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ABSTRACT
Energy efficiency and datacentre automation are critical targets of

the research and deployment agenda of CINECA and its research

partners in the Energy Efficient System Laboratory of the University

of Bologna and the Integrated System Laboratory in ETH Zurich. In

this manuscript, we present the primary outcomes of the research

conducted in this domain and under the umbrella of several Eu-

ropean, National and Private funding schemes. These outcomes

consist of: (i) the ExaMon scalable, flexible, holistic monitoring

framework, which is capable of ingesting 70GB/day of telemetry

data of the entire CINECA datacentre and link this data with ma-

chine learning and artificial intelligence techniques and tools. (ii)

The exploitation of ExaMon to evaluates the viability of machine-

learning based job scheduling, power prediction and deep-learning

based anomaly detection of compute nodes. (iii) The viability of scal-

able, out-of-band and high-frequency power monitoring in compute

nodes, by leveraging low cost and open source embedded hardware

and edge-computing, namely DiG. (iv) Finally, the viability of run

time library to exploit communication regions in large-scale appli-

cation to reduce the energy consumption without impairing the

execution time, namely COUNTDOWN.
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1 INTRODUCTION
On the race toward exascale, high-performance computing systems

are facing essential challenges that limit their efficiency. Among

all, power and energy consumption fueled by the end of Dennard’s

scaling start to show their impact on limiting supercomputers peak

performance and cost-effectiveness. Also, the reliability and the

security of the computing systems, Hardware (HW) components

as well as Software (SW) components pose novel challenges on

the management of the system at large. Overall, it is a daunting

task for system administrators, and users to optimise supercom-

puter/jobs performance and power consumption, identify anoma-

lous behaviours, faulty situations, and guarantee systems operating

in optimal conditions[27].

Datacentre automation aims at combining control theory, artifi-

cial intelligence and big data technologies toward the automation

of the datacentre management process. To pave the way toward

datacentre automation a set of steps must be undertaken.

The first step to obtain datacentre automation is to implement a

monitoring framework with a high level of detail and granularity,

that can be used to characterise the target system. The system-level

data collection infrastructure has to be scalable, capable of handling

a large amount of information, thus big-data oriented but also suit-

able to be connected with information extraction level. With the

wealth of collected data, it is possible to create a virtual model that

describes and behaves similarly to its physical counterpart, and that

can be used for automated processes and predictive, maintenance.

For examples, if we infuse reasoning capability (via Artificial In-

telligence (AI) techniques such as Machine Learning) in it, we can

automatically detect faults or anomalous conditions disrupting the

normal behaviour of the supercomputer. Moreover, AI approaches

can also be used for improving the general system management, i.e.,

improving the scheduling and resource allocation policies based on

predicted evolution of the system. The monitoring infrastructure

and the added AI can be hosted on the supercomputer itself, thus

creating a self-monitoring and -adapting system."

The second step is to obtain a job-level monitoring framework

and run-time suitable to intercept the application characteristics

and leverage it to reduce energy consumption. This job-level mon-

itoring framework needs to be low overhead, transparent to the

user and thus capable of preserving the normal application flow.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
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In this paper, we report the concrete action and research outcome

performed to improve the energy efficiency and the automation of

the CINECA datacentre. Finally, we will conclude describing how

these lessons learnt have shaped its future agenda.

In Section 2, we introduce the ExaMon holistic and scalable

monitoring framework. In Section 3, we present how AI can be

coupled with ExaMon to deliver datacentre automation. In Section

4, we introduce edge computing as a way to overcome technological

challenges in dealing with fine-grain data and real-time analysis

and artificial intelligence. In Section 5, we focus on job level energy

efficiency. Finally in Section 6, we describe how these research

results entered in the CINECA agenda.

2 THE EXAMON FRAMEWORK
In this section, we give a high-level description of the scalable mon-

itoring infrastructure namely ExaMon [6, 7]. The model-learning

framework described in this paper is composed of several compo-

nents. With the help of the hierarchical view showed in Figure 1

we can distinguish four main groups. Starting from the bottom:

Data Collection. We collect two kinds of data: i) physical data mea-

sured with sensors and ii) workload information obtained from

the job dispatcher. These are the low-level components having the

task of reading the data from several sensors scattered across the

system and deliver them, in a standardized format, to the upper

layer of the stack. These software components are composed of

two main objects, the Message Queue Telemetry Transport (MQTT)

API and the Sensor API object. The former implements the MQTT

protocol functions and it is the same among all the collectors while

the latter implements the custom sensor functions related to the

data sampling and is unique for each kind of collector. Considering

the specific sensor API object, we can distinguish collectors that

have direct access to hardware resources like PMU (Performance

Monitoring Unit), IPMI (Intelligent Platform Management Inter-

face), HW accelerators, HW interconnets like I2C and PMBUS and

collectors that sample data from other applications as batch sched-

ulers (Altair’s PBS and Slurm Workload Manager) and tools such

as perf, PAPI, xCat/Confluent, Nagios and Ganglia.

