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Abstract In the classical obstacle problem, the free boundary can be decom-
posed into “regular” and “singular” points. As shown by Caffarelli in his
seminal papers (Caffarelli in Acta Math 139:155–184, 1977; J Fourier Anal
Appl 4:383–402, 1998), regular points consist of smooth hypersurfaces, while
singular points are contained in a stratified union of C1 manifolds of vary-
ing dimension. In two dimensions, this C1 result has been improved to C1,α

by Weiss (Invent Math 138:23–50, 1999). In this paper we prove that, for
n = 2 singular points are locally contained in a C2 curve. In higher dimension
n ≥ 3, we show that the same result holds with C1,1 manifolds (or with count-
ably many C2 manifolds), up to the presence of some “anomalous” points of
higher codimension. In addition, we prove that the higher dimensional stra-
tum is always contained in aC1,α manifold, thus extending to every dimension
the result in Weiss (1999). We note that, in terms of density decay estimates
for the contact set, our result is optimal. In addition, for n ≥ 3 we construct
examples of very symmetric solutions exhibiting linear spaces of anomalous
points, proving that our bound on their Hausdorff dimension is sharp.
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312 A. Figalli, J. Serra

1 Introduction

The classical obstacle problem consists in studying the regularity of solutions
to the minimization problem

min
v

{∫
B1

|∇v|2
2
: v ≥ ψ in B1, v|∂ B1 = g

}
,

where g : ∂ B1→ R is someprescribed boundary condition, and the “obstacle”
ψ : B1→ R satisfies ψ |∂ B1 < g.

Assuming that ψ is smooth, it is well-known that this problem has a unique
solution v of class C1,1

loc [3], and that u := v − ψ satisfies the Euler-Lagrange
equation

�u = −�ψ χ{u>0} in B1.

As already observed in [4,5], in order to prove some regularity results for
the free boundary ∂{u > 0} it is necessary to assume that�ψ < 0. In addition,
as also noticed in [5,16,17,22], from the point of view of the local structure
it suffices to understand the model case �ψ ≡ −1. For this reason, from now
on, we shall focus on the problem

�u = χ{u>0}, u ≥ 0 in B1 ⊂ R
n. (1.1)

As shown by Caffarelli in his seminal papers [4,5], points of the free bound-
ary ∂{u > 0} are divided into two classes: regular points and singular points.
A free boundary point x◦ is either regular or singular depending on the type
of blow-up of u at that point. More precisely:

x◦ is called regular point ⇔ r−2u(x◦ + r x)
r↓0−→ 1

2
max{e · x, 0}2

(1.2)

for some e = ex◦ ∈ S
n−1, and

x◦ is called singular point ⇔ r−2u(x◦ + r x)
r↓0−→ p∗,x◦(x) := 1

2
x · Ax

(1.3)

for some symmetric nonnegative definite matrix A = Ax◦ ∈ R
n×n with

tr(A) = 1. The existence of the previous limits in (1.2) and (1.3), as well as the
classification of possible blow-ups are well-known results; see [5,16,17,22].
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On the free boundary of the obstacle problem 313

By the theory in [4,14] (see also [5,7,8,15,17–19]), the free boundary is
an analytic hypersurface near regular points. On the other hand, near singular
points the contact set {u = 0} forms cups and can be pretty wild—see for
instance the examples given in [14,20]. Moreover, as shown in [20], even C∞
strictly superhamonic obstacles in the plane (n = 2) may lead to contact sets
with Cantor set like structures. In particular, in such examples, the contact set
has (locally) an infinite number of connected components, each containing
singular points.

Despite these “negative” results showing that singular points could be rather
bad, it is still possible to prove some nice structure. More precisely, singular
points are naturally stratified according to the dimension of the linear space

Lx◦ := {p∗,x◦ = 0} = ker(Ax◦).

For m ∈ {0, 1, 2, . . . , n − 1} we define the m-th stratum as

�m :=
{

x◦ : singular point with dim(Lx◦) = m
}
.

As shown by Caffarelli [5], each stratum �m is locally contained in a m-
dimensional manifold of class C1 (see also [16] for an alternative proof).
This result has been improved in dimension n = 2 by Weiss [22]: using a
epiperimetric-type approach, he has been able to prove that �1 is locally con-
tained in a C1,α curve, for some universal exponent α > 0. Along the same
lines, in a recent paper Colombo et al. [9] have obtained a logarithmic epiperi-
metric inequality at singular points in any dimension n ≥ 3, thus improving
the known C1 regularity to a more quantitative C1,logε

one.
The aim of this paper is to improve the previous known results by showing

that, up to the presence of some “anomalous” points of higher codimension,
singular points can be covered by C1,1 (and in some cases C2) manifolds. As
we shall discuss in Remark 1.2, this result provides the optimal decay estimate
for the contact set. In addition, anomalous points may exist and our bound on
their Hausdorff dimension is optimal.

Before stating our result we note that, as a consequence of [5], points in �0
are isolated and u is strictly positive in a neighborhood of them. In particular
u solves �u = 1 in a neighborhood of �0, hence it is analytic there. Thus, it
is enough to understand the structure of �m for m = 1, . . . , n − 1.

Here and in the sequel, dimH(E) denotes the Hausdorff dimension of a set
E [see (3.16) for a definition]. Our main result is the following:

Theorem 1.1 Let u ∈ C1,1(B1) be a solution of (1.1), and let � := ∪n−1
m=0�m

denote the set of singular points. Then:

For n = 2�1 is locally contained in a C2 curve.
For n ≥ 3 we have:
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314 A. Figalli, J. Serra

(a) The higher dimensional stratum �n−1 can be written as the disjoint
union of “generic points” �

g
n−1 and “anomalous points” �a

n−1, where:
– �

g
n−1 is locally contained in a C1,1 (n− 1)-dimensional manifold;

– �a
n−1 is a relatively open subset of �n−1 satisfying dimH(�a

n−1) ≤
n − 3 (actually, �a

n−1 is discrete when n = 3).
Furthermore, �n−1 can be locally covered by a C1,α◦ (n − 1)-
dimensional manifold, for some dimensional exponent α◦ > 0.

(b) For all m = 1, . . . , n − 2 we can write �m = �
g
m ∪�a

g , where:

– �
g
m can be locally covered by a C1,1 m-dimensional manifold;

– �a
m is a relatively open subset of �m satisfying dimH(�a

m) ≤ m−1
(actually, �a

m is discrete when m = 1).
In addition, �m can be locally covered by a C1,logε◦ m-dimensional
manifold, for some dimensional exponent ε◦ > 0.

Remark 1.2 We first discuss the optimality of the above theorem.
(1) OurC1,1 regularity provides the optimal control on the contact set in terms

of the density decay. Indeed our result implies that, at all singular points
up to a (n − 3)-dimensional set (in particular at all singular points when
n = 2, and at all singular points up to a discrete set when n = 3), the
following bound holds:

|{u = 0} ∩ Br (x◦)|
|Br (x◦)| ≤ Cr ∀ r > 0

(see Proposition 2.13, Definition (3.13), and Lemmas 3.4, 3.6, 3.7, and
3.9). In view of the two dimensional Example 1 in [20, Section 1], this
estimate is optimal.

(2) The possible presence of anomalous points comes from different reasons
depending on the dimension of the stratum. More precisely, as the reader
will see from the proof (see also the description of the strategy of the proof
given below), the following holds:
(a) The possible presence of points in �a

n−1 comes from the potential
existence, in dimension n ≥ 3, of λ-homogeneous solutions to the
Signorini problem with λ ∈ (2, 3). Whether this set is empty or not is
an interesting open problem.

(b) The anomalous points in the strata�a
m form ≤ n−2 come from the pos-

sibility that, around a singular point x◦, the function (u − p∗,x◦)|Br (x◦)
behaves as εr q, where:
– εr is infinitesimal as r → 0+, but εr � rα for any α > 0;
– q is a nontrivial second order harmonic polynomial.
Although this behavior may look strange, it can actually happen and
our estimate on the size of �a

m is optimal. Indeed, in the “Appendix”
we construct examples of solutions for which dim(�a

m) = m − 1.
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On the free boundary of the obstacle problem 315

We now make some general comments on Theorem 1.1.

Remark 1.3 (1) Our result on the higher dimensional stratum �n−1 extends
the result of [22] to every dimension, and improves it in terms of the
regularity. Actually, as shown in Theorem 4.7, for any m = 1, . . . , n − 1
we can cover �m with countably many C2 m-dimensional manifolds, up
to a set of dimension at most m − 1.

(2) The last part of the statement in the case (n ≥ 3)-(b) was recently proved
in [9]. Here we reobtain the same result as a simple consequence of our
analysis (see the proof of Theorem 1.1).

(3) As we shall see, the higher regularity of the free boundary stated in the
previous theorem comes with a higher regularity of the solution u around
singular points. More precisely, � being of class Ck,α at some singular
point x◦ corresponds to u being of class Ck+1,α at such point.

(4) The fact that �a
m is relatively open implies that if x◦ ∈ �a

m then Bρ(x◦)∩
�a

m = Bρ(x◦)∩�m for ρ > 0 small. In particular dimH
(
Bρ(x◦)∩�m

) ≤
m − 1 (≤ n − 3 if m = n − 1). In other words, the whole stratum �m is
lower dimensional near anomalous points.

(5) In [18,19], Sakai proved very strong structural results for the free boundary
in dimension n = 2. However, his results are very specific to the two
dimensional case with analytic right hand side, as they rely on complex
analysis techniques. On the other hand, all the results mentioned before
[4,5,9,22] are very robust and apply to more general right hand sides.
Analogously, also our techniques are robust and can be extended to general
right hand sides. In addition, our methods can be applied to the study of
the regularity of the free boundary in the parabolic case (the so-called
Stefan problem), a problem that cannot be studied with complex variable
techniques even in dimension two.

Strategy of the proof of Theorem 1.1 The idea of the proof is the following: let
0 be a singular free boundary point. As shown in [5,16] u is C2 at 0, namely
there exists a second order homogeneous polynomial p∗, with D2 p∗ ≥ 0 and
�p∗ = 1, such that u(x) = p∗(x)+ o(|x |2). In order to obtain our result, our
goal is to improve the convergence rate o(|x |2) into a quantitative bound of
the form O(|x |2+γ ) for some γ > 0. In particular, to obtain C1,1 regularity of
the singular set we would like to show that γ ≥ 1.

Using motononicity formulae due to Weiss and Monneau, we are able to
prove that Almgren frequency function ismonotone onw := u− p∗ (this result
came as a complete surprise to us, as the Almgren frequency formula has never
been used in the classical obstacle problem). This allows us to perform blow-
ups around 0 by considering limits of

w̃r (x) := w(r x)

‖w(r · )‖L2(∂ B1)

as r → 0,
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316 A. Figalli, J. Serra

and prove that if λ∗ is the value of the frequency at 0 then u(x) = p∗(x) +
O(|x |λ∗). Although it is easy to see that λ∗ ≥ 2, it is actually pretty delicate—
and actually sometimes impossible—to exclude that λ∗ = 2 (note that, in such
a case, we would get no new informations with respect to what was already
known). Hence our goal is to understand the possible value of λ∗.

To this aim, we consider q a limit of w̃r and, exploiting the monotonicity
of the frequency, we prove that q �≡ 0, q is λ∗-homogeneous, and q�q ≡ 0.

Thenwe distinguish between the two casesm = n−1 andm ≤ n−2.While
in the latter case we can prove that q is harmonic (therefore λ∗ ∈ {2, 3, 4, . . .}),
in the case m = n− 1 we prove that q is a solution of the so-called “Signorini
problem” (see for instance [1,2]). In particular, when n = 2, this allows us to
characterize all the possible values of λ∗ in dimension 2 (as all global two-
dimensional homogeneous solutions are classified). Still, this does not exclude
that λ∗ = 2. As shown in Proposition 2.10 this can be excluded in the case
m = n − 1, while the examples constructed in the “Appendix” show that λ∗
may be equal to 2 if m ≤ n− 2. To circumvent this difficulty, a key ingredient
in our analysis comes from Eq. (2.10) which shows that, whenever λ∗ = 2,
some strong relation between p∗ and q holds. Thus, our goal becomes to prove
that this relation cannot hold at “too many” singular points.

In order to estimate the size of the set where λ∗ < 3, we first consider the
low-dimension cases n = 2 and n = 3, and then we develop a Federer-type
dimension reduction principle to handle the case n ≥ 4. Note that the Federer
dimension reduction principle is not standard in this setting, the reason being
that if x0 and x1 are two different singular points, then the blow-ups at such
points come from different functions, namely u − p∗,x0 and u − p∗,x1 . Still,
we can prove the validity of a dimension reduction-type principle allowing
us to conclude that, at most points, λ∗ ≥ 3. This proves the main part of the
theorem.

Then, to show that �n−1 is contained in a C1,α◦-manifolds we prove that
λ∗ ≥ 2 + α◦ > 2 at all points in �n−1. Also, the C1,logε◦ regularity of �m
for m ≤ n − 2 comes a simple consequence of our analysis combined with
Caffarelli’s asymptotic convexity estimate [4].

Finally, the C2 regularity in two-dimensions requires a further argument
based on a new monotonicy formula of Monneau-type.

The paper is organized as follows.
In Sect. 2 we introduce some classical monotonicity quantities, as well as

some variants of them that will play a crucial role in our analysis. In particular,
we prove the validity of a Almgren’s monotonicy-type formula. Then, given a
singular free boundary point x◦, we investigate the properties of the blow-ups
of u(x◦ + ·)− p∗,x◦ .

In Sect. 3 we continue our analysis of the possible homogeneities of the
blow-ups and show the validity of a Federer-type reduction principle. These
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On the free boundary of the obstacle problem 317

results, combined with the ones from Sect. 2, allow us to prove Theorem 1.1
in dimensions n ≥ 3, as well as the C1,1 regularity of �1 in dimension n = 2.
The proof of the C2 regularity of �1 for n = 2 is postponed to Sect. 4.

In the final “Appendix” we build solutions exhibiting anomalous points that
show the sharpness of Theorem 1.1(b).

2 Notation, monotonicity formulae, and blow-ups

Let us denote

M := {symmetric n × n nonnegative definite matrices B with tr B = 1
}
(2.1)

and

P :=
{

p(x) = 1

2
x · Bx : B ∈M

}
.

Given a singular free boundary point x◦, we denote

p∗,x◦(x) = lim
r→0

r−2u(x◦ + r x)

(the existence of this limit is guaranteed by Caffarelli [5], see also [16]). Note
that �p∗,x◦ ≡ 1, hence p∗,x◦ ∈ P . When x◦ = 0, we will sometimes simplify
the notation to p∗.

Throughout the paper we will assume that u �≡ p∗ in B1, as otherwise
Theorem 1.1 is trivial.

2.1 Weiss, Monneau, and Almgren frequency formula

In this section we assume that x◦ = 0 is a singular point. The goal of the
section is to prove that, for any given p ∈ P, the Almgren frequency formula

φ(r, w) := r2−n
∫

Br
|∇w|2

r1−n
∫
∂ Br

w2
, w := u − p,

is monotone nondecreasing in r . (Note that, since by assumption u �≡ p∗, then
w := u − p �≡ 0 for any p ∈ P and φ(r, w) is well defined.)

