the hidden layer, and the output layer. The 
relationships between the inputs and the outputs are decided by an activation function. For building energy 
studies, Linear Function and Hyperbolic Tangent Function are the commonly used activation functions 
(Mohandes et al., 2019). KFold crossvalidation is used to avoid the artificial neural network’s tendency to 
overfit the data (Shmueli et al., 2017). It subdivides a dataset into K subsets. Each of the subsets rotates to 
serve to validate once as the other K-1 subsets all have served to train the model of prediction. After a series 
of rounds of trials for the number of neurons, hidden layers, and KFold as well as the activation function, the 
best R square and mean absolute deviation are witnessed using the following settings. One hidden layer and 
5 neurons with the Hyperbolic Tangent Function are used and the number of KFold is set at 5. R square (the 
coefficient of multiple determination) and the Mean absolute deviation are commonly used as the indicators 
for prediction accuracy (Mohandes et al., 2019). The R square and the mean absolute deviation achieved in 
this work are presented in Table 5 and their interpretations are detailed in Section 3.1. 

 
2.4. District cooling systems design and assessment 
We use the CEA v2.9.2 for the cooling demand forecasting, district cooling systems (DCS) design, and the 
performance assessment (The CEA team, 2019).  
 
2.4.1.  Cooling demand forecasting 
The cooling demand forecasting provides the inputs for the DCS design, simulation, and performance 
assessment. It is conducted for each iteration with the inputs including the building geometries and their 
spatial locations, as well as the occupancy types (land uses). They all come from the parametric geometric 
model in Section 2.3. Other inputs including the ratio of air-conditioned area, the temperature set points, the 
HVAC technology selection for each DCS component, the properties of the building envelope, the weather 
conditions in Singapore are from the CEA v2.9.2 database (The CEA team, 2019). CEA uses a space-based 
occupant behavior modeling approach (Happle et al., 2018). The occupancy schedules are adjusted from 
ASHRAE standard schedules (ASHRAE Project Committee 90.1., 2019). The output of cooling demand 
forecasting is the hourly cooling demand of each building for the 8,760 hours of a year. 
 
2.4.2.  District cooling systems design 
Piping network design 
In this study, we have the piping network of a DCS follow the street layout. Its connection to each end-user is 
located at the centroid of the building. The cooling plant located in the centroid of the entire district. The 
piping network design used in all iterations is illustrated in Figure 10. It has the shortest total length of all pipe 
segments. Branched layouts without loops are used. The piping network layout is determined using the 
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Steiner spanning tree algorithm (Cormen et al., 2009) implemented in the CEA v2.9.2 (The CEA team, 
2019). 
 

 
Figure 10. The piping network layout used in all iterations. 

Chilled water production and distribution 
Besides cooling demand and piping network, this step requires a series of other parameters concerning the 
simulations of chilled water production and distribution (Table 3). In all 420 iterations, the technology 
selections for each DCS component are kept the same. The DCS cooling plant comprises of vapor 
compression chillers and cooling towers, the sizes of which are decided based on the peak cooling demand 
and the thermal loss in the piping network. The pipe diameter of each segment of the piping network is 
decided based on the peak mass flow rate. The size of pumps is decided based on the peak pressure drop 
along the piping network.  
 

Table 3. DCS Input parameters in this study 

Parameter Value Unit Note 

Thermal conductivity of 
polyurethane 

0.023 W/mK - 

Supply Temperature in 
DCS networks 

~5.4 °C - 

Plant COP ~4.4 - Including operation of all devices at the cooling plant 

 
2.4.3. Performance assessment 
To compare across samples with various sizes of district’s annual cooling demand, we use the following five 
metrics as the DCS cost-effectiveness indicators. They are the annualized capital costs on the piping, chillers 
& cooling towers, and pumps, as well as the annual operational cost on thermal loss and pressure drop 
divided by the annual effective cooling supply. The DCS cost-effectiveness indicators of annualized capital 

