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SAMPL6 Octanol-Water logP Blind Challenge

Shuzhe Wang,a Sereina Rinikera*
a Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 2, 8093

Zurich, Switzerland. *Email: sriniker@ethz.ch

Abstract
The in silico prediction of partition coefficients is an important task in computer-aided drug discovery.
In particular the octanol-water partition coefficient is used as surrogate for lipophilicity. Various
computational approaches have been proposed, ranging from simple group-contribution techniques
based on the 2D topology of a molecule to rigorous methods based molecular dynamics (MD) or
quantum chemistry. In order to balance accuracy and computational cost, we recently developed the MD
fingerprints (MDFPs), where the information in MD simulations is encoded in a floating-point vector,
which can be used as input for machine learning (ML). The MDFP-ML approach was shown to perform
similarily to rigorous methods while being substantially more efficient. Here, we present the application
of MDFP-ML for the prediction of octanol-water partition coefficients in the SAMPL6 blind challenge.
The underlying computational pipeline is made freely available in form of the MDFPtools package.

1 Introduction
Lipophilicity is an important concept in medicinal chemistry as it influences the ADMET (absorption,
distribution, metabolism, elimination and toxicology) properties of a compound [1]. The Lipophilicity of a
molecule can be estimated by measuring its partition coefficient (logP ) between an aqueous and organic
solvent phase. In a pharmaceutical setting, the organic solvent is typically octanol, i.e. logPoct/wat. In
1899, the very first quantitative structural-activity relationship (QSAR) study involved the correlation
between lipophilicity and the anaesthesia ability of molecules [2]. Since then QSAR models have become
a common tool in modern cheminformatics and logPoct/wat are routinely measured in drug discovery
campaigns as a key quantity to profile potential drug candidates.

To assist in virtual screening of large compound libraries, a wide spectrum of computational approaches
have been developed to estimate logPoct/wat in silico, ranging from empirical to rigorous physics-based
approaches [3]. Empirical approaches typically aim to correlate logPoct/wat with topological information
of the molecules. For example, group-contribution or substructure-based methods sub-divide molecules
into smaller fragments or individual atoms, each contributing a certain amount to the total logPoct/wat.
These contributions are obtained by fitting to a large set of measured data. Alternatively, other 2D
descriptors such as size or hydrogen-bonding capacity can also be used to fit the existing data (for
an overview of methods see e.g. Ref. [3]). Physics-based approaches to estimate logPoct/wat include
force-field methods that calculate transfer free energies or solvation free energies (e.g. with free-energy
perturbation [4]), or quantum-mechanical (QM) methods such as COSMO-RS [5, 6]. COSMO-RS
calculates screening charge densities for surface segments that make up a molecule. These density profiles
are in turn used to obtain chemical potentials for molecules in different solvent environment. From
chemical potentials logPoct/wat can be estimated. Empirical based methods are generally computationally
much less demanding than physics-based methods but they rely heavily on the quantity and quality of
measured training data used for fitting. This is less of an issue for logPoct/wat where a large amount of
experimental data is available due to its importance in medicinal chemistry. However, much less data is
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publicly available for other solvent pairs, which are relevant for example in environmental chemistry. For
logP of other solvent pairs, physics-based methods are therefore often more suitable.

Recently, we developed a novel approach to predict physicochemical properties such as solvation free
energy and partition coefficients using a combination of molecular dynamics (MD) and machine learning
(ML) [7]. The information in MD simulations is encoded into so-called MD fingerprints (MDFP) that
can be used as input features to train ML models against experimental data. The MDFP-ML approach
compared well to more rigorous in silico schemes such as FEP and COSMO-RS for the prediction of
solvation free energies, while being computationally less expensive and easier to implement. From the
solvation free energy of a molecule in two solvents, the partition coefficient can be calculated analytically,

logPS2/S1 = ∆GS1
solv − ∆GS2

solv
RTln(10) , (1)

