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Abstract

Solid-state NMR is a powerful tool for the study of the structural and dynamic proper-

ties of materials and biomolecules. The strength of solid-state NMR lies in the ability

to coherently manipulate the system Hamiltonian with the use of radio-frequency pulse

sequences and magic-angle spinning. This controlled perturbation is performed by in-

troducing multiple periodic time dependencies and allows for the measurement of the

correlation between nuclei and the identi�cation of their local electronic environment.

In order to get reliable information and e�cient experimental performance, the pulse

sequences need to be robust towards experimental uncertainties. Additionally, they

need to be highly speci�c to extract the desired interaction. In this thesis, a variety of

widely-used pulse sequences are examined with respect to pulse imperfections and pos-

sible approaches based on a theoretical understanding obtained by Floquet theory are

presented to tailor the pulse sequences in order to make them more reliably applicable.

In the �rst part of this thesis, the practical compensation of pulse imperfections is

studied and previously developed concepts are extended. A published theoretical model

of these imperfections, also known as pulse transients, is applied to physically measured

pulse shapes to �nd the origin of pulse imperfections in the spectrometer. Additionally,

small adjustments to the experimental setup are presented that ease the implementation

of pulse-transient compensation.

The second part of this thesis focuses on recoupling sequences, which are pulse sequences

designed to reintroduce the dipolar coupling, yielding important information about the

spatial proximity of two nuclei. One type of sequence, which includes Radio-Frequency

Driven Recoupling or Rotational Echo Double Resonance, uses an isolated π pulse as

a recoupling element. These sequences are widely used due the ease of experimental

implementation. Phase cycles are previously proposed modi�cations to stabilize these

sequences. In this thesis, these phase cycles are analysed using the concept of e�ective

xv
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Floquet Hamiltonians and numerical simulations to determine their robustness towards

pulse imperfections. The advantages and disadvantages of various phase cycles are dis-

cussed and the experimental in�uence of pulse transients is understood using the theo-

retical concepts developed. A di�erent kind of recoupling sequence uses symmetry-based

pulse trains and is known as C or R sequence. A Floquet description of the recoupling

sequence of interest, R26, shows inherent �aws in the design of the sequence that are

also demonstrated experimentally. The in�uence of pulse transients is investigated and

unexpected results are shown that are in stark contrast to the results found for RFDR

and REDOR. A commonly used phase cycle shows great robustness towards any kind

of experimental imperfection but calculations of the dipolar scaling coe�cient show less

recoupling e�ciency than the basic sequence.

In the third part of this thesis, homo- and heteronuclear decoupling sequences are dis-

cussed. Decoupling sequences are designed to remove residual terms in the Hamiltonian

that cause line broadening and thus these types of sequences are used to enhance spectral

resolution. The homonuclear decoupling sequence frequency-switched Lee-Goldburg for

proton-detected experiments is studied. E�cient decoupling is essential for proton de-

tection because without it the lines are too broad to be distinguishable and do not yield

reasonable information. This study focuses on the origin of performance degradation

of the Lee-Goldburg sequence. Through the use of analytical calculations, numerical

simulations, and experimental modi�cations, the residual line broadening is analysed. A

concise conclusion of the origin of the performance degradation is presented for the �rst

time, and it is understood why this sequence is still limited in its use. The heteronuclear

decoupling sequence two-pulse phase modulation is investigated with respect to pulse

transients. The requirement for the experimental use is a straightforward optimiza-

tion and the implementation should be robust towards di�erent conditions. Theoretical

concepts to describe simple decoupling sequences with discrete phase modulations are

presented and extended to understand the in�uence of pulse transients. The di�erence

between continuous phase modulation and discrete phase jumps as well as a commonly-

used phase cycle of the basic two-pulse sequence is investigated theoretically and exper-

imentally.

In conclusion, this thesis generalises the concepts of pulse transients and the compensa-

tion, and draws conclusions on their in�uence on di�erent kinds of pulse sequences. The

removal of pulse imperfections allows the developed theoretical concepts to be validated
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more accurately and inherent drawbacks of the pulse sequences are found experimentally.

This results in suggested modi�cations and tailoring of the sequence to accommodate

the experimental needs of more complex biological systems.





Zusammenfassung

Die Festkörper NMR ist eine leistungsfähige Methode zur Untersuchung von struktu-

rellen und dynamischen Eigenschaften von Materialien und biologischen Molekülen. Die

Stärke der Festkörper NMR liegt in der Fähigkeit den System-Hamiltonoperator durch

die Anwendung von Radiofrequenz Pulssequenzen und Rotation um den magischen Win-

kel kohärent zu manipulieren. Diese kontrollierte Störung, welche zu mehrfachen Zeit-

abhängigkeiten führt, ermöglicht die Korrelationen zwischen Kernen zu messen und die

elektronische Umgebung dieser Kerne zu bestimmen. Um verlässliche Informationen zu

bekommen und e�ziente experimentelle Reproduzierbarkeit zu erreichen, muss die Puls-

sequenz robust gegenüber experimentellen Unsicherheiten und Schwankungen sein sowie

höchst spezi�sch um die gewünschte Wechselwirkung zu bestimmen. In dieser Arbeit

wird eine groÿe Varietät von weitverbreiteten Pulssequenzen untersucht mit Hinblick auf

Pulsimperfektionen und mögliche Herangehensweisen, basierend auf einer theoretischen

Analyse mit Floquet Theorie, werden präsentiert um die Pulssequenzen zu verändern

und sie somit verlässlicher zu machen.

In dem ersten Teil dieser Arbeit wird eine praktische Kompensation der Pulsimper-

fektionen untersucht und Konzepte erweitert, welche schon zuvor entwickelt wurden.

Ein theoretisches Model dieser Imperfektionen, auch Pulstransienten genannt, welches

in der Literatur vorgestellt wurde, wird auf experimentell gemessene Pulsformen ange-

wandt um den Ursprung der Pulsimperfektionen im Spektrometer zu �nden. Zusätzlich

werden kleine Änderungen des experimentellen Setups diskutiert, welche zur einfacheren

Implementierung der Pulstransienten-Kompensation führen können.

In dem zweiten Teil dieser Arbeit liegt der Fokus auf sogenannte Wiedereinkopplungs-

sequenzen, welche Pussequenzen sind, die entwickelt wurden um die dipolare Kopplung

selektiv wiedereinzukoppeln, und so Informationen über die räumliche Nähe von zwei

Kernen zu liefern. Eine Art dieser Sequenzen, spezi�sch 'Radio-Frequency Driven Re-

xix



xx Zusammenfassung

coupling' oder 'Rotational Echo Double Resonance', verwenden einen isolierten π Puls

als Element, welches die Interaktion wiedereinkoppelt. Diese Sequenzen �nden sehr weit

verbreitete Anwendung, da die experimentelle Implementierung einfach ist. Zuvor vorge-

schlagene Methoden und Veränderungen um diese Sequenzen robuster zu machen bein-

halten Phasenzyklen. Diese Phasenzyklen werden theoretisch unter der Verwendung der

Konzepte von e�ektiven Floquet Hamiltonoperatoren und numerischen Simulationen in

Hinblick auf Robustheit gegenüber Pulsimperfektionen analysiert. Die Vor- und Nach-

teile von verschiedenen Phasenzyklen werden diskutiert und der experimentelle Ein�uss

von Pulstransienten ist mit Hilfe der entwickelten theoretischen Konzepte erklärbar.

Eine weitere Klasse von Wiedereinkopplungssequenzen verwendet auf Symmetrieargu-

menten basierende Pulsfolgen und sind bekannt als C- und R-Sequenzen. Eine Floquet

Beschreibung der untersuchten Pulssequenz, R26, zeigt inhärente Fehler in dem Design

der Sequenz, welche auch in Experimenten aufgezeigt werden. Der Ein�uss von Pulsim-

perfektionen wird auch untersucht und unerwartete Resultate werden präsentiert, welche

in direktem Kontrast zu den Ergebnissen von RFDR und REDOR stehen. Ein oft ver-

wendeter Phasenzyklus zeigt hohe Robustheit in Hinblick auf jegliche experimentelle

Imperfektion, jedoch zeigt die Berechnung des dipolaren Skalierungsfaktors, dass diese

Implementierung theoretisch weniger e�zient als die Basissequenz ist.

In dem dritten Teil dieser Arbeit werden homo- und heteronukleare Entkopplungsse-

quenzen diskutiert. Entkopplungssequenzen sind entwickelt worden um residuale Ter-

me des Hamiltonoperators zu entfernen, welche Linienverbreiterungen verursachen, und

daher werden diese Art von Sequenzen zur Verbesserung der spektralen Au�ösung ver-

wendet. Die homonukleare Entkopplungssequenz 'frequency-switched Lee-Goldburg' für

direkte Protonendetektion wird untersucht. E�ziente Entkopplung ist essentiell für Pro-

tonendetektion, da andererseits die Linien zu breit wären um sie separieren zu können.

Die Analyse legt den Fokus auf den Ursprung der Leistungsverschlechterung der Lee-

Goldburg Sequenz. Mit Hilfe von analytischen Berechnungen, numerischen Simulationen

sowie experimentellen Modi�kationen wird die verbleibende Linienverbreiterung analy-

siert. Eine präzise Zusammenfassung der verschiedenen Ursprünge der Verschlechterung

wird zum ersten Mal diskutiert und es wird illustriert, wieso die praktische Applikation

dieser Sequenz noch immer limitiert ist.

Die heteronukleare Entkopplungssequenz Zweipuls-Phasenmodulation wird untersucht

mit Hinblick auf Pulstransienten. Die Optimierung dieser Art von Sequenzen muss sim-

pel sein und die Implementierung robust gegenüber verschiedenen experimentellen Be-
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dingungen. Theoretische Konzepte um einfache Entkopplungssequenzen zu beschreiben

werden vorgestellt und erweitert um den Ein�uss von Pulstransienten abschätzen zu kön-

nen. Der Unterschied zwischen kontinuierlicher Phasenmodulation und diskreten Pha-

sensprüngen wird theoretisch und experimentell untersucht sowie ein häu�g gebrauchter

Phasenzyklus der Zweipulssequenz.

Zusammenfassend versucht diese Arbeit die Konzepte von Pulstransienten und deren

Kompensation zu verallgemeinern und Rückschlüsse auf den Ein�uss auf verschiede-

ne Arten von Pulssequenzen zu ziehen. Die Entfernung der Pulsimperfektionen erlaubt

genauere und zuverlässige Validierung der entwickelten theoretischen Konzepte und er-

möglicht die experimentelle Bestätigung von inhärenten Nachteilen der Pulssequenz.

Dies führt zu möglichen Modi�kationen und Veränderungen der Sequenzen um die ex-

perimentellen Anforderungen von komplexeren biologischen Systemen zu erfüllen.





1. Introduction

The quest for structure elucidation of material compounds and biomolecules is essential

for understanding their properties and functions. In the last two decades, two tech-

niques have been predominant for structure determination, namely X-ray di�raction [1]

and liquid-state nuclear magnetic resonance (NMR) spectroscopy [2]. Very recently, cryo

electron microscopy (EM) developed into a valuable technique for structure determina-

tion, and was rewarded with a Noble Prize in 2017 [3, 4]. However, despite the recent

advances of these techniques, NMR, and especially solid-state NMR, is uniquely valuable

for the study of dynamic processes in proteins. Solid-state NMR is particularly inter-

esting for the study of neurodegenerative diseases that are related to protein aggregates

or misfolding [5, 6]. It is especially powerful to study these e�ects due to its ability

to determine short-range disorder, because chemical shifts yield information on local

changes in the structure whereas the other analysis techniques yield mostly information

on long-range ordering.

While very valuable, both X-ray di�raction and cryo-EM are limited by the sample

preparation conditions needed to execute these techniques. X-ray di�raction requires

single crystals for the structural studies. The crystal formation is especially challeng-

ing for larger proteins or molecular assemblies, which do not easily form such crystals.

Amyloid �brils and membrane proteins are prominent examples of structural motifs

that are inaccessible by X-ray di�raction. On the other hand, cryo-EM is not limited

by crystallisation, but can only yield su�cient resolution for studying such aggregates

at cryogenic temperatures. These temperatures do not correspond to the natural envi-

ronment of proteins and so all dynamic processes are halted. Nevertheless, it is claimed

in the literature that the �ash-freezing process traps the native state of the protein, and

cryo-EM had recent success in determining a structural model for amyloid �brils [7].

Liquid-state NMR is also limited in its use for large molecular assemblies and protein-

protein complexes. Even if the biomolecules are soluble, a molecular weight higher than

1



2 1 Introduction

approximately 40 kDa poses a challenge due to the increasingly long correlation time [8].

This correlation time induces an e�cient transverse relaxation time, leading to signi�-

cant loss of resolution in liquid-state NMR spectra. This problem can be circumvented

by selectively labelling methyl-groups and performing Transverse Relaxation-Optimized

Spectroscopy (TROSY) [9]. This yields highly speci�c structural information but re-

quires speci�c labelling schemes.

Due to all of these drawbacks, solid-state NMR spectroscopy remains one of the predomi-

nant techniques for de-novo structure determination of large biomolecules and aggregates

in atomic resolution [10�14]. A further advantage of solid-state NMR is the possibility

of sedimented sample preparation, since micro-crystalline samples give good spectra but

are not a necessity. Thus, most high-resolution spectra are obtained from sedimented

samples since local ordering is all that is necessary for the NMR studies [15].

The most powerful approach for structure determination is, however, a hybrid approach

in which two or more of the aforementioned methods are combined to determine high-

resolution structures. The combination of X-ray di�raction or cryo-EM with NMR is

of particular interest because NMR is a bottom-up approach in which the structure

determination starts at the atomic level whereas X-ray di�raction or cryo-EM yield an

overall structural model and improvement of the resolution can lead to elucidation of

some detailed structure elements.

The versatility of solid-state NMR is based on the ability to manipulate the system

Hamiltonian by radio-frequency (rf) irradiation and by mechanical rotation of the sam-

ple around an angle called the magic angle, i.e. magic-angle spinning (MAS) [16, 17].

These introduce a continuous time dependence and allow the removal of anisotropic in-

teractions that usually cause very broad signals. Controlled interference of these two

time dependences additionally allows the selective reintroduction of interactions of in-

terest, such as the dipolar interaction, which contains information about internuclear

distances, or the chemical-shift anisotropy (CSA), which contains information about lo-

cal orientation. The controlled manipulation of the spin Hamiltonian by rf irradiation

(continuous irradiation or discrete rf pulses) is referred to as a pulse sequence. Gener-

ally speaking, pulse sequences are classi�ed into two types: Decoupling sequences, which

aim to further remove anisotropic interactions in addition to magic-angle spinning to

improve resolution and reduce spectral overlap, and recoupling sequences, which reintro-

duce a spin interaction of interest by interference with MAS in order to make it time
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independent. A further classi�cation is made based on the nuclei that are involved in the

experiment. Homonuclear experiments refer to experiments that operate on the same

type of spins while heteronuclear experiments involve two di�erent types of nuclear spins.

The design and optimization of pulse sequences has always been of great interest for

solid-state NMR method development. The ultimate goal is to make pulse sequences

as experimentally robust and e�cient as possible. This is crucial for multi-dimensional

NMR experiments as they involve multiple recoupling and decoupling steps during which

accumulated signal loss cannot be tolerated. Due to the complexity of the systems un-

der study, experiments up to three-, four-, and sometimes even higher-dimensions are

employed that require at least one magnetization transfer step per dimension. E�cient

transfer through recoupling sequences reduces the experiment time drastically due to

the enhanced signal-to-noise ratio.

Two theoretical concepts have proven to be useful tools for the design of pulse sequences,

namely average Hamiltonian theory (AHT) [18, 19] and Floquet Theory [20�23]. The

ability to calculate e�ective system Hamiltonians that govern spin dynamics allows for

a better theoretical understanding of the underlying quantum mechanics. This under-

standing allows for further improvement of the robustness of pulse sequences. Pulse-

sequence robustness ensures short experimental optimization time as well as a broad

�eld of application for any given pulse sequence. A famous example of such an improve-

ment is imposing certain symmetry constraints on pulse sequences by changing the phase

of the applied rf pulses to remove error terms from the e�ective system Hamiltonian.

This procedure is known as phase cycling and has been extensively described with AHT

[24]. Further improvements to pulse sequences have been discovered utilizing a Floquet

description of the system Hamiltonian, e.g. asynchronous implementation of sequences

[25] or continuous phase modulations [26, 27].

Despite the theoretical analyses and improvements, many pulse sequences still su�er

from performance degradation due to experimental imperfections. These imperfections

can include rf-�eld inhomogeneity, pulse imperfections, an inhomogeneous static mag-

netic �eld, or sample inhomogeneity. The rf-�eld inhomogeneity is a problem inherent

to the probe and is determined by the design of the solenoid coil that generates the rf

�eld. Several studies of the rf-�eld inhomogeneity have been published and many have

tried to overcome these inhomogeneities by e.g. the use of optimum-control approaches
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in order to design robust sequences [28�30].

Further inhomogeneities over the sample volume are caused by an inhomogeneous static

magnetic �eld B0 which can be corrected by small locally induced �elds from shimming

coils with adjustable current. Apart from the imperfect shim of the probe, sample in-

homogeneity is still a limiting factor for solid-state NMR and a lot of e�ort is put into

sample preparation, especially for the expression of proteins and molecular assemblies

[31].

The third experimental imperfection is pulse imperfections, also known as pulse tran-

sients [32, 33], and is the central topic of this thesis. Pulse imperfections in solid-state

NMR arise from the spectrometer, which is an imperfect resonance circuit. Due to the

�nite rise time of the resonance circuit, the amplitude of the pulse builds up in an expo-

nential fashion and not with in�nitely steep edges as usually programmed. Additionally,

an impedance mismatch in the circuit due to the many components can cause phase

distortions and imperfect phases of the pulse.

In this thesis, a detailed analysis of pulse imperfections with regards to the experi-

mental hardware of a solid-state NMR spectrometer and the impact on prominent pulse

sequences will be presented. Chapter 3 focuses on a practical compensation of pulse

transients that has been introduced in Ref [34] and an extension of previously developed

compensation method. The theoretical model of pulse transients presented in the liter-

ature is applied to physically measured pulse shapes in order to �nd the source of pulse

imperfections in the resonance circuit (the spectrometer). Additionally, small adjust-

ments to the experimental setup are presented, improving the ease of implementation of

pulse-transient compensation.

Chapters 4 to 7 are focused on the study of pulse sequences that are widely used in

solid-state NMR. All presented sequences are analysed theoretically using Floquet the-

ory and numerical simulations in order to understand the in�uence of imperfect pulses on

the performance of the sequence. The removal of experimental errors by pulse-transient

compensation allows additionally for the extraction of error terms that are inherent to

the sequence and improved implementations for the sequence are suggested.

Chapter 4 focuses on homo- and heteronuclear recoupling sequences utilizing a single

rotor-synchronized π pulse as the recoupling element. The two sequences, RFDR [35, 36]

and REDOR [37, 38], respectively, are extensively studied in the literature. They are
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especially important in distance determination of hetero- and homonuclear spin pairs,

and their ease of experimental implementation makes them a widely used building block

in standard experiments. Phase cycling is often applied to these sequences to make them

more robust, and here the phase cycles are analysed in terms of their stability towards

pulse imperfections using the concept of e�ective Floquet Hamiltonians and numerical

simulations. The advantages and disadvantages of various phase cycles are discussed

and the in�uence of pulse transients on RFDR and REDOR can be understood using

the theoretical concepts developed.

Chapter 5 uses symmetry-based sequences known as C and R sequences as a recou-

pling element for homonuclear recoupling [39�41]. These types of sequences o�er great

�exibility in terms of application as they can serve either as decoupling or recoupling

sequences. A Floquet description of the sequences examined in this chapter shows in-

herent �aws in the design of the sequence that are also demonstrated experimentally.

The in�uence of pulse transients is investigated and surprising results are shown that

are in stark contrast to the results found in Chapter 4. A phase cycle presented in the

literature shows great robustness towards any kind of experimental imperfections, but

calculation of the dipolar scaling coe�cient shows a smaller recoupling e�ciency than

the basic sequence.

In Chapter 6, a very prominent sequence used for homonuclear decoupling is investi-

gated: the frequency-switched Lee Goldburg (FSLG) [42] for the use of proton-detected

spectra at low spinning speed. Conceptually, this sequence was developed 5 decades ago

but still has not found broad experimental applications despite its possible potential.

This work focuses on the root of the performance degradation of this sequence. Through

the use of analytical calculations, numerical simulations, and experimental modi�cations

the residual line broadening is analysed. A concise conclusion of the origin of the perfor-

mance degradation is presented for the �rst time and it is understood why this sequence

is still limited in use.

In Chapter 7, a basic sequence for heteronuclear spin decoupling is investigated. Het-

eronuclear decoupling sequences are an essential building block of every high-resolution

solid-state NMR experiment, and have a detrimental in�uence on the spectral line

shape and the signal-to-noise ratio (SNR). The optimization of these sequences must be

straightforward and the implementation should be robust towards di�erent conditions.

Theoretical concepts to describe the simple two-pulse decoupling sequences with discrete

phase modulations (TPPM [43]) presented previously are extended to understand the
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in�uence of pulse transients. The di�erence between continuous phase modulation and

discrete phase jumps as well as a commonly-used phase cycle of the basic two-pulse

sequence [44] is investigated theoretically and experimentally.



2. Theoretical Background

2.1. Basic NMR Theory

Generally speaking, spin dynamics and certain NMR phenomena are described either

classically or using a quantum-mechanical description. The approaches of the two theo-

ries are only equivalent for one-spin problems for which the classical approach uses Bloch

equations. For multi-spin problems, the approaches are not equivalent and each o�ers

advantages and disadvantages. The classical theory can be used to describe larger spin

systems or phenomena like spin di�usion for which quantum mechanics is limited due to

the size of the system [45]. Nevertheless, the classical theory that uses spin-temperature

approaches and rate equations is unable to explain the echo phenomenon [46]. Therefore,

it can be stated that classical theory is mainly used phenomenological and it is not exact.

Quantum mechanics is used to describe the system under an exact Hamiltonian. This

includes the treatment of the density operator, time-independent and time-dependent

Hamiltonians, spin interactions, and many more. The advantage of quantum mechanics

is the exact description of the system but is often limited by its complexity and high

demand of computational power.

A brief introduction of the quantum mechanical approach is presented in the follow-

ing since it is an important tool for the design and understanding of pulse sequences

that is used throughout this work. Only nuclei with spin I = 1/2 are treated in this

work, and therefore, quadrupole interactions are not discussed further. This theoretical

introduction is meant to give an overview and is not extensive. A more detailed and

comprehensive treatment can be found in several NMR textbooks which are taken as a

basis for the following relations [47�50].

7
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The Density Operator

In principle, the state of an ensemble is described using the density-operator formalism.

The state of a quantum system is de�ned by a wave function |Ψ(t)〉 which can always

be written as a superposition of orthonormal basis functions |φi〉

|Ψ(t)〉 =
∑
i

ck(t)|φi〉. (2.1)

For a single I = 1/2 spin, there are two basis functions |α〉 and |β〉. They are the

eigenfunctions of the Zeeman Hamiltonian and are often called 'spin-up' and 'spin-down'

indicating a parallel or anti-parallel alignment of the z component of the spin-angular

momentum with respect to the external B0 �eld. This set of eigenfunctions is sensible

since the Zeeman Hamiltonian is the dominant interaction in NMR.

However, state functions are rarely used in NMR since usually an ensemble of spins is

considered. Therefore, the density operator represents a good choice for the description

of the quantum system. It is de�ned as

ρ̂(t) =
∑
i,j

ci(t)cj(t)∗|φi〉〈φj| (2.2)

with the expectation value of a certain operator Â formulated as

〈Â〉(t) = ci(t)cj(t)
∗〈φj|Â|φi〉

= 〈φi|ρ̂(t)|φj〉〈φj|Â|φi〉

= 〈φi|ρ̂(t)Â|φi〉

= Tr{ρ̂(t)Â}. (2.3)

Signal Intensity and Equilibrium Density Operator

The signal intensity in NMR is an important quantity since most experiments are signal-

to-noise limited. The signal intensity is directly related to the equilibrium density opera-
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tor ρ̂0 of a spin ensemble. Assuming the system is in thermal equilibrium, the occupancy

probability is given by

ρ̂0 =
exp(−~ĤZ/kBT )

Tr{exp(−~ĤZ/kBT )}
(2.4)

≈ 1̂

Tr{1̂}
− −~ĤZ

kBTTr{1̂}
(2.5)

where ĤZ = −γÎzB0. (2.6)

In order to obtain the second line in the equation above, the high-temperature approx-

imation (~γB0 � kBT ) is evoked. T is the spin temperature, kB is the Boltzmann

constant, and ĤZ the Zeeman Hamiltonian which is discussed in Chapter 2.2.1. The

temperature is used often times to push the sensitivity as is moving to high-γ nuclei

or even electrons. The amount of NMR signal, i.e. the sensitivity, is calculated as

the population di�erence between the two states in the Zeeman Hamiltonian; spin-up

((ρ̂0)11) and spin-down ((ρ̂0)22). Calculation of the population di�erence for standard

NMR conditions (B0=20 T, T=303 K) leads to a value of 6.5 · 10−5 of the spin ensemble

which actually contributes to the e�ective NMR signal.

Time Evolution of the Density Operator

The time evolution of the density operator under an arbitrary Hamiltonian is given by

the Liouville-von Neumann equation

d

dt
ρ̂(t) = −i

[
Ĥ , ρ̂(t)

]
. (2.7)

If the density operator commutes with the Hamiltonian at all times, the density operator

does not evolve with time and it is stationary. Assuming a time-independent system

Hamiltonian that does not commute with the density operator, the general solution is

given by

ρ̂(t) = Û(t)ρ̂0Û
−1(t) (2.8)

with the term U(t) being a so called propagator that has the functional form of
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Û(t) = exp
(
−iĤ t

)
(2.9)

following the relation Û−1(t) = Û †(t) since it is a unitary operator due to the Hermitian

property of the Hamiltonian.

The treatment of time-dependent Hamiltonians is presented in Chapter 2.5 in more

detail since it is an integral part of this thesis.

2.2. Interactions in Solid-State NMR

The interactions in solid-state NMR can generally be divided into two groups. Firstly,

the interactions of a nuclear spin with a magnetic �eld is considered and is expressed in

the most general form as

Ĥ (i,B) = ~̂Ii
˜
A(i,B) ~B. (2.10)

Secondly, the interactions between two nuclear spins are considered which are given in

the general form

Ĥ (i,j) = ~̂Ii
˜
A(i,j) ~̂Ij. (2.11)

The strength and the spatial and angular dependency are in both cases described by the

tensor
˜
A which is a 3x3 matrix. The magnetic �eld vector is per de�nition aligned along

the z axis and is hence reduced to ~B = (Bx, By, Bz) = (0, 0, B0). The vector containing

the spin operators is given by ~̂I = (Îx, Îy, Îz). For a spin with I = 1/2 these operators

are represented by the Pauli matrices.

All Hamiltonians Ĥ are given in angular frequency units throughout the whole thesis.

All interactions and energy units are given in angular frequencies and are denoted by

the symbol ω. Ordinary frequencies are speci�cally mentioned or labelled ν.

2.2.1. The Zeeman Hamiltonian

The Zeeman interaction is the most crucial for NMR since it is also the dominant one. It

describes an interaction of an NMR-active spin with an external magnetic �eld B0. This

spin precesses around the external magnetic �eld clockwise or anti-clockwise depending
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on the sign of the gyromagnetic ratio. The Zeeman Hamiltonian under a magnetic �eld

along the z direction is de�ned as

Ĥ (i)
Z = −γi ~B0 · ~̂Ii = ω

(i)
0 Îiz (2.12)

where γi is the gyromagnetic ratio of spin i and ω0 is the Larmor frequency. From a

known Zeeman Hamiltonian, the population di�erence and hence the NMR signal inten-

sity can be calculated according to the formalism outlined for the equilibrium density

operator.

Considering a classical analogue of the Zeeman Hamiltonian is the torque experienced

by a magnetic moment µ subjected to an external magnetic �eld. This torque aligns

itself such that the potential energy E = −µ ·B0 is minimum.

2.2.2. The Chemical-Shift Hamiltonian

So far, only the interactions of a bare nucleus with the magnetic �eld have been de-

scribed which is a case never encountered that would lead to indistinguishable signals

for the same isotopes. Since the nucleus is surrounded by electrons, the local B0 �eld

is in�uenced. Consequently, currents are induced that produce a local magnetic �eld

interacting with the nuclear spin. This local induced �eld ~Bind depends on the charge

distribution around the nucleus and can be non-uniform. In very good approximation,

the induced �eld is directly proportional to the external magnetic �eld

~Be� = ~B0 + ~Bind

= ~B0 +
˜
σ ~B0 (2.13)

with
˜
σ being the chemical-shift tensor. Due to the possible non-uniform charge distri-

bution, this interaction does not exhibit spherical symmetry and is therefore considered

an anisotropic interaction. Using the chemical-shift tensor as the interaction of interest,

the full chemical-shift Hamiltonian is written as

Ĥ (i)
CS = −γi ·

˜
σ(i) ~B0 · ~̂Ii. (2.14)
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Using the Cartesian coordinates the chemical-shift tensor is represented as a 3x3 matrix

˜
σ =

σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

 . (2.15)

As the external magnetic �eld is per convention aligned along the z axis, Equation 2.14

can be simpli�ed using the de�nition in Equation 2.15 to

Ĥ (i)
CS = ω

(i)
0

(
σ(i)
xz Îix + σ(i)

yz Îiy + σ(i)
zz Îiz

)
. (2.16)

Since the magnitude of the chemical shift is much smaller (10−4 to 10−6 times) than

the Zeeman Hamiltonian, it is convenient to go into a rotating frame around the z

axis with the Larmor frequency ω0. In the rotating frame, all terms proportional to Îx
and Îy become time dependent and can be neglected; this is the high-�eld or secular

approximation. Therefore, the chemical-shift Hamiltonian simpli�es to

Ĥ (i)
CS = ω

(i)
0 σ(i)

zz Îiz. (2.17)

The chemical-shift tensor can also be expressed in the principal-axis system (PAS) in

which the o�-diagonal elements vanish. Alternatively, the three principal components

are de�ned by the isotropic chemical shift

σiso =
1

3
Tr{

˜
σ} (2.18)

the anisotropy of the tensor

δ = σzz − σiso (2.19)

and its asymmetry

η =
σyy − σxx

δ
. (2.20)

The convention for the de�nition of the tensor elements follows |σzz−σiso| ≥ |σxx−σiso| ≥
|σyy − σiso|.

The relation between the chemical-shift tensor in the laboratory frame and the PAS

is given by three consecutive rotations: the Euler rotations. The Euler angles α and
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β give the relative orientations; the third Euler angle γ does not play a role since the

laboratory system is rotationally symmetric with respect to the z axis. The rotational

matrices along the principal axes x, y, and z are given by

Rx =

1 0 0

0 cos θ − sin θ

0 sin θ cos θ

 Ry =

 cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

 Rz =

cos θ − sin θ 0

sin θ cos θ 0

0 0 1


(2.21)

The net rotation matrix R(α, β, γ) is constructed from three successive rotations de�ned

as

R(α, β, γ) = Rz′′(γ)Ry′(β)Rz(α) (2.22)

with the Cartesian tensor in the new coordinate system given by

A(new) = R(α, β, γ)A(old)R−1(α, β, γ). (2.23)

Note that this solution is not unique and follows the convention that the �rst rotation

with angle α is around the z axis, the second rotation with β around the new y′ axis,

and the third rotation γ around the obtained z′′ axis.

Following this procedure, the chemical-shift value at which a resonance frequency is

observed can be expressed as

ωCS = ω0

[
σiso +

1

2
δ
(
(3 cos2 β − 1)− η sin2 β cos 2α

)]
. (2.24)

Due to the sensitivity of the chemical shift and the electronic structure, measuring
˜
σ

allows the extraction of relative molecular orientations and torsion angles [51]. However,

most solid-state NMR samples are not single crystals but randomly orientated powdered

samples. Therefore, the static spectrum is given as the superposition of all di�erent ori-

entations which exhibit di�ering resonance frequencies depending on the Euler angles

(Equation 2.24). This leads to characteristic powder patterns that depend on the param-

eters given in Equations 2.18-2.20. A characteristic powder pattern is shown in Figure

2.1A with di�ering asymmetry parameters.
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2.2.3. The Dipolar-Coupling Hamiltonian

The dipolar-coupling Hamiltonian describes the interactions between two spins i and j.

This interaction is analogous to the attraction or repulsion of two magnets in close prox-

imity depending on the spatial orientation. As in the classical description, the strength

of the dipole-dipole coupling depends on the distance, i.e. ∝ r−3
i,j . The corresponding

Hamiltonian is a spin-spin interaction and can be written as

ĤD = ~̂Ii
˜
D(i,j) ~̂Ij

= −µ0

4π

γiγj~
r3
i,j

(
3(Îi · ~ri,j)(Îj · ~ri,j)

r2
i,j

)
(2.25)

with
˜
D being a symmetric and traceless 3x3 matrix. The matrix form of this traceless

dipolar tensor is given in the PAS by

˜
D(i,j) = −2

µ0

4π

γiγj~
r3
i,j

−1/2 0 0

0 −1/2 0

0 0 1

 . (2.26)

Figure 2.1. A) Representation of a characteristic CSA powder pattern observed in solid-state NMR
with varying asymmetry parameter. The isotropic chemical-shift value was set to 2 kHz with an
anisotropy of 5 kHz. B) The resulting spectrum of purely dipolar coupled spins assuming a homonu-
clear coupling with dipolar coupling of -7.5 kHz. The splitting of the Pake pattern is equal to 3

4δi,j for
the homonuclear case and 1

2δi,j for a heteronuclear spin pair.
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The factor with which the matrix is scaled is de�ned as the anisotropy of the dipolar

coupling δi,j. Often times it is convenient to expand the dipolar Hamiltonian in the

so-called dipolar alphabet

ĤD =
δi,j
2

[A+B + C +D + E + F ] (2.27)

with the individual terms de�ned as

A = 2Îiz Îjz
(3 cos2 β − 1)

2

B = −1

2

[
Î+
i Î
−
j + Î−i Î

+
j

] (3 cos2 β − 1)

2

C =
[
Îiz Î

+
j + Î+

i Îjz

] 3

2
sin β cos βe−iγ

D =
[
Îiz Î

−
j + Î−i Îjz

] 3

2
sin β cos βe+iγ

E =
1

2

[
Î+
i Î

+
j

] 3

2
sin2 βe−2iγ

F =
1

2

[
Î−i Î

−
j

] 3

2
sin2 βe−2iγ. (2.28)

The angles β and γ de�ne the orientation of the internuclear vector ~ri,j with respect to

the external magnetic �eld. In the secular approximation, a rotating coordinate system

is assumed resulting in time dependency for terms that contain the factor einγ. This is

due to the rotation around the z axis. Hence, A and B are the only terms to remain time

invariant under such a transformation. This leads to a simpli�ed dipolar Hamiltonian

assuming two homonuclear spins

Ĥ (homo)
D =

δi,j
2

(3 cos2 β − 1)

2

(
2Îiz Îjz −

1

2

(
Î+
i Î
−
j + Î−i Î

+
j

))
. (2.29)

with β being the angle between the static B0 �eld and the internuclear vector.

Assuming a heteronuclear-dipolar coupled spin pair, i.e. γi 6= γj, the Hamiltonian is

transformed in a double rotating frame (Îz rotates with ω0,I and Ŝz with ω0,S). This

leads to a time dependence of the spin part in term B, also often referred to as the
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�ip-�op term. This term is additionally neglected in the high-�eld approximation and

the heteronuclear dipole-dipole Hamiltonian simpli�es further to

Ĥ (het)
D =

δi,j
2

(3 cos2 β − 1)

2

(
2ÎizŜjz

)
. (2.30)

The spatial dependence of the dipolar Hamiltonian shows a zero crossing at the speci�c

angle β = 54.74◦. This angle has special relevance as it is known as the magic angle at

which the dipolar-coupling contribution is non-existent in the full system Hamiltonian.

This property is of utmost important for magic-angle spinning (MAS) experiments which

are discussed in detail in Chapter 2.4.2.

In a static case, a characteristic pattern is observed which is termed Pake pattern. This

contains the superposition of two symmetric powder patterns and is shown in Figure

2.1B.

2.2.4. The Scalar J-Coupling Hamiltonian

The J-coupling interaction belongs to the group of spin-spin couplings. The strength of

the interaction is related to the probability to �nd the electron at the position of the

nucleus. This is known as a Fermi contact interaction. The Hamiltonian is given in the

most general form with the tensor
˜
J (i,j)

ĤJ = 2π~̂Ii
˜
J (i,j) ~̂Ij. (2.31)

The matrix
˜
J (i,j) contains anisotropic contributions and is therefore a tensor. However,

since the anisotropic contributions to the J-coupling are experimentally indistinguishable

from the dipolar-coupling tensors, these contributions are conveniently included into the

dipolar-coupling Hamiltonian.

Therefore, for light nuclei in which the anisotropy is small to begin with, the Hamiltonian

is reduced to an isotropic interaction given by

ĤJ = 2πJ (i,j) ~̂Ii · ~̂Ij (2.32)

with J (i,j) being a scalar quantity.

In full analogy to the dipolar-coupling Hamiltonian, a distinction between homo- and

heteronuclear couplings is made using the secular approximation neglecting all transverse
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terms due to their time dependency. For homonuclear couplings, the scalar product in

Equation 2.32 remains una�ected and is expressed as

Ĥ (homo)
J = 2πJ (i,j) ~̂Ii · ~̂Ij (2.33)

and for the heteronuclear case

Ĥ (het)
J = 2πJ (i,j)ÎizŜjz. (2.34)

2.2.5. The Radio-Frequency Hamiltonian

In principle, spin magnetization can be manipulated by the use of external rf pulses.

The frequency of these pulses matches the Larmor frequency. The B1 �eld, that is time

dependent, is generated by a single coil as a linearly-polarized electromagnetic wave.

The rf �elds are applied perpendicular to the external magnetic �eld. This orthogonal

direction is per convention de�ned to be the x axis and the B1-�eld vector is given by

~B1(t) = (B1x(t), 0, 0). (2.35)

Due to the linearity of the oscillation of the �eld, the time dependence is described by

a cosine term and in principle, the amplitude and the phase can have an explicit time

dependence. Therefore, the time-dependent rf �eld is given by

B1x(t) = 2B1(t) cos (ωrft+ ϕ(t)) (2.36)

with B1(t) as the amplitude, ϕ(t) the phase, and ωrf as the frequency of the pulse known

as the carrier frequency. The time dependency of the amplitude and the phase is on a

much slower time scale than the carrier frequency.

Considering the manipulation of the spins by the rf �eld as a spin-�eld interaction, the

rf Hamiltonian can be written as

Ĥrf = ~̂Ii · (−γi) · ~B1(t)

= −2γiB1(t) cos (ωrft+ ϕ(t)) Îix. (2.37)
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After transformation into a rotating frame rotating around the z axis with the carrier

frequency, the Hamiltonian is given by

Ĥrf = −γiB1(t)
(
Îix cos (ϕ(t)) + Îiy sin (ϕ(t))

)
. (2.38)

The amplitude −γiB(t) is given in terms of resulting nutation frequencies ω1(t). This

rotating-frame transformation removes the Zeeman term from the total Hamiltonian if

the carrier frequency matches the Larmor frequency, i.e. ωrf = ω0. If the irradiation is

not on-resonant, an additional term ΩÎiz is added with Ω being the di�erence between

the carrier and the Larmor frequency. This term is called an o�set and o�set e�ects

are an important parameter to consider for a lot of experiments. Additionally, terms

that oscillate with twice the carrier frequency 2ωrf are neglected in the rotating-frame rf

Hamiltonian. These terms can give rise to a shift of the resonance line which is known

as the Bloch-Siegert shift [52]. This contribution is usually small and not important and

therefore its neglect is a valid approximation for NMR experiments in this thesis.

2.3. Spherical-Tensor Notation

For now, all tensor components have been de�ned in the Cartesian coordinate system.

However, certain interactions have been classi�ed according to isotropic and anisotropic

contributions and the properties under rotation have been mentioned. Adapting a con-

certed rotation symmetry for the spin and/or spatial part of the Hamiltonian simpli�es

the theoretical description by a great deal and rotations are readily calculated. The

symmetry-adapted basis chosen for NMR interactions possesses the symmetry group

SO(3). Using irreducible spherical-tensor notation, the Hamiltonian can be written as

a sum over all interactions i, the rank of the tensor `, and sub components q [53]. The

spatial and spin part (A(i)
`,q and T (i)

`,q , respectively) can be manipulated independently

and are combined as a product to form the total Hamiltonian

Ĥ =
∑
i

2∑
`=0

∑̀
q=−`

(−1)qA
(i)
`,qT̂

(i)
`,−q. (2.39)

A list of the spherical spin tensors can be found in Appendix A.

The rotation of spherical tensors is computed readily by the use of the Wigner rotation
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matrix D `. The rotation is treated according to the symmetries of the spherical-tensor

components and the advantage is that the ranks do not mix during rotation. The

description is equivalent to the use of Euler rotation matrices. Using the three Euler

angles, the rotations are given by

T (new)
`,q =

+∑̀
q′=−`

D `
q′,q(α, β, γ)T (old)

`,q′

=
+∑̀

q′=−`

e−iαq
′
d`q′,q(β)e−iγqT (old)

`,q′ . (2.40)

d`q′,q(β) are the reduced Wigner rotation elements and are tabulated functions that can

be looked up.