costs are calculated from the capital costs using Equation 9, where 𝑖 stands for the interest rate; 𝑛 stands for 

the estimated lifetime (25 years for all technologies, except for 20 years for the cooling towers); 𝑞𝑐 stands for 
the district’s annual effective cooling supply that equals the district’s annual cooling demand. The capital 
costs of the pipes, cooling plants, and pumps are based on their required sizes and the technology pricings 
stored in the CEA database (The CEA team, 2019). The annual operational costs are calculated based on 
that spent on the electricity consumed for compensating the thermal loss and overcoming the pressure drop. 
The marginal electricity price used in this study is 0.15 USD/KWh (Energy Market Authority, 2018). The five 

DCS cost-effectiveness indicators are denoted as 𝑎𝐶𝐴𝑃𝐸𝑋𝑝𝑖𝑝𝑖𝑛𝑔 , 𝑎𝐶𝐴𝑃𝐸𝑋𝐶𝐻&𝐶𝑇 , 𝑎𝐶𝐴𝑃𝐸𝑋𝑝𝑢𝑚𝑝 , 𝑎𝑂𝑃𝐸𝑋𝑞𝑙𝑜𝑠𝑠 , 

and 𝑎𝑂𝑃𝐸𝑋Δ𝑝.  

 

𝑎𝐶𝐴𝑃𝐸𝑋𝑡𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑦 =
𝐶𝐴𝑃𝐸𝑋𝑡𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑦∙ 

𝑖(1+𝑖)𝑛

(1+𝑖)𝑛−1

𝑞𝑐
 (9) 

 
3. Results and analysis 
3.1. Sobol’ sensitivity analysis 
The two levels of effect indices in Sobol’ sensitivity analysis are the Main effect (or the First-order effect) and 
the Total effect. The Main effect quantifies the impacts of the input variables independently, while the Total 
effect considers the interactions between the input variables including the First-order effect and all higher-

200 m

DCS cooling plant

DCS pipe

street centerline

block

building
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order effects (Petersen et al., 2019). In this work, we mainly look at the Total effect. Table 4 displays the 
Total effects in the Sobol’ sensitivity analysis with the predicted dataset by the artificial neural networks in 
JMP pro 13. Table 5 shows R square and mean absolute deviation of the artificial neural network as well as 
the minimum and the maximum values of each DCS cost-effectiveness indicator’s simulated dataset. With an 
R square above or close to 0.9, the model of artificial neural networks produces reliable predicted datasets 
for the three DCS cost-effectiveness indicators of piping, chillers and cooling towers, and thermal loss. The 
Mean absolute deviation describes that the predicted dataset has only an average of difference at 0.004, 
0.119, and 0.006 USD/MWh from the simulated dataset for the three indicators, respectively. 
 

Table 4. Total effects [-] of the five input variables on the five DCS cost-effectiveness indicators. 

 𝒂𝑪𝑨𝑷𝑬𝑿𝒑𝒊𝒑𝒊𝒏𝒈 𝒂𝑪𝑨𝑷𝑬𝑿𝑪𝑯&𝑪𝑻 𝒂𝑪𝑨𝑷𝑬𝑿𝒑𝒖𝒎𝒑 𝒂𝑶𝑷𝑬𝑿𝒒𝒍𝒐𝒔𝒔 𝒂𝑶𝑷𝑬𝑿𝚫𝒑 

Density gradient 0.268 0.014 0.443 0.011 0.329 
Residential gradient 0.032 0.032 0.175 0.028 0.054 

Initial residential ratio 0.699 0.7 0.049 0.94 0.258 
Office gradient 0.005 0.034 0.057 0.002 0.056 

Initial office ratio 0.109 0.345 0.377 0.124 0.258 

 
Table 5. The R square [-] and the mean absolute deviation [USD/MWh] of the artificial neural network, as 
well as the minimum and the maximum values [USD/MWh] in the simulated dataset. 