where R is the gas constant and T the absolute temperature. When comparing ML models trained against
solvation free energies versus logP (using a dataset of 630 molecules), the latter gave a slightly smaller
root-mean-square error (RMSE) but a larger tilt in the slope between experimental and predicted values.
We therefore concluded that training against solvation free energies is more robust. In addition, it is also
more flexible because only an ML model per solvent is needed to estimate partition coefficients between
different pairs of solvents. The MDFP-ML approach was further validated by predicting cyclohexane-water
distribution coefficients (logDcyc/wat) from the SAMPL5 blind challenge [8] retrospectively [7]. Note
that while logP is related to the transfer free energy of the neural form of a molecule between solvents,
logD requires the consideration of all protonation states of a molecule at a given pH. Although logP
values instead of logD were predicted with the MDFP-ML approach, the resulting RMSE was smaller
than with the null model by the SAMPL5 organisers, which in turn had outperformed all submitted
entries of the SAMPL5 challenge [8].

Here, we present the results from the application of the MDFP-ML approach in the SAMPL6 blind
challenge[9] to predict octanol-water partition coefficients logPoct/wat, which was among the top 10 of
the submitted entries. In addition, improvements from post-competition analysis are presented that
increases the performance further. The MDFP-ML approach has been compiled into an open-source
toolkit termed MDFPtools, which enables the setup of an automated workflow to predict logP in different
solvent combinations as well as other physicochemical properties of interest.

2 Methods

2.1 MDFP-ML Setup

The setup for the MDFP-ML approach is described in detail in Ref. [7]. In brief, given a dataset of
molecules with a measured property P , a short MD simulation (5 ns) of each molecule in the dataset
solvated in a water box is performed. From the simulations, different terms are extracted to obtain the
MD descriptors. In this study, the terms were the same as in Ref. [7], namely the solute-solute and
solute-solvent interaction energies (split up into the electrostatic and Lennard-Jones contributions), the
radius of gyration, and the solvent-accessible surface area. For each term, the distribution of values
obtained from the trajectories is encoded in the fingerprint by the mean, median, and standard devation.
These features form the MDFP together with 2D topological counts (e.g. for heavy atoms, rotatable
bonds, and different elements). The MDFPs are used as input features for one or more supervised ML
models that are trained against the experimental data to predict P for an unseen molecule.

Changes to the original implementation in Ref. [7] are the following: (i) the AMBER-like parm@frosst
force field [10] was used to parameterise systems instead of the GAFF [11] force field, (ii) only solution
simulations (i.e. solute in water) were performed, no gas-phase simulations, (iii) OpenMM [12] was
used as MD engine instead of GROMOS [13], and (iv) long-range electrostatic interactions were treated
with particle-mesh Ewald (PME) [14] instead of reaction field (RF) [15]. The third change ensures
consistency with the protocol used to parametrise force fields of the AMBER family. However, the use of
PME does not allow a direct decomposition of the energy terms into solute-solute, solute-solvent and
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solvent-solvent contributions as needed for the construction of the MDFPs. Therefore, the energies were
recalculated with the RF expression using the trajectories in a post-processing step.

This workflow was assembled in the open-source MDFPtools Python package (see below). For the
SAMPL6 blind challenge, MDFPtools was used to build, simulate and extract MDFPs for the solvated
system, i.e. one solute molecule in a box of water.

2.2 MDFPtools Package

To facilitate the development and dissemination of the MDFP-ML approach, we built and maintain the
MDFPtools package (https://github.com/rinikerlab/mdfptools/) that lets users build their MDFP pipelines
with ease. It is written in Python and relies on fully open-source tools. MDFPtools consists of the
following parts:

1. Parameteriser to build and parameterise systems

2. Simulator to perform simulations of systems

3. Composer to construct MDFPs with the properties extracted from simulations

4. Predictor to train ML models and make predictions

Parameteriser generates the 3D starting coordinates of the system to be simulated and provides all
necessary force-field parameters. For SAMPL6, the SolutionParameteriser was used. As input, it takes
the SMILES string of the solute. A 3D conformation of the solute is generated and solvated in a solvent
box. Conformer generation is done by either the open-source cheminformatics toolkit RDKit (ETKDG
[16]) or the commercial package OpenEye (OMEGA [17]). Solvation is carried out by PDBFixer[18],
with water box padding of 1.25 nm on all sides of the solute as default. The TIP3P water model was
used as solvent.