2.4. Time-Dependent Hamiltonians

2.4.1. Introduction

A time-independent Hamiltonian Ĥ can be analysed analytically and the dynamics of

the spin operators fully understood. However, the analytical analysis of a Hamiltonian

that is time dependent, Ĥ (t), is non-trivial. A conceptually simpler approach is a

numerical simulation of the system with a Hamiltonian that is assumed to be time

independent over a short time and calculating the propagation of the density operator

with this time-independent Hamiltonian. This concept of time slicing is introduced in

more detail later in this Chapter for the interaction-frame transformation.

A time dependency is generally introduced if the system is perturbed in a continuous

manner, e.g. by rf irradiation or physical spinning of the sample in a magic-angle

spinning experiment. The induced time dependence by the external perturbations is

indicated on the system Hamiltonian

Ĥ (t) =
∑
i

2∑
`=0

∑̀
q=−`

(−1)q A
(i)
`,q(t)︸ ︷︷ ︸
MAS

T̂ (i)
`,−q(t)︸ ︷︷ ︸

rf irradiation

. (2.41)

A change in the system Hamiltonian with respect to time leads to a temporal changes

of the eigenvalues and in some cases to the system's eigenfunctions. The analytical solu-
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Figure 2.2. Schematic representation of external perturbations that introduce time dependence of the
Hamiltonian. The spin part of the system Hamiltonian is perturbed by an external B1 field. The spatial
part is modulated by physical rotation around the rotor axis known as magic-angle spinning.

tion of the Liouville-Von Neumann equation is not always valid with a time-dependent

Hamiltonian. Hence, a theory has to be applied from which time-independent e�ective

Hamiltonians can be derived that govern the system throughout the perturbation. The

resulting evolution of the density operator under these Hamiltonians allows conclusions

about the spin dynamics and play an essential role in the theoretical description and

understanding of the pulse sequences presented throughout this thesis. In principle, two

main theories to �nding e�ective time-independent Hamiltonians are applied, namely

average Hamiltonian theory (AHT) [18, 19] and Floquet theory [20�23]. Both will be

discussed in detail in this Chapter.

Additionally to the external perturbations to the system by experimental design there

are stochastic modulations of the spin or spatial part of the Hamiltonian. These time-

dependent modulations are induced by random molecular motion. A phenomenon of

this time dependence is relaxation behaviour of the system which is classi�ed either in

longitudinal or transverse relaxation times (T1, T2, T1ρ,...). An analytical treatment of

relaxation behaviour is beyond the scope of this work as it is only covered in a very
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phenomenological way throughout this work. Further reading regarding relaxation can

be found in [54, 55].

2.4.2. Modulation of the Spatial Tensors by MAS

The rotation of the sample around the rotor axis is a pre-requisite for the applica-

tion of high-resolution solid-state NMR. The rapid rotation around the spinning axis

inclined by 54.74◦ to the external magnetic �eld, known as magic-angle spinning, aver-

ages out anisotropic interactions [16, 17]. Despite the rich content of information of the

anisotropic interactions about the spin environment, they render broad spectral lines

that make the interpretation of spectra nearly impossible.

As already shown in Equation 2.41, magic-angle spinning modulates the spatial part of

the Hamiltonian and introduces a time dependence. In order to analyse the e�ect of MAS

on the Hamiltonian, the spatial part of the Hamiltonian is rotated sequentially from the

PAS into the laboratory coordinate system. At �rst the interaction of interest has to be

transformed from the principal-axis system into a coordinate system corresponding to a

rotor-�xed frame using the reduced Wigner elements

A
(rot)
`,q′ =

∑̀
q′′=−`

D `
q′′,q′(α, β, γ)A

(PAS)
`,q′′ . (2.42)

Further, the tensor in the rotor-�xed frame is rotated in the laboratory frame assuming

a rotation of ωrt with ωr being the rotation speed and an incline with respect to the

external magnetic �eld θr. The interaction in the laboratory frame is given by

A
(lab)
`,q =

∑̀
q′=−`

D `
q′,q(−ωrt,−θr, 0)A

(rot)
`,q′ . (2.43)

Invoking the high-�eld approximation, only the component q = 0 remains time indepen-

dent and is considered. Combining the two rotations, the spatial tensor under MAS is

derived as

A
(lab)
`,0 =

∑̀
q′=−`

e−iq
′ωrtd`q′,0(−θr)A(rot)

`,q′ . (2.44)

The exponential terms containing q′ = ±1,±2, . . . vanish if the signal is sampled at

multiples of the rotor periods, known as stroboscopic sampling. However, in real solid-
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state NMR experiments stroboscopic sampling is not applied routinely because it is very

restricting for the choice of dwell time. The result of non-stroboscopic sampling are

spinning side bands which are signals that are spaced from the central line by the ro-

tor frequency. At higher MAS frequencies, these side bands move further out and are

reduced in intensity resulting in higher signal-to-noise of the central peak. The time-

independent component (q′ = 0) is scaled with the Wigner element d2
0,0 = 3 cos2 θr−1

2

which is 0 at the magic angle θr = θm = 54.74◦.

The full Hamiltonian with the MAS time dependence and the high-�eld approximation

is given by

Ĥ (t) =
∑
`

A`,0(t)T̂`,0. (2.45)

Substituting the spatial tensor with the explicit expressions derived in Equation 2.44,

the Hamiltonian can be interpreted as a Fourier series

Ĥ (t) =
∑̀
q=−`

Ĥ (q)e−iqωrt

=
∑̀
q=−`

d`q,0(−θr)A(rot)
`,q e−iqωrt · T̂`,0

=
∑
q

∑
q′

d`q,0(−θr)e−iq
′αd`q′,q(β)e−iqγA

(PAS)
`,q′ e−iqωrt · T̂`,0

=
∑
q

ω(q)e−iqωrt · T̂`,0 (2.46)

where ω(q) is the spatial tensor component of a spin interaction under MAS given by

ω(q) =
∑
q′

d`q,0(−θr)e−iq
′αd`q′,q(β)e−iqγA

(PAS)
`,q′ . (2.47)
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The sum over q is restricted to -2 to 2 because the tensors have rank 2. Oftentimes,

the spatial tensor in the principal-axis system is represented by the symbol ρ(PAS)
`,q and

is de�ned by

ρ0,0 = −
√

3σiso

ρ2,0 =
√

3/2δ

ρ2,±2 = −1/2(δη) (2.48)

where σiso, δ, and η have been de�ned in Chapter 2.2.2. Note that the dipolar-coupling

tensor does not contain asymmetric parts and therefore, only ρ2,0 has to be considered

for the dipole-dipole interaction.

2.4.3. Modulation of the Spin Tensors by RF Irradiation

If the perturbation of the Hamiltonian is of periodic nature, the time-dependent system

Hamiltonian can be represented as a Fourier series with an in�nite sum. The �rst

example of such a Fourier series was shown for the time-dependent Hamiltonian under

MAS with a restricted sum due to the rank of the spatial component. Generally, a

periodic Hamiltonian can thus be expressed as

Ĥ (t) =
∞∑

n=−∞

Ĥ (n) · einωct. (2.49)

This implies that the Hamiltonian is cyclic in nature and the relation Ĥ (t) = Ĥ (t+τc)

holds true where τc = 2π/ωc with τc being the cycle time. Ĥ (n) are the time-independent

Fourier coe�cients of the Hamiltonian and are not Hermitian. Theoretically, through

simultaneous modulation of the spin and the spatial part, the Hamiltonian can gain

multiple time dependencies which do not have to be commensurate. The resulting time-

dependent Hamiltonian can consequently be written in terms of multiple characteristic

frequencies with multiple Fourier expansions.

Interaction-Frame Transformation

A similar procedure to the transformation of the spatial part in a system that rotates

with the MAS frequency (Chapter 2.4.2) can be applied to analyse the in�uence of a
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time-dependent spin part of the Hamiltonian. This spin part can be manipulated by

external rf irradiation with a Hamiltonian Ĥrf(t) (Chapter 2.2.5). Transforming the spin

part of the Hamiltonian into an interaction frame that rotates with the rf Hamiltonian

leads to a modulation of the Hamiltonian with the pulse sequence. This transformation

is mathematically written out by

ˆ̃H (t) = Û−1(t)Ĥ (t)Û(t). (2.50)

The propagator U(t) contains the dominant interaction from the Hamiltonian Ĥ1(t)

(usually containing the rf Hamiltonian, the o�set Hamiltonian, or another dominant

interaction) and is given by

Û(t) = T̂ exp

(
−i
∫ t

0

Ĥ1(t1)dt1

)
. (2.51)

where T̂ is the Dyson time-ordering operator [56]. This operator ensures that the Hamil-

tonian at an earlier time acts on the density operator �rst, and hence, is written math-

ematically as

T̂{Ĥ (t1)Ĥ (t2)} =

Ĥ (t1)Ĥ (t2) if t1 > t2

Ĥ (t2)Ĥ (t1) if t1 < t2.
(2.52)

The density operator transforms in full analogy to the system Hamiltonian and is given

in the interaction frame by

ρ̂′(t) = Û−1(t)ρ̂(t)Û(t). (2.53)

Substituting the transformed density operator into the Liouville-Von Neumann Equation

(Eq. 2.7), a modi�ed relation is obtained

d

dt
ρ̂′ = −i

[
ˆ̃H − Ĥ1, ρ̂

′
]

= −i
[
Ĥ ′

0 , ρ̂
′
]

(2.54)

with ˆ̃H being the full Hamiltonian in the interaction frame and Ĥ ′
0 =

ˆ̃H − Ĥ1 the

non-dominant part of the full Hamiltonian. This term, Ĥ ′
0 , is now the governing Hamil-

tonian in the interaction frame for the spin dynamics.
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The in�uence of the new governing time-dependent Hamiltonian can be expressed again

in a Fourier series as shown before. Considering an arbitrary rf-�eld Hamiltonian, two

frequencies are characteristic for the description of the time dependence. The modula-

tion frequency, ωm, describing the basic rate at which the pulse sequence is repeated,

and the e�ective �eld, ωe�, giving the net �ip angle over the basic modulation period.

Therefore, the interaction-frame Hamiltonian can be written as

ˆ̃H (t) =
∞∑

k=−∞

∞∑
`=−∞

Ĥ (k,`)eikωmtei`ωe�t. (2.55)

The time-independent Fourier coe�cients Ĥ (k,`) can be calculated analytically for cer-

tain irradiation schemes and pulse sequences with perfect rectangular pulses. Arbitrary

shaped rf �elds require a numerical calculation of the transformation. In order to cal-

culate the density operator and the interaction-frame Hamiltonian numerically, a time

slicing has to be employed and the propagator is given as the product of piece-wise

time-independent propagators

Û(t) ≈
∏
k

exp
(
−iĤ1(k∆t)∆t

)
. (2.56)

The time dependence of the interaction-frame transformation can either by expressed

using Cartesian coordinates
ˆ̃Iκ(t) =

∑
χ

aκχ(t)Îχ (2.57)

with κ and χ as the coordinates x, y, z, or using spherical tensor notation

ˆ̃Tr,0(t) =
r∑

s=−r

ar,s(t)T̂r,s. (2.58)

The time-dependent coe�cients aki(t) respectively ar,s(t) map out the interaction-frame

trajectory. A subsequent Fourier analysis of these coe�cients allows the extraction of

time-independent coe�cients that allow the e�ective Hamiltonian to be directly deter-

mined from these coe�cients. This procedure is the basis of a Floquet analysis which is

presented in Chapter 2.5.2.
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2.5. Analysis of Time-Dependent Hamiltonians

2.5.1. Average Hamiltonian Theory

A simple analysis of time-dependent Hamiltonians is given by the concept of average

Hamiltonian theory (AHT). It requires the time-dependent Hamiltonian to be cyclic, i.e.

Ĥ (t) = Ĥ (t + τc) and the sampling is stroboscopic. A time-independent Hamiltonian

Ĥ is obtained by calculating the average of di�erent time-dependent Hamiltonians

acting on the system during the period τc. Assuming the simplest case of two di�erent

time-dependent Hamiltonian, e.g. two rf schemes applied for a certain time steps t1 and

t2, an e�ective propagator over the whole period can be calculated according to

Ûe�(τc) = exp
(
−iĤ τc

)
= exp

(
−iĤ1t1

)
exp

(
−iĤ2t2

)
. (2.59)

This relation requires that Ĥ1 and Ĥ2 are constant during the time periods t1 and

t2, respectively. In order to evaluate the product of the two exponent operators, the

Baker-Campbell-Hausdor� (BCH) relation can be invoked and leads to the expansion

exp
(
−iĤ τc

)
= exp

(
−iĤ1t1

)
exp

(
−iĤ2t2

)
= exp

(
− i(Ĥ1t1 + Ĥ2t2)− 1

2

[
Ĥ2t2, Ĥ1t1

]
+

i

12

([
Ĥ2t2,

[
Ĥ2t2, Ĥ1t1

]]
+
[[

Ĥ2t2, Ĥ1t1

]
, Ĥ1t1

])
+ . . .

)
. (2.60)

The average Hamiltonian is given by the �rst term of Equation 2.60 if the two Hamil-

tonians commute at all times. Otherwise, an in�nite series is obtained from which the

Figure 2.3. Schematic representation of the substitution of a time-dependent Hamiltonian comprising
of two time-independent Hamiltonians Ĥ1 and Ĥ2 by an average Hamiltonian Ĥ forming the basis of
average-Hamiltonian theory.
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terms can be attributed to di�erent orders which is usually truncated after second or

third order. This series is then given by

Ĥ = Ĥ
(1)

+ Ĥ
(2)

+ Ĥ
(3)

+ . . . (2.61)

where the contributions are given for the two-Hamiltonian case by

Ĥ
(1)

=
1

τc
(Ĥ1t1 + Ĥ2t2) (2.62)

Ĥ
(2)

=
−i
2τc

[Ĥ2t2, Ĥ1t1] (2.63)

Ĥ
(3)

=
−1

12τc

([
Ĥ2t2,

[
Ĥ2t2, Ĥ1t1

]]
+
[[

Ĥ2t2, Ĥ1t1

]
, Ĥ1t1

])
(2.64)

This concept can be generalized for continuously time-dependent Hamiltonians in the

form of a Magnus expansion [57]. The �rst three contributions to this expansion are

given by

Ĥ
(1)

=
1

τc

∫ τc

0

dt1Ĥ (t1) (2.65)

Ĥ
(2)

=
−i
2τc

∫ τc

0

dt2

∫ t2

0

dt1

[
Ĥ (t2), Ĥ (t1)

]
(2.66)

Ĥ
(3)

=
−1

6τc

∫ τc

0

dt3

∫ t3

0

dt2

∫ t2

0

dt1

[
Ĥ (t3),

[
Ĥ (t2), Ĥ (t1)

]]
+
[[

Ĥ (t3), Ĥ (t2)
]
, Ĥ (t1)

]
.

(2.67)

Note that the �rst-order average Hamiltonian does not have an explicit dependence on

the cycle time τc. Therefore, the cycle time does not in�uence the �rst-order terms.

However, the second-order term has an explicit time dependence in the divisor, and

hence, is scaled down by shorter cycle times. This is the reason why coherent averaging

is more e�cient at higher MAS frequency. On the other hand, it is also the reason

why pulse sequences relying on large second-order terms are less promising at high MAS

frequencies. An additional property inferred from the Magnus expansion is the vanishing

of all even-order terms if the Hamiltonian is symmetric with respect to the cycle time,

i.e.

Ĥ (t) = Ĥ (τc − t). (2.68)



28 2 Theoretical Background

Nevertheless, AHT has certain limitations as the description is only exact at multiples of

the cycle time and the stroboscopic sampling is experimentally restricting. Furthermore,

multiple time dependencies with basic frequencies that are not commensurate can only

be treated for very long time steps which would not yield meaningful results. A viable

alternative for the treatment of multiple non-commensurate frequencies is o�ered by

Floquet theory.

2.5.2. Floquet Theory

Floquet theory overcomes the limitations of average Hamiltonian Theory as the treat-

ment of multiple periodic time dependencies is possible. This is a powerful approach for

solid-state NMR because experiments often comprise of multiple modulation frequencies

(e.g. from the MAS and the rf-�eld irradiation).

The basic approach is based on a transformation from the Hamiltonian in a time-

dependent Hilbert space into an in�nite-dimensional time-independent Floquet space.

The transformation turns a �nite-dimensional, time-dependent problem into a in�nite-

dimensional, time-independent one. There are two fundamentally di�erent ways to per-

form a Floquet analysis of the time-dependent problem. Firstly, the time evolution of

the density operator can be calculated under an in�nitely-dimensional Floquet Hamilto-

nian to obtain the spectrum. This approach is predominantly interesting for numerical

simulations but they are computationally demanding and time slicing of the Hamilto-

nian in Hilbert space is more e�cient.

A second, more useful, approach is the analytical transformation and subsequent per-

turbation theory on the Floquet Hamiltonian. This leads to an approximation of the

analytical solution of the problem in Floquet space. Projecting the resulting e�ective

Hamiltonian back onto the �nite Hilbert space yields operators, mostly in a spin-operator

approach, that can be interpreted physically.

The second approach is depicted in Figure 2.4 with the construction of the Floquet

Hamiltonian and the Van Vleck perturbation treatment for the derivation of e�ective

Hamiltonians.
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Figure 2.4. Schematic representation of the treatment of time-dependent Hamiltonians using Floquet
theory.

Definition of Floquet Space

Transforming the operators and matrix representations from Hilbert space into Floquet

space is done by a direct product with the Fourier space. The Fourier space is in�nitely

dimensional where the quantum numbers are all integer numbers. Hence, the full basis

set of the Fourier space is given by

Ψ(Fourier) = {| −∞〉, . . . , | − 3〉, | − 2〉, | − 1〉, |0〉, |1〉, |2〉, |3〉, . . . , |∞〉}. (2.69)

The Floquet space is therefore given by

Ψ(Floquet) = Ψ(Hilbert) ⊗Ψ(Fourier) (2.70)

with the Hilbert space spanned by the wave functions

Ψ(Hilbert) = {|φ1〉, |φ2〉, . . . , |φN〉}. (2.71)

In Floquet space, each of the wave functions is characterized by the wave function φi

from Hilbert space and the Fourier number n.
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De�ning an operator F̂m in Fourier space, often called the 'ladder' operator, follows the

de�nition

F̂m|n〉 = |n+m〉 (2.72)

and has a matrix representation that is in�nite with a one at the mth side diagonal with

F0 being the identity operator. A further useful operator Fz, also known as the number

operator, is de�ned by

F̂z|n〉 = n|n〉. (2.73)

Furthermore, the operators obey the following relations

F̂mF̂n = F̂n+m[
F̂m, F̂n

]
= 0[

F̂z, F̂m

]
= mF̂m. (2.74)

Matrix representations of two examples of these operators are given by

F̂z =

. . . |2〉 |1〉 |0〉 | − 1〉 | − 2〉 . . .


+2 0 0 0 0 |2〉
0 +1 0 0 0 |1〉
0 0 0 0 0 |0〉
0 0 0 −1 0 | − 1〉
0 0 0 0 −2 | − 2〉

(2.75)

for the number operator and

F̂2 =

. . . |2〉 |1〉 |0〉 | − 1〉 | − 2〉 . . .


0 0 1 0 0 |2〉
0 0 0 1 0 |1〉
0 0 0 0 1 |0〉
0 0 0 0 0 | − 1〉
0 0 0 0 0 | − 2〉

(2.76)
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for the ladder operator with n = 2. For multiple time dependencies that are not com-

mensurate, the Floquet space is de�ned as the direct product between the Hilbert space

and multiple Fourier spaces with the number of basis sets equal to the number of char-

acteristic frequencies.

The Floquet Hamiltonian and Effective Hamiltonians

Deriving the Floquet Hamiltonian is done by starting from the general time-dependent

expression as a Fourier series

Ĥ (t) =
∞∑

n=−∞

Ĥ (n) · einωmt (2.77)

and expressing it in Floquet space as

ĤF =
∞∑

n=−∞

F̂n ⊗ Ĥ (n) + ωmF̂z ⊗ 1̂(s). (2.78)

The additional term ωmF̂z⊗1̂(s) can be attributed to the interaction-frame transformation

and is analogous to a �ctitious Coriolis force with 1̂(s) being the identity operator in the

Hilbert space.

Extending the problem to multiple time dependencies, one obtains the time-dependent

Hamiltonian as

Ĥ (t) =
∑
[n(p)]

Ĥ ([n(p)])
∏
p

ein
(p)ω(p)t. (2.79)

Applying the Van Vleck perturbation treatment allows the derivation of general e�ective

Hamiltonians without a detailed knowledge of the spin parts since the treatment is

only done in on the Fourier-space part. This leads to resonance conditions that are

only dependent on degeneracies between the various Fourier frequencies. The resulting

e�ective Hamiltonian can be obtained to di�erent orders and is given by

Ĥ e� = Ĥ
(1)

e� + Ĥ
(2)

e� + Ĥ
(3)

e� + . . . . (2.80)

Once these Hamiltonians are derived, the expressions for them can be used as a 'shortcut'

directly from Ĥ (t). In the following the expressions up to third order will be discussed

with two and three time dependencies, respectively.
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Bimodal Floquet Theory

Assuming a Hamiltonian, which is modulated with two frequencies, ωr and ωm, it can

be written in a general form as introduced in Equation 2.79 by

Ĥ (t) =
∞∑

n=−∞

∞∑
k=−∞

Ĥ (n,k)einωrteikωmt. (2.81)

At the resonance condition

n0ωr + k0ωm = 0 (2.82)

the �rst-order Hamiltonian is given as the sum of the terms ˆ̃H (0,0) that have the trivial

solution (n0 = k0 = 0) and are known as non-resonant terms, and the resonant terms
ˆ̃H (n0,k0), where n0 and k0 ful�l Equation 2.82, by

Ĥ
(1)

=
ˆ̃H (0,0) +

∑
n0,k0

ˆ̃H (n0,k0). (2.83)

The second-order e�ective Hamiltonian is given again as the sum over the resonant and

non-resonant terms by

Ĥ
(2)

=
ˆ̃H (0,0)
(2) +

∑
n0,k0

ˆ̃H (n0,k0)
(2) . (2.84)

with the resonant term containing commutators between the Fourier coe�cients and

de�ned as

ˆ̃H (n0,k0)
(2) = −

∑
ν,κ

1

2

[
ˆ̃H (n0−ν,k0−κ),

ˆ̃H (ν,κ)
]

νωr + κωm
. (2.85)

In Equation 2.85, the summations of ν and κ are restricted and must ful�l the inequality

νωr + κωm 6= 0 to avoid singularities.

The third-order e�ective Hamiltonian is given in full analogy to the second order by

Ĥ
(3)

=
ˆ̃H (0,0)
(3) +

∑
n0,k0

ˆ̃H (n0,k0)
(3) . (2.86)
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In the course of this thesis, only the non-resonant term in third order is considered which

is given by

ˆ̃H (0,0)
(3) =

∑
ν,κ

∑
n′0,k

′
0

1

2

[[
ˆ̃H (ν,κ),

ˆ̃H (n′0,k
′
0)
]
,

ˆ̃H (−ν−n′0,−κ−k′0)
]

(νωr + κωm)2

+
∑
ν,κ

∑
ν′,κ′

1

3

[
ˆ̃H (ν,κ),

[
ˆ̃H (ν′,κ′),

ˆ̃H (−ν−ν′,−κ−κ′)
]]

(νωr + κωm) (ν ′ωr + κ′ωm)
(2.87)

Triple-mode Floquet Theory

In full analogy to the bimodal Floquet theory, problems with three non-commensurate

time dependencies are treated. The time-dependent Hamiltonian is expanded in a

Fourier series as

ˆ̃H (t) =
∞∑

n=−∞

∞∑
k=−∞

∞∑
`=−∞

ˆ̃H (n,k,`)einωrteikωmtei`ωe�t. (2.88)

At the trimodal resonance condition

n0ωr + k0ωm + `0ωe� = 0. (2.89)

the �rst-order e�ective Hamiltonian is given by

Ĥ
(1)

=
ˆ̃H (0,0,0)
(1) +

∑
n0,k0,`0

ˆ̃H (n0,k0,`0)
(1) (2.90)

with the second-order contribution to the full e�ective Hamiltonian given by

Ĥ
(2)

=
ˆ̃H (0,0,0)
(2) +

∑
n0,k0,`0

ˆ̃H (n0,k0,`0)
(2) (2.91)

with

ˆ̃H (n0,k0,`0)
(2) = −

∑
ν,κ,λ

1

2

[
ˆ̃H (n0−ν,k0−κ,`0−λ),

ˆ̃H (ν,κ,λ)
]

νωr + κωm + λωe�
. (2.92)
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This summation has to be restricted again to νωr + κωm + λωe� 6= 0 to ensure that the

second-order e�ective Hamiltonian does not become ∞. The third-order contribution

for non-resonant terms of the e�ective Hamiltonians is given by

ˆ̃H (0,0,0)
(3) =

∑
ν,κ,λ

∑
n′0,k

′
0,l
′
0

1

2

[[
ˆ̃H (ν,κ,λ),

ˆ̃H (n′0,k
′
0,l
′
0)
]
,

ˆ̃H (−ν−n′0,−κ−k′0,−λ−`′0)
]

(νωr + κωm + λωe�)2

+
∑
ν,κ,λ

∑
ν′,κ′,λ′

1

3

[
ˆ̃H (ν,κ,λ),

[
ˆ̃H (ν′,κ′,λ′),

ˆ̃H (−ν−ν′,−κ−κ′,−λ−λ′)
]]

(νωr + κωm + λωe�) (ν ′ωr + κ′ωm + λωe�)
. (2.93)

Note that the summations in the third-order term have to be restricted to values of

(ν, ν ′, κ, κ′, λ, λ′) that ful�l the inequalities νωr+κωm+λωe� 6= 0 and ν ′ωr+κ′ωm+λ′ωe� 6=
0.



3. Pulse-Transient Compensation

3.1. Introduction

3.1.1. Basic Introduction

Many solid-state NMR experiments rely on the fact that the density operator is modu-

lated with rf-irradiation. This modulation introduces a time dependency, as discussed

in Chapter 2.4, in order to reintroduce or remove spin-spin or spin-�eld interactions

of interest. The theoretical design of every pulse sequence is based on the assumption

of perfect rotations and well-de�ned spin trajectories. However, in reality rectangular

pulses leading to perfect rotations are impossible to realize due to the nature of the res-

onance circuit that is used in an NMR probe. The deviations from the 'perfect' pulses,

which are conventionally programmed as rectangular pulses, and the actually generated

pulses are called pulse transients [32, 33]. Pulse transients are inherent to every probe

in solid-state NMR. This is on one hand due to the characteristics of a resonance circuit,

such as the �nite bandwidth and a potential detuning of the irradiation and the reso-

nance frequency, and on the other hand due to potential impedance mismatches in the

electrical components of the system. In literature, this phenomenon was realized very

early and basic models have been developed and reported to describe pulse imperfections

[32]. Assuming a single resonance circuit that is perfectly matched in impedance, the

model uses the quantities of the pulse rise time τrise and the electronic o�set frequency

ωo�. The rise time, i.e. the time of the voltage build-up in the circuit, is directly propor-

tional to the quality factor Q of the resonance circuit. The electronic o�set frequency

describes the detuning of the driving frequency, i.e. the rf frequency from its actual

resonance frequency. The proposed model based on these two quantities describes the

pulse transient as

p = pideal(t) ∗
(

1− e
−t
τrise · eitωo�

)
. (3.1)

35
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This inherent property of pulse imperfections to every solid-state probe has made the

robustness of pulse sequences towards imperfect rotations a requirement. Several ap-

proaches to modifying the experimental setup have been reported. A common approach

with a previous generation of NMR spectrometers was the use of 'tune-up' sequences.

The tube ampli�ers were used to minimize the anti-symmetric part of pulse transients

by tuning and matching the ampli�er [58�62]. However, the current generation of NMR

spectrometers has an ampli�er with a constant impedance that cannot be changed any-

more. If one of the electrical components in the resonance circuit exhibits an impedance

mismatch that creates a re�ection, a similar result to minimize the anti-symmetric parts

of the pulse transient can be achieved by changing the cable length. These modi�cations

are always speci�c to the current con�guration and must be re-optimized if the experi-

mental setup is altered [63, 64]. Therefore, these procedures are not a suitable solution

for the practical application of solid-state NMR experiments.

The e�ect of the pulse imperfections on the actual pulse sequence and its performance

is hard to predict a priori without a full theoretical understanding of the theory behind

it. Several reports in the literature discuss the in�uence of pulse transients on multi-

pulse sequences for line narrowing in static samples and under slow MAS [32, 65]. A

speci�c example of pulse imperfections that has been treated quite extensively in the

literature is the homonuclear decoupling sequence phase-modulated Lee-Goldburg irra-

diation [64, 66�69]. Another type of sequence with performance heavily a�ected by pulse

imperfections is symmetry-based sequences, which have been shown theoretically and in

numerical simulations [70, 71]. Modi�cations to symmetry-based pulse sequences have

been reported to compensate the pulse imperfections and make them more stable by ei-

ther breaking the rotor synchronization [25] or phase-shifting one of the pulses [63]. An

additional approach to improve the stability of pulse sequences are including optimum-

control sequences where pulse transients are treated as input parameters [30, 72, 73].

As an alternative to using the pulse transients as input parameters, strategies of direct

optimization on the spectrometer have also been reported [74, 75]. In these cases, the

transfer function of the system is considered inherently in the optimization procedure.

Determining the transfer function of the system and using it as an external optimization

parameter is another way of increasing the robustness of the pulse sequence [76�78].

Nevertheless, the drawback of all of the approaches described above is the necessity

to re-optimize the sequence for every setup. This is due to the fact that the transfer
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function of the system changes with every alteration of the setup (�lters, cable length,

tuning/matching, dielectricity of the sample, etc.). This re-optimization can be time-

consuming and rather cumbersome, especially when dealing with a low signal-to-noise

ratio of the sample. A di�erent approach for the compensation of pulse transients has

been developed in the group of Takeda [79, 80] and implemented for symmetry-based

sequences by Wittmann [34, 81]. This approach relies on the calculation and application

of 'compensated' pulses based on the impulse-response function of the system measured

directly in the probe with a pick-up coil. This approach is conceptually similar to ac-

tively compensating gradient pulses in magnetic resonance imaging, where this process is

known as 'pre-emphasis' [82, 83]. This method of active compensation is used through-

out this thesis and the in�uence of compensated pulses on resonant and non-resonant

sequences is investigated.

3.1.2. Practical Pulse-Transient Compensation

Impulse-Response Function and Linear-Response Theory

The work-�ow and practical considerations for the pulse-transient compensation is de-

scribed in detail in the thesis of Wittmann [84] and is only sketched out roughly here.

An elegant way to describe the transient response of a system is in the framework of

linear-response theory [85, 86]. In this description, it is assumed that every output y(t)

of a linear system can be described as the convolution of the input x(t) with the impulse-

response function h(t). The impulse-response function is the response of a system to a

δ-pulse excitation. The assumption of the convolution is only valid if the system is i)

linear, ii) causal, and iii) time invariant.

y(t) = x(t) ~ h(t) =

∫ ∞
0

x(t′)h(t− t′)dt′ (3.2)

In the case of time-discrete signals, the output of the system is given by a discretized

convolution

y[n] =
∞∑
0

x[k]h[n− k]. (3.3)

Deconvolution for the calculation of the required time-domain input is readily done in

the frequency domain as a convolution in time domain corresponds to a multiplication
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Figure 3.1. A) A characteristic example of a measured impulse-response function h(t) in a solid-state
NMR probe. B) The absolute value of the Fourier transform of the impulse-response function shown
in A). The Fourier transform of the response to a δ-excitation is equal to the full excitation profile of the
resonance circuit in the frequency domain.

in the frequency domain. Hence, Equation 3.2 can be re-written in terms of its Fourier

transform

Y (ω) = X(ω) ·H(ω) = F(x(t)) · F(h(t)). (3.4)

Only the shape �les of time-domain signals will be shown here and discussed since

the rf irradiation is of interest in the time domain. It will be assumed that the band

width of the resonance circuit is always larger than the necessary basic frequencies.

Applying linear-response theory and the concepts of time-domain signals to solid-state

NMR, the input x(t) corresponds to the single-pulse or multi-pulse sequences pro-

grammed in the computer and generated by the console. The system response y(t)

is the actual rf �eld that is seen by the spins in the sample. The system's output is mea-

sured with a small pick-up coil placed in close proximity to the stator. Consequently,

the in�uence of all electronic components (cable, �lter, ampli�er, preamp, probe, etc.)

is included in the impulse-response function. A characteristic example of a determined

impulse-response function is shown in Figure 3.1.

Since the impulse-response function h(t) is the output of the system to a Dirac δ-

excitation, its Fourier transform H(ω) can be interpreted as the excitation pro�le of

the complete resonance circuit in frequency space. A characteristic excitation pro�le is
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shown in Figure 3.1B.

It has to be mentioned that two of the three criteria for linear-response theory are only

approximations for real NMR systems. The linearity of the system is only valid for a

certain range of pulse powers since it can be observed that the power ampli�er from

Bruker spectrometers exhibit non-linearities especially in the high-power regime. The

second criterion of time invariance is also just an approximation as slight detuning or

heating e�ects of the probe occurs in almost every experiment and the long-term stabil-

ity is not perfectly provided. Lastly, the causality of the system is guaranteed since the

response of the system never depends on future input signals but only on present and

past values. The in�uence of non-linearities on actual NMR experiments is examined

more closely in Chapter 3.3 using non-linear optimization.

Determining the Impulse-Response Function

In order to determine the impulse-response function, the output y(t) of the system to

an input x(t) that is equal to a δ-excitation must be measured. Since it is physically

impossible to generate a δ-pulse, any other input can be used, and from the measured

output the transfer function can be determined by deconvolution in the frequency domain

H(ω) =
Y (ω)

X(ω)
. (3.5)

However, in practice the choice of input signal for the determination of the impulse-

response function is critical. This is due to the fact that an input containing zeros leads

to mathematical instabilities in the Fourier transform of the input and consequently

the deconvolution becomes unstable. The most robust input function was found to be

a maximum-length sequence (MLS) [87�89]. A maximum-length sequence is a pseudo-

random noise sequence that is cyclic and made up of binary bits. The construction of a

MLS is done recursively and the number of bits is 2n−1. In practice, either the phase or

the amplitude can be modulated and take the value {−1,+1}. The form of the exact se-

quence is not of crucial importance and is simply made up from a user-de�ned input seed.

A great bene�t of the MLS function is that its auto-correlation function is approximately

equal to a δ-function. Therefore, the following relations hold true

mls(t) ~mls(t) ≈ δ(t) (3.6)
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and

mls(t) ~ h(t) = ymls(t). (3.7)

Combining Equations 3.6 and 3.7 and adding a cyclic convolution with mls(t) to both

sides of the equal sign leads to

mls(t) ~ ymls(t) = mls(t) ~ (mls(t) ~ h(t)) (3.8)

= δ(t) ~ h(t) (3.9)

= h(t). (3.10)

In order to have meaningful measurements for the impulse-response function, certain

requirements have to be ful�lled. The time during which the MLS is applied needs

to be longer than the decay of the impulse-response function in order to avoid aliasing.

Furthermore, the maximum amplitude of the MLS function should correspond to the one

of the compensated pulses and it should be applied multiple times to mimic the cyclic

character of the sequence as well as generate a steady-state condition in the probe.

Further Steps of Pulse-Transient Compensation

The determination of the impulse-response function is the most crucial and most sen-

sitive step of the pulse-transient compensation procedure. Nevertheless, the choice of

suitable pulse shapes to be compensated is also of great importance. One important

requirement for the desired output shape is that the length of the pulse edge needs to be

longer or in the order of the time constant of the whole resonance circuit. This can be

approximated by determining the Q-factor of the probe, but usually a suitable edge time

of the pulse is around 400 µs for typical solid-state NMR MAS probes. The in�uence of

the detailed pulse shape will be discussed in more detail in Chapter 3.2.

After the correct setting of the pulse parameters, the time basis for the down mixing

of the recorded pulses needs to be determined. The oscilloscope that is used for the

measurement of the pulse shapes (Tektronix DPO 5204B) and the spectrometer are

theoretically both clocked at 20 MHz but small deviations are still possible. In order

to determine the correct time basis, a continuous wave irradiation is recorded, down-

sampled, and the slope of the phase is �tted. The di�erence in time bases is calculated

based on the slope of the phase, which has to be 0 after the initial transient. In principle,

it is also feasible to use an external clock from the spectrometer as a time basis for the
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Figure 3.2. A) The input for a perfect rectangular pulse (blue, green) and its response at the probe (red,
yellow). The transient is visible at the beginning and the end of the pulse as an exponential build-up
respectively decay of the amplitude as well as the imperfect quadrature component. B) Compensated
input file that yields a perfectly compensated pulse as an output.

oscilloscope. This was demonstrated to be a feasible approach and the step of frequency

�tting can be omitted.

The impulse-response function is then determined based on the description above, and

the compensated input �les for the pulses are calculated. The shape �les are then con-

verted into standard Bruker shapes �les with a time resolution of 50 ns and transferred

to the spectrometer computer. A typical input �le is shown in Figure 3.2B. Finally, the

output of the compensated input �le is measured and it is veri�ed that the compensation

was successful. In general, deviations of up to 1% are acceptable in the resulting B1 �eld

and are assumed to be negligible for the pulse sequence.

Experimental Setup of Pulse-Transient Compensation

A highly automated setup for the pulse-transient compensation has been developed

before [84] and improved throughout the course of this thesis. The central piece of

the experimental setup is an external computer with MATLAB (laukien.ethz.ch) that is

connected to a fast, high-memory oscilloscope via a VXI-11 connection.
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The oscilloscope settings are controlled and changed via MATLAB using the Simulink

toolbox and modi�ed instrument drivers. The shape �les recorded with the oscilloscope

are down-sampled and processed on laukien. At the same time, a home-written AU pro-

gram is running on the spectrometer computer that executes a single-pulse experiment

with variable shape �les and parameters that are received from the laukien computer.

The timing of the pulsing and the recording is done via trigger signals. One trigger

dictates the timing of the pulsing in the AU program while the other trigger is for the

oscilloscope to start the recording. In order to guarantee no aliasing, the recording speed

of the oscilloscope is set to 5 GS/s for 13C and to 10 GS/s for 1H. In some instances,

a sampling rate of 20 GS/s is required. The general work-�ow and the connections of

the experimental setup are shown in Figure 3.3. The relevant MATLAB scripts can be

found in Appendix E.

The compensation procedure is nearly fully automated and the required user inputs

are only the pulse parameters (pulse length, phase, and pulse-edge time) as well as the

carrier frequency and the desired pulse power. In principle, the compensation can be

Figure 3.3. Schematic representation of the experimental setup used for pulse-transient compensa-
tion. The centre piece for the calculation of the shape files is an external computer (laukien.ethz.ch)
using MATLAB and a VXI-11 connection to the high-speed oscilloscope with extended memory.
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done fully on the spectrometer using the receiver with inverse gating as an oscilloscope

but the current console generation (Avance HD III) is limited to time steps of 100 ns.

The time step of 100 ns is too long for most resonance circuits of interest since it does

not cover the full frequency range of interest. The covered frequency range is given by

∆ν = ± 1
2∆t

according to the Nyquist theorem. The required mathematical operations

are fully implemented and automatized in TopSpin in order to calculate the desired

input shape �les.

3.2. Pulse-Shape Analysis

3.2.1. Pulse-Shape Fitting

In general, the pulse shapes are in�uenced most signi�cantly by the quality of the res-

onance circuit, which changes with the observed nucleus. In the literature, only the

pulse shapes of 13C channel probes have been studied. In this thesis, a speci�c focus is

placed on the pulse shapes of the 1H channel due to the emergence of proton detection.

Assuming the simple model for pulse transients given in Equation 3.1, a least-square

�tting procedure with the two parameters τrise and ωo� is applied to measured pulse

shapes. This model is only valid if all electrical components in the resonance circuit

are matched to the same impedance. In practice, this assumption will never be truly

ful�lled as many of the electrical components' impedance in the system is not matched

to the required 50 Ω.

In Figure 3.4, three characteristic pulse shapes recorded on the 13C channel on a 300 MHz

spectrometer are shown. The best �tting result with the simple model is shown in blue

and green. The di�erence in the pulse shapes results from three di�erent cable lengths

(A-C), which are representative setups throughout this work.

The �tting procedure of the pulse shapes is not always possible due to more complex

pulse shapes. One example is shown in Figure 3.4A, where the �t does not resemble

the measured pulse shape. This is due to the fact that the quadrature component of

the pulse exhibits a small time delay in comparison to the amplitude build-up. This

can be interpreted as a re�ection of the pulse at a position that is not the rf coil and

that leads to a delay in the anti-symmetric part of the pulse transient. However, the-

oretically modelling these transient behaviours is impossible as the time delay is not
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Figure 3.4. Characteristic pulse shapes for three different cable lengths (A-C) measured on the 13C
channel of a 300 MHz spectrometer. The experimental shapes are shown in red and turquoise and
the fitted pulse shapes according to Equation 3.1 are shown in blue and green. The extracted fitting
parameters are for A) τrise=0.31 µs, ωoff=206.6 kHz, for B) τrise=0.46 µs, ωoff=89.1 kHz and for C)
τrise=0.53 µs, ωoff=-8.8 kHz.

readily determined. The other two pulse shapes shown in Figure 3.4B and C follow the

single-exponential model and are �tted well. The build-up times are in the order of

500 ns, which is also the limiting factor for the pulse edges for the compensated shape

�les. Cable C presents a con�guration in which the quadrature component is minimized

and no out-of-phase rotational part is expected (assuming single pulse experiments).