 𝒂𝑪𝑨𝑷𝑬𝑿𝒑𝒊𝒑𝒊𝒏𝒈 𝒂𝑪𝑨𝑷𝑬𝑿𝑪𝑯&𝑪𝑻 𝒂𝑪𝑨𝑷𝑬𝑿𝒑𝒖𝒎𝒑 𝒂𝑶𝑷𝑬𝑿𝒒𝒍𝒐𝒔𝒔 𝒂𝑶𝑷𝑬𝑿𝚫𝒑 

R square 0.96 0.89 0.54 0.97 0.85 
Mean absolute deviation 0.004 0.119 0.013 0.006 0.01 
Max. in simulated dataset 0.23 7.73 0.37 0.03 0.41 
Min. in simulated dataset 0.13 4.49 0.23 0.01 0.16 

 
For the three DCS cost-effectiveness indicators of piping, chillers and cooling towers, and thermal loss in 
Table 4, two preliminary observations are made as follows. The first observation regards the four input 
variables on the design of land uses. Among them, Residential gradient and Office gradient are more related 
to the spatial distribution of the cooling demand within the district, while Initial residential ratio and Initial 
office ratio are more related to the cooling demand’s temporal distribution over a year. Based on the Sobol’ 
sensitivity analysis indices, it appears that the cooling demand’s temporal distribution is much more 
influential than its spatial distribution. The urban design parameter directly associated with the district’s 
temporal distribution of cooling demand is the District land use ratio. The second observation regards the 
Density gradient that is related to the design of floor area density. It only presents an obvious impact on the 
DCS cost-effectiveness indicator of piping. 
 
3.2. Five DCS cost-effectiveness indicators 
In Figure 11, we plot the five DCS cost-effectiveness indicators and the annual operational cost on the 
effective cooling supply at a uniform scale. Across the simulated dataset, the latter remains constant at 33.78 
USD per MWh. The sum of the five DCS cost-effectiveness indicators accounts for up to ~27% of the sum of 
the six. Also, each of the five DCS cost-effectiveness indicator’s contribution varies. The indicator of chillers 
and cooling towers dominates while the shares of the other are minor. However, when compared 
individually, the difference between the minimum and the maximum of each indicator ranges from ~60% for 
that on pumps to ~173% for that on thermal loss.  
 

 
 Figure 11. The five indicators of DCS cost-effectiveness plus the annual operational cost on the effective 

cooling supply per MWh, denoted as 𝒂𝑶𝑷𝑬𝑿𝒒𝒄 [USD/MWh] at a uniform scale. 

aCAPEX
piping

aCAPEX
CH&CT

aCAPEX
pump

aOPEX
qloss

aOPEX
Δp

aOPEX
qc

aCAPEX
piping

aCAPEX
CH&CT

aCAPEX
pump

aOPEX
qloss

aOPEX
Δp

Residential

Office

Commercial

 0.13 USD/MWh

 0.23

 0.23

 0.37

 0.01

 0.03

 0.16

 0.41

 33.78

 4.49

 7.73

 0.13 USD/MWh

 0.23

 0.23

 0.37

 0.01

 0.03

 0.16

 0.41

 4.49

 7.73



 

13 
 

 
 

Figure 12. The five DCS cost-effectiveness indicators color-coded by the dominant land use of residential, 
office, and retail [USD/MWh] at a non-uniform scale. 

In Figure 12, we plot the five DCS cost-effectiveness indicators at a non-uniform scale. When color-coded by 

the dominant (≥50%) land use, the parallel plot reveals the following two trends. First, samples dominated by 
office and retail uses behave similarly. Second, trade-offs exist among the five DCS cost-effectiveness 
indicators. The office and retail-dominated samples behave in opposite to the residential-dominated ones for 
the indicators of piping, chillers and cooling towers, thermal loss, and pressure drop. For example, a high 
District residential ratio hurts the indicators of piping, thermal loss, and pressure drop, while favors the 
indicator of chillers and cooling towers. However, no obvious trends are revealed when the parallel plot is 
color-coded by the design variables on the spatial distributions of floor area density and land uses. In the 
following subsections, we aim for quantified interdependencies between the relevant design variables and 
the five indicators, individually. 
 
