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Research Article

Mesenchymal stromal cell activation by breast cancer
secretomes in bioengineered 3D microenvironments
Ulrich Blache1,2,* , Edward R Horton3,* , Tian Xia3, Erwin M Schoof4, Lene H Blicher4, Angelina Schönenberger2,5,
Jess G Snedeker2,5, Ivan Martin6, Janine T Erler3, Martin Ehrbar1

Mesenchymal stromal cells (MSCs) are key contributors of the
tumour microenvironment and are known to promote cancer
progression through reciprocal communication with cancer cells,
but how they become activated is not fully understood. Here, we
investigate how breast cancer cells from different stages of the
metastatic cascade convert MSCs into tumour-associated MSCs
(TA-MSCs) using unbiased, global approaches. Using mass spec-
trometry, we compared the secretomes of MCF-7 cells, invasive
MDA-MB-231 cells, and sublines isolated from bone, lung, and
brain metastases and identified ECM and exosome components
associated with invasion and organ-specific metastasis. Next, we
used synthetic hydrogels to investigate how these different
secretomes activate MSCs in bioengineered 3D microenviron-
ments. Using kinase activity profiling and RNA sequencing, we
found that only MDA-MB-231 breast cancer secretomes convert
MSCs into TA-MSCs, resulting in an immunomodulatory pheno-
type that was particularly prominent in response to bone-tropic
cancer cells. We have investigated paracrine signalling from
breast cancer cells to TA-MSCs in 3D, which may highlight new
potential targets for anticancer therapy approaches aimed at
targeting tumour stroma.

DOI 10.26508/lsa.201900304 | Received 14 January 2019 | Revised 22 May
2019 | Accepted 22 May 2019 | Published online 3 June 2019

Introduction

Breast cancer is the most common type of cancer in women, ac-
counting for 30% of cancer cases globally. In particular, breast
cancer cells often invade surrounding primary site stroma, enter
the vasculature or lymphatic system, and metastasise to secondary
organs, leading to worse clinical outcomes for patients (1). Cancer
progression is a complex multistep process that is dependent on
both the behaviour of cancer cells themselves and the function of
nonmalignant support cells in the tumour microenvironment (TME)

(2). Tumour-associated mesenchymal stromal cells (TA-MSCs) are a
major component of the TME and are a potential source of cancer-
associated fibroblasts (CAFs) (3, 4, 5, 6). TA-MSCs assist cancer
progression by promoting metastasis, tumour vascularisation, and
immunosuppressive conditions (7, 8, 9, 10, 11). TA-MSCs have been
show to promote breast cancer cell malignancy (12, 13, 14) and
contribute to cancer cell resistance to chemotherapy (15). There-
fore, TA-MSCs and their derived factors are considered as emerging
targets for novel anticancer therapies (16). In this regard, several
agents targeting tumour stroma are in clinical trials (reviewed in
reference (15)).

The TME is a 3D entity made up ofmultiple cell types and the ECM.
It has been shown that cell signalling and drug responses differ
when cells are cultured on rigid 2D substrates or using 3D cell
culture systems that more closely mimic the TME (17, 18, 19, 20). The
vast majority of 3D cancer models are based on animal or tumour-
derived ECM components such as collagen, fibrin, and Matrigel
hydrogels. In contrast, synthetic hydrogels are a useful alternative
when focusing on cell signalling events as they are generated with
defined biochemical and biophysical properties and are free of
confounding ECM or signalling proteins that are present in ECM-
derived hydrogels (21, 22, 23). We have previously developed
cytocompatible enzymatically cross-linked poly ethylene glycol
(PEG) hydrogels that are matrix metalloproteinase (MMP)-degradable
and contain the cell adhesion site arginylglycylaspartic acid (RGD),
thereby providing ECM-mimicking microenvironments (24, 25). These
biomimetic PEG hydrogels are highly suitable for 3D culture of MSCs
and can closely mimic their niches (26, 27).

It has been described that MSC conversion into TA-MSCs occurs
via paracrine signalling with breast cancer cells (4, 6); however, the
regulation of this unfavourable conversion remains incompletely
understood because of the complexity of the underlying molecular
events. Here, we apply soft PEG hydrogels (470 Pa) to investigate TA-
MSC activation induced by breast cancer cells in an unbiased and
comprehensive manner in 3D microenvironments. We analyse
breast cancer cell secretomes by mass spectrometry to identify
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factors encountered byMSCs; we profile kinase signalling in MSCs to
determine how MSCs respond to breast cancer cell-derived factors;
and we investigate the reprogramming of MSCs into TA-MSCs by
whole-genome RNA sequencing. We performed these analyses
using human breast cancer cells with a range of metastatic abilities
and found that only MDA-MB-231 secretomes led to the conversion
of MSCs into TA-MSCs, which may give insights into the role of TA-
MSCs in cancer progression.

Results and Discussion

Comparative mass spectrometry analysis of breast cancer
secretomes

To investigate MSC activation by cancer cell secretomes from dif-
ferent stages of human breast cancer progression, we used con-
ditioned medium (CM) from a panel of human breast cancer cells
(Fig 1A). The pair of MCF-7 and MDA-MB-231 cells are widely used to
study breast cancer metastasis as MCF-7 represent breast cancer
cells with low invasion capacity, whereas MDA-MB-231 (MDA-WT) are
highly invasive. In addition, to investigate whether MSC activation
occurs in an organ-specific manner during metastasis, we used
MDA-MB-231 sublines derived from organ-specific metastases
(MDA-Bone, MDA-Lung, and MDA-Brain). These MDA-MB-231 sub-
lines have been generated by repeated, organ-tropic in vivo se-
lection of MDA-MB-231 cells that had been injected to the left
ventricle of nude mice (28, 29, 30, 31, 32). CM was collected from
cancer cells after 24 h of serum-free growth and analysed for
protein composition by mass spectrometry. Overall, we found 292
proteins that were significantly different between secretomes from
MDA-WT and MCF-7 cells, of which 164 proteins were higher in MDA-
WT and 128 were higher in MCF-7 (Fig S1A and Table S1). When
analysed for overrepresented Gene Ontology (GO) terms, the most
significantly overrepresented GO term in both secretomes is ex-
tracellular exosome (Fig 1B and C). On further analysis, we identified
173 altered exosome components in total, of which 97 and 76 were
enriched in MDA-WT and MCF-7 secretomes, respectively (Fig S1B).
Both secretomes clearly differ from each other by the fact that
cell–cell adhesion terms were present only in top MCF-7 GO terms
(Fig 1B), whereas ECM terms were present only in top MDA-WT GO
terms (Fig 1C). Therefore, we next extracted ECM and secreted
proteins reported in the humanmatrisome database (33) and found
that 23 ECM proteins were higher in the MDA-WT secretome,
whereas only five were higher in the MCF-7 secretome (Fig 1D),
which could be attributed to the different EMT statuses that MDA-
WT and MCF-7 have. To further subclassify the secretome com-
position, we divided these proteins into core matrisome and
matrisome associated. We found several typical mesenchymal-like
ECM proteins, including collagens (COL6A1 and COL12A1) and gly-
coproteins (FN1, TNC, and laminins [in particular laminin 511])
enriched in the MDA-WT secretome. Interestingly, the two most
increased proteins in the MDA-WT secretome (SERPINE1 and MMP1)
are both ECM regulatory enzymes known to be involved in breast
cancer and metastasis (34, 35). We also identified proteins uniquely
in either the MDA-WT (100 exosome proteins, 56 matrisome

