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Abstract
The results of clustering are often affected by covariates that are independent of the clusters
one would like to discover. Traditionally, alternative clustering algorithms can be used to
solve such clustering problems. However, these suffer from at least one of the following
problems: (1) Continuous covariates or nonlinearly separable clusters cannot be handled; (2)
assumptions are made about the distribution of the data; (3) one or more hyper-parameters
need to be set. The presence of covariates also has an effect in a different type of prob-
lem such as semi-supervised learning. To the best of our knowledge, there is no existing
method addressing the semi-supervised learning setting in the presence of covariates. Here
we propose two novel algorithms, named kernel conditional clustering (KCC) and kernel
conditional semi-supervised learning (KCSSL), whose objectives are derived from a kernel-
based conditional dependence measure. KCC is parameter-light and makes no assumptions
about the cluster structure, the covariates, or the distribution of the data, while KCSSL is fully
parameter-free. On both simulated and real-world datasets, the proposed KCC and KCSSL
algorithms perform better than state-of-the-art methods. The former detects the ground truth
cluster structures more accurately, and the latter makes more accurate predictions.

Keywords Conditional clustering · Conditional semi-supervised learning · Conditional
dependence measure · Alternative clustering · Label propagation

1 Introduction

In many applications, labeling samples by domain experts is extremely expensive, e.g., diag-
noses in the biomedical domain. In practice, one may often encounter datasets with only
unlabeled samples or perhaps a few labeled ones. On the one hand, clustering techniques are
used to uncover the hidden structure in the data by learning the relationship between unla-
beled samples. On the other hand, semi-supervised learning methods focus on improving
the classification accuracy by learning a relationship between labeled and unlabeled samples
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[1]. However, a fundamental problem that is intrinsic to both, clustering and semi-supervised
learning, is that the relationships one expects to uncover are often driven by the presence and
by the effect of covariates associated with the data. The structure these covariates impose on
the data is often trivial to find and irrelevant to the interesting structure or relationship one
hopes to discover. As an example, if we consider the clustering of text documents, one may
discover source-related clusters rather than content-specific clusters. This phenomenon is par-
ticularly prominent in high-dimensional settings (e.g., analysis of text documents, images,
and genomic data) where covariate-related features are often collected. Classic clustering or
semi-supervised learning algorithms do not take into account the above-mentioned covari-
ates, even when it is clear that their presence masks interesting underlying relationships
between samples. Our goal is then to correct for covariates in two distinct problem settings:
clustering and semi-supervised learning. To that effect, we focus on the problems of con-
ditional clustering and conditional semi-supervised learning, respectively. Their aim is to
maximize the dependence between the data and the clustering/label assignment, conditioned
on known covariates.

To the best of our knowledge, there is no literature about the conditional semi-supervised
learning problem.

In contrast, the clustering domain has an extensive body of work addressing the condi-
tional clustering problem. The first milestone toward solving this problem is the work by
Gondek and Hofmann [2]. Their method is based on maximizing the conditional mutual
information. However, it relies on assumptions on the distribution of the data to estimate the
mutual information. The research community then focused on alternative clustering [3–7].
The aim of alternative clustering is to generate multiple, dissimilar clusterings of a dataset.
Most alternative clustering algorithms produce clusterings sequentially, i.e., given a set of
clusterings, find a new, dissimilar clustering. When treating known clusterings as categorical
covariates, sequential alternative clustering becomes an instance of conditional clustering.
Alternative clustering algorithms differ in theway they compute the dissimilarity between the
alternative and known clusterings. The work by Bae and Bailey [3] is based on hierarchical
clustering with must-link and cannot-link constraints constructed from a known clustering.
Subsequent research performed the clustering on transformed data through an orthogonal
projection [4] or an inverse distance metric [5], both with respect to the given clustering.
These early methods can only handle categorical covariates because a dependence measure
to assess the dissimilarity between the alternative and known clusterings has not been used.
Recently, several alternative clustering algorithms that use a kernel-based dependence mea-
sure, the Hilbert–Schmidt Independence Criterion (HSIC) [8], have been proposed [9–13].
HSIC enables these methods to also handle continuous covariates. However, the objective
functions of these methods are expressed in a regularization framework, where one term is
for the clustering quality and the other is for the dissimilarity between clusterings. A hyper-
parameter is needed to enforce a trade-off between these two terms, something which is
difficult to estimate in practice.

In this paper, we propose kernel conditional clustering (KCC) and kernel conditional
semi-supervised learning (KCSSL), two de novo algorithms that use an extension of HSIC,
known as the Hilbert–Schmidt Conditional Independence Criterion (HSCONIC) [14,15],
to solve the conditional clustering problem and the conditional semi-supervised learning
problem, respectively.WhileKCCmaximizes the dependence in the reproducing kernel space
between the clustering assignment and a subspace projection of the data, KCSSL maximizes
the dependence in the reproducing kernel space between original data and the target labels
(predicted and known). More importantly, both algorithms perform their respective tasks
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while conditioned on observed covariates. The major contributions of KCC and KCSSL are
threefold.

1. Statistically sound The objective functions of KCC and KCSSL are based on the kernel
conditional dependence measure HSCONIC, a nonparametric statistical test. Therefore,
the objective functions build on a well-established statistical foundation with a clear
interpretation.

2. Parameter-light KCC does not require the setting of a hyper-parameter to control the
regularization; it only needs the number of clusters as input. This is achieved while
making no assumptions on the data distribution, the covariates, or the cluster structure.
KCSSL is fully parameter-free without any input hyper-parameter.

3. Subspace learning KCC integrates subspace learning into conditional dependence max-
imization for clustering high-dimensional datasets.

Parts of this paper (kernel conditional clustering) have appeared previously in [16].
In this paper, we provide: (1) an extension of HSCONIC to the problem of conditional
semi-supervised learning with a new objective function and optimization algorithm; (2) a
theoretical and empirical comparison of KCSSL to state-of-the-art semi-supervised learning
methods; (3) a more detailed survey of state-of-the-art methods in both conditional clustering
and semi-supervised learning.

The rest of this paper is organized as follows: In Sect. 2, we introduce the kernel depen-
dence measure HSIC and its extension HSCONIC. In Sects. 3 and 4, we present the proposed
methods: kernel conditional clustering (KCC) and kernel conditional semi-supervised learn-
ing (KCSSL), respectively. Experiments on synthetic and real-world datasets that show the
effectiveness of KCC and KCSSL are presented in Sect. 5. Section 6 discusses related work,
and Sect. 7 concludes the paper.

