
ETH Library

Mixed-Variable Bayesian
Optimization

Working Paper

Author(s):
Daxberger, Erik A.; Makarova, Anastasia; Turchetta, Matteo; Krause, Andreas

Publication date:
2019-07-02

Permanent link:
https://doi.org/10.3929/ethz-b-000385835

Rights / license:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000385835
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


Mixed-Variable Bayesian Optimization

Erik Daxberger∗,† Anastasia Makarova∗ Matteo Turchetta∗ Andreas Krause
University of Cambridge

MPI for Intelligent Systems
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Abstract

The optimization of expensive to evaluate, black-
box, mixed-variable functions, i.e. functions that
have continuous and discrete inputs, is a difficult
and yet pervasive problem in science and engi-
neering. In Bayesian optimization (BO), special
cases of this problem that consider fully contin-
uous or fully discrete domains have been widely
studied. However, few methods exist for mixed-
variable domains. In this paper, we introduce
MIVABO, a novel BO algorithm for the effi-
cient optimization of mixed-variable functions
that combines a linear surrogate model based on
expressive feature representations with Thomp-
son sampling. We propose two methods to opti-
mize its acquisition function, a challenging prob-
lem for mixed-variable domains, and we show
that MIVABO can handle complex constraints
over the discrete part of the domain that other
methods cannot take into account. Moreover,
we provide the first convergence analysis of a
mixed-variable BO algorithm. Finally, we show
that MIVABO is significantly more sample effi-
cient than state-of-the-art mixed-variable BO al-
gorithms on several hyperparameter tuning tasks.

1 INTRODUCTION

Bayesian optimization (BO) (Močkus, 1975) is a well-
established paradigm to optimize costly-to-evaluate, black-
box objectives that has been successfully applied to mul-
tiple scientific domains. Most of the existing BO liter-
ature focuses on objectives that have purely continuous
domains, such as those arising in tuning of continuous
hyperparameters of machine learning algorithms, recom-
mender systems, and preference learning (Shahriari et al.,
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2016). More recently, problems with purely discrete do-
mains, such as food safety control and model-sparsification
in multi-component systems (Baptista and Poloczek, 2018)
have been considered.

However, many real-world optimization problems in ap-
plied mathematics, engineering and the natural sciences are
of mixed-variable nature, involving both continuous and
discrete input variables, and exhibit complex constraints.
For example, tuning the hyperparameters of a convolu-
tional neural network involves both continuous variables,
e.g., learning rate and momentum, and discrete ones, e.g.,
kernel size, stride and padding. In addition, these hyperpa-
rameters impose validity constrains, e.g., there are combi-
nations of kernel size, stride and padding that lead to invalid
networks. Further examples of mixed-variable, potentially
constrained, optimization problems include sensor place-
ment (Krause et al., 2008), drug discovery (Negoescu et al.,
2011), configuration of optimization solvers (Hutter et al.,
2010) and many others. In this work, we introduce an algo-
rithm that can efficiently optimize mixed-variable functions
subject to known constraints.

Related Work. The efficient optimization of black-box
functions over continuous domains has been extensively
studied in the BO literature (Srinivas et al., 2010; Wang and
Jegelka, 2017; Hennig and Schuler, 2012) as well as the ex-
tensions to the problems with unknown constrains (Gard-
ner et al., 2014; Henrández-Lobato et al., 2014; Sui et al.,
2015). However, to adapt these methods to the mixed-
variable setting, it is necessary to use ad-hoc relaxation
techniques to map the problem to a fully continuous one
and rounding methods to map the resulting solution to the
original domain. This procedure ignores the original struc-
ture of the domain and makes the quality of the solution de-
pendent on the choice of relaxation and rounding methods.
Moreover, in this setting, it is hard to incorporate known
complex constraints over the discrete input variables.

More recently, BO algorithms for discrete domains have
been proposed (Baptista and Poloczek, 2018; Oh et al.,
2019). However, the application of these methods to the
mixed-variable setting requires discretizing the continuous
part of the domain, where the discretization granularity
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plays a crucial role: If it is too small, it makes the input
space prohibitively large; if it is too large, the resulting
domain may contain only poorly performing values of the
continuous inputs.

Few BO methods can directly solve mixed-variable opti-
mization problems. For example, SMAC (Hutter et al.,
2011) uses a random forest as a surrogate model, which ac-
commodates for mixed-variable inputs. However, the fre-
quentist uncertainty estimate provided by random forests
may suffer from variance degradation and may not be ac-
curate enough to steer the sampling. The TPE algorithm
(Bergstra et al., 2011a) uses non-parametric kernel density
estimators (KDEs) to identify inputs that are likely to im-
prove upon and unlikely to perform worse than the best in-
put found so far. Due to the nature of KDEs, TPE naturally
supports mixed input spaces. Moreover, its inference step
is computationally efficient. While SMAC and TPE can
handle hierarchical constraints, they cannot handle more
general constraints over the discrete variables. Moreover,
they do not have any convergence guarantees. Hyperband
(HB) (Li et al., 2016) is a variant of random search that
exploits cheap but less accurate approximations of the ob-
jective to dynamically allocate resources for function eval-
uations. BOHB (Falkner et al., 2018) is the model-based
counterpart of HB, based on TPE. Therefore, they extend
existing mixed-variable optimization methods to the multi-
fidelity setting rather than proposing new ones. As such,
the core idea of BOHB is complementary to our MIVABO
method, rather than in competition with it. Surrogate mod-
eling over a mixed-variable domain is addressed in (Bajer
and Holeňa, 2010); however, the authors omit acquisition
function optimization, which is a challenging problem, es-
pecially in mixed-variable domains. Moreover, the authors
leave the important part of choosing the model features to
its user. (Garrido-Merchán and Hernández-Lobato, 2018)
point out that the posterior GP should be independent on
which real input the optimizer suggests as long as it falls in
the same rounding interval and fix it with a new kernel. In
contrast, we propose to use discrete optimizers for the ac-
quisition function, and thus only make integer evaluations
and have no rounding bias. As a result, their method lacks
any convergence guarantees and is unable to handle linear
and quadratic constraints on the discrete variables.

Contributions. We introduce MIVABO, a novel algo-
rithm for the efficient optimization of mixed-variable func-
tions subject to known integer linear and quadratic con-
straints. It is based on a linear surrogate model that decou-
ples the continuous and discrete components of the func-
tion from the mixed one using an expressive feature expan-
sion (Section 3.1). We exploit the ability of this model to
efficiently draw samples from the posterior over the objec-
tive that can be evaluated at every point in the domain (Sec-
tion 3.2), by combining it with Thompson sampling. More-
over, we present two alternatives to optimize the result-

ing acquisition function that can incorporate known linear
and quadratic constraints (Section 3.3). To the best of our
knowledge, this makes MIVABO the first BO method that
can handle constraints over discrete variables. Notice that,
while in continuous BO, the optimization of the acquisition
function is difficult but has well established solutions, the
latter is not the case for the mixed-variable case and solving
this problem efficiently is a key challenge. Moreover, we
provide the first convergence analysis of a mixed-variable
BO algorithm (Section 3.4). Finally, we demonstrate the
effectiveness of MIVABO on a wide range of complex hy-
perparameter tuning tasks, such as deep generative model
tuning, where it outperforms state-of-the-art methods and
performs comparably to human expert tuning (Section 4).

2 PROBLEM STATEMENT

We consider the problem of optimizing an unknown
and expensive-to-evaluate, scalar-valued function defined
over a mixed-variable domain, accessible through noise-
perturbed evaluations and subject to known linear and
quadratic constraints. Formally, we aim to solve

min
x∈X

f(x) s.t. gc(x) ≥ 0, gd(x) ≥ 0, (1)

where X ⊆ X c × X d, with X c and X d being contin-
uous and discrete subspaces and where gc(x) ≥ 0 and
gd(x) ≥ 0 represent a set of known linear and quadratic
constraints defined over the continuous and discrete parts
of the domain, respectively. We assume that the continuous
variables live in a box-constrained domain which, w.l.o.g.,
can be scaled to the unit hypercube. Therefore, we have
X c = [0, 1]Dc . Furthermore, we assume, w.l.o.g., that the
discrete variables are binary, i.e., that vectors xd ∈ X d
correspond to vertices of the unit hypercube. Therefore,
we have X d = {0, 1}Dd . This binary representation can
be used to describe any discrete space, and may thus serve
as the domain space of any discrete function. For exam-
ple, a vector xd = [xd1, . . . , x

d
Dd

] ∈ X d could correspond
to a subset A of some ground set V = {v1, . . . , vDd

} of
Dd discrete elements, such that xdi = 1 ⇔ ai ∈ A and
xdi = 0 ⇔ ai /∈ A, thus yielding a set function. Alter-
natively, a vector xd ∈ X d could correspond to a binary
encoding of one or more (non-binary) integer-valued vari-
ables, thus resulting in a function defined on an integral
domain.