To this aim, we first recall the definition of the Weiss function

W (r, u) := 1

rn+2

∫
Br

(
|∇u|2 + 2u

)
− 2

rn+3

∫
∂ Br

u2.
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318 A. Figalli, J. Serra

Proposition 2.1 (Weiss monotone function [22]) If 0 is a singular point then

d

dr
W (r, u) ≥ 0

and

W (0+, u) = Hn−1(∂ B1)

2n(n + 2)
= W (r, p) ∀ p ∈ P, ∀ r > 0.

To prove the monotonicity of φ we will use several times the following
observation:

Remark 2.2 Since �u = �p = 1 in {u > 0}, we have

w�w =
{
0 in {u > 0}
p�p = p ≥ 0 in {u = 0}.

A short way to write this is

w�w = pχ{u=0} ≥ 0. (2.2)

We also need the following auxiliary result, that is essentially due to Mon-
neau [16].

Lemma 2.3 Let 0 be a singular point, p ∈ P , and w := u − p. Then

1

rn+2

∫
Br

|∇w|2 ≥ 2

rn+3

∫
∂ Br

w2 (2.3)

and

1

rn+3

∫
∂ Br

w(x · ∇w − 2w) ≥ 1

rn+2

∫
Br

w�w ≥ 0 (2.4)

for all r > 0.

Proof Since W (0+, u) = W (r, p) for all r > 0 (see Proposition 2.1) and
�p ≡ 1, we have

0 ≤ W (r, u)−W (0+, u) = W (r, u)−W (r, p)

= 1

rn+2

∫
Br

(
|∇w|2 + 2∇w · ∇ p + 2w

)
− 2

rn+3

∫
∂ Br

(
w2 + 2wp

)
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On the free boundary of the obstacle problem 319

= 1

rn+2

∫
Br

|∇w|2 − 2

rn+3

∫
∂ Br

w2 + 2

rn+3

∫
∂ Br

w(x · ∇ p − 2p)

= 1

rn+2

∫
Br

|∇w|2 − 2

rn+3

∫
∂ Br

w2,

where we used that p is 2-homogeneous (hence x · ∇ p = 2p). This proves
(2.3).

Now, since

1

rn+2

∫
Br

|∇w|2 = 1

rn+2

∫
Br

−w�w + 1

rn+3

∫
∂ Br

w x · ∇w,

(2.4) follows from (2.3) and (2.2). ��

We can now state and prove the monotonicity of the Almgren frequency
function. We remark that the fact that φ is monotone for all p ∈ P (and not
only with p = p∗) will be crucial in the proof of Theorem 1.1.

Proposition 2.4 (Almgren frequency formula) Let 0 be a singular point, p ∈
P , and w := u − p. Then

d

dr
logφ(r, w) ≥ 2

r

(
r2−n
∫

Br
w�w
)2

r2−n
∫

Br
|∇w|2 r1−n

∫
∂ Br

w2
≥ 0.

Proof of Proposition 2.4 Let us introduce the adimensional quatities

D(r) := r2−n
∫

Br

|∇w|2 = r2
∫

B1

|∇w|2(r · ),

H(r) := r1−n
∫

∂ Br

w2 =
∫

∂ B1

w2(r · ),

so that φ = D/H . By scaling it is enough to compute the derivative of φ at
r = 1 and prove that it is nonnegative.

Using lower indices to denote partial derivatives (so wi = ∂xi w, wi j =
∂2xi x j

w, etc.), we have

d

dr
logφ = D′

D
− H ′

H
(2.5)
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320 A. Figalli, J. Serra

where

D′(1) =
∑
i, j

∫
B1

2wi x jwi j + 2D(1)

=
∑
i, j

∫
∂ B1

2wi x jw jνi −
∑
i, j

∫
B1

2(wi x j )iw j + 2D(1)

= 2
∫

∂ B1

w2
ν − 2
∫

B1

�w (x · ∇w)− 2
∫

B1

|∇w|2 + 2D(1)

= 2
∫

∂ B1

w2
ν − 2
∫

B1

�w (x · ∇w)

= 2
∫

∂ B1

w2
ν − 2
∫

B1∩{u=0}
(x · ∇ p)

= 2
∫

∂ B1

w2
ν − 4
∫

B1∩{u=0}
p.

(2.6)

Here we used that x · ∇w|∂ B1 = wν |∂ B1 is the outer normal derivative, �w =
−χ{u=0}, and x · ∇ p = 2p (since p is 2-homogeneous).

On the other hand, recalling (2.2), we have
∫

∂ B1

wwν =
∫

B1

w�w +
∫

B1

|∇w|2 =
∫

B1∩{u=0}
p +
∫

B1

|∇w|2, (2.7)

therefore

H ′(1) = 2
∫

∂ B1

wwν = 2
∫

B1∩{u=0}
p + 2
∫

B1

|∇w|2. (2.8)

Hence, combining (2.6), (2.7), (2.8), and (2.5), and denoting

I :=
∫

B1

w�w =
∫

B1∩{u=0}
p ≥ 0,

we obtain

d

dr
logφ(1, w) = 2

(∫
∂ B1

w2
ν − 2I∫

B1
|∇w|2 −

∫
∂ B1

wwν∫
∂ B1

w2

)

= 2

( ∫
∂ B1

w2
ν − 2I

) ∫
∂ B1

w2 − ∫
∂ B1

wwν

( ∫
∂ B1

wwν − I
)

∫
B1
|∇w|2 ∫

∂ B1
w2

= 2

{ ∫
∂ B1

w2
ν

∫
∂ B1

w2−( ∫
∂ B1

wwν

)2}+ I
∫
∂ B1

w(wν−2w)∫
B1
|∇w|2 ∫

∂ B1
w2
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On the free boundary of the obstacle problem 321

Observe that the first term inside the brackets is nonnegative by the Cauchy-
Schwartz inequality. Also, recalling (2.4), we have that

∫
∂ B1

w(wν − 2w) ≥
∫

B1

w�w = I.

Since I ≥ 0, the result follows. ��
Note that, because r �→ φ(r, w) is monotone nondecreasing, it must have

a limit as r ↓ 0. The first observation is that this limit is at least 2.

Lemma 2.5 Let 0 be a singular point, p ∈ P , and w := u − p. Then
φ(0+, w) ≥ 2.

Proof It suffices to observe that (2.3) is equivalent toφ(r, w) ≥ 2 for all r > 0.
��

A first classical consequence of the frequency formula is the following
monotonicity formula:

Lemma 2.6 Let 0 be a singular point, p ∈ P , and w := u − p. Given λ > 0
denote

Hλ(r, w) := 1

rn−1+2λ

∫
∂ Br

w2.

Then the function r �→ Hλ(r, w) is monotone nondecreasing for all 0 ≤ λ ≤
φ(0+, w).

Proof Denoting

wr (x) := (u − p)(r x).

we have

H ′λ
Hλ

(r, w) = 2r−2λ
∫
∂ B1

wr (x)
(
x · ∇w(r x)

)− 2λr−2λ−1
∫
∂ B1

w2
r

r−2λ
∫
∂ B1

w2
r

.

Using that

r
∫

∂ B1

wr (x)
(
x · ∇w(r x)

) =
∫

∂ B1

wr (x · ∇wr ) =
∫

B1

|∇wr |2 +
∫

B1

wr�wr

and that wr�wr ≥ 0 (recall (2.2)), we obtain

H ′λ
Hλ

(r, w) ≥ 2
∫

B1
|∇wr |2

r
∫
∂ B1

w2
r
− 2λ

r
= 2

r

(
φ(r, w)− λ

)
.
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Since φ(r, w) ≥ φ(0+, w) ≥ λ (by Proposition 2.4), the result follows. ��
Corollary 2.7 (Monneaumonotonicity formula [16])Let 0 be a singular point
and let Hλ be as in Lemma 2.6. The function H2(r, u − p) is monotone non-
decreasing in r , for all p in P .

Proof It is a direct consequence of Lemmas 2.6 and 2.5. ��
The following result shows the monotonicity for a modifiedWeiss function.

It is remarkable that the quantity below is monotone for all λ > 0, indepen-
dently of the value of the frequency.

Lemma 2.8 Let 0 be a singular point, λ ≥ 0, and w := u − p, where p ∈ P .
Then the function

Wλ(r, w) := r−2λ
(

r2−n
∫

Br

|∇w|2 − λ r1−n
∫

∂ Br

w2
)

is monotone nondecreasing in r .

Proof For 0 ≤ λ ≤ φ(0+, w) we have Wλ = (φ − λ)Hλ, the product of two
positive nondecreasing functions (thanks to Proposition 2.4 and Lemma 2.6),
hence Wλ is nondecreasing.

The result is more interesting for λ > φ(0+, w) and it requires a different
proof. Indeed, using the notation and calculations from the proof of Proposi-
tion 2.4 we have, for I := ∫B1

w�w = ∫B1∩{u=0} p ≥ 0,

W ′λ(1) = D′(1)− λH ′(1)− 2λ
(
D(1)− λH(1)

)
=
(
2
∫

∂ B1

w2
ν − 4I

)
− 2λ
∫

∂ B1

wwν − 2λ
(
D(1)− λH(1)

)

=
(
2
∫

∂ B1

w2
ν − 4I

)
− 2λ
∫

∂ B1

wwν − 2λ

(∫
∂ B1

wwν − I

)

+ 2λ2H(1)

= 2

(∫
∂ B1

w2
ν − 2λ

∫
∂ B1

wwν + λ2
∫

∂ B1

w2
)
+ 2(λ− 2)I

= 2
∫

∂ B1

(wν − λw)2 + 2(λ− 2)I.

Since λ > φ(0+, w) ≥ 2 (by Lemma 2.5), the result follows. ��
Asa consequence of this resultwe can prove that, givenλ > λ∗ = φ(0+, u−

p∗), the function Hλ blows up at 0. This, combined with the monotonicity of
Hλ∗ (see Lemma 2.6), shows that
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r2λ �
∫

∂ Br

w2 � r2λ∗ for r � 1. (2.9)

Note that while this estimate is classical for harmonic functions (since the
frequency function is related to the derivative of Hλ), in our case only an
inequality is available (see the proof of Lemma 2.6) and a different argument
is needed.

Corollary 2.9 Let 0 be a singular point, w := u − p∗, λ∗ := φ(0+, w), and
fix λ > λ∗. Let Hλ be as in as in Lemma 2.6. Then

Hλ(r, w)→+∞ as r ↓ 0.

Proof Assume by contradiction that there exists a sequence rk ↓ 0 such that
Hλ(rk, w) ≤ C for some constant C . Then, taking μ ∈ (λ∗, λ), it follows that
Hμ(rk, w) → 0. Hence, with the notation of Lemma 2.8, this gives (since
Wμ ≥ −μ Hμ)

lim inf
k→∞ Wμ(rk, w) ≥ lim inf

k→∞ −μ Hμ(rk, w) = 0.

By the monotonicity of Wμ, this implies that Wμ(r, w) ≥ 0 for all r > 0, or
equivalently

r2−n
∫

Br

|∇w|2 ≥ μ r1−n
∫

∂ Br

w2 ∀ r > 0.

But this means that φ(r, w) ≥ μ for all r > 0, a contradiction to the fact that
μ > λ∗. ��

2.2 Blow-up analysis

We now start investigating the structure of possible blow-ups.

Proposition 2.10 Let 0 be a singular point, w := u− p∗, and for r > 0 small
define

wr (x) := w(r x), w̃r := wr

‖wr‖L2(∂ B1)

.

Let L := {p∗ = 0}, and m ∈ {0, 1, 2, . . . n − 1} be the dimension of L. Also,
let λ∗ := φ(0+, w). Then:

(a) For 0 ≤ m ≤ n − 2 we have λ∗ ∈ {2, 3, 4, 5, . . . }. Moreover, for every
sequence rk ↓ 0 there is a subsequence rk�

such that w̃rk�
⇀ q in W 1,2(B1)
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as �→∞, where q �≡ 0 is a λ∗-homogeneous harmonic polynomial.
In addition, if λ∗ = 2, then in an appropriate coordinate frame it holds

D2 p∗ =

⎛
⎜⎜⎜⎝

μ1
. . . 0n−m

m
μn−m

0m
n−m 0m

m

⎞
⎟⎟⎟⎠ and D2q =

⎛
⎜⎜⎜⎝

t
. . . 0n−m

m
t

0m
n−m −N

⎞
⎟⎟⎟⎠ ,

(2.10)

where μ1, . . . , μn−m, t > 0,
∑n−m

i=1 μi = 1, and N is a symmetric non-
negative definite m × m matrix with tr(N ) = (n − m)t .

(b) For m = n − 1 we have λ∗ ≥ 2 + α◦, where α◦ > 0 is a dimensional
constant. Moreover, for every sequence rk ↓ 0 there is a subsequence rk�

such that w̃rk�
⇀ q in W 1,2(B1), where q �≡ 0 is a λ∗-homogeneous

solution of the Signorini problem (with obstacle 0 on L):

�q ≤ 0 and q�q = 0 in R
n, �q = 0 in R

n\L , and

q ≥ 0 on L . (2.11)

To prove Proposition 2.10, we need the following auxiliary lemmas:

Lemma 2.11 Let w̃r be as in Proposition 2.10 and assume that, for some
sequence rk�

↓ 0, it holds w̃rk�
⇀ q in W 1,2(B1). Then

∫
∂ B1

q(p∗ − p) ≥ 0 for all p ∈ P. (2.12)

Proof By the definition of p∗ it holds that

wr (x) = (u − p∗)(r x) = o(r2) as r ↓ 0.

Let us denote hr := ‖wr‖L2(∂ B1)
= o(r2) and εr := hr/r2 = o(1) as r ↓ 0.

Note that, by the compactness of the trace operator W 1,2(B1) → L2(∂ B1),
we have w̃rk�

= wrk�
/hrk�

→ q in L2(∂ B1).
By Corollary 2.7 and the definition of p∗, for any fixed p ∈ P we have

∫
∂ B1

(
wr

r2
+ p∗ − p

)2

=
∫

∂ B1

(
u(r x)− p(r x)

r2

)2
↓
∫

∂ B1

(p∗ − p)2 as r ↓ 0.
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Hence, since r−2wr = εr w̃r ,∫
∂ B1

(
εr w̃r + p∗ − p

)2 ≥
∫

∂ B1

(p∗ − p)2 ∀ r > 0, ∀ p ∈ P.

Developing the squares and taking r = rk�
we get

ε2rk�

∫
∂ B1

w̃2
rk�
+ 2εrk�

∫
∂ B1

w̃rk�
(p∗ − p) ≥ 0.

Dividing by εrk�
and letting �→∞ we obtain (2.12). ��

Lemma 2.12 Let p∗ ∈ P , and assume that q �≡ 0 is a 2-homogeneous
harmonic polynomial satisfying (2.12). Then, in an appropriate system of coor-
dinates, (2.10) holds.