3.2.1.  Chillers and cooling towers 

 
Figure 13. DCS cost-effectiveness indicator of chillers and cooling towers, denoted as 

𝒂𝑪𝑨𝑷𝑬𝑿𝑪𝑯&𝑪𝑻 [USD/MWh] and Chillers capacity factor [-] by District residential ratio [-] and District office 
ratio [-]. 

In Figure 13(a), the DCS cost-effectiveness indicator of chillers and cooling towers improves as the District 
residential ratio increases. The rate of improvement plateaus when the District residential ratio is between 
~0.20 and ~0.60. This plateau enables more flexibility for various combinations of District land use ratios. 
Though a high (>0.60) District residential ratio may significantly improve the DCS cost-effectiveness, the 
possibility for a mixed-use design is undermined in the meantime. Moreover, for the samples with the same 
District residential ratio, a relatively lower District office ratio tends to favor the DCS cost-effectiveness. To 
explain all these behaviors, we use the capacity factor of the chillers and plot it in Figure 13(b). The capacity 
factor equals the ratio of actual chilled water generated divided by the maximum chilled water generated if 
the system continuously functions at its nominal capacity over the same period of time (Equation 10). The 
land use combinations of the samples shaded in Figure 13(a) maintain the capacity factor above ~0.50 that 
keeps the indicator of chiller and cooling towers below its mean in the simulated dataset. 
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𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑓𝑎𝑐𝑡𝑜𝑟𝑐ℎ𝑖𝑙𝑙𝑒𝑟 =
𝐴𝑛𝑛𝑢𝑎𝑙 𝑐𝑜𝑜𝑙𝑖𝑛𝑔 𝑒𝑛𝑒𝑟𝑔𝑦 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑

365 𝑑𝑎𝑦𝑠 · 24 ℎ𝑜𝑢𝑟𝑠/𝑑𝑎𝑦  ·  𝑁𝑜𝑚𝑖𝑛𝑎𝑙 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦   
  (10) 

 
 
3.2.2. Piping network 

 
Figure 14. DCS cost-effectiveness indicator of piping, denoted as 𝒂𝑪𝑨𝑷𝑬𝑿𝒑𝒊𝒑𝒊𝒏𝒈 [USD/MWh] by overall 

residential ratio [-] and Density gradient [-]. 

In Figure 14(a), the DCS cost-effectiveness indicator of piping generally improves as the District residential 
ratio decreases. This trend confirms its trade-off with the indicator of chillers and cooling towers. To explain 
this, we use the average diameter of all pipe segments and the pricings, as the length of each pipe segment 
remains the same. Figure 14(b) shows that samples with higher District residential ratio tend to have thinner 
pipes. The unit price of thinner pipes is higher than that of thicker ones. Thus, high District residential ratio 
using thinner pipes presents reduced DCS cost-effectiveness. Moreover, for the samples with the same 
District residential ratio, a higher Density gradient tends to improve the DCS cost-effectiveness. This means 
that having a higher floor area density in proximity to the DCS cooling plant improves the DCS cost-
effectiveness on the piping network. The improvement can be as much as ~35%. This is because high 
Gradient density reduces the amount of chilled water to be distributed to the further side of the piping 
network. In this way, the need for installing thicker and pricier pipes at the further side of the piping network 
is reduced. The District residential ratios of the samples shaded in Figure 14(a) that with a high Density 
gradient keep the indicator of piping below its mean in the simulated dataset. 
 
