
ETH Library

Normalization of shorthand forms
in French text messages using
word embedding and machine
translation

Book Chapter

Author(s):
Ghoshal, Parijat; Rao, Susie Xi

Publication date:
2019

Permanent link:
https://doi.org/10.3929/ethz-b-000388689

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
Studies in Corpus Linguistics 90, https://doi.org/10.1075/scl.90.17gho

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://orcid.org/0000-0003-2379-1506
https://doi.org/10.3929/ethz-b-000388689
http://rightsstatements.org/page/InC-NC/1.0/
https://doi.org/10.1075/scl.90.17gho
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Normalization of Shorthand Forms in French Text Messages

Using Word Embedding and Machine Translation

Parijat Ghoshal, Xi Rao1

1 Introduction

Text messages are a form of computer-mediated communication (CMC).

They have raised new discussions in linguistics about their spoken or

written usage and their online or offline synchronicity. As the following

quote points out, it remains a point of contention whether text messages are

similar to spoken language: “The degree to which CMC can be associated

with speech and/or writing […] often depends on its level of synchronicity”

(Van Compernolle 2010: 448).

Koch and Oesterreicher (2001: 3) have also mentioned two probable factors,

namely concept and medium, through the interaction of which a genre can

be considered “oral” or “written”. To summarize, we can expect variability

from standard French if the language is used in close, online, informal and

speech-like communication.

1 Both authors contribute equally to the project. Authors are listed in the alphabetical order.

The authors appreciate the valuable comments and support from Prof. Dr. Martin Volk and

Natalia Korchagina from the Institute of Computational Linguistics at the University of

Zurich and thank Heath Gordon and the anonymous reviewers for proofreading. All

remaining errors are ours.

In our work, we approach the issue of normalizing shorthand forms in

Belgian French text messages (Fairon 2006) using two approaches. In the

first approach, we see normalization as a machine translation task and

implement a statistical character-based translation system to generate

character mappings from the non-standard text messages to standard French.

In our second approach, we use bilingual word embeddings to capture

similar items that can appear in the same contexts for non-standard and

standard French. Both approaches require the use of parallel corpora for

training purposes.

The paper is structured as follows. First, we give a brief overview of the

endeavors in normalizing non-standard languages. Then we explain word

embeddings and their state-of-the-art applications. Section 3 describes the

corpus and preprocessing steps for our experiments. In Section 4, we

describe our methodologies, tools and experiment setups. An extensive

result analysis is conducted in Section 5, followed by the conclusion and an

outlook for our future work in Sections 6 and 7, respectively.

2 Previous Work

Beaufort et al. (2010: 770) provide a brief overview of the variability that

can occur in text messages, such as phonetic plays (“mer6” read “merci”,

“thanks”), phonetic transcription (“ki” read “qui”, “who”), consonant

skeletons (“ktv” read “que tu veux”, “as you wish”), misapplied, missing or

incorrect separators (“ojourdhui” read “aujourd’hui”, “today”), etc2. The

reasons for these deviations may be the constraints of the medium, which

only allows 140 bytes per text message, as well as the layout of phone

keypads.

Three methodologies have been applied to normalize text messages, namely,

the hidden Markov model (HMM, aka noisy channel model), automatic

speech recognition (ASR), and statistical machine translation (SMT).

Choudhury et al. (2007: 63-70) authored the earliest work on texting

language (TL). They formally and linguistically analyzed the nature and

type of TL. For their work, they used a word-aligned corpus of 1,000

English text messages (with 20,000 tokens), which was created manually.

HMM was applied to decode the TL English to standard English.

Essentially, HMM maps hidden phonetic information to characters. Their

approach worked fairly well for unseen words; however, it could not handle

self-looping (e.g. “sooooo” for “so”) or transposition (“aks” for “ask”).

They evaluated their methodology on 1,228 unique tokens with an accuracy

of 80%.