Background. Bayesian optimization (BO) algorithms
are iterative black-box optimization methods where, at ev-
ery step t, we select an input xt ∈ X and observe a noise-
perturbed output yt , f(xt) + ε with ε

iid∼ N (0, β−1),
where β > 0. Since evaluating f is costly, the goal is to
query inputs based on past observations to find a global
minimizer x∗ ∈ arg minx∈X f(x) as efficiently and ac-
curately as possible. To this end, BO algorithms leverage
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two components: (i) a probabilistic function model, also
known as surrogate, that encodes the belief about f based
on the observations available, and (ii) an acquisition func-
tion α : X → R that expresses the informativeness of in-
put x about the location of x∗, given the surrogate of f .
Based on our belief about the objective, encoded by the
probabilistic model, we query the most informative input,
measured by the acquisition function. We then update the
model with the resulting observation and repeat this pro-
cedure. The goal of the acquisition function is to simulta-
neously learn about the inputs that are likely to be optimal
and about poorly explored regions of the input space, i.e.,
to trade-off exploitation against exploration.

Thus, BO reduces the initial challenging black-box opti-
mization problem to a series of cheaper optimization prob-
lems xt ∈ arg maxx∈X αt(x). However, in our case, these
are mixed-variable optimization problems that exhibit lin-
ear and quadratic constraints and, therefore, still challeng-
ing. In the next section, we present a surrogate model, an
acquisition function and two acquisition function optimiza-
tion routines that, combined, allow us to efficiently solve
the problem in Eq. (1).

3 MIVABO ALGORITHM

We first introduce the linear model used to represent the
objective (Sec. 3.1) and describe how to do inference for
it (Sec. 3.2). We then show how to use Thompson sam-
pling (Thompson, 1933) to suggest informative inputs to
query (Sec. 3.3) and, finally, provide a bound on the regret
incurred by MIVABO. (Sec. 3.4).

3.1 Model

We introduce a surrogate model of the objective that ac-
counts for both discrete and continuous input variables in
a principled way, while balancing the following conflicting
goals. On the one hand, we want a complex and expres-
sive model that can capture or, at least, approximate a large
class of real-world functions. On the other hand, exces-
sively complex models may render Bayesian inference and
constrained optimization of the mixed-variable acquisition
computationally infeasible.

Linear models defined over non-linear feature mappings of
the inputs, f(x) = w>φ(x), are a class of flexible para-
metric models that strike a good trade-off between model
capacity, interpretability and ease of use through the defini-
tion of the non-linear features φ : X → RM . For this class
of models, Bayesian inference scales linearly in the number
of data points and cubically in the number of features, M
(Bishop, 2006). While the complexity of the model is con-
trolled by the number of its features, its capacity depends
on their definition. Therefore, to make the design of a set of
expressive features more intuitive, we treat separately the

contribution to the objective f from the continuous part of
the domain, from the discrete one and from the interaction
of the two,

f(x) =
∑

j∈{d,c,m}

wjφj(xj) (2)

where, for j ∈ {d, c,m}, φj(xj) = [φji (x
j)]

Mj

i=1 ∈ RMj

and wj ∈ RMj denote the feature and weight vector for the
discrete, continuous and mixed component, respectively. A
crucial advantage of this model is that, given a sample from
the posterior distribution over the weights, the correspond-
ing function can be easily evaluated at any point in the do-
main. As we will see in Section 3.3, this plays a fundamen-
tal role for the optimization of the acquisition function.

In many real-world problems, a large portion of possible
features can be discarded a priori, simplifying the design
space. A common assumption in BO (especially in high-
dimensional BO) is that, for real-world functions, only low-
order interactions between the variables contribute signif-
icantly to the objective function. This was shown to be
the case for many practical problems (Hoang et al., 2018;
Rolland et al., 2018; Mutný and Krause, 2018), includ-
ing hyperparameter tuning of deep neural networks (Hazan
et al., 2017). Based on this assumption, we focus on fea-
tures defined over small subsets of the input variables. For-
mally, we consider φ(x) = [φk(xk)]Mk=1, where xk is a
subvector of x which may contain exclusively continuous
or discrete variables or a mix of both. Accordingly, the ob-
jective f(x) can be decomposed into a sum of functions
fk(xk) , wkφk(xk) defined over subvectors xk from low-
dimensional subspaces Xk ⊆ X with dim(Xk)� dim(X ).
Such a model decomposition is also known as a general-
ized additive model (Rolland et al., 2018; Hastie, 2017),
where it is assumed that a variable can be included in more
than one subvector, i.e. j 6= k 6=⇒ Xj ∩ Xk = ∅. The
complexity of such a model can be controlled by the ef-
fective dimensionality of the subspaces. This is important
in case of computational resource restrictions. In partic-
ular, let D̄d , maxk∈[M ] dim(X dk ) denote the effective
dimensionality of the discrete component in Eq. (2), i.e.
the dimensionality of the largest among all subspaces that
exclusively contains discrete variables. Analogously, D̄c

and D̄m denote the effective continuous and mixed dimen-
sionalities, respectively. Intuitively, the effective dimen-
sionality corresponds to the maximum order of the vari-
able interactions present in f . The number of features
M = O

(
DD̄d

d + DD̄c
c + (Dd + Dc)

D̄m
)

then scales ex-
ponentially in the effective dimensionalities only1, which
are usually small, even if the true dimensionality is large.

Discrete Features φd. We aim at defining a set of fea-
tures, φd, that can effectively represent the discrete compo-
nent of Eq. (2) as a linear function. Generally, the model

1I.e., since modelling up to L-th order interactions of N vari-
ables requires

∑L
l=0

(
N
l

)
∈ O(NL) terms.
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should be able to capture arbitrary interactions between the
discrete variables. To this end, we consider all subsets S
of the discrete variables in X d (or equivalently, all ele-
ments S of the powerset 2Xd of Xd) and define a mono-
mial

∏
j∈S x

d
j for each subset S (where for the empty set,∏

j∈∅ x
d
j = 1). We then construct a weighted sum of

all these monomials to arrive at the multi-linear polyno-
mial wd>φd(xd) =

∑
S∈2Xd wS

∏
j∈S x

d
j . This func-

tional representation also corresponds to the Fourier expan-
sion of a so-called pseudo-Boolean function (PBF) (Boros
and Hammer, 2002; O’Donnell, 2014). In practice, an ex-
ponential number of features can be prohibitively expen-
sive and may lead to high-variance estimators as in BO
one typically does not have access to massive amounts of
data to robustly fit a large model (Gelman et al., 1995).
Alternatively, (Baptista and Poloczek, 2018; Hazan et al.,
2017) empirically found that a second-order polynomial
in the Fourier basis provides a practical balance between
expressiveness and efficiency, even when the true func-
tion is of higher order. In our model, we also consider
quadratic PBFs, wd>φd(xd) = w∅ +

∑n
i=1 w{i}x

d
i +∑

1≤i<j≤n w{i,j}x
d
i x
d
j , which induces the discrete feature

representation φd(xd) , [1, {xdi }
Dd
i=1, {xdi xdj}1≤i<j≤Dd

]>

and reduces the number of weights in the surrogate model
to Md ∈ O(D2

d).

Continuous Features φc. In BO over continuous spaces,
most approaches are based on non-parametric Gaussian
process (GP) models (Williams and Rasmussen, 2006) due
to their flexibility and ability to capture large classes of
continuous functions. To fit our linear model formulation,
we leverage GPs’ expressiveness by modeling the continu-
ous part of our model in Eq. (2) using feature expansions
φc(xc) that result in a finite linear approximation of a GP.
One conceptually simple yet theoretically sound choice of
such a basis expansion, which we also use in our exper-
iments, is the celebrated class of Random Fourier Fea-
tures (RFF) (Rahimi and Recht, 2008; Rahimi and Recht,
2009), which induce a randomized approximation of a GP
based on Monte Carlo integration. Alternatively, one can
leverage Quadrature Fourier Features (QFF) (Mutný and
Krause, 2018), which instead use a deterministic approxi-
mation based on numerical integration, and which are par-
ticularly effective for problems with low effective dimen-
sionality. Both methods have been successfully applied
in BO (Jenatton et al., 2017; Perrone et al., 2017; Mutný
and Krause, 2018). Alternatively, one can also use features
learned from data via a neural network (Snoek et al., 2015).

Mixed Features φm. The goal of the mixed term is to
capture as rich and realistic interactions between the dis-
crete and continuous variables as possible, while keeping
model inference and acquisition function optimization ef-
ficient. To this end, we stack products of all pairwise
combinations of features of the two variable types, i.e.
φm(xd,xc) , [φdi (x

d) · φcj(xc)]>1≤i≤Md,1≤j≤Mc
. This

formulation provides a good trade-off between modeling
accuracy and computational complexity. In particular, is
allows us to reduce φm to the discrete feature representa-
tion φd when conditioned on a fixed assignment of con-
tinuous variables φc (and vice versa). This property is of
central importance for optimizing the acquisition function,
as it allows us to optimize the mixed term of our model by
leveraging the tools available for optimizing the discrete
and continuous parts individually.

The proposed representation contains Mm = MdMc fea-
tures, thus resulting in a total of M = Md +Mc +MdMc.
To reduce model complexity, prior knowledge about the
problem domain can be incorporated into the construction
of the mixed features. In particular, one may consider the
following approaches. Firstly, one can exploit a known in-
teraction structure between variables, e.g., in form of a de-
pendency graph, and ignore the features that are known to
be irrelevant. Secondly, one can start by including all of the
proposed pairwise feature combinations and progressively
discard not-promising ones. Finally, for high-dimensional
problems, one can use the opposite strategy and progres-
sively add pairwise feature combinations, starting from the
empty set.

