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Normalization of Shorthand Forms in French Text Messages 

Using Word Embedding and Machine Translation 

Parijat Ghoshal, Xi Rao1 

1 Introduction 

Text messages are a form of computer-mediated communication (CMC). 

They have raised new discussions in linguistics about their spoken or 

written usage and their online or offline synchronicity. As the following 

quote points out, it remains a point of contention whether text messages are 

similar to spoken language: “The degree to which CMC can be associated 

with speech and/or writing […] often depends on its level of synchronicity” 

(Van Compernolle 2010: 448). 

Koch and Oesterreicher (2001: 3) have also mentioned two probable factors, 

namely concept and medium, through the interaction of which a genre can 

be considered “oral” or “written”. To summarize, we can expect variability 

from standard French if the language is used in close, online, informal and 

speech-like communication. 

                                                 
1 Both authors contribute equally to the project. Authors are listed in the alphabetical order. 

The authors appreciate the valuable comments and support from Prof. Dr. Martin Volk and 

Natalia Korchagina from the Institute of Computational Linguistics at the University of 

Zurich and thank Heath Gordon and the anonymous reviewers for proofreading. All 

remaining errors are ours. 



In our work, we approach the issue of normalizing shorthand forms in 

Belgian French text messages (Fairon 2006) using two approaches. In the 

first approach, we see normalization as a machine translation task and 

implement a statistical character-based translation system to generate 

character mappings from the non-standard text messages to standard French. 

In our second approach, we use bilingual word embeddings to capture 

similar items that can appear in the same contexts for non-standard and 

standard French. Both approaches require the use of parallel corpora for 

training purposes.  

The paper is structured as follows. First, we give a brief overview of the 

endeavors in normalizing non-standard languages. Then we explain word 

embeddings and their state-of-the-art applications. Section 3 describes the 

corpus and preprocessing steps for our experiments. In Section 4, we 

describe our methodologies, tools and experiment setups. An extensive 

result analysis is conducted in Section 5, followed by the conclusion and an 

outlook for our future work in Sections 6 and 7, respectively.  

2 Previous Work 

Beaufort et al. (2010: 770) provide a brief overview of the variability that 

can occur in text messages, such as phonetic plays (“mer6” read “merci”, 

“thanks”), phonetic transcription (“ki” read “qui”, “who”), consonant 

skeletons (“ktv” read “que tu veux”, “as you wish”), misapplied, missing or 



incorrect separators (“ojourdhui” read “aujourd’hui”, “today”), etc2. The 

reasons for these deviations may be the constraints of the medium, which 

only allows 140 bytes per text message, as well as the layout of phone 

keypads.  

Three methodologies have been applied to normalize text messages, namely, 

the hidden Markov model (HMM, aka noisy channel model), automatic 

speech recognition (ASR), and statistical machine translation (SMT).  

Choudhury et al. (2007: 63-70) authored the earliest work on texting 

language (TL). They formally and linguistically analyzed the nature and 

type of TL. For their work, they used a word-aligned corpus of 1,000 

English text messages (with 20,000 tokens), which was created manually. 

HMM was applied to decode the TL English to standard English. 

Essentially, HMM maps hidden phonetic information to characters. Their 

approach worked fairly well for unseen words; however, it could not handle 

self-looping (e.g. “sooooo” for “so”) or transposition (“aks” for “ask”). 

They evaluated their methodology on 1,228 unique tokens with an accuracy 

of 80%.  

A hybrid approach, applying phrase-based SMT and ASR to normalize non-

standard forms in text messages, was used by Kobus et al. (2008). The logic 

behind their use of ASR was that SMS can be seen as “an 

alphabetic/syllabic approximation of a phonetic form” (Kobus et al. 2008: 

443). Phrase-based SMT was used to generate the mapping from the 

                                                 
2 These examples are from the Belgian corpus.  



original form to the standard, while ASR was able to find the most probable 

transformation from graphemes (original form) then to phonemes to 

graphemes (standard form). Dictionaries of grapheme-phoneme-mappings 

were created. This paper is of importance to our work, because it is an early 

work that tackled the issue of normalization using the Belgian sms4science3 

(created in 2004) corpus. 3,000 unseen messages were tested against this 

hybrid approach with a word error rate (WER) of 11%. The authors did not 

report the number of unique original tokens in the test set and investigated 

both word (e.g. “d” to “de”) and phrase (e.g. “oublié2tdir” to “oublié de te 

dire”) normalization. 

