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Abstract
In the previous decade, we have observed a rapid growth in data volumes and in

the processing power. New types of data and the algorithms to analyze them are

known under the umbrella term “Big Data" technologies. They are adapted in various

industries and are likely to become ubiquitous. This thesis comprises three empirical

studies pertaining to Big Data technologies. Our results contribute to the analysis of

their economic role and indicate promising avenues for future research in this area.

In the first two chapters of the thesis, we explore a particular use case of Big Data:

usage-based insurance. Policyholders with such contracts install a drive recorder that

continuously monitors the vehicle’s motion. We have aggregated and combined these

driving logs, generally referred to as “telematics data", with traditional contract and

claim data. Our goal is twofold: a) to study accident risk factors b) to establish whether

there are informational problems in the automobile insurance market. Telematics-based

variables contain statistically significant predictors of subsequent accident involvement.

This result prompt us to conclude that telematics data can be used to refine risk

classification and inform the design of incentive contracts. Furthermore, the combined

results with chosen insurance contracts indicate multiple and counteracting effects of

private information.

In a second part of the thesis, we analyze the willingness to share personal data

when this data is used for subsequent price discrimination. We have designed a lab-

oratory experiment during which participants could sell a bundle of personal data.

Participants were categorized based on the content of their personal data and received

category-dependent payoffs in a subsequent stage. The experimental variations modi-

fied the category-dependent payoff structure. We find no effect of subsequent financial

discrimination on the general willingness to sell personal data. A significant change in

the data reservation price is only observed under strong negative discrimination. We

observe important gender differences in the reservation price for private information

and the role of underlying privacy concerns.
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Zusammenfassung

In den letzten zehn Jahren haben wir ein schnelles Wachstum der Datenmengen und

der Rechenleistung beobachtet. Neue Datentypen und die Algorithmen zu ihrer Anal-

yse sind unter dem Oberbegriff "Big Data"-Technologien bekannt. Sie werden in ver-

schiedenen Branchen eingesetzt und dürften allgegenwärtig werden. Diese Arbeit um-

fasst drei empirische Studien zu Big Data Technologien. Unsere Ergebnisse tragen

zur Analyse ihrer wirtschaftlichen Rolle bei und zeigen vielversprechende Wege für die

zukünftige Forschung in diesem Bereich auf.

In den ersten beiden Kapiteln der Dissertation untersuchten wir einen speziellen An-

wendungsfall von Big Data: die nutzungsbasierte Versicherung. Versicherungsnehmer

mit solchen Verträgen installieren einen Fahrtenschreiber, der die Bewegung des Fahrzeugs

kontinuierlich überwacht. Wir aggregierten und kombinierten diese Fahrtenbücher,

allgemein als "Telematikdaten" bezeichnet, mit traditionellen Vertrags- und Schadens-

daten. Unser Ziel war es a) Unfallrisikofaktoren zu untersuchen b) festzustellen, ob es

Informationsprobleme auf dem Kfz-Versicherungsmarkt gibt. Telematikbasierte Vari-

ablen enthielten statistisch signifikante Prädiktoren für die spätere Unfallbeteiligung.

Aus diesem Ergebnis lässt sich schließen, dass Telematikdaten zur Verbesserung der

Risikoklassifizierung und zur Information bei der Gestaltung von Anreiz-Verträgen ver-

wendet werden können. Darüber hinaus zeigen die kombinierten Ergebnisse mit aus-

gewählten Versicherungsverträgen, dass die Auswirkungen von privaten Informationen

mehrfach und entgegenwirkend sind.

In einem zweiten Teil der Arbeit analysierten wir die Bereitschaft, personenbezogene

Daten weiterzugeben, wenn diese Daten zur späteren Preisdiskriminierung verwendet

werden. Wir entwarfen ein Laborexperiment, bei dem die Teilnehmer ein Bündel per-

sönlicher Daten verkaufen könnten. Die Teilnehmer wurden nach dem Inhalt ihrer

persönlichen Daten kategorisiert und erhielten in einem weiteren Schritt kategorieab-

hängige Auszahlungen. Die experimentellen Variationen modifizierten die kategorieab-

hängige Ablaufstruktur. Wir finden keine Auswirkungen einer späteren finanziellen
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Diskriminierung auf die allgemeine Bereitschaft, personenbezogene Daten zu verkaufen.

Eine signifikante Veränderung des Datenreservierungspreises ist nur bei starker nega-

tiver Diskriminierung zu beobachten. Wir beobachten jedoch wichtige geschlechtsspez-

ifische Unterschiede beim Reservierungspreis für private Informationen und die Rolle

der zugrunde liegenden Datenschutzbedenken.
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1. Introduction
There were 5 exabytes of information created between

the dawn of civilization through 2003, but that much

information is now created every 2 days.

Eric Schmid

Executive Chairman of Google

Data creation rates in digital societies are steadily rising. Henke et al. (2016)

project a 2x growth in the volume of data approximately every 3 years and note a 40x

increase in the processing power between the fastest supercomputer of 2010 and 2016.

Collected information pertains to different aspects of everyday life and individuals’

activities. Companies have recognized the potential of new data sources to tackle

existing challenges prompting them to adopt these innovations. A popular term, “Big

Data Revolution" reflects the scale of the transition taking place in many industries

and in society at large.

Big Data technologies can change the functioning of markets with information prob-

lems by reducing, or even reversing, information asymmetries between the different

market participants. Information asymmetries lead to two major problems: adverse

selection and moral hazard. Adverse selection arises when one of the parties has an

informational advantage over the other prior to the transaction. A common example

is the tendency of high-risk individuals to purchase a more comprehensive insurance

protection. To better classify applicants’ risk types, banks have complemented credit

scoring by mining credit application texts, and insurance companies have offered life

insurance policies predicated upon DNA test results.

Moral hazard refers to the situation when a counterparty engages in a riskier be-

havior knowing that somebody else (the insurer) will face the negative consequences

of his actions. Collecting and contracting upon more verifiable information about an

individual’s behavior decreases the room for moral hazard. E.g. policyholders can be

incentivized to lead a healthy lifestyle if the premiums for their health insurance policy
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depend on the activity records from a Fitbit device.

Since a long time data has played the central role in insurance pricing. Already in

1693 Edmond Halley created life tables based on demographic data and proposed to

use them for life contingency calculation. Currently, predictability of the subsequent

claims is one of the key characteristics of insurable risks. Predictions are obtained from

statistical analysis of historical losses combined with various observable and verifiable

covariates. To refine the risk models, insurance providers used numerous characteristics

such as age, marital status, occupation and address. However , traditional sources of

risk classification variables oftentimes could only yield imprecise proxies of underlying

risk factors.

A more precise risk classification due to information gained using Big Data tech-

nologies can result in more tailored premiums and facilitate insurance portfolio opti-

mization (Litman (1997)). The usage of Big Data technologies is also likely to affect

market interaction and the efficiency of equilibria in the insurance industry. However,

a lot more research is needed to understand how Big Data technologies can and should

be used to improve market outcomes and societal welfare. In the first part of my thesis

I examined a prominent use case of Big Data in the insurance industry: usage-based

vehicle insurance. We analyzed a telematics dataset provided by a large Swiss insurer

carrier to investigate the following:

Q1 Does telematics data provide evidence of Asymmetric Information in the auto-

mobile insurance market?