The second typology of data regards the jobs running in the

system and its workload. To gather this data, we need to extend

the job scheduler adding a software component that collects the

information and sends it as anMQTTmessage to the upper layers of

the framework. Current state-of-the-art schedulers usually expose

a set of APIs that can be used by developers to add custom functions

and behaviours. For example, the hooks in PBS and plugins in Slurm.

Communication Layer. The framework is built around the MQTT

protocol. MQTT implements the "publish-subscribe" messaging

pattern and requires three different agents to work: (i) The "pub-

lisher", having the role of sending data on a specific "topic". (ii) The

"subscriber", that needs certain data so it subscribes to the appropri-

ate topic. (iii) The "broker", that has the functions of (a) receiving

data from publishers, (b) making topics available to subscribers, (c)

delivering data to subscribers. The basic MQTT communication

mechanism is as follows. When a publisher agent sends some data

having a certain topic as a protocol parameter, the topic is created

and available at the broker. Any subscriber to that topic will receive
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Figure 1: The ExaMon Monitoring framework

the associated data as soon as it is available to the broker. In this

scenario, collector agents have the role of "publishers".

Storage Layer. The monitoring framework provides a mechanism to

store metrics mainly for visualization and analysis of historical data.

We use a distributed and scalable time series database (KairosDB)

that is built on top of a NoSQL database (Apache Cassandra) as back-

end. A specific MQTT subscriber (MQTT2Kairos) is implemented to

provide a bridge between theMQTT protocol and the KairosDB data

insertion mechanism. The bridge leverages the particular MQTT

topics structure of monitoring framework to automatically form

the KairosDB insertion statement. This gives a twofold advantage:

first, it lowers the computational overhead of the bridge since it is

reduced to a string parsing operation per message; and secondly,

it makes easy to form the database query starting only from the

knowledge of the matching MQTT topic.

Applications Layer. The data gathered by the monitoring framework

can serve multiple purpose, as presented in the application layer.

For example, machine learning techniques can be applied to extract

predictive models or devise online fault detection mechanisms as

shown in Section 3.

2.1 ExaMon Results
Today ExaMon monitors at multi-granularity the CINECA Galileo,
Marconi, and D.A.V.I.D.E. systems [19] collecting processors ele-

ments, node level and job level statistics from 7393 computing

nodes in total and ingesting daily 70GB/day of Data. In the next

sections, we will show practical results conducted on top of the

ExaMon collected data.

3 AI FOR DATACENTRE AUTOMATION
In this section, we describe two use cases of combining Artificial

Intelligence (AI) techniques toward the datacentre automation.

The data collected through the ExaMon system is used for two

purposes: (1) correlating multi-scale metrics with the user’s com-

putational demand and resource usage (e.g., power/energy, job’s

request, efficiency). (2) correlate the multi-scale metrics between

them self to probe the status of the systems.

By profiling the user needs and demands, system-level tools can

bemade aware of the user while optimizing datacentre level policies.
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With this perspective in last years, we used the EURORA[19] and

the D.A.V.I.D.E. system to prototype job-level power predictors com-

bined with predictive-aware job schedulers. The research questions

that were answered by this research were threefolds: is it possible

to predict the power consumption of jobs before their execution?

To which degree optimization algorithms can be integrated into

the job schedulers? How proactive (based on predictions of state

evolution) power management approaches behave w.r.t. reactive

(based on current state) power management at the job level? We

answer these research questions in Section 3.1.

On the contrary, the same monitoring infrastructure can be used

to correlate time-traces and vital signs of the supercomputer and

nodes to spot out anomalous behaviours. With this perspective, we

conducted research focused on understanding the main challenges

in applying artificial intelligence approaches to the anomaly detec-

tion problem. The research questions that were answered by this

research were twofolds: how to overpass the lack of faulty data

in production systems? Is it possible to train anomaly detection

models without domain knowledge? We answer these research

questions in the Section 3.2.