3.2 Model Inference

Probabilistic Model Formulation. Let X1:t ∈ Rt×D de-
note the matrix whose ith row contains the input xi ∈
X queried at iteration i, dimX = D, and let y1:t =
[y1, . . . , yt]

> ∈ Rt denote the array containing the cor-
responding noisy function observations. Furthermore, let
Φ1:t ∈ Rt×M denote the matrix whose ith row con-
tains the featurized input φ(xi) ∈ RM . Given the
proposed formulation of f in Eq. (2) together with the
noisy observation model, we obtain the Gaussian likeli-
hood p(y1:t|X1:t,w) = N (Φ1:tw, β

−1I). To complete
our model, we specify a prior distribution p(w|α) over the
coefficient vector w parametrised by some scale parame-
ter α > 0. This prior should reflect our a priori knowl-
edge about w and thus the objective f . Given the like-
lihood and prior, the goal is to infer the posterior distri-
bution p(w|X1:t,y1:t, α, β) ∝ p(y1:t|X1:t,w, β)p(w|α).
The difficulty of this crucially depends on the choice of
prior, for which we present two viable alternatives.

Gaussian Prior. One natural way to complete a Gaus-
sian likelihood model is to employ a zero-mean isotropic
Gaussian prior distribution on the weight vector w, i.e.,
p(w|α) = N (0, α−1I), with precision α > 0. A Gaus-
sian prior encourages the weights to be uniformly small in
size, so that the final predictor is a sum of many (or all) fea-
tures, with each giving a small but non-zero contribution.
Due to conjugacy, a Bayesian treatment of the weights w
yields a Gaussian posterior distribution p(w|X1:t,y1:t) =
N (m,S−1) with mean m = βS−1Φ>1:ty1:t ∈ RM and in-
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verse covariance S = αI + βΦ>1:tΦ1:t ∈ RM×M (Bishop,
2006). This simple analytical treatment of the posterior is
a main benefit of this model, which can be viewed as a GP
with a linear kernel in feature space.

Sparse Prior. While the number and degree of the fea-
tures used in the model is a design choice, in practice it is
typically unknown which variable interactions matter and
thus which features to choose. To discard irrelevant fea-
tures, one may impose a sparsity-encouraging prior over
the weight vector w (Baptista and Poloczek, 2018). How-
ever, due to non-conjugacy to the Gaussian likelihood, ex-
act Bayesian inference of the resulting posterior distribu-
tion is in general intractable, imposing the need for approx-
imate inference methods. One choice for such a prior is the
Laplace distribution, for which approximate inference tech-
niques based on expectation propagation (Minka, 2001)
and variational inference (Wainwright et al., 2008) were
developed in (Seeger, 2008; Seeger and Nickisch, 2008;
Seeger and Nickisch, 2011). Alternatively, one can use a
horseshoe prior and use Gibbs sampling to sample from
the posterior over weights (Baptista and Poloczek, 2018).
However, this comes with a significantly larger computa-
tional burden, which is a well-known issue for sampling
based inference techniques (Bishop, 2006). Lastly, one
may consider a spike-and-slab prior with expectation prop-
agation for approximate posterior inference (Hernández-
Lobato et al., 2013; Hernández-Lobato et al., 2015).

3.3 Acquisition Function

We propose to use Thompson sampling (TS) (Thomp-
son, 1933), a technique which samples weights
w̃ ∼ p(w|X1:t,y1:t, α, β) from the posterior dis-
tribution and chooses the next input by solving
x̂ ∈ arg maxx∈X w̃>φ(x) (see Algorithm 1 in Ap-
pendix C). Intuitively, by sampling from the posterior, TS
focuses on inputs that are plausibly optimal.

TS has previously been successfully applied in both dis-
crete and continuous domains (Baptista and Poloczek,
2018; Mutný and Krause, 2018). In addition, the follow-
ing considerations make TS an ideal acquisition function
for our problem. Firstly, the simple relation between the
surrogate model and the resulting optimization problem for
the acquisition function allows us to trade off model ex-
pressiveness and optimization tractability, which is a key
challenge in mixed-variable domains. In particular, if we
model second-order discrete interactions, the optimization
of the acquisition function requires us to solve a quadratic
mixed integer program, which can be done using available
solvers and which allows us to incorporate complex con-
straints on the discrete variables. Secondly, in combina-
tion with a linear surrogate model it allows us to provide
a convergence analysis, making MIVABO the first mixed-
variable BO method that enjoys theoretical guarantees.

Our acquisition strategy requires solving x̂ ∈
arg maxx∈X w̃>t φ(x), which is a challenging mixed-
variable optimization problem. To this end, we propose
two schemes – alternating optimization and dual decom-
position – which leverage independent subroutines for
discrete and continuous optimization. While alternating
optimization is a simple and efficient method that often
works well in practice, dual decomposition comes with
theoretical guarantees but is more expensive to run. Thus,
in practice, one can choose the method to use based on the
requirements of application at hand.

For the discrete part, we exploit of the fact that the
optimization of a second-order pseudo-Boolean function
can be formulated as a binary integer quadratic program
(IQP) (Boros and Hammer, 2002), allowing us to exploit
commonly-used efficient and robust optimization tools,
such as Gurobi (Optimization, 2014) or CPLEX (IBM,
2009).2 This approach allows us to use any functional-
ity offered by these solvers, such as the ability to opti-
mize objectives subject to linear constraints Axd ≤ b,
A ∈ RK×Dd ,b ∈ RK or quadratic constraints xd

>
Qxd+

q>xd ≤ b, Q ∈ RDd×Dd ,q ∈ RDd , b ∈ R. For the
continuous part, one can use optimizers commonly used in
continuous BO, such as L-BFGS (Liu and Nocedal, 1989)
or DIRECT (Jones, 2001).

Alternating Optimization. One natural way to opti-
mize an objective in Eq. (2) is an alternating optimiza-
tion scheme which iterates between optimizing the dis-
crete variables xd conditioned on a particular setting of
the continuous variables xc and vice versa, until con-
vergence to some local optimum. While these ap-
proaches often provide no theoretical guarantees, they
are widely applied in many contexts where the objec-
tive function is hard to optimize. In particular, we

iteratively solve x̂d ∈ arg maxxd∈Xd

(
w̃d
>
φd(xd) +

w̃m>φm(xd,xc = x̃c)
)

on the discrete domain and x̂c ∈
arg maxxc∈X c

(
w̃c>φc(xc)+w̃m>φm(xd = x̃d,xc)

)
on

the continuous domain. Importantly, the mixed features
from Section 3.1 reduce these maximization problems to
those that can be optimized by the oracles for discrete and
continuous optimization.

Optimization with theoretical guarantees. Alternatively,
one can maximize Eq. (2) using dual decomposition, which
is a powerful approach based on Lagrangian optimization
and has been successfully used for many problems (Ko-
modakis et al., 2011; Sontag et al., 2011; Rush and Collins,
2012). Its well-studied theoretical properties facilitate the
convergence analysis of MIVABO, making it particularly
useful for settings where optimization accuracy is of cru-

2While solving general binary IQPs is well-known to be NP-
hard (Boros and Hammer, 2002), these solvers are in practice very
efficient for the problem dimensionalities we consider (i.e., with
Dd < 100).
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cial importance. Due to lack of space, we refer the reader
to Appendix D for details on the dual decomposition and
its derivation for our problem.

3.4 Convergence Analysis

The choice of a linear model and Thompson sampling al-
lows us to leverage convergence analysis from linearly pa-
rameterized multi-armed bandits, which are a well-studied
class of methods for solving structured decision making
problems (Abeille et al., 2017; Agrawal and Goyal, 2013).
As in our setting, these methods assume the objective to be
a linear function of features φ(x) ∈ RM with a fixed but
unknown parameter vector w ∈ RM , i.e. E[f(x)|φ(x)] =
w>φ(x), and aim at minimizing the total regret up to time
T : R(T ) =

∑T
t=1(f(x∗)− f(xt)). We obtain the follow-

ing probabilistic regret bound for MIVABO:

Proposition 1 Assume that the following assumptions hold
in every iteration t = 1, . . . , T :

1. ‖wt‖2 ≤ c, ‖φ(xt)‖2 ≤ c, ‖f(x∗) − f(xt)‖2 ≤ c ,
for some c ∈ R+.

2. xt = arg maxx w̃>φ(x) is selected exactly.3

3. w̃t ∼ N (m, 24M lnT ln 1
δS
−1), i.e., the posterior

variance S−1 is scaled accordingly.

Then, the total regret of MIVABO is bounded by R(T ) ≤
Õ
(
M3/2

√
T ln 1

δ

)
with probability 1− δ.

Proposition 1 follows directly from Theorem 1 in (Abeille
et al., 2017) is applicable to an infinite number of
arms/inputs, i.e. where x ∈ X , |X | = ∞. In our set-
ting, each arm/input corresponds to its feature vector and,
as the feature space satisfies the compactness assumption,
the proof indeed holds.

Proposition 1 implies no-regret, limT→∞R(T )/T = 0,
i.e., convergence to the global maximum, since the maxi-
mum found after T iterations is no further away from f(x∗)
than the average regretR(T )/T . To the best of our knowl-
edge, MIVABO is the first mixed-variable BO algorithm
for which such a guarantee is known to hold.

4 EXPERIMENTS

In this section, we present experimental results on tuning
the hyperparameters of two machine learning algorithms,
namely gradient boosting and a deep generative model, on
multiple data sets. Further empirical results on synthetic
benchmarks can be found in Appendix A.