Proof Take p ∈ P and define A := D2 p∗, B := D2 p, and C := D2q. Then,
since x · ∇q = 2q and �q = 0, it follows from (2.12) that

0 ≤
∫

∂ B1

q(p∗ − p) = 1

2

∫
∂ B1

qν(p∗ − p) = 1

2

∫
B1

∇q · ∇(p∗ − p)

= 1

2

∫
B1

Cx · (A − B)x dx = cntr
(
C(A − B)

)
,

for some dimensional constant cn > 0. Hence, since p ∈ P was arbitrary, we
deduce that (recall (2.1))

tr(C A) ≥ tr(C B) for all B ∈M. (2.13)

To show that this implies (2.10), let v ∈ S
n−1 be an eigenvector for C corre-

sponding to its largest eigenvalue νmax > 0, and choose B := v ⊗ v. Then,
since A ≥ 0 and tr(A) = 1, (2.13) yields

νmax = tr(νmaxIdA) ≥ tr(C A) ≥ tr(C B) = νmax.

Thus

tr([νmaxId − C]A) = 0,

and because both A and νmaxId − C are symmetric and nonnegative definite,
we deduce that the kernels of these two matrices decompose orthogonallyRn .
In addition, if we set L = {p∗ = 0} = ker(A), then (νmaxId − C)|L⊥ ≡ 0.
Thanks to this fact and recalling that tr(C) = 0 (since q is harmonic), the
result follows easily. ��
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We can now prove Proposition 2.10.

Proof of Proposition 2.10 For the sake of clarity, we divide the proof into
several steps.

– Step 1. We note that {w̃r } is precompact. Indeed, by Proposition 2.4 we
have ∫

∂ B1

w̃2
r = 1 and

∫
B1

|∇w̃r |2 = φ(r) ≤ φ(1) <∞.

This yields uniform bounds ‖w̃r‖W 1,2(B1)
≤ C for all r ∈ (0, 1). As a

consequence, given a sequence rk ↓ 0 there is a subsequence rk�
↓ 0 such

that

w̃rk�
⇀ q in W 1,2(B1).

In particular, by the compactness of the trace operator W 1,2(B1) →
L2(∂ B1), it follows that

‖q‖L2(∂ B1)
= 1.

– Step 2. We prove (a). So, we assume m ≤ n − 2 and we consider q a
possible limit of a converging sequence w̃rk�

. We want to prove that q is a
harmonic homogeneous polynomial.

We first show that q is harmonic. Note that

�wr (x) = �u(r x)−�p∗(r x) = −r2χ{u=0}(r x) ≤ 0, (2.14)

hence�w̃r is a nonpositivemeasure. Note also that the contact set {u(r · ) = 0}
converge in the Hausdorff sense to a subset of L = {p∗ = 0} as r → 0 (this
follows from the uniform convergence of r−2u(r x) to p∗ as r → 0). This
implies that q has a distributional Laplacian given by a nonpositive measure
supported in L . Since q ∈ W 1,2(B1) (by Step 1) and L has codimension 2
(and thus it is of zero harmonic capacity) it follows that q must be harmonic.

Let us prove next that q is homogeneous. To this aim we show that

λ∗ = φ(R, q) := R2−n
∫
∂ BR
|∇q|2

R1−n
∫
∂ BR

q2
∀ R ∈ (0, 1]. (2.15)

Indeed, by lower semicontinuity of the Dirichlet integral we have

φ(1, q) ≤ lim inf
�→∞ φ(1, w̃rk�

) = lim inf
�→∞ φ(1, wrk�

) = lim inf
�→∞ φ(rk�

, w) = λ∗.
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Also, since q is harmonic, it follows that R �→ φ(R, q) is nondecreasing (this
follows from the classical Almgren frequency formula, or equivalently from
the proof of Proposition 2.4), thus φ(R, q) ≤ λ∗ for all R ∈ (0, 1].

To show the converse inequalitywe apply Lemma 2.6 to w̃rk�
and let �→∞

to obtain

1

ρ2λ∗

∫
∂ Bρ

q2 ≤
∫

∂ B1

q2 = 1. (2.16)

But since q is harmonic (so, in particular, q�q ≡ 0) we have

H ′λ(R, q)

Hλ(R, q)
= 2

R
(φ(R, q)− λ)

(this is a classical identity that also follows from the proof of Lemma 2.6).
Hence, if it was φ(R, q) < λ∗ for some R ∈ (0, 1) then, choosing λ :=
φ(R, q), we would have that Hλ would be nonincreasing on (0, R). In partic-
ular we would find

1

ρ2λ

∫
∂ Bρ

q2 ≥ 1

R2λ

∫
∂ BR

q2 > 0 for ρ ∈ (0, R),

which contradicts (2.16) for ρ small since λ < λ∗. Hence, we proved (2.15).
Note that (2.15) says that the Almgren frequency formula φ(R, q) is

constantly equal to λ∗ for all R ∈ (0, 1]. As a classical consequence, q is λ∗-
homogeneous. Hence, since q harmonic, it follows that q is a λ∗-homogeneous
harmonic polynomial with λ∗ ∈ {2, 3, 4, 5, . . . } (recall that λ∗ ≥ 2, see
Lemma 2.5).

Finally, to complete the proof of (a), it suffices to combine Lemmas 2.11
and 2.12 to obtain that (2.10) holds when λ∗ = 2.

– Step 3. We now prove the first part of (b): if m = n − 1, then q must be a
homogenous solution of the Signorini problem.

Indeed, let w̃rk�
→ q in L2(B1). We first show uniform semiconvexity and

Lipschitz estimates that are of independent interest and will be useful later on
in the paper. Namely, let us prove the estimate

∂2eew̃r ≥ −C in BR, ∀ e ∈ L ∩ S
n−1, ∀ R < 1, (2.17)

where C = C(n, R)—in particular C is independent of r .
For this, given a vector e ∈ S

n−1 and h > 0, let

δ2e,h f := f ( · + he)+ f ( · − he)− 2 f

h2
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denote a secondorder incremental quotient. For e ∈ L∩Sn−1 wehave δ2e,h p∗ ≡
0 (since p∗ is constant in the directions of L). Thus, since �u = 1 outside of
{u = 0} and �u ≤ 1 everywhere,

�
(
δ2e,hwr

) = �u
(
r( · + he)

)+�u
(
r( · − he)

)− 2�u
(
r( · ))

h2 ≤ 0

in B1\{u(r · ) = 0}.
On the other hand, since u ≥ 0 we have

δ2e,hwr = δ2e,hu(r · ) ≥ 0 in {u(r · ) = 0}.
As a consequence, the negative part of the second order incremental quotient
(δ2e,hw̃r )− is a (nonnegative) subharmonic function, and so is its limit (∂2eew̃r )−
(recall that u ∈ C1,1, hence δ2e,hw̃r → ∂2eew̃r a.e. as h → 0).

Therefore, given any radius R′ ∈ (R, 1), by the weak Harnack inequality
(see for instance [6, Theorem 4.8(2)]) there exists ε = ε(n) ∈ (0, 1) such that

‖(∂2eew̃r )−‖L∞(BR) ≤ C(n, R, R′)
(∫

BR′
(∂eew̃r )

ε−
)1/ε

≤ C(n, R, R′)
(∫

BR′
|∂eew̃r |ε

)1/ε
.

Also, by standard interpolation inequalities, the Lε norm (here we use ε < 1)
can be controlled by the weak L1 norm, namely

(∫
BR′
|∂eew̃r |ε

)1/ε
≤ C(n, R′) sup

t>0
t
∣∣{|∂eew̃r | > t

} ∩ BR′
∣∣.

Furthermore, by Calderon-Zygmund theory (see for instance [13, Equa-
tion (9.30)]), the right hand side above is controlled by ‖�w̃r‖L1(BR′′ ) +‖w̃r‖L1(BR′′ ), with R′′ ∈ (R′, 1). Finally, since �w̃r ≤ 0, ‖�w̃r‖L1(BR′′ ) is

controlled by the L1 norm of w̃ inside B1: indeed, if χ is a smooth nonnegative
cut-off function that is equal to 1 in BR′′ and vanished outside B1, then

‖�w̃r‖L1(BR′′ ) ≤ −
∫

B1

χ �w̃r = −
∫

B1

�χ w̃r ≤ C(n, R′′)
∫

B1

|w̃r |.
(2.18)

In conclusion, choosing R′ = 2R+1
3 and R′′ = R+2

3 we obtain

‖(∂eew̃r )−‖L∞(BR) ≤ C(n, R)‖w̃r‖L1(B1)
≤ C(n, R)
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(recall that w̃r is uniformly bounded in W 1,2(B1) ⊂ L1(B1), see Step 1),
which proves (2.17).

Note that, as a consequence of (2.17), the Laplacian of w̃r in the tangential
directions is uniformly bounded from below. Since �w̃r ≤ 0 everywhere and
L is (n−1)-dimensional, this implies a uniform semiconcavity estimate in the
direction orthogonal to L , namely

∂2e′e′w̃r ≤ C in BR, for e′ ∈ L⊥ with |e′| = 1,

where, as before, R < 1 and C = C(n, R).
Thanks to the previous semiconvexity and semiconcavity estimates, we

deduce in particular a uniform Lipschitz bound:

|∇w̃r | ≤ C(n, R) in BR ∀ R < 1. (2.19)

Hence, the convergence w̃rk�
→ q holds also locally uniformly inside B1.

Now, recall that by Proposition 2.4 we have

rφ′(r, w) ≥ 2φ(r, w)

(
r2−n
∫

Br
w�w
)2

r2−n
∫

Br
|∇w|2 r1−n

∫
∂ Br

w2

= 2

(
r2−n
∫

Br
w�w

r1−n
∫
∂ Br

w2

)2
= 2

(∫
B1

w̃r�w̃r

)2
.

(2.20)

Since

∫ 2rk�

rk�

rφ′(r, w) dr ≤ 2
∫ 2rk�

rk�

φ′(r, w) dr = 2
(
φ(2rk�

, w)

−φ(rk�
, w)
)→ 0 as �→∞

(because φ(r, w) → λ∗ as r → 0), using the mean value theorem we may
choose rk�

∈ [rk�
, 2rk�

] such that rk�
φ′(rk�

, w)→ 0 as �→∞. Hence, thanks
to (2.20) and (2.2), we deduce that, for ρ� := rk�

/rk�
∈ [1, 2],

∫
B1

w̃rk�
�w̃rk�

≤
∫

Bρ�

w̃rk�
�w̃rk�

→ 0.

Since �w̃rk�
→ �q weakly∗ as measures inside B1, wrk → q strongly in

C0
loc(B1), and w̃r�w̃r ≥ 0, we obtain
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∫
BR

q�q = 0 ∀ R < 1,

therefore, letting R ↑ 1, q�q ≡ 0 inside B1.
Now, since

• �wr ≤ 0 is supported on {u(r · ) = 0}, that converges to L as r ↓ 0
• wr = (u − p∗)(r · ) = u(r · ) ≥ 0 on L
• w̃rk�

→ q locally uniformly

in the limit we obtain that �q ≤ 0, �q = 0 outside of L , and q ≥ 0 on L .
This proves that q ∈ W 1,2(B1) is a solution of the thin obstacle problem (2.11)
inside B1.

The same argument as the one used in Step 2 for case (a) (which only used
that q�q ≡ 0) shows that q is λ∗-homogeneous inside B1. In particular we
can extend q by homogeneity to the whole space, and q satisfies (2.11) in Rn .
– Step 4. We conclude the proof of (b) by showing that λ∗ ≥ 2+ α◦ for some
dimensional constant α◦ > 0.

We argue by compactness. Observe that any blow-up q satisfies

x · ∇q = λ∗q,

∫
∂ B1

q2 = 1, �q ≤ 0, q�q = 0,

q ≥ 0 on L , q(0) = 0. (2.21)

Also, by Lemma 2.11 we have that (2.12) holds. Now, if we had a sequence
of functions q(k) satisfying (2.21) with λ

(k)∗ ↓ 2, then we would find some
limiting function q(∞) satisfying (2.21) with λ

(∞)∗ = 2 and (2.12). Then q(∞)

would be a 2-homogeneous solution of the thin obstacle problem and hence
a quadratic harmonic polynomial (see for instance [12, Lemma 1.3.4]). Thus,
applyingLemma2.12withm = n−1wefind that, in an appropriate coordinate
system,

D2 p∗ =
(

1 01n−1
0n−1
1 0n−1

n−1

)
and D2q(∞) =

(
t 01n−1

0n−1
1 −N

)

where N ≥ 0 with tr(N ) = t > 0 (since ‖q(∞)‖L2(∂ B1)
= 1). However, since

q(∞)(0) = 0 and q(∞) ≥ 0 on L = {p∗ = 0} = ker(D2 p∗), we must have
−N ≥ 0, a contradiction. ��

We conclude this section with an interesting observation: the gap between
the value of the frequency and 2 controls the decay of the measure of the
contact set (recall that φ(0+, w) ≥ 2, see Lemma 2.5).
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Proposition 2.13 Let 0 be a singular point, w := u−p∗, and λ∗ := φ(0+, w).

Then

|{u = 0} ∩ Br |
|Br | ≤ Crλ∗−2 ∀ r > 0.

In addition, the constant C > 0 can be chosen uniformly at all singular points
in a neighborhood of 0.

Proof Let wr and w̃r be defined as in the statement of Proposition 2.10. Since
w̃r is bounded in W 1,2(B1) (see Step 1 in the proof of Proposition 2.10)
and �wr ≤ 0 [see (2.14)], we can bound the mass of �w̃k inside B1/2 by
considering a smooth nonnegative cut-off function χ that is equal to 1 in B1/2
and vanished outside B1, and then argue as in (2.18). In this way we get

∫
B1/2

|�w̃r | ≤ C‖w̃r‖L1(B1)
≤ C.

But since

|�w̃r | = r2
χ{u(r · )=0}
‖wr‖L2(∂ B1)

and ‖wr‖L2(∂ B1)
≤ Crλ∗ [see (2.9)], we conclude that

r2−λ∗ |{u = 0} ∩ Br/2|
|Br/2| = r2−λ∗ |{u(r · ) = 0} ∩ B1/2|

|B1/2| ≤ C,

as desired. ��
Note that the density bound is actually stronger around points corresponding

to lower dimensional strata {�m}1≤m≤n−2. Indeed, since �w̃r ≤ 0 and any
limit of w̃r is harmonic [see Proposition 2.10(a)], it follows that

∫
B1/2
|�w̃r | →

0 as r → 0, so in this case the constant C appearing in the statement can be
replaced by o(1).

Remark 2.14 In the case when 0 ∈ �n−1, we can actually prove a stronger
estimate, namely that {u = 0} ∩ Br is contained in a rλ∗−1-neighborhood of
L = {p∗ = 0}. To show this, note that (2.19) implies that

|∇w̃r | ≤ C in B1/2, ∀ r > 0, (2.22)

or equivalently

|∇u(x)−∇ p∗(x)| ≤ C
‖wr‖L2(∂ B1)

r
∀ x ∈ Br/2. (2.23)
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Observe now that ∇u = 0 on {u = 0} (since u ∈ C1,1 and u ≥ 0). Also, since
p∗(x) = 1

2 (e · x)2 for some e ∈ S
n−1,

|∇ p∗(x)| = dist(x, L) ∀ x ∈ R
n.

Hence, it follows by (2.23) that

dist(x, L) ≤ C
‖wr‖L2(∂ B1)

r
∀ x ∈ Br/2 ∩ {u = 0}.

Since ‖wr‖L2(∂ B1)
≤ Crλ∗ [see (2.9)], we conclude that

dist(x, L) ≤ Crλ∗−1 ∀ x ∈ Br/2 ∩ {u = 0}. (2.24)

3 Proof of Theorem 1.1

In this section we prove Theorem 1.1. This will require a fine analysis of the
possible values of the frequency at singular points. We begin with the simple
case n = 2.