The �tting parameters extracted from these pulse shapes can be used to back-calculate

the impulse-response function of the system. The calculated impulse-response function

is then convoluted with a multi-pulse input in order to model the transient behaviour

for more complex sequences and back-to-back pulses.
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3.2.2. Pulse-Shape Optimization

In order to generate suitable pulse shapes, discontinuities in the phase and amplitude

have to be avoided. Any discontinuity causes a pulse transient, and these must be

avoided for the compensated shape �les. The best pulse sequence in terms of pulse

imperfections is a implementation in which the phase for multi-pulses is switched con-

tinuously. However, only very few pulse sequences with continuous phase modulations

exist. Therefore, suitable pulse shapes are generated with a �nite edge and for every

phase discontinuity the amplitude is ramped down to zero. As discussed previously, the

edge time of the pulse is limited by the characteristic time constant of the resonance

circuit.

A suitable solution for the form of the pulse is a shaped pulse with a sine-squared edge

shape. Therefore, the pulse shape is de�ned as

ω1(t) = ω1 ·


sin2

(
πt

2τedge

)
0 < t ≤ τedge

1 τedge < t < τp − τedge
sin2

(
π(τp−t)
2τedge

)
τp − τedge ≤ t ≤ τp.

(3.11)

The total duration of the pulse τp needs to be the same as the rectangular or 'hard' pulse

that the shape �le is replacing but the maximum amplitude ω1 has to be adjusted to

compensate for the reduced amplitude during the rising and falling edge. This calibration

of the �ip angle is done by scaling the compensated pulse to the same integral as the

hard pulse.

The shape of the edge is a parameter to be optimized for the best convergence of the

compensation. The simplest shape is a linear edge, which results in a trapezoidal pulse

form. However, this would lead to a discontinuity again in the pulse, which might lead

to divergence in the compensation. In order to examine the quality of pulse shapes,

several functional forms of edges (linear, sine2, sine4, Gaussian, Lorentzian) are tested

towards the stability of signal generation. The desired pulse shape is approximated with

a Fourier series that has a basic modulation frequency of 1
τp

and only symmetric sine

terms

f(t) =
∞∑
n=1

bn sin

(
2πn

τp

)
. (3.12)
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Figure 3.5. Convergence of the signal generation of pulse shapes with various functional edges. The
signal is approximated by a Fourier series with symmetric terms (sine terms) and a basic frequency of
1
τp

with a pulse length of 5 µs. A pulse shape with a 1 µs edge time (A) converges faster than a 0.4 µs
edge time (B). The cut-off was chosen to be a 0.05% deviation from the desired target shape.

The series is stopped if the deviation of the target shape and the �t is less than 0.05%,

and the maximum frequency needed to generate the shape is plotted in Figure 3.5. The

fastest convergence is observed for the sine-squared function for long pulse-edge times

(Fig. 3.5A), and the Gaussian function for short pulse-edge times (Fig. 3.5B). Despite

the di�erence in convergence, the errors are fairly small for the di�erent edge shapes

already at low modulation frequencies. It is assumed that other sources of errors have

a bigger in�uence on the compensation, as for the measured pulse shapes deviations up

to 1% are observed.

3.3. Non-Linear Optimizer

The approximation of linear-response theory has certain weaknesses for the application

to solid-state NMR and the pulse-transient compensation. The biggest problems are

time-dependent instabilities in the tuning and matching, ampli�er droops, and non-

linear features of the ampli�er. All of these problems can be circumvented if the pulse-

transient compensation procedure is based on a non-linear optimization. This has to
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be done via a feedback loop and can either be done with a PID controller [90] or a

minimizer like the Levenberg-Marquardt algorithm [91�93]. The governing equation for

the Levenberg-Marquardt algorithm (or any non-linear least square method) is

f(x) =
n∑
j=1

r2
j (x) (3.13)

with rj being the residuals and f(x) the function which needs to be minimized. The

Jacobian matrix J in this case is taken to be the impulse-response function of the system.

Therefore, the Hessian H is easily calculated in a near-linear approximation as

H = ∇2f(x) ≈ JTJ (3.14)

and the �rst derivative of f(x) as

∇f(x) = J · r. (3.15)

The starting value for the input x is chosen to be the calculated shape from linear-

response theory. The further input values are calculated iteratively with the gradient

descent method. The (i+ 1)th input is given by

xi+1 = xi − (H + λI)−1 · ∇f(xi) (3.16)

with λ being the damping parameter and I the identity matrix. If the error is reduced

in the iterative step, λ is decreased and otherwise augmented. The results of a simulated

multi-pulse sequence using the minimizer are shown in Figure 3.6. The second derivate

was added as an additional constraint to the minimization process to guarantee smooth-

ness of the input shape.

Despite the promising simulated results, the minimizer does not work experimentally on

a multi-pulse sequence. This is presumably due to numerical instabilities at the zero-

amplitude points at which the phase discontinuity is present. The randomness of the

measured phase value at zero amplitude introduces an illogically high error that pushes

the minimizer in the wrong direction and convergence is not achieved. However, it is

possible to compensate a single pulse using the non-linear optimization.
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Figure 3.6. Simulated multi-pulse shapes using a Levenberg-Marquardt algorithm for the minimization
of the residuals. Gaussian noise of 0.01 was added to mimic experimental conditions. The minimizer
was stopped after the root-mean-squared was below 0.012 (panel C). The residuals are shown in panel
D, the input and corresponding output of the last iteration step are shown in panel A and E, respec-
tively. The second derivative of the residuals (B) was added as an additional constraint to guarantee
smoothness of the input shape. The residuals of the output shape and the target shape (D) do not
show unusual behaviour at the phase discontinuities proving that the minimizer works theoretically.

The simplest experiment to judge the quality of the pulse in terms of quadrature compo-

nents is a nutation experiment. A perfect pulse will lead to a perfect zero crossing and

absorptive line shapes. The nutation curves recorded with rectangular, linearly compen-

sated, and non-linearly compensated pulses are shown in Figure 3.7. The improvement

of the compensated pulses (Fig. 3.7D and E) versus the uncompensated pulse (Fig.

3.7F) is obvious. However, it is hard to judge whether there is an actual improvement

going from the linear to the non-linear compensation. Furthermore, it is also unclear if

this small improvement is visible and crucial in multi-pulse experiments.
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Figure 3.7. Experimentally measured nutation curves for a single pulse. The pulse was either pro-
grammed as a rectangular pulse (C) or a compensated pulse using linear-response theory (A) or a
non-linear optimizer (B). The zoom of the zero crossing (D-F) shows the quality of the pulse. Due to
the large quadrature components in the rectangular pulse, the zero crossing shows a dispersive line
(F) while the compensated pulses generate an almost perfect absorptive line shape (D and E).

3.4. Bidirectional Coupler

The use of an externally installed pick-up coil in the probe to record the pulse shape

places a big limitation on the wide applicability of the transient compensation. If this

compensation method becomes routinely implemented in spectrometer technology, a

small antenna near the sample can easily be implemented in the constructions of the

probe. Up to this point, however, the recording of the pulse shape has to be done via a

home-made device. In the course of this thesis, we have tried to �nd alternative routes

to record the pulse shapes.

One solution for the recording of the pulse shape was developed and applied by Zden¥k

To²ner [30]. In this approach, the signal transmitted by the dewar in the probe was
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picked up via the heater input. We con�rmed in experiments that the obtained impulse-

response function from the pick-up coil and the transmission from the dewar was identi-

cal. A major drawback of this approach is the requirement of su�cient signal transmis-

sion through the dewar. This is not always guaranteed as multiple probes are constructed

without strongly transmitting materials in order to avoid unwanted e�ects.

A di�erent approach does not involve the manipulation of the probe itself but rather the

detection of the signal before and after it enters the probe. In theory, the di�erence of

these two signals corresponds to the power dissipated in the sample, i.e. the rf �eld that

is seen by the spins. The time di�erence between the forward and the re�ected power

has to be considered as the travel time in the probe. The forward and re�ected signal is

recorded simultaneously with a bidirectional coupler. A schematic drawing of the setup

is shown in Figure 3.8.

The most critical step in this procedure is the determination of the time di�erence

between the forward and the re�ected power. Several approaches are possible; the

simplest one is the calculation of the di�erence of the �rst points in the pulse. The

signal-to-noise of the measured voltages are high enough to readily determine the onset

of the pulse.

Figure 3.8. Experimental setup for the measurement of pulse shapes with a bidirectional coupler. In
theory, the forward and reflected power subtracted yield the power dissipated in the sample. The time
difference is approximated from the first point of the rising edge of the pulse with the same trigger
signal on both channels of the oscilloscope.
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A second approach is a linear �t of the time di�erence measured with various cable

lengths between the bidirectional coupler and the probe. This linear �t has a higher

tolerance towards errors than the time di�erence arising from the determination of a

single point. The increment in time di�erence is known precisely, as the velocity of the

signal in a coaxial cable is given by 2/3 · c, with c being the speed of light. Furthermore,

the di�erence in cable length is an easily measurable quantity. This approach allows the

extraction of the travel time of the signal in the probe and gives a reliable calibration

for every channel on di�erent probe.

Figure 3.9. Comparison of pulse shapes recorded with the pick-up coil (yellow, purple) and shapes
calculated as the difference from the bidirectional coupler (blue, red). The four different panels sym-
bolize various time delays between the forward and the reflected power: A) 25.85 ns, B) 26.05 ns, C)
26.10 ns, D) 26.35 ns. Only the delay of B) yields the exact same pulse shape and even a time differ-
ence of 0.05 ns as seen in C) leads to small errors in the phase. Therefore, a high-speed oscilloscope
(20 GS/s) is required to reliably determine the correct pulse shape.
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Both approaches yield time di�erences that are in the correct range, although the de-

termination of the exact pulse shape is still problematic. This is due to the fact that

the exact timing is crucial and conventional oscilloscopes do not have the required time

resolution. In order to have the highest time resolution possible, a special oscilloscope

with 20 GS/s, corresponding to 0.05 ns per point, was used to prove the principle.

It is shown in Figure 3.9 that it is possible to determine the exact pulse shape using the

bidirectional coupler. Furthermore, it is also shown that the exact timing between the

forward and the re�ected power is critical as a di�erence of 0.05 ns already introduces

errors.

The biggest drawback of this approach is the assumption that the system is perfectly

matched in impedance and the power is only re�ected at the rf coil. For the example

presented in Figure 3.9 this assumption is valid and good results are obtained. However,

di�erent setups have been tested in which this assumption of impedance matching is

not valid and the pulse shape measured with the pick-up coil could not be reconstructed

with the bidirectional coupler. These setups often coincide with pulse shapes that are

not �t-able with the mono-exponential model for an imperfect resonance circuit given

in Equation 3.1.
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� Parts of this chapter are published in:

J. Hellwagner, ... , M. Ernst, J. Magn. Reson., 2018, 287, 65-73

4.1. Introduction to RFDR and REDOR

Isolated π-pulse sequences are widely used in solid-state NMR because of their simplicity

and they are, therefore, an essential building block in many experiments [35�38, 94]. The

biggest advantage of such sequences is the ease of experimental implementation because

the recoupling of the dipolar interaction is done with simple inversion pulses that are

synchronized with the rotor period. The only constraints for the radio-frequency (rf)

�eld amplitude are that the pulses must correspond to π rotations and two must �t in

the rotor period. There are two π-pulse sequences in particular, Radio-Frequency Driven

Recoupling (RFDR) [35] for homonuclear recoupling and Rotational Echo Double Res-

onance (REDOR) [37, 38] for heteronuclear recoupling, that are prominent sequences

and are frequently used as building blocks for polarization transfer in multi-dimensional

experiments. Additionally, REDOR has been used as a simple and e�ective way to char-

acterize the amplitude of backbone motions and dynamics in proteins [95, 96].

While π-pulse sequences are very well-characterized theoretically under ideal conditions,

i.e. either for ideal (in�nitely short) or �nite rectangular pulses [35�38, 97], the e�ects

of pulse imperfections on the performance of such sequences are not very well studied.

Other error parameters like o�set e�ects or rf-�eld miscalibration are studied as a func-

tion of di�erent phase cycles [98�100]. However, pulse imperfections like deviations from

the desired rotation axis due to rf-�eld inhomogeneity or pulse transients can lead to

deterioration of the performance of pulse sequences. In the picture of Floquet theory,

these imperfections cause e�ective �elds that deteriorate the resonance condition and

destroy the transfer e�ciency. The in�uence of such e�ective �elds on pulse sequences

53
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Figure 4.1. Pulse sequence for RFDR experiments. For measurements in two-spin systems and
model compounds, the t1 evolution period was omitted and a selective excitation before the z-filter was
performed. The various phase cycles and the transient compensation was applied on the π pulses
during the mixing period.

with isolated π pulses is studied in detail theoretically and experimentally in this chapter.

For periodic π-pulse sequences phase cycling is an essential requirement for good per-

formance, as was discussed in the literature. The phase cycle is not only necessary to

remove error terms like o�set e�ects, pulse transients, or rf-�eld maladjustment, but also

to remove unwanted terms in the average Hamiltonian. For REDOR, a XY4 phase cycle

is needed for rectangular, �nite pulses, in order to suppress contributions to the e�ective

Hamiltonian other than the desired 2IzSz term [97, 98]. In theory, no phase cycle on

the π-pulse train is needed for RFDR, but it was shown in the literature that for RFDR

on 13C nuclei a XY81
4 phase cycle is the most robust towards o�set e�ects [99], and for

RFDR on 1H a XY41
4 performs best in the presence of rf-�eld inhomogeneity [100].

The basic pulse sequence for a 2D correlation experiment using RFDR is shown in Figure

4.1. The recoupling is implemented by rotor-synchronized π pulses on the X-channel.

The mixing time has to be optimized experimentally and depends on the e�ective cou-

pling determined by the strength of the dipolar coupling and the isotropic chemical-shift

di�erence of the spin pair. An experimental modi�cation is an adiabatic version of the

RFDR recoupling. In this modi�ed experiment, the position of the π pulse is varied

with respect to the centre of the rotor period to create an adiabatic sweep through the

recoupling condition [101]. To study the recoupling e�ciency as a function of the mix-

ing time and the rf-�eld amplitude, the experiment can be implemented as a pseudo-2D

experiment setting the mixing time as a variable.
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The most common phase cycles applied on the π-pulse train are XY4, XY8, and XY16,

and supercycles thereof. In the theory section, we focus on three parameters, the small

rf-�eld maladjustment, the isotropic chemical-shift o�set, and the magnitude of the

phase transients as a function of the various phase cycles.

The basic pulse sequence for a REDOR experiment bears close resemblance to the RFDR

experiment (Figure 4.2). In the most simple experiment, the recoupling is done by two

π pulses per rotor period that are spaced equally. A time shift of one of the pulses scales

down the dipolar coupling and leads to a slower dephasing, but also induces a mixing

of both Fourier components in the average Hamiltonian [38]. The mixing of the two

Fourier components leads to a di�erent functional form of the dephasing that has to be

�tted with a grid search. A more practically applicable implementation was published

by the group of P.K. Madhu and V. Agarwal. In their implementation, both π pulses

are shifted and the spacing of 0.5τr is kept between the pulses. Additionally, the shift

is symmetric around the refocusing pulse in the middle of the recoupling period. This

introduces an additional phase in the Hamiltonian, which is compensated in the second

half of the sequence. This introduces an e�ective scaling of the dipolar coupling and

leads to slower dephasing curves. Through the constant spacing, the Fourier component

n = 2 is still averaged out and the functional form of a simple REDOR curve is preserved

[102].

Figure 4.2. REDOR pulse sequence to measure the heteronuclear 1H-13C dipolar coupling. The π-
pulse train is usually applied to the passive spin. The phase cycle and the transient compensation were
applied to the π-pulse train on the passive spin. No compensation was added to the refocusing π pulse
on the 13C channel. The optional time shift τs is shown on the proton channel. For the implementation
presented in [102], both π pulses are shifted.
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The phase cycles used in REDOR are identical to the ones used in RFDR, although

the literature is not as extensive as for RFDR. However, it was shown with average

Hamiltonian theory that an XY4 phase cycle has to be applied to avoid unwanted IySz
contributions to the Hamiltonian.

4.2. Simulations for RFDR

4.2.1. Theoretical Description of RFDR

Periodic and cyclic pulse sequences, like RFDR, can be described using average Hamilto-

nian theory if the modulation frequency of the pulse sequence is commensurate with the

MAS frequency [103]. This is the case for all rotor-synchronized sequences given that the

total radio-frequency (rf) propagator is a unity operator. A more general description

can be based on Floquet theory which does not require rotor synchronization or a rf

propagator that is a unity propagator. Average Hamiltonian theory and Floquet theory

of recoupling pulse sequences are usually based on a transformation of the Hamilto-

nian into an appropriate interaction frame to make the series expansion converge faster

[20�23]. For this, the spin-system Hamiltonian is transformed into an interaction frame

with a Hamiltonian Ĥ1, which typically contains the rf-�eld part of the Hamiltonian

and may contain additional dominating terms. One such additional term that is some-

times required in the interaction-frame transformation is the chemical-shift o�set. For

example, Lee-Goldburg-type homonuclear decoupling sequences [42, 104] require such

a description for a fast convergence of the average Hamiltonian. In another example,

it was recently shown that the o�set dependence of heteronuclear decoupling using a

two-pulse sequence can also be described using such an approach [105]. For π-pulse

sequences, including the isotropic chemical shift into the interaction-frame transforma-

tion is required for a correct description of RFDR [106]. In the most general case, the

transformation for the interaction-frame Hamiltonian is given by

ˆ̃H (t) = Û−1(t)Ĥ Û(t) (4.1)

with the propagator
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Û(t) = T̂ exp

(
−i
∫ t

0

Ĥ1(t′)dt′
)

(4.2)

where T̂ is the Dyson time-ordering operator [56]. The combined rf and chemical-shift

Hamiltonian in the rotating frame is given by

Ĥ1(t) = ω1(t)
∑
p

(
cos(φ(t))Ŝpx + sin(φ(t))Ŝpy

)
+
∑
p

ω(0)
p Ŝpz (4.3)

where ω1(t) is an arbitrary time-dependent rf-�eld amplitude, ω(0)
p the isotropic chemical

shift, φ(t) the phase of the pulse, and p the index of the spin. Applying the propagator

of Equation 4.2 to a single spin can be described in Liouville space as a rotation of the

three Cartesian one-spin basis operators by a time-dependent rotation matrix Rp(t)


ˆ̃Ipx
ˆ̃Ipy
ˆ̃Ipz

 = Rp(t)

ÎpxÎpy
Îpz

 . (4.4)

The time-dependent elements of the rotation matrix, also sometimes called the interaction-

frame trajectory of spin p, allow the calculation of important properties of the pulse

sequence. The e�ective �ip angle can be calculated by

β
(p)
e� = arccos

(
Tr {Rp(τm)} − 1

2

)
(4.5)

where τm is the cycle time of the pulse sequence. For most ideal rotor-synchronized

recoupling sequences, the �ip angle will be zero or a multiple of 2π but in case of real,

imperfect pulses, the �ip angle can deviate from its theoretical value and generate an

additional e�ective nutation frequency. The direction of this e�ective �eld is given by

~ω
(p)
e�

|~ω(p)
e� |

=
1

2 sin
(
β

(p)
e�

)
R32 −R23

R13 −R31

R21 −R12

 (4.6)
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and its magnitude

|~ω(p)
e� | = β

(p)
e� ωm (4.7)

where ωm = 2π/τm is the modulation frequency of the pulse sequence. Note that

adding the chemical-shift o�sets into the interaction-frame transformation makes the

interaction-frame transformation and, therefore, also the �ip angle and e�ective nuta-

tion frequency dependent on the spin considered. The matrix elements Rij(t) of the

rotation matrix Rp(t) can be written as a Fourier series with the two basic frequencies

ωm and ωe� as

Rij(t) =
∞∑

k=−∞

1∑
`=−1

a
(k,`)
ij eikωmtei`ωe�t. (4.8)

The time dependence of the two-spin terms in the Hamiltonian is described by the direct

product of two one-spin rotation matrices, i.e., Rp,q(t) = Rp(t)⊗Rq(t).

Therefore, the interaction-frame Hamiltonian has di�erent e�ective �elds for each of

the spins. Since we are interested in dipolar recoupling of two coupled spins, we will

limit the description to two spins and we obtain an interaction-frame Hamiltonian with

four frequencies

ˆ̃H (t) =
2∑

n=−2

∞∑
k=−∞

1∑
`=−1

1∑
m=−1

ˆ̃H (n,k,`,m)einωrteikωmtei`ω
(1)
e� teimω

(2)
e� t. (4.9)

In this case, the �rst-order e�ective Hamiltonian is given by

Ĥ
(1)

e� =
ˆ̃H (0,0,0,0)
(1) +

∑
n0,k0,`0,m0

ˆ̃H (n0,k0,`0,m0)
(1) (4.10)

at the four frequency resonance condition

n0ωr + k0ωm + `0ω
(1)
e� +m0ω

(2)
e� = 0. (4.11)
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If the e�ective �elds of the two spins are the same (ω(1)
e� = ω

(2)
e� ), the description collapses

to a tri-modal Floquet problem and in the case of vanishing e�ective �elds (ω(1)
e� = ω

(2)
e� =

0) to a bi-modal Floquet problem with the resonance condition n0ωr + k0ωm = 0. Here,

we will only discuss the e�ects of the e�ective �elds that lead to a detuning from the

rotor-synchronization condition and not more subtle e�ects caused by changes in the

Fourier coe�cients of Equation 4.8.

For periodic π-pulse sequences with ideal, �nite pulses it can be shown that the ef-

fective �eld is always zero if o�set e�ects are neglected. In simple cases, e.g. for ideal

rectangular pulses of �nite length, the interaction-frame trajectory can be calculated

analytically. More interesting is the case of imperfect pulses, i.e. the e�ect of pulse tran-

sients on the magnitude and the direction of the e�ective �eld. In general, a numerical

calculation of the interaction-frame transformation can be performed by discretizing the

cycle time of the pulse sequence assuming that the rf Hamiltonian is piece-wise constant

for the chosen time step (50 ns). Using Equations 4.5-4.7, the magnitude and the direc-

tion of the e�ective �eld can be calculated for any given pulse sequence.

The interaction-frame transformation for the RFDR pulse sequence used in the following

chapter includes the isotropic chemical-shift terms into the interaction-frame Hamilto-

nian. The calculated e�ective �eld and its direction will be used to make theoretical

predictions about the recoupling e�ciency. Further information, like second-order error

terms, can also be predicted using Floquet theory. A detailed Floquet description of the

RFDR sequence can be found in Ref. [101] and will not be given here. The interaction-

frame transformation for the REDOR experiment requires only the rf-�eld Hamiltonian

acting on a single spin. Therefore, we will only have a single e�ective �eld that can lead

to a detuning from the rotor-synchronization condition.

4.2.2. The Influence of Chemical-Shift Difference

The magnitude and the direction of the e�ective �eld allow a good estimation of the

performance of the sequence. A small e�ective �eld guarantees a bi-modal resonance

condition that follows the ideal theoretical description of the sequence. Following the

interaction-frame calculation outlined in Chapter 4.2.1, the e�ective �eld for the most

common phase cycles (XY4, XY8, and XY16) were calculated numerically. A time
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Figure 4.3. The magnitude of the effective field (A) and the normalized z-component (B) for three
different phase cycles of an RFDR π-pulse train as a function of the isotropic chemical shift and the rf-
field maladjustment. The MAS frequency was set to 30 kHz with a pulse length of 5 µs. Upon deviation
from the theoretical values, the magnitude of the effective field increases rapidly for an XY4 phase
cycle but its orientation remains parallel to the z-direction. The rf-field error is better compensated for
XY8 and XY16 but the effective field direction is in the xy-plane for the XY8 phase cycle.

step of 50 ns was used over which the Hamiltonian was assumed to be constant. The

isotropic chemical shift ω(0)
p was included in the calculation as a variable according to

Equation 4.3. The in�uence of the isotropic chemical shift and the deviation of the

rf-�eld amplitude from the theoretical value on the magnitude of the e�ective �eld are

depicted in Figure 4.3.

For rectangular pulses the e�ective �eld is symmetric for positive and negative isotropic

chemical shifts. For small deviations (in the order of 5%) of the rf-�eld amplitude from

the theoretical value, the magnitude of the e�ective �eld already becomes substantial

for an XY4 phase cycle. The e�ective �elds due to deviations of the rf-�eld amplitude

from the theoretical value are better compensated by the XY8 and XY16 phase-cycling

schemes. The direction of the e�ective �eld is primarily in the z-direction for XY4 and
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XY16 as compared to XY8 where it is in the xy-plane even for small deviations of the rf

�eld from the theoretical value. An e�ective �eld in the z-direction commutes with the

ZQ RFDR Hamiltonian and is not detrimental to the transfer e�ciency. It only has a

small in�uence on the pulse sequence unless the magnitude of the e�ective �eld becomes

signi�cant and the resonance condition is no longer matched. However, an e�ective �eld

orthogonal to the z axis does not commute with the ZQ Hamiltonian and deteriorates

the total axis of rotation and alters the resonance condition for the RFDR transfer, as

observed for the XY8 phase cycle.

4.2.3. The Influence of Phase Imperfections

The identical calculations of the interaction-frame trajectory using real pulses with phase

transients lead to a less certain prediction of the e�ective �eld. The magnitude and the

direction are not symmetric for positive and negative chemical-shift values and the com-

pensation of the e�ective �eld towards higher phase imperfections becomes worse. In

regards to phase transients, the XY4 phase cycle is performing worse than the XY8 and

the XY16. However, the direction of the e�ective �eld is almost completely along the

z-direction for XY4 and XY16 whereas for XY8 the z-component decreases slightly for

high quadrature components.

Even for perfect rf-�eld calibration (as was used in Figure 4.4) the pulses with no quadra-

ture components (νo�=0 kHz) show residual e�ective �elds for various chemical-shift

o�sets. It is assumed that for single, isolated pulses with amplitude transients the �ip

angle remains the same as for a rectangular pulse. This assumption is based on the fact

that the exponential build-up and decay have the same time constant. Therefore, the

amplitude transient only changes the 'centre-of-mass' of the pulse as well as the trajec-

tory of the magnetization. This e�ect is negligible if the chemical-shift term is eliminated

from the dominating Hamiltonian (Eq. 4.3). This is observable for all three phase cycles.

Repeating the calculations shown in Figure 4.3 with pulses including transients leads

to e�ective �elds that are not the same for chemical-shift values with opposing signs.

Therefore, in an experiment with the carrier in the middle of the spins of interest, they

will exhibit di�erent e�ective �elds and a quadruple-mode Floquet description has to be

applied. The magnitude of the e�ective �eld is smaller for higher-order phase cycles, i.e.
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Figure 4.4. The magnitude of the effective field (A) and the normalized z-component (B) for three
different phase cycles of an RFDR π-pulse train as a function of the isotropic chemical shift and the
magnitude of the phase transient, assuming a time constant of the amplitude transient of τrise =0.5 µs.
The pulse shapes were simulated according to Equation 3.1. The MAS frequency was set to 30 kHz
with a pulse length of 5 µs and the theoretical rf-field amplitude of 100 kHz.

XY8 and XY16 perform better than XY4. In general, independently of perfect or im-

perfect pulses, the calculations of the e�ective �eld show that the XY4 and XY16 phase

cycles generate e�ective �elds along the z-direction, whereas XY8 generates a �eld in

the xy-direction. Additionally, XY8 and XY16 compensate pulse imperfections better

than XY4 in terms of absolute magnitude of the e�ective �eld.

In order to investigate the in�uence of the o�set on the transfer e�ciency of the recou-

pling sequence, numerical simulations using a 13C 2-spin system were performed as a

function of the two isotropic chemical shifts. A dipolar coupling of 1 kHz and a CSA

tensor of 1 kHz was used with a π pulse of 5 µs length at a nominal rf-�eld amplitude

of 100 kHz and a MAS frequency of 30 kHz. Di�erent crystallite orientations were sim-

ulated according to the ZCW scheme for powder averaging with 1154 orientations [107].

The applied phase cycle during the recoupling period was XY4. The transfer e�ciency
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Figure 4.5. Carbon RFDR transfer efficiencies obtained from numerical situations for a two-spin sys-
tem with a dipolar coupling of 1 kHz and a CSA tensor of 1 kHz. The chemical shift was varied to
show the influence of the offset on the efficiency. The black line in the anti-diagonal shows the ideal
situation in which the irradiation frequency is in the middle of the two spins. The π pulses had a length
of 5 µs at a MAS frequency of 30 kHz and were phase cycled according to the XY4 scheme. A) Ideal
rectangular pulse. B) Amplitude transient with a rise time of 0.5 µs. C) Phase transient pulse with a
rise time of 0.5 µs and an offset frequency of 100 kHz.

was determined as the maximum of the �rst transient oscillation in the magnetization

build-up curve. The simulations using ideal rectangular pulses (Figure 4.5A) are com-

pared with amplitude transients with typically observed rise times of 0.5 µs (Figure

4.5B) and phase transients with νo� = 100 kHz (Figure 4.5C).

The di�erences between ideal pulses and pulses with amplitude transients are negli-

gible since amplitude transients only change the shape of the pulse and not the net �ip

angle and thus do not generate large e�ective �elds. However, phase transients change

the expected resonance condition where the two spins are located symmetrically around

the irradiation frequency. The reduction in transfer e�ciency can be explained by the

di�erent axes of rotation of the two spins and, therefore, the sum or di�erence of the

e�ective �elds shifts the recoupling condition. The altered ideal carrier position caused

by pulse transients is hard to predict for an experimental setup and optimization can be

tedious especially for samples with low signal-to-noise ratio. Similar simulations for XY8

and XY16 phase cycles show a reduced o�set dependence compared to the XY4 phase

cycle, but also a slight reduction in overall transfer e�ciency at large chemical-shift

di�erences.
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4.3. Experimental Results for RFDR

4.3.1. Ammoniumphthalate

Experimentally, the most challenging systems for dipolar recoupling experiments are

homonuclear spin pairs with a large CSA tensor. In higher orders of the e�ective

Hamiltonian, the CSA tensor can generate error terms in dipolar recoupling sequences.

Additionally, RFDR spin systems with a small isotropic chemical-shift di�erence are

challenging due to the low scaling factor and, therefore, long mixing times, leading to

cumulative e�ects of pulse imperfections. A model compound to satisfy these criteria is

doubly 13C-labeled diammonium phthalate with 13C-labels on the carbonyl groups. It

has a large CSA tensor (δ = 77 ppm and η = 0.68) with a medium-size dipolar coupling

ν1,2 = -585 Hz [108].

Figure 4.6. A) Experimentally determined pulse shape for the recoupling π pulse for three different
setups (setup 1-3 differ in cable length between amplifier and probe). B) The effective field calculated
from measured B1 shapes over 16 rotor periods for RFDR assuming an MAS frequency of 30 kHz.

The recoupling e�ciency for RFDR was investigated with three di�erent experimental

setups in which the cable length was varied. Therefore, the pulse transient looked dif-

ferent for every setup, which is shown in Figure 4.6A. Additionally, after a recoupling

period of 16 rotor cycles, the e�ective �eld was calculated for the three basic phase cycles

(XY4, XY8, and XY16). Using 16 rotor cycles for the calculation ensured a constant
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modulation frequency for the calculations (ωm = ωr/16). Additionally, it guaranteed the

full length of the phase cycle could be applied. The MAS frequency was set to 30 kHz

with a π-pulse length of 5 µs, corresponding to theoretical rf-�eld amplitude of 100 kHz,

assuming a time step of 50 ns for the calculation. The resulting e�ective �elds are shown

in Figure 4.6B.

Experimental RFDR build-up curves were recorded as pseudo-2D experiments for di-

ammonium phthalate at a proton Larmor frequency of 300 MHz. The MAS frequency

was set to 30 kHz with a π pulse length of 5 µs, corresponding to the theoretical rf �eld

amplitude of 100 kHz to match the calculations from Figure 4.6. The experimental re-

sults clearly show that pulse transients heavily in�uence the polarization transfer under

the XY4 phase cycle (Fig. 4.7A) with a reduction of the transfer e�ciency from 48% to

25%. The transient compensation (Fig. 4.7B) yields a broad transfer condition that is

fairly robust towards rf-�eld errors and independent of the experimental setup. Despite

the fact that the e�ective �elds are smaller in the case of the XY8 phase cycle, the

resonance condition becomes narrow with respect to rf-�eld maladjustment (Fig. 4.7C

and B). The overall transfer is slightly lower for XY8 (41%-43%), which is in agreement

with the theoretical calculations. The XY16 phase cycle shows as expected only minor

di�erences between compensated and uncompensated pulses, which is in agreement with

the e�ective �elds (Fig. 4.7E and F). With transient compensation the overall transfer

e�ciency (45%) is the same as for XY4 within experimental errors.

The same experiments as in Figure 4.7 were run for common supercycles in RFDR.

These include XY41
4, XY41

3, and XY81
4 which were applied with a basic repetition rate

of 32, 24, and 32 rotor periods, respectively. This was to ensure that the full phase

cycle was applied. The setups are identical as for the results shown in Figure 4.6. The

results in Figure 4.8 show that the supercycles do not improve the robustness towards

phase transients. In the uncompensated cases (Fig. 4.8A, C, and E) the setup with the

largest quadrature component (Setup 1) performs the worst. The phase cycle derived

from an XY8 phase cycle (XY81
4, Fig. 4.8E and F) compensates the e�ective �elds the

best. The phase cycles derived from the most basic cycle XY4 (XY41
4, Fig. 4.8A and B;

XY41
3, Fig. 4.8C and D) is very susceptible to phase transients. Especially interesting

is the case for Setup 3 because it shows almost perfect recoupling for the basic cycles

with uncompensated pulses, but the use of a supercycle worsens the recoupling e�ciency.
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Figure 4.7. A)-F) Experimental pseudo 2D build-up curves for diammonium phthalate as a function
of the rf-field amplitude and the mixing time for different phase cycles with compensated and uncom-
pensated π pulses. The XY4 cycle shows strong improvement going from the uncompensated (A) to
the compensated (B) implementation. Uncompensated XY8 (C) and compensated XY8 (D) show little
difference but smaller tolerances towards rf-field errors. Compensated XY16 (F) and uncompensated
XY16 (E) yield identical build-up curves and similar transfer efficiencies to the XY4 phase cycle. All
experiments were performed on a 300 MHz spectrometer at a MAS frequency of 30 kHz with a π-pulse
duration of 5 µs. Heteronuclear decoupling during the mixing period was achieved by cw irradiation on
the protons with 120 kHz rf-field amplitude.
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Figure 4.8. A)-F) Experimental pseudo 2D build-up curves for diammonium phthalate as a function
of the rf-field amplitude and the mixing time for different phase cycles with compensated and uncom-
pensated π pulses. The XY414 cycle shows strong improvement going from the uncompensated (A) to
the compensated (B) implementation. This is true for all three setups even though Setup 3 does not
show significant quadrature components in the pulse shape. The same situation is encountered for
the XY413 phase cycle, which has bad recoupling efficiency for the uncompensated implementation (C)
that improves drastically with pulse-transient compensation (D). Compensated XY814 (F) and uncom-
pensated XY814 (E) yield identical build-up curves and similar transfer efficiencies to the compensated
XY4 phase cycle or the XY16 in all implementations. All experimental conditions were identical to the
results shown in Figure 4.7.
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Generally speaking it can be stated that a supercycle does not improve the transfer

e�ciency or the robustness towards pulse imperfections in RFDR recoupling for the

model substance ammonium phthalate. This is due to the fact that the phase cycles

retain the properties of the basic cycles from which they are constructed. Therefore, the

XY41
4 and the XY41

3 cycles are not robust towards pulse transients as the basic cycle

XY4 is highly susceptible to pulse transients. Another factor that plays a role is the

direction of the e�ective �eld as it is detrimental for the sequence if the e�ective �eld is

pointed along the xy-plane after a modulation period.

4.3.2. Glycineethylester

RFDR experiments are generally easier on systems with large chemical shift di�erences

due to the high e�ective coupling, which leads to a faster magnetization build-up. A

model system to study these e�ects on is doubly 13C labelled glycineethylester, which

has a chemical shift di�erence of ∼120 ppm. It is assumed a priori that the in�uence

of pulse transients is less due to the fast magnetization transfer. This is due to the low

repetition number of recoupling periods needed. However, relaxation e�ects might play

a bigger role compared to the phthalate since the transfer step has to be su�ciently

fast to avoid relaxation losses. To avoid these e�ects, the ammonium phthalate sample

was diluted with natural abundance substance (7:1). Nevertheless, the relaxation is an

important parameter to consider as a factor for the practical application of this sequence.

The basic phase cycles were applied to the RFDR sequence using either compensated or

uncompensated pulses for the recoupling π pulse. The results for the recoupling e�ciency

are shown in Figure 4.9. The experimental setups are identical as for the results shown in

Figure 4.7 and 4.8. The compensated XY4 phase cycle (Fig. 4.9A) shows good recoupling

e�ciency as well as high robustness towards rf-�eld maladjustments. As for the phthalate

sample, Setup 3 performs equal to the compensated pulses when using uncompensated

pulses (Fig. 4.9B). The results for the compensated and the uncompensated pulses for

XY8 (Fig. 4.9C and D) show great resemblance to the results from the ammonium

phthalate. The recoupling e�ciency at the ideal condition is comparable to the XY4

phase cycle, but the breadth of the resonance condition with respect to rf-�eld missets

is smaller. Additionally, the transfer e�ciency at longer mixing times is worse than for

the XY4 phase cycle.
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Figure 4.9. Transfer efficiency for RFDR experiments in glycineethylester at a MAS frequency of
15 kHz performed at an external magnetic field of 9.4 T. Three different setups shown in Figure 4.6, i.e.
pulse shapes, were investigated with a pulse length of 5 µs. The XY4 phase cycle gives higher overall
transfer with better stability towards rf-field miscalibration for compensated pulses (A), but suffers from
loss in transfer efficiency for uncompensated implementation (B). The XY8 phase cycle is more robust
towards pulse transients (compensated or uncompensated implementation in C and D, respectively)
but the overall transfer efficiency is lower due to lesser robustness towards rf-field missets.
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This is due to relaxation e�ects since the total magnetization also decreases faster for the

XY8 phase cycle than the XY4. This is an important fact that speaks against the use of

XY8 phase cycles for more complicated systems with large dispersion of chemical shift

di�erences. Especially for small chemical-shift di�erences the loss of total magnetization

is detrimental since it requires longer mixing times.

4.3.3. MLF

The concepts developed using the model compounds in Chapters 4.3.1 and 4.3.2 were

then extended to multi-spin systems. 2D RFDR dipolar recoupling experiments were

performed on the tri-peptide MLF (N-formyl-U-[13C 15N]-Met-Leu-Phe-OH), using com-

pensated and rectangular pulses with the results shown in Figure 4.10. In order to show

the in�uence of the compensation, a series of 2D spectra with di�erent mixing times were

recorded and the intensities of two representative cross-peaks are plotted as a function

of the mixing time (Fig. 4.10B). Slices from the 2D spectra show that the compensation

improves the transfer e�ciency and accelerates the magnetization transfer. The decay

of the sum magnetization is fairly independent of the compensation on the time scale of

10 ms. The experiments using hard pulses result in a higher source peak, i.e., the diag-

onal peak, while the experiments using compensated pulses result in higher cross-peak

intensities. The decay of the cross-peak intensity, e.g., the CO-Cα peak of Leucine, is

faster using compensated pulses since the magnetization is transferred further through

relayed pathways. Figure 4.10B shows that the intensity of the Leucine CO-Cα cross-

peak can be doubled using compensated pulses. The experiments were done at a 11.74 T

magnet using a MAS frequency of 25 kHz. The carrier was placed in the centre of the

spectrum at 90 ppm for all experiments. The carrier position has a big in�uence on

the transfer e�ciency since it introduces o�set e�ects that generate additional e�ec-

tive �elds. However, towards practical application of the sequence and the long range

transfer in RFDR, the carrier in the centre of the spectrum is a justi�able choice.

A similar result was obtained for the XY8 phase cycle but the maximum transfer is

not as high as in XY4 (Figure 4.11). The compensated pulses lead to slightly higher

relayed transfer CO-Cβ for XY8 due to the robustness of the phase cycle towards o�set

e�ects. This is contrast to the experiments on the glycinethylester as the XY8 phase

cycle resulted in shorter coherence life times.

The in�uence of o�set e�ects has not been studied in detail, but according to the litera-
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Figure 4.10. A) 2D 13C-13C homonuclear correlation spectrum of the tri-peptide MLF after 2.4 ms
RFDR recoupling with an XY4 phase cycle. The slice at δ1 = 171 ppm shows the comparison of the
transfer efficiency between a compensated and an uncompensated pulse. B) Build-up curves for rep-
resentative cross-peaks corresponding to the Leucine CO-Cα and a CO-Cβ correlation, respectively.
The maximum transfer almost doubles for transient compensation. The experiments were performed
at a MAS spinning frequency of 25 kHz using an rf-field amplitude of 100 kHz for the π pulses.

ture, any phase cycle derived from XY8 or XY16 has a higher stability. This is supported

by the calculations of the e�ective �eld shown in Figure 4.4. The biggest drawback of

XY16 phase cycles and supercycles is the long basic modulation period. Especially for

CO-Cα transfer steps, the build-up is fast and the maximum is rather short-lived as

is seen in Figure 4.10B. These maxima are easily undersampled when using long phase

cycles and slow MAS frequencies.