Yvon (2010) built on the approaches from Kobus et al. (2008) using the 

same samples from the Belgian French corpus, and claimed that weighted 

finite state machines (FSM) worked better than phrased-based SMT. An 

additional dictionary of abbreviation-standard forms was used before FSM. 

Finally, a statistical language model (3-gram) was used to enhance the 

results of FSM. The system performance in Yvon (2010) did not outperform 

that in Kobus et al. (2008). 

Another work on the Belgian corpus was Beaufort et al. (2011), which 

performed a 10-fold cross validation. The ultimate goal of this work was to 

generate character alignments without using the phonetic similarities. 

Sentences were split based on the following standard: “the longest sequence 

of characters parsed without meeting the same separator on both sides of the 

                                                 
3 For more information, see http://www.sms4science.org/?q=en  (access 13.5.2017). 
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alignment” (Beaufort et al. 2011: 774). The key contribution is finding that 

simple segmentation by spaces is not adequate to capture all the possible 

character mappings (e.g. “j esper” to “j’espère”). As we can see from 

Examples (1a) and (1b), word segmentation could be improved using their 

proposed strategy. Square brackets are markers for the segmentation 

boundaries; underlines show missing elements. The approach worked very 

well with an average WER of 9.3% reported on a test set that should be 

similar to that used by Kobus et al. (2008) according to the authors 

(Beaufort et al. 2011: 777).  

(1) a. [J esper_] [k__tu] [va_] 

 b. [J’espère] [que tu] [vas] (Beaufort et al. 2011: 

774)  

Pennell et al. (2011) looked at a character-based SMT approach for 

normalization of abbreviations in text messages. They proposed a two-step 

method to tackle this issue. The first step includes performing a character-

based SMT (translation and language models with 5-grams) to get 

translation candidates. The next step used a character-based SMT with 

contextual information to choose the best translation candidate. They 

observed that by using context words they achieved a better accuracy score. 

This work is of particular importance as we used five of the seven types of 

abbreviations described in this work: deletions, substitutions, repetitions, 

swaps and insertions. Table 1 gives an overview of the categories of 



shorthand forms as Pennell et al. (2011: 978) defines; the examples in Table 

1 are selected from the Belgian French corpus. 

Category Normalized Original 

Deletions bibliothèque biblio 

Substitutions quelle kel 

Repetitions  max maxxxxx 

Swaps nuit niut 

Insertions ok oki 

Tab. 1. Categories and examples of five shorthand forms 

On a dataset of tweets (4,661 tweets with 7,769 tokens), the best result  

achieved was a 69.7% accuracy using contextual information. The authors 

also tested their methodologies with the same dataset as Choudhury et al. 

(2007) and achieved an accuracy of 60.39%.  

Li and Liu (2012) compared a two-step process using phonetic sequences 

with character-based SMT. In the two-step method, they translated non-

standard texts into sequence of phonetic symbols in the International 

Phonetic Alphabet (IPA).  Then the phonetic sequences were transformed 

into words with the help of a dictionary (mapping of phonemes and 

graphemes). Finally, they combined the aforementioned methodologies to 

choose the best translation candidate based on the probabilities. They 

observed that if the translation probability for the character-based SMT is 

low, then the candidates given by the two-step process with phonetic 

sequences worked better. They evaluated their methodologies using the 

same dataset as Choudhury et al. (2007) and concluded that their two-step 

approach with the phonetic sequences yielded an accuracy of 71.96%.  



De Clercq et al. (2013) implemented a simple approach using user-

generated contents of different types such as text messages, message board 

posts, and tweets. They simply performed a phrased-based translation of the 

corpus. The pairs from phrase table were then fed into a character-based 

translation system. They draw the conclusion that this combined method 

achieved the best WER (13% with unigram translation with text messages) 

than the aforementioned methods employed separately.  

Distributional semantics are popular methods to represent words by the 

context surrounding them. An inspiring work by Sridhar (2015) highlights 

how effective word embeddings can be employed to learn normalization 

lexicon. 