3.2.3.  Thermal loss 

 
Figure 15. DCS cost-effectiveness indicator of thermal loss, denoted as 𝒂𝑶𝑷𝑬𝑿𝒒𝒍𝒐𝒔𝒔 [USD/MWh] by District 

residential ratio [-] and District office ratio [-]. 
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In Figure 15, the DCS cost-effectiveness indicator of thermal loss improves as the District residential ratio 
and District office ratio decreases. This trend confirms its trade-off with the indicator of chillers and cooling 
towers. The reason is that samples with higher District residential ratio are equipped with thinner pipes (see 
Figure 14(b)), and thinner pipes lead to more thermal loss. This is because that the proportional insulation 
thickness (and hence thermal resistance) of thinner pipes is lower per unit of mass flow, in comparison to 
that of thicker pipes. However, the indicator of thermal loss is nearly negligible. It merely accounts for less 
than 1% of the five indicators combined. This is due to the small temperature gap between the chilled water 
and the soil. In contrast, likewise, the impact of thermal loss on cost-effectiveness is expected to be higher in 
the context for district heating systems. 

 
3.2.4.  Pumps and pressure drop 
The DCS cost-effectiveness indicator of pumps accounts for ~4% to ~6% of the five indicators combined, yet 
no obvious trends are witnessed for it with the design variables.  
 

 
Figure 16. DCS cost-effectiveness indicator of pressure drop, denoted as 𝒂𝑶𝑷𝑬𝑿𝚫𝒑 [USD/MWh] by District 

residential ratio [-], District office ratio [-], and the Density gradient [-]. 

In Figure 16, the DCS cost-effectiveness indicator of pressure drop improves as the District residential ratio 
decreases and District office ratio increases. This trend confirms its trade-off with the indicator of chillers and 
cooling towers. The rate of improvement slows down as the District residential ratio falls below ~0.75 and the 
District office ratio exceeds ~0.1. To explain this, we use the pipe diameters and the time of high mass flow 
rate. For residential-dominated samples, thinner pipes and extended hours of high mass flow rate worsen 
the pressure drop (Rogenhofer, 2018). Moreover, for samples with similar land use ratios, a higher Density 
gradient tends to improve the DCS cost-effectiveness. By having more floor area density close to the DCS 
cooling plant, the improvement can reach as much as ~50%. This is because samples with more floor area 
density further away from the DCS cooling plant have longer distances for distributing the chilled water that 
causes more pressure drop (Rogenhofer, 2018). The District land use ratio of the samples shaded in Figure 
16 that with a high Density gradient, can potentially keep the indicator of pressure drop below its mean in the 
simulated dataset. 

 
3.3. Absolute costs and overall cost-effectiveness 
In Figure 17, the parallel plot presents the relationships between the absolute annualized capital and annual 
operational costs, the overall cost-effectiveness, and the district’s dominant land use. Three observations are 
made as follows. First, the design of land uses affects both the annualized capital and annual operational 
costs by up to ~270% and ~180%, respectively. In general, both costs increase for samples with the 
dominant land use following the order of residential, office, and retail. Both the lowest annualized capital and 
annual operational costs are found in the sample with a District residential ratio at ~0.96. Second, low costs 
do not necessarily lead to high overall cost-effectiveness, and vice versa. High cost-effectiveness can be 
achieved through an appropriate design of land uses and is hardly relevant to the size of the absolute costs. 
For samples with 80th and above for the overall cost-effectiveness, the highest absolute costs are found to 
be ~165% and ~115% more than the cheapest annualized capital and annual operational costs, respectively. 
Third, decent over cost-effectiveness can be achieved regardless of the sample’s dominant land use. For 
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samples with 60th and above for the overall cost-effectiveness, the dominant land uses are found to be any 
of the three, The flexibility for a mixed-use design exists, yet for a wide span of the absolute costs. However, 
no obvious trends can be made when the parallel plot is color-coded by the design variables related to the 
spatial distribution of floor area density and land uses, like Density gradient, Residential or Office gradient. 

 
Figure 17. The annualized capital (denoted as 𝑪) and annual operational (denoted as 𝑶) costs [USD] 

grouped by five levels of percentiles for the sum of the five DCS cost-effectiveness indicators [-], color-coded 
by the dominant land use of residential, office, and retail [-]. 