proteins) or MCF-7 secretome (43 exosome proteins and 7 matri-
some proteins) (Fig S2A and B).

Next, we compared the secretomes of MDA sublines against the
parental MDA-WT secretome (Fig 1E and Table S1). We found 68 and
64 exosome or matrisome proteins different for MDA-Bone and
MDA-Lung secretomes, respectively. Moreover, although organ-
specific secretomes generally produced distinct secretomes,
when comparing the matrisome proteins of MDA-Bone and MDA-
Lung to MDA-WT we saw similar changes, as seven and two
matrisome proteins were commonly up- and down-regulated, re-
spectively (up-regulated: PLOD3, PLOD1, CTSD, LAMB1, LAMA5, TGFBI,
and SEMA4B; down-regulated: MMP1 and IGFBP3). We observed that
MMP1, which was the most strongly increased protein in MDA-WT
versus MCF-7 analysis (Fig 1D), was by far the most decreased
protein for both MDA-Bone and MDA-Lung secretomes (Fig 1E). In
contrast to MDA-Bone and MDA-Lung, only two proteins were al-
tered in the MDA-Brain secretome (COL6A1 and GGCT). These data
demonstrate that MDA-WT cells that have metastasised to bone
and lung but not to brain alter their secretome profiles in an organ-
specific manner, which might be a consequence of cell adaptation
to their new microenvironment in the secondary organ. The lack of
change of the MDA-Brain secretome compared with the MDA-WT
might be linked to these cells crossing the blood–brain barrier,
which then blocks factors in the circulation (36), such as secreted
molecules and exosomes released by the primary tumour, reaching
these cells or those in the local microenvironment so that MDA-
Brain cells are consequently not altered. We also identified several
uniquely expressed proteins in the MDA-organ secretomes (Fig
S2C–E).

To validate our proteomics data, we analysed the secretomes for
three core matrisome proteins (THBS1, FN1, and COL6A1) and three
matrisome-associated proteins (MMP1, SERPINE1, and TIMP2) by
Western blot analysis (Fig 1F). We were able to confirm the mass
spectrometry results between MDA-WT and MCF-7 secretomes for
all tested proteins. Similarly, the Western blot analysis also con-
firmed some of the differences between MDA sublines for these
proteins.

MSC activation by cancer secretomes in bioengineered 3D
microenvironments

To resemble the characteristics of the TME under physiologically
relevant and highly controlled in vitro conditions, we engineered
fully defined 3D microenvironments using PEG hydrogels (Fig 2A).
PEG hydrogels were generated by enzymatic cross-linkage of two
different star-shaped 8-arm PEG precursor molecules that are end-
functionalized by substrate sequences for the transglutaminase
FXIIIa (24, 25). To render this inert hydrogel material bioactive, an
MMP-sensitive degradation domain in one of the PEG precursor
molecules allows matrix remodelling and the fibronectin-derived
integrin adhesion ligand RGD enables cell adhesion. This bio-
mimetic microenvironment is highly suitable for the 3D culture of
MSCs, which are 3D encapsulated into hydrogels during polymer-
ization. MSCs interact with the microenvironment, spread in 3D, and
further remodel it by depositing their own ECM (Fig 2A).

To systematically address the activation of MSCs, we embedded
MSCs from four human donors into PEG hydrogels, cultured them
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Figure 1. Comparative proteomic analysis of breast cancer secretomes by mass spectrometry.
(A) To cover a range of cancer progression steps, we used secretomes from noninvasive MCF-7 cells, invasive MDA-MB-231 cells (MDA-WT), and MDA-MB-231 sublines
that were isolated from metastatic organs (the lung, bone, and brain). (B, C) The 10 most significantly overrepresented gene ontology terms for proteins that were
significantly enriched (corrected P-value < 0.05) in secretomes of MCF-7 (B) or MDA-WT (C) are listed. (D) Subplot comparing matrisome proteins in the secretomes of MDA-
WT and MCF-7 cells. (E) Hierarchical clustering analysis of significantly changed secretome proteins between MDA-WT and organ-tropic cells. Significantly changed
proteins for each comparison are indicated by a black border. Quantitative heat map displays the level of enrichment between the MDA-WT (blue) and organ-tropic (red)
secretomes. (F) Total protein gel (left) and Western blot analysis (right) of breast cancer secretomes. Band pixel intensities relative to MDA-WT are displayed. Proteins
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for 7 d in the presence of breast cancer secretomes, and analysed
MSC responses by two omics methods (Fig 2B). First, we investigated
downstream signalling events by analysing the kinome of retrieved
MSCs using kinase profiling microarrays. These microarrays contain
phosphopeptides and based on their phosphorylation levels, the
activity of upstream kinases is inferred (37). The relative intensities
of tyrosine phosphopeptides and the corresponding upstream
phosphotyrosine kinase (PTK) activity values between MDA-WT and
MCF-7 are displayed (Fig 2C and D and Tables S2 and S3). Overall, we
found that the MDA-WT secretome strongly activates multiple PTKs
in MSCs compared with the MCF-7 secretome. Themost significantly
and intensely changed PTKs are type A ephrin receptors (EPHA1,
EPHA3, EPHA4, and EPHA8), which are known to be involved in
cancer and angiogenesis (38, 39). Moreover, other strongly activated
PTKs are also related to angiogenesis (VEGFR2 and FLT4 [VEGFR3]) or
are prominent proto-oncogenes (KIT, FYN, SRC, MET, and ABL1). We
observed fewer changes in serine/threonine phosphorylation
levels (Fig S3A), which resulted in eight activated and 10 deactivated
serine/threonine kinases (STKs) by the MDA-WT secretome (Fig S3B
and Tables S4 and S5). When we next investigated altered MSC
kinase activity by secretomes of MDA sublines, we found that the
MDA-Bone secretome led to increased phosphorylation of VEGFR3
(Fig S4A), and we observed an additional activation of seven PTKs
and a reduction in the activity of only two PTKs (Fig 2E and Tables S2
and S3). In contrast, the secretomes of MDA-Lung and MDA-Brain
reduced tyrosine phosphorylation levels and thus deactivated
many PTKs in MSCs, many of which were among the top activated
PTKs by theMDA-WT secretome compared with MCF-7 (type A ephrin
receptors, VEGFR2, KIT, FYN, and SRC). The MDA-Bone and MDA-Lung
secretomes led to inhibition of several cell cycle–related STKs,
including cyclin-dependent (CDK1, CDK5, and CDK9) and checkpoint
(CHEK1 and CHEK2) kinases, whereas members of the MAP kinase
pathway were differentially activated by different organ MDAs (Figs
S3C and S4B and Tables S4 and S5). These data show that kinase
signalling pathways are altered in MSCs in response to breast
cancer secretomes.