Distributional semantics originate from the conclusion in Firth (1957: 11): 

“You shall know a word by the company it keeps”. It means that words 

appear in the similar contexts have similar meanings. In Examples (2a) – 

(2d), “Berlin” and “Madrid” are both cities, while “Germany” and “Spain” 

are both countries. Thus, in a simplified manner, we demonstrate that names 

of countries and names of cities appear in similar contexts.  

(2) a. Berlin is a big city.  

 b. Madrid is a big city. 

 c. Germany is a big country. 

 d. Spain is a big country. 



The basic idea of word embeddings is to represent a word as vectors with 

real numbers in a vector space. There are many ways of creating vectors, 

amongst which the simplest method is the bag-of-words representation. As 

shown in Examples (2a) – (2d), our corpus consists of four sentences. The 

vocabulary size is nine, as we have nine unique tokens, i.e. “Berlin”, 

“Madrid”, “Germany”, “Spain”, “is”, “a”, “big”, “city”, “country”. The 

vector space can be constructed with each unique token as a dimension. The 

order of word dimensions is defined arbitrary but should be kept consistent 

for all the vector representations under the same vector space. Thus, the 

vector representations for “Berlin” and “Madrid” using one-hot encoding 

(more see Rong 2014:2) are: [1, 0, 0, 0, 0, 0, 0, 0, 0] and [0, 1, 0, 0, 0, 0, 0, 

0, 0, 0], respectively (see Table 1). Using this logic, the maximum length of 

vectors is equal to the number of unique words in the vocabulary. For a 

more extensive introduction of computational distributional semantics, see 

Chapter 20: Computational Lexical Semantics in Jurafsky and Martin (2014: 

692-701). 

 Berlin Madrid Germany Spain is a big city country 

“Berlin” 1 0 0 0 0 0 0 0 0 

“Madrid” 0 1 0 0 0 0 0 0 0 

Tab. 2. Examples of one-hot encoded vectors 

Word embeddings allow us to perform vector-based calculations. The 

similarity of words can be computed by the distance between two vectors in 

the same vector space. Common measure in distributional semantics is the 

cosine similarity score, which ranges from -1 to 1. The larger the cosine 



similarity score is, the more similar the vectors are. For a given word 

embedding, we can calculate the nearest neighbors to that word by ranking 

their cosine similarity score in relation to that word. The top 1 candidate is 

usually taken as the best possible candidate.  

Some other concepts to understand word2vec (Mikolov et al. 2013a, 2013b) 

are continuous bag-of-words (CBOW) and skip-gram. For CBOW, one tries 

to predict the target word based on its context words. In Example (3), if 

target word is “run”, given a context window of five, the context words are 

two words on the left and right of the target words, namely, “cats”, 

“usually”, “faster”, “than”. We move the context window alongside the 

whole sentence, so in the next iteration, the target word will become 

“faster”, with the context words “usually”, “run”, “than”, “humans”. Skip-

gram is the opposite of CBOW, namely, that it tries to predict the context of 

a word. In our example, given a word “run”, skip-gram predicts the context 

“cats”, “usually”, “faster”, “than”.  

(3) Cats usually run faster than humans. 

word2vec is a computationally efficient way of calculating word 

embeddings using CBOW and skip-gram models. It utilizes negative 

sampling which is a way of randomly sampling co-occurrence in a corpus. 

For the co-occurrence with the word “cats” in our imaginary corpus, instead 

of extracting all the words that co-occur with “cats”, we only sample a small 

amount of words, e.g. “always”, “often”, “sometimes”, etc. Negative 

sampling increases the computational efficiency to calculate word 



embeddings. As mentioned before, the length of word vectors is usually the 

length of vocabulary and these vectors are usually very sparse. In order to 

have a condensed representation of vectors, dimensionality reduction is 

necessary.  

word2vec models implement neural networks with only one hidden layer 

(more see Rong 2014); therefore, a dimensionality reduction procedure 

takes place. The final embeddings of a given word is the row vector of the 

weight matrix between the input layer and the hidden layer.  

multivec (Bérard et al. 2016) is an extension of word2vec. Whereas 

word2vec calculates the word vector representation in a single language, 

multivec maps bilingual representations across languages by calculating 

embeddings for a word in the source language as well as similar word in the 

same context in the target language. For this reason, multivec requires 

perfectly aligned parallel sentences as input.  