Lemma 3.1 Let n = 2 and 0 be a singular point in �1. Then λ∗ := φ(0+, u−
p∗) belongs to the set

{3, 4, 5, 6, . . .} ∪
{
7
2 ,

11
2 , 15

2 , 19
2 , . . .
}
.

In particular α◦ ≥ 1 [here α◦ is as in Proposition 2.10(b)].

Proof From Proposition 2.10(b) we have that any possible blow-up q is a
λ∗-homogeneous solutions of the Signorini problem in two dimensions with
obstacle 0 on L and λ∗ ≥ 2 + α◦ > 2. In dimension two, homogeneous
solutions to the Signorini problem that are symmetric with respect to L are
completely classified via a standard argument by separation of variables, and
the set of their possible homogeneities is

{1, 2, 3, 4, 5 . . .} ∪
{
3
2 ,

7
2 ,

11
2 , 15

2 , 19
2 , . . .
}

(see for instance [11]). In our case q may also have a odd part. However, the
odd part is easily seen to be harmonic, hence its possible homogeneity belongs
to the set

{1, 2, 3, 4, 5, . . .}.
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In conclusion

λ∗ ∈ {1, 2, 3, 4, 5, . . .} ∪
{
3
2 ,

7
2 ,

11
2 , 15

2 , 19
2 , . . .
}
.

Since λ∗ > 2, the lemma follows. ��
As explained in the introduction, our main goal is to prove that the set of

points with frequency less than 3 is small. For this, we need to understand what
happens when too many singular points accumulate around another singular
point. This is the purpose of the next two lemmata: the first concerns the case
m ≤ n − 2, and the second deals with the case m = n − 1.

Lemma 3.2 Let n ≥ 3 and suppose that 0 is a singular point. Assume that
m := dim(L) ≤ n−2, and that there is a sequence of singular points xk → 0
and radii rk ↓ 0 with |xk | ≤ rk/2 such that

w̃rk :=
(u − p∗)(rk · )

‖(u − p∗)(rk · )‖L2(∂ B1)

⇀ q in W 1,2(B1),

and yk := xk
rk
→ y∞. Then y∞ ∈ L and q(y∞) = 0.

Proof Since (u − p∗)(r · ) = o(r2) and u(rk yk) = u(xk) = 0, it follows that
p∗(rk yk) = r2k p∗(yk) = o(r2k ) as rk → 0. Therefore p∗(y∞) = 0, proving
that y∞ ∈ L = {p∗ = 0}. We now show that q(y∞) = 0.

Note that, since q is homogeneous (see Proposition 2.10), if y∞ = 0 then
the result is trivial. So we can assume that |y∞| > 0.

We now use that xk is a singular point for u. Thanks to Lemma 2.5 applied
at xk with p = p∗, we know that the frequency of u(xk + · )− p∗ is at least
2, therefore

φ
(
1/2, u(rk(yk + · ))− p∗(rk · )

) ≥ 2.

(Note that here p∗ is the quadratic polynomial of u at 0, not at xk!) Equivalently,
recalling the definition of w̃rk , we have

2 ≤ 1

2

∫
B1/2

∣∣∇w̃rk (yk + ·)+ h−1rk
∇(p∗(rk yk + rk · )− p∗(rk · )

)∣∣2
∫
∂ B1/2

∣∣w̃rk (yk + ·)+ h−1rk

(
p∗(rk yk + rk · )− p∗(rk · )

)∣∣2 , (3.1)

where hrk := ‖(u − p∗)(rk · )‖L2(∂ B1)
. Note that, because p∗ is a quadratic

polynomial that vanishes on L , we have

h−1rk

(
p∗(rk yk + rk · )− p∗(rk · )

) = ck + bk · x (3.2)
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for some constant ck ∈ R and some vector bk ∈ R
n with bk ⊥ L .

We now observe that, since |yk | ≤ 1/2 we have B1/2(yk) ⊆ B1, therefore

∫
B1/2

∣∣∇w̃rk (yk + · )
∣∣2 +
∫

∂ B1/2

∣∣w̃rk (yk + · )
∣∣2 ≤ ‖w̃rk‖2W 1,2(B1)

≤ C.

We claim that

|ck | ≤ C and |bk | ≤ C, with C independent of k.

Indeed, if this was false, dividing by (|ck | + |bk |)2 both the numerator and the
denominator in (3.1), we would obtain

2 ≤ 1

2

∫
B1/2

∣∣∇(εk(x)+ ck + bk · x)
∣∣2

∫
∂ B1/2

∣∣εk(x)+ ck + bk · x)
∣∣2 ,

where ck := ck/(|ck | + |bk |), bk := bk/(|ck | + |bk |), and
∫

B1/2
|∇εk |2 +∫

∂ B1/2
ε2k → 0. Thus, in the limit we would find

2 ≤ 1

2

∫
B1/2

∣∣∇(c∞ + b∞ · x)
∣∣2

∫
∂ B1/2
|c∞ + b∞ · x |2

= |b∞|2
4n|c∞|2 + |b∞|2

≤ 1,

a contradiction that proves the claim.
Thanks to the claim, up to a subsequence, ck → c∞ and bk → b∞ as

k →∞, with b∞ ⊥ L . Note now that, since xk is a singular point, it follows
by Corollary 2.7 that, for all ρ ∈ (0, 1/2),

1

ρ4

∫
∂ B1

|u(xk + rkρ · )− p∗(rkρ · )|2 ≤ 24
∫

∂ B1

∣∣u(xk+ rk
2 ·
)− p∗

( rk
2 ·
)∣∣2,

or equivalently, recalling (3.2),

1

ρ4

∫
∂ Bρ

|w̃rk (yk + x)+ ck + bk · x |2

≤ 24
∫

∂ B1/2

|w̃rk (yk + x)+ ck + bk · x |2. (3.3)

Hence, in the limit (note that Bρ(y∞) ⊂ B1 for all ρ ≤ 1/2)

1

ρ4

∫
∂ Bρ

|q(y∞ + x)+ c∞ + b∞ · x |2
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≤ 24
∫

∂ B1/2

|q(y∞ + x)+ c∞ + b∞ · x |2

for all ρ ∈ (0, 1/2). (3.4)

Since q is a homogeneous harmonic function, y∞ ∈ L with |y∞| > 0, and b∞
is orthogonal to L , it follows by (3.4) that the gradient of q in the directions
of L must vanish at y∞, namely ∇Lq(y∞) = 0. Hence, by homogeneity we
find q(y∞) = 0, as desired. ��
Lemma 3.3 Let n ≥ 2 and suppose that 0 is a singular point with m :=
dim(L) = n − 1. Assume that there is a sequence of singular points xk → 0
with xk ∈ �n−1, and let rk ↓ 0 with |xk | ≤ rk/2. Denote

λ∗ := φ(0+, u − p∗) and λ∗,xk := φ
(
0+, u(xk + · )− p∗,xk

)
.

Suppose that

w̃rk :=
(u − p∗)(rk · )

‖(u − p∗)(rk · )‖L2(∂ B1)

⇀ q in W 1,2(B1),

and yk := xk
rk
→ y∞. Also, let Re = L⊥ with |e| = 1, and denote by qeven

and qodd the even and odd part of q with respect to L, namely

qeven(x) = 1

2

{
q(x)+ q

(
x − 2(e · x)e

)}
,

qodd(x) = 1

2

{
q(x)− q

(
x − 2(e · x)e

)}
.

Finally, let α◦ be as in Proposition 2.10(b).
Then y∞ ∈ L, and for λ := infk{λ∗,xk } ≥ 2+ α◦ we have

ρ−2λ
∫

∂ Bρ

qeven(y∞ + x)2 ≤ 22λ
∫

∂ B1/2

qeven(y∞ + x)2. (3.5)

In addition, if λ∗ is not an integer then

ρ−2λ
∫

∂ Bρ

q(y∞ + x)2 ≤ 22λ
∫

∂ B1/2

q(y∞ + x)2 ∀ ρ ∈ (0, 1/2). (3.6)

Proof Let

p∗,xk (x) = lim
r↓0 r−2u(xk + r x)
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and define the second order harmonic polynomial

Pk(x) := 1

hrk

(
p∗,xk (rk x)− p∗,0(xk + rk x)

)
,

where

hrk := ‖(u − p∗)(rk · )‖L2(∂ B1)
.

Since xk ∈ �n−1, Proposition 2.10(b) yields

φ
(
rk/2, u(xk + · )− p∗,xk

)
≥ φ
(
0+, u(xk + · )− p∗,xk

) = λ∗,xk ≥ λ ≥ 2+ α◦ > 2, (3.7)

therefore

2+ α◦ ≤ 1

2

∫
B1/2

∣∣∇u(xk + rk · )−∇ p∗,xk (rk · )
∣∣2

∫
∂ B1/2

∣∣u(xk + rk · )− p∗,xk (rk · )
∣∣2

= 1

2

∫
B1/2

∣∣∇w̃rk (yk + ·)− ∇Pk
∣∣2

∫
∂ B1/2

∣∣w̃rk (yk + ·)− Pk
)∣∣2 (3.8)

for all k.
We now claim that

|Pk | ≤ C ∀ k. (3.9)

Indeed, if the coefficients of Pk are not bounded, then dividing by its maximum
in the numerator and the denominator of (3.1) we obtain

2+ α◦ ≤ 1

2

∫
B1/2

∣∣∇εk −∇Pk |2∫
∂ B1/2

∣∣εk − Pk
∣∣2 ,

where Pk := Pk/|Pk | and
∫

B1
|∇εk |2→ 0, thus in the limit we find

2+ α◦ ≤ 1

2

∫
B1/2
|∇P∞|2∫

∂ B1/2
|P∞|2

(3.10)

for some quadratic polynomial P∞. Note now that, since 0, xk ∈ �n−1, we
have

p∗,xk =
1

2
(ek · x)2 for some ek ∈ S

n−1
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and

p∗,0 = 1

2
(e · x)2 for e ∈ S

n−1 ∩ L⊥.

Also, up to replacing ek with −ek if needed, we have that ek → e (since
p∗,xk → p∗,0 as k →∞). Thus

Pk(x) = 1

hrk

(
p∗,xk (rk x)− p∗,0(xk + rk x)

)

= r2k
2hrk

(
(ek · x)2 − (e · (yk + x))2

)

= r2k
2hrk

(
(ek · x)2 − (e · x)2 − 2ak(e · x)− a2

k

)

where ak := (e · yk) → 0 (since yk → y∞ ∈ L = e⊥). Thus, since the
coefficients of Pk := Pk/|Pk | are uniformly bounded and a2

k � 2ak we must
have P∞(0) = 0 and therefore

P∞(x) = c1(e′ · x)(e · x)+ c2(e · x),

for some constants c1, c2 ∈ R, where

e′ := lim
k→∞

ek − e
|ek − e| ∈ S

n−1 ∩ L .

Now, since e′ ⊥ e, a direct computation using the formula above yields

1

2

∫
B1/2
|∇P∞|2∫

∂ B1/2
|P∞|2

= 1

2

c21
∫

B1/2
(e′ · x)2 + c21

∫
B1/2

(e · x)2 + c22|B1/2|
c21
∫
∂ B1/2

(e′ · x)2(e · x)2 + c22
∫
∂ B1/2

(e · x)2

=
1

2(n+2)c21 + c22
1

4(n+2)c21 + c22
≤ 2,

a contradiction to (3.10). Hence this proves (3.9), and up to a subsequence
Pk → P∞ as k →∞, where P∞ is a second order harmonic polynomial. In
addition, by the discussion above, P∞ has the form

P∞(x) = c1(e′ · x)(e · x)+ c2(e · x), (3.11)

where e′ ⊥ e and c1, c2 ∈ R.
Now, by Lemma 2.6 applied to u(xk+rk · )− p∗,xk and using (3.7), we have
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ρ−2λ
∫

∂ Bρ

|w̃rk (yk + · )− Pk |2 ≤ 22λ
∫

∂ B1/2

|w̃rk (yk + · )− Pk |2,

for all ρ ∈ (0, 1/2), hence, in the limit,

ρ−2λ
∫

∂ Bρ

|q(y∞ + · )− P∞)|2 ≤ 22λ
∫

∂ B1/2

|q(y∞ + · )− P∞|2. (3.12)

Since P∞ is odd with respect to L [see (3.11)], it follows by (3.12) that

ρ−2λ
∫

∂ Bρ

qeven(y∞ + · )2 = ρ−2λ
∫

∂ Bρ

∣∣(q(y∞ + · )− P∞
)even∣∣2

≤ ρ−2λ
∫

∂ Bρ

∣∣q(y∞ + · )− P∞
∣∣2

≤ 22λ
∫

∂ B1/2

∣∣q(y∞ + · )− P∞
∣∣2,

where we used that f �→ f even is an orthogonal projection in L2(∂ Bρ). Hence

ρ−2λ
∫

∂ Bρ

qeven(y∞ + · )2 ≤ C ∀ ρ ∈ (0, 1/2).

Noticing that qeven(y∞+ · ) is a solution of Signorini, this bound implies that
the frequency of qeven(y∞ + · ) at 0 is at least λ (cp. Corollary 2.9). Thus,
arguing as in Lemma 2.6 we deduce that

ρ �→ ρ−2λ
∫

∂ Bρ

qeven(y∞ + · )2

is monotone nondecreasing, which proves (3.5).
Assume now that λ∗ is not an integer. Since qodd is an odd function (with

respect to L) whose Laplacian in concentrated on L then �qodd ≡ 0, which
implies that qodd is a harmonic polynomial. On the other hand, since q is
λ∗-homogeneous, then so is qodd. Hence, since harmonic polynomials have
integer homogeneity, the only possibility is qodd ≡ 0. Thus q = qeven, and
(3.6) follows from (3.5). ��

For n ≥ 3 and m ∈ {1, 2, . . . , n − 1} we define

�a
m :=
{

x◦ ∈ �m : φ
(
0+, u(x◦ + · )− p∗,x◦

)
< 3
}
, �

g
m := �m\�a

m .

(3.13)
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We can now give the key lemmas needed to prove Theorem 1.1. We begin by
showing that points in �a

1 are isolated inside �.

Lemma 3.4 Assume n ≥ 3. Then �a
1 is a discrete set.