The OpenForceField toolkit [19] determines all force-field parameters for the molecular system using
chemical environment matching via SMARTS strings. The current parameters were translated from
parm@frosst99. The OpenForceField toolkit can be run using either RDKit or OEChem from OpenEye
as backend. The only parameters calculated on the fly are the partial charges of the solute. When
using OpenEye as backend, oequacpac derives the semi-empirical AM1-BCC [20, 21] charges. When
using RDKit as backend, Antechamber from ambermini (based on AmberTools16 [22]) is called by
OpenForceField. Alternatively, we introduced the option to assign ML-predicted partial charges using
the models from Ref. [23]. The ML-predicted charge assignment is implemented in our mlddec package
(https://github.com/rinikerlab/mlddec) and it is integrated in the MDFPTools parameteriser. Finally, a
fully parameterised system is written out as a compact ParmEd [24] object. For SAMPL6, OpenEye was
used as backend for the parameterisation of the solutes.

Simulator carries out the simulation of a parameterised system inputted as ParmEd object. For
SAMPL6, the SolutionSimulator was used. The simulation parameters detailed in Section 2.1 are set
as default (simulation length of 5 ns, Andersen thermostat at 298 K, Monte Carlo barostat at 1 atm,
PME with a long-range cut-off of 1.0 nm). The user can modify them if needed. At the backend of the
simulator is the open-source OpenMM package, which is optimised for single-thread GPU platforms. We
intend to add a python wrapper for the GROMACS MD engine [25] in the future.

Composer takes as input the parmeterised ParmEd system and the simulated trajectory (by default
written in the binary hdf5 format). For SAMPL6, the SolutionComposer was used. The composer works
by first calling the relevant extractor class in MDFPtools to obtain the quantities of interest from every
frame of the simulated trajectory. This is done using features inside OpenMM, ParmEd and MDTraj
[26]. Next, the composer calculates the statistical moments from the distributions of each quantity to
be stored in the MD feature vector. Lastly, it combines them with 2D topological features calculated via
RDKit.

Predictor includes some basic supervised ML methods from Scikit-Learn [27] together with their
corresponding hyperparameters. As the best hyperparameters for a given learning task strongly depend
on the amount and quality of data at hand, we recommend the users to adjust the hyperparameters for

3

https://github.com/rinikerlab/mdfptools/
https://github.com/rinikerlab/mlddec


their dataset. If desired, the predictions of different ML models can be combined using the meta-learner
approach from the MLEns package [28].

For SAMPL6, the following versions of software packages were used: OpenForceField 0.0.4, OpenMM
7.1.1, Scikit-Learn 0.19.1, MLEns 0.2.3, and MDFPtools 0.0.1. After the SAMPL6 competition, additional
packages xgboost 1.0.0 and PyTorch 1.10 were used to experiment with different learning models.

2.3 Meta-learner

Meta-learner is a form of ensemble modelling which exploits consensus amongst ML models that have
different sources of errors. Here, a diverse set of supervised ML models (also known as base predictors)
were first trained independently, each with a cross-validation on the entire training dataset. This serves
as the first layer of training. Next, the independent predictions from all base predictors are inputted
into a second (meta) layer of ML model, which determines how to optimally combine the individual
predictions. The entire training set was used at once for training the meta layer. A grid-search approach
was used to determine the hyperparameters of the base predictors. For each predictor, 100 picks were
taken from the pre-defined hyperparameter ranges, and for each hyperparameter combination a five-fold
cross-validation was performed. This yielded 500 models per base predictor.

2.4 Datasets

For SAMPL6, two different datasets were used. The first dataset consists of 670 molecules with
experimental ∆Gwat

solv values from the FreeSolv [29, 30] database, and 480 molecules with experimental
∆Goct

solv from the Minnesota [31] database. The second dataset consists of 15’784 molecules from OChem
[32] with experimental logPoct/wat values. For the latter a subset was used as well, which contains the
4’304 molecules, for which the MD simulations on the cluster finished first.