Secretomes from invasive breast cancer cells induce
reprogramming of MSCs into TA-MSCs

To investigate the molecular reprogramming of MSCs by the dif-
ferent breast cancer secretomes, we performed an unbiased
transcriptome analysis using RNA sequencing followed by differ-
ential gene expression analysis. RNA sequencing is beneficial over
protein analysis as we are able to ensure that any observed
changes are occurring in the MSCs and are not simply changes in
the breast cancer secretomes themselves. In addition, it allows
quantification of transcripts that might not encode for functional
proteins, which would be missed by proteome analysis. Surpris-
ingly, no gene transcript was significantly altered in MSCs by the
MCF-7 secretomes compared with serum-free control medium
(Table S6). Consequently, we saw largely the same outcome in
transcriptome response if we compared MDA-WT with serum-free

controls or MDA-WTwith the MCF-7 secretome. When comparing the
MDA-WT and MCF-7 data, 310 gene transcripts were differentially
expressed in MSCs (71 MCF-7 enriched, 239 MDA-WT enriched; Table
S6). The top 10most differentially expressed transcripts were all up-
regulated by the MDA-WT secretome and consisted of MMPs (MMP3
and MMP13), secreted proteins (complement C3 and the chemokine
CXCL1), transporters (SLC39A14 and SLC16A3), PGK1, NFKBIZ, GCH1,
and CHI3L2. To reveal pathways regulated by breast cancer
secretomes in MSCs, we functionally enriched genes using the GO
domain Biological Process and we found 362 Biological Process
terms containing proteins that were altered in MSCs by the MDA-WT
secretome (see Table S7). By hierarchical clustering (Fig 3), we found
that prominent clusters show immune signal reception and
processing by MSCs (interleukin signalling, immune response
signalling, immune activation, and leukocyte activation), in ad-
dition to clusters showing the release of immunomodulatory
signals by MSCs (cytokine signalling, cytokine production, JAK-STAT,
and macrophage/leucocyte differentiation). As well as an immu-
nomodulatory phenotype, we found MDA-WT–induced clusters that
comprise transcription, anti-apoptosis, kinase signalling, hypoxia,
glycolysis, ion transport, cell migration, and angiogenesis.

Only four GO terms were found when data were analysed within
the domain Cellular Component (Fig 4A), which relate to the ECM,
the perinuclear cytoplasm, and the NF–kB complex. We identified 10
overrepresented molecular function terms (Fig 4B), such as integrin
binding and ion transmembrane transport (solute carrier family
SLC). Five terms formed a very prominent cluster referring to
cytokine/chemokine activity that included the chemokines CXCL1-3,
CXCL5, CXCL6, CXCL8, CCL2, and CCL7; some of which have been
previously reported for TA-MSCs (40, 41) and underlines their
immunomodulatory reprogramming. Furthermore, the metal-
loendopeptidase activity term (MMP1, MMP3, MMP8, MMP9, and
MMP13) indicates a matrix-remodelling phenotype of MSCs, which
expands earlier findings on the induced proteolytical and thereby
promigratory activity of TA-MSCs/CAFs (41, 42). It is also worth
noting that themost strongly induced genes in MSCs by theMDA-WT
secretome, mainly chemokines and MMPs, are MSC secretion
molecules. We have confirmed the increased expression of che-
mokines and MMPs in MDA-WT–educated MSCs by quantitative
real-time PCR (qRT–PCR) (Fig S5A). Further studies are required to
elucidate how breast cancer cell–induced MSC secretion factors
alter reciprocal signalling in breast cancer cells and the TME. In this
regard, it was recently shown that biomechanical alterations in the
MSC microenvironment led to increased expression of prosaposin,
which increases breast cancer proliferation (43).

Next, we compared the MDA subline and MDA-WT secretomes by
investigating their effect onMSCs transcriptome changes (Table S6).
Overall, all three MDA subline secretomes were very similar in
inducing immunomodulatory MSC reprogramming that was in-
duced by the MDA-WT secretome. When we compared MDA subline
secretomes with MDA-WT, we found that the MDA-Bone secretome
resulted in additional expression changes in 14 genes (Fig 4C).
These include the genes MMP3, SLC39A14, and PGK1 that were

tested inWestern blot analysis are highlight by an asterisk in (D, E). In (D, E), data are from three independent experiments and values represent themean log2 fold change.
Protein lysates used in (F) were pooled from three independent experiments.
Source data are available for this figure.
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Figure 2. Bioengineered hydrogels and kinome profiles of MSC responses to breast cancer secretomes.
(A) Schematic of biomimetic PEG hydrogels. Microscopy images show MSCs after 7 d of culture. Bight field image; scale bar: 100 μm. Representative immunofluorescence
image of MSCs (F-actin cytoskeleton, red; nuclei, blue) and cell-derived ECM components (Perlecan, green). Image depicts Z-projections through 54 μm. Scale bar 20 μm.
(B) MSCs were cultured in 3D hydrogels in the presence of secretomes from MCF-7, MDA-WT, or organ-tropic cells. MSCs were analysed by kinase profiling and RNA
sequencing. (C) Volcano plot comparing phosphorylation levels of tyrosine peptides in MSCs treated with MDA-WT or MCF-7 secretomes. Values represent log2 intensity
values, and the most significantly changed peptides are labeled by gene name and start-end residues of the peptide. (D) Comparative analysis of tyrosine kinase activity
in MSCs treated with MDA-WT or MCF-7 secretomes. A relative measure of kinase activity (kinase statistic) is plotted against a combined score of significance and
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among the top 10 genes that increased in response to the MDA-WT
versus MCF-7 secretomes. In view of their shared functions, it is
noticeable that the zinc-dependent MMP3 and the zinc transporters
SLC39A14 and SLC39A8 are up-regulated together. Furthermore, five
gene transcripts additionally induced by the MDA-Bone secretome
all encode for components that are linked to the anaerobic gly-
colysis pathway (SLC16A3 [MCT4], PGK1, LDHA, PFKP, and TPI). A high
aerobic glycolytic activity is a hallmark of cancer and is known as