 
4. Discussion 
4.1. Land uses 
4.1.1.  District land use ratio 
The analyses in Section 3 reveal that the District land use ratio has a more dominant role than the land use 
gradients on influencing the DCS cost-effectiveness as well as the absolute annualized capital and annual 
operational costs. For the simulated samples with the same District land use ratio, the impact of either their 
Residential gradient or Office gradient is witnessed to be less than 2% of the five DCS cost-effectiveness 
indicators combined. All these show that the District land use ratio outweighs the spatial distribution of land 
uses in proximity to the district cooling plant. It grants high flexibility to the urban designers for assigning the 
land uses for each block within the district, as long as the District land use ratio falls into a certain range. 
 

 
Figure 18. Constraints for the design of land uses on District residential ratio [-] and District office ratio [-] for 

high DCS cost-effectiveness based on the shades in Section 3.2. 

Figure 18 illustrates the method we use to spot the range of District land use ratio for cost-effective DCS. We 
overlay the shaded range of the preferred District residential and office ratio for each DCS cost-effectiveness 
indicator analyzed in Section 3. For the overall preferred District residential ratio, a range between ~0.2 to 
~0.65 satisfies all three relevant indicators and allows flexibility for a mixed-use design. The range for the 
overall preferred District office ratio is therefore set between ~0.1 to ~0.55. This range is subject to the 
selected District residential ratio as an addition to the two relevant indicators. However, this finding is 
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context-specific. A context of varied human habits, climates, locations, ratios of air-conditioned area, and 
building management may require different ranges of the preferred District land use ratio. 
 
4.1.2. District residential ratio 
District residential ratio, in particular, appears to be of great importance for the DCS cost-effectiveness and 
absolute costs. In urban design, an appropriate District residential ratio helps to achieve design goals like 
proximity to workplaces and all-day vitality in the public spaces, etc. However, as a matter of fact, a recent 
study on eight exemplary high-density districts worldwide shows that only three of the eight have a District 
residential ratio above 0.20 and some even have none (Christiaanse et al., 2019). Marina Bay in Singapore 
is one of the eight and has a District residential ratio at 0.06. Despite the advantages, the inclusion of 
residential to high-density districts is a decision out of factors like politics, need and supply, land price, 
infrastructure availability, and environmental condition, etc. 
 
Moreover, the connection of residential land use to DCS is also subject to the game of multiple stakeholders 
(Gang et al., 2016). First, the sellable air-conditioner ledge of the split-units is not subject to the restriction on 
the floor area in Singapore. Thus, it hurts the interests of the real estate developer by connecting the 
residential building to DCS and removing the sellable air-conditioner ledge (Shi, Fonseca, et al., 2017a). 
Second, residential is not always preferred by the service providers for the fluctuating electricity prices over 
the 24 hours of a day. For example, in Singapore, they may produce and store the chilled water when the 
electricity tariff is lower at night and sell it out to other types of end-users during the peak time. Also, the 
occupancy schedule of residential is often versatile (Happle et al., 2017), making it difficult to predict the 
residents’ actual need for chilled water. This adds up the risk and uncertainties for the service providers. 
 
4.2. Floor area density 
The Density gradient is able to affect the DCS cost-effectiveness indicators of piping and pressure drop by 
up to ~55%. A high Density gradient or keeping a high floor area density in proximity to the DCS cooling 
plant improves the DCS cost-effectiveness. This is in line with some other urban design strategies. For 
example, a transit-oriented development tends to have higher floor area density immediately next to the 
transit station for higher accessibility and real estate values (Cervero & Guerra, 2011). Integrating a transit 
station design with a DCS cooling plant underneath can maximize the usage of the public land and alleviate 
the conditions of land scarcity. Furthermore, the underground pedestrian tunnels connecting the buildings 
from the transit stations may also be integrated into the Common Service Tunnel Plan. Such integration may 
enhance the advantages of the common service tunnels for easy repair and maintenance, and help to justify 
the massive investment in a shorter term. 
 