3.1 AI drive power capping
A common approach to curtail the excessive power demands of

supercomputers is to hard-bound their consumption, power capping.
Most HPC systems that strive to enforce power capping adopted

HW-based solutions, such as Dynamic Voltage Frequency Scaling

(DVFS)[20, 24] or Intel’s RAPL[18]. These technologies have the

advantages of being well-known and requiring minimal effort by

users. However, HW-based methods operate by exchanging compu-

tational power for energy consumption, and this typically implies

that the duration of the HPC applications increases. This poses

a challenge for the accounting system [12], as in nowadays most

supercomputers the price paid by users depends on the duration of

their jobs. Hence, alternative means for enforcing power capping

have been widely studied. AI can help in this regard, as it allows

for smart scheduling and allocation decisions, with the possibility

to better use the system resources through careful planning.

The scheduling and allocation problems consist in deciding when

to start the execution of jobs submitted by users and where to exe-

cute them (i.e., choosing the set of resources to be allocated to the

application). In recent years, AI-based job dispatchers for super-

computers have been devised, using the EURORA and D.A.V.I.D.E.
systems as test cases; these works combined Constraint Program-

ming (CP) and heuristic algorithms to find optimal scheduling

plans[5, 13, 14], with the goal of maximizing the machine utilization

and decreases response times (aiming at satisfying both system own-

ers and users). Another area where supercomputer can benefit from

AI contributions is power consumption. To make well-informed

decisions regarding the facility, knowing the workload power con-

sumption before its execution is critical. Machine Learning (ML)

methods address this issue, by leveraging a large amount of histori-

cal data to learn the power consumption model of HPC applications.

The key is to have large data sets containing fine-grained data about

the power consumption of previous jobs run on the target system,

that is, the data collected via ExaMon . With such data, in both

EURORA and D.A.V.I.D.E. we created ML models based on Random

Figure 2: Predicted VS Real Power

Forest that can predict with high accuracy the power consumption

of HPC jobs, using the only job-related information provided at sub-

mission time (e.g., the requested resources, the user, the submission

queue, etc.)[9]. The accuracy of this model was very good, with an

average error around 8-9%, as shown in Figure 2 that compares the

predicted trend to the real power consumption trend in two days

on the EURORA system.

Exploiting the ML model an AI enhanced power capping fea-

ture was developed, by creating a job scheduler capable of limiting

a supercomputer power consumption acting only on the work-

load scheduling[11], without trading off performance for power

consumption – it relies on proactive planning and is based on a com-

bination of Constraint Programming (CP) plus a heuristic algorithm.

The scheduler is awakened at whenever a new job is submitted, or a

running job terminates; at each activation, we build a full schedule

and resource assignment for all the waiting jobs, but then we dis-

patch only those jobs that are scheduled for immediate execution.

By taking into account future jobs, we avoid making dispatching

decisions with undesirable consequences; by starting only the ones

scheduled for immediate execution, the system can manage uncer-

tain execution times. The power is treated as an additional resource

and constrained never to exceed the given budget; since the dis-

patching decisions take place before the execution of the jobs, the

ML method to predict the power consumption aforementioned is a

fundamental component. The AI-enhanced method improves the

solutions from the state-of-the-art (SoA) by around 8.5%, in terms

of average waiting time[11].

3.2 AI driven anomaly detection
Another area where AI can offer significant advantages in the HPC

context is anomaly detection. Large supercomputers are composed

of numerous components that risk to break down or behave in

unwanted manners. Identifying broken or wrongly configured com-

ponents is a daunting task for system admins. Hence an automated

tool would be a boon. The current SoA relies on supervised ML

methods that learn to distinguish between healthy and faulty states
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after a training phase during which the supercomputer is be sub-

jected to different conditions, e.g. normal behaviour and a set of

anomalies. However, it is quite hard to obtain the large, unbalanced

and labelled training set necessary for this learning methodology
1
,

since in supercomputers data is very abundant but labels are scarce

and that most of the time these systems are in normal states.