In conclusion, multi-spin systems show slightly di�erent behaviour compared to the

two-spin model systems discussed before. However, the main conclusions still hold true;
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Figure 4.11. Build-up curves for the correlation peaks in a 2D 13C-13C homonuclear correlation ex-
periment for a CO-Cα (A) and a CO-Cβ (B) cross peak using a XY8 RFDR mixing block. The MAS
frequency was 25 kHz at a π-pulse duration of 5 µs. The overall transfer is slightly lower than for the
XY4 phase cycle (Figure 4.10) but the longer-range transfer is higher. Furthermore, the influence of the
compensation is higher than was expected from the theoretical calculations and numerical simulations.
Note that the pulse compensation for XY4 and XY8 outperforms any phase cycle.

the XY4 phase cycle is susceptible to phase transients, but when compensated has

a high stability towards rf-�eld maladjustments. The XY8 phase cycle compensates

quadrature components well, but due to the generated e�ective �eld in the xy plane it

has low breadth of the resonance condition in terms of rf-�eld amplitude. The XY16

compensates all pulse imperfections well but due to its long basic modulation frequency

it might lead to an undersampling of the �rst transient oscillations. All supercycles

perform very similar to their respective basic cycles and we did not �nd clear advantages

of using them when transient compensation is available.

4.4. Numerical Simulations for REDOR

The e�ective �elds can be calculated in full analogy to the RFDR sequence using the

same phase cycles and pulse parameters (Figure 4.12). As is the case for RFDR, the

XY8 phase cycle generates an e�ective �eld that is in the xy-plane. The XY4 and XY16

are hypothesized not to be in�uenced at all by quadrature components since the e�ective

�eld only has a z-component. For the XY16, a few values of the z-component are 0 due

to a vanishing e�ective �eld. The stability towards rf-�eld missets is not high for the

XY4 phase cycle but as stated before, this is believed to not be detrimental.
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Figure 4.12. The magnitude of the effective field (A) and the normalized z-component (B) for the
three different phase cycles of a REDOR π-pulse train as a function of the the rf-field misset and the
magnitude of the phase transients. The rise time of the amplitude transient was assumed to be 500 ns.
The MAS frequency was set to 30 kHz with a π-pulse length of 5 µs. The magnitude of the effective
field increases rapidly for an XY4 phase cycle but remains in the z-direction. The rf-field misset is
better compensated for XY8 and XY16 but the effective field direction is in the xy-plane for the XY8.
It can be observed that for ideal rf-field amplitude, the XY8 phase cycle never generates an effective
field independent of the phase transients.

The theoretical description for the REDOR sequence di�ers slightly from RFDR since

the chemical-shift o�sets can be excluded from the interaction-frame Hamiltonian cal-

culation. In the REDOR sequence, a heteronuclear spin pair is considered but only one

of the two spins is irradiated by the π-pulse train. The characteristics of the e�ective

�elds for a REDOR sequence show the same general trends as for the RFDR sequence.

The main di�erence between the two sequences is the form of the e�ective Hamilto-

nian, which contains only an Ising-type 2IzSz-term in the case of REDOR. This term

commutes at all times with e�ective �elds along the z-direction and also the density

operator commutes at all times with the e�ective �elds on the passive spin. Therefore,

it is expected that pulse transients do not in�uence the REDOR transfer strongly.
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Figure 4.13. REDOR dephasing curve extracted from numerical simulations (line) and from Floquet
calculations based on effective Hamiltonians (circles). The dephasing curves are virtually identical and
the small deviations come from numerical inaccuracies in the simulations. Therefore, pulse transients
are not expected to influence the dipolar recoupling efficiency during a REDOR experiment. The
simulation parameters were set to a MAS frequency of 15 kHz with a dipolar coupling of 700 Hz and
a rf-field amplitude of 50 kHz. The pulse transients were modelled with a rise time of 1 µs and an
electronic offset frequency of 200 kHz.

The REDOR dephasing curve was calculated based on the e�ective �rst-order Hamil-

tonian obtained from Floquet theory. In order to investigate the in�uence of pulse

transients on the REDOR sequence, a comparison of ideal and real pulses with numeri-

cal simulations was done. The resulting dephasing curves of the numerical and analytical

calculations are shown in 4.13 and show virtually no di�erences. The anisotropy of the

dipolar coupling was 700 Hz at a MAS frequency of 15 kHz with a π pulse length of

10 µs.

The numerical simulations and analytical calculations indicate that phase transients

have very little in�uence on the dipolar-recoupling e�ciency in REDOR. The e�ective

�eld does not truncate the transfer because, under all experimental conditions, it is in-

signi�cantly small or along the z-direction (in analogy to the results shown in Figure

4.12). Small deviations in the dephasing curve might be introduced by amplitude tran-
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sients since the centre of gravity of the pulse is shifted slightly and a time shift of the

pulses scales the dipolar coupling by a well-de�ned factor.

4.5. Experimental Results for REDOR

The stability of the REDOR sequence against phase transients was also con�rmed in ex-

perimental results. Figure 4.14 shows experimental REDOR recoupling curves for a C-N

two-bond coupling at 15 kHz MAS frequency with and without transient-compensated

pulses. In addition, a time-shifted REDOR was also acquired, which did not show any

signi�cant di�erences for transient compensation. This con�rms the good compensa-

tion of e�ective �elds in the REDOR sequence using an XY4 phase cycle found in the

analytical and numerical simulations.

Figure 4.14. Experimental REDOR curves with compensated and uncompensated pulses to measure
the CO-N coupling in selectively labelled 1-13C1-15N glycine. Figure B is a zoom of the oscillations in
the dephasing curve (A). The time shift (black and green) was 20 µs at a MAS frequency of 15 kHz.
The difference between the compensated and uncompensated implementation is negligible and is well
within the experimental uncertainty.

The experimental dephasing shown in Figure 4.14 corresponds to a rather challenging

case. This is due to the fact that the dipolar coupling is small and thus the dephasing
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period is long. This cumulates the error of phase transients and any pulse imperfections

would become obvious in the dephasing curve. It was con�rmed theoretically and ex-

perimentally that pulse imperfections do not have an impact on the sequence even over

long dephasing times up to 25 ms.

4.6. Conclusion

In conclusion, it was shown from calculations and experiments that REDOR is a pulse

sequence that is not susceptible to pulse imperfections. Despite the similar recoupling

element of RFDR, the functional Hamiltonian has a di�erent form that is not truncated

by the e�ective �elds generated, since they commute at all times. This fact makes

REDOR one of the most widely used pulse sequences to-date in solid-state NMR. In

RFDR, phase transients can lead to a signi�cant reduction in the polarization-transfer

e�ciency. This is due to the fact that the two coupled spins experience e�ective �elds

of di�erent magnitude and direction. The e�ective �elds can either be compensated

using transient-compensated pulses or using a more extensive phase cycle. Longer phase

cycles have the disadvantage of a longer minimal recoupling period, which might lead

to an undersampling of the polarization transfer curve. However, the stark di�erences

between RFDR and REDOR with respect to pulse transients show the necessity of fully

understanding the pulse sequences theoretically in order to predict the in�uence of pulse

imperfections on the sequence.
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� Parts of this chapter are published in:

J. Hellwagner, ... , M. Ernst, J. Chem. Phys., 2017, 146, 244202

5.1. Introduction

Symmetry-based sequences (so called CNν
n and RNν

n sequences [39�41]) are a type of

pulse sequences that allow for recoupling and decoupling experiments by carefully choos-

ing the symmetry numbers N , n, and ν. The correct choice of symmetry numbers gen-

erates an interference between the MAS and the spin part of the Hamiltonian to either

achieve decoupling or recoupling. In the literature, reports of homonuclear dipolar-

recoupling [70, 109�111], homonuclear decoupling [112], scalar J-coupling [113�116],

heteronuclear recoupling [117, 118], and heteronuclear decoupling [119] are found. The

focus of this chapter is a homonuclear dipolar-recoupling sequence R2611
4 and its super-

cycle, denoted as SR26 [111, 120]. Important properties of these types of sequences are γ

encoding and robustness towards pulse-error terms and rf inhomogeneity. The property

of γ encoding implies that the �rst-order e�ective Hamiltonian is only phase modulated

by the third Euler angle with respect to the laboratory frame, γ. This leads to high

double-quantum recoupling e�ciencies with a theoretical maximum of 73% for the �rst

transient. In practice, such a high e�ciency is usually unachievable, due to higher-order

error terms contributing to the Hamiltonian and experimental artefacts, including pulse

imperfections due to pulse transients.

The basic design of R sequences involves a basic element Rφ that implements a π rota-

tion about an axis in the xy-plane. The most widely used implementations are either a

simple (π)φ pulse or a composite pulse (π/2)φ(3π/2)φ+π, both corresponding to a net π

rotation. For the complete sequence, N/2 RφR−φ elements are �t into n rotor periods

77
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with the phase φ given as πν/N .

The C sequences are generated in a similar fashion with a net 2π rotation and an incre-

menting phase ∆φ = 2πν
N
. N of these basic elements are then �t into n rotor periods.

A more robust implementation with respect to o�set e�ects is the POST element. It

comprises of a (π/2)φ(2π)φ+π(3π/2)φ basic element and generates a net 2π �ip angle.

5.1.1. Space-Spin Selection Rules

Since the symmetry-based R and C sequences are essentially phase-modulated sequences,

the spin interactions are rotated around the z axis. It was shown from e�ective Hamilto-

nians both from AHT and Floquet theory that a spin interaction of rank s with spatial

component m is recoupled if the following selection rules are ful�lled.

For RN ν
n sequences

mn− sν =
zλN

2
(5.1)

with zλ = 0,±2,±4, ... for homonuclear dipolar couplings and zλ = ±1,±3, ... for CSA

tensors, i.e. zλ has to have the same parity as the spin tensor.

Similarly, the selection rule for CNν
n sequences is given by

mn− sν = zN (5.2)

with z being any integer.

A space-spin selection diagram shows the interactions that are being recoupled according

to Equation 5.1 or 5.2. Figure 5.1 shows the selection diagram for the double-quantum

homonuclear recoupling sequence R2611
4 .

The selection diagrams are a graphical tool to visualize the selection rules in a �rst-

order approximation. An opening in the black bars on the right hand side shows allowed

interactions, which are spaced by the symmetry numberN . Other terms that do not ful�l

the selection rules are suppressed in the �rst-order Hamiltonian. One example using the

chemical-shift anisotropy is shown in Figure 5.1B. It is noteworthy that the space-spin

selection diagrams only give a qualitative analysis of whether the interaction is symmetry

allowed or forbidden. This analysis only considers a �rst-order average Hamiltonian and

higher-order symmetries can also be determined with a similar approach. These higher-

order terms become especially relevant in decoupling sequences.

An important criterion for the performance of the sequence is the scaling factor of the
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Figure 5.1. Spin-space selection diagram for the homonuclear recoupling sequence R26114 . The selec-
tion diagram follows the selection rule given in Equation 5.1 using zλ = 2 in A) showing the symmetry
for a homonuclear dipolar coupling because of its rank ` = 2. The recoupled interaction is the tensor
with the component m = 1 and s = −2. The CSA component is shown in B) using zλ = 1 since the
spin rank of the chemical-shift anisotropy is odd. None of the possible options fulfil the selection rule
for the CSA component and thus it is symmetry forbidden.

interaction. This scaling factor can be calculated analytically for perfect rectangular

pulses in the framework of Floquet theory or numerically for real pulses. Recoupling

sequences perform best if the scaling factor for the time-independent interaction, i.e.

the recoupled component, is as high as possible. Another example for the importance

of the scaling factor is the isotropic chemical shift, as it is symmetry allowed in every C

sequence and is often considered an error term in dipolar recoupling sequences. However,

if a perfect POST element is used for the net 2π rotation, the scaling factor of the

isotropic chemical shift is 0 and it is suppressed.

5.1.2. Resonance Conditions, Effective First- and Second-Order
Hamiltonians

The theoretical description of these types of sequences is either based on symmetry

arguments and Average-Hamiltonian theory [41], or bi-modal Floquet theory [20, 21, 23].

The relevant frequencies are the MAS frequency ωr, and the modulation frequency of the

pulse sequence ωm. In the bi-modal Floquet description, we assume that the R element

corresponds to an ideal inversion propagator. In reality, however, a more generalized

description has to be applied, since pulse imperfections in the form of rf-�eld amplitude

missetting or inhomogeneity, and phase transients can lead to a deviation from the
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perfect inversion properties of the R element. As a consequence of this, the rf trajectory

will no longer be cyclic and the Floquet description has to be extended with a third

frequency, the e�ective �eld ωe� [22]. For the theoretical description of RNν
n , we assume

an ideal homonuclear-coupled two-spin system (p = 1, 2) with chemical-shift interactions.

In spherical-tensor notation the rotating-frame Hamiltonian is given by

Ĥ (t) =
2∑
p=1

ωp(t)T
(p)
1,0 + ω1,2(t)T

(1,2)
2,0 + Ĥrf(t) (5.3)

with an arbitrary amplitude and phase-modulated rf-�eld Hamiltonian

Ĥrf(t) = ω1(t)
∑
p

(cos(φ(t))Spx + sin(φ(t))Spy) . (5.4)

In this case, ωp(t) represents the time-dependent chemical shift of spin p, ω1,2(t) the

dipolar coupling, and ω1(t) and φ(t) the amplitude and the phase of an arbitrary pulse

sequence, respectively. The Floquet analysis is done in an interaction frame with the

rf-�eld Hamiltonian, not including the chemical-shift o�set. The interaction-frame trans-

formation is calculated in full analogy to the treatment presented in Chapter 4.2.1 with

the propagator

Ûrf(t) = T̂ exp

(
−i
∫ t

0

Ĥrf(t
′)dt′

)
(5.5)

with the interaction-frame Hamiltonian given by

ˆ̃H (t) = Û−1
rf (t)Ĥ (t)Ûrf(t). (5.6)

Here, T̂ represents the Dyson time-ordering operator [56]. In the general case of a

tri-modal Floquet description with ωe� 6= 0, the interaction-frame Hamiltonian can be

written as a Fourier series

ˆ̃H (t) =
2∑

n=−2

∞∑
k=−∞

1∑
`=−1

ˆ̃H (n,k,`)einωrteikωmtei`ωe�t. (5.7)
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with the Fourier coe�cients ˆ̃H (n,k,`) given by

ˆ̃H (0,k,`) =
2∑
p=1

ω(0)
p

1∑
s=−1

a
(k,`)
1,s T

(p)
1,s (5.8)

ˆ̃H (n,k,`) = ω
(n)
1,2

2∑
s=−2

a
(k,`)
2,s T

(1,2)
2,s +

2∑
p=1

ω(0)
p

1∑
s=−1

a
(k,`)
1,s T

(p)
1,s . (5.9)

The scaling factors a(k,`)
r,s are the Fourier coe�cients of the interaction-frame trajectory

of the Tr,0 spherical spin-tensor operators [121]

T̃r,0(t) =
r∑

s=−r

ar,s(t)Tr,s =
r∑

s=−r

Tr,s

∞∑
k=−∞

s∑
`=−s

a(k,`)
r,s ei(kωm+`ωe�)t (5.10)

and can be calculated analytically for the ideal π pulses [21]. In the case of real, non-ideal

pulses, the Fourier coe�cients have to be calculated numerically from the interaction-

frame trajectory. The resulting �rst-order e�ective Hamiltonian Ĥ
(1)

is given by

Ĥ
(1)

=
ˆ̃H (0,0,0)
(1) +

∑
n0,k0,`0

ˆ̃H (n0,k0,`0)
(1) (5.11)

and the second-order e�ective Hamiltonian Ĥ
(2)

by

Ĥ
(2)

=
ˆ̃H (0,0,0)
(2) +

∑
n0,k0,`0

ˆ̃H (n0,k0,`0)
(2) (5.12)

with

ˆ̃H (n0,k0,`0)
(2) =

∑
ν,κ,λ

−1

2

[
ˆ̃H (n0−ν,k0−κ,`0−λ),

ˆ̃H (ν,κ,λ)
]

νωr + κωm + λωe�

=
∑
ν,κ,λ

−1

2

ω
(n0−ν)
p ω

(ν)
p

νωr + κωm + λωe�
Aκ,λ(k0, `0) (5.13)

at the tri-modal resonance condition
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n0ωr + k0ωm + `0ωe� = 0. (5.14)

Here, Aκ,λ(k0, `0) contains the spin part of the Hamiltonian (commutator terms) scaled

with the Fourier coe�cients a(k0−κ,`0−λ)
r,s and a(κ,λ)

r,s . Note that the denominator in Equa-

tion 5.13 cannot be zero and resonant terms must be excluded.

In theory, n0, k0 and `0 can be any set of integer numbers that ful�ls Equation 5.14

with the strength of the �rst-order recoupling condition given by the scaling factor a(k,l)
r,s .

For ideal pulses where the e�ective �eld is zero, one can describe the sequence in a

bi-modal Floquet picture and the resonance condition of an RN ν
n sequence is given by

k0 = −nn0. It was shown in the selection rule in Equation 5.1, the coe�cients a(k0,0)
r,s are

only non zero for k0 = (N/2)z − sν with z being an integer that has the same parity as

r. This condition yields resonant �rst-order contributions to the Hamiltonian for RN ν
n

sequences in a bi-modal Floquet picture given by ˆ̃H (n0,k0) =
ˆ̃H (n0,−nn0) (see Eq. 5.9).

For the R2611
4 sequence relevant non-zero terms are

ˆ̃H (∓1,±4) = ω
(∓1)
1,2 a

(±4)
2,±2 T

(1,2)
2,±2 (5.15)

containing only double-quantum terms. If the pulses do not correspond to an ideal

inversion, we have to use the full tri-modal picture including the e�ective �eld ωe�.

It can be shown that for an R-type sequence, the e�ective �eld axis lies close to the

z axis and that the selection rules for the ideal sequence k0 = (N/2)z − sν are still

valid and `0 = −s has to be ful�lled simultaneously, resulting in resonant �rst-order

contributions to the e�ective Hamiltonian given by ˆ̃H (n0,k0,`0) =
ˆ̃H (n0,−nn0,`0), where

`0 = ±2 for double-quantum recoupling or `0 = 0 for zero-quantum recoupling. For the

R2611
4 sequence that selectively recouples the double-quantum terms, the relevant terms

are
ˆ̃H (∓1,±4,∓2) = ω

(∓1)
1,2 a

(±4,∓2)
2,±2 T

(1,2)
2,±2 . (5.16)

In the presence of an e�ective �eld, the resonance condition (Eq. 5.14) is slightly shifted

compared to the ideal case, leading to the recoupling Hamiltonian as given in Equation

5.16. Besides the desired resonant contributions, we also have to discuss the non-resonant

error terms that can lead to a truncation of the resonant part of the Hamiltonian. In
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�rst order, the error terms originate from a term directly proportional to the isotropic

chemical-shift Hamiltonian, given by

ˆ̃H (0,0,0) =
2∑
p=1

ω(0)
p

2∑
s=−1

a
(0,0)
1,s T

(p)
1,s . (5.17)

Evaluation of the non-resonant second-order error terms (Eq. 5.13) shows that the

biggest contributions often come from the CSA-CSA crossterms. They are obtained by

evaluating the commutators in Equation 5.13.

Aκ,λ(k0, `0) =
(
a

(k0−κ,`0−λ)
1,−1 a

(κ,λ)
1,1 − a

(k0−κ,`0−λ)
1,1 a

(κ,λ)
1,−1

)
T1,0

+
(
a

(k0−κ,`0−λ)
1,0 a

(κ,λ)
1,1 − a

(k0−κ,`0−λ)
1,1 a

(κ,λ)
1,0

)
T1,1 (5.18)

+
(
a

(k0−κ,`0−λ)
1,−1 a

(κ,λ)
1,0 − a

(k0−κ,`0−λ)
1,0 a

(κ,λ)
1,−1

)
T1,−1.

For the term ˆ̃H (0,0,0)
(2) it can be shown using symmetry arguments for the Fourier coef-

�cients a(κ,λ)
1,s that Aκ,λ(0, 0) only has contributions for the T1,0 tensor components and

Equation 5.18 reduces to

Aκ,λ(0, 0) =
(
a

(−κ,−λ)
1,−1 a

(κ,λ)
1,1 − a

(−κ,−λ)
1,1 a

(κ,λ)
1,−1

)
T1,0. (5.19)

In order to obtain the most e�cient recoupling by an RNν
n sequence, the triple-mode

resonance condition (Eq. 5.14) has to be ful�lled and the �rst-order dipolar scaling

factor given in Equation 5.16 has to be maximized while simultaneously minimizing the

�rst- and second-order error terms. A similar theoretical descriptions holds true for C

sequences and can be found in detail in Ref. [63] and [25].

5.2. Analytical and Numerical Calculations

As discussed above, the R sequences are implemented by �tting the basic RR' element

N/2 times into n rotor periods with an R element corresponding to a net π rotation.

The phase of the pulse for the R2611
4 sequence is given by φ = 11/26 · π. The pulses can

be either implemented as hard rectangular pulses (Fig. 5.2B) or as amplitude-shaped

pulses with �nite edges that allow for the compensation (Fig. 5.2C).
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Figure 5.2. Schematic representation of the dipolar double quantum R26 recoupling sequence in a
1D experiment. Various implementations are shown with one example as a supercycle SR26 (A) with
permutation and π phase shift of the R26 mixing block. The dash symbolizes a phase permutation.
Different basic R elements are used to make up the R26 mixing block: (B) R element consisting of
ideal rectangular pulses with composition (π/2)φ(3π/2)φ+π. (C) Transient-compensated R element
consisting of amplitude-shaped pulses with sine-shaped edges.

The sequence can be stabilized towards di�erent error terms using a supercycled imple-

mentation. A detailed theoretical analysis of the e�ect of supercycles on symmetry-based

sequences is given in Ref. [40]. In the case of R2611
4 a supercycle has been presented

in the literature using π shifts and inversions of the R sequence as a means to achieve

better compensation for error terms [120]. The detailed implementation is presented in

Figure 5.2A. However, the supercycle comes at the cost of a loss of γ encoding for the

sequence. This corresponds to a reduction in theoretical transfer e�ciency from 73% for

the basic R sequence to 52% for the supercylced implementation.

A good measure of the stability of the supercycle towards pulse errors, such as imperfect
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rotations due to missets in rf-�eld amplitude, or tilted rotation axes due to quadrature

components in the pulses, is the magnitude of the e�ective �eld. This e�ective �eld al-

ters the resonance condition for the recoupling (Eq. 5.14) and thus reduces the transfer

e�ciency.

5.2.1. Effective Fields from Imperfect Rotations

The e�ective �elds for misset of the rf-�eld amplitude and the size of the quadrature

components were calculated following the interaction-frame transformation outlined in

Chapter 5.1.2. The magnitude of the e�ective �eld is shown in Figure 5.3. The supercycle

denoted as SR26 shows high stability towards the rf-�eld maladjustments, whereas the

basic R sequence is heavily in�uenced (Fig. 5.3A). The behaviour exhibited by the

sequences towards pulse transients is di�erent as the e�ective �eld is reduced at higher

quadrature components (given by the parameter νo� from Equation 3.1 (Fig. 5.3B)).

In the case of pure in-phase pulse transients (amplitude transients, νo� = 0 kHz), an

e�ective �eld is present for R26, as the amplitude transients induced by the time constant

of the pulse leads to an altered �ip angle.

Figure 5.3. The effective fields after a full RN block for R26 (solid blue) and after a full supercycle
SR26 (dashed red) as a function of the rf-field amplitude (A), and the magnitude of phase transients
(B). The pulse transients were modelled with a constant rise time of 500 ns and variable electronic
offset frequency (Eq.3.1).

The amplitude transients lead to a reduced e�ective nutation frequency due to the �nite

rise time of the pulse. The reduction in the e�ective �ip angle is partially compensated
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by the introduction of quadrature phase transients, as they also modify the e�ective

pulse amplitude. Nevertheless, pure in-phase amplitude transients do not generate an

e�ective �eld for SR26, as the stability towards rf-�eld amplitude misset is fairly high

for the supercycled version and also quadrature phase transients generate only small

e�ective �elds (Fig. 5.3B).

There are three possible ways to optimize the transfer e�ciency of the pulse sequence by

counteracting the detuning caused by the e�ective �elds: (i) asynchronous implementa-

tion of the R sequence, (ii) the use of supercycled sequences, and (iii) implementation of

pulse-transient compensated pulses. All three possible approaches to optimize the pulse

sequence were explored in the numerical simulations shown in Figure 5.4. An experimen-

tally straightforward way to compensate the impact of e�ective �elds in symmetry-based

recoupling sequences is breaking the rotor synchronization of the pulse sequence to match

the modi�ed resonance condition of Equation 5.14. Experimentally the simplest way to

achieve this is by a change of the MAS frequency, resulting in an asynchronous sequence.

Numerical simulations of the transfer e�ciency as a function of the MAS frequency and

the rf-�eld amplitude are shown in Figure 5.4A for R26 and Figure 5.4B for SR26. The

simulations were performed for parameters similar to the model compound of doubly 13C

labelled diammonium phthalate with the 13C labels at the two carbonyl groups, which

was also used for the RFDR experiments presented in Chapter 4.3.1.

Figure 5.4A shows that even for a perfect inversion propagator, corresponding to an

rf-�eld strength of 62.5 kHz, there is an e�ective �eld for the R26 sequence of 32 Hz that

originates from the second-order contributions of the CSA tensor. This e�ective �eld is

called the �ctitious �eld and is inherent to the pulse sequence. A detailed analysis of

these �ctitious �elds will be discussed in detail in Chapter 5.2.2. The total value of the

e�ective �eld is determined by a superposition of the contributions by the �ctitious �elds

and by the altered e�ective �ip angle of the pulses. The simulations show that despite

the increasing magnitude of the e�ective �eld, almost maximum polarization transfer

can be achieved over the whole range of rf-�eld amplitudes by compensating the e�ective

�eld through a change in the MAS frequency.

A second approach is the application of a supercycled version of the R sequence. The

sequence SR26 represents such an implementation that successfully mitigates the impact

of an e�ective �eld by removing �ctitious �elds (Fig. 5.4B). This can be seen from the
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Figure 5.4. Numerical simulation of double-quantum transfer efficiency as a function of the change of
the MAS frequency. The effect of a change rf amplitude and the magnitude of the phase transients
were analysed in A and B, and C and D, respectively. The simulations were performed with a dipolar
coupling of 585 Hz and a chemical-shift anisotropy of 8.75 kHz. The ideal rf-amplitude ν1 corresponds
to a value of 62.5 kHz at a MAS frequency of 9.615 kHz. A) Transfer efficiency for R26 with ideal
rectangular pulses, B) SR26 with ideal rectangular pulses, C) R26 with pulse transients (τrise = 500 ns,
variable νoff) at the ideal rf-amplitude ν1 = 62.5 kHz. D) SR26 using the same parameters for the pulse
transients.

maximum of the transfer e�ciency for perfect inversion pulses at an rf-�eld strength of

62.5 kHz, which is the theoretical value for the applied MAS frequency. The supercy-

cled SR26 sequence also compensates rf-�eld amplitude missetting (Fig. 5.4B), but at

the cost of losing the γ encoding of the sequence under MAS. Therefore, the maximum

transfer e�ciency for SR26 is 52%, whereas the maximum transfer for R26 is 73%.

Adding analytically modelled pulse transients to the simulations (Fig. 5.4C and 5.4D)

results in a further shift from the theoretical recoupling condition for the R26 sequence.

The pulse transients were simulated according to the model given in Equation 3.1. A

time constant of τrise = 500 ns and a variable o�set frequency νo�, corresponding to

experimentally observed pulse parameters, were used for the simulations. An additional

e�ective �eld due to the quadrature component of the pulse transients is superimposed
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on the e�ective �eld observed using ideal rectangular pulses. The best result is observed

for high phase transients as the amplitude transient deteriorates the e�ective �ip angle,

which is partially compensated by the introduction of phase transients. Analogous cal-

culations for the supercycle SR26 show that pulse transients are compensated almost

perfectly (Fig. 5.4D).

The in�uence of the pulse errors shown in numerical simulations can be controlled by

the experimentalist. A careful setup of the experiments and the use of transient com-

pensation can negate these e�ects. However, the change of the resonance conditions due

�ctitious �elds is inherent to the sequence and their magnitude is dependent on the spin

system.

5.2.2. Fictitious Effective Fields

The e�ective �eld observed for perfect inversion pulses in the numerical simulations

in Figure 5.4A can be attributed to CSA crossterms and are termed �ctitious �elds.

Fictitious �elds were �rst discussed in the literature arising from dipole-dipole crossterms

[122] and for CSA-CSA crossterms in proton assisted recoupling (PAR) experiments

[123].

This contribution of 32 Hz scales roughly quadratically with the CSA tensor and thus

con�rms the second-order nature of CSA-CSA crossterms (Fig. 5.5). The e�ective �eld is

determined as the change in the synchronous MAS frequency needed to obtain the max-

imum transfer e�ciency. The e�ective �eld shown in Figure 5.5 is a superposition of the

imperfect inversion and the �ctitious �eld of roughly 32 Hz for a CSA tensor of 8.75 kHz.

As shown in Figure 5.4, CSA-CSA crossterms are the main source of such e�ective

�elds. Their magnitude is shown in Figure 5.6A as a function of the applied rf �eld

and the detuning of the MAS frequency. The crossterms were calculated according to

Equations 5.13 and 5.18. The magnitude of the terms is virtually una�ected by the MAS

frequency, but scales nearly linearly with increasing rf-�eld amplitude. Note that the

Fourier coe�cients in Equation 5.18 are almost independent of the MAS frequency. For

a given rf �eld the MAS frequency changes the second-order Hamiltonian only through

the denominator in Equation 5.13. The magnitude of the e�ective �elds caused by CSA

crossterms and the rf-�eld amplitude missetting matches the detuning of the MAS fre-



5.2 Analytical and Numerical Calculations 89

Figure 5.5. Simulation of the effective-field dependence on the CSA tensor. The effective field is taken
as the MAS detuning needed for maximum transfer efficiency. The simulation input is the same as
shown in Figure 5.4A. The MAS resolution was 4 Hz. The synchronous MAS frequency was set to
9.615 kHz, corresponding to a theoretical rf amplitude of 62.5 kHz. The effective field scales quadrati-
cally with the CSA tensor, proving that the fictitious field is due to CSA-CSA crossterms.

quency obtained by numerical simulations very well (Fig. 5.6B). Analogous calculations

for the supercycle SR26 yield crossterms that are �ve orders of magnitude smaller, and

the e�ective �eld due to these crossterms can be neglected to very good approximation.

There are many more potential error terms that have been neglected in this descrip-

tion based on the assumption that the CSA terms are dominating in our case. There

are, for example, also heteronuclear dipole-dipole crossterms if the recoupling is done

without decoupling. They can be signi�cant for protonated carbons due to the large

magnitude of the heteronuclear dipolar coupling of directly bound spin pairs. Identical

numerical simulations of the results shown in Figure 5.4 with di�erent spin systems yield

additional e�ective �elds generated by heteronuclear dipolar couplings. Under cw proton

decoupling, these e�ective �elds still exist but are signi�cantly reduced in magnitude,

and thus the description solely based on the CSA-CSA crossterms is valid in this case.

In conclusion, numerical simulations and a triple-mode Floquet description of the R26

sequence give insight into the contributions to the e�ective �eld after one modulation

period. The most important contributions are the rf-amplitude misset that results in
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Figure 5.6. A) The magnitude of the second-order CSA-CSA scaling coefficients for R26 recoupling
calculated with ideal rectangular pulses as a function of the MAS detuning and the rf amplitude ν1
at an MAS frequency of 9.615 kHz. For the fictitious effective fields, these terms are scaled with the
coefficients ω

(ν)
p and ω

(n0−ν)
p to match the detuning of 32 Hz at an ideal rf-field amplitude. B) The

fictitious fields from error terms added to the effective field caused by the altered flip angle calculated
by interaction-frame transformation (blue line). The combined effective field agrees with the MAS
detuning obtained from numerical simulations (red dots, taken from Figure 5.4A).

e�ective �elds of up to 60 Hz for a misset of 10% and pulse transients that add an

additional �eld between 20 and 100 Hz depending on the magnitude of the amplitude

and phase transients. A third contribution observed in the numerical simulations is due

to the second-order CSA-CSA crossterms. The magnitude of the generated �ctitious

�eld depends mainly on the spin system. It was calculated to be 32 Hz for a CSA tensor

of 8.75 kHz.

5.3. Experimental Results

In order to verify the results from numerical simulations, we have experimentally op-

timized the polarization transfer using the three discussed approaches. Diammonium

phthalate selectively labelled at the carbonyl groups and diluted 1:7 in natural abun-

dance served as a model compound with its small chemical-shift di�erence and a medium

CSA tensor. Polarization-transfer curves were measured at a static magnetic �eld of B0

= 7.1 T, corresponding to a situation with a relatively small CSA tensor (5.25 kHz). In

addition, measurements at a static magnetic �eld of 16.6 T were carried out, in which

the in�uence of the CSA tensor is much more important.
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Figure 5.7. Experimental double-quantum transfer efficiency for R26 recoupling at 9.615 kHz MAS
in doubly 13C labelled phthalate. The external magnetic field was 7.1 T, with a basic R element
(π/2)φ(3π/2)φ+π. Decoupling during the R sequence was implemented using cw irradiation with a
rf-field amplitude of 105 kHz. A) Measured B1 shapes for conventional hard pulses (top row) and the
compensated pulses (bottom row). The transfer efficiency for three different setups for rectangular
pulses (B) and compensated, amplitude shaped pulses with flip-angle correction (C) is shown for the
basic R26 implementation. D) and E) are the analogous measurements as in B) and C), respectively,
using the supercycle SR26.
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To simulate di�erent experimental conditions, we ran the experiments with three di�er-

ent cable lengths between the preampli�er and the probe (setup 1-3, 125 cm, 155 cm,

and 170 cm cable length) corresponding to the setups shown in Chapter 4.3. The ca-

ble length in�uences the shape of the pulse transient if the impedance of the resonance

circuit is not perfectly matched. The change of cable results therefore in an alteration

of the pulse amplitude and phase. These di�erences can be seen in Figure 5.7A where

the B1-�eld shapes measured in the probe by the pickup coil are plotted for a basic

RφR−φ element. The top row in Figure 5.7A shows the resulting pulse shape for rect-

angular pulses and the bottom row shows the compensated pulses. The B1 shapes for

the rectangular pulses experienced by the sample di�er from each other at the pulse

discontinuities, strongly a�ecting the transfer e�ciency as can be seen in Figure 5.7B,

where the transfer e�ciency is plotted as a function of the mixing time and the rf-�eld

amplitude for the simple R26 implementation. Signi�cant polarization transfer could

only be achieved in setup 1 (38%). In both setups 2 and 3, less than 12% e�ciency

was measured. Use of compensated pulses (Fig. 5.7C) results in a high reproducibility

of the polarization-transfer condition and also higher polarization-transfer e�ciencies of

36-42%. The recoupling condition for transient-compensated pulses becomes predictable

because the e�ective �elds caused by pulse transients are suppressed. The compensation

of pulses leads to an almost perfect recovery of an inversion propagator for the basic R

element without residual e�ective �elds after the rotation.

It is interesting to observe that setup 3, which has the smallest quadrature compo-

nent, shows the worst recoupling performance, which agrees with the calculations shown

in Figure 5.4B. It is nearly impossible to predict the recoupling performance a priori

solely based on the shape of the pulse transients. It is by chance that setup 1 showed

favourable recoupling conditions. The maximum transfer could potentially be further

optimized by higher decoupling power and a reduction of the B1-�eld inhomogeneity

(restricted sample). Decoupling e�ciency becomes more important for carbons with

directly bound protons.

The second possible approach is the use of the supercycled SR26 sequence, which par-

tially compensates e�ective �elds at the cost of a lower theoretical transfer e�ciency.

Figure 5.7D and E show the transfer e�ciency for the SR26 pulse sequence using rect-

angular pulses and transient-compensated pulses. One can clearly see a signi�cant im-
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provement compared to the transfer e�ciency under the uncompensated R26 sequence

(Fig. 5.7B) and transfer e�ciencies around 29% are achieved. However, the transfer e�-

ciency of SR26 can still be improved to roughly 34% using transient-compensated pulses

as can be seen in Figure 5.7E. The transfer of the SR26 sequence clearly shows a weaker

dependence on the rf-�eld amplitude, but the transfer e�ciencies are signi�cantly lower

than in the transient-compensated R26 sequence. This is due to the loss of γ encoding

in the SR26 sequence, which leads to a reduction in the theoretical transfer e�ciency.

For the highest transfer e�ciency, transient-compensated pulses are clearly the better

solution even if they currently require specialized equipment.

If transient compensation is not possible, asynchronous sequences for compensating the

e�ective �eld or supercycled sequences are an alternative that can be used. The asyn-

chronous implementation of the R26 sequence was �rst investigated at low static �eld

(7.1 T), and thus for a small magnitude of the second-order CSA crossterms. The asyn-

chronous implementation can be done in di�erent ways. Two possible implementations

are discussed in detail: (i) the change of the MAS frequency to compensate any e�ective

�eld that is generated by pulse errors and �ctitious �elds (Eq. 5.14) (ii) the change of

the amplitude of the �rst (π/2) pulse in the R element to generate additional rotation

that negates e�ective �elds.

Figure 5.8. The experimental double-quantum transfer efficiency for ammonium phthalate as a func-
tion of the MAS frequency detuning and the rf-field amplitude. The theoretical rf-field amplitude is
62.5 kHz with a synchronous MAS frequency of 9.615 kHz. The experiments were performed on a
7.1 T magnet with setup 1 used in Figure 5.7. The superposition of the effective field generated by
the CSA crossterms is obvious as the optimal MAS frequency at the recoupling condition is shifted by
-20 Hz from the one determined from the symmetry condition.
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In order to implement asynchronous conditions for the sequence, the MAS frequency

was varied in steps of 10 Hz from +100 to -100 Hz with respect to the synchronous

spinning frequency of 9.615 kHz. In addition, the rf-�eld amplitude was varied indepen-

dently in order to show the e�ect of an altered e�ective �ip angle. Even for setup 1 (Fig.

5.7) with favourable pulse transients, the transfer e�ciency can be improved by 6% to

44% by satisfying the asynchronous condition, as shown in Figure 5.8.

In actual NMR applications, measurements are usually performed at high �elds for

optimum sensitivity and spectral resolution. We therefore compare the performance

of each implementation at a higher static �eld (16.6 T) with larger second-order CSA

contributions and without prior knowledge of the actual B1 shapes, i.e., the pulse tran-

sients. Asynchronous implementation was tested by changing the MAS frequency in

order to compensate for the combined e�ective �elds from the CSA-CSA crossterms and

the pulse transients. The MAS frequency was varied from 9.615 (synchronous), to 9.565,

and to 9.515 kHz, while keeping the mixing time �xed at the experimentally optimized

value. The highest observed transfer e�ciency of 48% for R26 was found at a MAS

detuning of -100 Hz (Fig. 5.9A) compared to an e�ciency of 24% for the synchronous

version. For SR26 the highest transfer e�ciency of 38% was found for the synchronous

implementation (Fig. 5.9B) and detuning resulted in signi�cantly lower polarization

transfer. The supercycled sequence suppresses the e�ective �elds very e�ciently and

can be implemented without experimental optimization. This is achieved, however, at

the price of a lower transfer e�ciency. Without the knowledge of the pulse transients

and the magnitude of the CSA tensor, estimation of the required MAS detuning is not

feasible. The optimization of the asynchronous recoupling condition by changing the

MAS frequency has to be done experimentally and can be tedious especially for samples

with low signal-to-noise ratio. As demonstrated in Figure 5.9, however even a quick

scan of the MAS frequency can restore transfer e�ciencies for R26 to a value that is

higher than the ones obtained for synchronous SR26 if the sample yields decent signal

intensities.

Changing of the MAS frequency can be a tedious parameter to optimize on the spec-

trometer. Another approach to compensate the combined e�ective �eld was presented

in Ref. [25] for C sequences by changing the amplitude ratio of the POST recoupling
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Figure 5.9. Experimental transfer for synchronous and asynchronous implementation of R26 (A) and
SR26 (B) using conventional rectangular pulses at a static magnetic field of 16.6 T. The advantages of
the R26 sequence are the higher transfer efficiency for the asynchronous implementation as compared
to SR26 due to γ encoding. The advantages of SR26 are the robustness towards second-order error
terms and rf-field missetting, making an asynchronous implementation obsolete. The maximum trans-
fer for R26 is 48%, whereas the maximum of SR26 corresponds to 38%, as reported in the literature
[111].

element. This induces an additional rotation that can counteract the e�ective �eld gen-

erated by pulse imperfections and second-order CSA contributions. The same e�ect is

achieved when altering one of the pulse lengths, which is essentially the same as a change

in amplitude, as the net �ip angle of the pulse is changed.

The experimental implementation of this concept is investigated for the R26 sequence

and the experimental results are supported with analytical calculations (Fig. 5.10). The

two optimization parameters are the ratio of the �rst (π/2) pulse with respect to the

(3π/2) pulse and the applied rf-�eld amplitude. The experiments were run at a MAS

frequency of 12.821 kHz corresponding to a theoretical rf-�eld amplitude of 83.33 kHz at

an external magnetic �eld of 11.8 T. From the experimental results in Figure 5.10A it is

clear that the maximum transfer e�ciency is a function of both experimental parameters

and there is a linear relationship between the rf-�eld amplitude and the ratio. The

transfer e�ciency for higher ratios of the (π/2) to the (3π/2) element at the best rf-�eld

amplitude is higher than for lower ratios with the matching rf-�eld. This observation can

be understood when calculating the magnitude of the DQ dipolar scaling factor a(±4,∓2)
2,±2

(Eq. 5.16), which is directly proportional to the e�ciency of the recoupling (Fig. 5.10B).