Q2 What further insights into accident risk factors can we extract from this data?

Q3 How can we use this information to reduce accident risk?

In Chapter 2, me (first author) and my co-authors Wanda Mimra and Christian

Waibel created detailed driving profiles based on telematics data for young drivers.

These profiles reflected where, when, how often and how long the policyholder drived.

We augmented the driving logs with road speed limits obtained from an Open Street

Map (OSM) database to evaluate the frequency and severity of speed violations. Fur-

2



thermore, the device monitored information about the vehicle’s acceleration and ap-

pended driving logs every time the values exceed a pre-specified threshold. The fre-

quency and severity of these “elevated g-force events" reflect the policyholder’s driving

style.

We combined the telematics-based predictors with traditional risk classification

variables to model ex post risk realization on the one hand and contract choice on the

other. We found that the number of journeys per day is positively related to both risk

and coverage, which would be consistent with the presence of asymmetric information

given the existing risk classification (Q1). Further results suggested that there might

be multiple dimensions of private information interacting. However, the interpretation

of results has to be done with extreme caution since the sample consists of drivers that

are younger than 26 years of age and thus are relatively inexperienced. In particular,

the data did not allow to analyze how well the policyholders actually understand their

risk.

Using the information from driving logs, we discovered the following accident risk

factors: average daily distance driven, average no. of journeys per day and average

speeding (Q2). Neither driving style, reflected by the frequency of elevated g-force

events, nor percentage of urban driving are statistically significant predictors of accident

involvement. Taken at face value, this suggests that pricing usage-based insurance

policies based on the estimated quality of driving might be not that efficient for reducing

accident risk. The absence of the link between driving style and accident involvement

could also be attributed to selection bias. Policyholders in our sample were punished

for frequent accelerations and braking, especially in an urban area or during the night.

Under these circumstances it is plausible that (a) policyholders with reckless driving

style did not purchase the policy (b) individuals holding such a policy exerted more

effort and adjusted their driving behavior.

We stratified the sample by age to study whether main driving risk factors change

in the course of time. Young and inexperienced drivers constitute a high-risk pool.

Tailoring the risk classification scheme to account for age-specific risk factors could

introduce stronger incentives for safe driving on the one hand and reduce the premium

3
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burden on lower-risk, older drivers on the other. The average no. of journeys per day

and average speeding are important risk factors for both subsamples. The average daily

distance driven is a significant risk factor for the older but not for the younger drivers.

These results do not warrant the introduction of different telematics-based risk pricing

schemes on these age strata.

In Chapter 3, I deepened the risk analysis of Chapter 2. Results in Chapter 2

in particular suggested that the no. of journeys is an important accident risk fac-

tor. To shed more light on the phenomenon, I aggregated the driving logs at the

policyholder-journey level and augmented the driving profiles created in Chapter 2

with new predictors.

First, I studied the impact of route familiarity. Intuitively, driving on unknown or

rarely visited roads could be associated with a higher hazard level. The scientific basis

for this conjecture is provided by Posner et al. (2004): drivers on familiar roads per-

form this task automatically, therefore they have more free mental resources to react to

unexpected hazards. In contrast, Burdett et al. (2019) and Yanko and Spalek (2013)

argue that route familiarity breeds inattention and mind wandering with concomitant

increase in accident risk. I found that driving on unfamiliar roads increases accident

hazard, yielding empirical support to the first statement. This result can be incorpo-

rated in the risk classification scheme, for instance by putting higher weight on speed

violations on unfamiliar roads (Q3).

My further results indicate that neither driving under bad light conditions nor

higher frequency of long journeys are associated with higher accident risk. There are

two competing explanations: 1) high quality infrastructure offsets the risks stemming

from impaired visibility and fatigue 2) the usage-based insurance policy succeeds in

limiting companies’ exposure to these risks. The data at our disposal was not sufficient

to disentangle these causes.

The results in Chapter 2 and Chapter 3 show that these new sources of information

can be used to refine risk classification and inform the design of incentive contracts.

The ability of insurance providers to better tailor premiums to risk types and track and

incentivize certain forms of behavior however gives rise to contentious debates. On the
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positive side, risk-based pricing can incentivize risk prevention, promote a healthier

lifestyle and create desirable spill-over effects such as a decrease in traffic congestion

and CO2 emissions. On the negative side, the premiums for high risk individuals could

become unaffordable. Whether it is legal or acceptable that they bear the risk on their

own is an ethical and social issue. From an ethical standpoint, the main distinction

is made between controllable and uncontrollable risks. Vehicle accident risk falls in

the former category, making risk-based pricing less controversial. The main discussion

is centered on potential privacy infringements. Using DNA test results to adjust risk

premiums and punishing individuals for factors outside their control is an entirely

different matter.

Chapter 2 and Chapter 3 present evidence that new behavioral data has a cer-

tain economic value. A major factor preventing companies from collecting even more

information are the individuals’ privacy concerns. Their causes are the subject of var-

ious disciplines from psychology, sociology and anthropology to biology. Apart from

emotional discomfort, with wider adoption of Big Data Technologies, sharing personal

information might have long-lasting economic consequences. Consumer discrimination

based on personal data is already prevalent: the Google search history determines

what advertisements are displayed to the users, and digital footprints are progressively

incorporated into pricing schemes.

In Chapter 4, which is joint work with Irina Gemmo and Wanda Mimra, we con-

ducted a laboratory experiment to shed more light on privacy-related decision making.

In particular, we analyzed participants’ privacy concerns as well as their response to

price discrimination based on the content of their personal data. The personal data

that the participants could sell in the experiment consisted of the bundle of their

height, weight, bank account balance information as well as a photo of their face. To

implement price discrimination in the lab, participants were then categorized based on

whether they had sold their data to the experimenters, and the content of their data,

and received category-dependent payoffs.We added an extensive post-experimental sur-

vey to capture other privacy relevant information. Our setting allowed us to address

the following questions:
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Q4 Does data-based price discrimination affect the willingness to sell personal infor-

mation?

Q5 What other factors influence the decision to disclose the data and the subsequent

reservation price?

The analysis yielded several interesting insights. The general willingness to sell per-

sonal data is not significantly affected by data-based price discrimination. A marginally

significant change in the reservation price is only observed when one data-based cate-

gory implies a strong decrease in the subsequent payoff (Q4). The general willingness

to sell personal data is strongly affected by individuals’ privacy concerns on the one

hand and trust related to the context of the experiment on the other. Gender dif-

ferences are also prominent: under all treatments in all data dependent categories

women were less likely to agree to sell their data and when they did, stated a higher

reservation price. Our model suggests however that the gender differences manifest

themselves through the impact of general privacy concerns and trust towards the ex-

perimenter. The decision whether to sell the data is also affected by perceived control

overs subsequent data usage and its sensitivity (Q5).

Our results suggest three different approaches to increase the likelihood that in-

dividuals agree to share their data. First, to promote trust data subjects should be

given more control over their data, and the subsequent usage should be transparent.