the Warburg effect in cancer cells (44, 45). Here, we have found an
induction of glycolysis, lactate production (LDHA), and lactate
transport components, such as SLC16A3, in MSCs by paracrine
signalling from invasive cancer cells. This so-called reversed
Warburg effect has been described for CAFs and has been found to
be a consequence of bidirectional signalling between cancer and
stromal cells in the TME (46). Interestingly, we found that this effect
was particularly prominent in MSCs in response to the MDA-Bone

Figure 3. Transcriptome profiles of MSC responses to breast cancer secretomes.
Overrepresented Biological Process GO terms from genes that were significantly differentially expressed (P-value < 0.05) in MSCs upon treatment with the MDA-WT
secretome compared with the MCF-7 secretome are displayed. Terms were hierarchically clustered, which identified clusters of genes associated with a similar set
of functional terms. Selected clusters are labeled and a full list of terms is provided in Table S7. Relative expression is displayed as log2(MDA-WT/MCF-7) and colour
is proportional to the level of gene expression change. Data represent the mean values from four independent experiments using different donor MSCs (see Table S6).

specificity for each kinase. (E) Hierarchical clustering analysis of tyrosine kinases in MSCs with altered activity in response to MDA-WT and organ-tropic
secretomes. Kinases with highest score (>1), indicating altered kinase activity, are displayed with a black border. Quantitative heat map displays relative kinase activity
(see Table S3). In all comparisons, data are from at least three independent experiments using different donor MSCs.
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secretome, indicating that this metabolic switch may play a role in
bone metastasis. We have validated differences between MSCs
treated with MDA-WT and MDA-Bone secretomes for several target
genes by qRT–PCR (Fig S5B).

In addition to MDA-Bone, the MDA-Lung secretome led to an
increase in the expression of COMP (Fig 4D). In support of a possible
function of COMP in metastasis, COMP has been shown to promote
lungmetastasis of breast cancer and has been found to be themost
up-regulated protein in stromal cells at sites of metastases versus
primary tumours in ovarian cancer (47, 48). No changes were ob-
served for the MDA-Brain secretome (Fig 4E).

TA-MSCs do not have altered migration capacity but activate
macrophages

Using unbiased, molecular screening approaches, we have shown
that MDA-MB-231 secretomes generate a TA-MSC phenotype and
have provided a resource of molecular data to the scientific
community. To show the further utility of our multiomics data to
others, we sought to demonstrate several ways that the datasets
can be used to generate hypotheses regarding the role of MSCs in
cancer, focusing on the MDA-WT and MCF-7 secretomes as this is
where we observed the largest molecular differences in MSCs.

Figure 4. Additional analysis of transcriptome profiles of MSC responses to breast cancer secretomes.
(A, B) Overrepresented Cellular Component (A) and Molecular Function (B) GO terms from genes that were significantly differentially expressed (P-value < 0.05) in MSCs
upon treatment with the MDA-WT secretome compared with the MCF-7 secretome are displayed. Terms were hierarchically clustered, which identified clusters of genes
associated with a similar set of functional terms. Relative expression is displayed as log2(MDA-WT/MCF-7) and colour is proportional to the level of gene expression
change. (C–E) MA plots comparing transcriptome responses in MSCs treated with MDA-WT or organ-tropic secretomes (C, MDA-Bone; D, MDA-Lung; E, MDA-Brain).
Significantly changed transcripts are indicated by red circles and are labeled with gene names. In all comparisons, data represent the mean values from four independent
experiments using different donor MSCs (see Table S6).
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First, we asked how secreted factors present in the breast cancer
cell CM may lead to the activation of kinases observed in MSCs. To
do this, we generated protein–protein interaction network models

of matrisome proteins enriched in the MDA-WT secretome versus
the MCF-7 secretome, and kinases activated by the MDA-WT
secretome (Fig 5A). We observed several interactions between

Figure 5. Network analysis, 3D migration, and immunomodulatory capacity of TA-MSCs.
(A, B)Networks showmatrisome proteins enriched in the MDA-WT secretome versus MCF-7 and kinases activated (A) or transcripts up-regulated (B) in MSCs by the MDA-WT
secretome versus MCF-7. In both networks, node shape and colour corresponds to protein category as indicated and unconnected proteins are not shown. (C) Spheroid-
based MSC migration experiments in PEG hydrogels. Z-stack projections of F-actin–stained MSC spheroids treated with breast cancer secretomes or PDGF-BB. Scale bar:
200 μm. Quantification of invaded area: Box plot shows themedian (line), 25th and 75th percentiles (box), andmin/max (whiskers). N = 12 spheroids from three independent
experiments using three different donors. Individual data point for PDGF-BB. (D)Macrophage activation assay. Gene expression of macrophages treated with breast cancer
secretomes (MCF-7, MDA-WT) or with secretomes collected from MSCs that were pretreated with breast cancer secretomes (MSC, MSCMCF-7, and MSCMDA-WT). Gene
expression was analysed by qRT–PCR and normalized on two reference genes (GAPDH and ACTB). Dashed line: untreated control. Box plot shows themedian (line), 25th and
75th percentiles (box), and min/max (whiskers). Data are from four independent experiments. *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001; t test.
Source data are available for this figure.
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secreted proteins and kinases in MSCs, such as the interaction
between IGFBP3 and the receptor IGF1R, and HSPG2 interacting with
VEGFR2. These interactions could be targeted in future studies
aiming to prevent TA-MSC activation. Similar network analyses for
the MDA-Bone data are presented in Fig S6A. However, some li-
gands for activated kinases were not identified in our secretome
analysis, which is likely because growth factors and cytokines are
notoriously difficult to detect by mass spectrometry. Further
fractionation and the use of new generation mass spectrometers
might improve coverage and detection of small, low abundance
proteins in secretome analyses.