Based on what we have discussed before, words with similar semantic 

meanings tend to appear in similar contexts (e.g. similar vector 

representations), we shall map the bilingual word embeddings for a small 

parallel corpus (Example (4)) as shown in Figure 1.   

(4) a.  The king and queen are coming.  

 b. Der König und die Königin kommen.  

 c.  Madrid and Barcelona are cities.  

 d.  Madrid und Barcelona sind Städte. 



Fig. 1. Examples for bilingual word embeddings mapping of English and German 

The graph on the left represents the word embeddings in the two 

dimensional plane for the English words “king”, “queen”, “Madrid”, 

“Barcelona”, the graph on the right for their counterparts in German (see 

Figure 1). The lines represent the cross-linguistic mappings between the 

words that share the similar contexts.  

3 Corpus and Preprocessing 

3.1 Corpus  

We used the Belgian French data from the sms4science project, whose goal 

was to carry out linguistic analysis on communication with SMS. The 

corpus is available as a manually normalized Excel file. The file was 

structured so each row corresponds to a single SMS, and the two columns 

we selected for our analysis4. Each text message in the corpus is regarded a 

document.  

                                                 
4  The names of the columns we selected are traduction_normalisee_sans_tag, 

message_non_normalise where the rows correspond to the normalized and original 

versions, respectively.  



The text messages were previously redacted by the creators of the corpus. 

All the sensitive data were removed, such as telephone numbers, email 

addresses, etc. We do not have access to the guidelines for normalization. 

However, based on manual evaluation, we were able to deduce the 

annotators used different strategies to normalize the texts. As a result, the 

quality of normalization is inconsistent; hence, it took a lengthy processing 

step to acquire perfect sentence alignments from the documents. The 

numbers of tokens and unique spelling variants are listed in Table 3.  

 Original Normalized 

TOKEN 657,572 681,866 

SPELLING VARIANT   46,413   26,687 

Tab. 3. Tokens and spelling variants in the Belgian French corpus 

3.2 Preprocessing 

Based on the non-standardized nature of the data, we will see that it will 

have an effect on the pre-processing and quality of the results. The input for 

machine translation in moses (Koehn et al. 2007) and multivec systems (we 

refer to our two approaches as moses and multivec hereafter) requires 

perfectly aligned parallel sentences. In order to generate sentence mapping, 

we had to identify the sentence boundaries from text messages. A single text 

message can contain multiple sentences.  

To start with, we removed the markups in the corpus for sensitive 

information (e.g. {???, EMAIL}, {???, NOM}), so that they do not 

influence the sentence segmenter and work tokenizer. Then we applied the 

Sentence Segmenter (nltk.tokenize.sent_tokenize()) from Natural Language 



Processing Toolkit (NLTK in Python 2.7, Bird et al. 2009) on our corpus. 

We found some discrepancies of sentence alignments mainly because 

punctuations in the original texts can appear within the sentence as 

emoticons, abbreviations, emphasis, typos, etc.  

(5) [OK..pour.20h30-

21h,.il.y.aura.2.petit.en.plus.3.et.6.ans,.je.vais.faire.un.ciné.(2

2h30.][)et.retour.av.1H.du.matin,.je.vous.donne.forfait.40.€?.

merci.de.me.repondre.av.midi] 

(6) [OK pour 20h30-21h, il y aura 2 petits en plus 3 et 6 ans, je 

vais faire un cinéma (22h30) et retour avant 1 heure du matin, 

je vous donne forfait 40 €?][Merci de me répondre avant 

midi] 

As shown in Examples (5) and (6) for one pair of original and normalized 

text messages, due to the irregularities in the original texts, the segmenter, 

trained on standard French, was not able to identify the sentence boundaries 

in an adequate manner. The square brackets in Examples (5) and (6) show 

the sentence boundaries identified by the segmenter. We decided to 

manually correct the sentence boundaries. In the end, we obtained 94,982 

sentences (aligned in the original and normalized forms) out of 30,000 SMS.  