Furthermore, Kehr et al. (2015a) have discovered that better design of a user interface

promotes data sharing. Lastly, here is room for a compromise between extracting sensi-

tive data and obtaining accurate insights out of it. As an example, insurance companies

are interested in some aggregate statistics on driving behavior, whereas policyholders

are primarily concerned about disclosing the exact coordinates and timestamps of vis-

ited locations. A possible middle ground could be to compute relevant statistics locally

on the on-board device and share only that information.
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2. Bigger Data and Risk Classification

in Auto Insurance:

Evidence from Telematics Contracts

We combine a large telematics based dataset on driving behavior with traditional con-

tract and claims data in auto insurance to analyze accident risk factors and review

the question of asymmetric information in auto insurance. We find that the telemat-

ics data can improve risk modelling and identify significant risk factors pertaining to

both risk exposure and driving style. The combined results with chosen insurance con-

tracts suggest that multiple dimensions of private information might be interacting. As

the sample consists of only young drivers, conclusions regarding risk driven selection

however cannot be drawn.

2.1 Introduction

Advances in GPS technologies allow new forms of auto insurance contracts. In par-

ticular, there now exist contracts for which insurance companies equip vehicles with a

drive recorder, collecting detailed information about the vehicles motion. This type of

datasets, referred to as telematics data, is a rich source of reliable information about

driving patterns and style and could be used to alleviate information problems between

insurers and policyholders in auto insurance. First, telematics data can further the de-

tailed understanding of accident risk factors (Ayuso et al. (2016), Ayuso et al. (2014))

and could thereby refine risk classification schemes. Second, telematics data can be

used in insurance contract design to incentivize the optimal accident prevention effort

of drivers. On a societal level, aggregated telematics data can inform public policies

aimed at the reduction of annual mileage, fuel consumption and CO2 emissions (Vick-



Chapter 2. Bigger Data and Risk Classification in Auto Insurance:
Evidence from Telematics Contracts

rey (1968), Litman (1997), Edlin (1999), Bordoff and Noel (2008)) or internalization

of congestion externalities (Vickrey (1968)).

In this paper, we take advantage of a telematics dataset provided by a major swiss

insurer to analyze accident risk factors as well as test for the presence of asymmetric

information between policyholders and the insurer. Compared to earlier contributions

regarding asymmetric information in auto insurance (e.g. Chiappori and Salanie (2000)

and Cohen (2005)) the telematics data thereby provides much richer information about

accident-relevant driving patterns and style. However, the telematics contract was only

offered to drivers in Switzerland younger than 26 years of age, i.e. our sample consists

of mostly inexperienced drivers that might be learning about risk themselves.

In the analysis, we first construct several measures of both risk exposure and driving

style from the telematics raw data. The created driving indices e.g. measure the

average distance driven per day, and the average speed difference after acceleration.

We have furthermore extracted speed limits from the Open Street Map Database to

combine them with the telematics data in order to have precise, street level measures of

speeding behavior. Compared to other studies using telematics data (e.g. Kremslehner

and Muermann (2016)), we can furthermore use information on so-called elevated g-

force events about the vehile’s accelerations and breaking.

Our main results pertain to the analysis of accident risk factors. We find that the

information provided from telematics data is valuable to model risk, as measured by

liability claim occurence. In particular, we find that both average distance per day as

well as the number of journeys per day have a significant positive effect on risk. Both

variables pertain to risk exposure, as opposed to driving style. With average speeding,

we also observe a significant risk factor reflecting driving style.

Combining the results on risk factors with those of contract choice, we observe that

a higher number of journeys per day is associated with a significantly higher propensity

to purchase collision cover and BM protection as well as a significantly positive effect

on liability claim submission. The number of journeys per day is thus positively related

to both risk and coverage, which would be consistent with the presence of asymmetric

information given the existing risk classification and contracting. We find the opposite
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2.1. Introduction

result for average distance per day, which is significantly positively related to risk but

negatively to the purchase of insurance coverage. One interpretation is that multiple

dimensions of private information are interacting, as the latter result could be explained

by overconfidence about driving skill for higher average distances.

However, the interpretation of results has to be done with extreme caution since

the sample consists of drivers that are younger than 26 years of age and thus are

relatively inexperienced. In particular, the data does not allow to analyze how well

the policyholders actually understand their risk. Thus, while the telematics data is

important to identify risk factors, the results for our dataset with young drivers do not

allow the interpretation that the telematics data helps to identify relevant asymmetric

information in the form of the policyholder having superior information about risk type

or preferences that affects selection in a systematic way for insurer profits.

Related literature

Our paper is related to two strands of literature: The literature on motor vehicle

accident risk factors and the literature on asymmetric information in insurance markets.

Lemaire (2013) reviews standard risk classification variables used in different coun-

tries. Notwithstanding certain regional variations due in part to market regulations,

there seems to be a consensus in the insurance industry regarding important risk fac-

tors. The list includes: vehicle characteristics, such as model, age, engine power,

weight, and policyholders characteristics, for instance age, driving experience, occu-

pation, number of active drivers and geographic area. In our analysis we observe an

additional risk factor, a recent change of address.

Ayuso et al. (2014) use telematics data of spanish young drivers below the age of

30. Controlling for driving experience, driving patterns that increase the risk of an

accident are the average number of kilometers driven per day, nighttime and urban

driving as well as speed violations expressed as percentage of km driven above the

mandatory speed limits. Furthermore, Ayuso et al. (2014) find that gender affects

the hazard level. Male novice drivers have, on average, their first crash sooner than

women. In addition, the authors find that driving at night reduces the time to the
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first accident for women, but it has no significant effect for men. Experienced drivers

are likely to drive more kilometers until they are involved in their first accident, but

excessive speeds reduce the time to the first accident more markedly for men than they

do for women. Ayuso et al. (2010) find that exceeding the speed limit is the costliest

traffic violation: it increases the expected loss of an accident by two-thirds, compared

to accidents that do not involve any traffic violations. This result provides empirical

evidence against the widespread hypothesis of independence between frequency and

severity of the claim process. This paper complements Ayuso et al. (2016) and Ayuso

et al. (2014) and differs in several aspects. First, the statistical approaches utilized are

markedly different. Second, the created set of predictors is much richer.

Cohen and Siegelman (2010) present a survey of empirical studies of asymmetric

information in insurance markets. With respect to auto insurance markets, Chiappori

and Salanie (2000), Dionne et al. (2001) and Cohen (2005) do not find a statistically

significant correlation between the level of insurance coverage and ex post realizations

of risk given the existing risk classification of insurers. However, the positive correla-

tion test may fail to detect asymmetric information if multiple dimensions of private

information are interacting. De Meza and Webb (2001) show that if consumers differ

not only in their risk characteristics but also in risk aversion, market equilibrium could

feature zero or negative risk-cover correlation. The empirical evidence that both these

factors affect insurance purchase decisions is presented in Cohen and Einav (2007).