When assessing the transcripts induced in MDA-WT–educated
TA-MSCs, many of them are secreted molecules. These data suggest
that TA-MSCs may secrete molecules that act in concert with the
MDA-WT secretome to remodel their microenvironment. To provide
an overview of potential new matrisome interactions in the TME
upon TA-MSC activation, we generated protein–protein interaction
network models of matrisome proteins enriched in the MDA-WT
secretome and transcripts induced in MSCs by the MDA-WT
secretome (Figs 5B and S6B). Fibronectin (FN1) is the most con-
nected protein with 27 interaction partners, highlighting its po-
tential role in coordinating MSC secretome functions. In support of
the role of these proteins in human breast cancer, 11 matrisome
proteins in the MDA-WT secretome (ANXA1, ANXA6, COL6A1, COL6A2,
FN1, HSPG2, LGALS1, TGFBI, THBS1, THBS2, and TNC) and five proteins
induced in MSCs (ALDOA, C3, COL3A1, GAPDH, and PGK1) have been
identified with at least two unique peptides by proteomics in triple
negative breast cancer patient samples previously (49) (CANX was
induced in MSCs and was identified adjacent to the tumour tissue).

Network analysis points to an induced matrix remodelling in the
TME. We tested whether such matrix remodelling may affect TA-MSC
functions experimentally. We performed 3D spheroid-based in-
vasion experiments by embedding MSC spheroids in PEG hydrogels,
treating them with breast cancer secretomes and analysing their
invasion (Fig 5C). Although MSCs strongly migrated into the sur-
rounding hydrogel matrix when treated with the known chemo-
attractant PDGF-BB, we observed no difference in MSC migration
upon treatment with control medium, the MCF-7 secretome, or the
MDA-WT secretome. This finding shows that breast cancer secre-
tomes do not induce TA-MSC migration here, which indicates that
the matrix-modulatory phenotype of TA-MSCs might be linked to
nonmigratory matrix remodelling or to enhancedmigration of other
cells in the TME such as cancer cells or immune cells.

Finally, to functionally assess the immunomodulatory reprog-
ramming of TA-MSCs identified in our transcriptome analysis, we
carried out macrophage activation assays (Fig 5D). Macrophages are
a further key component of the TME and have been shown to be
recruited by TA-MSCs (41, 50, 51). To test whether TA-MSCs drive also
the activation of macrophages, we generated naı̈ve macrophages
from the human monocyte THP-1 cell line as described previously
(52) and treated them with either the breast cancer secretomes
directly or with CM obtained from MSCs that were themselves
pretreated with the breast cancer secretomes. After 24 h, we
analysed the response of macrophages by qRT–PCR for established
activationmarkers/cytokines (53). Strikingly, only the CM fromMDA-
WT–educated MSCs induced the expression of TNF, IL1B, and IL10,
whereas secretomes from breast cancer cells or MSCs alone did not.

These data indicate that TA-MSCs induce features of both M1-like
(TNF and IL1B) and M2-like (IL10) polarization (53).

Taken together, these data suggest that in response to the MDA-
WT secretome, TA-MSCs do not increase their own migration ca-
pacity but are an important mediator between breast cancer cells
and the activation of tumour-associated macrophages through
secretion molecules. Future experiments are required to better
understand the activation of macrophages by TA-MSCs, but the data
provided here demonstrate an example of how our molecular
profiling studies can be used to further investigate crosstalk be-
tween cells in the TME.

Conclusions

Here, we have investigated MSC activation upon exposure to breast
cancer secretomes from different stages of the metastatic cascade
in 3D using PEG hydrogels. The great advantages of synthetic
hydrogels are their low batch-to-batch variability, their fully de-
fined and animal product free composition, and their precisely
customizable biochemical and biophysical properties. These fea-
tures enable the generation of reproducible and adaptable 3D
cancer biology platforms, and future studies could decipher the
effects of individual niche components of the TME such as matrix
stiffness, specific ECM components, or cell-derived factors on TA-
MSC activation. Our work on the molecular profiling of TA-MSC
activation complements previous work using PEG hydrogels for the
study of tumour morphogenesis, drug responses, and cell invasion
(54, 55, 56, 57, 58, 59, 60, 61, 62). In addition, our omics datasets are
complementary to other studies that have sought to identify
metastasis-associated genes in breast cancer. In a recent study
comparing the matrsiome of MDA-WT and MDA-Lung tumour xe-
nografts (63), MMP1 and THBS2 were detected uniquely in MDA-WT
tumours and AGRN was detected uniquely in MDA-Lung tumours,
which correlates with our proteomics data of MDA-WT and MDA-
Lung secretomes. Further tumour studies are required to assess the
functional role of such metastasis-associated proteins.

This is the first time TA-MSC activation has been comprehen-
sively investigated using invasive/noninvasive breast cancer cells
and cells from different metastatic organs at the secretome,
kinome, and transcriptome level. We identified ECM and exosome
components associated with cancer progression and found that
invasive MDA-MB-231 breast cancer cells activate TA-MSCs, whereas
noninvasive MCF-7 cells do not. Further work is required to elu-
cidate how proteins identified in this study contribute to the ability
of invasive cancer cells to survive in newmicroenvironments during
metastasis. As the organ-tropic breast cancer cells used here were
selected through injection into immunocompromised mice, follow-
up studies using immunocompetent mouse models of metastatic
breast cancer to confirm the data presented here could be in-
formative. In this manner, although we used patient-derived MSCs,
it would also be interesting to confirm results using matched
primary and metastatic cancer cells from patients. These data
highlight breast cancer cell–derived proteins and those induced in
the TME, specifically by MSCs, which warrant further study and could
be targeted therapeutically to inhibit cancer progression.
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Materials and Methods

Cell culture

Human bone marrow–derived MSCs were isolated as described
previously (64) from bonemarrow aspirates of healthy donors (n = 4)
obtained during orthopaedic surgical procedures after informed
consent and in accordance with the local ethical committee (Uni-
versity Hospital Basel; Prof. Dr. Kummer; approval date 26/03/2007
Ref Number 78/07). MSCs were maintained in MEM α (with nucleo-
sides; Gibco) supplemented with FBS (10%; Gibco), penicillin (100 U
ml−1; Gibco), streptomycin (100 μg ml−1; Gibco), and FGF-2 (5 ng ml−1;
PeproTech) at 37°C in a humidified atmosphere at 5% CO2.