A hybrid approach, applying phrase-based SMT and ASR to normalize non-

standard forms in text messages, was used by Kobus et al. (2008). The logic

behind their use of ASR was that SMS can be seen as “an

alphabetic/syllabic approximation of a phonetic form” (Kobus et al. 2008:

443). Phrase-based SMT was used to generate the mapping from the

2 These examples are from the Belgian corpus.

original form to the standard, while ASR was able to find the most probable

transformation from graphemes (original form) then to phonemes to

graphemes (standard form). Dictionaries of grapheme-phoneme-mappings

were created. This paper is of importance to our work, because it is an early

work that tackled the issue of normalization using the Belgian sms4science3

(created in 2004) corpus. 3,000 unseen messages were tested against this

hybrid approach with a word error rate (WER) of 11%. The authors did not

report the number of unique original tokens in the test set and investigated

both word (e.g. “d” to “de”) and phrase (e.g. “oublié2tdir” to “oublié de te

dire”) normalization.

Yvon (2010) built on the approaches from Kobus et al. (2008) using the

same samples from the Belgian French corpus, and claimed that weighted

finite state machines (FSM) worked better than phrased-based SMT. An

additional dictionary of abbreviation-standard forms was used before FSM.

Finally, a statistical language model (3-gram) was used to enhance the

results of FSM. The system performance in Yvon (2010) did not outperform

that in Kobus et al. (2008).

Another work on the Belgian corpus was Beaufort et al. (2011), which

performed a 10-fold cross validation. The ultimate goal of this work was to

generate character alignments without using the phonetic similarities.

Sentences were split based on the following standard: “the longest sequence

of characters parsed without meeting the same separator on both sides of the

3 For more information, see http://www.sms4science.org/?q=en (access 13.5.2017).

http://www.sms4science.org/?q=en

alignment” (Beaufort et al. 2011: 774). The key contribution is finding that

simple segmentation by spaces is not adequate to capture all the possible

character mappings (e.g. “j esper” to “j’espère”). As we can see from

Examples (1a) and (1b), word segmentation could be improved using their

proposed strategy. Square brackets are markers for the segmentation

boundaries; underlines show missing elements. The approach worked very

well with an average WER of 9.3% reported on a test set that should be

similar to that used by Kobus et al. (2008) according to the authors

(Beaufort et al. 2011: 777).

(1) a. [J esper_] [k__tu] [va_]

 b. [J’espère] [que tu] [vas] (Beaufort et al. 2011:

774)

Pennell et al. (2011) looked at a character-based SMT approach for

normalization of abbreviations in text messages. They proposed a two-step

method to tackle this issue. The first step includes performing a character-

based SMT (translation and language models with 5-grams) to get

translation candidates. The next step used a character-based SMT with

contextual information to choose the best translation candidate. They

observed that by using context words they achieved a better accuracy score.

This work is of particular importance as we used five of the seven types of

abbreviations described in this work: deletions, substitutions, repetitions,

swaps and insertions. Table 1 gives an overview of the categories of

shorthand forms as Pennell et al. (2011: 978) defines; the examples in Table

1 are selected from the Belgian French corpus.

Category Normalized Original

Deletions bibliothèque biblio

Substitutions quelle kel

Repetitions max maxxxxx

Swaps nuit niut

Insertions ok oki

Tab. 1. Categories and examples of five shorthand forms

On a dataset of tweets (4,661 tweets with 7,769 tokens), the best result

achieved was a 69.7% accuracy using contextual information. The authors

also tested their methodologies with the same dataset as Choudhury et al.

(2007) and achieved an accuracy of 60.39%.

Li and Liu (2012) compared a two-step process using phonetic sequences

with character-based SMT. In the two-step method, they translated non-

standard texts into sequence of phonetic symbols in the International

Phonetic Alphabet (IPA). Then the phonetic sequences were transformed

into words with the help of a dictionary (mapping of phonemes and

graphemes). Finally, they combined the aforementioned methodologies to

choose the best translation candidate based on the probabilities. They

observed that if the translation probability for the character-based SMT is

low, then the candidates given by the two-step process with phonetic

sequences worked better. They evaluated their methodologies using the

same dataset as Choudhury et al. (2007) and concluded that their two-step

approach with the phonetic sequences yielded an accuracy of 71.96%.

De Clercq et al. (2013) implemented a simple approach using user-

generated contents of different types such as text messages, message board

posts, and tweets. They simply performed a phrased-based translation of the

corpus. The pairs from phrase table were then fed into a character-based

translation system. They draw the conclusion that this combined method

achieved the best WER (13% with unigram translation with text messages)

than the aforementioned methods employed separately.