The authors use the data from an Israeli insurance company to fit a structural model

that captures hidden heterogeneity in risk and risk preferences. They conclude that

risk and risk aversion seem to be positively correlated and that unobservable hetero-

geneity in the latter is larger than unobserved heterogeneity in the former. This shows

that the positive correlation test is not a universal approach to test for the presence of

asymmetric information. In our dataset, the positive correlation test does not detect

private information.

Finkelstein and Poterba (2014) introduce the unused observables test that can be

used even with multidimensional private information. The logic is that if there exist

a variable ("unused observable") that on the one hand is not used by the insurer
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2.2. Data and Empirical Approach

for premium calculation (1) and on the other is a significant predictor for the choice

of cover and ex-post risk realization (2), this indicates the presence of asymmetric

information in the market. In the subsequent analysis, a rich telematics dataset allows

us to construct a number of predictors that may satisfy both criteria.

The closest work to the present paper is Kremslehner and Muermann (2016). The

authors take advantage of telematics data to test for the presence of asymmetric in-

formation and combine the positive correlation test with a slightly extended unused

observables test. Kremslehner and Muermann (2016) find that the correlation between

residual terms is not significantly different from zero, however the total number of car

rides increases both the probability of purchasing more insurance cover and probabil-

ity of ex post risk realization. Compared to Kremslehner and Muermann (2016), our

analysis is based on a richer dataset covering both a larger sample of policyholders

for a longer time period and a richer set of telematics-based created driving pattern

variables. Similar to Kremslehner and Muermann (2016), we find that the number of

journeys per day is positively related to risk and amount of insurance protection. A

more detailed discussion of the comparison of the findings is relegated to Section 3.6.

The remainder of the chapter is organized as follows: In Section 2.2 the datasets

and empirical approach are introduced, Section 3.6 presents and discusses the results,

and Section 2.4 concludes.

2.2 Data and Empirical Approach

The data for the analysis was provided by a major Swiss insurer. The insurer of-

fers a usage based automobile insurance policy under which the policyholder’s driving

behavior affects the premium paid. The relevant information on driving behavior is

collected by a telematics device that records various aspects of a vehicle’s motion. The

telematics based policy is offered only to drivers younger than 26 years old in exchange

for an initial premium discount. Our data analysis will therefore be based on drivers

younger than 26 years of age. For the analysis, we combine the telematics dataset with

traditional contract data and claims data.
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In Switzerland, as in most countries, third party liability insurance is mandatory

for all vehicle and motorcycle owners. Additionally, policyholders may purchase first

party collision coverage.1 This collision coverage is mandatory for drivers of leased

vehicles, which make up 17.27% of contracts in the dataset.

The premium for insurance policies using telematics data has three components:

First, the base premium, which is determined by traditional risk classification variables

such as the policyholder’s age and vehicle characteristics. The base premium is then

adjusted according to the driver’s Bonus Malus class as well as a telematics data

based adjustment factor. Premium rates are recalculated annually and apply between

January 1st and December 31st. The Telematics based factor is determined and the

Bonus Malus class is adjusted based on driving behavior and claim submission before

October 1st of the previous year.

A policyholder’s Bonus Malus class is determined by his claim history with the

insurer. There are 18 different Bonus Malus classes, each Bonus Malus class corresponds

to a different scaling factor of the relevant base premium, ranging from 30% to 150

%. New policyholders are assigned to the 14th class with the scaling factor 100%. A

year without claims leads to a 1 level decrease of the Bonus Malus class, every relevant

claim however results in 4 level increase. Bonus Malus scores for collision and liability

claims are calculated separately, which implies that a liability claim submission won’t

affect the Bonus Malus score for collision claims and vice versa. Most contracts allow

a policyholder to purchase bonus protection for liability and collision claims: Under

this option, the first relevant claim does not lead to a Bonus Malus reclassification.2

Besides the purchase of collision cover, we will consider the purchase of protection

against Bonus Malus reclassification as a second insurance choice in our analysis.

All telematics contracts in our dataset include an initial premium discount com-

pared to non-telematics based insurance policies. The subsequent telematics data based

adjustment factor is determined by how the policyholder drives, measured by the oc-

1Collision coverage pays indemnity primarily in case when the policyholder causes an accident. If
the policyholder is not at fault his losses might also be covered if the insurance company of the at
fault driver does not compensate in time.

2For policyholders that purchase collision cover, bonus protection for both types of claims can only
be purchased simultaneously.
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currence and the number of certain events such as acceleration, harsh braking or cor-

nering.3 These events will be summarily referred to as elevated g-force events.4 The

corresponding driving patterns of the policyholders are summarized into driving scores.

These scores are used to determine a policyholder’s rank compared to other drivers,

which in turn determines the premium discount for the subsequent insurance year.

Even policyholders with the lowest rank still receive a discount compared to their

counterparts without a telematics usage based contract.

2.2.1 Contract Data

Each policyholder in the dataset is uniquely identified by a policy number. The policy

number is used to link information from the three datasets: the contract data, the

claims data and the telematics data. The contract data we have access to covers the

period between 01.01.2014 and 03.11.2017 and consists of a total of 27’998 contract

entries for 9’244 policyholders.5

For the analysis, we will concentrate on data from the year 2016 for 5690 poli-

cyholders, since this is the period and policyholders for which we have both enough

telematics observations as well as full claims data. A more detailed discussion of this

can be found in Section 2.2.4.

The available information can be grouped into the following categories: a policyholder’s

personal information (age, gender, nationality, address,...), properties of the insured ve-

hicle (e.g. age, price and horsepower), details about contract features and the premia

paid. Table 2.1 displays the summary statistics of policyholders’ and vehicles’ charac-

teristics.

Policyholders have various options with respect to insurance coverage. The coverage

options and insurance choices for the 5690 policyholders analyzed with 2016 contracts
3Another approach in pricing based on telematics data are pay-as-you-drive-policies in which the

price is primarily determined by the distance driven. Some modifications of this approach also account
for where (e.g. urban, motorway) and when (e.g. night, rush hour) the policyholders drives.

4This requires data from additional sensors, such as accelerometer.
5A change in e.g. the policyholder’s address or a contractual feature results in a new contract

entry. Furthermore, since premium rates for collision and liability cover are recalculated annually,
policyholders are expected to have a separate entry at least once per year. Policyholders have on
average 3.03 and up to 14 corresponding entries.
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Figure 2.1: Available options and contract choices insurance cover against collision and
liability claims (2016)

Choice	of	insurance
cover	(young	drivers)
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Cover	for
liability	claims

Collision	
cover

Bonus	Malus	
protection	

TPL

Franchise
liability

Yes

2806	
(49.31%)

No

2884	
(50.68%)

Yes

5225	
(91.82%)

No

465
(8.17%)

1000

5650
(99.29%)

Other

40
(0.7%)

Bonus	Malus
protection
collision

Franchise	
collision

Yes

2666
(95.01%)

No

140
(4.98%)

1000

2544
(90.66%)

500

243
(8.66%)

Other

19
(0.67%)

Purchased
simultaneously
if	collision	cover

is	present

are summarized in Figure 2.1. Different deductible levels are offered for (mandatory)

liability coverage. However, a look into the data reveals that over 99% of contracts

in our dataset feature the default deductible of 1000 CHF. Therefore, the extent of

liability coverage is not an informative variable regarding insurance choice. Collision

cover is optional and is purchased in 49.31% of contracts. Various levels of deductibles

for collision claims are available but, similar to liability coverage, over 90% of contract

with collision coverage have the default deductible (1000 CHF).