We used human breast carcinoma cell lines that vary in their in
vitro and in vivo invasiveness. Noninvasive MCF-7 cells were pur-
chased from ATCC. Invasive MDA-MB-231 cells (MDA-WT) and MDA-
MB-231 cells that were isolated from metastases in the bone, lung,
and brain (MDA-Bone, MDA-Lung, and MDA-Brain) were kindly ob-
tained from J Massagué at the Memorial Sloan-Kettering Cancer
Center. Cancer cells were maintained in DMEM/Nutrient Mixture F-12
(DMEM/F12; Gibco) supplemented with FBS (10%; Gibco) and peni-
cillin streptavidin (1%; Gibco) at 37°C in a humidified atmosphere at
5% CO2. All cell lines were routinely tested for mycoplasma.

Conditioned media preparation

CM was prepared as described previously (65). Cancer cells (1 × 106)
were seeded in 15-cm dishes in DMEM/F12 supplemented with 10%
FBS. After 48 h, the medium was removed, the cells were washed
twice with PBS, and 20 ml serum-free DMEM/F12 was added. For
mass spectrometry analysis of CM, phenol red–free DMEM/F12 was
used. CM was collected after 24 h, passed through a 0.22-μM filter,
added to spin columns (Vivaspin 20 centrifugal concentrator with
10-kD molecular mass cutoff, Sartorius) and centrifuged (2,000g,
4°C) until the volume reached 1 ml. Concentrated 20× CM was snap-
frozen and stored at −80°C until use. Concentrated 20× CM from
three independent experiments was used for mass spectrometry
analysis and 20× CM from three independent experiments was
pooled for use with MSCs.

Mass spectrometry acquisition of breast cancer cell secretomes

Concentrated CM in spin columns was diluted 1:2 in lysis buffer (6 M
urea, 2 M thiourea, and 10 mMHepes, pH 8) and centrifuged (2,000g,
4°C) until 500 μl volume remained. This was repeated three times in
total. Dissolved proteins were heated (95°C, 5 min, 300 rpm [Bio-
metra TSC Thermoshaker]) and sonicated at 4°C using a Bioruptor
at high-energy setting (five cycles of 30 s on and 10 s off). Protein
concentration was determined using the Bradford method.
Denatured proteins were snap-frozen and stored at −80°C until
required for mass spectrometry analysis.

For digestion, we took 50 μg of protein, which was diluted 1:3 with
digestion buffer (50 mM Hepes, pH 8.5, 10% acetonitrile), and then
digested first with LysC at a 1:50 (enzyme:protein) ratio for 3 h at
37°C. Subsequently, the samples were diluted to 1:10 (volume:
volume) with digestion buffer, and digested overnight at 37°C. The
followingmorning, the digests were quenched with 2% TFA to a final

concentration of 1%. Before MS analysis, 5 μg of each digest was
desalted on in-house–packed StageTips (66), dried down in an
Eppendorf speed-vac, and resuspended in 10 μl of 1% TFA and 2%
acetonitrile, containing Biognosys iRT peptides at a 1:1,000 dilution.

For MS analysis, from each sample, 1 μg of peptides were loaded
onto a 2-cm C18 trap column (164705; Thermo Fisher Scientific),
connected in-line to a 50-cm C18 reverse-phase analytical column
(EasySpray ES803; Thermo Fisher Scientific) using 100% Buffer A (0.1%
formic acid in water) at 750 bar, using the Thermo EasyLC 1000 HPLC
system in a dual-column setup and the column oven operating at
45°C. Peptides were eluted over a 200-min gradient ranging from 5 to
38% of 80% acetonitrile and 0.1% formic acid at 250 nl/min, and the
QExactive (Thermo Fisher Scientific) was run in a DD-MS2 manner. Full
MS scans were collected at 70,000 resolution, with a 3 × 106 automatic
gain control target and maximum injection time of 20 ms. MS2 scans
were conducted at 17,500 resolution, with an automatic gain control
target of 1 × 106 and 60-ms injection time. MS2 spectra were collected
as a top 10 method, with a 1.6 m/z isolation window, 25 normalized
collision energy, and a minimum intensity of 1.7 × 104. All unassigned
and singly charged peptides were excluded. MS performance was
verified for consistency by running complex cell lysate quality control
standards, and chromatography was monitored to check for re-
producibility. The raw mass spectrometry data have been deposited
to the ProteomeXchange Consortium (http://proteomecentral.
proteomexchange.org) via the PRIDE partner repository with the
dataset identifier PXD010467.

Resulting .raw files were analysed using MaxQuant version 1.6.1.0
(67) and standard settings. Briefly, label-free quantitation was
enabled with a requirement of two unique peptides per protein,
and iBAQ quantitation was also enabled during the search. Variable
modifications were set as oxidation (M) and acetyl (protein N-term).
Fixed modifications were set as carbamidomethyl (C), false dis-
covery rate was set to 1%, and “match between runs” was enabled,
with a 2-min alignment window.

In total, we identified 2,128 proteins from all biological replicates
and cell lines. To identify proteins expressed uniquely in one
secretome or another, we classified proteins as present in a
secretome, provided label-free quantitation intensity values were
greater than zero in at least two biological replicates, and we
classified proteins as not expressed in a secretome if the intensity
value was equal to zero across all three replicates, which are the
criteria we have used previously (68). To quantify differential
abundance of proteins between samples, we filtered the dataset to
include only those proteins identified in at least two replicates in all
cancer cell secretomes analysed, and any missing values were
imputed in the Perseus software package (69), using the normal
distribution with a width set to 0.3 and a down-shift of 1.8. This
resulted in a high-confidence quantifiable list of 642 proteins
(Table S1). Using this list, we performed multifactorial Limma
analysis (70) to determine significantly altered proteins (P value <
0.05) between cancer cell secretomes. GO analysis was performed
using DAVID (version 6.8) (71) against the Homo sapiens background
where terms with fold enrichment ≥1.5, Bonferroni-corrected P-
value < 0.05, EASE score (modified Fisher’s exact test) < 0.05, and at
least two proteins per keyword were considered significantly
overrepresented. ECM and secreted proteins were extracted based
on annotations in the bioinformatics-based human Matrisome
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database (http://matrisomeproject.mit.edu) (33). Exosome com-
ponents were extracted based on the H. sapiens extracellular
exosome GO annotation in AmiGO (version 2.5.12) (72).