The combination of the pulse ratio and the rf-�eld amplitude for best experimental
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Figure 5.10. A) Experimental transfer efficiency for the basic R26 sequence as a function of the rf-
field amplitude (ν1,theory=83.33 kHz for the synchronous implementation) and the ratio between the
(π/2) and the (3π/2) pulse of the basic R element. The sequence was implemented using transient-
compensated pulses. The transfer efficiency for every ratio can be restored by changing the rf-field
amplitude, and at higher ratios and corresponding rf-field, the transfer efficiency is even higher than
for the synchronous implementation. B) Analytical calculation of the DQ scaling factor a(±4,∓2)2,±2 as
a function of the pulse ratio and the rf-field amplitude. C) Calculation of the isotropic chemical-shift
scaling factor a(0,0)1,0 , which is considered an error term in first order. D) Calculation of the effective field
of the asynchronous implementation.

transfer e�ciency can be explained theoretically by considering the e�ective �eld as an

error term (Eq. 5.14). The isotropic chemical-shift scaling factor a(0,0)
1,0 is considered

an additional error term in �rst order in these types of sequences. Both parameters

show the same behaviour that is mimicked in the experimental results (Fig. 5.10C and

D). Note that the theoretical description shown in Figure 5.10B-D only considers �rst-
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order terms, and second-order CSA contributions are not shown. However, as discussed

in Chapter 5.2.2, these contributions add a term to the e�ective �eld that is roughly

constant. This additional e�ective �eld can be observed in the experimental results

of Figure 5.10 since the best recoupling condition is shifted slightly to higher rf-�eld

amplitudes than predicted from a �rst-order calculation.

5.4. Conclusion

In conclusion, in symmetry-based R sequences unwanted e�ective �elds are important

sources of decreased transfer e�ciency when measuring intermediate or small couplings

because they lead to a mismatch of the two-frequency resonance condition. The sources

of the e�ective �elds can be second-order CSA-CSA crossterms, pulse transients, or a

radio-frequency �eld that does not generate the required �ip angle. The latter can be

due to a missetting of the rf-�eld amplitude or due to rf-�eld inhomogeneity. There

are three strategies to compensate the e�ective �elds and restore e�cient polarization

transfer: (i) asynchronous recoupling by detuning the spinning frequency or chang-

ing the relative pulse amplitudes, (ii) supercycled R sequences (e.g. SR26), and (iii)

transient-compensated pulses. Each of the three methods has di�erent advantages and

disadvantages. The asynchronous recoupling by a change of the MAS frequency can

compensate all three of the sources of e�ective �elds and leads to the highest transfer

e�ciencies, but requires experimental optimization. The supercycled sequences have

generally lower e�ciencies due to the lack of γ encoding, but they compensate for all

three sources and do not need any optimization. Transient compensation can be imple-

mented without experimental optimization and makes the performance of the sequences

very reproducible, but compensates only e�ective �elds originating from pulse transients.

The choice of method or combination of methods to optimize the transfer e�ciency de-

pends on the capabilities of the spectrometer and the relative magnitude of the three

di�erent contributions. On spectrometers with the capability of phase-transient compen-

sation, transient-compensated pulses in combination with an asynchronous implementa-

tion to compensate for the second-order terms leads to the best results. On spectrometers

without the possibility to do transient compensations, an asynchronous implementation

is optimal if the S/N allows optimization of the spinning frequency. Otherwise super-
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cycled sequences o�er the best chance to obtain reasonable transfer e�ciencies without

the need for experimental optimization.



6. Homonuclear Decoupling

6.1. Introduction to FSLG
1H spins are present in most materials of interest and serve as an important nucleus

in NMR for the study of materials in the solution state. Other than the advantage of

the high sensitivity of protons, they also allow insights into molecular packing in solids,

as direct observations of hydrogen bonding, C-H-π, and π-π interactions are possible

[124�127]. 1H detection has not been routinely implemented in solid-state NMR due to

the large proton-proton dipolar couplings that are homogenous and are only partially

averaged out by MAS at slow to medium spinning frequencies. The technical advances

of probes with very fast spinning frequencies (up to 150 kHz) has been signi�cant in

recent years, however, the obtained resolution is still not su�cient for several systems

[12, 128�131]. The residual linewidth in a typical fully protonated protein sample is

still 100-200 Hz, making de-novo resonance assignment from proton-detected spectra

challenging. Additionally, the small diameter of fast-spinning rotors reduces the amount

of sample resulting in a signi�cant signal-to-noise ratio loss.

An approach to improve spectral quality is the use of deuterated samples. The reduc-

tion of the density of the proton network leads to fewer spectral resonances, and thus

more isolated peaks that can be assigned and used for structure calculations [132�134].

Deuteration in combination with fast spinning is, at the current stage, the method of

choice for proton-detected spectra of large protein assemblies. However, the sample

preparation can be di�cult due to incomplete deuteration and larger systems will still

su�er from spectral overlap. In order to circumvent these problems, strategies for the

removal of homonuclear couplings using pulse sequences have been developed.

The �rst strategy using discrete rf pulses to average out homonuclear proton-proton in-

teractions was suggested by Lee and Goldburg [42]. Further sequences that are used to

99
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achieve homonuclear decoupling include single-pulse sequences (WAHUHA [135], MREV

[59, 136], BR-24 [137, 138]), C- and R-symmetry based sequences [40, 112, 139], and

DUMBO [140]. The single-pulse and symmetry-based sequences have been derived from

theoretical concepts whereas DUMBO is a purely empirically developed sequence. After

the development of DUMBO, it was shown that FSLG and DUMBO have the same un-

derlying decoupling mechanism, and thus are rather similar in performance [141]. Each

of these sequences has their own advantages and disadvantages in terms of robustness

towards di�erent MAS spinning regimes and requirements for the rf-�eld strength. Sev-

eral examples of these types of sequences can be found in Ref. [142] and will not be

discussed in detail.

The theoretical basis of the Lee-Goldburg sequence relies on the manipulation of the

spin interactions by an o�-resonance irradiation such that the quantization axis is aligned

along the magic angle in a rotating frame [42]. This leads to the complete removal of

the dipolar coupling in a purely homonuclear coupled system, assuming no interfer-

ence from magic-angle spinning. The Lee-Goldburg pulse sequence has undergone many

modi�cations to be more robust and to accommodate the technical de�cits of spectrom-

eter hardware. Famous alterations of the pulse sequence include the frequency-switched

Lee-Goldburg (FSLG) [143�145] and the phase-modulated Lee-Goldburg (PMLG) [66].

Various supercycles have been developed to possibly compensate higher-order terms and

pulse errors. The most commonly used supercycles or alterations include an inversion

of the phase ramp (PMLGxx̄) [146, 147] and a relative phase shift between two PMLG

cycles with an inversion of the second cycle (LG-4) [69, 148]. These supercycles have

the disadvantage of lower scaling factors of the chemical shifts leading to worse spectra,

assuming similar decoupling e�ciency. The theoretical description of Lee-Goldburg se-

quences can be done within the framework of AHT or Floquet theory [22, 23, 149]. This

description predicts �rst-order resonance conditions between the MAS frequency and the

modulation frequency of the pulse sequence as well as the magnitude of second-order

dipole-dipole crossterms. These crossterms were, to this point, believed to be the cause

of the residual linewidth that is still observed after homonuclear decoupling in corre-

spondence to heteronuclear decoupling. They should be minimized as well as possible to

ensure spectral narrowing [105]. One theoretical description presented in the literature

included the discussion of third-order heteronuclear terms that are not averaged out

under simultaneous rf irradiation and MAS [150]. These terms were shown to cause a
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shift in resonance frequency. A further factor for the performance degradation in FSLG

sequences is believed to be experimental imperfections caused by pulse transients, which

in certain cases were also used for the improvement of the pulse sequence [67]. It was

also shown that the removal of phase transients leads to an improvement of the spectral

quality obtained by S2-DUMBO sequences [64].

6.1.1. Theoretical Considerations of FSLG

The Lee-Goldburg scheme is based on minimizing the spin component of a homonuclear

dipolar Hamiltonian by aligning the quantization axis along the magic angle since it

is a rank 2 tensor. This averaging is similar to the removal of the spatial tensor of

the Hamiltonian by MAS. The magic-angle irradiation is achieved by applying an rf-

Hamiltonian of the general form given in Equation 5.4. In the rotating frame, the total

Hamiltonian becomes time independent and is comprised of the o�set Zeeman term and

the rf terms. It is given by

Ĥ = ∆ωIz + ω1 (Ix cos(φ(t)) + Iy sin(φ(t))) (6.1)

and the second term in the sum can be treated as a rotation around the z-axis by an

angle φ. The o�-resonance term ∆ω is de�ned as ω0−ωrf, where ω0 denotes the Larmor

frequency of the spin of interest. The combination of the o�set and the rf irradiation

along the x-axis can be interpreted as a rotation around the y-axis at an angle θ

Ĥ = Rz(φ){∆ωIz + ω1Ix}Rz(−φ)

= Rz(φ)Ry(θ){ωe�Iz}Ry(−θ)Rz(−φ), (6.2)

which is de�ned as

θ = tan−1
( ω1

∆ω

)
= tan−1

( ν1

∆ν

)
(6.3)

and it can be shown that in �rst-order average Hamiltonian theory the homonuclear

dipole-dipole interactions vanish if θ is adjusted to the magic angle. As a consequence,

the chemical-shift Hamiltonian as a rank one tensor is also scaled down by a factor

d
(1)
0,0(−θ) = cos(θ), which takes a value of around 0.577 at θ=54.7◦. These arguments

only hold true in a static regime and to get a full understanding of the sequence the
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interference with the MAS has to be considered. The analysis of the Hamiltonian with

multiple time dependencies that are not commensurate is done best using Floquet theory.

The Floquet analysis is done in an interaction frame and the procedure was outlined in

the previous Chapters (e.g. in the theory section 2.4.3 or in Equations 5.5-5.12).

Since decoupling sequences are mostly dominated by residual couplings, we will only

focus on non-resonant terms, where the e�ective Hamiltonian is given by

Ĥ =
ˆ̃H (0,0,0)
(1) +

ˆ̃H (0,0,0)
(2) +

ˆ̃H (0,0,0)
(3) + . . . (6.4)

with the second-order Hamiltonian de�ned by

ˆ̃H (0,0,0)
(2) =

∑
ν,κ,λ

−1

2

[
ˆ̃H (−ν,−κ,−λ),

ˆ̃H (ν,κ,λ)
]

νωr + κωm + `ωe�
(6.5)

and the third-order component given by

ˆ̃H (0,0,0)
(3) =

∑
ν,κ,λ

∑
n′0,k

′
0,l
′
0

1

2

[[
ˆ̃H (ν,κ,λ),

ˆ̃H (n′0,k
′
0,l
′
0)
]
,

ˆ̃H (−ν−n′0,−κ−k′0,−λ−`′0)
]

(νωr + κωm + λωe�)2

+
∑
ν,κ,λ

∑
ν′,κ′,λ′

1

3

[
ˆ̃H (ν,κ,λ),

[
ˆ̃H (ν′,κ′,λ′),

ˆ̃H (−ν−ν′,−κ−κ′,−λ−λ′)
]]

(νωr + κωm + λωe�) (ν ′ωr + κ′ωm + λωe�)
(6.6)

Note that the summations in the third-order term have to be restricted to values of

(ν, ν ′, κ, κ′, λ, λ′), which ful�l the inequalities νωr + κωm + λωe� 6= 0 and ν ′ωr + κ′ωm +

λ′ωe� 6= 0.

Evaluation of these expressions for homonuclear dipolar coupled Hamiltonians under

FSLG irradiation provides insight into terms that are not averaged out and can con-

tribute to the residual linewidth of the spectrum.

Pulse-Sequence Design

Apart from non-resonant error terms that are not averaged out, pulse imperfections in

the phase ramp can lead to imperfect removal of dipolar coupling terms. In order to
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remove pulse transients from the FSLG pulse sequence, slight modi�cations have to be

made to the implementation to allow for the compensation. In theory, the sequence

can be implemented either by setting the carrier to match the o�set ∆ω and switching

the carrier after one LG pulse, by using rectangular pulses with discrete phase steps

(e.g. PMLG-5), or by using a constant irradiation with an in�nitely fast phase sweep.

The new spectrometer hardware can generate shape �les with time resolution up to

50 ns and an almost perfect phase ramp can be realized in order to generate a constant

o�set irradiation. Nevertheless, due to the �nite bandwidth of the resonator, a �nite

rise time of the pulse is observed, as are phase transients at the 180◦ phase jump. To

compensate for these pulse transients, a �nite edge of the pulse has to be introduced.

As a consequence of this pulse edge, the �ip angle has to be corrected, and assuming

a constant o�set irradiation, an e�ective-�eld angle is generated that is not constant

throughout the sequence. Therefore, the phase ramp has to be calculated explicitly by

numerical integration of the o�set irradiation that is needed in combination with the rf-

�eld amplitude in order to generate a constant e�ective-�eld angle and a 2π net rotation

about the e�ective �eld.

The phase of the shaped pulse is de�ned as

φ(t) =

∫ t

0

∆ν(t′)dt′ (6.7)

with the o�set frequency de�ned as

∆ν =
√
ν2
e� − ν2

1 . (6.8)

The rf-�eld amplitude ν1 for shaped pulses is de�ned by setting the e�ective-�eld strength

as well as the e�ective-�eld angle θ to a constant value and de�ning the rise time of the

pulse.

The implementation of the pulse sequence for shaped and rectangular pulses is shown in

Figure 6.1. The shape of the phase ramp can be understood by considering the functional

form of the pulse edge which corresponds to a sine edge as discussed in Chapter 3.2.1.

Therefore, the phase ramp during the pulse edges must correspond to a cosine function

and the slope in the constant part is steeper compared to rectangular pulses in order to

compensate for the reduced e�ective rotation during the �nite edge.
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Figure 6.1. Representation of possible implementations for FSLG decoupling with shaped pulses
guaranteeing a constant effective-field angle. In red, the ideal FSLG pulse sequence is shown as-
suming rectangular pulses and in blue, the implementation of shaped pulses. A) Flip-angle corrected
amplitude with finite pulse edges of 0.4 µs. B) Time-dependent phase ramp with a 180◦ phase jump
for the second pulse. C) Resulting effective-field angle which is kept constant at the magic angle for
both implementations. D) Resulting effective field which corresponds to a net rotation of 2π at 125 kHz.

6.2. Analytical Calculations of Error Terms

Using the formalism introduced in Chapter 6.1, theoretical non-resonant error terms

are calculated for a FSLG sequence assuming perfect pulses. Calculation of second-

order crossterms of a homonuclear coupled spin systems with two couplings δ1,2 and

δ1,3 yields lengthy expressions that depend on the powder angles α and β, the relative

orientation of the two dipoles φ, and the angle of the e�ective �eld θ with respect to

the external magnetic �eld. The e�ective-�eld angle is given by the magic angle for

a standard FSLG sequence. All of these terms scale linearly with the product of the

dipolar coupling constants δ1,2 ·δ1,3. In order to illustrate the symmetry of the remaining
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terms, the Hamilton operator is projected on the three-spin tensor operators. The three-

spin operators are de�ned according to reference [151], in which they were �rst derived,

and can be found in the Appendix A. The projections are derived for powder angles

α = β = 45◦ and a relative dipole orientation φ = 45◦ since most expressions have a

local maximum at these sets of angles. The modulation frequency of the pulse sequence

was set to be 10 times larger than the MAS frequency to avoid any possible resonance

conditions in the calculations and will be termed z = ωm/ωr. Figure 6.2 shows the

dependence of the residual three-spin crossterms on the e�ective-�eld angle of the FSLG

irradiation. The dominant terms are the T0,0(τ4) and the T2,0(τ2) and T2,0(τ3) tensors.

The analytical expressions for the terms are given in Appendix B. The dependence on the

e�ective-�eld angle can be �t with a combination of Legendre polynomial zeroth, second,

and fourth order, indicating that the origin of the terms is indeed second order. In order

to verify the analytical calculations, numerical simulations were run and decomposition

of the obtained e�ective Hamiltonian led to the same values for the tensor operators.

In Figure 6.2, all existing terms from numerical calculations are shown, but analytical

calculations only result in T0,0 and T2,m terms. This discrepancy can be attributed to

higher-order contributions that are not considered in the analytical calculations. It is

obvious from the presented results that second-order three-spin terms are minimized

around the magic angle which corresponds to the standard FSLG sequence. This mini-

mum appears to be very broad and therefore, it is expected that the sequence is fairly

robust towards missets in the rf-�eld amplitude or the phase ramp which would both

result in a change of the e�ective �eld angle.

In order to investigate other possible contributions to the residual linewidth that are

not averaged out by combination of MAS and the FSLG based pulse sequence, third-

order autoterms are analytically calculated for a two-spin system with a single dipolar

coupling. These terms are expected to scale with δ3
1,2 due to the third-order origin of these

terms. Evaluating the double commutators for all non-resonant terms and analysing the

resulting e�ective Hamiltonian, only terms with the tensor symmetry T2,m remain. The

magnitude and dependence on the e�ective-�eld angle are shown in Figure 6.3. It can be

deduced from this data that the terms are not averaged out by a FSLG irradiation where

the angle of the e�ective �eld is set to the magic angle, but rather around 60◦ for the

T2,0 term and around 40◦ for the T2,±2 term. The T2,±1 does not show a local minimum
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Figure 6.2. Projection of the magnitude of the three-spin tensor operators of the second-order effective
Hamiltonian. The effective Hamiltonian was calculated for a Lee-Goldburg type irradiation scheme with
a (2π)(-2π) rotation about the effective-field angle θ. For the analytical calculations a Hamiltonian with
two homonuclear dipolar couplings was assumed and the powder angles were set to α = β = 45◦

and the relative orientation of the dipoles to φ = 45◦ with the dipolar couplings set to δ1,2=10 kHz and
δ1,3=20 kHz. The ratio of the modulation frequency of the pulse sequence and the MAS frequency was
assumed to be 10 in order to avoid higher-order contributions to the numerical simulations. It is obvious
from the magnitude of the tensor components that only the T0,0(τ4) and the T2,0(τ2) and T2,0(τ3) terms
are relevant but they exhibit a broad minimum centred around the magic angle.
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around sensible e�ective-�eld angles, but calculations of the propagation of the starting

density operator under such a term show that it does not result in an e�ective splitting

leading to line broadening, but rather in a shift of the resonance frequency. This fact

does not hold true for the T2,0 and the T2,±2 terms, which ultimately contribute to the

linewidth under FSLG due to the additional e�ective �eld in the Hamiltonian. The

magnitude of these tensors is shown in Figure 6.3 and they were calculated with the

powder angles α = β = 45◦ and z of 10. The dipolar coupling was set to 45 kHz, which

is representative of a CH2-group that is one of the biggest challenges for homonuclear

decoupling. The e�ective-�eld strength was set to 125 kHz and it can be shown that

the magnitude of the third-order terms scale down quadratically with the e�ective �eld,

assuming the same ratio z. However, rf-�eld amplitudes higher than 100 kHz are not

feasible for practical applications.

It is obvious from Figure 6.3 that the third-order terms do not vanish under FSLG irra-

diation and they are signi�cant in size assuming that the T2,0 and the T2,±2 contribute

directly to the linebroadening. However, these terms scale with the dipolar coupling

cubed, and thus are only signi�cant for very strong couplings. The results shown in 6.3

are calculated for a dipolar coupling of 45 kHz and are most likely overestimating the

e�ect of a CH2-group. However, the fact that a 'conventional' FSLG sequence does not

average out the third-order terms and that their size is signi�cant is a result that has

not been discussed before in the literature.

Other than the third-order homonuclear autoterms, heteronuclear autoterms for a single
13C-1H coupling and crossterms between two homonuclear coupling contribute to third-

order calculations. The crossterms between two dipoles scale in third order either with

the pre-factor δ2
1,2 · δ1,3 or with δ1,2 · δ2

1,3. Calculation of these terms show that their

behaviour towards the e�ective-�eld angle is very similar to the second-order three-spin

terms, as they are minimized around the magic angle or are negligible over the whole

range of sensible e�ective-�eld angles.

The third-order heteronuclear terms show similar spatial behaviour as the homonuclear

autoterm T2,±1 for the symmetry components T0,0 and T2,0. The results are shown in

Figure 6.4, assuming a dipolar coupling of 40 kHz corresponding roughly to a directly

bound 13C-1H spin pair. The maximum of both components is observed at θ=54.7◦,

which corresponds to the conventional FSLG sequence. The T0,0 and T2,0 contribute
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Figure 6.3. Projection of the magnitude of the third-order spin tensors resulting after FSLG irradiation
only assuming a single homonuclear dipolar coupling of δ1,2=45 kHz. The simulation parameters for
the powder orientations and the MAS to modulation frequency ratio are the same as shown in Figure
6.2. The remaining terms vanish either around 60◦ for the T2,0 and around 40◦ for the T2,±2 term. It is
interesting to note that with the traditional FSLG scheme none of the third-order terms vanish.

directly to the linewidth, and thus a linebroadening of around 60 to 100 Hz is assumed

when using fully 13C- and 15N-labelled substances instead of natural abundance. This

fact is found to be true in experiments by comparison of spectra using FSLG decoupling

of fully labelled and unlabelled glycine. Due to this fact, only natural abundance samples

are considered for numerical calculations as well as experiments unless stated otherwise.

The second-order heteronuclear terms are not of concern because they correspond to an

inhomogeneous interaction and are therefore averaged out fully by magic-angle spinning

since the interactions commute at any point in time.

6.3. Numerical Calculations of Effective Hamiltonians

To validate the theoretical consideration of the pulse sequence using shaped pulses pre-

sented in Chapter 6.1.1, numerical simulations were performed with both implemen-
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Figure 6.4. Projection of the magnitude of the third-order spin tensors resulting after FSLG irradiation
assuming one heteronuclear dipolar coupling. The simulation parameters for the powder orientations
and the MAS to modulation frequency ratio are the same as shown in Figure 6.3. The remaining
autoterms T0,0 and T2,0 are maximal around the magic angle and contribute directly to the residual
linewidth. Here, a dipolar coupling of 40 kHz was assumed, which corresponds to a direct C-H bond.

tations shown in Figure 6.1. The simulations were performed in the GAMMA spin-

simulations environment [152]. To validate the contributions of second- and third-order

terms discussed in the theory section, simulations using one and two dipolar couplings,

respectively, were run. The e�ective �eld was set to be 125 kHz, corresponding to a LG

pulse length of 8 µs. The MAS frequency was assumed to be 6.25 kHz leading to a ratio

z of 10. Powder averaging as well as single crystal orientations of α = β = 45◦ with

relative dipole orientations of φ=45◦ were used.

Only the results from powder averaging are presented, but it was additionally validated

that the single crystal simulations lead to the same functional form of the linewidth.

The maximum splitting of the lines is shown in Figure 6.5 without chemical-shift correc-

tion, which depends on the e�ective-�eld angle. Therefore, these splittings represent the
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Figure 6.5. Simulations of FSLG sequence as a dependence of the effective-field angle, and im-
plementations using rectangular pulses (red) and shaped pulses (blue). The splitting of the effective
Hamiltonian corresponding to residual linewidth is presented without chemical-shift correction. The
second-order crossterms are minimized around the magic angle (circles) but the third-order terms re-
sulting from a single dipolar coupling are never fully removed (solid line). A) Full scale of linewidths as
a function of the effective-field angle. B) Zoom on the residual linewidth contributions up to 200 Hz.
The MAS frequency was set to 6.25 kHz, the effective field to 125 kHz, the relative dipole orientation
to 45◦, the dipolar couplings to 40 kHz for the single coupling and to 10 kHz for the second coupling,
and powder averaging was applied.

residual e�ective �elds in the Hamiltonian. It is obvious that the shaped-pulse imple-

mentation and the rectangular pulses lead to very similar linewidths and dependences on

the e�ective-�eld angle θ. Furthermore, these results demonstrate that the second-order

three-spin terms are averaged out fairly well around the magic angle, but that there

are still signi�cant contributions from third-order terms. These third-order terms are a

combination of the functional forms shown in Figure 6.3 for the T2,0 and the T2,±2.

The numerical simulations and subsequent extraction of the e�ective Hamiltonians is

a method to readily investigate the in�uence of various parameters on the performance

of the sequence. An important parameter is the misset of the rf-�eld amplitude, to

which the sequence is also susceptible even if pulse-transient compensation is applied.

The in�uence of imperfect rf-�eld amplitude is shown in Figure 6.6.
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Figure 6.6. Simulations of FSLG sequence as a dependence of the effective-field angle and imple-
mentations using rectangular pulses with ideal ν1 field strength (red) and 10% miscalibration (black).
The simulation parameters are identical to the results presented in Figure 6.5.

The degradation of the decoupling e�ciency is quanti�ed by the additional splitting in

the e�ective Hamiltonian, corresponding to 18 Hz for an e�ective �eld angle θ=54.7◦.

However, when considering rf-�eld maladjustments, the decrease in performance e�-

ciency does not seem detrimental for the sequence, but rather for the altered chemical-

shift scaling. As discussed in the theory section (Chapter 6.1.1), the chemical shift

scales with cos (θ), which deviates from the set value in case of rf-�eld maladjustment.

Therefore, a distribution of di�erent rf-�elds over the sample leads to chemical-shift

scaling factors that di�er for parts of the rotor. A superposition of these lines induces

a broadening that cannot be removed by perfect pulses. The in�uence of rf-�eld inho-

mogeneities will be discussed in more detail in the experimental section in Chapter 6.4.3.

A further parameter that can potentially have a detrimental impact on the performance

of the decoupling sequence is the misset of the magic angle. This parameter is investi-

gated in numerical simulations, but the splitting of the e�ective Hamiltonian for sensible

values up to a misset of 0.1◦ is nearly identical to the ideal implementation. However,

these simulations only consider homonuclear couplings and a misset in the magic an-
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gle could lead to potential linebroadening through imperfectly averaged heteronuclear

dipolar coupling.

6.4. Experimental Results

6.4.1. θ-FSLG

Experiments were performed on various glycine derivates designed to illustrate the dif-

ferent contributions to the residual linewidth under FSLG decoupling. In order to avoid

unexpected e�ects due to detection windows during the decoupling period, the experi-

ments were implemented as 2D experiments with the FSLG decoupling in the indirect

dimension followed by a long CP for direct carbon detection. The CP time was chosen

to be 3 ms to ensure transfer from all protons in natural abundance glycine and negate

the e�ects of heteronuclear dipolar couplings in unlabelled samples. This is believed

to be a valid approach because spin di�usion is very e�cient at the low MAS speed

applied. Additionally, no supercycle was used for the FSLG sequence to bene�t from

the maximum possible chemical-shift scaling. Therefore, quadrature images and axial

peaks were observed in the indirect dimension, which were discarded for the analysis.

A full 2D spectrum obtained from the measurements including all artefacts is shown

in Figure 6.7A with a magni�cation of the relevant slices of the CO and the Cα peak

shown in B and C, respectively. In order to illustrate the e�ect of the compensation and

the change in e�ective-�eld angle, 1D spectra are presented for the uncompensated and

compensated implementation at θ = θm and θ = 60◦ (Fig. 6.7D and E).

Figure 6.8 shows a quantitative comparison of the decoupling e�ciency using transient-

compensated pulses as well as conventional rectangular pulses. The dependence on the

e�ective-�eld angle is investigated in the range from 40◦ to 65◦. The pulse sequence is

denoted as θ-FSLG due to the variation of the e�ective-�eld angle. The experiments

were performed on a uniformly labelled 13C-15N-glycine at an external magnetic �eld of

14.1 T using a constant e�ective �eld of 125 kHz and MAS spinning speed of 14 kHz.

The quantity that was used to judge the decoupling e�ciency was the separation of the

two proton signals of the CH2-group. A value of 0 corresponds to baseline separation,

whereas a value of 1 represents indistinguishable spectral lines. Figure 6.8A shows this

splitting as a function of the e�ective-�eld angle and it can be appreciated that the
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Figure 6.7. A) Experimental spectra obtained after FSLG based decoupling in the indirect dimension
followed by a long CP on U-13C-15N-glycine. The quadrature images and axial peaks can been seen in
the zooms of the CO peak (B) and the Cα peak (C). The obtained 1D spectra used for the analysis are
shown for uncompensated (blue) and compensated (red) implementation at an effective-field angle of
θ = θm (D) and θ = 60◦ (E). In both experiments, the compensated implementation performed slightly
worse. For all experiments, the MAS frequency was set to 14 kHz with an effective field of 125 kHz at
an external magnetic field of 14.1 T.

compensated pulses perform slightly worse than the conventional rectangular pulses,

but the deviation lies within the experimental uncertainty. Furthermore, it is shown in

the �gure that the optimum decoupling e�ciency is not at the magic angle but rather

around 58◦. This is in agreement with the theoretical predictions that the third-order

terms, which are believed to be dominant in a CH2-group, are minimized around this

angle. The slight shift towards lower e�ective-�eld angles from the predicted 60◦ angle

is due to additional three-spin terms that are best averaged out at the magic angle. A



114 6 Homonuclear Decoupling

Figure 6.8. Experimental results of FSLG based decoupling on U-13C-15N-glycine as a function of the
effective-field angle. The decoupling performance is analysed in terms of the splitting between the two
resonance lines of the CH2-group (A), where 0 corresponds to baseline separation and the chemical-
shift scaling factor (B). The MAS frequency was set to 14 kHz with an effective field of 125 kHz at an
external magnetic field of 14.1 T.

further observation of these experiments is the behaviour of the chemical-shift scaling.

The use of compensated pulses leads to chemical-shift scaling factors that agree very

well with the theoretical prediction of cos θ, whereas rectangular pulses lead to higher

chemical-shift scaling (Fig. 6.8B).

It can be seen from Figure 6.8 that pulse transients are not the main source of perfor-

mance degradation in FSLG decoupling. It was shown that the behaviour of the pulse

sequence becomes more predictable according to theory, but the decoupling performance

is not signi�cantly improved.

A further contribution to the residual linewidth is the heteronuclear dipolar coupling,

which can be avoided by moving towards natural abundance samples. The in�uence

of the heteronuclear decoupling was investigated by recording the spectra of natural

abundance glycine using compensated and rectangular pulses and comparing the results

to the ones obtained on a 13C- and 15N-labelled sample. The resulting spectra of the

unlabelled compound for an e�ective-�eld angle of θ = θm = 54.7◦ and 60◦ are shown

in Figure 6.9A and B, respectively. These experiments can be directly compared to the

spectra of the fully-labelled compound shown in Figure 6.7D and E. The improvement

is dramatical, when compared to the labelled compound since in every implementation

the separation of the CH2-group is almost at the baseline. Quantifying the linewidth
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(without chemical-shift scaling), an improvement of ∼60 Hz is observed going from fully

labelled to unlabelled samples, which is in very good agreement with the theoretical

calculations shown in Figure 6.4.

Figure 6.9. Experimental spectra of FSLG based decoupling on natural abundance glycine. The
spectra are not processed in terms of chemical-shift scaling and referencing to illustrate the effect of
implementing compensated pulses. The effective-field angle was either set to the magic angle (A)
or 60◦ (B). The shift in resonance frequencies between the uncompensated pulses (blue) and the
compensated (red) can be attributed to additional effective fields caused by pulse transients. The MAS
frequency was set to 14 kHz with an effective field of 125 kHz at an external magnetic field of 14.1 T.

It can be argued from the spectra shown in Figure 6.9 that the pulse-transient compensa-

tion leads to slightly narrower CH2-resonances which is in contrast to the e�ect observed

for the fully-labelled glycine. However, this improvement is still within the range of ex-

perimental uncertainties. Note that the spectra are shown without post-processing, i.e.

chemical-shift scaling and relative referencing. It is interesting to observe that the whole

spectrum shifts to lower ppm-values for the compensated implementation. This is hy-

pothesized to be due to the additional removal of e�ective �elds by applying transient

compensation. The e�ect of changing the e�ective-�eld angle from the magic angle to

60◦ is very small and is hard to judge from the directly-detected spectra.
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6.4.2. Selectively Labelled Glycine

Quanti�cation of the relative size of the second- and third-order terms was achieved by

designing and synthesizing glycine derivates that contain an isolated two-spin system as

well as a multi-spin system. A deuterated 2-13C-15N-glycineethylester with an isolated

CH2-group was synthesized to represent an isolated 1H-1H spin system. For a full anal-

ogy, a deuterated 2-13C-15N-glycineethylester with a CH2- and a NH+
3 -group was used

as a multi-spin system. Hahn-Echo sequences with FSLG-based decoupling during the

echo time were recorded and the T ′2 times were extracted. The oscillations in the decay

curves have been observed before and, according to the literature, could be removed by

a double-echo sequence [153].

Figure 6.10. Quantification of the second- and third-order error terms in the FSLG pulse sequence.
A) Model compounds of glycineethylester with an isolated CH2-spin system (d8) and protonated NH+

3 -
group representing a multi-spin system (d5). B) T2’ decay curves of the CH2-signal using FSLG decou-
pling during the echo time with rectangular pulses during the echo period and an effective-field angle
equal to the magic angle. C) The same curves as to B) but using compensated pulses. The MAS
frequency was set to 14 kHz with an effective field of 125 kHz at an external magnetic field of 14.1 T.

It can be observed from Figure 6.10 that the in�uence of the second-order terms is very

small and only contributes to about 5-10% of the e�ective T ′2 times. The dominating

terms are identi�ed to be the third-order autoterms since they make up most of the

residual linewidth when comparing a two-spin to a multi-spin system. Furthermore,

the quanti�cation of the decoupling performance leads to the conclusion that the pulse-

transient compensation does improve the decoupling e�ciency by 20-30%. As shown

before, this e�ect is barely visible in the directly detected spectra, but pulse-transient
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compensation leads to higher predictability of the sequence in terms of chemical-shift

scaling and absolute frequency calibration.

The in�uence of transients can be divided into two contributions: i) the shift in res-

onance frequency and ii) the decrease in decoupling e�ciency. The shift in resonance

frequency is due to the fact that the amplitude of a phase ramp is di�erent for the

two directions of the phase sweeps if pulse imperfections are considered. This leads to

an additional e�ective rotation that induces a shift in the resonance frequency. The

decrease in decoupling e�ciency is quanti�ed to be 20-30% of the inherent lifetime of

the sequence (Fig. 6.10). Converting this into observed linewidth, a contribution of

10-15 Hz is obtained, which corresponds solely to at most 5% of the total experimental

linewidth.

The measured T ′2 times can presumably be increased signi�cantly by using unlabelled

compounds in order to remove the residual heteronuclear coupling autoterms.

6.4.3. RF-Field Inhomogeneity

The e�ect of rf-�eld inhomogeneity on FSLG-based sequences has been investigated the-

oretically and used as input parameter for numerical simulations in the literature [67].

However, reduction or improvement of the rf inhomogeneity is routinely done in most

homonuclear decoupling experiments by reducing the sample volume with spacer. The

in�uence of this B1-�eld inhomogeneity can be elucidated by comparing the rf pro�les

for di�erent parts of the rotor and the in�uence on the decoupling e�ciency. A simi-

lar approach was chosen to optimize a CP-based experiment with an optimum control

algorithm, when considering the rf-�eld inhomogeneity as a variable [29, 30]. The contri-

butions to the rf-�eld inhomogeneity can be split into an axial and a radial component.

The axial component is the spatial distribution along the rotor axis and is time indepen-

dent. This component can be mapped by the use of a B0 gradient, although solid-state

probe heads are usually not equipped with a gradient coil. The radial component along

the rotor diameter is modulated by the MAS frequency, and is therefore time dependent.

This time dependence could lead to possible resonance conditions between the pulse se-

quence and the rf-�eld modulation [28, 154].

In order to study the e�ect of the axial rf-�eld inhomogeneity, a variety of 2.5 mm
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rotors for a standard Bruker probe were packed by �lling di�erent parts of the rotor

with sample. Similar studies have been shown for the REDOR sequence [155, 156]. Five

rotors each of adamantane and natural abundance glycine were packed using either a

full rotor, the upper third (up), the bottom third (low), the middle third (mid), and a

very small part in the middle of the rotor (centre). The remaining rotor volume was

�lled with Te�on spacer. The distribution of the rf �eld over the active sample volume is

extracted by the measurement of nutation curves of the adamantane sample with direct

detection of the signal. Subsequent Fourier transform of the nutation curves yields a

distribution pro�le of the rf �elds within the probe. These pro�les are depicted in Figure

6.11.

Figure 6.11. Rf-field distribution measured on an adamantane sample for different parts of a 2.5 mm
rotor in a standard Bruker probehead. The sum of the lower, middle and upper third equals roughly to
1.1 times the signal of the full rotor. The applied B1 field was calibrated using the full rotor and the first
zero crossing of a π pulse. The highly restricted sample (centre) shows the narrowest distribution but
still spans a range of several kHz. The radial component of the rf-field inhomogeneity can be observed
at integer multiples of the MAS frequency which was set to 14 kHz in the nutation experiments.

The radial components can be seen in Figure 6.11 as small peaks at integer multiples of

the MAS frequency, which was set to 14 kHz. Upon closer inspection of the intensity of

the radial sidebands, it is observed that most of the radial contributions are observed

for the upper and the lower third and not in the central part of the rotor.

Additionally, the maxima of the pro�le are consistently higher than the calibrated rf-

�eld strength of 100 kHz. The calibration has been done on a full rotor with the �rst
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zero crossing of a π pulse. These shifted maxima are due to the very broad distribution

of rf-�eld strengths in the full rotor (blue trace in Figure 6.11) and the large drawn out

foot towards low rf �elds. The other pro�les show that this foot is mostly observed in

the outer thirds of the rotor, whereas the middle as well as the centre part is narrowed

down around the maximum. The sum of the middle, upper, and lower part of the rotor

compares very well to the pro�le of the full rotor. However, the integral of the distri-

bution is slightly higher by a factor of 1.1, which is due to spacers that do not cover

exactly a third of the rotor, or looser packing in the full sample.

These rf pro�les have been used in further studies to investigate the in�uence of the

distribution on the decoupling e�ciency. Numerical simulations were performed using

an 8-spin system with characteristic couplings and shifts for glycine (spin system details

can be found in the Appendix C) with FSLG decoupling at the range of experimentally

observed rf-�eld strengths. In order to validate and compare the simulations, FSLG ex-

periments were performed on di�erently restricted natural abundance glycine samples.

The comparison of the numerical and experimental results are shown in Figure 6.12.

The simulated and experimental spectra shown in Figure 6.12 agree well in certain re-

gards. The detailed values for the simulations and experiments are listed in Table 6.1.

The full width at half maximum (FWHM) obtained from the simulations compare well

with the experiments. There are a few outliers but the overall trend can be reproduced.

The relative intensities of the NH+
3 -peaks for di�erent packing is also reproduced fairly

well with small discrepancies for the centre packed and the middle third rotor. A problem

that arises from the experimental spectra is the phase correction as well as the baseline

correction. Due to the very broad and drawn out rf pro�le, the simulated peak is also

very smeared out with a large foot. In conventional experiments, this asymmetry in

the peak is corrected by a zeroth-order phase correction to obtain a symmetric and full

absorption peak. This phase correction can lead to a distortion of the relative intensity

as well as the extracted linewidth. This problem is especially eminent when comparing

the glycine spectra of the full rotor (not shown here) with the middle third because the

relative intensity of the middle third is higher than the full rotor, which is physically

impossible. Additionally, the baseline correction as well as the baseline subtraction make

the relative intensities hard to compare.

The linewidth of the CH2-group from the simulation is comparable with the experiment
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Figure 6.12. A) Simulated proton spectra of natural abundance glycine using an 8-spin system as
input. The different contributions of the rotor to the total spectra are shown in different colours that
match Figure 6.11. The rf-field resolution was 500 Hz using the rf profiles measured on adamantane.
The frequency axis is not an absolute axis and only the spacing between the peaks is correct. B)
Experimental spectra of natural abundance glycine using FSLG decoupling in the indirect dimension.
The packing schemes correspond to the adamantane samples. The linewidth and relative intensities of
the NH+

3 -peaks are comparable. The single outlier is the relative intensity of the middle third compared
to the centre packed rotor. However, this might be due to slightly different packing in the adamantane
and the glycine.

but the relative intensities are not. The discrepancy in relative intensities is due to the

input of numerical simulation in which 3 N-H spins and 5 C-H2 spins were considered

to mimic the strong couplings of the CH2 groups.

Further data that can be extracted from the simulations is the inherent linewidth that

remains due to insu�cient decoupling at various rf �elds. This can be interpreted and

compared with an experimentally determined T ′2. The inherent linewidth is extracted

by correcting for the chemical-shift scaling of the di�erent rf-�eld strengths and super-

imposing the lines onto each other. The FWHM of this collapsed line corresponds to the

inherent linewidth of FSLG, which was shown analytically to be due to third-order error

terms (Chapter 6.2). The obtained coherence lifetime of the simulation is around 10 ms,

which corresponds to a width of about 35 Hz. Analytical calculations and experiments
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yield higher linewidths (both around 60 Hz), although it is obvious from the magnitude

of this inherent linewidth that it is not the limiting factor of the FSLG sequence as

compared to the rf-�eld inhomogeneity.

Table 6.1. Tabulated values of the linewidths at half maximum of the simulated and experimental
spectra of natural abundance glycine. The values are extracted from the spectra shown in Figure 6.12
and are without chemical-shift correction. In order to obtain the real value, they have to be divided by
a factor of 0.57.

middle centre upper lower

∆sim / Hz 196 168 365 226
∆exp / Hz 220 174 225 252

6.5. Conclusion

In conclusion, we examined the contributions that cause the linebroadening in the widely

used FSLG pulse sequence and tried to quantify their in�uence. The most important

factor was found to be the rf-�eld inhomogeneity that still contributes to about 75% of

the linewidth even if the sample is restricted in the centre. The outer parts of the rotor

do not contribute heavily to the observed spectrum and are oftentimes observed as a

foot in the peak due to the low rf �elds at the edges of the coil. A further con�rmation

that the rf-�eld inhomogeneity is the main source of the residual linewidth is the fact

that the use of higher e�ective �elds does not result in better signal resolution. It was

expected that error terms scale down linearly or quadratically with the e�ective-�eld

strength but this was not the experimental observation. The relative rf-�eld distribution

is always the same independently of the calibrated rf-�eld. Therefore, the chemical-shift

scaling and the resulting spectra are all the same. The only changing behaviour is in the

spectrum of a single rf-�eld value, but they are all superimposed by the varying rf-�eld

strength. Since this inhomogeneity is the major contribution to the linewidth, a drastic

improvement in the sequence is only expected if the probe design is improved so that

the rf pro�le is very homogeneous over the whole sample.