As described above, premiums paid for collision and liability protection are subject

to experience rating. Interestingly, a coverage against reclassification risk is available:

A Bonus Malus reclassification following a first accident resulting in a claim can be

avoided if the policyholder purchases so-called ‘bonus protection’. If the policyholder

chooses collision coverage, bonus protection can only be bought for both collision and

liability claims jointly. 8.17% of contracts for liability claims and 4.98% of contracts

with collision cover do not have bonus protection. In the following analysis, we will
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Table 2.1: Summary statistics: Policyholder’s and vehicle’s characteristics.

mean median std Sample quantiles
min 5% 25% 75% 95% 97.5%

Policyholder’s
characteristics
Age of driver (years) 21.78 22 2.30 17 18 20 24 25.00 26.00
Bonus Malus score 13.41 13 1.17 12 12 13 14 15.00 17.00
for liability claims
No. of years without 2.84 3 2.29 0 0 1 5 7.00 7.00
first contract
No. of previous mobility
claims

0.11 0 0.43 0 0 0 0 1.00 1.00

Vehicle’s
characteristics
Price (CHF) 31351.02 28400 17142.01 0 0 22000 39600 60900.00 70300.00
Age (years) 7.01 6 5.59 0 0 2 11 17.00 19.00
Horsepower 130.63 115 56.63 45 68 90 150 240.55 291.55
Weight (kg) 1278.85 1250 227.59 785 940 1115 1410 1665.55 1787.00
Mileage 80.55 73 68.39 1 1 21 123 200.00 220.00

use collision coverage as the primary variable of insurance choice and bonus protection

as an additional variable of the level of insurance.

2.2.2 Claims Data

Among 5690 policyholders we analyze, 429 have submitted at least 1 liability claim in

2016. 6 Figure 2.2 shows the histogram of liability claim sizes. One can observe that

in 13.5% of cases the compensation did not exceed 10 CHF. We have decided not to

include them in our main analysis.7 Thus, there are in total 371 liability claims in 2016

for policyholders that actively use the drive recorder which are used in the analysis.

The summary statistics for liability claims grouped by insurance coverage are re-

ported in Table 2.2. In Table 2.2, we can observe that the liability claim rates are

lower for policyholders with collision cover compared to policyholders without collision

cover.

As noted in Section 2.2, liability claims are experience rated. Information about an

individual’s claim history is summarized by the Bonus Malus score. The Bonus Malus

6 In 353 cases, driving logs corresponding to stated accident date were available. Absence of driving
logs for accident date can be explained as follows: (1) reported accident date slightly deviates from
actual (2) policyholder decided to switch to a usage based policy following the accident involvement

7Robustness of our results with respect to the claim size threshold is explored in Section 2.3.3.
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Figure 2.2: Histogram of the size of liability claims submitted by policyholders with
active drive recorders in 2016

†33 claims that exceeded 8000 CHF and are not depicted

scores of policyholders were not provided in our dataset by the insurer, however we

estimate them with the information available about the claim history in the claims data

applying the Bonus Malus rules described in Section 2.2.8 The validity of the resulting

variable Bonus Malus class is based on the assumption that the dataset contains the

complete claim history of policyholders from our subject pool. This assumption might

be violated due to several reasons. First, due to the experience rating, individuals

have an incentive to under-report small claims. Second, the dataset does not contain

information on accidents that could have taken place before 2010. Since our analysis

is based on data for drivers younger than 26 years of age, this however does not seem

to be an important consideration. Third, neither claim history nor Bonus Malus score

of policyholders previously insured by another insurer are available.

8For every policyholder, for every insurance year with active policy the number of relevant claims
are counted. If bonus protection for a corresponding year is present, the first claim is discarded. The
number of remaining claims is multiplied by 5 ( 4 levels up + 1 to account for the fact that there is
no annual decrease in the score) added to 14 and the number of insurance years with the company is
extracted from the sum. The result is substituted by 18 (highest bm score) if it exceeds this number.
An additional input parameter of our algorithm is the claim threshold that allows us to filter out
claims not exceeding certain thresholds.
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Table 2.2: Summary statistics: Liability claims grouped by the amount of insurance
cover purchased.

Total Collision cover
Bonus protection No Yes Bonus protection

TPL collision
No Yes No Yes

Total no. of liability claims 371 32 339 216 155 7 148
Annual liability claim rate (%) 6.4 6.7 6.3 7.3 5.4 4.9 5.4
Average liability claim size (CHF) 3852 3151 3919 3497 4347 4513 4339

In the claims data, we also observe mobility claims. Mobility insurance covers

transportation and towing fees of the vehicle after a breakdown. Frequently, following

a collision, policyholders without collision insurance protection can cover some losses

using the mobility policy. The number of mobility claims may in general arise from

several factors: collision, technical problems of the vehicle or possibly reckless behavior

of the driver. Overall, information about the number of previous mobility claims may

be valuable for predicting subsequent accident occurrence.

2.2.3 Telematics Data

Description of the Data

Policyholders with the telematics usage based insurance policy are expected to install

a drive recorder in their vehicle. The device is developed by an independent telematics

company and collects detailed information about the vehicle’s motion. Under normal

conditions, it stores data on the vehicle’s location, time of the signal, distance traveled,

average speed, trip identification number, engine status and quality of the GPS signal

approximately every two kilometers. The device also constantly monitors informa-

tion from the vehicle’s accelerometers to detect elevated g-force events such as harsh

brakings, accelerations and cornerings. If certain pre-defined thresholds are exceeded,

information about the vehicle’s motion and accelerations along three principal axes is

recorded.

The telematics dataset contains approximately 390 million data points correspond-

ing to about 2.1 million days of observations for 6’773 policyholders, spanning the
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Figure 2.3: Usage of drive recorders by policyholders
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period between February 7, 2014 to December 26, 2016. To provide more background

information on drive recorder usage, Figure 2.3 displays time series data for drive

recorder usage patterns. In Figure 2.3, the green line represents the total number

of policyholders actively using the drive recorder. We thereby speak of active usage

at a certain date x if there are available driving logs from some date prior to x and

some date after x. The blue line shows the number of individuals with driving logs at

that date. The green line indicates that the adoption level of usage-based insurance

policies has been steadily increasing throughout the period March 2014 - End 2016.

High-frequency variations of the blue line can be attributed to weekly usage patterns

of the vehicle. We also observe temporal decreases during vacation seasons. Statistics

for the number of daily observations for 2016 are shown in Table 2.3.