For character-based machine translation, we further split the tokens by word 

boundaries, then each token was split into individual characters (e.g. “2 m 

1” to “d e m a i n”). Character alignment was performed with GIZA++ 

(Och and Ney 2003) in moses. We trained the machine translation system 



with the sentences of the same length, which takes 73.5% of all the 

materials from the corpus. The numbers of tokens and unique spelling 

variants are listed in Table 3. With multivec, the inputs are pairs of aligned 

parallel sentences. The numbers of tokens and spelling variants can be 

found in Table 4.  

        TRAINING          TEST 

Original Normalized Original Normalized 

TOKEN 83,926 83,926 10,490 10,490 

TYPE 13,563   9,069   3,360   2,439 

Tab. 4. Tokens and spelling variants for moses training and testing 

4 Methodologies, Tools and Experiments 

4.1 Methodologies 

As we discuss in the literature review, we can use the original and 

normalized text messages as parallel sentences in machine translation 

systems when we consider the original text message as source language and 

the normalized text message as target language. Since the text messages 

have monotonous word alignments, given a reasonable word segmentation 

strategy, character-based SMT can be applied to generate the character 

mappings between the two versions of text messages.  

Using the logic that similar words tend to appear in similar contexts, we can 

use multivec as a method of translating from the original texts to the 

standardized texts, because the shorthand forms bear the same context, even 

if they appear in different spelling variants.  



4.2 Tools and experiments 

4.2.1 multivec 

For multivec we use the entire corpus for training the model (corpus size see 

Table 3). The unit of analysis in multivec is word. The setup of multivec is 

as follows: 

1. Dimensions in the vectors: 100 

2. Context windows size: 5 

3. Minimum absolute counts in corpus: 5 

4. Learning rate: 0.05 

5. Iterations: 5 

6. Subsampling: 0.001 

7. Negative sampling: 5 

8. The remaining parameters: default 

We observe that true casing works better than lower casing. Moreover, we 

achieve the following accuracy scores in the nearest neighbor list for the top 

1 item and top 3 items: 55.3%, 59.0%. 

4.2.2 moses 

The unit of analysis in moses is character. In the preprocessing phase we 

took only sentences with the same length, because the simple segmentation 

by word boundaries can lead to mismatch in the original and normalized 

sentences (corpus size see Table 4). We tried language models of up to 7-



grams and found out that the normalization accuracy of shorthand forms 

stabilized at 7-grams.  

The best result is given by taking the top 1 candidate in 10-best list, 

language model 7-gram, grow-diag-final-and. The average length of a token 

in our corpus is 7 (6.76 for moses, 5.7 for multivec), which might explain 

why the 7-gram language model scored the best.  

5 Results Analysis 

We took a test set of 10,490 shorthand forms for both moses and multivec. 

We looked at recall of two approaches and their overlaps in identifying 

shorthand forms. To evaluate accuracy, we took the overlapping part as the 

test set. multivec retrieved 5,809 instances, whereas moses found 5,283. We 

report only accuracy of the task, because the precision of retrieval is 100%. 

The accuracy score is equal to the recall of shorthand forms in the test set. 

The two approaches overlap in 3,987 retrieved instances, with discrepancies 

of 1,821 for multivec and 1,291 for moses, respectively. Spelling variants of 

a lemma refer to the variability of that lemma in different forms. For the 

lemma “demain”, there are plenty of spelling variants in our corpus such as 

“dm1”, “dm 1”, “dem1”, “dem 1”, “2m1”, “2main”, “2min”, etc. 



 

Fig. 2. Discrepancies of tokens and spelling variants  

 moses multivec 

TOKEN (retrieved) 1,291 1,821 

SPELLING VARIANT (retrieved)    903   473 

TOKEN (training set)  83,926 657,572 

SPELLING VARIANT (training set) 13,569   46,413 

NORMALIZED TOKEN% 1.50% 0.28% 

NORMALIZED SPELLING VARIANT% 6.65% 1.02% 

Tab. 5. Normalized retrieved rate for tokens and spelling variants 

We analyzed the retrieval discrepancies extensively at the token and 

spelling variant levels in the following sections. Because we trained the 

systems of multivec and moses with different sizes of training materials, 

normalization of retrieved instances against the size of training materials is 

needed in order to evaluate the output on the same basis (Table 5). As seen 

in Figure 2 and Table 5, moses recognizes a lot more cases than multivec on 

both the token and spelling variant levels. However, in the test set, we 

notice that multivec is able to correctly identify more tokens, while moses is 

better at identifying spelling variants (see Figure 2).  