Proof Assume by contradiction that 0 ∈ �a
1 and xk → 0 is a sequence of

singular points. By definition, 0 ∈ �a
1 means that dim(L) = 1 (where L :=

{p∗ = 0}) and that λ∗ := φ
(
0+, u − p∗

)
< 3. Hence, since n ≥ 3 we have

m = 1 ≤ n − 2, thus Proposition 2.10(a) yields λ∗ = 2.
Let rk := 2|xk |. By Proposition 2.10 and Lemma 3.2 we have (up to extract-

ing a subsequence)

w̃rk → q in L2(B1) and yk := xk

rk
→ y∞ ∈ L ∩ ∂ B1/2,

where and q is a 2-homogeneous harmonic polynomial satisfying q(y∞) = 0.
In addition, since λ∗ = 2 we know that (2.10) holds. Namely, in an appropriate
coordinate frame (recall that m = 1 here) we have

D2 p∗ =

⎛
⎜⎜⎜⎝

μ1
. . . 0n−1

1
μn−1

01n−1 0

⎞
⎟⎟⎟⎠ and D2q =

⎛
⎜⎜⎜⎝

t
. . . 0n−1

1
t

01n−1 −(n − 1)t

⎞
⎟⎟⎟⎠ ,

(3.14)

where μ1, . . . , μn−1, t > 0,
∑n−m

i=1 μi = 1.
Note that, since |y∞| = 1/2, q(y∞) = 0, and y∞ ∈ L , by homogeneity of q

wemust have q|L ≡ 0. This contradicts the fact that D2q|L⊗L = −(n−1)t <

0 [see (3.14)] and concludes the proof. ��
In order to estimate the measure of �a

m for m ≥ 2 we need to develop a
Federer-type dimension reduction argument. As a first stepwe need the follow-
ing standard result in geometric measure theory, that we prove for convenience
of the reader.

Before stating it, we recall some classical definitions. Given β > 0 and
δ ∈ (0,∞], the Hausdorff premeasures Hβ

δ (E) of a set E are defined as
follows:1

Hβ
δ (E) := inf

{∑
i

diam(Ei )
β : E ⊂

⋃
i

Ei , diam(Ei ) < δ

}
. (3.15)

1 In many textbooks, the definition of Hβ
δ includes a normalization constant chosen so that

the Hausdorff measure of dimension k coincides with the standard k-dimensional volume on
smooth sets. However such normalization constant is irrelevant for our purposes, so we neglect
it.
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Then, one defines the β-dimensional Hausdorff measure Hβ(E) :=
limδ→0+ Hβ

δ (E). We recall that the Hausdorff dimension can be defined in

terms of Hβ∞ as follows:

dimH(E) := inf{β > 0 : Hβ∞(E) = 0} (3.16)

(this follows from the fact thatHβ∞(E) = 0 if and only ifHβ(E) = 0, see for
instance [21, Section 1.2]).

Lemma 3.5 Let E ⊂ R
n be a set with Hβ∞(E) > 0 for some β ∈ (0, n].

Then:

(a) For Hβ-almost every point x◦ ∈ E, there is a sequence rk ↓ 0 such that

lim
k→∞

Hβ∞(E ∩ Br (x◦))
rβ

k

≥ cn,β > 0, (3.17)

where cn,β is a constant depending only on n and β. Let us call these
points “density points”.

(b) Assume that 0 is a “density point”, let rk ↓ 0 be a sequence along which
(3.17) holds, and define define the “accumulation set” for E along rk at
0 as

A = AE,{rk} :=
{

z ∈ B1/2 : ∃ (z�)�≥1, (k�)�≥1

s.t. z� ∈ r−1k�
E ∩ B1/2 and z�→ z

}
.

Then

Hβ∞(A) > 0.

Proof Part (a) of the lemma is a standard property of the Hausdorff
(pre)measures, see for instance [21, Theorem 3.6(2)] for a proof. We now
prove (b).

Assume that 0 is a density point. Then by (a) we have

Hβ∞(r−1k E ∩ B1/2) = Hβ∞(E ∩ Brk/2)

rβ
k

≥ 2−(β+1)cn,β > 0 for all k � 1.

(3.18)

Note that the accumulation set A is a closed. Assume by contradiction that
Hβ(A) = 0. Then, by definition of Hβ∞, given any ε > 0 there exists a
countable cover of balls {B̂i } such that

123



On the free boundary of the obstacle problem 341

A ⊂
⋃
i≥1

B̂i and
∑
i≥1

diam(Bi )
β ≤ ε.

SinceA ⊂ B1 is compact set, we can find a finite subcover. In particular, there
exists N ∈ N such that

A ⊂
N⋃

i=1
B̂i and

N∑
i=1

diam(B̂i )
β ≤ ε.

But then, since

r−1k E ∩ B1/2 ⊂
N⋃

i=1
B̂i

for k large enough2, by definition of Hβ∞ we obtain

Hβ∞(r−1k E ∩ B1/2) ≤ ε,

a contradiction with (3.18) if ε is small enough. ��
We can now give an appropriate version of Lemma 3.4 for the case m =

dim(L) ∈ {2, . . . , n − 2}.
Lemma 3.6 Assume n ≥ 4 and m ∈ {2, . . . , n−2} . ThendimH(�a

m) ≤ m−1.

Proof Recalling (3.16), we assume by contradiction that Hβ∞(�a
m) > 0 for

some β > m − 1. By Lemma 3.5(a), there is a point x◦ ∈ �a
m and rk ↓ 0 such

that

r−β
k Hβ∞(�a

m ∩ Brk (x◦)) ≥ cn,β > 0. (3.19)

Assume without loss of generality that x◦ = 0. Hence, since 0 ∈ �a
m and

m ≤ n − 2, it follows by (3.13) and Proposition 2.10(a) that

λ∗ := φ(0+, u − p∗) = 2

Moreover, by Proposition 2.10(a) after replacing rk by some subsequence rk�

that will still satisfy (3.19) and hence by simplicity we again denote rk , we
will have

2 Otherwise therewould be a sequence of points z� ∈ r−1k�
E∩B1/2\

⋃N
i=1 ∪Bi , and hence their

limit z—up to a subsequence—would satisfy at the same time z ∈ A and z ∈ B1/2\
⋃N

i=1 B̂i ,
a contradiction.
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w̃rk�
→ q in L2(B1),

where q is a 2-homogeneous harmonic polynomial. In addition, since λ∗ = 2,
we know that in an appropriate coordinate frame D2 p∗ and D2q are given by
(2.10). Also, applying Lemma 3.5(b), we deduce that the “accumulation set”
A = A�a

m ,{rk} satisfies Hβ∞(A) > 0.
We claim that A ⊂ B1 ∩ L ∩ {q = 0}. Indeed, by definition, a point z

belongs to A if there are sequences of singular points x� → 0 and of radii
rk�
↓ 0 such that |x�| ≤ rk�

and x�/rk�
→ z. Thus x�/(2rk�

)→ z/2, and by
Lemma 3.2 we obtain z/2 ∈ L and q(z/2) = 0. By homogeneity, this implies
that z ∈ L ∩ {q = 0} as claimed.

Finally we note that L ∩ {q = 0} has dimension at most m − 1. Indeed, if
not this would imply that q ≡ 0 on L , which would contradict the fact that
tr(D2q|L⊗L) = −(n − m)t < 0 [see (2.10)].

ThusHm−1(B1 ∩ L ∩ {q = 0}) < +∞, which yields (since β > m − 1)

0 < Hβ∞(A) ≤ Hβ∞
(
B1 ∩ L ∩ {q = 0}) = 0,

contradiction. ��
We now analyze the size of �a

n−1. We begin with the case n = 3.

Lemma 3.7 Let n = 3. Then �a
n−1 is a discrete set.

Proof Let us assume that 0 ∈ �a
n−1 and that xk → 0, where xk ∈ �n−1. By

Proposition 2.10 and by definition of �a
n−1 we have

λ∗ := φ(0+, u − p∗) ∈ [2+ α◦, 3).

Let rk := 2|xk | and note that, by Proposition 2.10(b), we have (up to subse-
quence)

w̃rk → q and
xk

rk
→ z ∈ ∂ B1/2

where q is a λ∗-homogeneous solution of the Signorini problem (with zero
obstacle on L).

Also, since λ∗ < 3, it follows by Lemma 3.3 that z ∈ L and

ρ−2(2+α◦)
∫

∂ Bρ(z)
q2 ≤ C(n), ∀ ρ ∈ (0, 1/2)

[note that, since xk ∈ �n−1, infk λ∗,xk ≥ 2+α0 by Proposition 2.10(b)]. This
implies that q, Dq, and D2q vanish at z, and that λz := φ(0+, q(z + · )) ≥
2+ α◦.
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Since q is a solution of Signorini that is homogeneous with respect to the
point 0, it is classical fact (this follows from instance from the monotonicity
of the frequency function) that a blow-up at z ∈ L ,

qz = lim
j

q(z + r j · )/‖q(z + r j · )‖L2(∂ B1)

has translation symmetry in the direction z, and it is λz-homogeneous. Thus,
since n = 3, qz depends thus only on two variables (equivalently, it has
2-dimensional symmetry). Since homogeneous 2-dimensional solutions of
Signorini are completely classified (see the proof of Lemma 3.1) we deduce
that

λz ∈ {1, 2, 3, 4, 5, . . . } ∪
{
3
2 ,

7
2 ,

11
2 , 15

2 , . . .
}
.

Recalling that λz ≥ 2+ α◦, we get λz ≥ 3. But then we reach a contradiction
since, by monotonicity of the frequency and the fact that the limit as r →+∞
of the frequency is independent of the point, we get

3 ≤ λz = φ(0+, q(z + · )) ≤ φ(+∞, q(z + · )) = φ(+∞, q) = λ∗ < 3.

��
In order to control the size of �a

n−1 for n ≥ 4, we shall use the following
result on the Signorini problem:

Theorem 3.8 ([11, Theorem 1.3]) Let L ⊂ R
n be a (n − 1)-dimensional

subspace, and let q be solution of the Signorini problem in R
n with obstacle

0 on L [see (2.11)]. Then, for all z in the contact set {q = 0} ⊂ L it holds

φ(0+, q(z + · )) ∈ {1, 2, 3, 4, . . . } ∪
{
3
2 ,

7
2 ,

11
2 , 15

2 , . . .
}

except for at most a set of Hausdorff dimension n − 3.

Lemma 3.9 Let n ≥ 4. Then dimH(�a
n−1) ≤ n − 3.

Proof Recalling (3.16), assume by contradiction that Hβ∞(�a
n−1) > 0 for

some β > n − 3. Then by Lemma 3.5(a) there exists a point x◦ ∈ �a
n−1 and

rk ↓ 0 such that

r−β
k Hβ∞(�a

n−1 ∩ Brk (x◦)) ≥ cn,β > 0. (3.20)

Without loss of generality we assume that x◦ = 0. Then, since 0 ∈ �a
n−1, by

(3.13) and Proposition 2.10(b) we have

λ∗ := φ(0+, u − p∗) ∈ [2+ α◦, 3).
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Moreover, by Proposition 2.10(b) after replacing rk by some subsequence rk�

that will still satisfy (3.20) and hence by simplicity we again denote rk , we
will have

w̃rk → q in L2(B1),

where q is a λ∗-homogeneous solution of the Signorini problem with obstacle
0 on L . Applying Lemma 3.5(b), the “accumulation set” A = A�a

n−1,{rk}
satisfies Hβ∞(A) > 0. Set

S =: {z ∈ B1 ∩ L ∩ {q(z) = 0} such that φ(0+, q(z + · )) ≥ 2+ α◦
}
.

Then, by the same argument as in the proof of Lemma 3.6 we deduce that
A ⊂ B1 ∩ L ∩ {q = 0}. Also, since λ∗ < 3, as in the proof of Lemma 3.7 it
follows by Lemma 3.3 that φ(0+, q(z + · )) ≥ 2+ α◦ for all z ∈ A. Hence,

A ⊂ S.

We now note that, for all z ∈ S, we have

φ(0+, q(z + · )) ≤ φ(+∞, q(z + · )) = φ(+∞, q) = λ∗ < 3

(since 0 ∈ �a
n−1). Therefore it follows that

φ
(
0+, q(z + · )) ∈ [2+ α◦, 3) for all z ∈ S,

and Theorem 3.8 yields dimH(S) = n − 3. In particular Hβ∞(S) = 0 (since
β > n − 3) and we obtain

0 < Hβ∞(A) ≤ Hβ∞(S) = 0,

a contradiction. ��
We will also need the following version of Whitney’s extension theorem

(see for instance [10] and the references therein):

Lemma 3.10 (Whitney’s Extension Theorem) Let β ∈ (0, 1], � ∈ N, K ⊂ R
n

a compact set, and f : K → R a given mapping. Suppose that for any x◦ ∈ K
there exists a polynomial Px◦ of degree � such that:

(i) Px◦(x◦) = f (x◦);
(ii) |Dk Px◦(x) − Dk Px (x)| ≤ C |x − x◦|�+β−k for all x ∈ K and k ∈
{0, 1, . . . , �}, where C > 0 is independent of x◦.
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Then there exists F : Rn → R of class C�,β such that

F |K ≡ f and F(x) = Px◦(x)+ O(|x − x◦|�+β) ∀ x◦ ∈ K .

We now prove that the set of points with frequency ≥ λ is contained in a
Cλ−1-manifold. Since the classical argument provided in [17, Theorem 7.9]
only shows that the singular set is locally contained in a countable union of
manifolds (while here we claim that locally we need only one manifold), we
provide the details of the proof.

Lemma 3.11 Let n ≥ 2, m ∈ {1, 2, . . . , n − 1}, and λ > 2. Let � ∈ N and
β ∈ (0, 1] satisfy �+ β = λ, and define

Sm,λ :=
{

x◦ ∈ �m : φ
(
0+, u(x◦ + · )− p∗,x◦

) ≥ λ
}
.

Then Sm,λ locally contained in a m-dimensional manifold of class C�−1,β .

Proof We prove the result in a neighborhood of the origin.
We begin by recalling that the singular set � = ∪n−1

m=0�m is closed (this
is a classical fact that follows from the relative openness of the set of regular
points, see [4]). In addition, we note that the monotonicity of the frequency
implies that the map

� � x◦ �→ φ
(
0+, u(x◦ + · )− p∗,x◦

)

is upper semicontinuous, being the monotone decreasing limit (as r ↓ 0) of
the continuous functions

� � x◦ �→ φ
(
r, u(x◦ + · )− p∗,x◦

)
, r > 0.

Thanks to these facts we deduce that

Sλ :=
{

x◦ ∈ � : φ
(
0+, u(x◦ + · )− p∗,x◦

) ≥ λ
}

is closed. In particular, if we define the compact set K := Sλ ∩ B1/4, we have
that Sm,λ ∩ B1/4 ⊂ K .

Now, given x◦ ∈ K , we define

Px◦(x) := p∗,x◦(x − x◦).

We want to show that K , f ≡ 0, and {Px◦}x◦∈K satisfy the assumptions of
Lemma 3.10 with � and β as defined above.
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Note that, by Lemma 2.6 and the definition of Sλ, for all x◦ ∈ K we have

‖u(x◦ + ρ · )− p∗,x◦(ρ · )‖L2(B1)

≤ (2ρ)λ
∥∥u(x◦ + 1

2 ·
)− p∗,x◦

(1
2 ·
)∥∥

L2(∂ B1)
(3.21)

for all ρ ∈ (0, 1/2].
Now, given x◦, x ∈ K , set ρ := |x − x◦| (note that ρ ≤ 1/4), and for

simplicity of notation assume that x◦ = 0. Then it follows from (3.21) applied
both at 0 and x that

‖(P0 − Px )(ρ · )‖L2(B1)

≤ ‖u(ρ · )− P0(ρ · )‖L2(B1)
+ ‖u(ρ · )− Px (ρ · )‖L2(B1)

= ∥∥u(ρ · )− p∗(ρ · )
∥∥

L2(B1)
+ ∥∥u(ρ · )− p∗,x

(
ρ(· − x/ρ)

)∥∥
L2(B1)

≤ ∥∥u(ρ · )− p∗(ρ · )
∥∥

L2(B1)
+ ∥∥u(ρ · )− p∗,x

(
ρ(· − x/ρ)

)∥∥
L2(B2(x/ρ))

= ∥∥u(ρ · )− p∗(ρ · )
∥∥

L2(B1)
+ ∥∥u(x + ρ · )− p∗,x (ρ · )

∥∥
L2(B2)

≤ Cρλ.