The telematics dataset misses one important information, speed limits. Thus, we

need to infer the speed limit for every location visited during the study period to be

Table 2.3: Summary statistics: Number of the available daily observations per policy-
holder in 2016

Quantile Min 10% 25% 50% 75% 90% 95% 97.5% 99.5%

No. of days per 1 45 92 200 277 311 324 332 344
policy number
No. of observations per 1 45 81 135 213 313 392 481 744
day per policy number
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able to construct variables for speed violations. The required information on speed

limits is available from the Open Street Map (OSM) database.9 We wrote a query

to extract information about roads and corresponding speed limits via Overpass API

in Switzerland and in some neighbouring countries. The speed limit data was stored

offline. Storing the speed limit data offline had two important advantages: better

query execution time and low risk of exposing policyholder’s location information to

unauthorized third parties. However, we needed to specify the area of interest for which

the information should be extracted. The choice was guided by several factors: The

algorithm’s running time and the algorithm’s complexity were traded-off against the

estimated number of untagged points. Country codes attached to some observations

suggest that clients were driving in more than 44 countries in Europe and Africa. We

decided to load road data for the region between longitude 4.864 - 11.744 and latitude

43.135 - 48.905, since this area contained over 92% of relevant locations and had highest

average observation density. The result was a table with suggested speed limits for

5’106’076 locations. We developed an algorithm to select a speed limit from this table

for a given data point depending on the relative proximity. Distances are computed

using the haversine formula and the distance to the closest point with available speed

tag is saved to assess the precision.

The precision of speed limits for a representative subset of observations is summa-

rized in Table 2.4. Table 2.4 shows that for an average location information about

speed limit is taken from a tagged point that is approximately 17-18 meters away and

for 75% of observation the distance does not exceed 68 meters. In extreme cases for

observations outside densely populated areas and away from important roads and high-

ways, the closest speed tags can be as far as 1 - 2 km away. This however only applies

to a very small share of data points.

Around 12% of data points has speed limits not in line with official speed regu-

lations. The discrepancies were frequently very small (i.e. 34 instead of presumably

30). More strongly inconsistent speed limits were replaced by the closest official speed

9OSM is a crowdsourced spatial database, started in 2004 with an objective of creating a free,
detailed and editable map of the world. According to Mooney et al. (2017), OSM compares favorably
with other spatial databases in terms of data quality.
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Table 2.4: Summary statistics: Precision of inferred speed limits

Quantile min 10% 25% 50% 75% 95% 97.5%

Precision (km) 0 0.004 0.007 0.017 0.062 0.678 1.204
1 Based on subsample of 47464854 observations

value.

One problem in the data that could not be adressed is the potential accelerome-

ter recalibration on some vehicles: the directions of axes in the accelerometer can be

perturbed in the course of time, which might have caused some incorrect tagging of

elevated g-force events (e.g. acceleration will be recorded as harsh braking or corner-

ing).

Variables created from the Telematics Data

In the current subsection we describe and summarize how the logs from the telematics

device are used to quantify a policyholder’s driving characteristics. The goal is to

create a set of variables that capture all important dimensions of driving characteristics

affecting risk.

As a starting point, we consider variables frequently used in telematics-based in-

surance policies. In "Pay-as-you-drive" policies, the insurance price typically depends

on distances driven, sometimes with different weighting factors for the time of the day

and the road type. In "Pay-how-you -drive" contracts, a higher emphasis is put on

the ‘quality of driving’ reflected by average speed, speeding and number of elevated

g-force events. To these variables used for pricing in existing telematics-based policies,

we add variables from the literature featuring telematics data. Ayuso et al. (2016) use

average distance per day, percentage of urban and night driving and percentage of km

driven above the speed limit. The authors conclude that speed violations, urban and

nighttime driving have a significant effect on reducing the time to the first accident

at fault. Kremslehner and Muermann (2016) extract information on the number of

journeys per day, the percentage of weekend driving and average speeding. They find

that the first two are positively associated with a higher probability of a Bonus Malus

reclassification.
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Table 2.5: Information from driving logs used for distance calculation

Notation
Variable Observation frequency

Available for

lati, loni latitude and longitude of the observation available for all data points i ∈ {0, Ntot}
timestampi time of the observation

(hour : min : sec)
available for all data points i ∈ {0, Ntot}

mti meters traveled irregular, approximately every 2 km i ∈ I1
spoint
i point speed irregular, measured with spoint end i ∈ I1
spoint endi point speed at the end of the event irregular, measured with spoint i ∈ I1
saveragei average speed of the last point irregular, missing when spoint

is provided
i ∈ I2

telapsedi time elapsed irregular, missing when spoint

is provided
i ∈ I2

Ntot total number of observations during
the day

The variables we create from the telematics dataset describe 5 important aspects of

driving characteristics: distances driven, average speed, number of journeys, elevated

g-force events and speed violations. We additionally consider variables that specify the

above driving behavior for certain locations (e.g. speeding in the urban areas) or times

of the day (e.g. distance driven during the night).

Calculating precise distances driven based on the driving logs is not straightfor-

ward. The telematics dataset has several groups of measurements that can be used

to approximate distances driven. Some of these measurements are available for every

data point, others were measured irregularly (see summary in Table 2.5). Most no-

tably information on the meters traveled was recorded on average every 2 km, which

could result in over- or underestimation of distances driven on a specific road type or

during certain time periods. To address this problem we use four different approaches,

summarized in Table 2.6. The purpose is twofold: First, the average of the created

distance variables is likely to be more precise, and second, the four measures can be

used to cross check each other. Table 2.7 shows summary statistics for the distance

variables obtained using the four different approaches. Algorithm 1, 3, 4 result in

similar estimates whereas Algorithm 2 yields higher values. The discrepancy might be

caused by the properties of the haversine distance formula used to compute distances

between observations. In the subsequent analysis, to evaluate the distance we average

results of Algorithm 1, 3, 4.

Assessing average speed posed several challenges as well. First, Table 2.5 suggests
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Table 2.6: Different approaches to compute distance driven

Distance formula Comments

Dist1 =
∑

i∈I1
mti
1000

imprecise since mti is measured irregularly

Dist2 =
∑Ntot

i=1 CoordDist(lati, loni, lati−1, loni−1) results in the lower bound of distance driven by the vehicle

Dist3 =
∑

i∈I2 s
point
i (timestampi − timestampi−1)

Dist4 =
∑

i∈I1 s
average
i telapsedi imprecise due to speed variations during aggregation period

there are multiple variables that reflect different aspects of vehicle’s speed: spointi is the

speed of the vehicle at the location (lati, loni), whereas saveragei is the average speed be-

tween two subsequent observations. Second, since measurements are taken at unequal

frequency, to get unbiased estimates of average speed during certain timespan we need

to apply weights to individual observations. Data points can be weighted with respect

to distance traveled (measured in 2 different ways) or time elapsed between subsequent

measurements. The general formula for average speed computation, alongside with

further details is given in Table 2.8.

Speed violations are important predictors of accident involvement in previous stud-

ies (Kremslehner and Muermann (2016), Ayuso et al. (2016)). To evaluate speeding

behavior we have extracted speed limits from Open Street Map Database, as described

in the previous subsection. We describe it by two types of variables. Similar to Ayuso

et al. (2016), we compute percentage of driving above the speed limit. Kremslehner

and Muermann (2016) suggests another indicator: average speeding that summarizes

by how much speed limits are exceeded. We slightly modify this predictor by taking

weighted average of speeding with respect to distance driven.