Distributional semantics are popular methods to represent words by the

context surrounding them. An inspiring work by Sridhar (2015) highlights

how effective word embeddings can be employed to learn normalization

lexicon.

Distributional semantics originate from the conclusion in Firth (1957: 11):

“You shall know a word by the company it keeps”. It means that words

appear in the similar contexts have similar meanings. In Examples (2a) –

(2d), “Berlin” and “Madrid” are both cities, while “Germany” and “Spain”

are both countries. Thus, in a simplified manner, we demonstrate that names

of countries and names of cities appear in similar contexts.

(2) a. Berlin is a big city.

 b. Madrid is a big city.

 c. Germany is a big country.

 d. Spain is a big country.

The basic idea of word embeddings is to represent a word as vectors with

real numbers in a vector space. There are many ways of creating vectors,

amongst which the simplest method is the bag-of-words representation. As

shown in Examples (2a) – (2d), our corpus consists of four sentences. The

vocabulary size is nine, as we have nine unique tokens, i.e. “Berlin”,

“Madrid”, “Germany”, “Spain”, “is”, “a”, “big”, “city”, “country”. The

vector space can be constructed with each unique token as a dimension. The

order of word dimensions is defined arbitrary but should be kept consistent

for all the vector representations under the same vector space. Thus, the

vector representations for “Berlin” and “Madrid” using one-hot encoding

(more see Rong 2014:2) are: [1, 0, 0, 0, 0, 0, 0, 0, 0] and [0, 1, 0, 0, 0, 0, 0,

0, 0, 0], respectively (see Table 1). Using this logic, the maximum length of

vectors is equal to the number of unique words in the vocabulary. For a

more extensive introduction of computational distributional semantics, see

Chapter 20: Computational Lexical Semantics in Jurafsky and Martin (2014:

692-701).

 Berlin Madrid Germany Spain is a big city country

“Berlin” 1 0 0 0 0 0 0 0 0

“Madrid” 0 1 0 0 0 0 0 0 0

Tab. 2. Examples of one-hot encoded vectors

Word embeddings allow us to perform vector-based calculations. The

similarity of words can be computed by the distance between two vectors in

the same vector space. Common measure in distributional semantics is the

cosine similarity score, which ranges from -1 to 1. The larger the cosine

similarity score is, the more similar the vectors are. For a given word

embedding, we can calculate the nearest neighbors to that word by ranking

their cosine similarity score in relation to that word. The top 1 candidate is

usually taken as the best possible candidate.

Some other concepts to understand word2vec (Mikolov et al. 2013a, 2013b)

are continuous bag-of-words (CBOW) and skip-gram. For CBOW, one tries

to predict the target word based on its context words. In Example (3), if

target word is “run”, given a context window of five, the context words are

two words on the left and right of the target words, namely, “cats”,

“usually”, “faster”, “than”. We move the context window alongside the

whole sentence, so in the next iteration, the target word will become

“faster”, with the context words “usually”, “run”, “than”, “humans”. Skip-

gram is the opposite of CBOW, namely, that it tries to predict the context of

a word. In our example, given a word “run”, skip-gram predicts the context

“cats”, “usually”, “faster”, “than”.

(3) Cats usually run faster than humans.

word2vec is a computationally efficient way of calculating word

embeddings using CBOW and skip-gram models. It utilizes negative

sampling which is a way of randomly sampling co-occurrence in a corpus.

For the co-occurrence with the word “cats” in our imaginary corpus, instead

of extracting all the words that co-occur with “cats”, we only sample a small

amount of words, e.g. “always”, “often”, “sometimes”, etc. Negative

sampling increases the computational efficiency to calculate word

embeddings. As mentioned before, the length of word vectors is usually the

length of vocabulary and these vectors are usually very sparse. In order to

have a condensed representation of vectors, dimensionality reduction is

necessary.

word2vec models implement neural networks with only one hidden layer

(more see Rong 2014); therefore, a dimensionality reduction procedure

takes place. The final embeddings of a given word is the row vector of the

weight matrix between the input layer and the hidden layer.

multivec (Bérard et al. 2016) is an extension of word2vec. Whereas

word2vec calculates the word vector representation in a single language,

multivec maps bilingual representations across languages by calculating

embeddings for a word in the source language as well as similar word in the

same context in the target language. For this reason, multivec requires

perfectly aligned parallel sentences as input.