We showed in previous works [10, 15] on the D.A.V.I.D.E. super-
computer that an easier to implement approach can be adopted: we

devised a semi-supervised method that relies on the abundance of

normal data collected during the lifetime of the machine to create

a model of the normal state; this model can then be used to discern

between normal or anomalous conditions in an online fashion. The

key components of the proposed approach are I) the data collected

in a 2 months period via Examon and guaranteed to correspond

to D.A.V.I.D.E. in normal state and a II) a type of neural network

called autoencoder[22] (from the deep learning field) that learns

the correlations among the input features (i.e., the various metrics

collected by Examon) that characterize the normal behaviour of

D.A.V.I.D.E. computing nodes. After having learnt the normal cor-

relations, the autoencoder can notice representation changes that

underlie anomalous conditions, thus detecting the anomalies.

To test our approach, we deployed the trained autoencoder net-

work onto the embedded monitoring boards that gather sensor

measurements collected with ExaMon , and then we injected faults

(in a controlled way) on a subset of D.A.V.I.D.E.computing nodes.

The live data from the measuring sensors is then fed to the autoen-

coder that decides if the current set of measurements correspond to

normal or anomalous behaviour; the decision is made with negligi-

ble overhead and in under 11ms. The detection rate is very precise,

as on average, the accuracy is around 92%, which is 12% higher than

the accuracy of other semi-supervised methods from the literature.

4 EDGE COMPUTING AND FINE-GRAIN
MONITORING

While the previous section focuses on the coarse grain sensors and

in aggregating the information in job level and node level models,

this section focuses on fine-grain sensor data and the research chal-

lenges related to the usage of them. The scientific questions that

this research answers are: can we leverage sub-second power mea-

surement for datacentre automation? Are these metrics of interest?

How to process and integrate them into the ExaMon framework?

4.1 DiG: Dwarf-In-a-Giant
Modern HPC systems still have limited power introspection capabil-

ities. Indeed, at node level ExaMon is lacking fine-grain and accurate
measurements of the power consumption of the node, which are

only available from the IPMI sensors data or CPU-level performance

counters such as Intel-RAPL [18] as well as dedicated systems for

live edge analysis. To bridge this gap, in theD.A.V.I.D.E. [2, 6] system
we developed DiG (i.e., Dwarf in a Giant) [26], an enabler frame-

work for green computing, predictive maintenance and security of

supercomputers. DiG provides high-quality monitoring of power

and energy consumption of HPC nodes. It is completely out-of-

band and can be deployed in any hardware architecture/large-scale

1
A partial solution not yet explored could be transfer learning, i.e. applying to other

systems the ML models trained with the data from a specific supercomputer

datacentre at a low cost. It supports: (i) fine-grain power monitoring

up to 20ms (50x improvement in resolution than state-of-the-art

- SoA); (ii) below 1% (σ ) of uncertainty on power measurements,

which makes it suitable for the most rigorous requirements of HPC

ranking lists (i.e., Top500); (iii) high-precision time-stamping (sub-

microsecond), which is three orders of magnitude better than SoA;

(vi) real-time profiling, useful for debugging energy-aware appli-

cations; and (v) possibility for edge analytics via machine learning

algorithms, with no impact on the HPC computing resources and

no additional load to the ExaMon monitoring infrastructure. The

latter feature ensures scalability for large-scale installations.

Figure 3 sketches the three main components of the DiG system:

(i) a dedicated power sensor to measure the whole node power con-

sumption at a high resolution, (ii) an embedded computer (i.e., Bea-
glebone Black - BBB) to carry out edge analytics on theHPC’s power

and performance measurements - along with the high-resolution

power measurements we collect performance measurements from

integrated out-of-band telemetries, such as IBM Amester and IPMI

-, and (iii) a scalable interface to ExaMon (i.e., MQTT), to carry out

cluster-level analytics on large-scale systems.
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Figure 3: DiG monitoring system architecture.

4.2 Edge Analytics
At the ExaScale the burden of executing signal processing or data

analytics tasks required for the datacentre’s automation can easily

become the bottleneck of the holistic multiscale monitoring sys-

tem. For this reason, we leverage the DiG platform as a vehicle

to embed these features together with the out-of-band telemetry

system of each computing node (e.g., IBM Amester) [15]. As an

example, we exploit the same autoencoder models described in the

previous section in combination with the out-of-band monitoring

system and the embedded monitoring boards (BBB) to execute the

inference online and detect anomalies thanks to edge computing.

We installed TensorFlow on the BBB and took advantage of the

NEON accelerator (SIMD architecture). On each BBB we load the

trained autoencoder of the corresponding node, then we feed it in

real-time with new data coming from the monitoring framework.