When we compare moses with multivec, multivec recognizes the most 

deletions (see Figures 3 and 4). Although moses has less training materials, 

it is better at recognizing substitutions and repetitions. There are not many 

cases of swaps and insertions in the test set; thus, it is difficult to judge the 

performances of the two systems on these categories. 

We looked at the different categories of shorthand forms recognized in the 

test set and observed that moses and multivec have different preferences for 

normalizing different categories. Deletions are the most common category 

in the test set, followed by substitutions. The number of deletions is 3 times 

that of substitutions. The number of substitutions is 20 times that of 

repetitions. Swaps and insertions are much less observable in test set (see 

Figures 3 and 4).  

As demonstrated in Table 6, multivec is able to find severely shorted forms 

(“we” for “weekend”, “kel” for “quelle”). Moses is capable of finding 

highly varied forms of spelling variants.  

 moses multivec 

Deletions “ojrd8” (“aujourd’hui”)  “we” (“weekend”) 

Substitutions “ki” (“qui”) “kel” (“quelle”) 

Repetitions “groos” (“gros”)  “bizzz” (“biz”) 

Swaps “niut” (“nuit”) -- 

Insertions “dorlotter”  (“dorloter”) “oki” (“ok”) 

*normalized word in bracket 

Tab. 6. Examples from moses and multivec for five shorthand categories 



 

Fig. 3. Accurate normalization of token level for moses and multivec in five categories  

When we compare moses with multivec, we see that the most common type 

that has been recognized by multivec is deletions. Although moses has less 

training materials, it is better at recognizing substitutions and repetitions. 

There are not many cases of swaps and insertions in the test set; hence, it is 

difficult to judge the performances of the two systems on these categories.   

Fig. 4 Accurate normalization of spelling variant level for moses and multivec in five 

categories  

 



When it comes to the spelling variants, we see that across all the categories, 

moses captures most of the normalization cases accurately. In the test set, it 

highly outperforms multivec when it comes to substitutions. In general, 

moses has a higher rate of recall on different types, whereas multivec has 

high precision, as it recognizes words that appear in similar contexts all the 

time.  

Original Normalized Approach Frequency 

auj  multivec 7 

adj   4 

aujourd’hui   1 

aujourdhui  moses 3 

aujourdwi aujourd’hui  1 

ojourdhui   1 

aujourdui   1 

ojrd8   1 

ojordui 
 

 
 

1 

Tab. 7. Examples for “aujourd’hui” in different spelling forms 

 

 Original Normalized 

11h58 11h58 

12:30 12h30 

17.40h 17h40 

18.30 18h30 

19 19h 

19h3o 19h30 

20.49 20h49 

8.30 8h30 

Tab. 8. Examples for temporal expressions 

 

Some other interesting observations are that moses is flexible on different 

spelling variants (see Table 7) and is good with temporal expressions (see 

Table 8). As we see in Table 7, for the normalization form “aujourd’hui”, 

nine different spelling variants were found in the test set, including the 



lemma. Both systems have different preferences in “translating” from the 

original to the normalized forms.  

We noticed that multivec recognizes always the same items, e.g. “auj” (7 

times), “ajd” (4 times). Moses recognizes six different spelling variants, and 

except for “aujourdhui” (3 times), the other five spelling variants are hapax 

legomena. “auj” and “ajd” are extremely difficult to for moses to 

normalize, as long-distant deletion of character sequences is involved.  

We also noticed that moses is good at finding temporal expressions (see 

Table 8). In these forms, the variation lies in separators between hours and 

minutes, e.g. “h”, “:”, “.”. Moses is able to normalize extremely varied 

form such as “17.40h” to its normalized form “17h40”.  