3Note that while this is not generally true for alternating op-
timization, it is guaranteed for dual decomposition under certain
conditions.

MIVABO. For the continuous model part, we employ
Random Fourier Features (RFFs) approximating a GP with
a squared exponential (SE) kernel, as we found RFFs to
provide the best trade-off between complexity and accuracy
in practice. We use the alternating optimization scheme for
Thompson sampling, which we always run until conver-
gence to a local optimum. We use Gurobi (Optimization,
2014) as the discrete optimization oracle, and L-BFGS (Liu
and Nocedal, 1989) as the continuous optimization oracle.
We did not tune any parameters, but left the prior variance
α, observation noise variance β, and kernel bandwidth σ at
1.0, and scaled the posterior variance by the factor stated
in Proposition 1. We impose a Gaussian prior over the
weights, allowing us to perform closed-form inference. We
also ran experiments with the Laplace sparsity-inducing
prior. However, while it often yielded better results, this
marginal performance gain came with the significantly in-
creased computational effort required to approximate the
posterior.

Baselines. We compare against four baselines: SMAC
(Hutter et al., 2011), TPE (Bergstra et al., 2011b), random
search (Bergstra and Bengio, 2012), and the popular GPy-
Opt open-source BO Python package (González, 2016).
GPyOpt is based on a Gaussian process (GP) model, which
constitutes the most commonly used approach in practice.
To account for mixed variable types, GPyOpt relaxes dis-
crete variables to be continuous and later rounds them to
the nearest discrete neighbor. In order to separate the in-
fluence of the model choice and acquisition function opti-
mization, we also consider the MIVABO model optimized
by simulated annealing (SA) (Kirkpatrick et al., 1983) (de-
noted by MIVABO-SA) as well as a GP model with the
upper confidence bound (UCB) acquisition function (Srini-
vas et al., 2010) optimized by SA (denoted by GP-SA). To
handle constraints, SA assigns high energy values to in-
valid inputs, making the probability of moving there acqui-
sition function optimizer negligible. We use SMAC, TPE
and GPyOpt and SA with their respective default settings.4

We compare against GP-SA and MIVABO-SA only in con-
strained settings, using more principled methods in uncon-
strained ones.

(a) Results for gradient boosting hyperparameter tun-
ing. We use the publicly available OpenML database (Van-
schoren et al., 2014), which contains evaluations for var-
ious machine learning methods trained on several datasets
with many hyperparameter settings. We consider one of the
most popular algorithms from OpenML (in terms of num-
ber of evaluations), namely XGBoost, which is an efficient
implementation of the extreme gradient boosting frame-
work from (Chen and Guestrin, 2016). The task is to tune

4See Appendix F for details on the implementations we used.
Since we do not consider settings where cheap approximations
of the objective are available, we cannot compare against HB or
BOHB.
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Figure 1: XGBoost hyperparameter tuning. Results on the monks-problem-1 (left) and steel-plates-fault
(right) datasets. Mean plus/minus one standard deviation of the validation error over 16 random initializations. MIVABO
significantly outperforms the competing state-of-the-art methods on the first dataset, while being competitive on the second.
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Figure 2: VAE hyperparameter tuning. Results on the MNIST (left) and FashionMNIST (right) datasets. Mean
plus/minus one standard deviation of the negative test log-likelihood (NLL) in nats, estimated using 32 importance samples,
over 8 random initializations. Every model was trained for 32 epochs. MIVABO significantly outperforms the competing
state-of-the-art methods, demonstrating its ability to handle the complex constrained nature of the VAE’s parameter space.

its ten hyperparameters - three are discrete and seven con-
tinuous - to minimize the classification error on a held-out
test set. We consider two different datasets, each contain-
ing more than 45000 hyperparameter evaluations. See Ap-
pendix F for more details on XGBoost and the datasets
used. To evaluate settings for which no data is available,
we use a surrogate modeling approach (Eggensperger et al.,
2015) based on nearest neighbor; i.e., for a given hyperpa-
rameter setting, the objective returns the error of the clos-
est (in terms of Euclidean distance) setting available in the
database. The results in Fig. 1 show that MIVABO achieves
performance which is either significantly stronger than (left
plot) or competitive with (right plot) the state-of-the-art
mixed-variable BO algorithms on this challenging task (de-
pending on the dataset used for evaluation). GPyOpt per-
forms poorly, which is likely due to the fact that it cannot
account for the discrete variables in a principled way. As
compared to TPE and SMAC, our method likely benefits

from more sophisticated uncertainty estimation.

(b) Results for deep generative model hyperparameter
tuning. Deep generative models have recently received
considerable attention in the machine learning community.
Despite their popularity and importance, effectively tuning
their hyperparameters is a major challenge. We consider
the task of tuning the hyperparameters of a deep neural net-
work based variational auto-encoder (VAE) (Kingma and
Welling, 2013) composed of a convolutional encoder and
a deconvolutional decoder, as considered in (Dosovitskiy
et al., 2015; Salimans et al., 2014). The VAEs are evalu-
ated on the standard train/test split of the stochastically bi-
narized version of the MNIST dataset (LeCun et al., 2010),
as considered in (Burda et al., 2015; Rainforth et al., 2018),
as well as the FashionMNIST dataset (Xiao et al., 2017).
The models are trained on 60000 images for 32 epochs, us-
ing Adam (Kingma and Ba, 2014) with a mini-batch size
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Table 1: For the best models found by each algorithm in
Fig. 2 (left) after 32 BO iterations, we report the nega-
tive log-likelihood (NLL), estimated with 5000 importance
samples, after training for 3280 epochs. We also report the
NLL achieved after 32 training epochs, as in Fig. 2 (left)

Algorithm NLL (nats)
32 epochs 3280 ep.

SMAC 106.69± 1.51 99.09
TPE 103.28± 0.49 97.05
GPyOpt 103.25± 0.58 97.33
Random 102.04± 0.41 93.74
MIVABO 91.29± 0.69 84.25

Figure 3: Randomly chosen MNIST test images (left col-
umn) and their reconstructions by the best VAE models
found by MIVABO, random search, GPyOpt, TPE and
SMAC (from left to right), thus ordered by NLL values,
which seem to capture quality of visual appearance.

of 128. We report the negative log-likelihood (in nats)
achieved by the VAEs on a held-out test set of 10000 im-
ages, as estimated via importance sampling (Rezende et al.,
2014) using 32 importance samples per test point. To the
best of our knowledge, this is the first BO paper that con-
siders tuning a deep generative model.

The tuning of this VAE is difficult due to the high-
dimensional and structured nature of its hyperparameter
space, and, in particular, due to the constraints arising
from mutual dependencies between some of its parame-
ters. We tune 25 discrete parameters defining the model
architecture, including the number of convolutional layers,
their stride, padding and filter size, the number of fully-
connected layers and their number of neurons, as well as
the dimensionality of the VAE’s latent space. We further-
more tune three continuous parameters controlling the opti-
mizer and regularization. Crucially, the discrete parameters
exhibit mutual dependencies which result in complex con-
straints in hyperparameter space, as certain combinations
of stride, padding and filter size lead to invalid architec-
tures. Particularly, for the encoder, the shapes of all lay-
ers must be integral, and for the decoder, the output shape
should match the shape of the input data, i.e., one channel
of size 28×28 for MNIST and FashionMNIST. The latter
constraint is especially challenging, as only a small number
of possible decoder configurations yield the required output
shape. See Appendix B for more details on this experiment.

While MIVABO can conveniently capture these restrictions
via linear and quadratic constraints, the competing methods
cannot, which makes a fair comparison difficult. We thus
adapt the other methods to handle constraints as follows:
If a method tries to evaluate an invalid parameter config-
uration, we return a penalty error value, which will dis-
courage a model-based method to sample this (or a similar)
setting again. However, for fairness, we only report valid
observations and ignore all configurations that violated a
constraint. We set the penalty value to the error incurred
by a uniformly random generator, i.e., 500 nats. In Ap-

pendix B.3, we investigate the impact of the penalty value
on the quality of the solution obtained by these methods
and we show that it does not qualitatively affect the results.

The results are presented in Fig. 2 for the MNIST (left) and
FashionMNIST (right) datasets. It can be seen that MIV-
ABO significantly outperforms the competing methods on
this task, on both datasets. This is because MIVABO is
able to naturally encode the constraints and thus to directly
optimize over the feasible region in parameter space, while
TPE, SMAC and GPyOpt need to learn the constraints from
data. They fail to do so and get stuck in bad local optima
early on. The model-based approaches likely have difficul-
ties due to sharp discontinuities in hyperparameter space
induced by the constraint violation penalties (i.e., as invalid
configurations may lie close to well-performing configu-
rations). In contrast, random search is agnostic to these
discontinuities, and thus notably outperforms the model-
based methods. Lastly, both baselines employing simu-
lated annealing (i.e., GP-SA and MIVABO-SA) struggle
on this task, which suggests that while simulated anneal-
ing can avoid invalid inputs, the effective optimization of
objectives involving complex constraints crucially requires
more principled approaches for acquisition function opti-
mization, such as the ones we propose.