Based on what we have discussed before, words with similar semantic

meanings tend to appear in similar contexts (e.g. similar vector

representations), we shall map the bilingual word embeddings for a small

parallel corpus (Example (4)) as shown in Figure 1.

(4) a. The king and queen are coming.

 b. Der König und die Königin kommen.

 c. Madrid and Barcelona are cities.

 d. Madrid und Barcelona sind Städte.

Fig. 1. Examples for bilingual word embeddings mapping of English and German

The graph on the left represents the word embeddings in the two

dimensional plane for the English words “king”, “queen”, “Madrid”,

“Barcelona”, the graph on the right for their counterparts in German (see

Figure 1). The lines represent the cross-linguistic mappings between the

words that share the similar contexts.

3 Corpus and Preprocessing

3.1 Corpus

We used the Belgian French data from the sms4science project, whose goal

was to carry out linguistic analysis on communication with SMS. The

corpus is available as a manually normalized Excel file. The file was

structured so each row corresponds to a single SMS, and the two columns

we selected for our analysis4. Each text message in the corpus is regarded a

document.

4 The names of the columns we selected are traduction_normalisee_sans_tag,

message_non_normalise where the rows correspond to the normalized and original

versions, respectively.

The text messages were previously redacted by the creators of the corpus.

All the sensitive data were removed, such as telephone numbers, email

addresses, etc. We do not have access to the guidelines for normalization.

However, based on manual evaluation, we were able to deduce the

annotators used different strategies to normalize the texts. As a result, the

quality of normalization is inconsistent; hence, it took a lengthy processing

step to acquire perfect sentence alignments from the documents. The

numbers of tokens and unique spelling variants are listed in Table 3.

 Original Normalized

TOKEN 657,572 681,866

SPELLING VARIANT 46,413 26,687

Tab. 3. Tokens and spelling variants in the Belgian French corpus

3.2 Preprocessing

Based on the non-standardized nature of the data, we will see that it will

have an effect on the pre-processing and quality of the results. The input for

machine translation in moses (Koehn et al. 2007) and multivec systems (we

refer to our two approaches as moses and multivec hereafter) requires

perfectly aligned parallel sentences. In order to generate sentence mapping,

we had to identify the sentence boundaries from text messages. A single text

message can contain multiple sentences.

To start with, we removed the markups in the corpus for sensitive

information (e.g. {???, EMAIL}, {???, NOM}), so that they do not

influence the sentence segmenter and work tokenizer. Then we applied the

Sentence Segmenter (nltk.tokenize.sent_tokenize()) from Natural Language

Processing Toolkit (NLTK in Python 2.7, Bird et al. 2009) on our corpus.

We found some discrepancies of sentence alignments mainly because

punctuations in the original texts can appear within the sentence as

emoticons, abbreviations, emphasis, typos, etc.

(5) [OK..pour.20h30-

21h,.il.y.aura.2.petit.en.plus.3.et.6.ans,.je.vais.faire.un.ciné.(2

2h30.][)et.retour.av.1H.du.matin,.je.vous.donne.forfait.40.€?.

merci.de.me.repondre.av.midi]

(6) [OK pour 20h30-21h, il y aura 2 petits en plus 3 et 6 ans, je

vais faire un cinéma (22h30) et retour avant 1 heure du matin,

je vous donne forfait 40 €?][Merci de me répondre avant

midi]

As shown in Examples (5) and (6) for one pair of original and normalized

text messages, due to the irregularities in the original texts, the segmenter,

trained on standard French, was not able to identify the sentence boundaries

in an adequate manner. The square brackets in Examples (5) and (6) show

the sentence boundaries identified by the segmenter. We decided to

manually correct the sentence boundaries. In the end, we obtained 94,982

sentences (aligned in the original and normalized forms) out of 30,000 SMS.