2 Kernel conditional dependence

We start this section by introducing the kernel dependence measure, Hilbert–Schmidt
Independence Criterion (HSIC), followed by its extension, Hilbert–Schmidt Conditional
Independence Criterion (HSCONIC). As mentioned earlier, HSCONIC is at the heart of the
two methods presented in this paper that address the two disjoint problems of conditional
clustering and of conditional semi-supervised learning.

2.1 The kernel dependencemeasure HSIC

HSIC measures the dependence between two variables by mapping them to the reproducing
kernel Hilbert space (RKHS). This means that correlations measured in the RKHSs reflect
higher-order joint moments between the data distributions in the original space [17].

Given a random variable (x, y) on X ×Y , and RKHSsHX andHY on X and Y , respec-
tively, we define feature representations φX (x) and φY (y) that map x and y to the RKHSs
HX and HY , such that the inner product in the RKHS is given by the kernel functions kX
and kY , e.g., kX (x, x ′) = 〈φX (x), φX (x ′)〉.

The linear cross-covariance operator [8,18] Cxy in RKHS is defined as

Cxy = Exy[(φX (x) − μx ) ⊗ (φY (y) − μy)], (1)

where μx = Ex (φX (x)), μy = Ey(φY (y)), and ⊗ is the tensor product. The cross-
covariance operator naturally extends the covariance matrix of the Euclidean space to reflect
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higher-order correlations between x and y. The HSIC measure of dependence between x
and y is defined as the Hilbert–Schmidt norm (the generalization of the Frobenius norm on
matrices [8]) of the cross-covariance operator:

HSIC(x, y) = ||Cxy ||2HS. (2)

Given n observations {(x1, y1), . . . , (xn, yn)}, HSIC can be empirically estimated by

HSICemp(x, y) = 1

(n − 1)2
Tr(HKx HKy), (3)

where Kx and Ky are the Gram matrices defined on the kernel functions kX and kY , which
are centered by H = In − 1

n 11
T .

Theorem 4 in [8] states that HSIC(x, y) = 0 if and only if x and y are independent.
Therefore, a large value of HSICemp(x, y) indicates a strong dependence between x and y.
In [9–12], HSICemp is applied to measure the dependence between the clustering and the
known covariates.

2.2 The kernel conditional dependencemeasure HSCONIC

HSCONIC measures the dependence between two variables conditioned on observing the
third variable in RKHSs through kernel functions.

Suppose given random variables (x, y, z) on X × Y × Z with RKHSs HX ,HY ,HZ
on X ,Y,Z. The corresponding feature mappings and kernel functions are φX , φY , φZ and
kX , kY , kZ , respectively.

The conditional cross-covariance operator Cxy|z [15] in RKHSs is defined as

Cxy|z = Cxy − CxzC
−1
zz Czy, (4)

where C∗∗ is the cross-covariance operator as defined in (1). Cxy|z can be interpreted as a
nonlinear extension of the conditional covariance matrix (section 4.3 in [19]) of Gaussian
random variables in RKHSs.

The HSCONIC measure of conditional dependence is defined as the Hilbert–Schmidt
norm of the conditional cross-covariance operator:

HSCONIC(x, y|z) = ||Cx̂ ŷ|z ||2HS, (5)

where x̂ = (x, z) and ŷ = (y, z) are extended variables.
As shown in [15], given n observations {(x1, y1, z1), . . . , (xn, yn, zn)}, HSCONIC can be

empirically estimated by

HSCONICemp(x, y|z) = 1

(n − 1)2
Tr(K̄x K̄ y − 2K̄x M K̄y + K̄x M K̄yM)

M = K̄z(K̄z + ε In)
−2 K̄z,

(6)

where K̄x = HKx H , K̄ y = HKyH , K̄z = HKzH , and H is the centering matrix described
in (3). Kx , Ky , and Kz are Gram matrices defined on the kernel functions kX , kY , and kZ ,
respectively. ε is a small value to prevent inverting a singular matrix. In this paper we set ε

to 10−8.
Theorem1 in [15] states thatHSCONIC(x, y|z) = 0 if and only if x and y are independent,

conditioned on z. Therefore, a large value of HSCONICemp indicates a strong dependence
between x and y, conditioned on z.
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Our contribution is to use HSCONICemp in two different problems: conditional cluster-
ing and conditional semi-supervised learning. The following section focuses on conditional
clustering and presents the method KCC in detail, as it was originally proposed in [16]. Sec-
tion 4 then shifts the focus toward the problem of conditional semi-supervised learning and
introduces the method KCSSL.

3 Kernel conditional clustering

In conditional clustering, we have a dataset of unlabeled data points and covariates for each
of them. Our goal is to cluster the data points, conditioned on the known covariates, while
maximizing the dependence between the clustering assignment and the data.

The algorithm kernel conditional clustering (KCC) [16] aims to discover these clustering
assignments, conditioned on the covariate information. We first introduce a new objective
function for KCC, followed by the details of its implementation regarding the optimization
and the initialization of the algorithm. Finally, we contrast KCC with alternative clustering
algorithms, in particular in terms of their computational complexity.

3.1 The conditional clusteringmodel

Consider a dataset of n (unlabeled) data points D = {d1, . . . , dn} ∈ R
n×p with p features

each and a set of c known covariates C ∈ R
n×c. The aim of conditional clustering is to find a

partition U on D such that the dependence between U and D is maximized, conditioned on
observing C . We represent U ∈ R

n×k as a clustering indicator matrix, i.e., U (i, j) ∈ [0, 1]
and

∑
j U (i, j) = 1. In other words, U assigns every data point di to one of the k clusters.