Table 1 shows that the best VAE found by MIVABO
achieves 84.25 nats on MNIST when trained for 3280
epochs and using 5000 importance samples for test log-
likelihood estimation (which is the setting used in (Burda
et al., 2015)). This is comparable to the performance
achieved by models tuned by human experts, as, e.g., re-
ported in (Salimans et al., 2014) (where three convolu-
tional layers and a more sophisticated inference procedure
are used). This highlights the effectiveness of MIVABO in
tuning deep generative models parameterized by convolu-
tional architectures, especially considering the significantly
worse performance of the baselines.5 While log-likelihood

5Table 1 also shows that the relative performance differences
between the competing methods after only 32 training epochs
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scores allow for a quantitative comparison, they are hard
to interpret for humans. Thus, for a qualitative compari-
son, Fig. 3 visualizes the reconstruction quality achieved on
MNIST by the best VAE configuration found by the differ-
ent methods after 32 BO iterations. The VAEs were trained
for 32 epochs each, as in the BO experiment. The log-
likelihoods seem to correlate with the quality of visual ap-
pearance, and the model found by MIVABO produces the
visually most appealing reconstructions among all models.
Appendix B shows additional plots.

5 CONCLUSION

We propose MIVABO, a simple yet effective method
for efficient optimization of expensive-to-evaluate mixed-
variable black-box objective functions that can handle lin-
ear and quadratic constraints over the discrete part of the
domain, combining a linear model of expressive features
with Thompson sampling. Our method is highly flexible
due to the modularity of its components, i.e., the feature
mapping used to model the mixed-input objective, and the
optimization oracles used as subroutines for the acquisition
procedure. This allows practitioners to tailor MIVABO to
specific objectives, e.g. by incorporating prior knowledge
in the feature design or by exploiting optimization oracles
that can handle specific types of constraints. Moreover, we
show that MIVABO enjoys strong theoretical convergence
guarantees that competing methods lack. Finally, we em-
pirically demonstrate that MIVABO significantly improves
optimization performance as compared to state-of-the-art
data driven methods for mixed-variable optimization on
complex hyperparameter tuning tasks.
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A Further Experimental Results

A.1 Synthetic Benchmark for Unconstrained
Optimization

We assess the performance on an unconstrained synthetic
linear benchmark function of the form f(x) = w>φ. We
choose a fairly high-dimensional objective with Dd = 8
discrete and Dc = 8 continuous variables, thus resulting in
a total input space dimensionality of D = Dd +Dc = 16.
For the discrete model part, we choose the Md ∈ O(D2

d)

features φd proposed in Section 3.1. For the continuous
features φc, we choose Mc = 16 dimensional Random
Fourier Features to approximate a GP with a squared expo-
nential kernel with bandwidth σ = 1.0. For the mixed rep-
resentation, we construct a feature vector φm by stacking
all pairs of discrete and continuous features, as proposed in
Section 3.1. We consider two settings for the weight vec-
tor: Firstly, we sample it from a zero-mean Gaussian, w ∼
N (0, I) ∈ RM . Secondly, we sample it from a Laplace
distribution, i.e. w ∼ p(w|α) ∝ exp(−α−1‖w‖1), with
inverse scale parameter α = 0.1, and then prune all weights
smaller than 10 to zero to induce sparsity over the weight
vector. For the second setting, we also assess MIVABO
using a Laplace prior and the approximate inference tech-
nique from (Seeger and Nickisch, 2011).6 As we do not
know the true optimum of the function and thus cannot
compute the regret, we normalize all observed function val-
ues to the interval [0, 1], resulting in a normalized error as
the metric of comparison. We can observe from our results
shown in Fig. 4 that MIVABO outperforms the competing
methods in this setting, demonstrating the effectiveness of
our approach when its modeling assumptions are fulfilled.

A.2 Synthetic Benchmark for Constrained
Optimization

In another experiment, we demonstrate the capability of our
algorithm to incorporate linear constraints on the discrete
variables. In particular, we want to enforce a solution that
is sparse in the discrete variables via adding a hard cardinal-
ity constraint of the type

∑Dd

i=1 x
d
i ≤ k, which we can sim-

ply specify in the Gurobi optimizer. Cardinality constraints
of this type are very relevant in practice, as many real-
world problems desire sparse solutions (e.g., sparsifica-
tion of ising models, contamination control, aero-structural
multi-component problems (Baptista and Poloczek, 2018)).
We consider the same functional form as before, i.e. again
with Dd = Dc = 8, and set k = 2, meaning that a solu-
tion should have at most two of our binary variables set to
one, while all others shall be set to zero. To enable compar-
ison with TPE, SMAC and random search, which provide
no capability of modeling these kinds of constraints, we as-

6We use the MATLAB implementation provided in the
glm-ie toolbox (Nickisch, 2012) by the same authors.

sume the objective f to be unconstrained, but instead return
a large penalty value if a method acquires an evaluation of
f at a point that violates the constraint. Thus, the baseline
algorithms are forced to learn the constraint from observa-
tions, which is a challenging problem.

One can notice from Fig. 5 that the ability to explicitly en-
code the cardinality constraint into the discrete optimiza-
tion oracle significantly increases performance.

B More Details on VAE Hyperparameter
Tuning Task

B.1 Hyperparameters of VAE

We used the PyTorch library to implement the VAE
used in the experiment. Table 2 describes the names,
types and domains of the involved hyperparameters that we
tune. Whenever we refer to a ”deconvolutional layer” (also
called transposed convolution or fractionally-strided con-
volution), we mean the functional mapping implemented
by a ConvTranspose2d layer in PyTorch7. Since our
approach operates on a binary encoding of the discrete pa-
rameters, we also display the number of bits required to
encode each discrete parameter. In total, we consider 25
discrete parameters (resulting in 50 when binarized) as well
as three continuous ones.

B.2 Description of Constraints

We now describe the constraints arising from the mutual
dependencies within the hyperparameter space of the de-
convolutional VAE (as described in Appendix B.1).

Encoder constraints. For the convolutional layers (up to
two in our case) of the encoder, we need to ensure that the
chosen combination of stride, padding and filter size trans-
forms the input image into an output image whose shape is
integral (i.e., not fractional). More precisely, denoting the
input image size by Win (i.e., the input image is quadratic
with shape Win × Win), the stride by S, the filter size by
F , and the padding by P , we need to ensure that the output
image size Wout is integral, i.e.

W e
out = (W e

in − F e + P e)/Se + 1 ∈ N (3)

where superscripts e are used to make clear that we are
considering the encoder. Let us illustrate this with an ex-
ample8: For Win = 10, P = 0, S = 2 and F = 3,
we would get an invalid fractional output size of Wout =

7See https://pytorch.org/docs/stable/nn.
html#convtranspose2d for details.

8This example is taken from http://cs231n.github.
io/convolutional-networks/#conv (paragraph ”Con-
straints on strides”), which also describes the constraints dis-
cussed here. Note that they define the padding P in a slightly
different way (i.e., they only consider symmetric padding, while
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Figure 4: Results on the synthetic benchmark, with the Gaussian (left) and Laplace prior (right). Mean plus/minus one
standard deviation of the normalized error over 16 random initializations. (Left) MIVABO outperforms its competitors.
(Right) MIVABO with a sparse prior outperforms its competitors, including MIVABO with a Gaussian prior
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Figure 5: Results on the synthetic benchmark with car-
dinality constraints. The curves represent the mean
plus/minus one standard deviation of the normalized error
over 16 random initializations. One can observe that MIV-
ABO outperforms its competitors.

(10 − 3 + 0)/2 + 1 = 4.5. To obtain a valid output size,
one could, e.g., instead consider a padding of P = 1,
yielding Wout = (10 − 3 + 1)/2 + 1 = 5. Alterna-
tively, one could also consider a stride of S = 1 to ob-
tain Wout = (10 − 3 + 0)/1 + 1 = 8, or a filter size of
F = 4 to obtain Wout = (10 − 4 + 0)/2 + 1 = 4 (though
the latter is very uncommon and thus not allowed in our
setting; we only allow F ∈ {3, 5}, as described in Ap-
pendix B.1). While this constraint is not trivially fulfilled
(which can be verified by manually trying different config-
urations of Win, F, S, P ), it is also not too challenging to

we also allow for asymmetric padding) and thus end up with a
term of 2P instead of P in the formula.

find valid configurations.

Note that this constraint is required to be fulfilled for ev-
ery convolutional layer; we thus obtain the following two
constraints in our specific two-layer setting, where Win =
28 (as MNIST and FashionMNIST images are of shape
28× 28):

W e
out1 = (28− F e1 + P e1 )/Se1 + 1 ∈ N, (4)

W e
out2 = (W e

out1 − F e2 + P e2 )/Se2 + 1 ∈ N. (5)

where the subscripts in {1, 2} denote the index of the con-
volutional layer.

Finally, observe that the constraints in Eq. (4) and Eq. (5)
are, respectively, linear and quadratic in the discrete
variables F e1 , F

e
2 , P

e
1 , P

e
2 , S

e
1 , S

e
2 , and can thus be read-

ily incorporated into the integer programming solver (e.g.
Gurobi (Optimization, 2014) or CPLEX (IBM, 2009)) we
employ as a subroutine within our acquisition function op-
timization strategy.

Decoder constraints. While the constraints on the de-
coder architecture are similar in nature to those for the en-
coder, they are significantly more difficult to fulfill, which
we will now illustrate.