Additionally, it was shown that pulse transients do not have a big in�uence on the

linewidth, but rather on the shift of the spectrum, which makes it more di�cult to

interpret the results and achieve a reliable frequency calibration. Removal of phase

transients and adaption of the pulse sequence led to more predictable results in terms

of chemical-shift scaling and absolute frequency axis. However, the impact of pulse
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transients on the linewidth is negligible.

Furthermore, it was shown theoretically that third-order terms contribute to the residual

linewidth with a factor that is highly dependent on the dipolar coupling and can be

estimated to about 60 Hz for a CH2-group. Selectively labelling the sample improves

the coherence lifetime by removal of multi-spin terms but as theoretically predicted,

the two-spin terms are still dominant. These terms cannot be removed by altering the

sequence, e.g. changing the angle of the e�ective �eld, as they do not exhibit the same

spatial behaviour as three-spin terms. Small improvements were found by changing

the e�ective-�eld angle to slightly higher values of around 60◦, which is understood

theoretically, but the spectral quality still remains too bad to be useful for practical

applications.



7. Heteronuclear Decoupling

7.1. Introduction to Two-Pulse Decoupling

Heteronuclear spin decoupling is essential in standard MAS experiments in order to

obtain high-resolution spectra [157�159]. In general, heteronuclear decoupling is di-

vided into two regimes; high-power and low-power decoupling. High-power decoupling

[43, 44, 160�163] requires the nutation frequency to be much higher than the spinning

frequency (ν1 >> νr) and vice versa for low-power [164�168]. The focus of this chapter

is placed on high-power decoupling. Considering the high-power regime, pulsed decou-

pling strategies become more important at higher spinning frequencies as compared to

CW decoupling [169, 170], due to the reduction of "self-decoupling" [171, 172]. This line

narrowing e�ect is due to spin di�usion, which is slower at high MAS frequencies. In

order to stay in the high-power regime, higher nutation frequencies have to be applied to

match the condition ν1 >> νr. In pulsed strategies, higher ν1 frequencies correspond to

higher modulation frequencies ωm, which contribute to the divisor of second-order terms

in the e�ective Hamiltonian that cause residual linebroadening. Therefore, the decou-

pling e�ciency is expected to be better. However, high nutation frequencies correspond

to short pulses which are potentially more susceptible to pulse imperfections. This fact

has been discovered experimentally, but it remains unclear if worse decoupling e�ciency

at very high rf �elds is solely due to pulse transients [173].

Despite considerable progress in the last few years, numerical simulations and accu-

rate a priori prediction of decoupling e�ciency remain a challenge [174]. An elegant

way of estimating good decoupling regimes for generalized decoupling schemes was de-

veloped by Tan, et.al. based on a second-order Floquet treatment [105] derived from

the theoretical framework of two-pulse decoupling schemes [121]. A di�erent approach

using numerical simulations was presented by Equbal, et.al. to �nd a uni�ed solution

123
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for two-pulse decoupling sequences [175]. The two most commonly employed two-pulse

strategies for heteronuclear decoupling are two-pulse phase modulation (TPPM) [43]

and X-inverse-X (XiX) [176]. TPPM comprises two pulses with the same duration, τp
and phase, φ and −φ. This basic element is repeated during the whole detection period,

which makes it a cyclic pulse sequence with the modulation frequency ωm = 2π/(2τp).

This implementation can be altered by changing the phase continuously with a cosine

function, which is known as CM sequence [26, 27]. The basic implementation of the

pulse sequence requires a two-parameter optimization, but there are many variations

that make the pulse sequence more stable and more broadband. These modi�cations

are small phase incremental alternation (SPINAL) [44], an amplitude-modulated (AM-

TPPM) scheme [177], and the swept-frequency (SWf -TPPM) decoupling scheme [162].

All of these sequences aim to be easily optimizable and have a large parameter range of

good decoupling performance. Most of these modi�cations can be considered supercy-

cles of the basic TPPM sequence and have, therefore, a high robustness towards pulse

imperfections. The continuous-modulation sequence is essentially identical to TPPM in

the sense that it has a basic element of two pulses with the same length but the phase

is a continuous sine modulation during the two pulses. It is shown later from analytical

calculations that the two implementations are interchangeable.

The XiX sequence will not be studied in detail with respect to pulse imperfections be-

cause it was shown that the optimal pulse length for XiX is 2.83τr. This long pulse

length renders the imperfections at the beginning and the end of the pulse unimportant.

Small deviations for pulse-transient compensation are expected due to a small change

in �ipangle but this is routinely compensated by optimizing the pulse duration which is

the only free parameter for XiX.

The quality of a heteronuclear decoupling sequence can be judged by many quanti-

ties. Two easy parameters that can be optimized are the FWHM or the amplitude of

the spectral line. There is no simple analytical relationship between those two measures,

but the maxima coincide in many cases. Additionally, the refocusable linewidth in spin-

echo experiments (T ′2) is an important quantity for the discussion of the e�ciency of

decoupling sequences. As already shown in Chapter 6.4.2, the coherence lifetime can

be used to estimate the smallest possible linewidth, since additional linebroadening con-

tributions like chemical-shift e�ects, imperfect shim, and sample inhomogeneities are

refocused. In the experimental section of this Chapter, the di�erent quantities will be



7.2 Analytical Calculations of TPPM/CM 125

discussed and similarities and di�erences in optimization based on these criteria will be

outlined.

7.2. Analytical Calculations of TPPM/CM

For a general Floquet description of decoupling sequences, a general spin system is

considered that consists of N I-spins coupled to a single S-spin. Expressing the full

Hamiltonian in the usual rotating frame, one obtains

Ĥ (t) =
2∑

n=−2

ω
(n)
S einωrtSz +

N∑
k=1

2∑
n=−2

ω
(n)
k einωrtIkz +

N∑
k=1

2∑
n=−2

ω
(n)
Sk e

inωrt2SzIkz

+
∑
k<`

2∑
n=−2

ω
(n)
k` e

inωrt
(

3IkzI`z − ~Ik · ~I`
)

+ Ĥrf(t) (7.1)

where ω(n)
S and ω(n)

k are the nth spatial components of the chemical-shift tensors for spin

S and I, respectively. ω
(n)
Sk and ω

(n)
k` symbolize the hetero- and homonuclear dipolar

couplings. Using an arbitrary wave form for the rf Hamiltonian Ĥrf(t) one obtains the

expression given in Equation 5.4, substituting S with I spins since the irradiation is

on the protons. The total Hamiltonian is then transformed into an interaction frame

(according to Equation 5.5 and 5.6) making the I-spin terms time dependent. They

transform separately according to

Ĩz =
∑

χ=x,y,z

aχ(t)Iχ =
∞∑

k=−∞

∞∑
`=−∞

∑
χ=x,y,z

a(k,`)
χ eikωmtei`ωe�tIχ (7.2)

where k and ` are integer numbers and a(k,`)
χ represent the Fourier coe�cients charac-

terizing the interaction-frame trajectory of the Iz operator in full analogy to Equation

5.10. The modulation frequency is given as the basic frequency of the repeating element

and for TPPM this is given by ωm = 2π/τm = 2π/(2τp). The e�ective �eld is de�ned

through the net �ipangle over a basic element ωe� = βe�/τm that can be determined

either using Euler rotations or quaternions [178]. The time-dependent interaction-frame

Hamiltonian can therefore be derived as given in Equation 5.7. In decoupling sequences,
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residual couplings are of speci�c interest and thus the relevant terms are given by the

non-resonant second-order terms. The general expressions for second-order terms are

given in Equation 5.12 and 5.13 and can be decomposed for a general Hamiltonian in

six crossterms. These terms are given by

Ĥ
(2)

= Ĥ IS⊗I + Ĥ IS⊗II + Ĥ I⊗II + Ĥ II⊗II + Ĥ I⊗I + Ĥ IS⊗IS (7.3)

for which detailed expressions can be found in Ref. [105]. The two relevant terms for the

residual linewidth on the S spin are the heteronuclear dipolar-CSA crossterm Ĥ IS⊗I

and the heteronuclear-homonuclear dipolar crossterm Ĥ IS⊗II . The terms are given by

Ĥ IS⊗I =
∑
k

2∑
ν=−2

∑
χ=x,y,z

iSzIkχq
(ν)
χ

(
ω

(−ν)
kS ω

(ν)
k + ω

(ν)
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(−ν)
k

)
(7.4)

for the dipole-CSA term and

Ĥ IS⊗II =
∑
k 6=`
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for the dipole-dipole term. The important quantities are the scaling coe�cients q(ν)
χ and

q
(ν)
µχ for the corresponding crossterms, which are independent of the spin system (this is

encoded in the spatial Fourier coe�cients ωk, ωkS, and ωk`). The scaling coe�cients for

the two relevant crossterms are given by

q(ν)
χ =

∑
k

1∑
λ=−1

εχija
(−κ,−λ)
j a

(κ,λ)
i

νωr + κωm + λωe�
(7.6)

and

q(ν)
µχ =

∑
k

1∑
λ=−1

εµija
(−κ,−λ)
j a

(κ,λ)
χi

νωr + κωm + λωe�
. (7.7)
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εχij is the Levi-Civita symbol and a(κ,λ)
µχ are the Fourier coe�cients from the rank-two

spin tensors that can be calculated by a convolution of the rank-one Fourier coe�cients

a
(κ,λ)
µ

a(κ,λ)
µχ =

∞∑
k=−∞

1∑
`=−1

a(k,`)
µ a(κ−k,λ−`)

χ . (7.8)

The rank-one Fourier coe�cients can be calculated analytically for ideal TPPM, but have

to be extracted numerically through interaction-frame transformation with a piecewise

time-independent rf Hamiltonian otherwise. This is especially the case for real pulses

that include pulse transients. In principle, o�set irradiation can be considered by includ-

ing an o�set term in the rf Hamiltonian used for the interaction-frame transformation

but will not be considered here in detail.

7.2.1. Comparison of TPPM and CM

It has been shown in previous work [121] that the experimental decoupling e�ciency

using either CM or TPPM is almost indistinguishable. This can be understood by

considering the phase modulation of the TPPM sequence as a square wave function

with the values +φ and −φ. A square wave can be represented by an in�nite Fourier

series containing only sine terms with a frequency that is an odd integer multiple of the

modulation frequency. The phase of a TPPM sequence is therefore given by

φ(t) =
4

π
φ
∞∑
k=1

sin ((2k − 1)ωmt)

2k − 1
. (7.9)

Therefore, the continuous phase modulation of the sequence is very similar to the TPPM

scheme if only the �rst term of Equation 7.9 is considered and the phase value scaled

with a factor of 4/π.

Calculation of the rank-one Fourier coe�cients prove that the TPPM and CM are in-

deed also very similar from a theoretical point of view. The Fourier coe�cients for the

TPPM sequence are calculated analytically but the CM sequence has to be calculated

by numerical interaction-frame transformation due to the continuous modulation of the
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phase. The results for the one-spin coe�cients for the two implementations are shown

in Figure 7.1 for CM (A) and TPPM (B). The notation is according to Equation 7.2,

in which the �rst index represents the spatial component of the spin operator in the

interaction frame and the second index the one in the static frame. Only the coe�cients

for the Ĩz(t) operator are shown, since only those are relevant. The coe�cients are vir-

tually identical except for very small contributions in the TPPM scheme at higher k

values. This is due to the high-frequency sine components that appear in the square

phase modulation, but not in the CM sequence.

Figure 7.1. The rank-one time-dependent Fourier coefficients of the CM (A) and the TPPM (B) se-
quence. The parameters used for the implementation are a pulse length of 2 µs at a rf-field strength of
250 kHz and a phase (for TPPM) of 8.5◦. The coefficients are virtually identical with small contributions
at high k values for the TPPM sequence that are not observed in the CM implementation. This is due to
the high-frequency sine components that are neglected for CM. The blue circles represent positive and
real values, red is negative and real, and black and green are imaginary components with positive or
negative sign, respectively. The diameter of the circles corresponds to the size of the coefficients. Note
that the solution is not unique and depending on the implementation of the calculation the combination
of indices (k and `) can differ.

In the range of typical TPPM parameters (τp 6 τ2π and φ < 40◦), the coe�cients and the

scaling for the second-order crossterms given in Equations 7.6 and 7.7 are identical to a

precision of 0.2%. Advantages and disadvantages of the experimental implementation of
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the CM sequence over TPPM will be discussed in detail in Chapter 7.3. From a practical

point of view, the TPPM sequence is a lot easier and faster to optimize because every

data point in the CM optimization requires a new shape �le, whereas for TPPM a

pulse-length scan is readily implemented.

7.2.2. Influence of Pulse Transients on TPPM and CM

The in�uence of pulse transients on the general two-pulse decoupling scheme is inves-

tigated by analytically calculating the size of the scaling factors for the second-order

crossterms (Equations 7.6 and 7.7). Two considerations have to be taken into account

when implementing pulse-transient compensation for TPPM. On one hand, the removal

of phase imperfections is expected to have a bene�cial e�ect for the decoupling e�ciency.

Pulse imperfections might reintroduce error terms that would be averaged out by perfect

pulses. On the other hand, the practical implementation of transient compensation re-

quires shaped pulses. From theory and experiments it is known that TPPM works best

if the phase is around 15◦ and the pulse has a �ipangle slightly higher than π. Assuming

very high ν1-�elds (∼250 kHz), the pulses for optimal decoupling are very short and the

�nite edge time required for the compensation becomes relatively long compared to the

total pulse length.

Theoretical calculations show that the implementation with rectangular pulses and ideal

shaped pulses are indistinguishable. Calculation of the scaling factors for high rf �elds

and moderate MAS frequencies are shown in Figure 7.2 for rectangular pulses. The

rf-�eld amplitude was set to 250 kHz at a MAS frequency of 40 kHz. The phase was

altered in steps of 0.25◦ and the step size for the pulse length was chosen to be 0.1 µs.

The simulations show the normalization of the dipole-CSA crossterms de�ned as

q̄
(ν)
CSA =

√∑
χ

|q(ν)
χ |2 (7.10)

and the dipole-dipole scaling factor is de�ned as

q̄
(ν)
DD =

√∑
µχ

|q(ν)
µχ |2. (7.11)
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Figure 7.2. The scaling coefficients for dipole-CSA crossterms for ν = 1 and ν = 2 (A and B) as
defined in Equation 7.10 and the dipole-dipole coefficients for ν = 1 and ν = 2 (C and D) as defined in
Equation 7.11 of a basic TPPM sequence. The decadic logarithm of the scaling terms is plotted and the
colourbar is set in a way that red corresponds to favourable decoupling regions. The set parameters
were ν1=250 kHz and νr=40 kHz. The black lines represent resonance conditions at which multiple of
the characteristic frequencies are commensurate.

The scaling factor for dipole-dipole interactions are zero for any combination of pulse

length and phase value. The dipole-CSA scaling factor shows a very favourable decou-

pling region which is at a theoretical pulse length de�ned by τp = τπ/ cosφ. Despite the

better decoupling e�ciency at high rf �elds, the breadths of the resonance conditions

become smaller. This can be seen in Figure 7.2 A and B which show the dipole-CSA

scaling factors that exhibit a very narrow decoupling condition. The black lines corre-

spond to resonance conditions at which the three characteristic frequencies, namely the

MAS frequency νr, the modulation frequency νm, and the e�ective �eld νe�, are multiple

integers of each other. These conditions describe a possible recoupling condition and are

detrimental for decoupling sequences.
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The calculation for the CM implementation of the sequence yields identical plots as

shown in Figure 7.2 if the correction factor of 4/π is included for the phase value.

This supports the experimental results, shown in previous work [121], that the two

sequences are virtually the same. Furthermore, the same characteristic plots are obtained

if the interaction-frame trajectory is calculated with shaped pulses using a �nite sine

edge. In this case, the maximum amplitude has to be adjusted in order to generate the

same net �ipangle but if this is done correctly, the results are indistinguishable to the

rectangular pulses. Theoretically, there is no advantage of either application (TPPM

or CM), independently of using rectangular or shaped pulses, if perfect rotations are

assumed.

The addition of pulse transients alters the functional form of the scaling coe�cients.

The modelled transients were assumed to have a rise time of 0.4 µs and an electronic

Figure 7.3. The same scaling coefficients for TPPM as shown in Figure 7.2, but assuming real pulses
with a rise time of 0.4 µs and an electronic offset frequency of 20 kHz.
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o�set frequency of 20 kHz. The CSA-dipole coe�cients are not in�uenced by pulse

imperfections, but the dipole-dipole coe�cients become non-zero. The regions in the

dipole-dipole coe�cients that have large contributions coincide with the resonance con-

ditions. Therefore, inherently bad decoupling is assumed in this region. However, from

a practical point of view, these regions will show poor decoupling e�ciency due to the

large CSA-dipole crossterm and the impact of the dipole-dipole term might be negligible.

In conclusion, the theoretical calculations show that the di�erence between TPPM with

rectangular or shaped pulses and the CM scheme is not visible in the relevant scaling

coe�cients and therefore, the experiments are assumed to be indistinguishable. Further-

more, the in�uence of pulse transients appears to solely be relevant in parameter areas

that experience inherently bad decoupling e�ciency. Thus, the in�uence of pulse tran-

sients on the best decoupling performance is assumed to be small and it is hypothesized

that TPPM or CM implementations do not su�er from pulse imperfections even with

very short pulses and corresponding high rf �elds.

7.3. Experimental Results of TPPM and CM

As discussed in the introduction to this Chapter (7.1), there are several parameters that

can be used to judge the decoupling e�ciency. The two that will be used throughout this

work are the height of the line, since this coincides in very many cases with the narrowest

line for samples with good SNR, and the coherence lifetime T ′2 using a refocusing pulse

on the carbon channel. The set of experiments recorded for the evaluation of decoupling

e�ciency are shown in Figure 7.4. The simplest experiment is the direct detection

of the carbon spectrum after an initial CP step (A) from which either the linewidth

or the line height is determined. The second quantity, T ′2, is extracted by measuring

dephasing curves of the carbon magnetization under heteronuclear decoupling with a π

pulse centred in the middle of the decoupling block (B). The resulting curve can then

be �t by a mono-exponential decay, and depending on the spin system, an additional

cosine oscillation. This cosine oscillation is due to the homonuclear J-couplings, which

are not being refocused by the π pulse. The decoupling scheme during the detection is

either optimized to give the best possible resolution or it is matched to the decoupling

during the dephasing period. The argument for using the same decoupling during both
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periods is the varying decoupling e�ciency for di�erent crystallite orientations, which

is not consistent in XiX and TPPM decoupling schemes or even in the same decoupling

scheme with di�erent parameters.

Additionally, experiments are implemented in which the dephasing time is kept constant

and the integral of the spectral line is evaluated as a function of the parameters of the

decoupling scheme. This implementation is shown with optimized XiX decoupling (D)

or with 'matched' decoupling (C) where the decoupling during the detection matches

the decoupling during the dephasing. One practical concern for matched decoupling is

the ability of the probe head to take the applied rf �elds for a long time (∼100 ms) if

high ν1 �elds are being studied. Additionally, the memory of the spectrometer to save

the shape �les needed for shaped pulses or CM poses a limitation.

Figure 7.4. Different pulse sequences used to optimize and analyse decoupling sequences of interest.
A) Direct detection with varying decoupling used to determine total linewidths. B) T ′2 dephasing curves
for a mono-exponential fitting procedure. C) and D) Experiments with constant dephasing time that are
used to determine the decay of the spectral line under the T ′2 relaxation. The decoupling during the
detection can either be matched (C) to the dephasing time or optimized (D) to give maximum spectral
intensity.

The experiments shown in Figure 7.4B-D are prone to errors in the data analysis because

the assumption of a mono-exponential decay is only valid in very simple spin systems.

Additionally, the evolution of the magnetization under the homonuclear J-coupling must

be included in the �t. The determination of the coupling is only readily possible if

the 1D spectra show a splitting that can be determined. Therefore, the experiments

were used as a comparison to the direct detection and a reference for whether the best

decoupling parameters for the total linewidth (Fig. 7.4A) coincide with the longest
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Figure 7.5. Recorded B1 fields for different implementations of two-pulse decoupling. A) and B) are
CM with a continuous phase modulation that are either compensated (yellow and purple) or uncom-
pensated rectangular pulses (blue and red). The pulse parameters are τp=2 µs and 8.5◦ for A) and
τp=2.2 µs and 26◦ for B). The uncompensated pulses show a very similar behaviour for the phase but
higher phase values lead to an oscillation in the amplitude that is removed with the compensation. C)
and D) are the identical implementation with discrete phase changes and additionally to the rectangu-
lar and compensated pulses, uncompensated shaped pulses are shown (green and light blue). The
shaped pulses show the slowest transition for the phase values and are therefore expected to show
the worst decoupling efficiency.

coherence lifetimes. For exact quantitative results, the experiment shown in B is used,

as the high quantity of data points allows for a reliable �t of the decay curve.
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The implementation of the pulse sequence is done by generating the basic element of the

pulse sequence (TPPM or CM two-pulse element) and repeating it n times to �t into

the required time step. The big advantage of the CM modulation for pulse-transient

compensation is the continuity of the phase modulation. Therefore, the beginning and

the end of the total segment are required to have a shaped edge and the rest of the

pulse train does not need to be ramped down in amplitude. The TPPM implementation

has discrete phase jumps, and thus discontinuities in the pulses for which the amplitude

needs to be ramped down if compensation is applied. Basic pulse elements for both

implementations are shown in Figure 7.5 with and without compensation. The elements

presented consist always of three or four basic repetitions including the beginning and

the end of the pulse sequence.

The phase modulation of the CM for the uncompensated and compensated implemen-

tation look nearly identical, but the amplitude shows small modulations that increase

with increasing phase di�erences. This amplitude modulation is believed to be irrelevant

for the decoupling e�ciency because it does not change the net �ip angle. The discrete

phase jumps for TPPM exhibit strong in�uence from pulse transients, and especially the

uncompensated pulses using shaped edges show large phase transients. An interesting

fact that has been observed before is the behaviour of the amplitude for di�erent phase

values. At the discontinuity points, the amplitude overshoots for certain phase changes

and for others it undershoots depending on the sign and the magnitude of the phase

switching. A further problem visible in the pulse shapes is the signi�cant edge time

of the compensated implementation. For a 2 µs pulse, a 0.4 µs edge time is required

to ensure good compensation. Thus, around a third of the pulse duration is not a �at

amplitude. Nevertheless, theoretical calculations of the scaling factors have predicted

that the results with shaped pulses are indistinguishable from the ones with rectangular

pulses if the �ipangle is corrected.

Experiments have been run on U-13C-15N-glycineethylester in a 1.8 mm probe head

built by Ago Samoson at a MAS frequency of 40 kHz and an external magnetic �eld of

11.7 T. The rf �eld was calibrated at 250 kHz leading to a good decoupling parameter

for TPPM at a pulse length of 2 µs or slightly higher. The parameter space for TPPM

and CM decoupling was scanned from a pulse length of 1.5 to 3 µs at a pulse increment

of 0.1 µs and phase values from 0 to 30◦ at a step size of 0.25◦. Figure 7.6 shows the re-

sults using the direct detection implementation shown in Figure 7.4A. The contour plot
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Figure 7.6. Experimental peak height of the Cα peak of U-13C-15N-glycineethylester using TPPM
and CM decoupling for direct observation of the carbon signal. The peak height is normalized to
the absolute maximum of the 4 implementations. The MAS frequency was set to be 40 kHz with a
decoupling rf-field strength of 250 kHz. The step size for the pulse length was 0.1 µs and the phase step
was 0.25◦. A) Uncompensated TPPM implementation, B) compensated TPPM, C) uncompensated
CM, and D) compensated CM.

represents the line height of the Cα line with the absolute global maximum normalized

to 1.

The decoupling maps shown in Figure 7.6 follow to great extent the maps of the scaling

factors for the crossterms shown in Figure 7.2. The theoretical prediction that the pulse

transients do not in�uence the area of best decoupling has been con�rmed experimen-

tally. The maxima of experimental decoupling e�ciency compare well to the minima of

the theoretically calculated CSA-dipole crossterms. It was shown in Figure 7.2 and 7.3

that those terms are una�ected by pulse imperfections. The scaling coe�cients which
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are a�ected by pulse transients are dipole-dipole terms, but the experimental results

show that they do not play a signi�cant role in this spin system. Thus, results for the

uncompensated and the compensated implementations look identical and the TPPM

and CM schemes are also proven experimentally to give indistinguishable results. Small

di�erences can be observed for the compensated implementation of TPPM (Fig. 7.6B).

The decoupling maxima are shifted slightly to longer pulse durations and the breadth

of the resonance condition is not as large as for the other results. This is hypothesized

to be due to small errors in the compensation due to the short pulses and �nite edges.

Figure 7.7. Experimental peak height of the Cα peak of U-13C-15N-glycineethylester using TPPM and
CM decoupling for a constant dephasing time of 30 ms with a refocusing pulse on the carbon channel
(compare Figure 7.4D). The peak height is referenced to the signal at 0 ms dephasing time. The
detection period was XiX at 200 kHz and a pulse length of 71.25 µs. The step size for the pulse length
was 0.1 µs and the phase step was 0.25◦. A) Uncompensated TPPM implementation, B) compensated
TPPM, C) uncompensated CM, and D) compensated CM.
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Experiments with constant dephasing time and refocusing of chemical shift have been

run with identical pulse and acquisition parameters as in Figure 7.6. The maps and the

location of the intensity maxima are very similar to the results for direct detection as

can been seen in Figure 7.7.

Additionally, these maps were recorded with 'matched' decoupling with nearly identical

results. The matched decoupling map di�ers a little bit in the sense that the breadth

of good decoupling is slightly larger than for the direct observation or the optimized

decoupling. For optimized decoupling, XiX was used at a rf �eld of 200 kHz with a

pulse length of 71.25 µs. XiX was used as a decoupling scheme because it was shown to

be marginally more e�cient at faster spinning speed than TPPM or supercycles thereof.

In order to get a quantitative measure of the decoupling e�ciency, dephasing curves

were measured at favourable decoupling points. The linewidth determined in Figure 7.6

is largely dominated by refocusable interactions like chemical-shift dispersion and shim.

Therefore, obtaining quantitative information on the inherent linewidth under the de-

coupling sequence needs to be done by Hahn-Echo sequences. Two favourable decoupling

points were chosen for the detailed analysis of the refocusable interactions. Figure 7.8

shows the results for dephasing curves using the two favourable decoupling points for

TPPM and CM, respectively. One point was chosen with pulse parameters τp=2 µs

and 8.5◦ and the other point with τp=2.2 µs and 26◦. Despite very similar linewidths

and peak heights, the �rst decoupling point yields coherence lifetimes that are at least

10 ms longer than the second one. Additionally, the CM implementation yields longer

T ′2 times than the discrete phase modulation. At the slightly worse decoupling point

(based on the coherence lifetime shown in Figure 7.8), the compensation is bene�cial

for CM, whereas at the good decoupling e�ciency, the transient compensation does not

improve the transverse relaxation time. The compensation for TPPM appears to be

hindering, as the coherence lifetimes decrease when using compensated pulses. This fact

was observed qualitatively in the maps using direct detection and are con�rmed in the

dephasing curves. Shaped uncompensated pulses perform better, but TPPM is best

implemented with rectangular pulses at very short pulse durations. This is believed to

be due to the ramping down of the amplitude between the phase jumps. As discussed

before, optimized CM is easier to realize in terms of signal generation, as the amplitude

can remain �at throughout.
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Figure 7.8. Experimental dephasing curves of the intensity of the Cα peak in U-13C-15N-
glycineethylester. From the maps shown in Figure 7.6, two local maxima were chosen for the decou-
pling parameters, τp=2 µs and 8.5◦ for A and C, and τp=2.2 µs and 26◦ for B and D. CM implementation
was used for A and B, and TPPM scheme for C and D. The other experimental parameters were kept
identical to the results shown in Figure 7.6. The oscillations of the curves are due to the homonuclear
J-coupling between the CO and the Cα which was determined to be 63 Hz. The fitted value for the
coherence lifetime is given in the legend for the various implementations.

The decoupling e�ciency can be further improved by restricting the sample to limit the

rf-�eld inhomogeneity. Experiments of a centre-packed rotor show coherence lifetimes of

up to 85 ms for the same decoupling points as in Figure 7.8. The trend observed for the

full sample is ampli�ed if the sample is restricted. At the best decoupling point for CM

(Fig. 7.8A), the compensation is not bene�cial, but the di�erence to the worse decou-

pling point is bigger and the impact of the compensation is also higher. For TPPM the
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implementation with rectangular pulses performs best, but is not quite comparable with

the CM scheme. Shaped pulses and compensated pulses exhibit coherence lifetimes that

are around 25% shorter than the rectangular pulse. The in�uence of rf inhomogeneity

and pulse imperfections can potentially be removed by a supercycle of the two-pulse

decoupling.

7.4. Experimental Results of SPINAL

An extension of the two-pulse decoupling scheme is the small phase incremental alter-

ation (SPINAL) [44]. The basic building block of two pulses with the same duration and

opposite phases is kept consistent. As an alteration, the following pulses have a phase

value that is increased by a value α, and the subsequent phases are increased by β. The

eight phases of the basic SPINAL sequence are given by

Q = φ, −φ, φ+ α, −(φ+ α), φ+ β, −(φ+ β), φ+ α, −(φ+ α) (7.12)

with the same pulse length τp. Depending on the implementation of SPINAL, di�erent

inversions and number of repetitions of the basic Q block of Equation 7.12 are applied.

The most widely used scheme is SPINAL-64, consisting of 64 pulses, and thus eight Q

blocks. The combined supercycle is given by

SPINAL-64 = QQ̄Q̄Q Q̄QQQ̄ (7.13)

where Q̄ is the inversion of the basic Q block.

The advantage of SPINAL is the broad conditions for the combination of parameters

for good decoupling e�ciency. This is due to the long modulation frequency and the

di�erent side bands in the Fourier coe�cients that are generated by the large number

of frequencies. This advantage outweighs the disadvantage of the large space of free

parameters of SPINAL. In principle, the optimization requires a 4-dimensional grid

search: the pulse duration τp, the basic phase φ, and the two phase increments α, and β.

Often, the two phase increments are combined to a single value θ, de�ned as θ = α = β/2,

and in good approximation set to 5◦. This reduces the problem to a two-parameter



7.4 Experimental Results of SPINAL 141

optimization. Instead of using a discrete phase modulation given in Equation 7.12 the

scheme can also be implemented with continuous phase modulation. As was shown

before, the results for two pulse decoupling using either discrete or continuous phase

changes are indistinguishable (Chapter 7.3) and the same holds true for the di�erent

phase schemes in the case of SPINAL decoupling.

Figure 7.9. Experimental peak height of the Cα peak in U-13C-15N-glycineethylester using SPINAL-64
decoupling with continuous phase modulation. The phase increment θ = α = β/2 was set to 5◦ (A and
B) or 10◦ (C and D). The phase and the pulse length were varied according to Figure 7.6, keeping the
experimental parameters identical. The use of compensated pulses (B and D) does not improve the
decoupling efficiency as compared to uncompensated pulses (A and C).
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Experiments were run with the SPINAL-64 as decoupling scheme using the same param-

eter space as shown in Figure 7.6 with direct detection of the carbon line. Due to the

similarity of the discrete and continuous phase implementation, only results for the CM

decoupling are shown. The phase increment θ was �xed to 5 and 10◦, respectively, while

the phase φ and the pulse length were varied. The results are shown in Figure 7.9 for

both compensated and uncompensated pulses. The di�erence between the compensated

and the uncompensated pulses is not visible from these maps, which are to a certain

extent qualitative. As expected, the best decoupling regions are shifted to lower phase

values of φ depending on the size of θ, but the optimal pulse duration is still around a

π pulse of ∼2 µs. The recoupling conditions are signi�cantly broader than for conven-

tional two-pulse decoupling schemes. Even the bad decoupling regions show relative line

intensities that are around 0.6 of the maximum, whereas TPPM is around 0.4 in the

worst case in the examined parameter space. The absolute intensity of the maxima for

TPPM/CM and SPINAL-64 are comparable and the linewidth is around 15 Hz in both

implementations. Therefore, even the �rst qualitative maps renders SPINAL a more

suitable option for a decoupling scheme due to the robustness towards small parameter

missets and pulse transients.

In order to quantify the decoupling e�ciency, T ′2 dephasing curves have been recorded

at favourable decoupling points, as observed in Figure 7.9. The decoupling e�ciencies

at θ = 5◦ are marginally better than at 10◦ as determined from coherence lifetimes.

The decoupling points chosen for θ = 5◦ are τp=1.8 µs and 2.1 µs with the phase value

of φ = 4.75◦ for both pulse durations. The dephasing curves with the corresponding

transverse relaxation times are shown in Figure 7.10 for CM and for discrete phase im-

plementation. It is interesting to observe that the use of discrete phase changes leads to

better decoupling e�ciency, since the opposite was shown for simple TPPM or CM. Ad-

ditionally, for SPINAL the implementation with compensated pulses is not worse than

the use of rectangular pulses. This is also opposite to the discoveries for TPPM. It is

hypothesized that this is due to the addition of multiple frequencies introduced by the

small phase increments. These additional Fourier coe�cients are combined in a way that

does not follow the predictable pattern of the two-pulse sequence and leads to broader

resonance conditions. Another di�erence to the two-pulse CM scheme is the e�ect of

the compensation, because even at slightly worse decoupling points, the compensated

pulses do not improve the coherence lifetimes. Lack of such improvement was observed
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Figure 7.10. Experimental dephasing curve of the Cα line in U-13C-15N-glycineethylester under
SPINAL-64 decoupling using a phase increment of θ = 5◦. The decoupling parameters were de-
termined from Figure 7.9 using pulse lengths of either 1.8 (A and C) or 2.1 µs (B and D) at a phase
value of 4.75 ◦. As opposed to the basic TPPM and CM, the discrete phase modulation (C and D)
shows better decoupling efficiency than the continuous sine phase (A and B). The observed coher-
ence lifetimes are generally longer than for two-pulse implementations.

for good decoupling points for two-pulse CM, but at worse decoupling, the compensation

led to longer transverse relaxation times with CM.

Despite all the di�erences between two-pulse implementation and SPINAL, which are

not fully understood, it has to be stated that the SPINAL scheme leads to overall better

decoupling e�ciency. The longest coherence lifetime under SPINAL decoupling (101 ms)

can only be obtained by TPPM/CM by restricting the sample size, which leads to 85 ms.
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7.5. Conclusion

The results for the best decoupling points and di�erent schemes are summarized in Table

7.1 for all implementations presented in this chapter.

Table 7.1. Tabulated values of the coherence lifetimes under various decoupling schemes. The de-
coupling parameters are given in the left column as well as the implementation of the phase change
(discrete or continuous) and the packing of the sample. For SPINAL, only full samples were measured
due to the robustness towards the rf-field inhomogeneity

T ′2 (rect.) T ′2 (shaped) T ′2 (comp.)

TPPM (τp=2 µs, φ=8.5◦), full 56 ms 47 ms 45 ms
CM (τp=2 µs, φ=8.5◦), full 62 ms - 61 ms

TPPM (τp=2 µs, φ=8.5◦), restr. 87 ms 66 ms 61 ms
CM (τp=2 µs, φ=8.5◦), restr. 87 ms - 85 ms

SPINAL (τp=2.1 µs, φ=4.75◦, θ=5◦) 94 ms 92 ms 101 ms
SPINAL-CM (τp=2.1 µs, φ=4.75◦, θ=5◦) 97 ms - 88 ms
SPINAL (τp=2.1 µs, φ=1.5◦, θ=10◦) 67 ms 75 ms 92 ms

SPINAL-CM (τp=2.1 µs, φ=1.5◦, θ=10◦) 75 ms - 72 ms

In conclusion, it has been shown that pulse-transient compensation is not always bene-

�cial for heteronuclear decoupling sequences at very high rf �elds and short pulses. The

compensation becomes even less important if longer pulses are applied like TPPM at

low rf �elds, or XiX. The results reported in Ref. [173] have not been con�rmed but the

rf-�eld strengths reported in this study could not be achieved with the available probes.
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In this thesis, a general problem of solid-state NMR was investigated by character-

izing and quantifying the in�uence of pulse imperfections on a wide variety of pulse

sequences. The theoretical concepts of Floquet theory were applied to obtain a deeper

understanding of the in�uence of pulse transients on these sequences. The application

of an experimental compensation gave more reproducible results in solid-state NMR ex-

periments and furthered the understanding of inherent mis-designs in pulse sequences.

In Chapter 3, a more methodical approach to the characterization of pulse transients

was presented. The measured shapes of the pulses were �tted by a model presented in

the literature to characterize the rise time and electronic o�set frequencies of the sys-

tem. Based on the �tting procedure and the results, conclusions were drawn based on

the re�ection of the signal and impedance mismatch that is observed in the resonance

circuit (the NMR spectrometer). Additionally, a previously used compensation method

was investigated further by changing the shaped edge of the pulse. A Fourier analysis

of the pulse shape based on required terms showed that the sine edge is indeed the best

shape for the pulse. Non-linearities and other e�ects, like ampli�er droop and heating

e�ects, were excluded as error terms since the compensation was done using non-linear

optimization and the result of nutation experiments were indistinguishable. In order to

make the compensation more user-friendly and easily applicable, di�erent alternatives

to using the pick-up coil as a receiver for the generated B1 �elds were investigated. The

most promising approach was the implementation of a bidirectional coupler to couple

out a small fraction of the signal before and after it entered the probe head. Some of the

pulse shapes obtained using the coupler were in good agreement with the signal of the

pick-up coil. However, there was no reliable method to determine the time di�erence

between the forward and the backward signal and the time resolution of a standard

oscilloscope is not su�cient to obtain accurate results.

145
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In Chapter 4, a theoretical analysis, supported with experimental results, was pre-

sented for the recoupling sequences RFDR and REDOR, which use an isolated, rotor-

synchronized π pulse as recoupling element. It was shown that REDOR is a pulse se-

quence that is very robust against pulse imperfections. The e�ective Hamiltonian during

REDOR has a di�erent form than for RFDR and thus is not truncated by the e�ective

�elds generated, since they commute at all times. For RFDR, phase transients can lead

to a signi�cant reduction of the polarization-transfer e�ciency. This is due to the fact

that the two coupled spins experience e�ective �elds of di�erent magnitudes and direc-

tions. The e�ective �elds can either be compensated using transient-compensated pulses

or using a longer phase cycle. Longer phase cycles have the disadvantage of a longer

minimal recoupling period, which might lead to an undersampling of the polarization-

transfer curve.

In Chapter 5, an example of symmetry-based recoupling sequence was investigated

in terms of pulse transients and further error terms were studied, which turned out to

result from �ctitious e�ective �elds caused by second-order CSA-CSA crossterms. The

unwanted e�ective �elds are important sources of decreased transfer e�ciency when

measuring intermediate or small couplings because they lead to a mismatch of the two-

frequency resonance condition dictated by the design of the sequence. Therefore, three

strategies to compensate the e�ective �elds and restore e�cient polarization transfer were

presented: (i) asynchronous recoupling by detuning the spinning frequency or changing

the relative pulse amplitudes, (ii) super cycled sequences, and (iii) transient-compensated

pulses. The advantages and disadvantages of each approach were discussed extensively

based on the theoretical and experimental results. Ultimately, the choice of method or

combination of methods to optimize the transfer e�ciency depends on the capabilities

of the spectrometer and the relative magnitude of the three di�erent contributions.

In Chapter 6, the contributions that cause the line broadening in the widely used

FSLG pulse sequence were examined and their in�uence was quanti�ed. The most im-

portant factor was found to be the rf-�eld inhomogeneity, which still contributes to

about 75% of the linewidth even if the sample is restricted in the centre. It was shown

that the theoretically calculated error terms scale down linearly or quadratically with

the e�ective-�eld strength but this was not the experimental observation. The relative

rf-�eld distribution is always the same independently of the calibrated rf �eld. Therefore,

the chemical-shift scaling and the resulting spectra remained almost identical. The only

changing behaviour is in the individual spectra, but through the distribution of the rf
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�eld the spectra are all superimposed by the varying chemical-shift scaling. Additional

performance degradation was shown to result from pulse transients that do not have a

big in�uence on the linewidth but rather on the shift of the spectrum, making it more

di�cult to interpret the results and achieve a reliable frequency calibration. Removal

of phase transients and adaption of the pulse sequence led to more predictable results

in terms of chemical-shift scaling and absolute frequency axis. However, the impact of

pulse transients on the linewidth is negligible. Furthermore, it was shown theoretically

that third-order terms contribute to the residual linewidth with a factor that is highly

dependent on the dipolar coupling and can be estimated at about 60 Hz for a CH2-

group. Selectively labelling the sample improved the coherence lifetime by removal of

multi-spin terms but as theoretically predicted, the two-spin terms were still dominant.

These terms cannot be removed by altering the sequence, e.g. changing the angle of

the e�ective �eld as they do not exhibit the same spatial behaviour as three-spin terms.

Small improvements were found by changing the e�ective-�eld angle to slightly higher

values of around 60◦, which are understood theoretically, but the spectral quality still

remained too bad to be useful for practical use. This leaves fast MAS as the method of

choice for practical application of proton spectroscopy especially for large and compelx

systems.