(3.22)

In particular, since the norm ‖ · ‖L2(B1)
is equivalent to the norm ‖ · ‖C�(B1)

on the space of quadratic polynomials, we obtain the existence of a constant
C > 0 such that

|Dk Px◦(x)− Dk Px (x)|
≤ C |x − x◦|�+β−k for all x◦, x ∈ K and k ∈ {0, 1, . . . , �}

(recall that λ = �+ β). Since Px◦(x◦) = 0 for x◦ ∈ K , applying Lemma 3.10
we find a function F ∈ C�,β(Rn) such that

F(x) = px◦(x − x◦)+ O(|x − x◦|�+β) for all x◦ ∈ K .

Therefore

Sm,λ ∩ B1/4 ⊂ K ⊂ {∇F = 0} =
n⋂

i=1
{∂xi F = 0}.

Now, if x◦ ∈ Sm,� ∩ B1/4 then dim ker
(
D2F(x◦)

) = dim ker
(
D2 p∗,x◦(0)

) =
m. This implies that, up to a change of coordinates, the rank of D2

(x1,...,xn−m)

F(x◦) is maximal, and we conclude by the Implicit Function Theorem that, in
a neighborhood of x◦,

⋂n−m
i=1 {∂xi F = 0} is a m-dimensional manifold of class

C�−1,β that contains Sm,λ. ��
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We are now ready to prove Theorem 1.1 (except for the C2 regularity in
dimension 2 that will follow from Theorem 4.7 in the next section).

Proof of Theorem 1.1 We need to prove:

(a) For n = 2, �1 is locally contained in a C2 curve.
(b) For n ≥ 3, �

g
n−1 is locally contained in a C1,1 (n − 1)-dimensional

manifold and �a
n−1 is a relatively open subset of �n−1 satisfying

dimH(�a
n−1) ≤ n − 3 (the latter set is discrete for n = 3).

(c) For n ≥ 3, �n−1 can be locally covered by a C1,α◦ (n − 1)-dimensional
manifold, for some dimensional exponent α◦ > 0.

(d) For n ≥ 3 and m = 1, . . . , n− 2, �g
m can be locally covered by a C1,1 m-

dimensional manifold and �a
m is a relatively open subset of �m satisfying

dimH(�a
m) ≤ m − 1 (the latter set is discrete when m = 1).

(e) For n ≥ 3 and m = 1, . . . , n− 2, �m can be locally covered by a C1,logε◦

m-dimensional manifold, for some dimensional exponent ε◦ > 0.

Throughout the proof, we will use the definition of Sm,λ given in
Lemma 3.11.

- Proof of (a). By Lemma 3.1 we have that �1 = S1,3. Thus, applying
Lemma 3.11, we obtain that�1 is locally covered by aC1,1 curve. To conclude
that �1 can be covered by a C2 curve, we apply Theorem 4.7 from the next
section.

- Proof of (b). By Lemma 3.9, the Hausdorff dimension of �a
n−1 is at most

n − 3. Also, by definition we have �
g
n−1 = Sn−1,3, thus �g can be locally

covered by a C1,1 (n − 1)-dimensional manifold, thanks to Lemma 3.11. The
fact that �

g
n−1 is relatively closed in �n−1 is a consequence of the fact that

x◦ �→ φ
(
0+, u(x◦ + · ) − p∗,x◦

)
is upper semicontinuous, as shown in the

proof of Lemma 3.11. In the case n = 3, Lemma 3.4 gives that �a
n−1 is a

discrete set.
- Proof of (c). By Proposition 2.10(b) we have that the whole stratum �n−1

is contained in Sn−1,2+α◦ , for some dimensional constant α◦ > 0. As a conse-
quence, thewhole stratum�n−1 can be covered by aC1,α◦ (n−1)-dimensional
manifold.

- Proof of (d). By Lemma 3.6, for 1 ≤ m ≤ n − 2 the Hausdorff dimension
of �a

m is at most m − 1 (in the case m = 1, Lemma 3.6 gives that �a
1 is a

discrete set). Also, since by definition�
g
m = Sm,3, applying again Lemma 3.11

we obtain that �g
m can be locally covered by a C1,1 m-dimensional manifold.

Finally, as in the proof of (d), the relative closedness of �g follows from the
upper semicontinuity of the frequency.

- Proof of (e). Let m ≤ n − 2. We claim that the following estimate holds:

∥∥u(x◦ + r · )− p∗,x◦(r · )
∥∥

L2(∂ B1)
≤ Cr2 log−ε◦(1/r)
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∀xo ∈ �m ∩ B1/2, ∀ r ∈ (0, 1/2). (3.23)

Observe that it is enough to prove (3.23) at points x◦ such that

λ∗,x◦ := φ
(
0+, u(x◦ + · )− p∗,x◦

) = 2.

Indeed, if λ∗,x◦ > 2 then Proposition 2.10(a) yields λ∗,x◦ ≥ 3, hence (3.23)
trivially holds (actually, with a much stronger estimate) thanks to Lemma 2.6.
So, without loss of generality, we can assume that λ∗,x◦ = 2.

Let M > 1 be a large constant to be fixed later. By Caffarelli’s asymptotic
convexity estimate [4] (see also [5, Corollary 5]), we have

D2u ≥ −C log−ε◦(1/r) Id in Br (x◦) ∀ x◦ ∈ �, (3.24)

for some dimensional exponent ε◦ > 0. Now, let ar := ‖r−2u(x◦ + r ·) −
p∗x◦‖L2 = o(1) and Lx◦ := {p∗,x◦ = 0}. Thanks to (3.24) we have

∂ee
(
r−2u(x◦ + r ·)− p∗x◦

)
= ∂ee
(
r−2u(x◦ + r ·)) ≥ −C log−ε◦(1/r) in B1 (3.25)

for all e ∈ Lx◦ ∩ S
n−1.

Assume by contradiction that

ark ≥ M log−ε◦(1/rk) for some rk ↓ 0.

Then, recalling (3.25), for any e ∈ Lx◦ ∩ S
n−1 we find

∂eew̃rk =
1

ak
∂ee
(
r−2u(x◦ + r ·)− p∗,x◦

) ≥ − C

M
in B1.

Thus, since w̃rk�
→ q in L2(B1) for some subsequence rk�

[see Proposi-
tion 2.10(a)], we have

∂eeq ≥ − C

M
in B1, ∀ e ∈ Lx◦ ∩ S

n−1. (3.26)

In addition, since λ∗,x◦ = 2, Proposition 2.10(a) implies that q is a quadratic
polynomial satisfying

D2q|L ≤ 0, D2q|L⊥ ≥ 0, tr(D2q) = 0, and ‖q‖L2(∂ B1)
= 1.
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Thanks to this fact, a simple compactness argument shows that there exists
e′ ∈ Lx◦ ∩ S

n−1 such that

∂e′e′q ≤ −c1 < 0 in B1,

for some dimensional constant c1 > 0. This contradicts (3.26) for M suffi-
ciently large, thus establishing (3.23).

Thanks to (3.23), if we define

Px◦(x) := p∗,x◦(x − x◦) ∀ x0 ∈ �m,

the argument in the proof of Lemma 3.11 yields

|Dk Px◦(x)− Dk Px (x)| ≤ C |x − x◦|2−k log−ε◦ (|x − x◦|
)

∀x◦, x ∈ �m ∩ B1/2, k ∈ {0, 1, 2}. (3.27)

Hence, by Whitney’s Extension Theorem (see [10] and the reference therein)
and the argument in the proof of Lemma 3.11, we conclude that (3.27) that
�m is locally contained in a C1,logε◦ m-dimensional manifold. ��

4 On third order blow-ups

In this sectionwe investigate the uniqueness/continuity of third order blow-ups
for points in �m , and prove that �m can be covered by C2 manifolds, up to a
lower dimensional set (see Theorem 4.7 below).

We begin by showing the validity of a third-order almost-monotonicity
formula of Monneau-type for all singular points.

Lemma 4.1 Let 0 be a singular point, assume that λ∗ := φ(0+, u− p∗) ≥ 3,
and let q be a 3-homogeneous harmonic polynomial that vanishes on L :=
{p∗ = 0}. Set v := u − p∗ − q, and let Hλ be as in Lemma 2.6. Then

d

dr
H3(r, v) ≥ −C

∥∥∥∥q2

p∗

∥∥∥∥
L∞(B1)

,

where C > 0 is a constant that can be chosen uniformly at all singular points
in a neighborhood of 0.

Proof Set w := u − p∗, wr (x) := r−3w(r x), and vr (x) := r−3v(r x) =
wr (x)− q(x). Then H3(r, v) = H3(1, vr ), and we have

d

dr
H3(r, v) = d

dr
H3(1, vr ) = 2

r

∫
∂ B1

vr ((vr )ν − 3vr ). (4.1)
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We now observe that, because λ∗ ≥ 3, it holds

W3(1, wr ) = (φ(1, wr )− 3)H3 ≥ 0

(here Wλ is as in Lemma 2.8). Also, because q is a 3-homogeneous harmonic
polynomial, one easily checks that W3(1, q) = 0.Hence, similarly to the proof
of Lemma 2.3, we get

0 ≤ W3(1, wr )−W3(1, q)

=
∫

B1

(
|∇vr |2 + 2∇vr · ∇q

)
− 3
∫

∂ B1

(
v2r + 2vr q

)

=
∫

B1

|∇vr |2 − 3
∫

∂ B1

v2r +
∫

∂ B1

vr (x · ∇q − 3q)

=
∫

B1

|∇vr |2 − 3
∫

∂ B1

v2r

=
∫

B1

−vr�vr +
∫

∂ B1

vr ((vr )ν − 3vr ),

where we used that �q ≡ 0 and x · ∇q = 3q. Thus, recalling (4.1) we obtain

d

dr
H3(r, v) ≥ 2

r

∫
B1

vr�vr = 2

rn+5

∫
Br

v�v.

Now, since �v = �u −�p∗ −�q = 0 inside {u > 0}, we have
v�v = (p∗ + q)χ{u=0},

therefore

d

dr
H3(r, v) ≥ 2

rn+5

∫
Br

v�v = 2

rn+5

∫
Br∩{u=0}

(p∗ + q).

Noticing that (since p∗ ≥ 0)

p∗ + q ≥ − q2

2p∗

and that q2

2p∗ is a 4-homogeneous polynomial (this follows from the fact that

q = 0 on {p∗ = 0}, hence q2 is divisible by p∗), we conclude that

d

dr
H3(r, v) ≥ −1

r

∫
B1∩{u(r · )=0}

q2

p∗
≥ −
∥∥∥∥q2

p∗

∥∥∥∥
L∞(B1)

|{u(r · ) = 0} ∩ B1|
r

.
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Since λ∗ ≥ 3, the result follows by Proposition 2.13. ��
In order to apply the previous result, we need to check the size of the points

where some third-order blow-up is harmonic and vanishes on {p∗ = 0}. We
begin with the case n = 2.

Lemma 4.2 Let n = 2, 0 ∈ �1, and w := u − p∗. Assume that there exists
a sequence xk ∈ �1 with xk → 0 and let rk := 2|xk |. Then, for some subse-
quence rk�

we have

ŵrk�
:= (u − p∗)(rk�

· )
r3k�

⇀ q̂ in W 1,2(B1),

where q̂ is a 3-homogeneous harmonic polynomial vanishing on L := {p∗ =
0} and satisfying ‖q̂‖L2(∂ B1)

= H3(0+, w)1/2.

Proof Note that if φ(0+, u − p∗) > 3 then ‖wr‖L2(B1)
= o(r3) [see (2.9)],

hence H3(0+, w) = 0 and the result holds with q̂ ≡ 0. So we can assume that
φ(0+, u − p∗) = 3.

Set

w̃rk :=
wrk

‖wrk‖L2(∂ B1)

= ŵrk

H3(rk, w)1/2
.

By Proposition 2.10(b) after extracting some subsequence rk�
we will

have w̃rk�
⇀ q where q is a 3-homogeneous solution of Signorini—see

(2.11)—satisfying ‖q‖L2(∂ B1)
= 1. Also, since r �→ H3(r, w) is monotone

nondecreasing (see Lemma 2.6) and q̂ �≡ 0, we deduce that

q̂ = H3(0
+, w) q.

This proves that ‖q̂‖2
L2(∂ B1)

= H3(0+, w).
To conclude the proof it suffices to prove that q is a 3-homogeneous har-

monic polynomial vanishing on L := {p∗ = 0}.
Now, applying Lemma 3.3 with rk = 2|xk |, we deduce that yk := xk

rk
→

y∞ ∈ L ∩ ∂ B1/2 and that [thanks to (3.5)]

∫
∂ Bρ

qeven(y∞ + x)2 ≤ Cρ6

(note that for n = 2 we have that λ∗,xk ≥ 3 for all k, see Lemma 3.1).
This implies in particular that qeven is 3-homogeneous both with respect to
0 and y∞, hence it must be one dimensional. Since �q = 0 outside L , this
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implies that qeven is affine on each side of L , hence qeven ≡ 0 (being qeven

3-homogeneous).
This proves that q is odd with respect to L , so q cannot have a singular

Laplacian on L . Recalling that �q = 0 in R
2\L , this proves that q is a

3-homogeneous harmonic polynomial. Finally, since q ≥ 0 on L and q is
3-homogeneous, it must be q|L ≡ 0. ��

The previous Lemma motivates the following

Definition 4.3 We say that a singular point x◦ belongs to �3rd , and write
x◦ ∈ �3rd , if φ(0+, u(x◦ + · ) − p∗,x◦) ≥ 3 and there exists some sequence
r j ↓ 0 such that

wr j :=
u(x◦ + r j · )− p∗,x◦(r j · )

r3j
⇀ q̂ in W 1,2(B1),

and q̂ is a 3-homogeneous harmonic polynomial vanishing on {p∗,x◦ = 0}.
Applying the Federer-type reduction argument developed in the previous

section and the proof of Lemma 4.2 we obtain the following:

Lemma 4.4 Let n ≥ 2, 1 ≤ m ≤ n − 1. Then:

(i) �1\�3rd
1 consists of isolated points for n ≥ 2;

(ii) dimH(�m\�3rd
m ) ≤ m − 1 for 2 ≤ m ≤ n − 1.

Proof Since the argument is similar to the ones used in the previous section,
we just explain the main steps, leaving the details to the interested reader.

Point (i) for n = 2 follows immediately from Lemma 4.2.
The case n ≥ 3 for m = 1 follows instead by Proposition 2.10(a) and

Lemma 3.2 after observing that

(u − p∗)(rk�
· )

r3k�

⇀ q̂ ⇒ H(1, q̂)
(u − p∗)(rk�

· )
‖(u − p∗)(rk�

· )‖L2(∂ B1)

⇀ q̂,

cp. proof of Lemma 4.2.
Concerning the case m = n − 1 ≥ 2, we can use Lemma 3.3 to prove that

the conclusion of Lemma 4.2 applies to all points in �
g
n−1 that are density

points for �
g
n−1 with respect to the measureHβ∞, with β > n − 2. Thus, as in

the proof of Lemma 3.9, Lemma 3.5 implies that the conclusion of Lemma 4.2
applies to all points in �

g
n−1 up to at most a set of Hausdorff dimension n− 2.