In this paper we assume the number k of clusters is known beforehand.
Using HSCONIC as the conditional dependence measure and its empirical estimate

defined in (6), we can write the conditional clustering optimization objective as

max
U

HSCONICemp(D,U |C)

s.t. U (i, j) ∈ [0, 1] and
∑

j

U (i, j) = 1.
(7)

The binary constraint on the clustering assignment U results in the optimization being a
combinatorial problem of high complexity. Therefore, we use the idea of Spectral Clustering
[20], where only an orthogonality constraint is imposed on U . In the second step, k-means
will be performed on the embedding U to obtain the final clustering labels. The relaxed
objective is

max
U

HSCONICemp(D,U |C)

s.t. UTU = I .
(8)

As mentioned in Introduction, the clusterings that are interesting in high-dimensional data
are those whose creation is not driven by covariates. However, many features are correlated
with the covariates, and therefore, the Gram matrix of data D using all features will still
be affected by the covariates. Niu et al. [11] proposed KDAC to learn a low-dimensional
subspace that is less correlated with known covariates. The kernel matrix is then computed
in the reduced subspace. Inspired by this approach, we integrate subspace learning into
conditional clustering:
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max
U ,W

HSCONICemp(DW ,U |C)

s.t. UTU = I , WTW = I
(9)

In (9), a subspace projectionW and a clustering embeddingU are learned simultaneously,
while their dependence is maximized, conditioned on the covariates C . The dimensionality
of the subspace needs to be high enough to capture the cluster structure but low enough to not
be affected by noise. We therefore follow the well-established strategy of fixing W ∈ R

p×k

with k dimensions.
Plugging (6) into (9) (and dropping the constant factor) we obtain

max
U ,W

Tr(K̄DW K̄U − 2K̄DW MK̄U + K̄DW MK̄U M)

M = K̄C (K̄C + ε In)
−2 K̄C

s.t. UTU = I , WTW = I ,

(10)

where KDW (i, j) = K (WTdi ,WTd j ) and K is a kernel function. K̄DW = HKDW H is the
centered kernel matrix as in (3). KC and KU are defined analogously.

To capture nonlinearity, we choose the Gaussian radial basis function kernel (RBF) for
KDW and for KC ,

K (WTdi ,W
Td j ) = exp

(

−||WTdi − WTd j ||2
2σ 2

)

(11)

To optimize the cluster indicator matrix U , we follow the procedure in KDAC [11] and
use a linear kernel KU = UUT .

3.2 Optimization

The objective function in (10) contains two variables: the projection matrix W ∈ R
p×k and

the relaxed clustering indicator matrixU ∈ R
n×k . M is a constant that can be calculated from

the known covariates C . We alternate between optimizingU andW to find a local optimum.

3.2.1 Optimizing U withW fixed

We can calculate the kernel matrix KDW in the projected subspace, which turns the problem
into a convex and continuous optimization:

max
U

Tr(UT L1U )

L1 = (K̄DW − 2K̄DW M + MK̄DW M)

s.t. UTU = I

(12)

If U is equal to the eigenvectors corresponding to the largest k eigenvalues of L1, where k
is the number of clusters, the Ky Fan theorem [21] states that this is the global optimum of
Eq. (12).
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3.2.2 OptimizingW with U fixed

We can calculate the linear kernel matrix KU . The problem now becomes a non-convex
continuous optimization problem, which can be written as

max
W

Tr(L2KDW )

L2 = (K̄U − 2K̄U M + MK̄UM)

KDW (i, j) = K (WTdi ,W
Td j )

s.t. WTW = I

(13)

This is non-convex because of the orthogonality constraint of the projectionW . Although
it has been shown that gradient-based methods may work in some cases [9,22,23], the imple-
mentation is still far from robust.

Recently, Wen and Yin have proposed a feasible method for optimization with orthogo-
nality constraints (FOptM) [24]. They construct a homotopy for minimizing the objective
function while preserving the orthogonality constraints. The Cayley transform smoothly
projects the skew-symmetrized gradient on the constraints, which enables solving the update
of the minimization with a curvilinear search algorithm. In other words, the gradient is trans-
formed so that a Crank–Nicolson update rule is guaranteed to (i) converge and (ii) yield a
solution satisfying the constraints. Wen and Yin also show experimentally that FOptM is
more robust and efficient than its competitors. We use FOptM to solve (13), and we turn the
objective into a minimization problem by multiplying by −1.

Note that FOptM requires the partial derivative of (13) with respect to W . Inserting the
RBF kernel, the partial derivative is

∂(Tr(L2KDW ))

∂W

=
∑

i, j

L2(i, j)
∂KDW (i, j)

∂W

=
∑

i, j

− 1

σ 2
s
L2(i, j)KDW (i, j)(di − d j )(di − d j )

T W

=
∑

i, j

− 1

σ 2
s
L2(i, j)KDW (i, j)(di − d j )( fi − f j ),

(14)

where fi = WTdi is the i th data point in the projected space and σs is the kernel width in
the projected space.

3.3 The algorithm KCC

We propose a novel algorithm, called kernel conditional clustering (KCC), shown in Algo-
rithm 1, to solve (10). In Lines 2–8, the kernel width σs in the projected space and W
are initialized, which will be described in further detail in the next paragraph. With σs
fixed, we iteratively optimize U and W according to (12) and (13) until a local optimum
is achieved (Lines 10–16). This is guaranteed to converge, because each step increases the
objective function in (10). Finally, we normalize the clustering embeddingU to the row sums

123
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(ui j = ui j√∑
j u

2
i j

) and perform k-means clustering on the normalized U (Lines 18 and 19).

Figure 1 depicts a flowchart of how KCC processes its input to arrive to the final solutionU .

Algorithm 1: KCC
1 KernelConditionalClustering (D,C, k);

Input : Data D, Covariates C , Number of clusters k
Output: Clustering U and transformation matrix W

2 σs = MedianDist(D);
3 Calculate KU as in (11) with σs and W = I ;
4 Calcualte L2 as in (13) with centered KU ;
5 while not converge do
6 Set W as the solution to (13) by FOptM;
7 σs = MedianDist(DW ) ;
8 end
9

10 while not converge do
11 Calculate KDW as in (11);
12 Calculate L1 as in (12);
13 Set U to the first k eigenvectors of L1;

14 Calculate L2 as in (13) with KU = UUT ;
15 Set W as the solution to (13) by FOptM;
16 end
17

18 U (i, j) = U (i, j)
||U (i,:)|| ;

19 U = k-means(U , k);

Estimating the parameter σ in the RBF kernel is still an open problem for unsupervised
clustering. A heuristic strategy, setting σ to the median of the pairwise distances, has been
shown to work well in practice [8,14]. In our case, σs is the median of the pairwise distances
in the projected space DW , which depends on the unknown W in (14). We therefore use an
iterative procedure to estimate σs and W , as shown in Lines 5–8 of Algorithm 1. First, W in
(13) is initialized by FOptM with the RBF kernel KD (Line 6) setting σs from the original
data space D. This can be seen as a dimensionality reduction procedure, ensuring that all the
information of the data D is preserved, apart from those correlated with the covariates C .
Then we calculate the σs in the projected subspace (Line 7). We iterate these two steps until
convergence. We note that, empirically, this initialization always converges in a few steps.