For character-based machine translation, we further split the tokens by word

boundaries, then each token was split into individual characters (e.g. “2 m

1” to “d e m a i n”). Character alignment was performed with GIZA++

(Och and Ney 2003) in moses. We trained the machine translation system

with the sentences of the same length, which takes 73.5% of all the

materials from the corpus. The numbers of tokens and unique spelling

variants are listed in Table 3. With multivec, the inputs are pairs of aligned

parallel sentences. The numbers of tokens and spelling variants can be

found in Table 4.

 TRAINING TEST

Original Normalized Original Normalized

TOKEN 83,926 83,926 10,490 10,490

TYPE 13,563 9,069 3,360 2,439

Tab. 4. Tokens and spelling variants for moses training and testing

4 Methodologies, Tools and Experiments

4.1 Methodologies

As we discuss in the literature review, we can use the original and

normalized text messages as parallel sentences in machine translation

systems when we consider the original text message as source language and

the normalized text message as target language. Since the text messages

have monotonous word alignments, given a reasonable word segmentation

strategy, character-based SMT can be applied to generate the character

mappings between the two versions of text messages.

Using the logic that similar words tend to appear in similar contexts, we can

use multivec as a method of translating from the original texts to the

standardized texts, because the shorthand forms bear the same context, even

if they appear in different spelling variants.

4.2 Tools and experiments

4.2.1 multivec

For multivec we use the entire corpus for training the model (corpus size see

Table 3). The unit of analysis in multivec is word. The setup of multivec is

as follows:

1. Dimensions in the vectors: 100

2. Context windows size: 5

3. Minimum absolute counts in corpus: 5

4. Learning rate: 0.05

5. Iterations: 5

6. Subsampling: 0.001

7. Negative sampling: 5

8. The remaining parameters: default

We observe that true casing works better than lower casing. Moreover, we

achieve the following accuracy scores in the nearest neighbor list for the top

1 item and top 3 items: 55.3%, 59.0%.

4.2.2 moses

The unit of analysis in moses is character. In the preprocessing phase we

took only sentences with the same length, because the simple segmentation

by word boundaries can lead to mismatch in the original and normalized

sentences (corpus size see Table 4). We tried language models of up to 7-

grams and found out that the normalization accuracy of shorthand forms

stabilized at 7-grams.

The best result is given by taking the top 1 candidate in 10-best list,

language model 7-gram, grow-diag-final-and. The average length of a token

in our corpus is 7 (6.76 for moses, 5.7 for multivec), which might explain

why the 7-gram language model scored the best.

5 Results Analysis

We took a test set of 10,490 shorthand forms for both moses and multivec.

We looked at recall of two approaches and their overlaps in identifying

shorthand forms. To evaluate accuracy, we took the overlapping part as the

test set. multivec retrieved 5,809 instances, whereas moses found 5,283. We

report only accuracy of the task, because the precision of retrieval is 100%.

The accuracy score is equal to the recall of shorthand forms in the test set.

The two approaches overlap in 3,987 retrieved instances, with discrepancies

of 1,821 for multivec and 1,291 for moses, respectively. Spelling variants of

a lemma refer to the variability of that lemma in different forms. For the

lemma “demain”, there are plenty of spelling variants in our corpus such as

“dm1”, “dm 1”, “dem1”, “dem 1”, “2m1”, “2main”, “2min”, etc.

Fig. 2. Discrepancies of tokens and spelling variants

 moses multivec

TOKEN (retrieved) 1,291 1,821

SPELLING VARIANT (retrieved) 903 473

TOKEN (training set) 83,926 657,572

SPELLING VARIANT (training set) 13,569 46,413

NORMALIZED TOKEN% 1.50% 0.28%

NORMALIZED SPELLING VARIANT% 6.65% 1.02%

Tab. 5. Normalized retrieved rate for tokens and spelling variants

We analyzed the retrieval discrepancies extensively at the token and

spelling variant levels in the following sections. Because we trained the

systems of multivec and moses with different sizes of training materials,

normalization of retrieved instances against the size of training materials is

needed in order to evaluate the output on the same basis (Table 5). As seen

in Figure 2 and Table 5, moses recognizes a lot more cases than multivec on

both the token and spelling variant levels. However, in the test set, we

notice that multivec is able to correctly identify more tokens, while moses is

better at identifying spelling variants (see Figure 2).