In Chapter 7, the heteronuclear decoupling sequence two-pulse phase modulation

(TPPM) was investigated. The theoretical calculations showed that the di�erence be-

tween TPPM with rectangular or shaped pulses and an implementation with continuous

sine phase modulation scheme is not visible in the relevant scaling coe�cients, and there-

fore, the performance of the experiments should be indistinguishable. Furthermore, the

in�uence of pulse transients is solely relevant in parameter areas that experience inher-

ently bad decoupling e�ciency. As a consequence, the in�uence of pulse transients on

the best decoupling performance was determined to be small. The experimental coher-

ence life time was slightly improved by implementing the decoupling with a continuous

phase modulation independent of pulse imperfections. The supercycled implementation

of TPPM, SPINAL-64, was demonstrated to be experimentally more e�cient due to the

high number of di�erent modulation frequencies and thus the blurring out of the relevant

Fourier coe�cients. There was no clear distinction found between the discrete phase and

the continuous phase implementation and the sequence was only slightly improved with

pulse-transient compensation.
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Overall, the results presented in this thesis provide a solid foundation for the appli-

cation of pulse-transient compensation to di�erent kinds of sequences. A wide variety of

di�erent recoupling and decoupling schemes have been presented with special focus on

the theoretical understanding behind the performance degradation in the experimental

results that are associated with pulse imperfections. It was shown in a general way how

the removal of experimental uncertainties allows for a deeper understanding of the spin

physics behind experiments. This deeper knowledge of the pulse sequence enables the

experimentalists to have a better understanding of the pitfalls of the sequence and use

the simple modi�cations proposed throughout this work to circumvent them.

In the future, more e�ort should be put into making the application of pulse-transient

compensation more user friendly. The required programs and hardware components can

be easily implemented in a standard spectrometer as the signal of the generated B1 �eld

can be readily picked up with the receiver instead of an oscilloscope. The deconvolution

in the Fourier space and back-calculation of the required input shape is possible with

the current software. The results in this thesis have conclusively shown that the e�ort of

pulse-transient compensation is worth the gain in reproducibility, ease of experimental

optimization, and overall performance enhancement of the sequences. Pulse-transient

compensation could be avoided in the future with better design of pulse sequences. How-

ever, at the current stage, the improvements through pulse-sequence design is negated

by drawbacks that certain supercycles or modi�cations have. From the current point of

view, using compensated pulses for certain standard experiments is more bene�cial than

investing more time into the design of tailored sequences.

Further concerns about the compensation, including non-linearities, temporal instabil-

ities, and heating e�ects, have proven to be negligible in the investigated experiments.

Therefore, it is hypothesized that no further e�ort needs to be put into the basic proce-

dure and the linear-response theory is a valid approximation for the system.

An important future use for pulse-transient compensation is the application to pulse

sequences used at very fast MAS frequencies. This is due to the fact that the smaller

diameter rotors allow for a reduction of the solenoid coil that generates the rf pulses,

which results in higher achievable rf �elds. This goes hand-in-hand with a reduction in

pulse lengths used and thus the transient part of the pulse becomes longer compared

to the total pulse length and gains in signi�cance. It is believed that pulse-transient

compensation will be an invaluable tool for the development of new generations of pulse

sequences speci�cally designed to use high rf �elds combined with very fast MAS fre-
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quencies.

Finally, the biggest �eld for pulse-transient compensation in the future will be the ap-

plication to speci�cally designed pulse sequences. At the current stage, method de-

velopment in solid-state NMR is very far advanced in taking advantage of basic pulse

sequences and modifying them slightly. Ground-breaking achievements in method de-

velopment will go hand-in-hand with high computational power that enables the scan

of huge parameter spaces for possible rf-�eld sequences designed for speci�c re- or de-

coupling. This approach will require highly controlled rf-�eld amplitudes and phases in

the experimental realisation that can only be achieved with pulse-transient compensa-

tion. This control will further the agreement between experiments and theory and will

lead to more control of the spin dynamics resulting in more e�cient and more selec-

tive experiments. Furthermore, it will bridge the gap between method development and

applications to more complex systems in order to tackle important biological questions.
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A. Spin-Tensor Operators

De�nition of rank-zero and rank-one tensors for a single spin in the spherical tensor

notation are given by [53]

T0,0 = E

T1,0 = Iz

T1,1 =
−1√

2
I+ =

−1√
2

(Ix + iIy)

T1,−1 =
−1√

2
I− =

−1√
2

(Ix − iIy) (A.1)

De�nition of the rank-zero, -one, and -two tensors for a two-spin system are

T0,0 =
−1√

3
(~I1 · ~I2)

T1,0 =
−1

2
√

2
(I+

1 I
−
2 − I−1 I+

2 )

T1,±1 =
−1

2
(I±1 I2z − I1zI

±
2 )

T2,0 =
1√
6

(3I1zI2z − (~I1 · ~I2))

T2,±1 = ∓1

2
(I±1 I2z + I1zI

±
2 )

T2,±2 =
1

2
(I±1 · I±2 ) (A.2)

The rank-zero, -one, -two, and -three tensors for a three-spin system are de�ned ac-

cording to [151]. For brevity, the de�nition of the Cartesian product is written as

Iabc = I1aI2bI3c.
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T1,−1(τ
[3]
1 ) =

2√
15

[3Ixxx − 3iIyyy − i(Ixxy + Ixyx + Iyxx) + (Ixyy + Iyxy + Iyyx)

+ (Ixzz + Izxz + Izzx)− i(Iyzz + Izyz + Izzy)]

T1,0(τ
[3]
1 ) =

√
8

15
[(Ixxz + Ixzx + Izxx) + (Iyyz + Iyzy + Izyy) + 3Izzz]

T1,1(τ
[3]
1 ) =

−2√
15

[3Ixxx + 3iIyyy + i(Ixxy + Ixyx + Iyxx) + (Ixyy + Iyxy + Iyyx)

+ (Ixzz + Izxz + Izzx) + i(Iyzz + Izyz + Izzy)]

T3,−3(τ
[3]
1 ) =[(Ixxx + iIyyy)− i(Ixxy + Ixyx + Iyxx)− (Ixyy + Iyxy + Iyyx)]

T3,−2(τ
[3]
1 ) =

√
2

3
[(Ixxz + Ixzx + Izxx)− (Iyyz + Iyzy + Izyy)

− i(Ixyz + Ixzy + Iyxz + Iyzx + Izxy + Izyx)]

T3,−1(τ
[3]
1 ) =

1√
15

[−3(Ixxx − iIyyy) + i(Ixxy + Ixyx + Iyxx)− (Ixyy + Iyxy + Iyyx)

+ 4(Ixzz + Izxz + Izzx)− 4i(Iyzz + Izyz + Izzy)]

T3,0(τ
[3]
1 ) =

−2√
5

[(Ixxz + Ixzx + Izxx) + (Iyyz + Iyzy + Izyy)− 2Izzz]

T3,1(τ
[3]
1 ) =

1√
15

[3(Ixxx + iIyyy) + i(Ixxy + Ixyx + Iyxx) + (Ixyy + Iyxy + Iyyx)

− 4(Ixzz + Izxz + Izzx)− 4i(Iyzz + Izyz + Izzy)]

T3,2(τ
[3]
1 ) =

√
2

3
[(Ixxz + Ixzx + Izxx)− (Iyyz + Iyzy + Izyy)

+ i(Ixyz + Ixzy + Iyxz + Iyzx + Izxy + Izyx)]

T3,−3(τ
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T1,0(τ
[3]
2 ) =

√
2

3
[−2(Ixxz + Iyyz) + (Izxx + Ixzx) + (Izyy + Iyzy)]

T1,1(τ
[3]
2 ) =

1√
3

[−i(Iyxx + Ixyx − 2Ixxy)− i(Iyzz + Izyz − 2Izzy)

− (Ixyy + Iyxy − 2Iyyx)− (Ixzz + Izxz − 2Izzx)]
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T2,−2(τ
[3]
2 ) =

1√
3

[(Iyzx + Izyx) + (Ixzy + Izxy)− 2(Ixyz + Iyxz)

− (2iIxxz − iIxzx − iIzxx) + (2iIyyz − iIyzy − iIzyy)]

T2,−1(τ
[3]
2 ) =

1√
3

[−(2Ixxy − Ixyx − Iyxx)− i(2Iyyx − Iyxy − Ixyy)

+ (2iIzzx − iIzxz − iIxzz) + (2Izzy − Izyz − Iyzz)]

T2,0(τ
[3]
2 ) =

√
2[(Iyzx + Izyx)− (Ixzy − Izxy)]

T2,1(τ
[3]
2 ) =

1√
3

[(2Ixxy − Ixyx − Iyxx)− i(2Iyyx − Iyxy − Ixyy)

+ (2iIzzx − iIzxz − iIxzz)− (2Izzy − Izyz − Iyzz)]

T2,2(τ
[3]
2 ) =

1√
3

[(Iyzx + Izyx) + (Ixzy + Izxy)− 2(Ixyz + Iyxz)

+ (2iIxxz − iIxzx − iIzxx)− (2iIyyz − iIyzy − iIzyy)]

T1,−1(τ
[3]
3 ) =[(Ixyy − Iyxy) + (Ixzz − Izxz)− i(Iyxx − Ixyx)− i(Iyzz − Izyz)]

T1,0(τ
[3]
3 ) =

√
2[(Izxx − Ixzx) + (Izyy − Iyzy)]

T1,1(τ
[3]
3 ) =[−(Ixyy − Iyxy)− (Ixzz − Izxz)− i(Iyxx − Ixyx)− i(Iyzz − Izyz)]

T2,−2(τ
[3]
3 ) =[(Izxy − Ixzy) + (Izyx − Iyzx) + i(Izxx − Ixzx) + i(Iyzy − Izyy)]

T2,−1(τ
[3]
3 ) =[(Iyxx − Ixyx) + (Izyz − Iyzz) + i(Ixyy − Iyxy) + i(Izyz − Iyzz)]

T2,0(τ
[3]
3 ) =

√
2

3
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T2,1(τ
[3]
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T2,2(τ
[3]
3 ) =[(Izxy − Ixzy) + (Izyx − Iyzx)− i(Izxx − Ixzx)− i(Iyzy − Izyy)]

T0,0(τ
[3]
4 ) =

2√
3

[Ixyz − Ixzy − Iyxz + Iyzx + Izxy − Izyx] (A.3)





B. Analytical Tensor Components
after FSLG Decoupling

The analytical expressions for the two- and three-spin tensors calculated in second- and

third-order after FSLG decoupling. The functional forms of the tensors are shown in

Figure 6.2 and 6.3, where the simulation parameters can be found. X`,m is the projection

of the e�ective Hamiltonian on the spherical tensors de�ned in Appendix A.

The three-spin components from second-order error calculations are given by

X0,0(τ4) =
1

ωr
(0.591515 + 0.650331 cos(2θ) + 0.490205 cos(4θ))=(ω

(1)
1,2 · ω

(−1)
1,3 )

+ (0.289761 + 0.326409 cos(2θ) + 0.249856 cos(4θ))=(ω
(2)
1,2 · ω

(−2)
1,3 )

X2,0(τ2) =

√
3

2
X0,0(τ4)

X2,0(τ3) = −
√

1

2
X0,0(τ4)

X2,1(τ2) =
1

ωr
(−0.00244743 cos(θ) sin(θ) + 0.000611858 sin(4θ))=(ω

(1)
1,2 · ω

(−1)
1,3 )

+ (−0.00506846 cos(θ) sin(θ) + 0.00126711 sin(4θ))=(ω
(2)
1,2 · ω

(−2)
1,3 )

X2,−1(τ2) = −X2,1(τ2) =

√
1

3
X2,1(τ3) = −

√
1

3
X2,−1(τ3)

X2,2(τ2) =
1

ωr
(0.00123089− 0.00123089 cos(4θ))=(ω

(1)
1,2 · ω

(−1)
1,3 )

+ (0.00256358− 0.00256358 cos(4θ))=(ω
(2)
1,2 · ω

(−2)
1,3 )

X2,−2(τ2) = X2,2(τ2) = −
√

1

3
X2,2(τ3) = −

√
1

3
X2,−2(τ3) (B.1)
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with ω(ν)
1,2 being the Fourier coe�cients of the dipolar interaction. Assuming a relative

dipole orientation of φ, the expressions can be derived as a function of the Euler angles

X0,0(τ4) =
1

ωr
f(θ)δ1,2δ1,3 sin(α) sin(β) sin(φ)

(0.125 cos(β)2 cos(φ) + 0.015625 cos(φ) sin(β)2

− 0.109375 cos(α) cos(β) sin(β) sin(φ))

X2,1(τ2) =
1

ωr
g(θ)δ1,2δ1,3 sin(α) sin(β) sin(φ)

(0.125 cos(β)2 cos(φ) + 0.0725938 cos(φ) sin(β)2

− 0.0524063 cos(α) cos(β) sin(β) sin(φ))

X2,2(τ2) =
1

ωr
h(θ)δ1,2δ1,3 sin(α) sin(β) sin(φ)

(0.125 cos(β)2 cos(φ) + 0.0743125 cos(φ) sin(β)2

− 0.0506875 cos(α) cos(β) sin(β) sin(φ)) (B.2)

The third-order auto-terms projections of the two-spin spherical tensors are given in an

analytical form by

X0,0 = X1,0 = X1,1 = X1,−1 = 0

X2,0 =
1

ω2
r

(−0.00598819 ω
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1,2 ω

(−1)
1,2 ω

(−1)
1,2 − 0.00598819 ω

(−2)
1,2 ω

(+1)
1,2 ω

(+1)
1,2

− (0.00506264 ω
(+2)
1,2 ω

(−1)
1,2 ω

(−1)
1,2 + 0.00506264 ω

(−2)
1,2 ω

(+1)
1,2 ω

(+1)
1,2 ) cos(2θ)

+ (0.00598819 ω
(+2)
1,2 ω

(−1)
1,2 ω

(−1)
1,2 + 0.005598819 ω

(−2)
1,2 ω

(+1)
1,2 ω

(+1)
1,2 ) cos(4θ)

+ (0.00506264 ω
(+2)
1,2 ω

(−1)
1,2 ω

(−1)
1,2 + 0.00506264 ω

(−2)
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(+1)
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1,2 ) cos(6θ))

X2,1 =
1

ω2
r
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(−1)
1,2 ω

(−1)
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X2,−1 = −X2,1
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X2,2 =
1

ω2
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1,2 ω

(−1)
1,2 ω

(−1)
1,2 + 0.000963965 ω

(−2)
1,2 ω

(+1)
1,2 ω

(+1)
1,2

− (0.00317249 ω
(+2)
1,2 ω

(−1)
1,2 ω

(−1)
1,2 + 0.00317249 ω

(−2)
1,2 ω

(+1)
1,2 ω

(+1)
1,2 ) cos(2θ)

+ (0.000641444 ω
(+2)
1,2 ω

(−1)
1,2 ω

(−1)
1,2 + 0.000641444 ω

(−2)
1,2 ω

(+1)
1,2 ω

(+1)
1,2 ) cos(4θ)

+ (0.00156709 ω
(+2)
1,2 ω

(−1)
1,2 ω

(−1)
1,2 + 0.00156709 ω

(−2)
1,2 ω

(+1)
1,2 ω

(+1)
1,2 ) cos(6θ))

X2,−2 = X2,2 (B.3)

Substituting the analytical expressions for the Fourier components of the dipolar cou-

pling, the expressions are obtained in terms of the Euler angles

X2,0 =
1

ω2
r

u(θ)δ3
1,2 sin(β)2 sin(2β)2

X2,1 =
1

ω2
r

v(θ)δ3
1,2 sin(β)2 sin(2β)2

X2,2 =
1

ω2
r

w(θ)δ3
1,2 sin(β)2 sin(2β)2 (B.4)





C. Spin System of Glycine

Table C.1 shows CSA tensors and C.2 the dipolar tensors used for the simulations

presented in Chapter 6.4.3 using an 8-spin homonuclear system for glycine.

Table C.1. CSA tensors for the spin system of a 8-spin homonuclear glyince in the PAS at 600 MHz.

CSA tensor shift (kHz) δCSA (ppm) ηCSA αCSA (◦) βCSA (◦) γCSA (◦)

I1 (Hα1) 1932 2100 0.8013 -54.76 109.2 96.18
I2 (Hα2) 2508 -2974.8 0.751 -17.82 103.4 78.42
I3 (HN) 4752 2085.6 0.998 -2.092 88.39 69.72
I4 (HN) 4752 2085.6 0.998 -2.092 88.39 69.72
I5 (HN) 4752 2085.6 0.998 -2.092 88.39 69.72
I6 (Hα2) 2508 -2974.8 0.751 -17.82 103.4 78.42
I7 (Hα2) 2508 -2974.8 0.751 -17.82 103.4 78.42
I8 (Hα1) 1932 2100 0.8013 -54.76 109.2 96.18
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Table C.2. Dipolar and J-couplings for the spin system of a 8-spin homonuclear glyince in the PAS at
600 MHz.

dipolar tensor J coup (Hz) δdip 2π (kHz) αdip (◦) βdip (◦) γdip (◦)

I1I2 0 -52245 0 70.7704 120.471
I1I3 0 -13595 134.371 96.5903 14.8764
I1I4 0 -13595 134.371 96.5903 14.8764
I1I5 0 -11213 134.371 96.5903 14.8764
I1I6 0 -2983.4 0 42.7559 143.03
I1I7 0 -11683 0 135.41 69.0396
I1I8 0 -4926.5 0 113.094 234.532
I2I3 0 -13387 -105.815 85.9751 47.2049
I2I4 0 -13387 -105.815 85.9751 47.2049
I2I5 0 -11041 -105.815 85.9751 47.2049
I2I6 0 -9027.6 0 31.8856 167.065
I2I7 0 -9027.6 0 148.114 12.9347
I2I8 0 -2213.4 0 115.015 255.244
I3I4 0 -30665 0 81.8395 28.4886
I3I5 0 -24851 0 81.8395 28.4886
I3I6 0 -6475.4 -124.44 138.512 -96.44
I3I7 0 -2553.1 -53.6713 118.981 35.751
I3I8 0 -8747 79.9454 130.848 -83.2699
I4I5 0 -23441 0 81.8395 28.4886
I4I6 0 -6475.4 -124.44 138.512 -96.44
I4I7 0 -2553.1 -53.6713 118.981 35.751
I4I8 0 -8747 79.9454 130.848 -83.2699
I5I6 0 -6475.4 -124.44 138.512 -96.44
I5I7 0 -2553.1 -53.6713 118.981 35.751
I5I8 0 -8747 79.9454 130.848 -83.2699
I6I7 0 -1152.5 0 148.771 0
I6I8 0 -899.91 0 134.988 275.494
I7I8 0 -1641.1 0 84.3594 239.803



D. AU Program for Heteronuclear
Decoupling Optimization

A model AU program written within the course of this thesis for the optimization of het-

eronuclear decoupling using externally generated shape �les as input for the decoupling

pulses.

/*******************************************************************/

/* TPPMcomp

/* Short Description: TPPM compensation, cosine phase mod

/* AU program that perfroms measurements with different phases

/* and pulse lengths. The shape files are generated by MATLAB

/* and automatically loaded for the respective measurement

/*

/* Keywords: Transient Compensation

/* Description/Usage: See Description with MATLAB Script

/* Author(s)

/* Name: Johannes Hellwagner

/* Organisation: ETH Zurich

/* Email: johe@nmr.phys.chem.ethz.ch

/* First Version

/*******************************************************************/

AUERR = TPPMcomp(curdat);

QUITMSG("--- TPPMcomp finished ---")

#include <ShapeIO/ShapeIOC.h>
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#include <stdio.h>

#include <inc/exptUtil>

char myname[64] = "180829_glycine_1p8_CM_ref";

char myuser[64];

char path[PATH_MAX] = "/opt/topspin3.5pl5/exp/stan/nmr/lists/wave/user/";

double freq;

double tstep;

int nt;

int nph;

int ntr;

int myexpno = 1;

int tmpexpno = 999; //***

int myprocno = 1;

int cp(const char* source_file, const char* target_file);

int read_paramfile_main();

int read_paramfile_sub(char rel_path[PATH_MAX], char* curdat);

int TPPMcomp(const char* curdat) {

char tmp1[PATH_MAX];

char source_file[PATH_MAX];

char target_file[PATH_MAX];

char line[PATH_MAX];

char line_sub[PATH_MAX];

char msg[PATH_MAX];

int i,j,k;

int expTime = 0;

read_paramfile_main();

DATASET(myname,myexpno,myprocno,disk,myuser);

STOREPAR("TD",4096)

STOREPAR1("TD",nt*nph)
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STOREPARS("TD",4096)

STOREPAR1S("TD",nt*nph)

sprintf(line,"TPPM_cosine/tp%d/ph%d/",1,1);

read_paramfile_sub(line,curdat);

DATASET(myname,tmpexpno,myprocno,disk,myuser); //***

//for (j = 1; j <= ntr; j++) {

//for (i = 1; i <= nph; i++) {

for (k = 1; k <= nt; k++) {

sprintf(line,"TPPM_cosine/tp%d/ph%d/",k,1);

read_paramfile_sub(line,curdat);

expTime += CalcExpTime();

//IEXPNO***

}

//}

//}

//DEXPNO***

PrintExpTime(expTime*nph,nph*nt);

//expno = myexpno;

//change i,j,k

for (k = 1; k <= nt; k++) {

sprintf(line,"TPPM_cosine/tp%d/",k);

read_paramfile_sub(line,curdat);

for (i = 1; i <= nph; i++) {

strcpy(tmp1,path);

strcat(tmp1,line);

sprintf(line_sub,"ph%d/",i);
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strcat(tmp1,line_sub);

strcpy(source_file,tmp1);

strcat(source_file,"rise.shape");

strcpy(target_file,path);

strcat(target_file,"rise.shape");

cp(source_file,target_file);

strcpy(source_file,tmp1);

strcat(source_file,"p.shape");

strcpy(target_file,path);

strcat(target_file,"p.shape");

cp(source_file,target_file);

strcpy(source_file,tmp1);

strcat(source_file,"fall.shape");

strcpy(target_file,path);

strcat(target_file,"fall.shape");

cp(source_file,target_file);

//SETCURDATA

ZG

ERRORABORT

WSER(i+(k-1)*nph,myname,myexpno,myprocno,disk,myuser)

//IEXPNO

ERRORABORT

}

}

//DEXPNO***

return 0;

}

int read_paramfile_main() {

char param_file[PATH_MAX];

FILE* file;
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strcpy(param_file,path);

strcat(param_file,"TPPM_cosine/.param");

file = fopen(param_file,"r");

fscanf(file,"%s\n", &myuser);

fscanf(file,"%lf\n",&freq); // MHz

fscanf(file,"%lf\n",&tstep);

fscanf(file,"%d\n", &nt);

fscanf(file,"%d\n", &nph);

fscanf(file,"%d\n", &ntr);

close(file);

return 0;

}

int read_paramfile_sub(char rel_path[PATH_MAX], char* curdat) {

char param_file[PATH_MAX];

FILE* file;

int nrise;

int nrep;

int nfall;

double trise;

double trep;

double tfall;

strcpy(param_file,path);

strcat(param_file,rel_path);

strcat(param_file,".param");

file = fopen(param_file,"r");

fscanf(file,"%d\n", &nrise);

fscanf(file,"%d\n", &nrep);

fscanf(file,"%d\n", &nfall);
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close(file);

trise = nrise*tstep;

trep = nrep*tstep;

tfall = nfall*tstep;

//cp_TPPM_shape_pulse.mari

STOREPAR("PULPROG", "cp_dec_phi_tp_loop_shape3.johe")

STOREPAR("TD", 4096) // ?

//FETCHPAR("TD",TD)

//STOREPAR("AQ", 0.0306600) //?

//STOREPAR("RG", 128)

STOREPAR("DW", 15.0)

STOREPAR("DE", 6.5)

STOREPAR("D 1", 6.0)

STOREPAR("DS", 0)

STOREPAR("NS", 4)

STOREPAR("P 15", 1000.0)

STOREPAR("PLW 1", 27.0)

STOREPAR("P 3", 2.5)

STOREPAR("P 12", trise)

STOREPAR("P 13", trep)

STOREPAR("P 14", tfall)

STOREPAR("PLW 2", 28.0)

STOREPAR("PLW 10", 104.0)

STOREPAR("PLW 12", 728.0)

STOREPAR("SPNAM 0", "tan40_60-80.juga")

STOREPAR("SPNAM 12", "rise.shape")

STOREPAR("SPNAM 13", "p.shape")

STOREPAR("SPNAM 14", "fall.shape")

return 0;
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}

int cp(const char* source_file, const char* target_file) {

char ch;

FILE* source;

FILE* target;

source = fopen(source_file, "r");

target = fopen(target_file, "w");

if(source == NULL) {

exit(EXIT_FAILURE);

}

if(target == NULL) {

fclose(source);

exit(EXIT_FAILURE);

}

while((ch = fgetc(source)) != EOF)

fputc(ch, target);

fclose(source);

fclose(target);

return 0;

}





E. Pulse-Transient Compensation:
MATLAB Implementation

The following section provides the MATLAB scripts adapted and modi�ed from [84] for

the automated pulse-transient compensation.

E.1. MATLAB Scripts

The following are the four parent scripts that build the backbone of the compensa-

tion and call speci�c subfunctions. The four scripts are the de�nition of the relevant

pulse parameters (C00_Parameters.m), the initialization of the communication with the

oscilloscope (C01_Initialize.m), the determination of the impulse-response function

(C02_GetH.m), and the generation and veri�cation of the compensated pulse, which is

shown exemplary for the PMLG sequence (C03_LinearResponse_PMLG.m).

C00_Parameters.m
1 close all

2 %% NMR spectrometer PC host name and login

3 % mounts topspin folder for userdefined shapes on local computer

4 fname = 'data_'; % Filename of .mat file , where data is saved

5 username = 'johe'; % spectrometer login username

6 machine = 'oersted '; % hostname or IP of spectrometer

7 path_to_topspin = '/opt/topspin3 .5pl5'; % topspin main folder on spectrometer ,

ususally /opt/topspinX.X.X

8 timepoint_now = datestr(now ,'mmddyy_HHMM ');

9

10

11 %% Spectrometer Properties and Impulse Response Measurement Parameters

12 freq = 300.0887996 e6; % Spectrometer Frequency

13 tstep = 50e-9; % downsampled timeresolution

14 mls_seed = [1 1 0 1 1 0 1 1 0 1]; % input seed for MLS , length is order of MLS

15 scrf = 0.5; % maximal MLS amplitude
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16 tauref = 10e-6; % lenght of reference pulse

17 plw_mls = 10; % Powerlevel for MLS sequence in Watt

18 d1 = 1; % recycle delay in sec

19

20 %% Scope Options

21 ip = '169.254.221.44 '; % IP of Tektroniks 7104

22 Fs = 10e9; % Sampling Rate

23 scCH1 = 0.1; % scaling of Channel 1 in volts per div

24 recL = [1 2 4 10 20 40 100 200 400 1e3]*1e-6; % possible Record lengths in

seconds

25

26 [~,tmp] = min(abs(recL -tstep*( tauref/tstep+5e-6/ tstep +1.5*2^ length(mls_seed))));

27 deltaT = recL(tmp+1); % Record length

28

29 %% Parameters for transient compensation

30 cutoff = 0.015; % Cutoff under which FT of compensated shape is set to zero

31 rf_wanted = 50; % desired rf field in kHz

32 rf_topspin = 100; % rf corresponding to value of 100 in shape

33 plw_rf = 85; % Powerlevel in W corresponding to rf_topspin (Hz)

34

35

36 %% Target Shape

37 % single pulse

38 tau_p = 5e-6; % pulse length in s

39 tau_edge = 0.4e-6; % edge time in s

40 phi1 = 0; % phase of pulse

41 commentstr = 'automated compensation ';

42

43 save parameters.mat

44

45

46

47 %% Mount Spectrometer drive

48 o1_mountspectrometer(username ,machine ,path_to_topspin);

49

50 if exist('shapes ','dir')==0 % create tmp dir for shapes

51 mkdir shapes

52 end

C01_Initialize.m
1

2

3 %% Generate MLS Sequence and CW pulse as well as target shape

4 [mls_in ,mls_out ]= a1_makemls(mls_seed ,tstep ,scrf ,tauref);

5

6 eval(['!mv ./ shapes/mls' num2str(length(mls_seed)) '.shape ./ shapes/mls.auto']);

7 eval(['!mv ./ shapes/cw_mls ' num2str(length(mls_seed)) '.shape ./ shapes/cw.auto']);

8
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9 o1_write_paramfile('.param',username ,'zg_1shape ','cw.auto',freq ,length(mls_out),tstep ,

plw_mls ,1,1,1)

10

11 o1_copyshapes( './ shapes/cw.auto' );

12 o1_copyshapes( './ shapes/mls.auto' );

13 o1_copyshapes( './ shapes /. param' );

14

15 fprintf( '### Execute AU program "autocomp.jowi" and press Enter! ###\n' )

16 pause()

17 q=0;

18

19 % check if the oscilloscope is clocked externally

20

21 while(q<1)

22 reply2 = input(' ### Is the scope triggered on the same basis as the spectrometer clock

? Y/N [Y]: ', 's');

23 if isempty(reply2)

24 reply2 = 'Y';

25 end

26

27 if ismember(reply2 ,['Y','y','yes'])~=1

28

29 pause (1)

30 o1_triggerscope ()

31 pause (2)

32

33 %% Record CW pulse to determine Frequency for Mixing Down

34 cw_raw = tek_read_trigg(ip,deltaT ,Fs ,scCH1 ,1,freq);

35 cw_proc = tek_proc_autophase(cw_raw ,tstep ,1000:1200);

36

37 [~,fitrange ]= a1_find_start_cw(cw_proc , (tstep *0.5* length(mls_out))); % Part of CW

pulse without phase transients

38 % in 99% of the cases this is correct , keep it in??

39 figure (1)

40 fitrange = a2_ask_for_correct_range(fitrange ,cw_proc.single.y1);

41 phaserange_cw = fitrange; % Determine Frequency

from phase drift

42 delta_f = tek_calcfreq(cw_proc ,fitrange); % determine freq

difference from phase drift

43 freq_opt = freq -delta_f; % Correct frequency for

downsampling

44 cw_raw.param.freq=freq_opt;

45 cw_proc = tek_proc_autophase(cw_raw ,tstep ,phaserange_cw);

46

47 cw = tek_combine(cw_raw ,cw_proc);

48 fprintf(' ### Optimized Frequency: %4.7f MHz ###\n', (freq_opt /1e6));

49

50 figure (1)

51 plot (1: length(cw_proc.single.y1),[real(cw_proc.single.y1);imag(cw_proc.single.y1)])

52 title('Downmixing of CW pulse with updated frequency ');

53 pause (0.1)
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54 save -append parameters.mat freq_opt

55 else

56 freq_opt=freq;

57 pause (1)

58 o1_triggerscope ()

59 pause (2)

60

61 %% Record CW pulse to determine Frequency for Mixing Down

62 cw_raw = tek_read_trigg(ip,deltaT ,Fs ,scCH1 ,1,freq);

63 cw_proc = tek_proc_autophase(cw_raw ,tstep ,1000:1200);

64

65 [~,fitrange ]= a1_find_start_cw(cw_proc , (tstep *2.5* length(mls_out))); % Part of

CW pulse without phase transient

66 cw_raw.param.freq=freq_opt;

67 cw = tek_combine(cw_raw ,cw_proc);

68 figure (1)

69 plot (1: length(cw_proc.single.y1),[real(cw_proc.single.y1);imag(cw_proc.single.

y1)])

70 title('Downmixing of CW pulse with updated frequency ');

71 pause (0.1)

72 save -append parameters.mat freq_opt

73 end

74

75 reply1 = input(' ### Did the quadrature demodulation work? Y/N [Y]: ', 's');

76 if isempty(reply1)

77 reply1 = 'Y';

78 end

79

80 if ismember(reply1 ,['Y','y','yes'])~=1

81 q=0;

82 else

83 q=1;

84 end

85

86 end

C02_GetH.m
1 %% Record Response of MLS sequence

2

3

4 o1_write_paramfile('.param',username ,'zg_1shape ','mls.auto',freq ,length(mls_out),tstep ,

plw_mls ,ns_mls ,1,1)

5 o1_copyshapes( './ shapes /. param' );

6 pause (2)

7 o1_triggerscope ()

8 pause (2)

9

10 mls_raw = tek_read_trigg(ip,deltaT ,Fs,scCH1 ,1,freq_opt);

11 mls_proc = tek_proc_autophase(mls_raw ,tstep ,floor(tauref/tstep));
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12

13 figure (2)

14 plot (1: length(mls_proc.t),[real(mls_proc.y);imag(mls_proc.y)])

15 title('Response of MLS sequence ')

16 pause (0.1)

17

18 [idx_mls ,phra_mls] = a1_find_start(mls_proc ,tstep);

19 if ns > 1

20 mls_raw = tek_read_trigg(ip ,deltaT ,Fs,scCH1 ,ns,freq_opt);

21 end

22 mls_proc = tek_proc_autophase(mls_raw ,tstep ,phra_mls);

23 mls_proc.input.mls_in = mls_in;

24 mls_proc.input.scrf = scrf;

25

26

27 %% Calcualte Impulse Response

28

29 % determine beginning of second MLS cycle

30 rr = idx_mls+floor (15/( tstep/1e-6))+1* length(mls_in)+(1: length(mls_in));

31 h = a12_deconv(mls_in ,mls_proc.y(rr),length(mls_in) ,0);

32

33 % shift impulse response such that maximum is at position 40

34

35 [~,idx_h] = max(abs(h));

36 h = circshift(h.',40-idx_h).';

37 fprintf('### Baseline Correction of h. Check , that there is no signal in selected

region! ###\n')

38 %rr3 = a2_ask_for_correct_range (1:20,h);

39 rr3 =1:20;

40 mls_proc.h_blc = h-mean(h(rr3 (1):rr3(end)));

41 mls_proc.h = h;

42

43 mls = tek_combine(mls_raw ,mls_proc);

44

45

46 figure (3)

47 plot (1: length(mls.h),[real(mls.h_blc);imag(mls.h_blc)])

48 title('Impulse Response Function ')

49

50

51 fprintf(' ### Select range of h(t) for compensation ###\n')

52 idx_h = find(abs(mls.h_blc) >0.02*max(abs(mls.h_blc)),1,'first'); % find rising edge

of h

53 mls.rr2 = (idx_h)+(0:99);

54 mls.rr2 = a2_ask_for_correct_range(mls.rr2 ,mls.h_blc);

55

56 figure (10)

57 plot(linspace (-0.5,0.5, length(mls.h_blc))/0.05,abs(fftshift(fft(mls.h_blc))))

58

59 eval(['save ',fname , timepoint_now ' cw mls'])
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C03_LinearResponse_PMLG.m
1 [target_shape , scale] = a2_gen_ashaped_pulse(tau_p ,tstep ,tau_edge ,phi1);

2 a12_exporttotopspin_3shape(target_shape.wanted .*scale ,10+[1 target_shape.np],rf_wanted ,

rf_topspin ,'./ shapes/','target ',tstep ,commentstr ,0)

3

4 [comp_in ]= a2_perform_compensation(mls ,target_shape ,cutoff);

5

6 exportrange1 = a12_exporttotopspin_3shape(comp_in.shape ,[ comp_in.idx comp_in.idx

+comp_in.np],rf_wanted ,rf_topspin ,'./ shapes/','comp.auto',tstep ,commentstr ,1);

7 comp_in.exportrange = exportrange1;

8 comp_in.exp_shape = comp_in.shape(exportrange1 (1):exportrange1(end));

9 !mv ./ shapes/comp.auto.shape ./ shapes/comp.auto

10 o1_copyshapes('./ shapes/comp.auto')

11

12 [~,tmp] = min(abs(recL -2* comp_in.np*tstep));

13 deltaT = recL(tmp+1);

14

15

16 %% Record Uncompensated pulse

17 o1_write_paramfile('.param',username ,'zg_1shape ','target.auto',freq ,target_shape.np,

tstep ,plw_rf ,ns ,1,1)

18 o1_copyshapes( './ shapes /. param' );

19 pause (1)

20 o1_triggerscope ()

21

22 fprintf( '### I will start pulsing the uncompensated pulse ... ###\n' )

23 pause (3)

24

25

26 uncomp_raw = tek_read_trigg(ip ,deltaT ,Fs ,scCH1 ,1,freq_opt);

27 uncomp_proc = tek_proc_autophase(uncomp_raw ,tstep ,100:150);

28

29 [~,fitrange] = a1_find_start(uncomp_proc , 0.5* tau_p ); % Part of pulse without phase

transients

30 figure (1)

31

32 fitrange = a2_ask_for_correct_range(fitrange ,uncomp_proc.single.y1);

33 uncomp_proc = tek_proc_autophase(uncomp_raw ,tstep ,fitrange);

34

35 uncomp_resp = tek_combine(uncomp_raw ,uncomp_proc);

36

37 figure (4)

38 plot (1: length(uncomp_proc.single.y1),[real(uncomp_proc.single.y1);imag(uncomp_proc.

single.y1)])

39 title('Downmixing of Uncompensated pulse ');

40 pause (0.1)

41 clear comp_raw comp_proc

42

43

44
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45

46 %% Record Compensated pulse

47 o1_write_paramfile('.param',username ,'zg_1shape ','comp.auto',freq ,comp_in.exportrange(

end)-comp_in.exportrange (1),tstep ,plw_rf ,ns ,1,1)

48 o1_copyshapes( './ shapes /. param' );

49 pause (1)

50 o1_triggerscope ()

51

52 fprintf( '### I will start pulsing the compensated pulse ... ###\n' )

53 pause (5)

54

55

56 comp_raw = tek_read_trigg(ip ,deltaT ,Fs,scCH1 ,1,freq_opt);

57 comp_proc = tek_proc_autophase(comp_raw ,tstep ,fitrange);

58

59 comp_resp = tek_combine(comp_raw ,comp_proc);

60

61 figure (5)

62 plot (1: length(comp_resp.Y),[real(comp_resp.Y);imag(comp_resp.Y)])

63 title('Downmixing of Compensated pulse ');

64 pause (0.1)

65 clear comp_raw comp_proc

66

67

68 fprintf('### Compensated Pulse. Press Enter to continue !')

69

70 pause

71

72

73 %% Generation of Compensated PMLG pulse with shaped phase ramps

74 % generates 3 PMLG pulses and takes the middle one to be exported

75

76 CCC=a2_gen_PMLG_ramp_angle (8e-6,50e-9,0,acos (1/ sqrt (3)) ,125e3);

77 CCCp=a2_gen_PMLG_ramp_angle (8e-6,50e-9,0.4e-6,acos (1/ sqrt (3)) ,125e3);

78 [CCCc]= a2_perform_compensation(mls ,CCCp ,cutoff);

79 exportrange1 = a12_exporttotopspin_3shape(CCCc.shape ,12+ CCCc.np /3+[1 CCCp.np

/3],60,120,'./ shapes/','compPMLG_ramp_corr_thetam ',tstep ,commentstr ,0);

80 exportrange1 = a12_exporttotopspin_3shape(CCC.wanted ,10+ CCC.np /3+[1 CCC.np

/3] ,120 ,120,'./ shapes/','PMLG_ramp_thetam_100 ',tstep ,commentstr ,0);

81 o1_write_paramfile('.param',username ,'zg_1shape ','compPMLG_ramp_corr_thetam.shape',freq

,CCCc.np/3,tstep ,plw_rf ,ns ,1,1)

82

83 o1_copyshapes('./ shapes /*PMLG*. shape')

84 o1_copyshapes( './ shapes /. param' );

85 pause (1)

86 o1_triggerscope ()

87 pause (5)

88 comppmlg_raw = tek_read_trigg(ip ,deltaT ,Fs,scCH1 ,1,freq_opt);

89 comppmlg_proc = tek_proc_autophase(comppmlg_raw ,tstep ,fitrange);

90 comppmlg_resp = tek_combine(comppmlg_raw ,comppmlg_proc);

91
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92

93 figure (6)

94 subplot (211)

95 plot (1: length(comppmlg_resp.Y) ,[abs(comppmlg_resp.Y)])

96 subplot (212)

97 plot (1: length(comppmlg_resp.Y) ,[angle(comppmlg_resp.Y)])

98

99 save -append parameters.mat fitrange exportrange1

100 eval(['save ',fname , timepoint_now ' -append *_resp '])

101

102

103 fprintf('### Compensated PMLG Pulse!')

E.2. Additional MATLAB Scripts

E.2.1. Data Handling of Shape Files

a1_find_start.m
1 %% Find rising edge of reference pulse of MLS sequence (or start of cw pulse)

2 %

3 % Input :

4 % data = struct containing field .y or single.y1 with downsampled data

5 % tau_plateau = time , where pulse is not distorted (plateau of

6 % recangular pulse) in sec

7 %

8

9 function [idx ,phaserange ]= a1_find_start(data , tau_plateau)

10 tau_trans = 2.5; % approximate transient time in us

11 if isfield(data ,'y')

12 y = abs(data.y);

13 else

14 y = abs(data.single.y1);

15 end

16 tstepu = data.t(2) ; % timestep in us

17 tau_plateau = tau_plateau *1e6; % time in us

18

19

20 a = max( y ); % Maximum Amplitude of signal

21 idx = find( y >0.1*a,1,'first'); % find rising edge of reference pulse

22

23

24 % Should be in the middle of reference pulse

25 phaserange = idx+floor(tau_trans/tstepu)+(1: floor(tau_plateau/tstepu));
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a1_find_start_cw.m
1 %% Find start of cw pulse

2 %

3 % Input :

4 % data = struct containing field .y or single.y1 with downsampled data

5 % tau_plateau = time , where pulse is not distorted (plateau of

6 % recangular pulse) in sec

7 %

8

9 function [idx ,phaserange ]= a1_find_start_cw(data , tau_plateau)

10 tau_trans = 2.5; % approximate transient time in us

11 if isfield(data ,'y')

12 y = abs(data.y);

13 else

14 y = abs(data.single.y1);

15 end

16 tstepu = data.t(2) ; % timestep in us

17 tau_plateau = tau_plateau *1e6; % time in us

18

19

20 a = max( y ); % Maximum Amplitude of signal

21 idx = find( y >0.1*a,1,'first'); % find rising edge of reference pulse

22

23

24 % Should be in the middle of reference pulse

25 phaserange = idx +30* floor(tau_trans/tstepu)+(1: floor(tau_plateau/tstepu));

a1_makemls.m
1 %% Generate Bruker shape file with MLS sequence

2 % contains a reference pulse of length tau_ref and 4 repetitions of a mls

3 % sequence generated by mls_seed.