Western blotting of conditioned media

CM were mixed with 4× Laemmli sample buffer (containing 2-mer-
captoethanol) and boiled for 10 min at 95°C. 15-μl protein volumes
were separated on 4–15% Mini-PROTEAN TGX stain-free protein gels
(4568086; Bio-Rad), and whole proteins were detected with the
Criterion Stain-free imaging system (Bio-Rad). Next, the proteins were
transferred on polyvinylidene difluoridemembranes using the Trans-
Blot-Turbo system (Bio-Rad). The membranes were blocked in 5%
nonfat dry milk/TBS-T for 1 h at RT. The following primary antibodies
were diluted 1:1,000 in 5% BSA/TBS-T and incubated overnight at 4°C:
MMP1 (sc-30069; Santa Cruz), SERPINE1 (sc-5297; Santa Cruz), TIMP2
(ab53730; Abcam), COL6A1 (sc-377143; Santa Cruz), FN1 (F3648; Sigma-
Aldrich), and THBS1 (sc-59887; Santa Cruz). Membranes were 3×
washed in TBS-T and the following secondary antibodieswere diluted
1:20,000 in 2.5% nonfat dry milk/TBS-T and incubated for 1 h at RT:
goat-anti-mouse-HRP (SAB3701073-2; Sigma-Aldrich) or goat-anti-
rabbit-HRP (SAB3700878-1; Sigma-Aldrich). HRP was visualized by
the UltraScence Pico Ultra Western Substrate (CCH345-B; Gene-
DireX) and the ChemiDoc MP imaging system (Bio-Rad).

TG-PEG hydrogel formation and 3D cell culture

1 ml of FXIIIa (200 U ml−1, Fibrogammin; CSL Behring) was activated
with 100 μl of thrombin (20 Uml−1; Sigma-Aldrich) for 30 min at 37°C.
Small aliquots of FXIIIa were stored at −80°C for further use.
Hydrogels with final dry mass contents of 1.7% wt/vol (corre-
sponding to a storage modulus of 470 Pa (27)) were prepared by
stoichiometrically balanced ([Lys]/[Gln] = 1) precursor solutions of
n-PEG-Gln and n-PEG-MMP-sensitive-Lys (previously described (24,
25)) in 50 mM Tris buffer, pH 7.6, containing 50 mM CaCl2. In addition,
Lys-RGD at a final concentration of 50 μM and MSCs from four
individual donors at a final concentration of 4 × 106 ml−1 were
added. Hydrogel volume was 50 μl. Subsequently, PEG cross-linking
was initiated by addition of 10 U ml−1 FXIIIa and disc-shaped ma-
trices were prepared between hydrophobic glass slides (treated
with SigmaCote; Sigma-Aldrich). Final hydrogels were cultured in a
medium containing MEM α, FBS (10%), penicillin (100 U ml−1), and
streptomycin (100 μgml−1) at 37°C in a humidified atmosphere at 5%
CO2. After 24 h, the medium was changed to minimal FBS conditions
(2%). After 24 h, 50%medium was replaced with medium containing
1:10 diluted 20× CM. For the following 7 d, 50%medium was replaced
every 24 h with medium containing 1:20 diluted 20× CM.

To retrieve cells, hydrogels were degraded in 0.5 mg ml−1 col-
lagenase A (11088793001; Sigma-Aldrich) at 37°C for 60 min. Sub-
sequently, total RNA was isolated from cells using the RNeasy Micro
Kit following the manufacturer’s instructions (74004; QIAGEN). Al-
ternatively, the cell pellets were snap-frozen and stored at −80°C
until further use.

Kinase activity profiling

To remove any collagenase A or PEG remaining from MSC retrieval,
the cell pellets were washed in 100 μl cold PBS and centrifuged

(1,000g, 4°C). The cells were lysed (10 min, 4°C, 500 rpm [Biometra
TSC Thermoshaker]) in 25 μl Mammalian Protein Extraction Reagent
(M-PER) (Thermo Fischer Scientific) containing EDTA-free protease
(1×) and phosphatase (1×) inhibitor cocktails (Halt; Thermo Fischer
Scientific). The cell lysates were clarified (10 min, 4°C, 16,000g) and
protein concentration was determined using the Bradford method.

Kinase activity profiles were carried out using the PamChip Ki-
nase Profiling Microarray System (PamGene) as described pre-
viously (37, 73). Separate chips for Protein Tyrosine Kinase (PTK) and
the STK assays were used, where each chip contains peptides (with
known phosphorylation sites) immobilised in an array format on a
porousmembrane. Membranes were first blocked with 2% BSA. 10 μl
of cell lysate (2.7 and 1 μg in total for PTK and STK analyses, re-
spectively) was mixed with 1× additive, 1× protein kinase (PK) buffer,
10 mM dithiothreitol, 1× BSA, 400 μM ATP, FITC-conjugated anti-
phosphotyrosine antibody (PY20), and water to achieve a total
volume of 40 μl. For the STK assay, a two-step procedure was
applied involving a primary antibody and a second FITC-conjugated
antibody. The samples were loaded onto the chip and were ana-
lysed using the Pamstation 12 instrument. Cell lysates were pumped
through the membrane, allowing real-time phosphorylation of
peptides by active kinases in the sample. Images were taken with a
built-in CCD camera, and image analysis and signal quantification
were performed using BioNavigator software (PamGene). Peptides
that displayed higher signal than background were selected and
pair-wise differences between conditions were analysed. Differ-
ences between the phosphorylation levels of individual peptides
were calculated and were analysed using a t test (Tables S2 and S4).
Next, data were analysed using the upstream kinase analysis app
(2018 version; PamGene) with default settings, which allows pre-
diction of kinases responsible for altered phosphorylation between
conditions based on kinase–substrate relationships reported in
multiple databases. The software gives as output the normalized
kinase statistic (a proportional measure of activity for a kinase
when evaluating a set of peptides that are linked to that kinase) and
a combined score of significance (across replicates) and kinase
specificity (indicates confidence in kinase prediction of a set of
peptides to a kinase, so the higher the score, the less likely it is that
the observed change in kinase activity could have been obtained
using a random set of peptides) (Tables S3 and S5).