When we compare moses with multivec, multivec recognizes the most

deletions (see Figures 3 and 4). Although moses has less training materials,

it is better at recognizing substitutions and repetitions. There are not many

cases of swaps and insertions in the test set; thus, it is difficult to judge the

performances of the two systems on these categories.

We looked at the different categories of shorthand forms recognized in the

test set and observed that moses and multivec have different preferences for

normalizing different categories. Deletions are the most common category

in the test set, followed by substitutions. The number of deletions is 3 times

that of substitutions. The number of substitutions is 20 times that of

repetitions. Swaps and insertions are much less observable in test set (see

Figures 3 and 4).

As demonstrated in Table 6, multivec is able to find severely shorted forms

(“we” for “weekend”, “kel” for “quelle”). Moses is capable of finding

highly varied forms of spelling variants.

 moses multivec

Deletions “ojrd8” (“aujourd’hui”) “we” (“weekend”)

Substitutions “ki” (“qui”) “kel” (“quelle”)

Repetitions “groos” (“gros”) “bizzz” (“biz”)

Swaps “niut” (“nuit”) --

Insertions “dorlotter” (“dorloter”) “oki” (“ok”)

*normalized word in bracket

Tab. 6. Examples from moses and multivec for five shorthand categories

Fig. 3. Accurate normalization of token level for moses and multivec in five categories

When we compare moses with multivec, we see that the most common type

that has been recognized by multivec is deletions. Although moses has less

training materials, it is better at recognizing substitutions and repetitions.

There are not many cases of swaps and insertions in the test set; hence, it is

difficult to judge the performances of the two systems on these categories.

Fig. 4 Accurate normalization of spelling variant level for moses and multivec in five

categories

When it comes to the spelling variants, we see that across all the categories,

moses captures most of the normalization cases accurately. In the test set, it

highly outperforms multivec when it comes to substitutions. In general,

moses has a higher rate of recall on different types, whereas multivec has

high precision, as it recognizes words that appear in similar contexts all the

time.

Original Normalized Approach Frequency

auj multivec 7

adj 4

aujourd’hui 1

aujourdhui moses 3

aujourdwi aujourd’hui 1

ojourdhui 1

aujourdui 1

ojrd8 1

ojordui

1

Tab. 7. Examples for “aujourd’hui” in different spelling forms

 Original Normalized

11h58 11h58

12:30 12h30

17.40h 17h40

18.30 18h30

19 19h

19h3o 19h30

20.49 20h49

8.30 8h30

Tab. 8. Examples for temporal expressions

Some other interesting observations are that moses is flexible on different

spelling variants (see Table 7) and is good with temporal expressions (see

Table 8). As we see in Table 7, for the normalization form “aujourd’hui”,

nine different spelling variants were found in the test set, including the

lemma. Both systems have different preferences in “translating” from the

original to the normalized forms.

We noticed that multivec recognizes always the same items, e.g. “auj” (7

times), “ajd” (4 times). Moses recognizes six different spelling variants, and

except for “aujourdhui” (3 times), the other five spelling variants are hapax

legomena. “auj” and “ajd” are extremely difficult to for moses to

normalize, as long-distant deletion of character sequences is involved.

We also noticed that moses is good at finding temporal expressions (see

Table 8). In these forms, the variation lies in separators between hours and

minutes, e.g. “h”, “:”, “.”. Moses is able to normalize extremely varied

form such as “17.40h” to its normalized form “17h40”.

Moses is highly flexible with out-of-vocabulary words (words that have not

been “seen” in its training materials) and is good at identifying different

spelling variants. During the training of multivec, it omitted out-of-

vocabulary words. Nonetheless, moses has the advantages of treating every

normalization as a translation task and tries to find the most probable

character mappings from the original form to the normalized form.

However, Moses can bring in noises in character mapping, because it

calculates the path with the highest joint probabilities. For example, the

word “l’université” was wrongly mapped to “l’universitait” by taking the

path with the highest probability. The probabilities of character mapping are

taken from the phrase table and path 1 is the most probable path amongst all

the mapping strategies. Path 2 is an example of another possible way to

normalize the word “l’université”, and since it has a much lower probability

compared to path 1, moses opted for path 1 (see Table 9).