3.4 Computational complexity

Assume a datasetwith n samples and p features. The runtime complexity of amatrix inversion
process in KCC is O(n3). The eigenvalue decomposition in KCC costs again O(n3). The
runtime of the optimization method with orthogonal constraints (FOptM) is dominated by
O(n2 p), where O(n2 p) is for calculating the partial derivative in (14). Therefore, the runtime
for the KCC is O(n3t + n2 pt), where t is the number of iterations.

3.5 Comparison of KCC to alternative clustering

Alternative clustering finds a second clustering that has high quality (dependent on the data
D) and is dissimilar to the reference clustering C (independent of C). Many alternative
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Fig. 1 Flowchart of Algorithm 1 KCC

clustering approaches [7,9–12,25] use a regularized framework to reach this goal:

max
U

Q(D,U ) − λP(C,U ), (15)

where Q measures the clustering quality of U given D, and P measures the dissimilarity
between C andU . λ ≥ 0 is a regularization parameter that controls the trade-off between the
clustering quality and the dissimilarity function.

Niu et al. proposed KDAC [11] to measure both Q (clustering quality) and P (relation
between clusterings) by HSICemp. It was shown that the spectral clustering used in that paper
for Q can be expressed as HSICemp. The objective function of their method KDAC can be
written as

max
W ,U

HSIC(DW ,U ) − λHSIC(C,U )

s.t. WTW = I , UTU = I .
(16)

A large regularization parameter λ will enforce the maximization of the dependence
between the projected subspace and the clustering embedding (HSIC(DW ,U )) and the min-
imization of the dependence between the clustering and the known covariates (HSIC(C,U )).
Therefore, this regularization framework can achieve the goal of conditional dependence as
a side product. However, such a combination is rather ad hoc and has no clear statistical
meaning. In contrast, the proposed method KCC is based on a kernel conditional dependence
measure and has a clear statistical interpretation. The hyper-parameter λ in the regularization
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framework of (16) is difficult to tune in practice, and note that there is no such hyper-parameter
in our proposed method KCC. Compared to KDAC, this is achieved with one extra matrix
inversion of the kernel matrix of covariates, which only needs to be performed once in KCC.

4 Kernel conditional semi-supervised learning

In this section,we extend the idea of conditional clustering to the problemof conditional semi-
supervised learning. As shown in Sect. 3, in the clustering setting we learn a relationship
between unlabeled samples. In contrast, a classification setting would require to learn a
mapping between a feature space and class labels. In between clustering and classification is
semi-supervised learningwhere there are few labeled samples and a large number of unlabeled
ones. In semi-supervised learning, the classification accuracy is improved by learning a
relationship between unlabeled and labeled samples. Since the number of labeled samples is
usually small, the effect of semi-supervised learning will be strongly affected when there are
irrelevant covariates, as it is also the case in clustering.

We here present a novel algorithm named kernel conditional semi-supervised learning
(KCSSL) that tackles the semi-supervised learning problem while conditioned on known
covariates. We first introduce a new objective function, followed by the details of its imple-
mentation regarding the optimization. Finally, we contrast KCSSL to other graph-based
semi-supervised learning algorithms [26,27].

4.1 The kernel conditional semi-supervised learningmodel

Consider a dataset D ∈ R
n×p and a set of c known covariates C ∈ R

n×c. In the semi-
supervised learning setting, there are l labeled samples and u unlabeled samples. Denote
Yl = [y1, y2, . . . , yl ]T , where yi ∈ R

k is the known indicator for the i th sample, yi is one-
hot, and element yi j = 1 means that the i th sample belongs to the j th class. The aim of
semi-supervised learning is to infer the label Yu ∈ R

u×k for the u unlabeled samples, while
Yl stays fixed. Similar to conditional clustering, we define the conditional semi-supervised
learning objective with HSCONIC to achieve this goal as defined in (6):

max
Yu

HSCONICemp(D, [Yl ; Yu]|C)

s.t. Yu(i, j) ∈ [0, 1] and
∑

j

Yu(i, j) = 1.
(17)

In (17), the dependency between the dataset D and both known and inferred labels Y =
[Yl ; Yu] is maximized conditioned on the covariates C .

Due to the combinatorial problem of optimizing Yu in (17), we relax it to an orthogonality
constraint as in KCC. The relaxed objective is then

max
Yu

HSCONICemp(D, [Yl ; Yu]|C)

s.t. Y T
u Yu = I .

(18)
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Plugging (6) into the relaxed objective (18) (and dropping the constant factor) we obtain

max
Yu

Tr(K̄D K̄Y − 2K̄DM K̄Y + K̄DM K̄Y M)

M = K̄C (K̄C + ε In)
−2 K̄C

s.t. Y T
u Yu = I ,

(19)

where Y = [Yl; Yu], K∗ is kernel matrix and K̄∗ is the centered kernel matrix, as in KCC.
To capture nonlinearity, we choose the Gaussian RBF kernel for the Gram matrices KD

and for KC . To optimize Yu , we use a linear kernel KY = YY T . The problem can be rewritten
as

max
Yu

Tr([Yl ; Yu]T G[Yl; Yu])
s.t. Y T

u Yu = I ,
(20)

where G = K̄D − 2K̄DM + MK̄DM .

4.2 Optimization

Without loss of generality we can split G into blocks as G = [ Gll Glu
Gul Guu

]
and expand the

objective function (19) to

Tr([Yl ; Yu]T G[Yl; Yu]) = Tr(Y T
l GllYl) + Tr(Y T

l GluYu)

+ Tr(Y T
u GulYl) + Tr(Y T

u GuuYu)
(21)

where the first term is constant. Dropping it, (19) can be rewritten as

max
Yu

Tr(Y T
l GluYu) + Tr(Y T

u GulYl) + Tr(Y T
u GuuYu)

s.t. Y T
u Yu = I

(22)

For the non-convex optimization problem with an orthogonality constraint in (22), we again
adopt FOptM for optimization.

FOptM requires the analytical form of the derivative of (22) with respect to Yu :

∂(Tr(Y T
l GluYu) + Tr(Y T

u GulYl) + Tr(Y T
u GuuYu))

∂Yu
= 2GulYl + 2GuuYu (23)

The final one-hot-encoded class labels of the unlabeled points are obtained by following
the decision function:

yi = argmax
j

Yu(i, j) (24)

4.3 The algorithm KCSSL

The algorithm KCSSL is summarized in Algorithm 2. Assume a real-valued dataset D with
n samples and p features, covariates C and labels Yl , l < n. The first step of KCSSL is to
compute M as in (18) based on the RBF kernel KC on C . Using M and RBF kernel KD

on D, the matrix G is constructed as in (19). Then, leveraging the partial derivative in (23),
FOptM is used to solve the objective in (22). Finally, the class labels Yu of the unlabeled
samples are obtained with the decision rule stated in (24). Figure 2 depicts a flowchart of the
process of KCSSL.
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The computational complexity of the matrix inversion is of O(n3). The calculation of the
kernel matrix is of O(n2 p). Since there is no dimensionality reduction, one partial derivative
calculation is required for solving the objective with FOptM in (23), which takes O(n2).
Therefore, the computational complexity of KCSSL is O(n3 + n2 p).