The results of the detection were presented in Section 3.2. Here we

want to point out that we process on edge a batch of input data

(the set of 166 features) in just 11ms, which is a negligible overhead

considering the sampling rate of several seconds.

In addition to the out-of-band telemetry data, DiG samples the

node’s power consumption at an SoA time-granularity for HPC
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systems in production (20microseconds).We use this information to

compute locally and in real-time signal processing tasks, useful for

machine learning inference on the edge [26]. Indeed, the embedded

computers used on DiG features HW extensions to accelerate signal

processing workloads and thus perform lively the Power Spectral

Density (PSD) of the nodes’ power consumption.

Figure 4 reports an example of the PSDs computed by DiG in a

time window of 40 milliseconds, while we were running on a node

different applications. Goal of this test is not to analyze the reasons

behind the peaks, but instead to show that different patterns emerge

in the power spectrum with different workloads. These patterns

can be used as input features for machine learning algorithms

(e.g., Deep Neural Networks) targeting specific applications, such as

energy efficiency, maintenance and security of supercomputers [26].

In particular, comparing the first plot which portrays the PSD of

the computing node in idle, with the second and third plots that

depict respectively a memory bound synthetic benchmark and a

real scientific application (i.e., Quantum Espresso - QE), we can

clearly see three different patterns (peaks highlighted with dark /

light circles to indicate stronger / weaker magnitude).
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Figure 4: Example of PSD patterns of real bottlenecks and
applications that can be captured with DiG.

To conclude and answer the research questions, frameworks

based on embedded systems, like DiG, can (i) have the form factor

and computation power to enhance the out-of-band telemetry in-

tegrated in computing nodes (e.g., IBM Amester) and (ii) ease the

centralized monitoring system (e.g., ExaMon ), while (iii) deploying

localized artificial-intelligence analysis and datacentre-automation

tasks. Our practical experience shows that the DiG system can

leverage the fine-grain (sub-ms) telemetry to capture key spectral

features of real computing applications, opening new opportunities

for learning algorithms on power management, maintenance and

security of supercomputers.

5 JOB LEVEL ENERGY REDUCTION
While previous Sections focuses on automating the maintenance

tasks of the computing infrastructure, not a lot is done in terms

of increasing its efficiency. The ExaMon framework enables users

to assess the energy consumed by their running job, but let them

control the energy consumed by their job could be detrimental to

the supercomputing capacity and TCO [12].

Indeed, low power design strategies enable computing resources

to trade-off their performance for power consumption by mean of

low power modes of operation. These states obtained by dynamic

and voltage frequency scaling (DVFS) (P-states [1]), clock gating or

throttling states (T-states), and idle states which switch off unused

resources (C-states [1]). Power states transitions are controlled by

hardware policies [23, 28], operating system (OS) policies, and with

an increasing emphasis in recent years, at user-space by the final

users [3, 20, 21, 24] and at execution time [25, 30]. However, ex-

ploring the EtS (Energy-to-Solution)-TtS (Time-to-Solution) Pareto

curve at run-time has a limited potential in the current supercom-

puting scenario: slowing down applications is often detrimental

to the total cost of ownership (TCO) due to the large contribution

related to the depreciation cost of the IT equipment [12].

Several approaches have shown that it is possible to limit the

performance degradation while cutting the IT energy wasted by

reducing the performance of the processing elements when the

application is in a region with communication slack available [16,

17, 25, 29, 30].These approaches try to isolate, at execution time,

regions of the application execution flow which can be executed

at a reduced P-state (DVFS) without impacting the application

performance (not in the critical task).

To explore and evaluate these approaches with production runs,

the ExaMon framework is not suitable, as it has no introspection

on the application flow, nor is capable of injecting core-level power

management actions selectively in code regions. The research chal-

lenges lay in being capable of extracting and intercepting the ap-

plication flow without causing overheads and isolating the right

computing phase to be executed at a reduced performance.

5.1 Reactive and Proactive Power Management
Message Passing Interface (MPI) libraries implement idle-waiting

mechanisms, but these are not used in practice to avoid performance

penalties caused by the transition times in and out of low-power

states [23]. To avoid changing frequency in fast MPI primitives,

which can induce high overhead and low energy saving, it is possi-

ble to adopt two different strategies: using (i) proactive mechanisms,

which try to identify MPI primitives (through learning mechanisms)

where is possible to reduce the core’s frequency with a limited or

negligible impact on the execution time, or implementing (ii) reac-

tive mechanisms to impose a predetermined action to filter-out fast

and costly MPI primitives in term of overhead.