Path 1 l’uni → l’uni

(0.75)

v → v

(0.86)

s → s

(0.71)

i → i

(0.86)

té →tait

(0.66)

l’universitait

(0.26)

Path 2 l’uni → l’uni

(0.75)

ver → ver

(0.28)

si → si

(0.6)

té →tait

(0.66)

l’université

(0.08)

Tab. 9. Moses phrase table and the different paths of normalization

To summarize, using multivec is looking for existing items for a dictionary.

If the item is unlisted in the dictionary, multivec cannot solve the

normalization tasks. On the contrary, moses treats its normalization task as

applying character mapping rules to the non-standard forms. It attempts to

come up with the most plausible path.

6 Conclusion

Using multivec to normalize shorthand forms has its advantages as this

process is always consistent and runs extremely fast. Moreover, it is able to

retain contextual information; thus, highly abbreviated items can be

deciphered by multivec. Unfortunately, this method is highly intolerant of

unseen items in training materials. Consequently, it requires large input of

parallel materials.

Moses is highly flexible when it comes to translations of out-of-vocabulary

items. Moreover, it is able to retrieve multiple spelling variants. As

discussed before, moses chooses the path of the highest joint probability.

Thus, it can occur that during the character mapping process, noises (an

incorrect mapping with a higher probability) are inserted into the output.

Furthermore, moses requires a long training time and we have to train the

language model accordingly, i.e. we have to run different different models

with different parameters until reaching a satisfactory result, which can lead

to even longer training and tuning time.

As we do not have access to the evaluation sets in the previous studies on

the Belgian French corpus (see Kobus et al. (2008), Yvon (2009) and

Beaufort et al. (2011)) and we only investigated word normalization in our

experiments, we cannot compare our results directly with those in the state-

of-the-art study (i.e. Beaufort et al. (2011)). Our contributions are as

follows:

1. To the best of our knowledge, we are the first study that applied the

character-based SMT to normalize the Belgian French text messages.

2. We applied word embeddings that encode contextual information to

increase recall and precision of normalization.

3. We identified the efficacy and necessity of combining the two

approaches in normalization: character-based SMT (moses) and word

embeddings (multivec).

4. Our detailed result analyses provide further insights into future

work.

7 Future Work

As we did not include contextual information into moses, as it could be

quite challenging to encode contextual information in the character system,

which requires precise segmentation of word boundaries. We suggest that in

the future, we could combine the two approaches as the word embeddings

from multivec already entails the contextual information of a word. It is

plausible to identify the candidates for character-based SMT by multivec,

and then use the parallel pairs as input for machine translation systems.

Another point where we could improve is incorporating parallel sentences

of different lengths, aka phrase normalization, where one side in the pair is a

multi-word expression (e.g. “ktv” to “que tu veux”). We also envisage

using more materials from the sms4science project, namely the French

sms4science corpus collected in France. Finally, in the realm of

embeddings, we would like to extend our methodologies of creating

embeddings to units on the sub-word level. fastText (Bojanowski 2016)

provides the theoretical framework for applying this methodology to any

language. We assume that mapping the original and normalized texts on the

level of sub-word unit can reduce the number of out-of-vocabulary items, as

well as omit noises as in moses. Moreover, as the sub-word embeddings

entail morphological and contextual information the mapping quality could

be improved. We will address the aforementioned open issues in our future

experiments.

References
Beaufort, Richard, Sophie Roekhaut, Louise-Amélie Cougnon and Cédrick

Fairon. 2010. “A hybrid rule/model-based finite-state framework for

normalizing SMS messages”. Proceedings of the 48th Annual Meeting of

the Association for Computational Linguistics: 770-779.

Bérard, Alexandre, Christophe Servan, Olivier Pietquin and Laurent

Besacier. 2016. “Multivec: a multilingual and multilevel representation

learning toolkit for NLP”. The 10th edition of the Language Resources and

Evaluation Conference: 4188-4192.

Bird, Steven, Edward Loper and Ewan Klein. 2009. Natural Language

Processing with Python. O’Reilly Media Inc.