Algorithm 2: KCSSL
1 KernelConditionalSSL (D,C, Yl );

Input : Data D, Covariates C , Labeled samples Yl
Output: Prediction for unlabeled samples yi , l < i ≤ n

2 σC = MedianDist(C);
3 Calculate KC as in (11) with σC and W = I ;
4 Calculate M as in (19) with KC ;
5
6 σD = MedianDist(D);
7 Calculate KD as in (11) with σD and W = I ;
8 Calcualte G as in (20) with KD and M ;
9

10 Set Yu as the solution to (22) by FOptM;
11
12 yi = argmax j Yu(i, j) as in (24);

4.4 Comparison of KCSSL to graph-based semi-supervised learningmethods

In graph-based semi-supervised learning methods, the relationship between unlabeled and
labeled samples is reflected by a graph constructed from the dataset. Graph-based methods
differ, among other aspects, by the choice of loss function. For instance, Label Propagation
(LP) [26] was the first semi-supervised learning method where the loss is based on the
combinatorial graph Laplacian. We proceed to investigate the comparison of KCSSL to LP
in detail.

Given the data D and its adjacencymatrixW ∈ R
n×n , the Laplacianmatrix of D is defined

as L = degree(W ) − W , where degree(W ) is a diagonal matrix with
∑n

j=1 W (i, j) on the
i th position. With labeled and unlabeled samples denoted as Yl and Yu , the semi-supervised
learning problem can be written as

min
Yu

Tr([Yl ; Yu]T L[Yl; Yu]) (25)

Zhu et al. showed in [26] that the optimal solution to (25) is

Yu = −L−1
uu LulYl , (26)

and Yu satisfies that Yu(i, j) ∈ [0, 1] if L is a Laplacian matrix. Similarly, the labels of
unlabeled samples are predicted using (24).

Revisiting the objective function of KCSSL in (22) and dropping the orthogonality con-
straint Y T

u Yu = I , the optimal solution can be derived by setting its derivative regarding Yu ,
as shown in (23), to 0:

Yu = −G−1
uu GulYl , (27)

which has the same form of solution as label propagation in (26).
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Fig. 2 Flowchart of Algorithm 2 KCSSL

In KCSSL, we form a symmetric matrix G based on HSCONIC, such that irrelevant
covariate information C is eliminated. However, G is not a Laplacian matrix and is not
positive semi-definite. Thus, the solution to (27) will not be restricted to Yu(i, j) ∈ [0, 1].
To compensate for this, we add the orthogonality constraint on Yu and solve it with FOptM.
Empirically, and as shown in the next section, KCSSL achieves excellent results in our
experiments on semi-supervised learning with covariates.

5 Experiments

To demonstrate the effectiveness of our proposed approaches, we report empirical results and
compare them to a number of competing methods on both synthetic and real-world datasets.
Note that we use the same datasets in two different ways, depending on the type of problem
we are considering. For the clustering setting, we provide the methods with the information
about the known covariates and we assume that the class labels are missing (although we do
know what the real labels are). For semi-supervised learning, we provide the covariates and
assume that only a small fraction of the samples have class labels.
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5.1 Comparison partners and evaluationmeasures

5.1.1 Comparison partners and evaluation measures for clustering

To obtain a baseline of clustering performance, standard k-means (KM) and kernel k-means
(KKM) are run without considering the known covariates. We then compare KCC to the
following 8 state-of-the-art comparison partners:

– CCIB [2] is based on the idea of maximizing the conditional mutual information relative
to the known covariates. As far as we know, this is the only algorithm in the literature
based on a conditional dependence measure.

– COALA, fromBae andBailey [3], is an alternative clustering algorithm that usesmust-link
and cannot-link constraints to enforce dissimilarity between clusterings.

– OC, orthogonal clustering algorithm 1 from Cui et al. [4], is an alternative clustering
algorithm that projects data to a space that is orthogonal to the known clustering.

– ADFT from Davidson and Qi [5] also uses must-link and cannot-link constraints, but it
learns an inverse distance metric to discover a different clustering.

– RPCA and RegGB from Dang and Bailey [10] learn a linear and nonlinear subspace for
finding an alternative clustering using PCA and kernel discriminant analysis.

– MNMF from Yang and Zhang [12] uses nonnegative matrix factorization for clustering
and HSIC as the similarity function and combines them with a regularization parameter.

– KDAC from Niu et al. [11] combines spectral clustering, subspace learning, and HSIC
in a regularization framework.

– KCC is our proposed approach, and it is based on the kernel conditional dependence
measure HSCONIC.

All clustering methods require the number of clusters k to be predetermined, which we set
to be the true number of clusters. We fix a Gaussian RBF kernel for the kernel-based methods
(KKM,RegGB,KDAC, andKCC) and use one-hot encodings to represent categorical covari-
ates. For the subspace methods (RPCA, RegGB, KDAC, and KCC), the dimensionality in
the projected subspace is set to the number of clusters k. The parameter σ in the RBF kernel
is determined using the median of the pairwise distances (a common heuristic, as shown in
[8]). For KDAC and KCC, σs for the RBF kernel in the projected subspace is determined
as explained in Sect. 3.3. The ε in (10) is set to 10−8, and the convergence threshold is
set to 10−3 of the relative improvement. For a fair comparison of the methods, with and
without hyper-parameters, we cluster according to many different parameter choices from an
allowed range ([10−3, 103]). We take a majority vote on the best performing parameter from
each dataset. This is the parameter we chose for comparison. For KDAC, the regularization
parameter λ = 0.01 was determined by applying this procedure. For CCIB and MNMF, the
best performing λ turns out to be λ = 0.1. RegGB requires the number of nearest neighbors,
which is n = 10. For those methods which use k-means, we ran k-means 100 times and
report the clustering with the minimum objective value. For a fair comparison with the other
methods, we also report the one with the best k-means objective.