For OChem, the dataset obtained contain some molecules with multiple measurements. Only
those molecules with a single measured value or multiple values that are the same were used. The
list of experimental logPoct/wat values can be obtained from ochem.eu/properties/show.do after free
registration. The SMILES codes of the logPoct/wat dataset used in this study are provided in the
Supporting Information.

2.5 Performance Assessment

The performance of the ML models was assessed by calculating the root-mean-square error (RMSE),
mean absolute error (MAE), and line of best fit for a held-out test set or the cross-validation. The line
of best fit is obtained by minimising the sum of squared distances between all points in the dataset and
the line (i.e. linear regression).

3 Results and Discussion

3.1 Submissions to the SAMPL6 Blind Challenge

We submitted four entries to the SAMPL6 blind challenge, summarised in Table 1. Entry 1 follows
closely the approach in Ref. [7], where ML models for ∆Gwat

solv and ∆Goct
solv were trained separately and

combined analytically using Eq. (1) to give logPoct/wat. Compared to the three other submissions, where
models are trained directly on logPoct/wat data, this approach appears to be more robust and offers
more flexibility as one can estimate logP between arbitrary pairs of solvents. However, the amount of
experimental solvation free energies that is available is much smaller than for logPoct/wat, which will
affect the performance of entry 1.
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Table 1: Four submissions with the MDFP-ML approach to the SAMPL6 blind challenge for logPoct/wat
prediction and their associated submission codes. The submission files can be found at https://github.
com/MobleyLab/SAMPL6/tree/master/physical_properties/logP/predictions/submission_files.

Entry 1 Entry 2 Entry3 Entry4
Submission
code

5mahv w6jta 0a7a8 gnxuu

Model
keyword

∆Gsolv model logP subset logP meta-learner logP all data

#Data
Points

670 ∆Gwat
solv values,

480 ∆Goct
solv values

4’304 logPoct/wat
values

4’304 logPoct/wat
values

15’784 logPoct/wat
values

Model
description

Two ensemble
models (same
as in entry 2)
were trained, one
against ∆Gwat

solv and
the other against
∆Goct

solv. Prediction:
∆Gsolv values in
the two solvents
were obtained for
each SAMPL6
molecule and the
logPoct/wat value
was calculated
using Eq. (1).

Ensemble of
LASSO [33]
and gradient
tree boosting
(GTR) [34] mod-
els. GTR model:
n_estimators =
100, max_depth =
3. The outcomes
from the two ML
models were aver-
aged to give the
final prediction.

A set of different
ML models were
trained indepen-
dently, and the
predictions from
these models were
used as input for
an additional layer
of learning model
(i.e. meta-learner)
that optimises
the combination
of individual
predictions.

See entry 2

Using the logPoct/wat data from OChem, the ML models in entries 2-4 could be trained on a much
larger dataset. Entries 2 and 3 were trained using the subset of 4’304 molecules, for which the MD
simulations on the cluster finished first. We consider this to be random subset of the complete dataset.
Entry 2 uses the same ML ensemble approach as in entry 1, only the training set and target property
differs. For entry 3, a larger set of ML methods was employed together a meta-learner, which exploits
consensus among diverse ML models. However, the meta-learner as implemented in MLEns requires
a large amount of memory and scales poorly with the number of data points due to the grid-search
approach for determining the hyperparameters of the base predictors. The current MLEns implementation
retains all model parameters during training of the first layer and only filters for the best base predictors
after completion of the training. For the logPoct/wat subset with 4’304 data points, hundreds gigabytes
of memory and hours of runtime were required.