In particular, we need to ensure that the decoder produces
images of shape 28 × 28. By inverting the formula in
Eq. (3), we see that for a deconvolutional layer (which in-
tuitively implements an inversion of the convolution oper-
ation), the output image size Wout can be computed as

W d
out = (W d

in − 1)× Sd + F d − 2P d +Od (6)

where superscripts d are used to make clear that we are con-
sidering the decoder, and where O is an additional output
padding parameter which can be used to adjust the shape of
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the output image9. Note that we now have a factor of 2P
in Eq. (6) instead of P (as for the encoder, i.e. in Eq. (3)),
since we only consider symmetric padding for the decoder,
while we allow for asymmetric padding for the encoder (to
make it easier to fulfill the integrality constraints for the en-
coder due to an increased number of valid configurations).
The output padding parameter O is required since the map-
ping from W e

in to W e
out in a convolutional layer (i.e. in the

encoder) is not bijective: there are different combinations
of W e

in, F, S, P that result in the same W e
out (which can be

easily verified). Thus, given an output size W e
out (now serv-

ing as the input sizeW d
in of the deconvolutional layer), there

is no unique corresponding input size W e
in (now serving as

the output sizeW d
out of the deconvolutional layer). The out-

put padding parameter O can thus be used to disambiguate
this relation. Note that W d

out in Eq. (6) is always integral,
so there are no integrality constraints involved here, in con-
strast to the encoder.

In the context of our decoder model, i.e. with up to two
deconvolutional layers, and with a required output image
size of 28, we thus obtain the following constraints:

W d
out = (W d

in − 1)× Sd1 + F d1 − 2P d1 +Od1 , (7)

28 = (W d
out − 1)× Sd2 + F d2 − 2P d2 +Od2 , (8)

i.e. we need to choose the parameters
F d1 , F

d
2 , P

d
1 , P

d
2 , S

d
1 , S

d
2 , O

d
1 , O

d
2 such that the output

size is 28, which is challenging, as only a small number
of parameter configurations fulfill this property. While
this problem is already challenging when assuming a
given fixed input image shape W d

in, in our setting it is
more difficult, as W d

in has to be of a suitable size as
well. Note that W d

in is determined by the size of the
fully-connected layer preceding the first deconvolutional
layer, which yields an additional challenge: the size of the
last fully-connected layer has to be set such that it can be
resized to an image of shape Cd1 × W d

in × W d
in (i.e., such

that it can be fed into a deconvolutional layer), where Cd1
denotes the number of channels of the first deconvolutional
layer of the decoder. As the resulting problem would
be too challenging for any algorithm to produce a valid
solution in a reasonable amount of time, we simplify it
slightly by only treating Cd1 as a design parameter (as
described in Appendix B.1), but keeping W d

in = 7 fixed.
The value 7 is chosen since 16 × 7 × 7 = 784, i.e.,
when setting Cd1 = 16, the last fully-connected layer has
the correct output shape (since 28 × 28 = 784 for an
MNIST and FashionMNIST image). This way, a valid
decoder architecture can be achieved by deactivating all
convolutional layers and choosing Cd1 = 16, constituting
an alternative if fulfilling the decoder constraints in Eq. (7)
and Eq. (8) is too challenging for an algorithm.

9See e.g. https://pytorch.org/docs/stable/
nn.html#convtranspose2d for a description of the output
padding in the context of the PyTorch library we use.

Finally, the constraints in Eq. (7) and Eq. (8) are, re-
spectively, linear and quadratic in the discrete variables
F d1 , F

d
2 , P

d
1 , P

d
2 , S

d
1 , S

d
2 , O

d
1 , O

d
2 , which again allows us to

incorporate them into our optimization routine.

B.3 Effect of Different Constraint Violation Penalty
Values

We now analyze the effect of the constraint violation
penalty value on the performance of SMAC, TPE and GPy-
Opt. Note that random search and MIVABO are not af-
fected by the penalty. We do this analysis to show that
the choice of penalty does not qualitatively affect the re-
ported results. In addition to the penalty of 500 nats con-
sidered in the experiments in the main paper, we assessed
two smaller alternative penalties of 250 nats and 125 nats,
respectively. The results in Table 3 show that the perfor-
mance of the methods improves marginally with decreas-
ing penalty values. This can be intuitively explained by
the fact that the smaller the penalty, the smaller the region
in hyperparameter space that the penalty discourages from
searching. In fact, a large penalty may not only discour-
age infeasible configurations, but also feasible configura-
tions that lie ”close” to the penalized infeasible one (where
closeness is defined by the specific surrogate model em-
ployed by the method). However, even for the smallest
penalty of 125 nats, SMAC, TPE and GPyOpt still perform
worse than random search, and thus still significantly worse
than MIVABO. Imposing penalties that are significantly
smaller than 125 is not sensible, as this will encourage the
model-based methods to violate the constraints, and in turn
discourage them from ever evaluating a valid configuration
(as this would yield a worse score).

Finally, Table 4 shows the number of constraint viola-
tions by the different methods, depending on the violation
penalty.

B.4 Visualization of Reconstruction Quality

While log-likelihood scores allow for a principled quan-
titative comparison between different algorithms, they are
typically hard to interpret for humans. We thus in Fig. 6 vi-
sualize the reconstruction quality achieved by the best VAE
configuration found by the different methods after 32 BO
iterations. The VAEs were trained for 32 epochs each (as in
the BO experiments). The log-likelihood scores seem to be
correlated with quality of visual appearance, and the model
found by MIVABO thus may be perceived to produce the
visually most appealing reconstructions among all models.
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Figure 6: Visualization of the reconstruction quality of a
random subset of (non-binarized) images from the MNIST
test set, as achieved by the best VAE model (trained for 32
epochs) found by each method. From left to right: ground
truth, MIVABO, random search, GPyOpt, TPE and SMAC.
The images are thus ordered (from left to right) by increas-
ing negative test log-likelihood achieved by the VAEs used
for reconstruction. Interestingly, the log-likelihood seems
to capture quality of visual appearance, as the reconstruc-
tion quality may be roughly perceived to decrease from left
to right.

C Pseudo-Code for Thompson Sampling

p(w|X1:t,y1:t) = N (m,S−1), where

m = βS−1Φ>1:ty1:t = βS−1(
∑t
τ=1 φ(xτ )yτ ),

S = αI + βΦ>1:tΦ1:t = αI + β
∑t
τ=1 φ(xτ )φ(xτ )>

D Description of Dual Decomposition

A way to maximize acquisition function in Eq. (2) is via
dual decomposition - a powerful approach based on La-
grangian optimization, which has well-studied theoretical
properties and has been successfully used for many differ-
ent problems (Komodakis et al., 2011; Sontag et al., 2011;

Algorithm 1 THOMPSON SAMPLING

Require: model features φ(x)
1: Set S = I, m = 0
2: for t = 1, 2, . . . , T do
3: Sample w̃t ∼ N (m,S−1)
4: Select input xt ∈ arg maxx∈X w̃>t φ(x)
5: Query output yt = f(xt) + ε
6: Update S,m according to Appendix C.
7: end for
8: Output: x̃∗ ∈ arg maxx∈X m>φ(x)

Rush and Collins, 2012). Despite its versatility, the core
idea is simple: decompose the initial problem into smaller
solvable subproblems and then extract a solution by clev-
erly combining the solutions from these subproblems (Ko-
modakis et al., 2011). This requires the following two
components: (1) A set of subproblems which are defined
such that their sum corresponds to the optimization objec-
tive, and which can each be optimized globally, and (2)
a so-called master problem that coordinates the subprob-
lems to find a solution to the original problem. One major
advantage of dual decomposition algorithms is that they
have well-understood theoretical properties10, in particu-
lar through connections to linear programming (LP) relax-
ations. In fact, they enjoy the best theoretical guarantees in
terms of convergence properties, when compared to other
algorithms solving this problem (Komodakis et al., 2011).

We now describe how to devise a dual decomposition for
our problem, by demonstrating how it can be reformulated
in terms of master- and sub-problems (see Appendix E for a
detailed derivation). For convenience, let us denote the dis-
crete, continuous and mixed parts of Eq. (2) by fd(xd) =

wd>φd(xd), f c(xc) = wc>φc(xc) and fm(xd,xc) =
wm>φm(xd,xc), respectively, thus resulting in the repre-
sentation f(x) = fd(xd)+f c(xc)+fm(xd,xc). First, we
note that the discrete fd(xd) and continuous f c(xc) parts
of Eq. (2) already represent easy to solve subproblems (as
we assume to have access to an optimization oracle). It
thus remains to discuss the mixed part fm(xd,xc). As fm

is generally difficult to optimize directly, we assume that
it decomposes into a sum fm(x) =

∑|F |
k=1 f

m
k (xdk,x

c
k)

of so-called factors fmk : X dk × X ck → R, where xdk ∈
X dk and xck ∈ X ck respectively denote subvectors of xd

and xc from the (typically low-dimensional) subspaces
X dk ⊆ X d and X ck ⊆ X c. Here, F denotes a set of sub-
sets k ∈ F of the variables. Given this formulation, the
initial problem then reduces11 to the minimization of the
dual function L(λ) w.r.t. Lagrange multipliers λ, i.e., the
master problem minλ L(λ), with dual function L(λ) =
maxxd

{
fd(xd) +

∑
k∈F λdkx

d
|k
}

+ maxxc

{
f c(xc) +

10For details, we refer the interested reader to (Komodakis
et al., 2011; Sontag et al., 2011; Rush and Collins, 2012)

11Refer to Appendix E for a detailed derivation.
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∑
k∈F λckx

c
|k
}

+
∑
k∈F maxxd

k,x
c
k
{fmk (xdk,x

c
k)−λdkx

d
k−

λckx
c
k}. Here, the master problem coordinates the 2 + |F |

maximization subproblems, where xd|kand xc|k respectively
denote the subvectors of xd and xc containing only the vari-
ables of factor k ∈ F , λdk and λck are their corresponding
Lagrange multipliers. Intuitively, by updating the dual vari-
ables λ, the master problem ensures agreement on the in-
volved variables between the discrete and continuous sub-
problems and the mixed factors. Importantly, the dual func-
tion L(λ) only involves independent maximization over lo-
cal assignments of xd,xc and xdk,x

c
k, which are assumed

to be tractable. There are two main classes of algorithms
used for the maximization, namely subgradient methods
and block coordinate descent (Sontag et al., 2011).