The evaluation of the methods is based on four measures. On the one hand, the clustering
result is compared to the ground truth labels in terms of accuracy (ACC) and normalized
mutual information (NMIg), where a larger value means better performance. On the other
hand, we measure the dependence between the clustering and the known categorical covari-
ates by NMI (denoted by NMIc) and the Jaccard index (JI). The goal is to minimize the
dependence, i.e., low values correspond to better performance.
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5.1.2 Comparison partners and evaluation measures for semi-supervised learning

For semi-supervised learning, we compare KCSSL to the following state-of-the-art semi-
supervised learning comparison partners:

– LP (Label Propagation) from Zhu et al. [26], the semi-supervised learning method based
on graph Laplacian, which is conceptually closest to KCSSL.

– SP (spread propagation) from Zhou el al. [27], which is similar to label propagation but
uses a normalized graph Laplacian and soft clamping across the labels.

– ST (self-training) is a naive semi-supervised learning framework applicable for any clas-
sifier. In our case, we use logistic regression as the base classifier.

– KCSSL is the proposed semi-supervised learning method that is based on the kernel
conditional dependence measure HSCONIC.

Semi-supervised learning methods are implemented as follows. Similar to clustering, we
use a Gaussian RBF kernel for the kernel-based methods (LP, SP, and KCSSL) and one-hot
encodings. The parameter σ in the RBF kernel is determined using themedian of the pairwise
distances. For SP, α ∈ [0, 1] specifies the relative amount of information that an instance
should adopt from its neighbors as opposed to its initial label. We evaluate α = 0.01, . . . , 0.9
and report the results for themajority vote on the best performingα across all datasets. For ST,
logistic regression is used as a base classifier because (i) the majority of the datasets contain
multiple class labels and logistic regression can handle multi-class scenarios easily, and (ii)
the convergence of ST in combination with logistic regression is theoretically guaranteed
[28].

The evaluation of semi-supervised learning is measured using prediction accuracy (ACC)
on the unlabeled data points, where a larger value corresponds to better performance. This
means that we are evaluating a transductive setting where no test points are held back.

5.2 Datasets

We evaluate the performance of all the above methods on three simulation datasets and
on five real-world datasets.

– Simulation datasets The three simulation datasets (Simu1, Simu2, and Simu3) are shown
in Fig. 3. All three consist of a four-dimensional space which can be separated into two
subspaces: Feature1 and Feature2 show a different structure than Feature3 and Feature4.
The difference between the simulations can be summarized as follows: In Simu1, the
clusters are linearly separable. In Simu2, one cluster is of non-normal shape. In Simu3,
Feature1 and Feature2 are linear transformations of a Gaussian continuous variable.
Feature3 and Feature4 show the clusters one would like to discover (indicated also by
color), while the cluster labels (Simu1 and Simu2) and the Gaussian variable (Simu3)
that generate Feature1 and Featrue2 are taken as the covariates.

– Face and Face4 Face is the CMUFace dataset (from the UCI repository [29]). It contains
624 face images of 20 people in all combinations of orientation (straight, left, right, up),
facial expression (neutral, happy, sad, angry), and eyewear (wearing sunglasses or not).
The two dominating signals are the identity of the person and their pose. The image
resolution is 32 × 30, which means that each sample has 960 features on a continuous
scale. Face contains all 624 images. Face4 enforces an additional symmetry in the data:
Since the number of people is much larger than the number of poses, we follow the idea of
[10,12] and extract the subsamples from the first 4 people (an2i, at33, boland, and bpm).
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Fig. 3 All three simulation datasets consist of 4 features. Two features express the covariate (LHS plots); two
features exhibit the clustering which is to be discovered (RHS plots). Simu1 has three Gaussian clusters in both
views. In the second view of Simu2, a non-normal separation into two clusters is synthesized. The covariate
of Simu3 is continuous; the clustering is the same as that of Simu1
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Table 1 Datasets Name Samples Features Covariates Clusters

Simu1 600 4 3 3

Simu2 600 4 2 2

Simu3 600 4 Continuous 3

Face 624 960 20 4

Face4 128 960 4 4

Multi 135 5565 2 4

DLBCL 321 661 2 3

WebKB 1041 456 4 4

Therefore, there are the same number of people and poses. For both Face and Face4, we
use the person’s identity as the known covariate and discover the clustering according to
the pose.

– Multi and DLBCL The gene expression datasets are generated from two different gener-
ations of micro-array platforms [30], which we treat as covariates. Multi contains gene
expressions from 4 tissue types (breast, lung, prostate, and colon). The DLBCL dataset
contains gene expressions from three subtypes of lymphoma cancer (diffuse large B cell
lymphoma, DLBCL). The goal is to discover clusters according to tissue and cancer
types, conditioned on the generation of micro-array platform.

– WebKB dataset The CMU World Wide Knowledge Base collected in 1997 is a dataset
containing web pages from computer science departments of 4 universities in the USA:
Cornell University, the University of Texas at Austin, the University of Washington, and
the University of Wisconsin at Madison [31]. The pages are additionally labeled as being
from 4 topical areas: course, faculty, project, and student. We follow the preprocessing
strategy of [4,11], where we remove the rare words (frequency smaller than 5%) and
use term frequency–inverse document frequency as the feature values, retaining a dataset
with 1041 samples and 456 features. In the experiments, the university is given as the
covariate and the clustering of the topics is treated as the signal.

Table 1 shows the summary statistics of these datasets. The number of categories in the
categorical covariates and the number of clusters in the ground truth are in the last two
columns. The original source of all the real datasets and the scripts that generated the ones
used in the paper as well as an implementation of KCC can be found online.1

The same datasets are used for the evaluation of clustering and of semi-supervised learning
algorithms. For semi-supervised learning, each dataset is randomly split such that 10% of
samples are considered labeled and the remaining 90% samples are assumed unlabeled. We
create 100 random splits of each dataset and report the average performance and standard
deviation.

5.3 Results

5.3.1 Clustering results

The results from the clustering experiments are displayed in Table 2. In each subtable, the
rows correspond to the datasets and the columns to the comparison partners, with the last
column showing the proposed approach, KCC.

1 https://github.com/BorgwardtLab/Kernel-Conditional-Clustering.

123

https://github.com/BorgwardtLab/Kernel-Conditional-Clustering


916 X. He et al.

Table 2(a), (b) is external performance measures, i.e., with respect to the ground truth
labels, and reports the accuracy (ACC) and the normalized mutual information (NMIg),
respectively. For any given method and dataset, the closer the score is to 1, the better the
performance is. Table 2(c), (d) reports the dependence between the clustering and the known
categorical covariates by NMI (denoted by NMIc) and the Jaccard index (JI), respectively.
For these measures, the lower the score, the better the performance.