RNA sequencing

RNA concentration was determined with RiboGreen (Life Technol-
ogies) and measured on the Infinite M1000 Pro plate reader (Tecan).
RNA library preparation was performed using a polyA selection
method. RNA sequencing was performed using the Illumina HiSeq
system in a 2 × 150-bp configuration (single index, per lane) by
GENEWIZ and RNAseq data were analysed on the Galaxy server at
BRIC, University of Copenhagen (https://bricweb.sund.ku.dk/galaxy/)
(74). Starting from the raw .fastq files, the reads weremapped against
the human reference genome (hg19Full) using the RNA STAR aligner
(version 2.4.0d-2) (75). Read counting was performed with htseq-
count (version 0.6.0) (76) using union mode. Differential gene ex-
pression was analysed using DESeq2 (version 1.8.2) (77). Significance
was defined as P value < 0.05 after adjustment for multiple testing
with the Benjamini–Hochberg procedure.
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Functional enrichment maps were generated as described
previously (78, 79). Overrepresentation of GO terms was calculated
for the list of significantly altered genes using High-Throughput
GoMiner (80) using the H. sapiens background. One thousand
randomisations were performed, and data were thresholded for a
0.05 false discovery rate. Overrepresented terms with ≥5 and ≤500
assigned genes were reported. Fold change values were mapped
onto genes assigned to each overrepresented term.

Hierarchical clustering

Hierarchical clustering analysis was performed on the basis of
uncentred Pearson correlation and a complete-linkage matrix
using Cluster 3.0 (81). Clustered data were visualized using Java
TreeView (82).

qRT–PCR

MSCs from four individual donors were 3D-cultured, and RNA was
isolated as described above. 200 ng RNA were converted into 60 μl
cDNA by means of the High-Capacity cDNA Reverse Transcription Kit
(Applied Biosystems). qRT-PCR was carried out using 1.5 μl cDNA
template, the TaqMan Universal PCR Master Mix (Applied Biosystems),
and the StepOnePlus Real-Time PCR System (Applied Biosystems). The
following TaqMan primer/probe sets were used for gene expression
tests: Hs00236937_m1 (CXCL1), Hs00601975_m1 (CXCL2), Hs00171061_m1
(CXCL3), Hs01099660_g1 (CXCL5), Hs00174103_m1 (CXCL8),
Hs00899658_m1 (MMP1), Hs00968305_m1 (MMP3), Hs01029057_m1
(MMP8), Hs00957562_m1 (MMP9), Hs00942584_m1 (MMP13),
Hs00737347_m1 (PFKP), Hs01378790_g1 (LDHA), Hs00299262_m1
(SLC39A14), and Hs01061804_g1 (SLC39A8). Data were normalized on
the expression of the following genes: Hs03044281_g1 (YWHAZ) and
Hs02800695_m1 (HPRT1). Relative gene expression was calculated by
the comparative Ct method.

Network analysis

Interaction network analysis was performed using Genemania
(version 3.4.1) (83) within Cytoscape (version 3.4.0) (84) where
enriched proteins were mapped onto a human interactome con-
sisting of reported physical protein–protein interactions. Un-
connected proteins were manually removed.

Macrophage activation

The human monocyte THP-1 cell line was obtained from the
American Type Culture Collection and cultured in RPMI (Sigma-
Aldrich) supplemented with 10% FBS and penicillin/streptomycin at
37°C in a humified 5% CO2 atmosphere. Differentiation of mono-
cytes (0.35 × 106, 12-well) towards naı̈ve macrophages was induced
by stimulating with 100 nM phorbol 12-myristate 13-acetate (PMA;
Sigma-Aldrich) in full RPMI medium for 3 d, followed by 24 h re-
covery in full RPMI medium. Next, naivemacrophages were cultured
in minimal MEM α control medium (2% FBS) or supplemented with
1:20 diluted 20× CM from MCF-7 or MDA-MB-231. Alternatively,
macrophages were cultured in CM collected from MSCs (N = 4) that
were treated with control medium or CM fromMCF-7 or MDA-MB-231

as described above (cultured in hydrogels for 7 d with daily 50%
medium changing). More specifically, the 50%MSC CMwas collected
daily and pooled over the 7-d time course. 2 ml of preparedmedium
was added to macrophages, and RNA was isolated after 24 h of
culture. 500 ng RNA were converted into 30 μl cDNA and qRT–PCR
was performed with the following TaqMan primer/probe sets:
Hs00961622_m1 (IL10), Hs00174097_m1 (IL1B), Hs01113624_g1 (TNF),
and Hs00998133_m1 (TGFB1). Data were normalized to the ex-
pression of the following genes: Hs02758991_g1 (GAPDH) and
Hs01060665_g1 (ACTB). Relative gene expression was calculated by
the comparative Ct method.

3D spheroid migration assay

For spheroid formation, MSC cell suspensions (final. conc. 3.3 × 105

cells ml−1) were suspended in MEM α (2% FCS) and supplemented
with 0.2% (wt/vol) methyl cellulose (Cat. No. M0512; Sigma-Aldrich).
Droplets of 30 μl were placed in nonadhesive cell culture dishes
and cultured for 24 h as hanging drops. The resulting spheroids
(1,000 cells) were harvested in MEM α (2% FCS) and washed once
with medium.

MSC spheroids were encapsulated in PEG hydrogels (1.7% wt/vol,
as described above) and cultured in MEM α (2% FCS) supplemented
with 1:20 diluted 20× CM; with a daily replacement of 50% medium
containing 1:20 diluted 20× CM. As positive control, we used 50 ng
ml−1 human recombinant PDGF-BB (Peprotech 100-14B). After 72 h,
the hydrogels were washed twice with PBS followed by fixation in
4% PFA for 30 min at RT. Next, the gels were washed for 1 h with PBS
and stained for F-actin with rhodamine phalloidin (Molecular
Probes 1:500) in PBS containing 1% BSA (Albumin Fraction V,
AppliChem) for 4 h at RT.

Z-stack images covering the whole spheroid were acquired by an
inverted laser scanning confocal microscope (TCS SP5; Leica). The
images were Z-projected, binarized, and automatically batch-
measured by the analyze particles tool of ImageJ software (Fiji
version 1.48.u, April 2014) for the whole area covered by cells
(summed F-actin–positive signal of pixels >10 μm2). 3D migration
was calculated by subtracting the area of a perfectly circular initial
spheroid from the measured whole area. 12 spheroids from three
independent experiments (using three different MSC donors) were
measured per condition.

Data Availability

Proteomics data have been deposited in ProteomeXchange (http://
proteomecentral.proteomexchange.org) through the PRIDE partner
repository (85) with the primary accession identifier PXD010467. RNA
sequencing data have been deposited to the Annotare database
(https://www.ebi.ac.uk/fg/annotare) with the identifier E-MTAB-6998.

Supplementary Information

Supplementary Information is available at https://doi.org/10.26508/lsa.
201900304.
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