Bojanowski, Piotr, Edouard Grave, Armand Joulin and Tomas Mikolov.

(2016). “Enriching word vectors with subword information”. <

https://arxiv.org/abs/1607.04606>, access 13.5.2017.

Choudhury, Monojit, Rahul Saraf, Vijit Jain, Sarkar Sudeshna and Anupam

Basu. 2006. “Investigation and modeling of the structure of texting

language”. International journal on document analysis and recognition 10

(3): 157-174.

De Clercq, Orphée, Sarah Schulz, Bart Desmet, Els Lefever and Véronique

Hoste. 2013. “Normalization of Dutch user-generated content”. Proceedings

of 9th International conference on Recent Advances in Natural Language

Processing: 179-188.

Fairon, Cécrick, Jean R. Klein and Sébastien Paumier. 2007. Le langage

SMS: étude d'un corpus informatisé à partir de l'enquête «Faites don de vos

SMS à la science». Presses univ. de Louvain.

Firth, John R. 1957. “A synopsis of linguistic theory 1930–1955”. Studies in

linguistic analysis. Oxford: Blackwell: 1–32.

Jurafsky, Daniel and James H. Martin. 2009. Speech and language

processing (1st. ed.). Pearson.

Koehn, Philipp, Hieu Hoang, Alexandra Birch, Chris Callison-Burch,

Marcello Federico, Nicola Bertoldi,Brooke Cowan, Wade Shen, Christine

Moran, Richard Zens, Chris Dyer, Ondřej Bojar, Alexandra Constantin and

Evan Herbst. 2007. “Moses: Open source toolkit for statistical machine

translation”. Proceedings of the 45th Annual Meeting of the ACL on

Interactive Poster and Demonstration Sessions: 177-180.

Kobus, Catherine, François Yvon and Géraldine Damnati. 2008.

“Normalizing SMS: are two metaphors better than one?”. Proceedings of

the 22nd International Conference on Computational Linguistics 1: 441-

448.

Koch, Peter and Wulf OesterreicherW. 2001. Gesprochene und

geschriebene Sprache. Französisch, Italienisch, Spanisch. Berlin/New

York: de Gruyter.

Li, Chen and Yang Liu. 2012. “Normalization of text messages using

character-and phone-based machine translation approaches”. Proceedings of

13th Annual Conference of the International Speech Communication

Association: 2330-2333.

Mikolov, Tomas, Kai Chen, Corrado Greg and Jeffrey Dean. 2013a.

“Efficient Estimation of Word Representations in Vector Space”. The

Workshop Proceedings of the International Conference on Learning

Representations. < https://arxiv.org/abs/1301.3781>, access 13.5.2017.

Mikolov Thomas, Sutskever Ilya, Kai Chen, Greg Corrado and Jeffrey

Dean. 2013b. “Distributed Representations of Words and Phrases and their

Compositionality”. Advances in Neural Information Processing Systems.

<https://arxiv.org/abs/1310.4546>, access 13.5.2017.

Och, Franz Josef and Hermann Ney. 2003. “A Systematic Comparison of

Various Statistical Alignment Models”. Computational Linguistics 29 (1):

19-51.

Pennell, Deana L. and Yang Liu. 2011. “A Character-Level Machine

Translation Approach for Normalization of SMS Abbreviations”.

Proceedings of the 2011 International Joint Conference on Natural

Language Processing (IJCNLP): 974-982.

Rong, Xin. (2014). “word2vec parameter learning explained”. <http://

https://arxiv.org/abs/1411.2738>, access 13.5.2017.

sms4science project. (2004). <http://www.sms4science.org/?q=en>, access

13.5.2017.

Sridhar, V. K. R. (2015). “Unsupervised Text Normalization Using

Distributed Representations of Words and Phrases”. Proceedings of the

2015 Annual Conference of the North American Chapter of the Association

for Computational Linguistics: Human Language Technologies (HLT-

NAACL): 8-16.

Van Compernolle, Rémi. A. 2010. “The (slightly more) productive use of ne

in Montreal French chat”. Language Sciences 32 (4): 447–463.

Yvon, François. 2010. “Rewriting the orthography of SMS messages”.

Natural Language Engineering 16 (02): 133-159.