Since dimH(�n−1\�g
n−1) = dimH(�a

n−1) ≤ n − 3 (see Theorem 1.1), this
proves (ii) when m = n − 1.
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Analogously, in the case 2 ≤ m ≤ n − 2, we can use Lemma 3.2 to prove
that the conclusion of Lemma 4.2 applies to all points in �

g
m that are density

points for �
g
m with respect to the measure Hβ∞, with β > m − 1. Thus,

Lemma 3.5 implies that the conclusion of Lemma 4.2 applies to all points in
�

g
m up to at most a set of Hausdorff dimensionm−1. Since dimH(�m\�g

m) =
dimH(�a

m) ≤ m − 1 (see Theorem 1.1), this concludes the proof of (ii). ��
We can also prove the uniqueness and continuity of third-order blow-ups at

all points in �3rd
m :

Proposition 4.5 Let n ≥ 2, 1 ≤ m ≤ n − 1, and let x◦ ∈ �3rd
m . Then the

following limit exists:

u(x◦ + r x)− p∗,x◦(r x)

r3
⇀ q∗,x◦(x) in W 1,2(B1) as r → 0, (4.2)

where q∗,x◦(x) is a 3-homogeneous harmonic polynomial vanishing on
{p∗,x◦ = 0} and satisfying ‖q∗,x◦‖2L2(∂ B1)

= H3(0+, u(x◦ + · ) − p∗,x◦).
In addition the above convergence is uniform on compact sets, and the

the map �3rd
m � x◦ �→ q∗,x◦ is continuous.

Proof Assume 0 ∈ �3rd
m . We first prove the existence of a limit.

Since 0 ∈ �3rd
m , there exists a sequence rk,1 ↓ 0 yielding a limit q1 which

is a 3-homogeneous harmonic polynomial vanishing on {p∗ = 0}. Let q2 be a
limit obtained along another sequence rk,2 ↓ 0. Up to taking a subsequence of
rk,2 and relabeling the indices, we can assume that rk,2 ≤ rk,1 for all k. Thus,
thanks to Lemma 4.1, we have

H3(rk,1, w − q1) ≥ H3(rk,2, w − q1)− C |rk,2 − rk,1| ∀ k,

for some constant C depending on q1, so that letting k →∞ we obtain

0 = lim
k→∞

∫
∂ B1

(wrk,1 − q1)
2 ≥ lim

k→∞

(∫
∂ B1

(wrk,2 − q1)
2 − C |rk,2 − rk,1|

)

=
∫

∂ B1

(q2 − q1)
2.

This proves the existence of the limit, and that the limit is a 3-homogeneous
harmonic polynomial vanishing on {p∗ = 0}.

We now prove the continuity of the map x◦ �→ q∗,x◦ at 0 ∈ �3rd
m . Fix ε > 0,

and consider a sequence xk ∈ �3rd
m with xk → 0. Thanks to (4.2), there exists
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a small radius rε > 0 such that

∫
∂ B1

∣∣∣∣u(rεx)− p∗,0(rεx)

r3ε
− q∗,0(x)

∣∣∣∣
2

≤ ε. (4.3)

Now, let Rk : Rn → R
n be a rotation that maps the m-dimensional plane

Lk := {p∗,xk = 0} onto L0 := {p∗,0 = 0}, and note that Rk → Id as k →∞
(this follows by the continuity of �m � x �→ p∗,x ). Then, since q∗,0 ◦ Rk
vanishes on Lk , we can apply Lemma 4.1 at xk with q = q∗,0 ◦ Rk to deduce
that
∫
∂ B1

|qxk ,∗ − q∗,0 ◦ Rk |2 = lim
r→0

∫
∂ B1

∣∣∣∣u(xk + r x)− p∗,xk (r x)

r3
− q∗,0 ◦ Rk(x)

∣∣∣∣
2

≤
∫
∂ B1

∣∣∣∣u(xk + rεx)− p∗,xk (rεx)

r3ε
− q∗,0 ◦ Rk(x)

∣∣∣∣
2
+ Crε.

Note that the constant C above is independent of k since, by the continuity of
p∗,xk , p∗,xk ◦ R−1k ≥ p∗,0/2 for k large enough, therefore

∥∥∥∥(q∗,0 ◦ Rk)
2

p∗,xk

∥∥∥∥
L∞(B1)

≤ 2

∥∥∥∥ q2∗,0
p∗,0

∥∥∥∥
L∞(B1)

∀ k � 1.

Hence, since Rk → Id, letting k →∞ and recalling (4.3) we obtain

lim sup
k→∞

∫
∂ B1

|qxk ,∗ − q∗,0|2

≤ lim
k→∞

∫
∂ B1

∣∣∣∣u(xk + rεx)− p∗,xk (rεx)

r3ε
− q∗,0 ◦ Rk(x)

∣∣∣∣
2

+ Crε

≤ ε + Crε.

Since ε > 0 is arbitrary, this proves the continuity at 0. In addition, arguing
as above (using Lemma 4.1) one sees that the convergence in (4.2) is locally
uniform with respect to x◦. ��
Remark 4.6 It is important to observe that the above proof shows something
stronger: if xk ∈ �

g
m [so their frequency is at least 3, see (3.13)] and xk → x◦

with x◦ ∈ �3rd
m , then

lim
k→∞

∫
∂ B1

|qxk − q∗,0|2 = 0 (4.4)

whenever qxk is an arbitrary limit point of r−3
(
u(xk + r x)− p∗,xk (r x)

)
as

r → 0. In other words, even if the third order blow-up of u − p∗,xk at xk may
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not be unique, any such limit has to converge to q∗,0 as xk → x◦. Indeed, if
{rk, j } j≥1 is a sequence converging to 0 such that

qxk (x) = lim
j→∞

u(xk + rk, j x)− p∗,xk (rk, j x)

r3k, j

,

then Lemma 4.1 applied at xk with q = q∗,0 ◦ Rk yields (since rk, j ≤ rε for
j � 1)
∫
∂ B1

|qxk − q∗,0 ◦ Rk |2 = lim
j→∞

∫
∂ B1

∣∣∣∣u(xk + rk, j x)− p∗,xk (rk, j x)

r3k, j

− q∗,0 ◦ Rk(x)

∣∣∣∣
2

≤
∫
∂ B1

∣∣∣∣u(xk + rεx)− p∗,xk (rεx)

r3ε
− q∗,0 ◦ Rk(x)

∣∣∣∣
2
+ Crε,

and the result follows as in the proof of Proposition 4.5.
Note also that, when n = 2, q∗,0 is odd with respect to the line {p∗,0 = 0}

(see the proof of Lemma 4.2). Hence it follows by (4.4) and the continuity of
p∗,xk that

lim
k→∞

∫
∂ B1

|qodd
xk
− q∗,0|2 +

∫
∂ B1

|qeven
xk
|2 = 0, (4.5)

where qodd
xk

(resp. qeven
xk

) is the odd (resp. even) part of qxk with respect to
{p∗,xk = 0}. In particular, as in Lemma 4.2, qodd

xk
is a 3-homogeneous harmonic

polynomial.

As consequence of the previous results, we obtain the following result about
the structure of �n−1.
Theorem 4.7 The following holds:

(n = 2) �1 is locally contained in a C2 curve.
(n ≥ 3) For any m = 1, . . . , n − 1, the set �m can be covered by a
countable family of C2 m-dimensional manifolds, except for at most a set
of Hausdorff dimension m − 1.

Proof We start with the case n = 2. Let us consider the map

�1 � x◦ �→ qodd
x◦ , (4.6)

where qodd
x◦ is the odd part of qx◦ with respect to {p∗,x◦ = 0}, and where qx◦ is

defined as follows:

– if x◦ ∈ �3rd
1 , then qx◦ = q∗,x◦ is the third order limit provided by Propo-

sition 4.5;
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– if x◦ ∈ �1\�3rd
1 , then qx◦ is an arbitrary limit point of r−3

(
u(x◦ + r x)

− p∗,x◦(r x)
)
as r → 0 (recall that �1 = �

g
1 for n = 2, see Lemma 3.1).

Fix R ∈ (0, 1), and for (r, x◦) ∈ (0, 1− R] × (�1 ∩ B R), let us define the
function

F(r, x◦) := r−3
( ∫

Br

(
u(x◦ + ·)− p∗,x◦ − qodd

x◦
)2)1/2

.

Note that, as a consequence of Lemma 4.1, the map r �→ F(r, x◦) is almost
monotone, hence the limit as r → 0+ exists. Also, for r > 0 fixed, the map

�1 ∩ B R � x◦ �→ F(r, x◦)

is continuous as a consequence of (4.4) and (4.5) (recall that the set �1\�3rd
1

consists of isolated points by Lemma 4.4(i), so F(r, ·) is trivially continuous
at such points). Thus, as in Lemma 3.11, the almost monotonicity implies that
x◦ �→ F(0+, x◦) is upper semicontinuous. Since F(0+, ·) = 0 on �3rd

1 (by
Proposition 4.5) we deduce that, for any ε > 0, there exists rε > 0 such that

F(r, x◦) ≤ ε ∀ x◦ ∈ �1 ∩ B R s.t.

dist(x◦, �3rd
1 ) ≤ rε, ∀ r ∈ (0, rε]. (4.7)

Now, to any point x◦ ∈ �1 we associate the third order polynomial

Px◦(x) := p∗,x◦(x − x◦)+ qodd
x◦ (x − x◦),

and we consider the function G : �1 ×�1→ R defined as

G(x◦, x) := 1

ρ3
x◦,x

∥∥(Px◦ − Px )(ρx◦,x · )
∥∥

L2(B1)
, ρx◦,x := |x − x◦|.

We want to prove that G is uniformly continuous on (�1 ∩ B R)× (�1 ∩ B R)

for any R ∈ (0, 1).
Observe that, thanks to Lemma 4.4(i), the set

Or,R :=
{

x◦ ∈ �1 ∩ B R : dist(x◦, �3rd
1 ) ≥ r

}

is finite for any r > 0. In particular, if we define

Ur,R :=
{

x◦ ∈ �1 ∩ B R : dist(x◦, �3rd
1 ) ≤ r

}
,
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then for any ε > 0 there exists δ = δ(ε) > 0 small enough such that

dist(x1, x2) > δ ∀ (x1, x2) ∈ (Oε,rε/2 × Oε,rε/2) ∪ (Oε,rε ×Uε,rε/2)

[here rε > 0 is as in (4.7)]. Hence it is enough to check the continuity of G on
Uε,rε ×Uε,rε .

Note that, arguing exactly as in (3.22), it follows that

G(x◦, x) ≤ F(ρx◦,x , x◦)+ F(2ρx◦,x , x) ∀ x◦, x ∈ �1.

In particular, provided ρx◦,x = |x − x◦| ≤ rε/2, then it follows by (4.7) that
G(x◦, x) ≤ 2ε whenever (x◦, x) ∈ Uε,rε × Uε,rε , which proves the desired
uniform continuity of G.

Since the norm ‖ · ‖L2(B1)
is equivalent to the norm ‖ · ‖C3(B1)

on the space
of third order polynomials, the uniform continuity of G implies that the the
polynomials Px◦ are continuous in the sense of Whitney’s Theorem: for any
R ∈ (0, 1) there exists a modulus of continuity ωR such that

|Dk Px◦(x)− Dk Px (x)| ≤ ωR(|x − x◦|)|x − x◦|3−k

∀ x◦, x ∈ �1 ∩ B R, k = 0, 1, 2, 3.

Since �1 is closed, the set �1 ∩ B R is compact, so this allows us to apply the
classical Whitney’s Theorem to find a map F ∈ C3(R2) such that

F(x) = p∗,x◦(x − x◦)+ q∗,x◦(x − x◦)+ o(|x − x◦|3) ∀ x◦ ∈ �3rd
1 ∩ BR,

and we conclude by the Implicit Function Theorem (see the proof of
Lemma 3.11).

Concerning the higher dimensional case, since dimH(�m\�3rd
m ) ≤ m − 1

(see Lemma 4.4), for any j ∈ N we can find a countable family of balls {B̂i }
such that

�m\�3rd
m ⊂

⋃
i

B̂i =: O j , and
∑

i

diam(B̂i )
m−1+1/j <

1

j
.

In particularHm−1+1/j∞ (O j ) < 1/j [see (3.15)].
Note that, because of the continuity of the map � � x◦ �→ p∗,x◦ , the set

�+m+1 := �m+1 ∪ . . . ∪ �n−1 is closed, and �m\�m ⊂ �+m+1. Hence, since
the sets �m and �+m+1 are disjoint, the set

�m\�m = �m ∩�+m+1

is closed.
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Define the sets

U j := {x : dist(x, �m\�m) < 1/j}, K j := �m\(O j ∪ U j ).

Then K j = �m\(O j∪U j ), and because the setsO j andU j are openwe deduce
that K j is closed. Noticing that the polynomials Px◦(x) := p∗,x◦(x − x◦) +
q∗,x◦(x − x◦) are continuous with respect to x◦ ∈ K j (by Proposition 4.5), we
can argue as we did above in case n = 2 to conclude that K j can be locally
covered by a m-dimensional manifold of class C2. Then the result follows by
observing that∪ j K j = �m\

(∩ jO j )
)
andHβ∞(∩ jO j ) = 0 for anyβ > m−1,

hence dimH(∩ jO j ) ≤ m − 1 [see (3.16)]. ��
Acknowledgements both authors are supported by ERC Grant “Regularity and Stability in
Partial Differential Equations (RSPDE)”. The authors thank the anonymous referees for useful
comments on a preliminary version of the manuscript.

Appendix A: Examples of (m − 1)-dimensional anomalous sets �a
m

In this “Appendix”, for any 1 ≤ m ≤ n − 2 we construct an example of
solution to the obstacle problem in R

n for which the anomalous set �a
m is

(m−1)-dimensional. The existence of such examples shows that the assertion
dimH(�a

m) ≤ m − 1 in Theorem 1.1(b) is optimal.
These solutions are constructed as follows: given 1 ≤ m ≤ n − 2 we

consider functions

u(x1, x2, . . . , xn)=u�(z, r), z := xm, r :=
√

x2m+1 + x2m+2 + · · ·+x2n ,

(A.1)

which are independent of the first (m−1) variables and are axially symmetric
with respect to the last m − n variables. Then our goal is to find solutions to
the obstacle problem which are of the form (A.1) and for which all points in
the (m − 1) dimensional affine space

Z := {xm = xm+1 = · · · = xn = 0}

are anomalous points in �a
m . To build these examples, we rely on some ideas

introduced in [23].
Fix φ : [−1, 1] → R a nonnegative C2 function satisfying

φ(0) > 0, φ(1) = 0, φ′(z) ≤ 0 ∀ z ∈ (0, 1), and φ(−z) = φ(z).
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Then, for any real number k > 0 we consider the solution uk ≥ 0 to the
obstacle problem in (−1, 1)× (0, 1) ⊂ R

2

⎧⎪⎨
⎪⎩
div(rn−m−1∇uk) = k rn−m−1 χ{uk>0} in (−1, 1)× (0, 1),

uk(±1, r) = 0 r ∈ (0, 1),

uk(z, 1) = φ(z) z ∈ (−1, 1).