E Derivation of Dual Decomposition

One interesting interpretation of our acquisition function
optimization problem as defined in Section 3.3 is as maxi-
mum a posteriori (MAP) inference in the undirected graph-
ical model, or Markov random field (MRF) (Koller et al.,
2009), induced by the dependency graph of the involved
variables (i.e. the graph in which vertices correspond to
variables, and edges appear between variables that inter-
act in some way). We take this perspective and devise a
dual decomposition to tackle the MAP estimation prob-
lem induced by our particular setting (i.e., interpreting our
acquisition function as the energy function of the graph-
ical model), following the formulation of (Sontag et al.,
2011).12

Consider a graphical model on the vertex set V = Vd ∪ Vc,
where the vertices Vd = {1, . . . , Dd} and Vc = {Dd +
1, . . . , Dd+Dc} correspond to the discrete and continuous
variables xd ∈ X d and xc ∈ X c, respectively. Further-
more, consider a set F of subsets of both discrete and con-
tinuous variables/vertices, i.e., ∀f ∈ F : f = (fd ∪ f c) ⊆
V, ∅ 6= fd ⊆ Vd, ∅ 6= f c ⊆ Vc, where each subset corre-
sponds to the domain of one of the factors.

Now assume that we are given the following functions on
these factors as well as on all discrete/continuous variables:

• A factor θd(xd), θd : X d → R on all discrete vari-
ables

• A factor θc(xc), θc : X c → R on all continuous vari-
ables

• |F |mixed factors θmf (xdf ,x
c
f ), θmf : X df ×X cf → R on

subsets f ∈ F of both discrete and continuous vari-
ables, where xdf ∈ X df and xcf ∈ X cf respectively
denote subvectors of xd and xc from the (typically

12In accordance with the notation in (Sontag et al., 2011), we
will here denote the factors by θ instead of f (i.e., in contrast to
the main text).

low-dimensional) subspaces X df ⊆ X d and X cf ⊆ X c,
indexed by the vertices contained in f

The goal of our MAP problem is to find and assignment
to all variables xd and xc which maximizes the sum of the
factors:

MAP(θ) = max
x

θd(xd) + θc(xc) +
∑
f∈F

θmf (xdf ,x
c
f )


(9)

We now slightly reformulate this problem by duplicat-
ing the variables xdi and xcj , once for each mixed factor
θmf (xdf ,x

c
f ), and then enforce that these variables are equal

to the ones appearing in the factors θd(xd) and θc(xc), re-
spectively. Let xdfi and xcfj respectively denote the copy
of xdi and xcj used by factor f . Moreover, denote by
xdff = {xdfi }i∈fd and xcff = {xcfj }j∈fc the set of vari-
ables used by factor f , and by xF = {xdff ,x

cf
f }f∈F the set

of all variable copies. We then get the equivalent (but now
constrained) optimization problem

max
x,xF

θd(xd) + θc(xc) +
∑
f∈F

θmf (xdff ,x
cf
f )

 (10)

s.t. xdfi = xdi , ∀f ∈ F, i ∈ fd

xcfj = xcj , ∀f ∈ F, j ∈ f c

To remove the coupling constraints, (Sontag et al., 2011)
now propose to use the technique of Lagrangian relaxation
and introduce a Lagrange multiplier / dual variable λfi(xi)
for every choice of f ∈ F , i ∈ f and xi (i.e. for every
factor, for every variable in that factor, and for every value
of that variable). These multipliers may then be interpreted
as the message that factor f sends to variable i about its
state xi.

While this works well if all variables are discrete, in our
model we also have continuous variables xcj , and it is
clearly not possible to have a Lagrange multiplier for ev-
ery possible value of xcj . To mitigate this issue, we follow
(Komodakis et al., 2011) and instead only introduce a mul-
tiplier λfi for every choice of f ∈ F and i ∈ f , and model
the interaction with the variables as λfi(xi) = λfixi (i.e.,
the product of a multiplier λfi and variable xi). Observe
that since our goal is to relax the coupling constraints, it is
sufficient to introduce one multiplier per constraint. Since
we have a constraint for every factor f ∈ F and every dis-
crete variable i ∈ fd and continuous variable j ∈ f c in that
factor, our approach is clearly viable.

Note that in contrast to (Komodakis et al., 2011), that in-
troduces a set of multipliers for every factor / subgraph, we
only introduce multipliers for the mixed factors f ∈ F .
This is because in contrast to (Komodakis et al., 2011), we
do not introduce a full set of variable copies for every fac-
tor and then couple them to another global set of ”original”
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variables, but we instead only introduce variable copies for
the mixed factors and couple them to the variables appear-
ing in the discrete and continuous factors, which we as-
sume to be the ”original” variables instead. This essen-
tially is the same approach used in (Sontag et al., 2011),
with the difference that (Sontag et al., 2011) introduce a
singleton factor for each variable (i.e., a factor which de-
pends only on a single variable), which they consider to
be the ”original” variable. They then simply couple the
variable copies appearing in the higher-order factors to the
”original” variables appearing in the singleton factors. In
contrast, in our formulation we don’t introduce singleton
factors to model the ”original” variables, but instead use
the fully discrete and continuous factors for this purpose,
which clearly works equally well. Note that as a result of
this modeling choice, our optimization problem will be un-
constrained, regardless of the number of factors, similar as
in (Sontag et al., 2011). In contrast, (Komodakis et al.,
2011) end up with constraints enforcing that some of the
dual variables sum to zero, since they are optimizing out
the global set of ”original” variables from their objective,
while we keep the set of ”original” variables within our
discrete and continuous factors. For this reason, we will in
contrast to (Komodakis et al., 2011) later not require a pro-
jection step within the subgradient method used to optimize
the dual; this is to be detailed further below.

For clarity, we treat discrete and continuous variables dis-
tinctly and for factor f ∈ F denote λdfi and λcfj respec-
tively for the Lagrange multipliers corresponding to its dis-
crete variables i ∈ fd (or rather, the constraints xdfi = xdi )
and its continuous variables j ∈ f c (or rather, the con-
straints xcfj = xcj). For every factor f ∈ F , we fur-
thermore aggregate its multipliers into the vectors λdf =

{λdfi}i∈fd ∈ R|X
d
f | and λcf = {λcfj}j∈fc ∈ R|X

c
f |. The set

of all Lagrange multipliers is thus λ = {λdfi : f ∈ F, i ∈
fd} ∪ {λcfj : f ∈ F, j ∈ f c} = {λdf ,λ

c
f}f∈F . We then

define the Lagrangian

L(λ,x,xF ) = θd(xd) + θc(xc) +
∑
f∈F

θmf (xdff ,x
cf
f )

+
∑
f∈F

∑
i∈fd

λdfi

(
xdi − x

df
i

)
+
∑
f∈F

∑
j∈fc

λcfj

(
xcj − x

cf
j

)

=

θd(xd) +
∑
f∈F

∑
i∈fd

λdfix
d
i


+

θc(xc) +
∑
f∈F

∑
j∈fc

λcfjx
c
j


+
∑
f∈F

θmf (xdff ,x
cf
f )−

∑
i∈fd

λdfix
df
i −

∑
j∈fc

λcfjx
cf
j

 .

This results in the following optimization problem:

max
x,xF

L(λ,x,xF ) (11)

s.t. xdfi = xdi , ∀f ∈ F, i ∈ fd

xcfj = xcj , ∀f ∈ F, j ∈ f c

Note that the problem in Eq. (11) is still equivalent to our
(hard) original problem in Eq. (9) for any assignment of
λ, since the Lagrange multipliers cancel out if all coupling
constraints are fulfilled.