The ML models in entry 4 were trained on the complete set of 15’784 molecules with experimental
logPoct/wat values. The ML approach is the same as in entry 1 and 2. A meta-learner was not attempted
with the larger dataset because of the associated computational cost. Figure 1 shows the deviation
between predicted and experimental logPoct/wat values for the four submissions using different validation
techniques. Information on the line of best fit, MAE and RMSE are listed in Table 2. One should keep
in mind the data difference in the four validation campaigns, but the general trend suggests entry 3 to
perform the best, giving the lowest MAE and RMSE value as well as a line of best fit close to y = x.
The slope of the best-fit line for entry 1 is closer to one, while the slopes for entries 2 and 4 deviate
more, which was already observed in Ref. [7] for the models directly fitted against logP data compared
to ∆Gsolv.
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Figure 1: Experimental versus predicted logPoct/wat values for a validation set (entry 1) or from cross-
validation (entries 2-4). The validation set for entry 1 (top left) consists of 1’999 compounds unseen
in the training set. For entries 2 and 4, a 100-fold cross-validation was performed, for entry 3 a 5-fold
cross-validation. The colour indicates the density of points at a region, the lighter the colour the higher
the density. The solid black line shows y = x, while the dashed lines indicate one log unit offsets on
either side. The red line shows the line of best fit.

Table 2: RMSE, MAE and line of best fit (slope, intercept) for a validation set (entry 1) or from
cross-validation (entries 2-4). The validation set for entry 1 consists of 1’999 compounds unseen in
the training set. For entries 2 and 4, a 100-fold cross-validation was performed, for entry 3 a 5-fold
cross-validation.

Entry 1 Entry 2 Entry 3 Entry 4
RMSE 1.16 0.95 0.81 1.02
MAE 0.83 0.71 0.58 0.77
Slope 0.789 1.158 0.999 1.179

Intercept 0.50 -0.33 -0.001 -0.40
R2 0.653 0.752 0.805 0.734

The generation of MDFPs is certainly computationally more expensive compared to simpler topological
descriptors. However, as shown in Ref. [7] the same MDFPs can be used to train ML models to predict
different solvation free energies or partition coefficients. Furthermore, the MDFPs present an orthogonal
description of molecules compared to topological fingerprints, thus the combination of the two can
be beneficial. In this study, a separate simulation was performed for each of the 15’784 molecules.
Depending on the size of the molecule and the corresponding amount of solvent, a simulation with
OpenMM took 1 - 5 hours on 4 CPU cores. Note that OpenMM is mainly optimised for GPU platforms,
thus the same simulations would take about 20 minutes on a high-end NVIDIA GPU.

3.2 Post-Competition Analysis

The results for the 11 molecules from the SAMPL6 blind challenge are given in Table 3 for the four
entries together with the experimental values revealed after the end of the competition. The standard
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deviation was determined by repeated training of the ML models with different random number seeds
and calculating the average over the predictions. For entries 1, 2 and 4, 100 repetitions were performed
(note that similar results were obtained with ten repetitions). Due to the computational cost of the
meta-learner, the standard deviation of entry 3 was calculated from only six repetitions. Figure 2 shows
the deviations of the four entries from the true experimental values for each SAMPL6 molecule.

As could be expected from the validation results, entry 3 performed best, ranking 10th in terms
of MAE (= 0.43 log units). Although there is the danger of overfitting with a meta-learner and its
computational cost is high, it clearly improved the performance. Entry 1 on the other hand was the least
performant with a MAE = 0.62, ranking 25th out of total 93 submissions. This was also to be expected
considering the much smaller training set compared to the other models. It can be seen in Figure 2 that
the per-molecule error is somewhat “bipolar” for entry 1, i.e. it performs either very well or very badly.
In fact, entry 1 is the top performer (amongst our four entries) for five of the 11 molecules but also the
worst performer for another five molecules. This can also be seen in Figure 3, where the spread of the
absolute error for entry 1 is the biggest. We hypothesised that the SAMPL6 molecules with very low
prediction errors are relatively “close” to some molecules in the ∆Gsolv training sets. However, this is not
supported by neither topological fingerprint similarity or MDFP similarity between SAMPL6 molecules
and the compounds in the training sets. Interestingly, while the molecules in the ∆Gsolv training set are
generally smaller than the SAMPL6 molecules, this is no longer the case in the logPoct/wat training set
with 15’784 molecules. It would therefore be interesting to see the performance of the ∆Gsolv based
models when more training data is available.