For each dataset, the score of the best performing method is highlighted in bold (row-
wise). If there is a tie, or if the score attained by a method is very close to the best score
(≤ 0.01), then more than one score will be highlighted in bold.

For the three simulated datasets, we first validate that neither of the k-means algorithms
(KM and KKM) can discover the additional clustering structure shown in Fig. 3 (right-hand
side). Among the comparison partners for conditional clustering, many methods work for
the Gaussian case (Simu1), including OC, RPCA, KDAC, and KCC. As expected, the linear
methods (OC and RPCA) fail in the nonlinearly separable case (Simu2). We note that the
proposed method KCC, in conjunction with KDAC, gives almost optimal results for both
simulations. For Simu3 with continuous covariates, COALA, ADFT, and OC cannot be used
directly. KCC and CCIB discover the ground truth clustering perfectly. KDAC failed on
Simu3 with λ = 0.01, but worked with λ = 1. Later, we will compare KCC with KDAC
with different values of λ.

On the Face, Face4, and WebKB datasets, regarding the external performance (ACC
and NMIg), KCC dominates the list of comparison partners. For WebKB, OC and RPCA
give similarly good results. The performances of CCIB and RegGB are not stable on these
datasets.Multi andDLBCLare datasets froma clinical settingwhere the platform information
is given as a covariate, and the resulting clustering is evaluated against the biological type
of the sample. MNMF is the best performer on the DLBCL datasets, while OC and KDAC
perform the best for Multi, when considering NMIg and ACC, respectively. Nevertheless,
KCC is always among the top three methods in these two datasets.

The last row in Table 2(a)–(d) shows the average rank of all methods across the datasets.
For each dataset (row-wise) we rank the eleven methods, based on their scores, from 1
through 11. The method with the best score is ranked first, i.e., r = 1, the next best score
gets a rank r = 2, all the way to the worst performing method (r = 11). In case of ties,
more than one method receives the same rank r , and the subsequent value of r is incremented
accordingly. For example, in Table 2(a) for the Simu1 dataset, four methods share the rank
r = 1; therefore, the next performer (CCIB) receives a rank r = 5. The average rank per
method (column-wise) is then computed by summing up all the ranks for the method and
dividing by seven (i.e., the number of datasets).

The average ranks in Table 2(a), (b) show the average performance of all methods with
respect to ACC and NMIg , respectively. KCC ranked in the first place for both measures,
followed by KDAC and OC. The next methods are RPCA, CCIB, MNMF, and RegGB. The
performance of these methods is not stable across all tested datasets. COALA and ADFT
perform the worst on the tested datasets. One possible reason is that they are not designed
for high-dimensional data because they rely on global pairwise distances.

Regarding the similarity of the results to the given covariate (described by NMIc and JI),
KCC, KDAC, and MNMF perform equally well on all the datasets. The absolute differences
between NMIc and JI among these methods are minor. In addition, we observe that most
comparison partners can discover a clustering that is dissimilar to the covariates, yet the
ground truth labels are generally not recovered well.

To summarize, the proposed algorithm KCC gives on average the best clustering perfor-
mance in terms of recovering the ground truth and in terms of dissimilarity to the covariates,
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Fig. 4 A comparison of the performance of the proposed algorithm KCC (black line) and its best performing
comparison partner KDAC. KDAC requires the setting of a regularization parameter λ. For all datasets, several
choices of λ (x-axis) are evaluated in terms of the KCC-normalized NMIg score (y-axis). Three observations
follow: (1) Non-optimal choices of λ lead to a low NMIg score for KDAC. (2) The optimal λ (in bold) varies
by multiple orders of magnitude between all datasets (summary in bottom right panel). (3) Among all datasets
and all parameter choices, KCC outperforms KDAC in almost all instances

closely followed by KDAC. This can not only be seen by looking at the average ranking, but
also when inspecting the results independently for each dataset. In Sect. 5.3.2 we investigate
the difference between KCC and KDAC—the top two performers—more closely.

5.3.2 Comparison of KCC to KDAC

From the results of the experiments in Table 2, we observe that our proposed algorithm
KCC gives on average the best performance in terms of recovering the ground truth and
difference from a given covariate. Another method that gives on average high-quality results
is KDAC, which requires the setting of a regularization parameter λ. We take a closer look
at the difference in performance in terms of NMIg and ACC. In Fig. 4, the KCC-normalized
NMIg score for KDAC is shown (for ACCwe have similar results), varying the regularization
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Table 3 The results of the semi-supervised learning experiments are displayed

Dataset or method LP SP ST KCSSL

ACC

Simu1 0.355 ± 0.07 0.601 ± 0.14 0.967 ± 0.02 0.993 ± 0.01

Simu2 0.507 ± 0.06 0.722 ± 0.18 0.868 ± 0.01 0.985 ± 0.02

Simu3 0.353 ± 0.08 0.663 ± 0.13 0.972 ± 0.01 0.988 ± 0.01

Face 0.251 ± 0.01 0.345 ± 0.02 0.655 ± 0.05 0.811 ± 0.02

Face4 0.248 ± 0.01 0.317 ± 0.03 0.445 ± 0.09 0.581 ± 0.15

Multi 0.247 ± 0.04 0.311 ± 0.09 0.579 ± 0.11 0.735 ± 0.18

DLBCL 0.369 ± 0.05 0.388 ± 0.05 – 0.656 ± 0.07

WebKB 0.534 ± 0.01 0.534 ± 0.01 0.674 ± 0.03 0.668 ± 0.01

We report mean and standard error of accuracy among 100 random splits of the data into 10% labeled and
90% unlabeled. Please note that the datasets are balanced. The best results are shown in bold. If the score of
a method is very close to the best score (≤ 0.01), then more than one score will be highlighted in bold

parameter λ on the x-axis. In these figures, NMIgKDAC/NMIgKCC = 1 means that KCC and
KDAC attain the sameNMIg score. If NMIgKDAC/NMIgKCC ≤ 1, KCC outperformsKDAC,
and similarly the other way around. The bottom right panel of Fig. 4 shows the optimal choice
of λ for each dataset.

It is important to note the following:

1. Non-optimal choices of λ lead to a low NMIg score for KDAC.
2. The optimal λ (in bold) varies by several orders of magnitude among all datasets. In the

bottom right panel, which shows the best performing λ for each dataset, all orders of
magnitude are present. (Values are in log scale.)