Originally, the number of journeys per day was calculated as a number of distinct

trip id’s per day that coincided with the number of times the engine was switched

on. The approach resulted in an extremely high number of journeys for certain days,

where either the length of a journey or the length of a stop were less than a minute.

This could result from a start-stop system implemented in some vehicles: the engine

is automatically shut down when the car stops to reduce the fuel consumption and

emission. Consequently stops at a stop light or in a traffic jam could inflate the number
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Table 2.7: Predictors aggregated on the annual basis, obtained using different compu-
tation procedures

Quantile
5% 10% 25% 50% 75% 97.5%

Distance calculation
Algorithm 1 1051.04 1859.75 4337.54 8664.77 13792.03 25717.65
Algorithm 2 1167.63 2092.79 4826.63 9493.42 14944.94 28560.24
Algorithm 3 1051.41 1860.17 4336.51 8664.97 13792.99 25717.90
Algorithm 4 1035.93 1840.52 4359.39 8700.72 14196.41 27505.90

Speed calculation
Algorithm 1 35.36 39.42 45.62 52.56 60.94 80.04
Algorithm 2 11.96 13.78 16.76 20.36 24.72 34.19
Algorithm 3 26.59 29.01 33.05 37.54 41.65 49.31
Algorithm 4 30.97 34.92 41.90 49.56 58.93 79.24
Algorithm 5 19.00 21.52 25.99 31.48 37.45 51.71

Number of journeys per day
Trip duration 20 stop duration 120 89.00 157.60 339.00 693.00 1048.00 1743.00
Trip duration 20 stop duration 60 91.00 163.00 351.00 714.00 1078.00 1809.60
Trip duration 30 stop duration 120 89.00 157.60 339.00 693.00 1048.00 1741.20
Trip duration 30 stop duration 60 91.00 163.00 351.00 714.00 1078.00 1809.00

Number of accelerations
Threshold = 0 86.80 178.00 482.00 1211.00 2560.00 7044.80
Threshold = 1 86.00 178.00 479.00 1202.00 2551.00 7021.60
Threshold = 2 85.80 176.00 473.00 1186.00 2518.00 6909.20
Threshold = 10 78.00 161.60 428.00 1066.00 2172.00 5798.00

Number of brakings
Threshold = 0 214.80 453.00 1132.00 2456.00 4321.00 9071.20
Threshold = 1 213.60 450.00 1127.00 2436.00 4299.00 9030.60
Threshold = 2 210.60 442.00 1113.00 2400.00 4241.00 8895.80
Threshold = 10 195.80 419.60 1051.00 2263.00 3959.00 8130.60

Number of cornerings
Threshold = 0 976.60 1765.20 4055.00 8255.00 13288.00 26536.60
Threshold = 1 957.40 1751.00 4033.00 8235.00 13224.00 26500.40
Threshold = 2 950.40 1728.20 3991.00 8156.00 13058.00 26169.80
Threshold = 10 726.40 1345.80 3017.00 6058.00 9653.00 17557.80

Table 2.8: Summary of approaches to assess average speed of the vehicle

Speed Type Speed Variable Weight Observations
(svi) (wi)

Speedtype =

∑
sv

type
j w

type
j∑

j w
type
j

1 saveragej mtj j ∈ I1

2 spoint
j timestampj − timestampj−1 i ∈ I1

3 spoint
j CoordDist(latj , lonj , latj−1, lonj−1) i ∈ I1
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journeys per day. To account for this, we have introduced two thresholds: the stop

duration threshold and the trip duration threshold. Only journeys that exceeded the

trip duration threshold and with the previous stop exceeding stop duration threshold

were evaluated as separate journeys, whereas journeys that did not fulfill these criteria

were merged with preceding journeys. We considered different combinations of trip and

stop duration thresholds mentioned in the literature (e.g. Ippisch (2010)). Table 2.7

suggests that in our dataset this choice does not have a strong impact on the resulting

predictor values. In our subsequent analysis, we use the trip duration threshold equal

to 30 seconds and the stop duration threshold of 120 seconds.

In contrast to previous studies with drive recorder data (Ippisch (2010), Ayuso

et al. (2016), Kremslehner and Muermann (2016) our dataset contains information

about a vehicle’s accelerations. Existing literature suggests that elevated g-force events

are positively related to accident occurrence, as they decrease the time available to

respond to hazards (Dingus et al. (2006)) and make vehicle motion less predictable

for other road users, reducing the safety margins (Simons-Morton et al. (2011)). We

will therefore add variables based on the accelerometer data to the analysis. First,

we consider the frequency of elevated g-force events. Again, this requires a careful

adjustment of the data. Some drive recorders registered several cornering events within

a second, several accelerations and brakings within 2-3 seconds. Consequently, a higher

number of elevated g-force events might be partly caused by properties of the device

and not by the policyholder’s driving behavior. We have decided to count all events

of a certain type within the time span of several seconds as a single event. The total

number of elevated g-force events with respect to different time span thresholds are

summarized in Table 2.7. Acceleration and cornering counts are more sensitive to the

choice of threshold. The driving logs contain additional information about elevated

g-force events. The device records point speed at the start and at the end of an

event, which can be used to evaluate its severity. Furthermore, accelerations and harsh

braking at a higher speed might be more dangerous, thus we create a separate variable

to capture this information.

In the regression analysis, all variables are aggregated over 2016 (see also discussion
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Table 2.9: Summary statistics: Driving indices

mean median std Sample quantiles
min 5% 25% 75% 95% 97.5%

General characteristics

Average distance per day
(active)

53.03 49.25 23.70 2.60 22.65 36.32 65.09 95.70 109.09

No. of journeys per day
(active)

3.96 3.80 1.06 1.26 2.60 3.23 4.47 5.91 6.47

Journey time and location

Weekend driving percentage 0.30 0.29 0.12 0.00 0.12 0.22 0.36 0.52 0.58

Urban driving percentage
(speed=50)

0.31 0.29 0.14 0.01 0.12 0.21 0.39 0.56 0.63

Night driving percentage 0.06 0.04 0.06 0.00 0.00 0.01 0.08 0.18 0.22

Speed and Speeding

Average speed (type 1) 62.25 61.84 12.95 2.61 42.18 54.30 70.61 83.62 88.02

Percentage of driving above
speed limit

0.22 0.21 0.11 0.00 0.06 0.14 0.29 0.41 0.45

Average speeding (weighted) 12.31 11.79 3.44 3.77 7.86 9.93 14.04 18.58 20.59

Percentage of driving above
speed limit in urban areas
(type 1 adjusted

0.33 0.31 0.13 0.03 0.14 0.23 0.40 0.57 0.63

Average speeding in urban ar-
eas (relative)

1.23 1.16 0.31 0.18 0.93 1.05 1.33 1.80 2.02

Characteristics of ele-
vated g-force events
No. of accelerations per km
(tr=2)

0.20 0.16 0.18 0.00 0.03 0.08 0.27 0.55 0.69

No. of braking per km (tr=2) 0.33 0.29 0.20 0.00 0.09 0.20 0.42 0.69 0.81

Average speed difference after
acceleration

10.97 10.49 2.55 0.00 7.87 9.32 12.09 16.13 17.59

Average speed at the
beginning of accelerations

14.34 13.82 6.47 0.00 4.41 9.74 18.43 25.82 28.31

Average speed difference after
braking

-14.39 -14.37 2.01 -23.22 -17.61 -15.67 -13.11 -11.38 -10.76

Average speed at the
beginning of braking

37.00 37.03 5.74 0.00 28.18 33.41 40.67 46.17 47.91

in Section 2.2.4). The total distance driven and the total number of journeys are divided

by number of days when according to the drive recorder the vehicle was used. Speeds

and speedings are averaged over all observations, the number of events is divided by

total distance driven. Table 3.1 shows the summary statistics for the created telematics-

based driving variables.