For all four entries, there is no correlation between the standard error of a prediction (Table 3)
and the deviation from the experimental value (Figure 2). Recently, studies in neural networks for the
prediction of QM energies found that the standard deviation obtained by training several models on
different portions of the entire training set correlated with the prediction confidence [35]. However, such
a correlation could not be observed in this study. This suggests that standard errors obtained in this
manner cannot be used generally as an estimate for applicability domain.
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Figure 2: Prediction error from the experimental value for the 11 SAMPL6 molecules and our four entries.
The red horizontal line corresponds to the experimental logPoct/wat value.
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Table 3: Predicted and experimental logPoct/wat value and standard error for the 11 SAMPL6 molecules.
The mean and standard deviation for entries 1, 2 and 4 were obtained from 100 repeated trainings of
the ML models with different random number seeds. For entry 3, only six repetitions were performed
due to the computational cost. The experimental measurements were obtained from potentiometric
method with at least three replicates. The mean and the standard deviation averaged over the replicas
are reported.

Molecule Index Entry 1 Entry 2 Entry 3 Entry 4 Exp.
SM02 3.70 ± 0.25 3.39 ± 0.07 3.58 ± 0.15 3.25 ± 0.06 4.09 ± 0.03
SM04 3.91 ± 0.20 3.56 ± 0.06 3.82 ± 0.16 3.41 ± 0.05 3.98 ± 0.03
SM07 3.95 ± 0.18 3.04 ± 0.05 2.81 ± 0.18 2.87 ± 0.04 3.21 ± 0.04
SM08 2.94 ± 0.20 2.04 ± 0.05 2.27 ± 0.15 2.19 ± 0.05 3.10 ± 0.03
SM09 4.03 ± 0.21 2.89 ± 0.05 2.84 ± 0.12 2.72 ± 0.04 3.03 ± 0.07
SM11 2.12 ± 0.19 1.96 ± 0.05 1.80 ± 0.15 1.96 ± 0.05 2.10 ± 0.04
SM12 3.50 ± 0.18 3.20 ± 0.06 3.08 ± 0.23 3.12 ± 0.04 3.83 ± 0.03
SM13 4.68 ± 0.24 3.22 ± 0.05 2.93 ± 0.37 3.20 ± 0.04 2.92 ± 0.04
SM14 1.79 ± 0.17 2.17 ± 0.07 1.99 ± 0.08 2.19 ± 0.05 1.95 ± 0.03
SM15 1.47 ± 0.16 2.04 ± 0.05 2.11 ± 0.12 1.90 ± 0.04 3.07 ± 0.03
SM16 1.98 ± 0.16 2.84 ± 0.06 3.19 ± 0.07 2.67 ± 0.04 2.62 ± 0.01
MAE 0.62 0.46 0.43 0.51
RMSE 0.85 0.56 0.53 0.61

1 2 3 4
Submission Entry Index
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Figure 3: Distribution of absolute errors shown as box plots for the four submission entries for the 11
SAMPL6 molecules. The red line corresponds to the median error.
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3.3 Post-Competition Improvements

Can the logP based predictors be improved further? For this, we decided to focus on entries 2 and 4
due to considerations of computational cost, even though entry 3 performed best in terms of both MAE
and RMSE. Interestingly, entry 2 with a training set of 4’304 molecules performed slightly better on
the SAMPL6 molecules than entry 4 with a training set of 15’784 molecules. A reason for this could
be that the ML model hyperparameters were not adjusted for the increased size of the training sets.
Another factor is the ML method. The LASSO model was found to be no longer contributing to the
ensemble model, i.e. the GTR model alone was equally performant. Could the performance be improved
with a neural network? Based on these considerations three different post-competitions models were
investigated using the dataset with 15’784 molecules:

• Entry 5: GTR model with 10’000 estimators and max estimator depth = 50.

• Entry 6: Fully-connected neural net (FCNN) with three hidden layers size of [500, 100, 30] (no
fine-tuning of hyperparameters).

• Entry 7: GTR model with 2’500 estimators and max estimator depth = 2.

Note that for the post-competition models the xgboost package[36] was used instead of GTR from
Scikit-Learn to improve efficiency. To mimic the competition process, the model performance was
assessed first in terms of overall RMSE and MAE from a 100-fold cross-validation on the training set.