4 % Input:

5 % mls_seed = vector of length n containing only ones and zeros

6 % used to generate MLS -n sequence; n_max of 32 supported

7 % tstep = time resolution for MLS sequence in s, eg 50e-9 for 50ns

8 % scrf = scaling of MLS amplitude relative to reference pulse , eg

9 % 0.5 for 50% scaling

10 % tauref = length of reference pulse in seconds , ege 10e-6 for 10us

11 %

12 % Output:

13 % mls_in = one MLS -n cycle

14 % mls_out = reference pulse and 4 MLS cycles

15 %

16

17 function [mls_in ,mls_out ]= a1_makemls(mls_seed ,tstep ,scrf ,tauref)

18

19 np_ref=floor(tauref/tstep);
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20 np_delay=floor (10e-6/ tstep); % 10 us delay between ref pulse and start of MLS to

account for ring down

21 tstep=tstep/1e-9;

22

23 [c,seq]=LFSR( mls_seed );

24 LL=length(seq);

25 p=seq;

26 p(p==1)=-1;

27 p(p==0) =1;

28 mls_in=p;

29

30 comstring =['MLS -',num2str(length(mls_seed)), ', Input Seed: [',num2str(mls_seed),']'];

31 mls_out =[ones(1,np_ref),zeros(1,np_delay),mls_in*scrf ,mls_in*scrf ,mls_in*scrf];

32 a12_exporttotopspin_3shape(mls_out ,[1 length(mls_out)],100,100, './ shapes/', ['mls',

num2str(length(mls_seed))] ,tstep*1e9 ,comstring ,0);

33 a12_exporttotopspin_3shape(ones(size(mls_out)) ,[1 length(mls_out)],scrf *100,100, './

shapes/', ['cw_mls ',num2str(length(mls_seed))] ,tstep*1e9 ,'CW pulse ' ,0);

34

35 fprintf ([' ### MLS Sequence and CW pulse stored in directory ''./ shapes ''! ###\

n'...

36 ' ### Copy them to the Spectrometer and start pulsing a ' num2str(length(

mls_out)*tstep /1000) 'us CW pulse! ###\n'])

37

38

39 %% Generate MLS Sequence

40 % script taken from MatlabCentral

41 %

42 % Copyright (c) 2010, Nikesh Bajaj

43 % All rights reserved.

44 %

45 % Redistribution and use in source and binary forms , with or without

46 % modification , are permitted provided that the following conditions are

47 % met:

48 %

49 % * Redistributions of source code must retain the above copyright

50 % notice , this list of conditions and the following disclaimer.

51 % * Redistributions in binary form must reproduce the above copyright

52 % notice , this list of conditions and the following disclaimer in

53 % the documentation and/or other materials provided with the distribution

54 % * Neither the name of the AMU nor the names

55 % of its contributors may be used to endorse or promote products derived

56 % from this software without specific prior written permission.

57 %

58 % THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"

59 % AND ANY EXPRESS OR IMPLIED WARRANTIES , INCLUDING , BUT NOT LIMITED TO , THE

60 % IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE

61 % ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE

62 % LIABLE FOR ANY DIRECT , INDIRECT , INCIDENTAL , SPECIAL , EXEMPLARY , OR

63 % CONSEQUENTIAL DAMAGES (INCLUDING , BUT NOT LIMITED TO, PROCUREMENT OF

64 % SUBSTITUTE GOODS OR SERVICES; LOSS OF USE , DATA , OR PROFITS; OR BUSINESS

65 % INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY , WHETHER IN
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66 % CONTRACT , STRICT LIABILITY , OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

67 % ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE , EVEN IF ADVISED OF THE

68 % POSSIBILITY OF SUCH DAMAGE.

69

70

71 function[c,seq]=LFSR(s)

72 %s=initial state of LFSR , you can choose any lenght of LFSR

73 %example: s=[1 1 0 0 1] for 5 bit LFSR

74 %t=tap positions , e.g.t=[5 2]

75 % c will be matrix containing the states of LFSR raw wise

76 % seq= generated sequence

77 %-----------------------------------------------------------

78 % If any doubt , confusion or feedback please contact me

79 % NIKESH BAJAJ

80 % bajaj.nikkey@gmail.com (+91 -9915522564)

81 % Asst. Professor at Lovely Profesional University

82 % Masters from Aligarh Muslim University ,INDIA

83 %--------------------------------------------------

84

85 tap2 =[0 ,1];

86 tap3 =[0 ,2];

87 tap4 =[0 ,3];

88 tap5 =[1 ,4];

89 tap6 =[0 ,5];

90 tap7 =[0 ,6];

91 tap8 =[1,2,3,7];

92 tap9 =[3 ,8];

93 tap10 =[2 ,9];

94 tap11 =[1 ,10];

95 tap12 =[0 ,3,5,11];

96 tap13 =[0 ,2,3,12];

97 tap14 =[0 ,2,4,13];

98 tap15 =[0 ,14];

99 tap16 =[1 ,2,4,15];

100 tap17 =[2 ,16];

101 tap18 =[6 ,17];

102 tap19 =[0 ,1,4,18];

103 tap20 =[2 ,19];

104 tap21 =[1 ,20];

105 tap22 =[0 ,21];

106 tap23 =[4 ,22];

107 tap24 =[0 ,2,3,23];

108 tap25 =[7 ,24];

109 tap26 =[0 ,1,5,25];

110 tap27 =[0 ,1,4,26];

111 tap28 =[2 ,27];

112 tap29 =[1 ,28];

113 tap30 =[0 ,3,5,29];

114 tap31 =[2 ,30];

115 tap32 =[1 ,5,6,31];

116
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117 n=length(s);

118 eval(['t=1+tap',num2str(n),';']);

119

120 fprintf(' # Taps at Positions: [ ');

121 c(1,:)=s;

122 m=length(t);

123 for i=1:m

124 fprintf ([ num2str(t(i)),' ']);

125 end

126 fprintf(']\n');

127

128

129 for k=1:2^n-2;

130 b(1)=xor(s(t(1)), s(t(2)));

131 if m>2;

132 for i=1:m-2;

133 b(i+1)=xor(s(t(i+2)), b(i));

134 end

135 end

136 j=1:n-1;

137 s(n+1-j)=s(n-j);

138 s(1)=b(m-1);

139 c(k+1,:)=s;

140 end

141 seq=c(:,n) ';

142 %-------------------------------------------------------

143 % VERIFICATION

144 %--------------------------------------------------------

145 %Verification

146 m=length(seq);

147 code= seq;

148 %Balance Property

149 Ns=0; % number of 1s

150 Zs=0; % number of 0s

151 for k=1:m

152 if seq(k)==1;

153 Ns=Ns+1;

154 else

155 Zs=Zs+1;

156 end

157 end

158 if Ns==Zs+1

159 % disp('The Code satisfies Balance Property ')

160 else

161 disp('# Warning: The Code does NOT satisfy Balance Property ')

162 end

163 % fprintf(' number of 1s and 0s are %i %i \n\n',Ns ,Zs)

164 %Run Length Property

165 b=code;

166 r(1:20) =0;

167 i=1;
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168 while b(1)==b(m);

169 b=circshift(b, [1 1]);

170 end

171 if b(m)==0;

172 b(m+1) =1;

173 else

174 b(m+1) =0;

175 end

176 for k=1:m;

177 if b(k)==b(k+1);

178 i=i+1;

179 else

180 r(i)=r(i)+1;

181 i=1;

182 end

183 end

184 i=0;

185 while r(20-i)==0;

186 r(20-i)=[];

187 i=i+1;

188 end

189 l=length(r);

190 p=0;

191 for k=1:l-2

192 if r(k)==2*r(k+1)

193 p=p+1;

194 end

195 end

196 if r(l-1)==r(l);

197 p=p+1;

198 end

199

200 if p==l-1;

201 % disp('The code satisfies RUN LENGTH property ')

202 else

203 disp('# Warning: The code does NOT satisfy RUN LENGTH property ')

204 end

205 % fprintf(' The run length is as follow\n')

206 %disp(r);

207 %Autocorrelation

208 rx=code;

209 for k=1:2*m+1;

210 ry=circshift(rx, [1 k-1]);

211 a=0;

212 d=0;

213 for i=1:m;

214 if rx(i)==ry(i);

215 a=a+1;

216 else

217 d=d+1;

218 end
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219 end

220 rxx(k)=(a-d)/m;

221 end

222 %y=0;

223 %n=0:0.1:2*m+1;

224

225

226 %plot(-m:m,rxx)

227 %hold on

228 %plot(n,y,'-k', 'linewidth ',2)

229 %line([-m-1 m+1], [0 0], [1 1],'color ', 'k')

230 %title('Autocorrelation of sequence ')

231 %xlabel('Shift ')

232 %ylabel('Autocorreleation Function ')

233 %hold off

234 %axis([-m m min(rxx) -.02 1+.2])

235 p3=0;

236 if rxx(2:m)== -(1/m);

237 p3=1;

238 end

239 if p3==1;

240 %disp('The Code satisfies the Autocorrelation Property ')

241 else

242 disp('# Warning: The Code does NOT satisfy the Autocorrelation Property ')

243 end

a12_deconv.m
1 function [x,H,Y,X,window1 ]= a12_deconv(h,y,np,sc)

2

3 [ax ,bx]=size(y);

4 if ax>bx

5 y=y.'; % check input

6 end

7

8 [ah ,bh]=size(h);

9 if ah>bh

10 h=h.'; % check input

11 end

12

13

14 Y= fftshift(fft(y,np));

15 H= fftshift(fft(h,np));

16 X= (Y)./ (H);

17

18

19

20 window1=ones(1,np);

21

22
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23 % adaptive filter cutoff

24

25 if sc ~= 0

26

27 window1(abs(H)<sc*max(abs(H)))=0;

28 end

29

30 x=ifft(ifftshift( X.* window1 ) );

a12_exporttotopspin_3shape.m
1 %% Export Function

2 %

3 % Input

4 % shape : rf field (vector of complex numbers)

5 % range : if vector of length 2 -> start and end of shape

6 % rf_wanted : rf -field in kHz , that plateau should correspond to

7 % rf_topspin : rf_field specified by Powerlevel in Topspin (corresponding

8 % to value of 100 in shape)

9 % fol : export folder

10 % fname : file name for export (ending .shape will be attached

11 % automatically)

12 % timestep : timestep for shape in seconds , eg. 50e-9 fpr 50ns

13 % commentstr : description to be put in the shape file

14 % checkrange : set to 1 to manually check selected ranges in vector

15 % before export

16

17 function range=a12_exporttotopspin_3shape(shape ,range ,rf_wanted ,rf_topspin ,fol ,fname ,

timestep ,commentstr ,checkrange)

18

19

20 if ismember(commentstr ,['',' ' ,0])

21 commentstr =['compensation ' datestr(now)];

22 end

23 timestep=timestep /1e-9;

24

25 fname=fullfile(fol ,fname);

26

27 % Convert to Amplitude / Phase Data

28 amp=abs(shape);

29 ph=(angle(shape)*180/pi);

30

31 ascale =100* rf_wanted/rf_topspin;

32

33 if max(amp*ascale) > 100

34 fprintf('# ATTENTION: VALUE (%.2f) IN SHAPE > 100 ! \n', max(amp*ascale));

35 else

36 if(range ==2) % single shape export

37 fprintf(' ### Exporting full shape \n')

38 if ismember(checkrange ,['y','Y' ,1])
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39 range=a2_ask_for_correct_range(range ,amp);

40 range=[range (1) range(end)];

41 end

42 write_shape_file(fname , amp , ph, ascale , commentstr , range)

43

44

45 else

46 error(' ### Length of range must be 2 (single shape export)!\n')

47 end

48

49

50

51 end

52

53

54 %Output file also specified to TopSpin 3.5 and higher

55

56 function write_shape_file(fname , amp , ph, ascale , commentstr , range)

57 % Write Outputfile

58 fid=fopen( [fname '.shape '] ,'w');

59 fprintf(fid ,'##TITLE= Externally Generated Shape \n');

60 fprintf(fid ,'##JCAMP -DX= 5.00 Bruker JCAMP library\n');

61 fprintf(fid ,'##DATA TYPE= Shape Data\n');

62 fprintf(fid ,['## ORIGIN= ',commentstr , '\n']);

63 fprintf(fid ,'##OWNER= <johe >\n');

64 fprintf(fid ,['##DATE= ',datestr(today),' \n']);

65 fprintf(fid ,'##TIME= 00:00:00\n');

66 fprintf(fid ,['##$ SHAPE_PARAMETERS= \n']);

67 fprintf(fid ,'##MINX= 0.000000 E00\n');

68 fprintf(fid ,'##MAXX= 1.000000 E02\n');

69 fprintf(fid ,'##MINY= 0.000000 E00\n');

70 fprintf(fid ,'##MAXY= 3.600000 E02\n');

71 fprintf(fid ,'##$ SHAPE_EXMODE= Excitation\n');

72 fprintf(fid ,'##$ SHAPE_TOTROT= 1.800000 E02\n');

73 fprintf(fid ,'##$ SHAPE_TYPE= Inversion\n');

74 fprintf(fid ,'##$ SHAPE_USER_DEF= \n');

75 fprintf(fid ,'##$ SHAPE_REPHFAC= \n');

76 fprintf(fid ,'##$ SHAPE_BWFAC= 0.000000 E00\n');

77 fprintf(fid ,'##$ SHAPE_BWFAC50= \n');

78 fprintf(fid ,'##$ SHAPE_INTEGFAC= 0.000000 E00\n');

79 fprintf(fid ,'##$ SHAPE_MODE= 0\n');

80 fprintf(fid ,['## NPOINTS= ',num2str(range(end)-range (1)+1),' \n']);

81 fprintf(fid ,'## XYPOINTS= (XY..XY)\n');

82

83 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

84

85 for i=range (1): range(end)

86 fprintf (fid ,'%E, %E\n',amp(i)*ascale ,mod(ph(i) ,360));

87 % fprintf (fid ,'%E, %E\n',amp(i)*ascale , ph(i) );

88

89 end
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90 fprintf(fid ,'##END= \n');

91

92 fclose(fid);

a2_ask_for_correct_range.m
1 function rr2=a2_ask_for_correct_range(rr2_in ,h_blc)

2

3 figure (1)

4 plot (1: length(h_blc),[real(h_blc);imag(h_blc)])

5 hold on

6 plot([ rr2_in (1) rr2_in (1)], 1.1*[ min([real(h_blc),imag(h_blc)]) max([real(h_blc),imag(

h_blc)])],'k--' )

7 plot([ rr2_in(end) rr2_in(end)], 1.1*[ min([real(h_blc),imag(h_blc)]) max([real(h_blc),

imag(h_blc)])],'k--' )

8 hold off

9

10

11 reply = input([' ### Is the pre -selected region [',num2str(min(rr2_in)),':',num2str(max

(rr2_in)),'] okay? Y/N [Y]: '], 's');

12 if isempty(reply)

13 reply = 'Y';

14 end

15 rr2=rr2_in;

16

17 if ismember(reply ,['Y','y','yes'])~=1

18 q=0;

19 while q==0

20 x_s=input(' ### First point? ');

21 x_e=input(' ### Last point? ');

22 if isempty(x_s) || isempty(x_e)

23 q=0; % stay in loop

24 else

25 rr2=floor(x_s):floor(x_e);

26 q=1; % leave the loop

27 end

28

29 end

30

31 else

32 rr2=rr2_in;

33 end

34

35 if (rr2(1) < 1 )

36

37 rr2 =1:rr2(end);

38 fprintf ([' ### Lower limit exceeds size of shape. It was set to ' num2str(rr2

(1)) '! \n'])

39 end

40
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41 if (rr2(end) > length(h_blc))

42 rr2 =rr2 (1) : length(h_blc);

43 fprintf ([' ### Upper limit exceeds size of shape. It was set to ' num2str(rr2(

end)) '! \n'])

44 end

45

46

47 figure (1)

48 plot (1: length(h_blc),[real(h_blc);imag(h_blc)])

49 hold on

50 plot([rr2(1) rr2(1)], 1.1*[ min([real(h_blc),imag(h_blc)]) max([real(h_blc),imag(h_blc)

])],'k--' )

51 plot([rr2(end) rr2(end)], 1.1*[ min([real(h_blc),imag(h_blc)]) max([real(h_blc),imag(

h_blc)])],'k--' )

52 hold off

a2_gen_ashaped_pulse_flipangle.m
1 function [target_shape , scale]= a2_gen_ashaped_pulse_flipangle(pulse_length ,tstep ,

edge_time ,ph)

2

3

4 ns=floor(pulse_length/tstep);

5 ns_edge=round(edge_time/tstep);

6

7 if edge_time ~=0

8

9 amplitude1=ones(1,ns);

10 phase1=ones(1,ns)*ph;

11 sinedge=sin(((- ns_edge /2+1):( ns_edge /2-1))/2/( ns_edge)*2*pi);

12

13 amplitude1 (1:( ns_edge -1))=( sinedge +1)/2;

14 amplitude1(ns-ns_edge +2:ns)=(-sinedge (1:end)+1) /2;

15 %amplitude1(ns)=0;

16

17 else

18

19 amplitude1=ones(1,ns);

20 phase1=ones(1,ns)*ph;

21

22 end

23

24 scale=sum(amplitude1)/ns;

25 pulse=amplitude1 .*exp(complex(0,phase1));

26

27

28 target_shape.wanted = zeros (1,2^ nextpow2(length(pulse)+10));

29 target_shape.wanted (10+(1: length(pulse))) = pulse;

30 target_shape.np = length(pulse);

31 target_shape.tau_p = pulse_length;
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32 target_shape.tstep = tstep;

33 target_shape.tau_edge = edge_time;

a2_gen_PMLG_ramp_angle.m
1 function [target_shape ]= a2_gen_PMLG_ramp_angle(p_length ,tstep ,edge_time ,psi ,nu_eff)

2

3 np=floor(p_length/tstep);

4 ns_edge = floor(edge_time/tstep);

5 total_a=zeros (1,2*np);

6 total_ph=zeros (1,2*np);

7

8 [~, a90 ,~]= gen_ampshaped_pulse1(np,ns_edge ,0);

9

10 sc90 = np/sum(a90);

11

12 total_a (1:np)=sc90*a90;

13

14 nu_eff_app=total_a (1:np)*nu_eff;

15 nu_1=sin(psi)*nu_eff_app;

16 nu_off=sqrt(nu_eff_app .^2-nu_1 .^2);

17 total_ph (1:np)=cumtrapz(tstep /2: tstep:p_length -tstep/2,nu_off (1:np)*2*pi);

18

19 total_a (np+(1:np))=sc90*a90;

20 total_ph(np+(1:np))=fliplr(cumtrapz ((tstep /2: tstep :(p_length -tstep /2)),fliplr(nu_off (1:

np))*2*pi))+pi;

21

22 %total_sym = (total_a .*exp(complex(0,mod(total_ph ,360) /180*pi)));

23 total_sym = (total_a .*exp(1i*total_ph));

24 fprintf (['total pulse length= ' num2str(p_length *2/1e-6) ' mus , rf=' num2str(nu_eff*sin

(psi)) ' kHz \n'])

25

26 target_shape.wanted = total_sym;

27 target_shape.np = length(total_sym)*3;

28 target_shape.tau_p = p_length;

29 target_shape.tstep = tstep;

30 target_shape.tau_edge = edge_time;

31

32

33

34 function [pulse ,amplitude1 ,phase1 ]= gen_ampshaped_pulse1(ns,ns_edge ,ph)

35

36

37

38 if ns_edge ~=0

39

40 amplitude1=ones(1,ns);

41 phase1=ones(1,ns)*ph;

42 sinedge=sin(((- ns_edge /2+1):( ns_edge /2-1))/2/( ns_edge)*2*pi);

43
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44 amplitude1 (1:( ns_edge -1))=( sinedge +1)/2;

45 amplitude1(ns-ns_edge +1:ns -1)=(-sinedge +1)/2;

46 amplitude1(ns)=0;

47

48 else

49

50 amplitude1=ones(1,ns);

51 phase1=ones(1,ns)*ph;

52

53 end

54

55 pulse=amplitude1 .*exp(complex(0,phase1));

a2_perform_compensation.m
1 function [comp]= a2_perform_compensation(mls ,target_shape ,cutoff)

2

3 scrf = mls.input.scrf;

4 h = mls.h_blc;

5

6 comp.wanted = target_shape.wanted;

7 comp.h = h;

8 comp.rr2 = mls.rr2;

9 comp.cutoff = cutoff;

10 comp.np = target_shape.np;

11

12

13 comp.shape = a12_deconv( comp.h(comp.rr2),comp.wanted ,length(comp.wanted),cutoff);

14

15 comp.shape = a2_shift_shape(comp.wanted ,comp.shape);

16 comp.idx = find_shapestart(comp.shape);

17 comp.shape = comp.shape*scrf;

18 comp.shape = comp.shape./mean(abs(comp.shape(comp.idx +0.5* comp.np +(1:10))));

19 figure (2)

20 plot (1: length(comp.shape),[real(comp.shape );imag(comp.shape);real(comp.wanted)])

21

22

23

24 function [idx]= find_shapestart(shapedata)

25 a = max(abs(shapedata)); % Maximum Amplitude of signal

26 idx = find(shapedata >0.05*a,1,'first'); % find rising edge of reference pulse

a2_shift_shape.m
1 %% Shift compensated shape such it overlays with target.

2 %

3 function comp_out=a2_shift_shape(target_in ,comp_in)

4
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5

6 [c,lags] = xcorr(abs(target_in),abs(comp_in)); % c is the correlation , should have a

clear peak

7 s = lags(c==max(c)); % s is the shift we need

8

9

10 if isrow(comp_in)

11 comp_out = circshift(comp_in.',s).';

12 else

13 comp_out = circshift(comp_in ,s);

14 end

E.2.2. Communication with the Spectrometer Computer

o1_copyshapes.m
1 % copy shapefile to spectrometer

2

3 function o1_copyshapes(fname)

4

5 eval(['!cp ' fname ' ~/ spcmount/' ])

o1_mountspectrometer.m
1 %% Mount spectrometer waveform folder on local machine

2 % Adjusted for NMR net at ETH

3 %

4 % username : spectrometer operator , e.g. 'johe '

5 % machine : computer name , e.g. 'oersted ' or 'flory '

6 % path_to_topspin : path to topspin main folder , usually: /opt/topspin3.X

7

8 function o1_mountspectrometer(username ,machine ,path_to_topspin)

9

10

11 if exist('/home/transient/spcmount ','dir')

12 !fusermount -u /home/transient/spcmount

13 !yes | rm -r /home/transient/spcmount

14 end

15 mkdir /home/transient/spcmount

16

17 eval(['!sshfs ' username '@' machine '.ethz.ch:' path_to_topspin '/exp/stan/nmr/lists/

wave/user /home/transient/spcmount/'])

o1_triggerscope.m
1 function o1_triggerscope ()
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2

3

4 % create serial port object

5 s=serial('/dev/ttyS0 ','DataBits ' ,8);

6 % connect serial port

7 fopen(s);

8

9 % give out trigger signal

10 fwrite(s,1)

11

12 % close object and delete from memory

13 fclose(s);

14 delete(s);

15

16

17 % Accoustic feedback

18 Fs =8192;

19 y1= sin (0:1000).';

20 soundsc(y1,Fs);

o1_write_paramfile.m
1 %% Write Prameterfile

2 %

3 % DISCLAIMER: this only works with Topspin Versions 3.5 and higher !!!

4 %

5 % Input:

6 % fname : filename , AU program looks for .param_cw , .param_mls ,

7 % .param_uncomp , .param_comp

8 % username : name of topspin user , eg. 'jowi '

9 % pulpro : name of pulse program , eg. 'zg_1shape '

10 % spnam : name of pulse program , eg. 'comp.shape '

11 % freq : carrier frequency in Hz, eg. 75.12346 e6

12 % np : number of points of shape , eg. 200

13 % tstep : timestep in seconds , eg. 50e-9

14 % plw : rf amplitude in Watt , eg. 50

15 % ns : number of scans for averaging of shape

16 % d1 : recycle delay between scans in seconds

17 % go_on : continue (=1) or stop (=0) optimization

18 function o1_write_paramfile(fname ,username ,pulpro ,spnam ,freq ,np,tstep ,plw ,ns ,d1,go_on)

19

20 fid=fopen(['./ shapes/' fname],'w');

21 fprintf(fid ,'%d\n',go_on);

22 fprintf(fid ,'%s\n',username);

23 fprintf(fid ,'%s\n',pulpro);

24 fprintf(fid ,'%s\n',spnam);

25 fprintf(fid ,'%f\n',freq/1e6);

26 fprintf(fid ,'%d\n',np);

27 fprintf(fid ,'%f\n',tstep*1e6);

28 fprintf(fid ,'%f\n',plw);
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29 fprintf(fid ,'%d\n',ns);

30 fprintf(fid ,'%f\n',d1);

31

32 fclose(fid);

E.2.3. Data Recording with Tektronix Oscilloscope

tek_calcfreq.m
1 %% Determine optimal frequency for mixing down

2 %

3 % Input:

4 % procdata = output from tek_read , should be a digitized CW pulse

5 % range = cw range (no transients) for fit

6 %

7 % Output:

8 % deltaf = difference frequency

9 function deltaf=tek_calcfreq(procdata ,range)

10

11

12 % linear fit of phase

13 a=polyfit(procdata.t(range),phase(procdata.y(range)) ,1);

14 % slope of phase is the difference frequency

15 deltaf=a(1) /2/pi/1e-6; %1e-6 convertes from us to seconds (t is in us)

tek_combine.m
1 %% Combine raw and processed data

2 % Input

3 % rawdata = output from tek_read ()

4 % procdata = output from tek_proc ()

5 %

6 % Output

7 % data = combination of both

8

9 function data=tek_combine(rawdata ,procdata)

10

11 data.raw = rawdata.single;

12 data.raw.t = rawdata.t;

13

14 data.proc = procdata.single;

15 data.proc.t = procdata.t;

16

17 data.param = rawdata.param;

18 data.param.tstep = procdata.param.tstep;

19 data.param.phaserange = procdata.param.phaserange;

20

21 data.y = procdata.y;
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22 data.t = procdata.t;

23

24 if isfield(procdata ,'input')

25 data.input.mls=procdata.input.mls_in;

26 data.input.scrf=procdata.input.scrf;

27 data.h=procdata.h;

28 data.h_blc=procdata.h_blc;

29 end

30 if isfield(procdata ,'rr2')

31 data.rr2=procdata.rr2;

32

33 end

tek_proc_autophase.m
1 %% Mixing down of recorded data

2 %

3 % Input:

4 % rawdata = output -struct of tek_read ()

5 % tstep = time resolution for mixed -down data in seconds ,

6 % eg. 50e-9 for 50ns

7 % refpulse = length of reference pulse in downsampled data , eg 200 points

8 % if refpulse is a vector it is the range where phase is

9 % set to zero

10 % Output:

11 % procdata = struct containing processed data

12 % .param = time resolution in s

13 % .single.y(i) = processed data of single scans i

14 % .y = average over .single.y(i)

15 % .t = time axis

16

17 function procdata=tek_proc_autophase(rawdata ,tstep ,phaserange)

18 procdata.param.tstep=tstep;

19 tstep=tstep/1e-9;

20 y_proc =0;

21

22 for k=1: rawdata.param.ns

23

24 [y,t,phaserange1 ]= proc_rawdata(rawdata.single .(['y' num2str(k)]),...

25 rawdata.param.Fs,rawdata.param.freq ,...

26 tstep ,phaserange);

27 procdata.single .(['y' num2str(k)]) = y;

28 y_proc=y_proc+y;

29

30 end

31 procdata.t=t;

32

33 procdata.y=y_proc /( rawdata.param.ns);

34 procdata.param.phaserange=phaserange1;

35 fprintf('### Processing finished! ###\n');
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36

37

38 % Process Measured Transients to a format , which can be used for plotting

39 % and further procesing.

40

41 % ns : Number of measured transients (Averaging for better S/N), np=1:5

42 % Fs : Sampling Rate. eg. sr=2.5e9 for 2.5 Gigasamples

43 % freq : Carrier Frequency , e.g. freq= 75.2394 e6

44 % tstp : Time -Step of output shape in NANO -seconds! eg tstp = 50 for 50 ns

45 % phaserange: range of first pulse to determine correct phase

46

47

48 function [shape_trans ,t_trans ,phaserange ]= proc_rawdata(tmp ,Fs,freq ,tstp ,phaserange)

49

50

51

52

53 x=length(tmp);

54 [s]=max(abs(tmp));

55

56 t=(0:(x-1))/Fs; % generate time -base

57

58

59

60

61 % chek if final output time step makes sense

62 [~,posi] = min( abs(t-tstp*1e-9) );

63 if (rem(x,posi -1) ~=0)

64 error('Error: Timestep nor comensurate with number of Points ');

65 end

66

67

68

69 refr = s*cos ((2*pi*freq*t));

70 refi = s*sin ((2*pi*freq*t));

71

72

73 %% Generate lowpass filter

74

75 % Filter Design such that pass band ends at 80% of the carrier frequency

76 % and stop band is at 120% of the carrier frequency

77

78 fpass =2*0.8* freq/ Fs;

79 fstop =2*1.2* freq/ Fs;

80

81 % pass -band variation in dB

82 Ppass =0.001;

83 % stop -band attenuation in dB

84 Pstop =50;

85

86 % lowpass filter desing
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87 Hf=fdesign.lowpass('Fp,Fst ,Ap ,Ast',fpass ,fstop ,Ppass ,Pstop);

88 Heq=design(Hf,'butter ');

89

90

91 % Baseline -Correction;

92 tmp=tmp -(sum(tmp)/x);

93

94 % Multiply with carrier and form complex signal

95 tmp=squeeze ((refr.*tmp)+1i*(refi.*tmp));

96

97 % Apply the filter forward and backward for zero -phase filtering

98 tmp=filter(Heq ,tmp);

99 tmp=flipdim(filter(Heq ,flipdim(tmp ,2)) ,2);

100 tmp=mean(reshape(tmp ,posi -1,x/(posi -1))); % Get shape with desired timestep

101

102 % Phase the signals to the same reference phase

103 if numel(phaserange)==1

104 %idx_k=phaserange;

105 refp=zeros(size(tmp));

106 refp (100+(1: phaserange))=1;

107 [corr1 ,corrax ]=xcorr(refp ,tmp);

108 phaserange =100- corrax(corr1==max(corr1))+( floor (0.25* phaserange):floor (0.75*

phaserange));

109 end

110 p=mean(phase(tmp( phaserange ) ));

111 tmp=tmp*exp(-1i*p);

112 tmp=tmp./mean(abs(tmp( phaserange )));

113

114

115

116

117 t_trans=t(1:posi -1:x)*1e6;

118 shape_trans=tmp;

tek_read_trigg.m
1 %% Establish VXI connection to scope , read data from Channel1 and process it

2 %

3 % Input:

4 % deltaT = acquistion length of scope in seconds , eg. 20e-6 for 20us

5 % Fs = sample rate of scope in Samples/s, eg. 5e9 for 5Gs/s

6 % scCH1 = scaling of Channel 1 in Volts/div , eg. 0.1

7 % ns = number of transients , eg. 5 for 5 transients

8 %

9 % Output:

10 % data = struct containing important parameters and rawdata

11 % .param : channel impedance , trigger position , record length , sampling

12 % frequency and number of scans

13 % .single: .y(i) = rawdata of single scans i

14 % .t = corresponding time axis
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15

16 function data=tek_read_trigg(ip ,deltaT ,Fs,scCH1 ,ns,freq)

17

18 twait =1.5; % seconds delay between two measurements (should be bigger than

D1)

19 timeout =30; % timeout in seconds

20

21 [deviceObj ,interfaceObj ]= tek_connect(ip);

22

23

24 data.param = tek_setpara(deviceObj ,interfaceObj ,deltaT ,Fs ,scCH1);

25 data.param.freq = freq;

26 data.param.ns = ns;

27 data.param.time = datestr(now);

28 data.param.ip = ip;

29

30 % empty record to warm up scope

31 set(deviceObj.Acquisition (1), 'State', 'run');

32

33

34 for k=1:ns

35 [data.single .(['y' num2str(k)]),t]=...

36 tek_record(deviceObj ,interfaceObj ,twait ,timeout);

37 end

38 data.t=t;

39

40

41 disconnect(deviceObj);

42 delete ([ deviceObj interfaceObj ]);

43

44 fprintf('### All data Recorded! ###\n');

45 clear rawdata proc param Fs tstep y t ns freq deltaT k phaserange

46

47 %% Connect to Scope

48 % Input

49 % ip = ipaddress of scope , eg. '169.254.221.43 '

50

51 function [deviceObj ,interfaceObj ]= tek_connect(ip)

52

53 % one might need to change this if different visa interface is used!

54 interfaceObj = instrfind('Type', 'visa -tcpip', 'RsrcName ', ['TCPIP0 ::',num2str(ip),'::

inst0::INSTR '], 'Tag', '');

55

56 % Create the VISA -TCPIP object if it does not exist

57 % otherwise use the object that was found.

58 if isempty(interfaceObj)

59 interfaceObj = visa('NI', ['TCPIP0 ::',num2str(ip),'::inst0::INSTR ']);

60 else

61 fclose(interfaceObj);

62 interfaceObj = interfaceObj (1);

63 end
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64

65 % Create a device object.

66 deviceObj = icdevice('tektronix_tds7104_johe.mdd', interfaceObj);

67

68 % Disconnect device object from hardware.

69 disconnect(deviceObj);

70

71

72 interfaceObj = get(deviceObj , 'interface ');

73

74 % Allow for a 10 ,000 point waveform with a little extra room.

75

76 set(interfaceObj , 'InputBufferSize ', 20000000);

77

78 connect(deviceObj);

79

80

81 if strcmp( deviceObj.Status , 'open') == 1

82 fprintf('### Connection Established Successfully! ###\n')

83 end

84

85

86

87 %% Set Parameters on scope

88 % deltaT = time in sec which we want to acquire

89 % Fs = sampling rate in Samples/s

90 % scCH1 = volts per div for channel 1 scaling

91 % set Impedance to 50 Ohm on every Channel

92

93 function para=tek_setpara(deviceObj ,interfaceObj ,deltaT ,Fs,scCH1)

94

95

96 recL=deltaT*Fs;

97

98 set(deviceObj.Channel (1), 'Impedance ', 'fifty');

99 set(deviceObj.Channel (4), 'Impedance ', 'fifty');

100

101 set(deviceObj.Acquisition (1), 'Control ', 'single ');

102 set(deviceObj.Acquisition (1), 'Mode', 'sample ');

103

104 set(deviceObj.Trigger (1), 'Mode', 'normal ');

105 set(deviceObj.Trigger (1), 'Source ', 'channel4 ');

106 set(deviceObj.Trigger (1), 'TriggerType ', 'edge');

107 set(deviceObj.Trigger (1), 'Level', 0.5);

108

109 set(deviceObj.Horizontal ,'Position ' ,1);

110 set(deviceObj.Horizontal ,'TriggerPos ' ,0);

111 set(deviceObj.Horizontal ,'RecordLength ',recL);

112 set(deviceObj.Horizontal ,'SamplingRate ',Fs);

113

114 set(deviceObj.Channel (1),'scale',scCH1)
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115

116 set(deviceObj.Waveform (1), 'FirstPoint ', 1);

117 set(deviceObj.Waveform (1), 'EndingPoint ', recL);

118

119

120

121 para.impedance=get(deviceObj.Channel (1), 'Impedance ');

122 para.position=get(deviceObj.Horizontal ,'Position ');

123 para.recordlength=get(deviceObj.Horizontal ,'RecordLength ');

124 para.Fs=get(deviceObj.Horizontal ,'SamplingRate ');

125

126 fprintf('### Parameters set! Check output for validity! ###\n');

127

128

129

130 function [y,t]= tek_record(deviceObj ,interfaceObj ,twait ,timeout)

131

132

133 set(deviceObj.Acquisition (1), 'State', 'run');

134 pause(twait /2)

135

136 % trigger scope via audio output

137 o1_triggerscope

138

139 fprintf('### Trigger Pulse Sent ... ###\n')

140 fprintf('### Waiting for Pulse from Spectrometer ... ###\n')

141 pause(twait /2)

142 if strcmp(get(deviceObj.Trigger (1),'State'),'ready')==1

143 pause(twait /2)

144 end

145

146

147 groupObj = get(deviceObj , 'Waveform ');

148 groupObj = groupObj (1);

149

150 [y,t] = invoke(groupObj , 'readwaveform ', 'channel1 ');

151 pause (1);

152 fprintf('### Data Recorded! ###\n')
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E.3. AU Program for TopSpin

This AU program needs to be run in TopSpin to establish the communication with the

compensation computer. The pulse program zg1_shape is started automatically and

executed with the generated shape �les.

/***************************************************************

/* Short Description : impulse_response

/* AU program that communicates with MATLAB to determine

/* impulse response function via MLS

/***************************************************************

/* Keywords : Transient Compensation

/*

/***************************************************************

/* Description/Usage: See Description with MATLAB Script

/*

/***************************************************************

/* Author(s) :

/* Name : Johannes Wittmann,

mod by: Johannes Hellwagner

/* Organisation : ETH Zurich

/* Email : johe@nmr.phys.chem.ethz.ch

/***************************************************************

/* Name Date Modification:

/* johe 14.06.2017 Third Version

/***************************************************************

/*

$Id: zg_dfs,v 1.7.8.1 2012/01/19 16:39:31 wem Exp $

*/

AUERR = autocomp(curdat);

QUIT

#include <ShapeIO/ShapeIOC.h>
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#include <stdio.h>

int read_and_set_param(char fname_in,

char myexpname[40], int myexpno, const char* curdat)

{

char myspnam[40], mypulpro[40], myusername[10], outputfile[PATH_MAX];

FILE *file;

int np, ns, startstop;

double freq, tstep, plw, d1, tau;

double plw_sat, plw_max, tau_max;

plw_sat = 5.0; // Powerlevel (W) for Saturation pulses

plw_max = 100; // max allowed Powerlevel (W)

tau_max = 5000; // max allowed pulse length

// Open File for reading

if (getParfileDirForWrite(".param", SHAPE_DIRS, outputfile) < 0)

{

Proc_err(DEF_ERR_OPT, "%s: %s", "parameterfile", outputfile);

return -1;

}

file = fopen(outputfile,"r");

fscanf(file,"%d\n" ,&startstop); // 0: stop 1: go to next experiment

fscanf(file,"%s\n" ,&myusername); // Current User

fscanf(file,"%s\n" ,&mypulpro); // Pulseprogram

fscanf(file,"%s\n" ,&myspnam); // Shape Name

fscanf(file,"%lf\n",&freq); // Spectrometer Frequency in MHz

fscanf(file,"%d\n" ,&np); // nr of points of pulse

fscanf(file,"%lf\n",&tstep); // and corresponding timestep in us

fscanf(file,"%lf\n",&plw); // amplitude in Watt

fscanf(file,"%d\n" ,&ns); // number of scans for averaging

fscanf(file,"%lf\n",&d1); // Recycle Delay in sec
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close(file);

// Check for meaningful and non-destructive Values

if ( plw > plw_max )

ERRORABORT

tau = (double)(np*tstep);

if ( tau > tau_max )

ERRORABORT

// Set Parameters for Experiment

DATASET(myexpname,myexpno,1,disk,myusername)

STOREPAR("PULPROG",mypulpro)

STOREPAR("SFO1",freq)

STOREPAR("P 21",tau)

STOREPAR("PLW 21",plw)

//STOREPAR("SPW 2",plw) // if no fast shape

STOREPAR("SPNAM 2",myspnam)

STOREPAR("SPOFFS 2",0.0)

STOREPAR("P 1",500.0) // 5 ms saturation before

STOREPAR("L 10",10)

STOREPAR("PLW 1",plw_sat)

STOREPAR("NS",ns)

STOREPAR("D 1",d1)

STOREPAR("RG",1)

STOREPAR("TD",128)

STOREPAR("DW",10.0)

return startstop;

}

int autocomp(const char* curdat)

{
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char myexpname[20], myusername[10], buf[20];

FILE *file;

int np, ns, startstop;

double freq, tstep, plw, d1, tau;

double plw_sat, plw_max, tau_max;

strcpy(myexpname,"autocomp"); // Define EXPN Name

plw_sat = 5.0; // Powerlevel (W) for Saturation pulses

plw_max = 100; // max allowed Powerlevel (W)

tau_max = 5000; // max allowed pulse length

startstop = 1;

SETCURDATA;

//############################

// Pulsing

//############################

while (startstop > 0) {

startstop = read_and_set_param(".param",myexpname, 1,curdat);

ZG;

ssleep(0.5);

}

ERRORABORT

return 0;

}
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