Moses is highly flexible with out-of-vocabulary words (words that have not 

been “seen” in its training materials) and is good at identifying different 

spelling variants. During the training of multivec, it omitted out-of-

vocabulary words. Nonetheless, moses has the advantages of treating every 

normalization as a translation task and tries to find the most probable 

character mappings from the original form to the normalized form.  

However, Moses can bring in noises in character mapping, because it 

calculates the path with the highest joint probabilities. For example, the 

word “l’université” was wrongly mapped to “l’universitait” by taking the 

path with the highest probability. The probabilities of character mapping are 

taken from the phrase table and path 1 is the most probable path amongst all 

the mapping strategies. Path 2 is an example of another possible way to 



normalize the word “l’université”, and since it has a much lower probability 

compared to path 1, moses opted for path 1 (see Table 9).  

Path 1 l’uni → l’uni 

(0.75) 

v → v 

(0.86) 

s → s 

(0.71) 

i → i 

(0.86) 

té →tait 

(0.66) 

l’universitait 

(0.26) 

Path 2 l’uni → l’uni 

(0.75) 

ver → ver 

(0.28) 

si → si 

(0.6) 

té →tait 

(0.66) 

l’université 

(0.08) 

Tab. 9. Moses phrase table and the different paths of normalization 

To summarize, using multivec is looking for existing items for a dictionary. 

If the item is unlisted in the dictionary, multivec cannot solve the 

normalization tasks. On the contrary, moses treats its normalization task as 

applying character mapping rules to the non-standard forms. It attempts to 

come up with the most plausible path. 

6 Conclusion 

Using multivec to normalize shorthand forms has its advantages as this 

process is always consistent and runs extremely fast. Moreover, it is able to 

retain contextual information; thus, highly abbreviated items can be 

deciphered by multivec. Unfortunately, this method is highly intolerant of 

unseen items in training materials. Consequently, it requires large input of 

parallel materials.  

Moses is highly flexible when it comes to translations of out-of-vocabulary 

items. Moreover, it is able to retrieve multiple spelling variants. As 

discussed before, moses chooses the path of the highest joint probability. 

Thus, it can occur that during the character mapping process, noises (an 

incorrect mapping with a higher probability) are inserted into the output. 



Furthermore, moses requires a long training time and we have to train the 

language model accordingly, i.e. we have to run different different models 

with different parameters until reaching a satisfactory result, which can lead 

to even longer training and tuning time. 

As we do not have access to the evaluation sets in the previous studies on 

the Belgian French corpus (see Kobus et al. (2008), Yvon (2009) and 

Beaufort et al. (2011)) and we only investigated word normalization in our 

experiments, we cannot compare our results directly with those in the state-

of-the-art study (i.e. Beaufort et al. (2011)). Our contributions are as 

follows: 

1. To the best of our knowledge, we are the first study that applied the 

character-based SMT to normalize the Belgian French text messages.  

2. We applied word embeddings that encode contextual information to 

increase recall and precision of normalization.  

3. We identified the efficacy and necessity of combining the two 

approaches in normalization: character-based SMT (moses) and word 

embeddings (multivec).  

4. Our detailed result analyses provide further insights into future 

work. 

7 Future Work 

As we did not include contextual information into moses, as it could be 

quite challenging to encode contextual information in the character system, 



which requires precise segmentation of word boundaries. We suggest that in 

the future, we could combine the two approaches as the word embeddings 

from multivec already entails the contextual information of a word. It is 

plausible to identify the candidates for character-based SMT by multivec, 

and then use the parallel pairs as input for machine translation systems.  

Another point where we could improve is incorporating parallel sentences 

of different lengths, aka phrase normalization, where one side in the pair is a 

multi-word expression (e.g. “ktv” to “que tu veux”). We also envisage 

using more materials from the sms4science project, namely the French 

sms4science corpus collected in France. Finally, in the realm of 

embeddings, we would like to extend our methodologies of creating 

embeddings to units on the sub-word level. fastText (Bojanowski 2016) 

provides the theoretical framework for applying this methodology to any 

language. We assume that mapping the original and normalized texts on the 

level of sub-word unit can reduce the number of out-of-vocabulary items, as 

well as omit noises as in moses. Moreover, as the sub-word embeddings 

entail morphological and contextual information the mapping quality could 

be improved. We will address the aforementioned open issues in our future 

experiments. 
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