Increasing both hyperparameters was found to reduce the model uncertainty by more than 0.2 log
units (top left panel in Figure 4). Using a FCNN model instead of GTR further improved the performance
(top right panel in Fig. 4). In entry 7, the hyperparameters of the GTR model were optimised such
that the best-fit line is closest to y = x. This resulted in a GTR model with 2’500 estimators and a
max estimator depth of two (bottom panel in Figure 4). The RMSE, MAE and best-fit line of the three
post-competition models from a cross-validation are listed in Table 4.

Table 4: RMSE, MAE and line of best fit (slope, intercept) from 100-fold cross-validation for the three
post-competition models. Entry 5 is a GTR model with 10’000 estimators and max estimator depth
= 50. Entry 6 is a FCNN model with three hidden layers size of [500, 100, 30] (hyperparameters not
fine-tuned). Entry 7 is a GTR model with 2’500 estimators and max estimator depth = 2.

Entry 5 Entry 6 Entry 7
RMSE 0.77 0.54 0.82
MAE 0.53 0.33 0.60
Slope 1.032 1.007 1.003

Intercept -0.05 -0.03 -0.01
R2 0.840 0.919 0.817
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Figure 4: Experimental versus predicted logPoct/wat values from 100-fold cross-validation for the three
post-competition models. Entry 5 (top left) is a GTR model with 10’000 estimators and max estimator
depth = 50. Entry 6 (top right) is a FCNN model with three hidden layers size of [500, 100, 30]
(hyperparameters not fine-tuned). Entry 7 (bottom) is a GTR model with 2’500 estimators and max
estimator depth = 2. The colour indicates the density of points at a region, the lighter the colour the
higher the density. The solid black line shows y = x, while the dashed lines indicate one log unit offsets
on either side. The red line shows the line of best fit.

In a second step, the model performances were evaluated on the SAMPL6 molecules (Table 5).
Interestingly, entries 5 and 6 perform substantially worse than entries 2 and 4. For entry 6, this is likely
due to overfitting of the FCNN model to the training set (the number of parameters in the FCNN model
is high compared to the size of the MDFPs and the size of the training set), which is reflected by the
high standard deviation of its predictions (Table 5). Entry 7 on the other hand gives with a MAE = 0.38
on the SAMPL6 molecules, which would have corresponded to rank 5 in the competition.

If the same ML model as in entry 7 was trained on the 4’304 molecules subset instead of the
full dataset, the performance did not differ significantly in validation and test (not shown). Although
the 4’304 molecules are a random subset, the chemical diversity is of course smaller than for the full
logPoct/wat dataset. We thus experimented with randomly picking subsets of 5’000 molecules from the
full dataset. However, while the cross-validation error remained nearly constant for the different subsets,
the performance on the SAMPL6 molecules changed wildly. One possible explanation for this observation
is the source of the OChem dataset, which was collected and curated from a large corpus of literature.
Each of the studies had likely a (slightly) different experimental protocol with different associated errors.
The combined dataset is therefore rather heterogeneous. Just by chance, it could be that the first subset
with 4’304 molecules has a sizeable fraction of measurements that were done with similar experimental
protocols as the SAMPL6 molecules. An effective way to handle the heterogeneity in the data would be
to stratify the entire set into subsets clustered by experimental protocol and train separate ML models on
them. However, there is no automated approach to deduce the similarity between experimental protocols
in the literature, i.e. this would have to be done manually. As such a stratification is not available,
we decided to model the noise as random by generating an ensemble of 100 GTR models (entry 8),
each trained on a random subset of 5’000 data points from the dataset (the cross-validation results
from each draw are close to those for entry 7, with small fluctuations due to the random sampling).
For the prediction of an unseen molecule, the outcomes of the 100 models are then averaged. This
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approach resulted in a MAE = 0.35 and RMSE = 0.44 on the SAMPL6 molecules, which would have
corresponded to rank 4 in the competition. Compared to entries 1–4, the absolute error distribution for
the SAMPL6 molecules is shifted substantially to lower values, with SM15 as outlier. This molecule is
consistently predicted poorly by all our models. In addition, all of the top 20 entries to the SAMPL6
challenge underestimate the logPoct/wat value of SM15. SM15 is the only molecule where the median
error of the top 20 entries exceeds 0.5 log units. It is currently unclear where this deviation comes from.
Figure 5 shows the predicted versus experimental logPoct/wat values for the 11 SAMPL6 molecules for
entries 1–4 and 8.