In otherwords, 1k uk(xm,

√
x2m+1 + · · · + x2n) is a solution of the classical obsta-

cle problem in the cylinderRm−1×(−1, 1)×B(n−m)
1 satisfying the symmetries

in (A.1).
Note that, when we think of this obstacle problem as a two dimensional

problem (in the variables z, r ), we do not prescribe “boundary” values at
r = 0 since this line has zero capacity for the operator div(rn−m−1∇ · ) when
n−m−1 ≥ 1 (this is equivalent to saying that the set {xm+1 = · · · = xn = 0}
has zero harmonic capacity in Rn).

We now claim that:

(i) uk is even z, namely uk(z, r) = uk(−z, r);
(ii) ∂zuk ≤ 0 in (0, 1)× (0, 1);
(iii) the set {uk > 0} is convex in the direction z, and is symmetric with respect

to z = 0.

Indeed, (i) follows from the symmetry of the boundary data (and the uniqueness
of solution to the obstacle problem).

To show (ii) we consider the open set U := (0, 1) × (0, 1)\{uk = 0} and
observe that ∂zuk ≤ 0 on ∂U . Indeed:

• ∂zuk = 0 on {z = 0}, by symmetry;
• ∂zuk = 0 on ∂{uk = 0}, since uk is nonnegative and of class C1,1;
• ∂zuk ≤ 0 on {z = 1}, since uk(r, 1) = 0 while uk(r, z) ≥ 0 for z < 1;
• ∂zuk = φ′ ≤ 0 on {r = 1}.
As a consequence, since div(rn−m−1∇(∂zuk)) = 0 inside U (this follows by
differentiating the equation for u with respect to z), we deduce by themaximum
principle that ∂zuk ≤ 0 in U . Also, we note that ∂zuk = 0 in (0, 1)× (0, 1)\U
since uk ≡ 0 there (recall that uk is nonnegative and of class C1,1), proving
(ii).

Finally, (iii) is an immediate consequence of (i) and (ii).
We now observe that, for k sufficiently large, the contact set contains a

neighborhood of the origin, and hence it must contain a cylindrical neigh-
borhood of {r = 0} [thanks to (iii)]. On the other hand, for k � 1 we have
uk(0) > 0. Therefore, by continuity, there exists (a unique) k� > 0 such that
∂{uk� > 0} touches tangentially the line {r = 0}.
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Set u� := uk� . Observe that that, with this definition, the function

u(x) := 1

k�

u�(xm,

√
x2m+1 + · · · + x2n) (A.2)

has a full (m−1)-dimenional space of singular points onZ = {xm = xm+1 =
· · · = xn = 0}. Also, by the given symmetry, these singular points belong to
the stratum �m .

We now prove the following:

Proposition A.1 Let u be the symmetric solution defined in (A.2). Then the
set Z ⊂ �m consists of anomalous points, that is Z ⊂ �a

m.

Proof The proof consists of three steps.
- Step 1. We show that u has no other singular points in a neighborhood of

Z (except of course the points in Z).
To prove this, assume by contradiction that there exists a sequence of sin-

gular points x�→ 0. Note that, since u is invariant in the first m − 1 variable,
we can assume that x� ∈ {x1 = · · · = xm−1 = 0}. Then, by the symmetries
of u and Lemma 3.2, a blow-up q of u − p∗ at 0 is a homogeneous harmonic
polynomial that vanishes on the xm-axis and that enjoys the same symmetries
as u (note that p∗ has the same symmetries as u and vanishes on r = 0). Thus,
q = q�(z, r), where q� solves

div(rn−m−1∇q�) = 0, q�(z, 0) = 0 ∀ z, and q� �≡ 0.

Let � be the degree of q. Since q is smooth and q�(z, 0) = 0, q� must be a
polynomial of the form

∑
1≤k≤�/2 akz�−2kr2k . Let k0 ≥ 1 be the first index

such that ak0 �= 0. Then

0 = div(rn−m−1∇q�) =
(
2k0[n − m + 2(k0 − 1)]ak0 z�−2k0 + r2Q(z, r)

)
rn−m−1+2(k0−1),

where Q is a polynomial of degree �− 2k0− 2. In particular, the terms inside
the parenthesis cannot be identically zero, giving the desired contradiction.

As a consequence, there is a neighborhood of Z which is free of singular
points. (except the points in Z). In particular, as a consequence of [4,5], there
exists ε > 0 such that (∂{u� > 0}\{0})∩Bε is a smooth curve contained inside
(−ε, ε)× (0, ε)\{0}.

- Step 2. We show that, for any α > 0 small, there exists R = R(α) > 0
small such that the following holds:

∀ �◦ ∈ (0, R), ∃ Y�◦ ∈ ∂{u� > 0} ∩ B2�◦ s.t. Y�◦ · er ≥ �1+α◦ , (A.3)

where Y�◦ · er denotes the r -component of the point Y�◦ .
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Let ρ := √r2 + z2 and θ := arctan(z/r) ∈ (−π
2 , π

2 ) be polar coordinates
in (0, 1)× (−1, 1). We now state the following fact, whose proof is postponed
to the end of the Step 2.
Claim For any α > 0 small, there exists δ = δ(α) > 0, and a function
�α : [δ, π

2 − δ] → R smooth, such that Sα(r, z) := ρ1+α/4�α(θ) satisfies

div(rn−m−1∇Sα) = 0 in the cone Cδ :=
{
(ρ, θ) ∈ (0, 1)× (δ,

π

2
− δ)
}

,

and

�α(δ) = �α

(π
2
− δ
)
= 0, �α > 0 for θ ∈

(
δ,

π

2
− δ
)
. (A.4)

Note that, since 0 is a singular point and recalling the symmetries of u,
u(x) = p∗(x)+ o(|x |2) where p∗(x) = 1

2(n−m)

∑n
i=m+1 x2i . This implies that

u�(z, r) ≥ k�

4(n−m)
r2 + o(z2) near the origin. Thus, given α > 0, there exists

η = η(α) > 0 small enough such that the inclusion

Cδ ∩ Bη ⊂ Cδ/2 ∩ Bη ⊂ {u� > 0} (A.5)

holds. Note that, up to reducing η, we can assume that η < ε, so that (by Step
1) ∂{u� > 0}\{0} is a smooth curve inside Bη.

Let us consider the function h := −∂zu�, and recall that h ≥ 0 (by property
(iii) in the construction of u�). Also, differentiating the equation

div(rn−m−1∇u�) = k� rn−m−1 in {u� > 0}

with respect to z, we obtain

div(rn−m−1∇h) = 0 in {u� > 0}. (A.6)

Since h > 0 inside {u� > 0} (by the strong maximum principle), it follows
that

∂{h > 0} ∩ Bη ∩ {z > 0} = ∂{u� > 0} ∩ Bη ∩ {z > 0} (A.7)

and Cδ ∩ ∂ Bη ⊂⊂ {u� > 0}. Thus there exists a constant c0 = c0(α) > 0 such
that h ≥ c1Sα on Cδ ∩ ∂ Bη. In addition h ≥ 0 = Sα on ∂Cδ ∩ Bη. Hence, since
h and Sα solve the same equation, it follows by the maximum principle that
h ≥ Sα inside Cδ ∩ Bη. Recalling (A.4), this implies that

h ≥ c1ρ
1+α/4 in

{
(ρ, θ) ∈ (0, η)× [2δ, π

2 − 2δ]} (A.8)
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for some c1 = c1(α) > 0.
We now want to find a lower bound on the normal derivative of h at points

on ∂{u� > 0}. For this we use a Hopf-type argument, constructing suitable
barriers for our operator div(rn−m−1∇ · ). These are given by the family of
functions

SH
b (r, z) := 2(r − b)− (n − m − 1)(z − 1)2, where b ∈ R.

Note that

div(rn−m−1∇SH
b ) = 0 in {r > 0},

and SH
b < 0 outside of the parabolic regionPb :=

{
b + n−m−1

2 (z − 1)2 ≤ r
}
.

Now, given 0 < �◦ � η we consider the rescaled function

h�◦ := �−1−α/2◦ h(�◦ · )
and we note that [thanks to (A.8)]

h�◦
(
ρ, π

2 − 2δ
)≥ c1�

−α/4◦ ρ1+α/4 ∀ ρ ∈ (0, η
�◦ ). (A.9)

Consider now our barriers SH
b . For b > 1/2 the parabolic region Pb is

contained inside the set
{
θ < π

2 − 2δ
}
. In particular SH

b < 0 inside the cone

Ĉ2δ :=
{
θ ∈ (π

2 − 2δ, π
2 )
}
. Then, we start decreasing b until the first value

b◦ such that ∂Pb◦ touches ∂{h�◦ > 0}. Note that, thanks to (A.7) and Step 1,
b◦ > 0 and the contact point will happen for some Ỹ�◦ ∈ {r > 0}.

Since h�◦ ≥ 0 = SH
b◦ on ∂Pb◦ ∩ Ĉ2δ and h�◦ ≥ c2(α)�

−α/4◦ ≥ SH
b◦ on

Pb◦ ∩ ∂ Ĉ2δ for �◦ sufficiently small [see (A.9)], it follows by the maximum
principle that h�◦ ≥ SH

b◦ insidePb◦ ∩ Ĉ2δ . Hence, since both h�◦ and SH
b◦ vanish

at Ỹ�◦ , we deduce that

∂νh�◦(Ỹ�◦) ≥ ∂ν SH
b◦ (Ỹ�◦) ≥ c2 > 0, (A.10)

where ν is the unit inwards normal to ∂{h�◦ > 0}, and c2 = c2(α) is inde-
pendent of �◦ (here we use b◦ ≤ 1/2). Observe also that, provided δ is small
enough, Pb◦ ∩ Ĉ2δ ⊂ B2.

Rescaling (A.10), we obtain that for all �◦ ∈ (0, η) small enough there is a
point Y�◦ ∈ ∂{u� > 0} ∩ (0, 1)× (0, 1) such that,

|Y�◦ | ≤ 2�◦ and ∂νh(Y�◦) ≥ c2�
α/2◦ , (A.11)

where ν denotes the unit inwards normal to {u� > 0} [see (A.7)].
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To conclude the proof we observe that differentiating the equation

div(rn−m−1∇u�) = k� r χ{u�>0}

with respect to z we obtain−div(rn−m−1∇h) = k� rn−m−1νz H1|∂{u�>0}, thus

−rn−m−1∂νh = k� rn−m−1νz on ∂{u� > 0}
where νz = ν · ez denotes the z-component of ν. Recalling (A.11), this proves
that

νz(Y�◦) ≤ −
c2
k�

�α/4◦ and |Y�◦ | ≤ 2|�◦|. (A.12)

Note that (A.12) already implies that ∂{u� > 0} cannot be a C1,α curve at
0. We now prove the more precise estimate (A.3).

Since b◦ > 0 and the rescaled parabolic cap
{
(�◦z, �◦r) : b◦ + n − m − 1

2
(z − 1)2 ≤ r ≤ 1

}

touches ∂{u� = 0} at Y�◦ = (r�◦, z�◦), it follows that

n − m − 1

2�◦
(z�◦ − �◦)2 < �◦b◦ + n − m − 1

2�◦
(z�◦ − �◦)2 = r◦ (A.13)

and that

ν(Y�◦) =
(
1, n−m−1

�◦ (z�◦ − �◦)
)

√
1+
(

n−m−1
�◦ (z�◦ − �◦)

)2 . (A.14)

Combining (A.13) with (A.12), we get

n−m−1
�◦ (z�◦ − �◦)√

1+
(

n−m−1
�◦ (z�◦ − �◦)

)2 ≤ −
c2
k�

�α/4◦

⇒ n − m − 1

�◦
(z�◦ − �◦) ≤ −c2

k�
�α/4◦ .

Recalling (A.13), this yields

1

2(n − m − 1)

(c2
k�

)2
�1+α/2◦ ≤ r◦ = Y�◦ · er .
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Since �1+α◦ � �
1+α/2◦ , this proves (A.3).

We conclude Step 2 proving the claim.
Proof of Claim. The linear function z = ρ sin θ satisfies div(rn−m−1∇z) = 0.
Also �0(θ) = sin θ is positive on (0, π/2) and satisfies �0(0) = 0, hence �0
must be the minimizer of the Rayleigh quotient

min

{∫ π/2
0 (cos θ)n−m−1(�′)2∫ π/2
0 (cos θ)n−m−1(�)2

: �(0) = 0

}
= n − m

[equivalently, recalling (A.1), the restriction to the harmonic function xm to
R

m−1×S
n−m ⊂ R

m−1×R
n−m+1 is a minimizer of the Rayleigh quotient for

the classical Dirichlet integral on S
n−m ∩ {xm ≥ 0}].

Since n − m − 1 ≥ 1 (this is where we crucially use this assumption), we
have

lim
δ↓0 min

{∫ π/2−δ

0 (cos θ)n−m−1(�′)2∫ π/2−δ

0 (cos θ)n−m−1(�)2
: �(δ) = �(π/2− δ) = 0

}
↓ n − m

(this is equivalent to saying that the north pole inSn−m∩{xm ≥ 0}has harmonic
capacity 0, so the boundary condition �(π/2− δ) = 0 disappears in the limit
δ → 0). Thus, by continuity, for any α > 0 small there exists δ = δ(α) > 0
small enough such that the previous Rayleigh quotient in (δ, π/2 − δ) will
give the value

μα := (n − m + α/4)(1+ α/4).

This implies that if we denote by �α the first eigenfunction (i.e., the func-
tion attaining the minimal quotient value μα), then −((cos θ)n−m−1�′α)′ =
μα(cos θ)n−m−1�α , and it follows by a direct computation (or by classical
spectral theory) that Sα(r, z) := ρ1+α/4�α(θ) satisfies div(rn−m−1∇Sα) = 0,
as desired. Finally, the strict positivity of �α inside

(
δ, π

2 − δ
)
is a classical

property of the first eigenfunction.
- Step 3. We conclude the proof of the proposition by showing that (A.3) is

incompatible with 0 ∈ �
g
m . Recall that, by definition, 0 belongs to �

g
m (resp.

�a
m) if φ(0+, u − p∗) ≥ 3 (resp. φ(0+, u − p∗) < 3), see (3.13).
Assume by contradiction that φ(0+, u − p∗) ≥ 3. Then by Lemma 2.6 we

have

∫
BR

|u − p∗| ≤
( ∫

BR

(u − p∗)2
)1/2

≤ C R3 ∀ R > 0.
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We now note that

�(u − p∗) = −χ{u=0} ≤ 0,

so it follows by the mean value formula for superharmonic functions that

u − p∗ ≥ −C R3 in BR . (A.15)

Recalling that p∗ = p∗(z, r) = 1
2(n−m)

r2 in the variables (z, r), it follows by
(A.15) that

− 1

n − m
r2 ≥ −C(r2 + z2)3/2 on ∂{u = 0},

therefore

r ≤ C |(z, r)|3/2 on ∂{u = 0},

which clearly contradicts (A.3) if we choose α < 1/2. As a consequence 0
(and by symmetry all points on Z) must belong to �a

m . ��
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