5.2 COUNTDOWN - A Reactive Approach
For this purpose we designed COUNTDOWN. This library instru-

ments the application intercepting MPI primitives, it uses a timeout

strategy [8] to avoid changing the power state of the cores during

fast application and MPI context switches avoiding performance

overhead without significant energy and power reduction. Each

time the MPI library asks to enter in low power mode, COUNT-

DOWN defers the decision for a defined amount of time. If the MPI

phase terminates within this amount of time, COUNTDOWN does

not enter in the low power states, filtering out short MPI phases

which are costly in terms of overheads and with a negligible impact

of energy saving. This strategy is purely reactive, and it is triggered

by the MPI primitives called by the application.

COUNTDOWN implements the timeout strategy through the

standard Linux timer APIs, which expose the system calls: setitimer()
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Figure 5: Timer strategy implemented in COUNTDOWN.

and getitimer() to manipulate user’s space timers and register call-

back routines. This methodology is depicted in Figure 5. When

COUNTDOWN encounters an MPI phase, in which opportunisti-

cally can save energy by entering in a low power state, COUNT-

DOWN registers a timer callback in the prologue routine (Event(start)),
after that the execution continues with the standard workflow of

the MPI phase. When the timer expires, a system signal is raised,

the “normal” execution of the MPI code is interrupted, the signal

handler triggers the COUNTDOWN callback, and once the call-

back returns, execution of MPI code is resumed at the point, it was

interrupted. If the “normal” execution returns to COUNTDOWN

(termination of the MPI phase) before the timer expiration, COUNT-

DOWN disables the timer in the epilogue routine and the execution

continues as nothing happened.

COUNTDOWN is a profiling and fine-grain power management

run-time C library. It implements profile capabilities, and it can in-

ject run-time code in the application to inspect and react to the MPI

primitives. The library exposes the same interface of a standard

MPI library, and it can intercept all MPI calls from the applica-

tion. COUNTDOWN implements two wrappers to intercept MPI

calls: i) one for C/C++ MPI libraries, ii) one for FORTRAN MPI

libraries. This is mandatory due to C/C++, and FORTRAN MPI

libraries produce assembly symbols that are not application binary

(ABI) compatible. The FORTRAN wrapper implements a marshal-

ing and unmarshalling interface to bind MPI FORTRAN handlers

incompatible MPI C/C++ handlers. This allows COUNTDOWN to

interact with MPI libraries in FORTRAN applications.

The library targets the instrumentation of applications through

dynamic linking without user intervention. When dynamic linking

is not possible COUNTDOWN has also a fall-back, a static-linking

library, which can be used in the toolchain of the application to

inject COUNTDOWN at compilation time. However, dynamic link-

ing allows to instrument every MPI-based application without any

modifications of the source code nor the toolchain. Linking COUNT-

DOWN to the application is straightforward: it is enough to con-

figure the environment variable LD_PRELOAD with the path of

COUNTDOWN library and start the application as usual.

Moreover, COUNTDOWN is endowed with profiler capabilities

which allow a detailed analysis of the application which relies on

the raw HW performance counter of Intel CPUs. The profiler uses

the Intel Running Average Power Limit (RAPL) registers to monitor

the energy/power consumed by the CPU.

5.3 Fermata - A Proactive Approach
To understand the benefit of the reactive COUNTDOWN policy it

is useful to compare it with the SoA proactive Fermata [29, 30] algo-
rithm. Fermata implements a simple algorithm to reduce the cores’

P-state in communication regions. It uses a prediction algorithm to

decide when scaling down the P-state; the prediction is determined

by the amount of time spent in communication during the previous

call. If the duration is greater than or equal to twice the switching

threshold, Fermata sets a timeout to expire at the threshold time.

The threshold time is empirically set to 100ms. Calls are identified

as specific MPI primitives in the application code through the hash

of the pointer that makes up the stack trace. The hash is generated

when the application encounters an MPI primitive; hence, each MPI

primitive in the code is uniquely identified. The information about

the last call is stored in a look-up table used to choose if to set the

timer in the next call.