4.3. Limitations 
The limitations of this research come in five points. (1) We use simplified building footprints by an offset of 
the blocks’ borderlines. However, a high-density urban quarter may have various types of building footprints, 
like courtyards, slabs, etc. As the form of the building geometries may influence the cooling demand 
forecasting by affecting the received solar radiation, other types of building footprints shall be included in 
future studies. (2) For a mixed-use building, the HVAC inputs for the main use type are assigned to the entire 
building regardless of the characters of the other use types, like ratio air-conditioned area, set-point, etc. This 
drawback of the City Energy Analyst hurts the accuracy of cooling demand forecasting. The simulation 
program to be adopted in future studies should be better able to conduct the cooling demand forecasting in 
multiple zones for different land use types. (3) Regarding the DCS design, all the DCS components are 
assigned with a given technology. However, other technologies (e.g., pipes with various insulations, 
seawater-sourced chillers, etc.) shall be explored in future studies. (4) An artificial neural network is used to 
compensate for the high computing complexity for Sobol’ sensitivity analysis. As the simulated dataset is 
small, the predicted results for the DCS indicators of pumps and pressure drop are not good enough for 
advising the importance of input design variables. As the computational power or the simulation tool’s 
efficiency improves, a bigger number of simulated samples are to be expected in future similar works. (5) 
Concerning the various stakeholders involved in the entire process of decision-making, we mainly focus on 
the interests of the DCS service providers. In future studies, should the perspectives of the real estate 
developers and the residents are considered, heat exchangers and the intra-block chilled water distributions 
shall be included for the performance assessment of DCS cost-effectiveness. 
 
5. Conclusions 
This work presents an investigation on the quantified interdependencies between the design of floor area 
density, land uses and the cost-effectiveness of district cooling systems in high-density cities. To approach 
this, we integrate a parametric geometric model for urban design in Grasshopper with a detailed engineering 
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model of urban energy system design and assessment, named the City Energy Analyst. In building the urban 
design model for studying the spatial distributions of floor area density and land uses, we introduce metrics 
named Density gradient and Land use gradient. Two research questions are answered as follows, using 
Downtown Singapore as an example. 
 
To what extent do floor area density and land use design influence the DCS cost-effectiveness? From the 
perspective of DCS service providers, the influence of these factors can reach ~60% to ~75% for the DCS 
cost-effectiveness indicators of capital costs and ~150% to ~175% for the rest on operational costs. District 
land use ratios, especially the District residential ratio, have the most dominant impact on the DCS cost-
effectiveness, followed by the spatial distribution of floor area density. The impact of the spatial distributions 
of land use does exist, yet almost negligible. In addition, the indicator of chillers and cooling towers counts 
for up to ~83% - ~91% of the five indicators combined. It is followed by the indicators of pressure drop, 
piping, and pumps for ~2% - ~8% each. The indicator of thermal loss is nearly negligible for contributing to 
less than 1%. 
 
At the early stage of urban design processes, how can the design of floor area density and land use help to 
reach better DCS cost-effectiveness? Based on our experiments and discussion throughout this study, the 
preferred range of the District residential ratio is between ~0.20 and ~0.65 and that of the District residential 
ratio is between ~0.10 and ~0.55. In general, high District residential ratio leads to an increase in the DCS 
cost-effectiveness and a decrease in the absolute costs. However, the inclusion of Residential land use is 
subject to further evaluations, acknowledging the interests of other stakeholders or the complex operating 
conditions (e.g., the electricity tariff differences between the day and the night). In addition, though less 
impactful, higher floor area density is advised to be spatially allocated in proximity to the DCS cooling plant. 
We hope the method and these design insights help urban planners and designers better shape high-density 
urban quarters serviced by district cooling systems.  
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