To obtain a tractable problem, we thus simply omit the cou-
pling constraints in Eq. (11) and define the dual function
L(λ) as

L(λ) = max
x,xF

L(λ,x,xF )

= max
xd

θd(xd) +
∑
f∈F

∑
i∈fd

λdfix
d
i


+ max

xc

θc(xc) +
∑
f∈F

∑
j∈fc

λcfjx
c
j


+
∑
f∈F

max
xdf
f ,x

cf
f

θmf (xdff ,x
cf
f )−

∑
i∈fd

λdfix
df
i −

∑
j∈fc

λcfjx
cf
j


Note that the maximizations are now fully independent,
such that we can (without introducing any ambiguity) sim-
plify the notation for the variables involved in the mixed
terms to denote xdf and xcf instead of xdff and xcff , respec-
tively13, resulting in the slightly simpler dual formulation

L(λ) = max
xd

θd(xd) +
∑
f∈F

∑
i∈fd

λdfix
d
i


+ max

xc

θc(xc) +
∑
f∈F

∑
j∈fc

λcfjx
c
j


+
∑
f∈F

max
xd
f ,x

c
f

θmf (xdf ,x
c
f )−

∑
i∈fd

λdfix
d
i −

∑
j∈fc

λcfjx
c
j


Let xd|f ∈ X

d
f and xc|f ∈ X

c
f respectively denote the sub-

vectors of xd and xc containing only the variables of factor
f . The shorthands (or reparameterizations (Sontag et al.,

13I.e., we replace all variable copies xdf
f ,x

cf
f in the mixed

terms by the ”original” variables xd
f ,x

c
f .
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2011))

θ̄λd (xd) = θd(xd) +
∑
f∈F

∑
i∈fd

λdfix
d
i

= θd(xd) +
∑
f∈F

λdfx
d
|f (12)

θ̄λc (xc) = θc(xc) +
∑
f∈F

∑
j∈fc

λcfjx
c
j

= θc(xc) +
∑
f∈F

λcfx
c
|f (13)

θ̄λf (xdf ,x
c
f ) = θmf (xdf ,x

c
f )−

∑
i∈fd

λdfix
d
i −

∑
j∈fc

λcfjx
c
j

= θmf (xdf ,x
c
f )− λdfx

d
f − λcfx

c
f (14)

further simplify the dual function L(λ) to

L(λ) = max
xd

θ̄λd (xd)+max
xc

θ̄λc (xc)+
∑
f∈F

max
xd
f ,x

c
f

θ̄λf (xdf ,x
c
f ) .

(15)
First, observe that since we maximize over x and xF , the
dual function L(λ) is a function of just the Lagrange mul-
tipliers λ. Note that since L(λ) maximizes over a larger
space (since instead of forcing that there must be one global
assignment maximizing the objective, we allow the dis-
crete/continuous potentials to be maximized independently
of the mixed potentials, meaning that x may not coincide
with xF ), we have for all λ that

MAP(θ) ≤ L(λ) . (16)

The dual problem now is to find the tightest upper bound
by optimizing the Lagrange multipliers, i.e.

min
λ
L(λ) (17)

We also call the dual problem in Eq. (17) the master prob-
lem, which coordinates the 2+ |F | slave problems (i.e., one
for each factor)

sd(λ) = max
xd

θ̄λd (xd) (18a)

sc(λ) = max
xc

θ̄λc (xc) (18b)

sf (λ) = max
xd
f ,x

c
f

θ̄λf (xdf ,x
c
f ), ∀f ∈ F . (18c)

where we refer to sd, sc and sf as the discrete slave, the
continuous slave, and the mixed slaves, respectively. Using
the notation in Eqs. (18a)-(18c), the dual function further
simplifies to

L(λ) = sd(λ) + sc(λ) +
∑
f∈F

sf (λ) . (19)

Intuitively, the goal of Eq. (17) is as follows: The master
problem wants the discrete/continuous slaves to agree with

the mixed slaves/factors in which the corresponding dis-
crete/continuous variables appear, and conversely, it wants
the mixed slaves to agree with the slaves/factors of the dis-
crete/continuous variables in its scope. The master problem
will thus incentivize the discrete/continuous slaves and the
mixed slaves to agree with each other, which is done by
updating the dual variables λ accordingly.

The key property of the function L(λ) is that it only in-
volves maximization over local assignments of xd,xc and
xdf ,x

c
f , which are tasks we assume to be tractable. The dual

thus decouples the original problem, resulting in a prob-
lem that can be optimized using local operations. Algo-
rithms that minimize the approximate objective L(λ) use
local updates where each iteration of the algorithms re-
peatedly finds a maximizing assignment for the subprob-
lems individually, using these to update the dual variables
λ that glue the subproblems together. There are two main
classes of algorithms of this kind, one based on a subgradi-
ent method and another based on block coordinate descent
(Sontag et al., 2011).

F Details on Baseline Implementations and
XGBoost Benchmark

We use the publicly available Python im-
plementations of SMAC (Hutter et al., 2011)
(https://github.com/automl/SMAC3), TPE
(Bergstra et al., 2011b) (https://github.com/
hyperopt/hyperopt), and GPyOpt (González, 2016)
(https://github.com/SheffieldML/GPyOpt).
For the GP with simulated annealing baseline, we use GPy
(GPy, 2012) and the simulated annealing implementation
at https://github.com/perrygeo/simanneal.
We use the default values provided by these packages for
any hyperparameters, unless stated otherwise.

Furthermore, please refer to the corresponding websites
for details on the OpenML XGBoost benchmark (https:
//www.openml.org/f/6767), on the underlying
implementation (https://www.rdocumentation.
org/packages/xgboost/versions/0.6-4),
and on the steel-plates-fault (https://www.
openml.org/t/9967) and monks-problem-1
(https://www.openml.org/t/146064) datasets.

Finally, see Table 5 for a description of the hyperparameters
involved in XGBoost.
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Table 2: Hyperparameters of the VAE. The architecture of the VAE (if all layers are enabled) is
C1-C2-F1-F2-z-F3-F4-D1-D2, with C denoting a convolutional (conv.) layer, F a fully-connected (fc.) layer, D
a deconvolutional (deconv.) layer and z the latent space. Layers F2 and F3 have fixed sizes of 2dz and dz units respec-
tively, where dz denotes the dimensionality of the latent space z. The domain of the number of units of the fc. layers
F1 and F4 is discretized with a step size of 64, i.e. [0, 64, 128, . . . , 832, 896, 960], denoted by [0 . . . 960] in the table for
brevity. For dz , the domain [16 . . . 64] refers to all integers within that interval.

# Name Type Domain Bits

1 Number of conv. layers in encoder discrete [0,1,2] 2
Parameters of C1

2 Number of channels of C1 discrete [4,8,16,24] 2
3 Stride of C1 discrete [1,2] 1
4 Filter size of C1 discrete [3,5] 1
5 Padding of C1 discrete [0,1,2,3] 2

Parameters of C2
6 Number of channels of C2 discrete [8,16,32,48] 2
7 Stride of C2 discrete [1,2] 1
8 Filter size of C2 discrete [3,5] 1
9 Padding of C2 discrete [0,1,2,3] 2

10 Number of fc. layers in encoder discrete [0,1,2] 2
11 Number of units of F1 discrete [0. . . 960] 4
12 Dimensionality dz of z discrete [16. . . 64] 6
13 Number of fc. layers in decoder discrete [0,1,2] 2
14 Number of units of F4 discrete [0. . . 960] 4
15 Number of deconv. layers in decoder discrete [0,1,2] 2

Parameters of D1
16 Number of channels of D1 discrete [8,16,32,48] 2
17 Stride of D1 discrete [1,2] 1
18 Filter size of D1 discrete [3,5] 1
19 Padding of D1 discrete [0,1,2,3] 2
20 Output padding of D1 discrete [0,1,2,3] 2

Parameters of D2
21 Number of channels of D2 discrete [4,8,16,24] 2
22 Stride of D2 discrete [1,2] 1
23 Filter size of D2 discrete [3,5] 1
24 Padding of D2 discrete [0,1,2,3] 2
25 Output padding of D2 discrete [0,1,2,3] 2

26 Learning rate continuous [10−4, 10−2] -
27 Learning rate decay factor continuous [0.5, 1.0] -
28 Weight decay regularization continuous [10−6, 10−2] -

Total 50
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Table 3: Mean plus/minus one standard deviation of the
negative test log-likelihood over 8 random initializations,
achieved by the best VAE configuration found by SMAC,
TPE and GPyOpt after 16 BO iterations, for constraint vi-
olation penalties of 500, 250 and 125 nats. Performance
values of MIVABO and random search (which are not af-
fected by the penalty) are included for reference.

Algorithm Penalty (nats)
500 250 125

SMAC 113.0± 1.8 112.1± 1.8 111.1± 1.6
TPE 108.8± 1.2 108.1± 1.3 108.1± 1.3
GPyOpt 108.5± 1.1 108.5± 0.6 106.5± 1.4

RS 106.3± 0.9
MIVABO 94.4± 0.8

Table 4: Mean plus/minus one standard deviation of the
number of constraint violations by SMAC, TPE, GPyOpt
and random search within 16 BO iterations over 8 random
initializations, for constraint violation penalties of 500, 250
and 125 nats.

Algorithm Penalty (nats)
500 250 125

SMAC 37± 21.7 36± 21.9 28± 11.6
TPE 67± 21.3 68± 22.2 68± 22.2
GPyOpt 36± 19.3 32± 18.0 27± 10.4
Random search 71± 25.5 71± 25.5 71± 25.5

Table 5: Hyperparameters of the XGBoost algorithm. 10
parameters, 3 of which are discrete.

Name Type Domain

booster discrete [’gbtree’, ’gblinear’]
nrounds discrete [3, 5000]
alpha continuous [0.000985, 1009.209690]
lambda continuous [0.000978, 999.020893]
colsample bylevel continuous [0.046776, 0.998424]
colsample bytree continuous [0.062528, 0.999640]
eta continuous [0.000979, 0.995686]
max depth discrete [1, 15]
min child weight continuous [1.012169, 127.041806]
subsample continuous [0.100215, 0.999830]