5.4 Reactive vs Proactive
In this Section, we evaluate the performance of both approaches

using the NAS Parallel Benchmarks (NPB) [4]. NAS is a set of

kernels and dwarf applications developed by the NASA Advanced

Supercomputing division. The NPB consist of benchmarks widely

used in different scientific areas such as spectral transform, fast

Fourier transform, fluid dynamics, and so on. We use the NPB

version 3.3.1 with the dataset E.We executed theNAS on 29 compute

nodes with a total core count of 1024 cores. We use 1024 cores due

to the execution time of the application run using dataset E is, on

average, ten minutes for each benchmark.

In our experimental setup, we used the GALILEO tier-1 HPC sys-

tem.Its compute nodes are equipped with 2 Intel Broadwell E5-2697

v4 CPUs, with 18 cores at 2.3 GHz nominal clock speed and 145W

TDP and interconnected with an Intel QDR (40Gb/s) Infiniband

high-performance network. We use the complete software stack of

Intel systems for real production environments. We use Intel MPI
Library 5.1 as the runtime for communication and Intel ICC/IFORT
18.0 in our toolchain. We select the Intel software stack because it

is currently used in our target systems as well is supported in most

of HPC machines based on Intel architectures.

We run NAS with and without instrumentation of COUNT-

DOWN and Fermata and we compare the results. COUNTDOWN

reports an average overhead of 3.85%, while Fermata shows an

average overhead of 4.21%. In term of energy and power saving,

COUNTDOWN reports in average respectively 14.67% and 17.93%

while Fermata reports an energy and a power saving of 9.95% and

13.64%. We can notice that COUNTDOWN outperforms Fermata
with lower overhead and higher energy and power saving respec-

tively of 4.72% and 4.29% of gain. We must remark that COUNT-

DOWN logic guarantees that no transition to low-power states are

triggered for MPI phases shorter than 500us, for which the latency

of the CPU’s internal power controller would cause uncertainty in

the applied low-power state. These results suggest that it is possible

to decrease the energy consumption of supercomputing machines

with reduced overhead. However, how will this behave in a real

production run?
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5.5 COUNTDOWN on Quantum ESPRESSO
After we prove that the proposed reactive policy has advantage over

proactive one to reduce power consumption in MPI communication

inducing lower overhead, we scale our experiments on a real pro-

duction run using Quantum ESPRESSO (QE) with COUNTDOWN.

QE is a suite of packages for performing Density Functional The-

ory based simulations at the nanoscale, and it is widely employed

to estimate ground state and excited state properties of materi-

als ab initio. The code used for the experimental setup is PWscf

(Plane-Wave Self-Consistent Field) which is used to solve the self-

consistent Kohn and Sham (KS) equations and obtain the ground

state electronic density for a typical case study. The code uses a

pseudo-potential and plane-wave approach and implements mul-

tiple hierarchical levels of parallelism implemented with a hybrid

MPI+OpenMP approach. As of today, OpenMP is generally used

when MPI parallelism saturates, and it can improve the scalability

in the highly parallel regime. Nonetheless, in the following, we

will only refer to data obtained with pure MPI parallelism without

significantly impairing the conclusions reported later.

We run QE v6.1.0 on 96 compute nodes, using 3456 cores and

12 TB of DRAM. We used an input dataset capable of scaling on

such number of cores, and we configured QE to avoid network

bottlenecks, which would have limited the scalability. We run an

instance of the application with and without COUNTDOWN on

the same nodes, and we compared the results.

Figure 6 shows the total time spent in the application and in

MPI phases, which are shorter and longer than 500us, which is the

reaction time of the HW power controller [23]. On the x-axis, the

figure reports the Id of the MPI rank, while in the y-axis reports in

the percentage of the total time spent in phases longer and shorter

than 500us. We recall that 500us is the latency time of the internal

power controller logic of the GALILEO CPUs [23]. We can immedi-

ately see that in this real and optimized run, the application spends

a negligible time in phases shorter than 500us. In addition, the time

spent in the MPI library and the application is not homogeneous

among the MPI processes. This is an effect of the workload param-

eters chosen to optimize the communications, which distribute the

workload in subsets of MPI processes to minimize broadcast and

All-to-All communications. When the COUNTDOWN library is

preloaded our experimental results report 2.88% of overhead with

an energy saving of 22.36% and a power saving of 24.53%
2
.

The results of COUNTDOWN are encouraging, showing that

it is possible to leverage communication slacks in an application

for energy saving at a reduced overhead. In future work, we will

extend the COUNTDOWN algorithm with critical path information

to nullify the application overhead of this solution. As a conclusion,

we must remark that job level energy-management is a feasible

way toward more energy-efficient datacentre and that promising

algorithms and basics buildings blocks exist to enable it.