Table 5: Predicted and experimental logPoct/wat value and standard error for the 11 SAMPL6 molecules.
The mean and standard deviation for all entries were obtained from 100 repeated trainings of the ML
models with different random number seeds. The experimental measurements were obtained from
potentiometric method with at least three replicates. The mean and the standard deviation averaged
over the replicas are reported.

Molecule Index Entry 5 Entry 6 Entry 7 Entry 8 Exp.
SM02 3.36 ± 0.21 3.11 ± 0.58 3.47 ± 0.15 3.55 ± 0.28 4.09 ± 0.03
SM04 3.43 ± 0.28 3.70 ± 0.47 3.77 ± 0.16 3.67 ± 0.29 3.98 ± 0.03
SM07 2.51 ± 0.18 3.00 ± 0.46 3.16 ± 0.18 3.16 ± 0.30 3.21 ± 0.04
SM08 2.57 ± 0.32 3.23 ± 0.44 2.86 ± 0.15 2.76 ± 0.33 3.10 ± 0.03
SM09 2.43 ± 0.20 2.82 ± 0.43 2.59 ± 0.12 2.79 ± 0.31 3.03 ± 0.07
SM11 2.20 ± 0.17 1.73 ± 0.38 1.91 ± 0.15 2.02 ± 0.30 2.10 ± 0.04
SM12 3.03 ± 0.32 3.33 ± 0.47 3.44 ± 0.23 3.30 ± 0.34 3.83 ± 0.03
SM13 2.75 ± 0.19 2.96 ± 0.44 2.78 ± 0.37 2.86 ± 0.31 2.92 ± 0.04
SM14 2.05 ± 0.21 2.28 ± 0.38 2.09 ± 0.08 2.23 ± 0.22 1.95 ± 0.03
SM15 1.89 ± 0.21 2.13 ± 0.34 1.80 ± 0.12 2.01 ± 0.22 3.07 ± 0.03
SM16 3.24 ± 0.24 3.58 ± 0.39 2.81 ± 0.07 2.92 ± 0.33 2.62 ± 0.01
MAE 0.59 0.73 0.38 0.35
RMSE 0.69 0.91 0.49 0.44

4 Conclusion
The MDFP-ML approach was applied to predict logPoct/wat values of 11 unseen molecules in the SAMPL6
blind challenge. The ML models can thereby be trained either against the underlying solvation free
energies or the partition coefficients directly. In this competition, we found that the models trained
against logPoct/wat data performed better, mainly due to the much higher amount of experimental data
publicly available. Models trained against ∆Gsolv have the advantage to be more robust and flexible,
which is of advantage for partition coefficients between other pairs of solvents, for which less data is
available (potentially in SAMPL7).

Of the four entries submitted to the competition, entry 3 performed best on the SAMPL6 molecules,
resulting in rank 10 in terms of MAE. In this approach, an additional meta-learner was employed, which
exploits the different sources of errors in different ML methods. However, it requires a large amount of
memory and scales poorly with the number of data points. Improvements after the competition yielded
entry 8, which considers the heterogeneity in the training data due to different experimental protocols as
random noise. The performance of entry 8 on the 11 SAMPL6 molecules would have resulted in rank 4
in the competition (in terms of MAE and RMSE).

The combination of MD simulations and ML via the MDFPs is a promising approach, as these
fingerprints describe the molecules in a different (orthogonal) way to classical 2D topological descriptors.
Through the open-source MDFPtools package that enables automated workflows, we make the MDFP-ML
approach easily available to the community.
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Figure 5: Experimental versus predicted logPoct/wat values for the 11 SAMPL6 molecules for entries 1
(blue), 2 (orange), 3 (green), 4 (red), and 8 (purple). Solid black line shows y = x, with dashed lines
indicating 0.5 log unit offsets on either side.
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