3. Among all datasets and all parameter choices, KCC outperforms KDAC in almost all
instances. Among the 35 explored settings, there are only two where KDAC has a better
NMIg score than KCC.

We therefore conclude that unless there is prior knowledge about the regularization, KCC
should be chosen over KDAC.

5.3.3 Semi-supervised learning results

In Table 3, the results from the semi-supervised learning experiments are shown. The rows
correspond to the datasets, and the columns to the comparison partners, with the last column
showing the proposed approach, KCSSL. We report the mean and standard error of the
classification accuracy of the unlabeled samples with respect to different splittings of the
dataset. As it was the case of the clustering results, the datasets are balanced and the best
results are highlighted in bold.

With the exception of the WebKB dataset, KCSSL yields the best classification accuracy.
This is expected because ours is the only method correcting for covariates. We conclude that
to tackle a semi-supervised learning problem in the presence of covariates, KCSSL should
be the method of choice.
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6 Related work

6.1 Conditional clustering

The first approach to conditional clustering is found in the work of Gondek and Hofmann
[2]. There, the authors present a general framework for exploring non-redundant clustering
apart from known background information, which can be in the form of both categorical or
continuous covariates. Their method, CCIB, is based on maximizing the conditional mutual
information. However, to estimate the mutual information, CCIB needs to make assumptions
about the distribution of the data.

Apart from CCIB, the conditional clustering problem can be approached and solved by
alternative clustering methods. Alternative clustering approaches can be classified into two
categories: simultaneous [7,9,32] and sequential. Sequential approaches solve an instance
(categorical covariates) of the conditional clustering problem,while simultaneous approaches
solve a slightly different problem. Early sequential works, i.e., COALA [3], OC [4], and
ADFT [5], use constraints or orthogonal projections to enforce dissimilarity between clus-
terings. However, these methods have two major shortcomings: They (i) can only handle
categorical covariates and (ii) cannot discover nonlinearly separable clusters.

Recently, sequential alternative clustering approaches have been proposed, such as the
optimization in a regularization framework that combines a clustering quality and a dissim-
ilarity function. For instance, mutual information [33] and entropy [25] have been proposed
to be used as such functions. Other methods use the kernel dependence measure HSIC as a
dissimilarity function [10–13]. Yet, all these methods require the setting of a hyper-parameter
λ, which is difficult to estimate in practice.

The proposed KCC approach [16] addresses all the drawbacks of the existing methods
mentioned above and outperforms them in the conducted experiments.

6.2 Semi-supervised learning

In the semi-supervised learning domain, there is a distinction between generativemethods and
graph-based methods [34]. In the former, a model is imposed on the data where parameters
are fitted using labeled and unlabeled data. In the latter, a graph is generated from all the data
which are then partitioned optimizing a loss function.

In this paper we mainly focus on graph-based methods and do not consider generative
methods.However, an expectation–maximization approach to solvinggenerativemethods can
be seen as an instance of (soft) self-training (ST): First, a classifier is trained on the labeled
samples. Then, high-confidence unlabeled points are added to the training set. Both steps are
repeated until no unlabeled samples are left. The convergence of ST depends highly on the
base classifier and the quality of the data [28,35], yet it has been successfully implemented
in areas such as natural language processing [36] or image recognition [37].

Graph-based algorithms are traditionally formulated in a regularization framework trading
off correct classification of labeled points with smoothness on the whole graph. The first
graph-based algorithm uses mincuts [38] to partition the data. Later, Zhu et al. [39] proposed
Label Propagation (LP) which propagates node information to neighbors in a graph. The
authors relaxed the discrete case to Gaussian random fields and harmonic functions based
on the graph combinatorial Laplacian in [26], which can also be seen as a general case of
mincut. In parallel, inspiredby theworkon spreading activationnetworks [40], Zhouet al. [27]
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proposed spread propagation (SP) which is similar to LP but achieves lower classification
error for fewer labeled points using the normalized Laplacian.

Our method KCSSL can be seen as in the line of research of graph-based methods. As
shown in Sect. 4.4, obtaining the solution in KCSSL when no covariates are present is of the
same form as obtaining the fixed point in LP.

Extensive research has undergone to learn a suitable graph embedding, also to improve
the classification of graph-based semi-supervised learning methods (see Section 2.3 in [41]).
Most of the methods were evaluated in the context of natural language processing.

Another popular approach to solve the semi-supervised learning problem is to entertain
a transductive support vector machine (TSVM) (also known as semi-supervised SVM [42])
which can be viewed as an SVM with an additional term maximizing the margin also with
respect to the unlabeled data. However, since finding a good approximation is still ongoing
research [43], TSVMs’ performance may be limited under some circumstances [44] and
available software packages do not include multi-class classification options. We do not
compare to TSVMs.

Most importantly, all of the mentioned algorithms, including the recent advances, do not
correct for covariates, which results in inferior classification accuracy compared to KCSSL
(see Sect. 5.3).

7 Conclusion

In this paper, we have presented two approaches to (i) conditional clustering and (ii) condi-
tional semi-supervised learning. Both of the proposed methods are able to take into account
known covariates, which would otherwise mask the existence of the underlying relationships
of interest. For the well-studied case of alternative clustering, our method kernel conditional
clustering (KCC) outperforms competing alternatives on synthetic and real-world data while
simplifying the usage due to the need for fewer parameters. For the same datasets, in the
case of semi-supervised learning, our method kernel conditional semi-supervised learning
(KCSSL) outperforms competing alternatives, because it is the only method correcting for
known covariates. Moreover, KCSSL is fully parameter-free. In general, we advise the adop-
tion of KCC and KCSSL, which perform the best in our experiments.

KCC can achieve both clustering quality and dissimilarity requirements in one objective
without an additional hyper-parameter. By using a kernel measure, KCC does not make any
assumption about the data distribution, it can also handle continuous covariates, and it can
discover nonlinearly separable clusters. Furthermore, to handle high-dimensional data, KCC
integrates clustering with subspace learning, where the dependence between the clustering
and a low-dimensional subspace is maximized, conditioned on the observed covariates.

Kernel conditional clustering and kernel conditional semi-supervised learningwill serve as
methods for a wide range of machine learning applications where known effects of covariates
must be corrected for. For instance, future research can apply our method to a wider range of
settings, such as sub-phenotype discovery in medical datasets. Another open challenge is to
estimate the number of clusters for KCC, which we will explore in our future work. In short,
we see exciting challenges for future work, but also great potential for the methods presented
here to help in the discovery of structures conditionally independent from known covariates.
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