6 LESSON LEARNED, AND VISION
CINECA is going to deploy the future HPC systems to a new data-

centre in the Bologna science park, where the ECMWF datacentre

is going to be relocated as well. The datacentre includes 890 sqm

2
These numbers are obtained comparing the measured Time-to-Solution and Energy-

to-Solution measured by mean of RAPL Intel counters

Figure 6: Sum of the time spent in phases longer and shorter
than 500us for QE. Phases shorter than 500us the minority.

of data hall, 350 sqm of data storage, and electrical, cooling and

ventilation systems, as well as offices and ancillary spaces, and is

designed for extreme energy efficiency, targeting a PUE less than

1.1. This HPC area can be increased by 700 sqm if needed. The

facility is designed for 20 MW IT, but in the first phase of operation

(2020-2025), it will be equipped with an infrastructure capable of 10

MW IT. As programmed by the national roadmap, in a subsequent

phase of operation, the site is therefore capable of hosting a full

exascale system following an upgrade of the electricity distribution

and cooling infrastructures to match 20 MW IT.

The HPC system CINECA is planning to install there will be in-

trinsically energy efficient; it will be co-designed with the hardware

integrators for direct liquid cooling with warm water, extracting

80% of the heat produced. That, combined with dry coolers available

in the datacentre will guarantee an annual PUE of less than 1.1.

To achieve the primary goal of maximizing efficiency and sus-

tainability, and with a projected PUE of 1.1, the HPC solution to be

deployed will focus on energy efficiency and power management.

The following objectives are of particular interest for CINECA: (i)

Enable correlation between power consumption and system work-

load; (ii) Enable dynamic power capping with graceful performance

degradation of the system; (iii) Provide capability to optimize the

job execution environment for better energy efficiency; (iv) Pro-

vide energy accounting mechanism; (v) Allow energy profiling of

applications to enable EtS optimization without TtS degradation.

Thus, the HPC solution should provide reliable power and energy

measurement at different level (CPU, node, rack), and interfaces

allowing integration with the resource scheduler to provide energy

accounting mechanism and power capping capability.

The datacentre will be equipped with an energy management

system (EMS) to monitor, measure and control the loads. The en-

ergy management system will also be used to centrally control

cooling devices (HVAC type, etc.) and lighting systems. EMS will

be equipped with measurement, submetering and monitoring func-

tions that allow the energy manager to access data and information

on the site’s energy activities. The EMS system will be monitored

via wall screens inside the Control room.

The EMS systemwill monitor in real time and record via the EMS

server at least the following functions: (i) All the status informa-

tion and power measurement of the MV switchgear switch, of the
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substation switch and the LV system control unit interruption; (ii)

All states of the PDU main switch and measurement information;

(iii) All transformer temperature alarms and all generators status

information and alarms; (iv) All UPS system and battery status

information and alarms; (v) All overvoltage suppression alarms;

(vi) Power factor correction equipment; (vii) Multi-function coun-

ters for all general electrical distribution panels/equipment, single

systems, supplies, etc. transformer power supplies and UPS output

panels; (vii) Power quality analyser meter - on all major LV panels.

As shown in the paper, CINECA together with its research part-

ners is paving the way to using high-frequency power monitoring

in combination with out-of-band performance monitoring to im-

prove datacentre automation and resilience, which are of primary

concern in exascale class systems. With this in mind, CINECA will

leverage ExaMon to build an automated pipeline to model, discover

and improve the maintenance and optimization of the datacentre.

In the new datacentre CINECA will bring all its background

knowledge, with the possibility to improve significantly the ef-

ficiency, also thanks to a new brand equipment, where a lot of

attention will be dedicated to the quality of the monitoring and

management functionalities, as well as energy efficiency. Together

with the equipment, CINECA will acquire adequate site manage-

ment software. For the HPC system, CINECA will rely on the moni-

toring and management system provided by the vendor, but among

the required feature of the HPC system to be procured, there will

be the provision of an energy monitoring and management system,

with functionalities similar or better than those available in the

PRACE PCP systems (e.g. high frequency energy sampling). In this

case CINECA will as well plan deploy ExaMon on the system for

an improved profiling, monitoring, management and reporting of

the workload and system utilization.
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