2.2.4 Aggregation of Information from all Datasets

The original datasets contain multiple observations for every policyholder correspond-

ing to different time periods. Furthermore, for individuals with available driving logs,
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observation periods, marked by the dates of the earliest and the latest drive recorder

entries, vary significantly. To account for these differences, we have looked at several

alternatives. First, similar to Kremslehner and Muermann (2016), we could select a

fixed study period and analyze only policyholders with driving logs available through-

out this whole time span. This approach introduces the following trade-off: A shorter

period increases the number of policyholders that satisfy the selection criteria (number

of observations), but the number of submitted liability claims decreases. The second

possibility is to aggregate independent variables in such a way that the results are

unaffected by the length of the observation period per se (i.e. use average no. of km

per day instead of total distance driven). This entails the problem that variables ob-

tained by processing different numbers of original observations might have non-equal

variances. However, once more than a certain number of days are observed, the quality

of information about driving characteristics should not improve significantly. If this

holds, aggregated driving patterns for policyholders with more than N days of driving

logs have the same variance and excluding other policyholders from our analysis should

be sufficient to avoid biases. We we will use this approach.

The observation period duration likewise affects the distribution of the dependent

variable. The risk realization within a pre-specified timespan is determined by both its

length and hazard rate. Since we are interested in the hazard rate, to ensure that the

impact of independent variables is not attenuated, the risk exposure periods should

not vary too much.

In light of these considerations, we consider data from the year 2016 for policyhold-

ers with at least 10 days of driving logs. To decrease potential noise, we also consider

only liability claims exceeding 10 CHF. Robustness of our results with respect to the

choices of number of available telematics observations adn liability claim threshold is

discussed in Section 2.3.3.

Among the remaining policyholders with available contract data and driving logs

corresponding to 2016, 212 were older than 26, which on the first glance appears strange

considering that this type of contract was offered exclusively to drivers younger than

26. The presence of drivers older than 25 years old can be explained by two factors:

26



2.2. Data and Empirical Approach

first, in order to increase the degree of anonymity exact birth dates were replaced

by some random dates within the same year, second - the device was used by some

employees of the company. Consequently we can conclude that all employees older

than 26 years old work for the insurer and we exclude them from the analysis to

decrease the potential for selection bias. The filtering steps applied to our dataset are

summarized in Table 5.6 in the Appendix. Table 2.2.4 provides an overview with the

descriptions of variables created from the datasets. To improve readability, variables

with self-explanatory labels are not included.

2.2.5 Empirical Approach

The main focus of our analysis is whether adding the telematics data can improve our

understanding of risk factors, and in particular which information might be sensibly

used in insurance design. We will also conduct the tests for asymmetric information.

For the analysis of risk factors, liability claims both imply culpability of the driver

and are observed for all policyholders.10 Thus in the subsequent analysis a liability

claim submission will be used to model risk realization. As only a very small fraction

of policyholders submitted multiple liability claims, ex post risk during the considered

time period is modeled as a binary variable. Furthermore, following the discussion in

Section 2.2.2, we have decided not to count claims less or equal 10 CHF in our main

analysis.

To test for asymmetric information, following Chiappori and Salanie (2000) and

Finkelstein and Poterba (2014), we use the positive correlation test and the unused

observables test respectively. The positive correlation test and the unused observables

test require fitting a system of regression equations that model ex post risk realization

and choice of insurance cover. Given our data, the level of the deductible for liability

claims cannot be used for the choice of insurance coverage as there is not enough

variation. For the choice of insurance coverage, we therefore use Purchase of collision

cover (CollisCover) and Purchase of bonus protection for TPL claims(BM TPL). Both

decisions are represented by binary variables, whereby 1 stands for the presence of
10Contrary to that, i.e. collision claims are only observed for policyholders with collision coverage
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insurance coverage.

We can now introduce our econometric model. The dependent variables are binary

and thus can be modeled by the following system of probit equations:

LiabClaim = I(Xα1 + Y β1 + ε1 > 0) (2.1)

BM TPL = I(Xα3 + Y β3 + ε3 > 0) (2.2)

CollisCover = I(Xα2 + Y β2 + ε2 > 0) (2.3)

The variables in the regression model can be divided into two groups. The first

group (X) comprises variables created based on traditional information collected for

risk classification and stored in the contract and claims datasets. The set of telematics

based predictors is denoted by Y .

Regarding the question of asymmetric information, the logic of the positive cor-

relation test is that the data provides evidence of asymmetric information between

policyholer and insurer if there is statistically significant correlation between either ε1
and ε2 or ε1 and ε3. The test however might not be able to detect hidden information

under multiple dimensions of asymmetric information, most notably if both risk and

risk preferences are heterogeneous and private information.11 To address some of the

test’s limitations, Finkelstein and Poterba (2014) introduced the unused observables

test. The logic of the test is that finding a variable that a) is not used by the insurer

for risk classification ("unused observable") and b) is statistically significant for pre-

dicting both insurance cover choice and ex-post risk realization provides evidence of

an information asymmetry. In our setting, it amounts to testing the null hypothesis

β1 = β2 = 0 or β1 = β3 = 0.

For the unused observables test there need to exist variables that are not used for the

premium calculation. In the insurance contracts at hand, the telematics data is used to

calculate annual driving scores to rank policyholders. The annual ranking determines

the premium discount in the subsequent year, which has three possible levels. The

scoring algorithm is proposed and implemented by an independent telematics company.
11See e.g. Finkelstein and Poterba (2014) for a detailed discussion.
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The scores are largely determined by the number of the elevated g-force events (e.g.

accelerations, harsh brakings, cornerings) per km driven.12

Availability of the raw telematics data to the insurance company, as noted by Krem-

slehner and Muermann (2016), could lead to biases in our analysis in case when this

information is used in other types of underwriting activities, most notably when pol-

icyholders are offered different contracts depending on the observed driving patterns.

This seems to be unlikely in our setting due to several factors: first, the telematics

usage based insurance contracts were offered quite recently, therefore it is unlikely that

the company had time to adjust its trading strategies in view of the new available

information. Second, in contrast with Finkelstein and Poterba (2014) and Saito (2006)

telematics data is not available to the insurance company prior to signing the policy.

2.3 Results

2.3.1 Main Results

We fit a trivariate probit model given by Equations (2.1) - (2.3).13 Table 2.11 contains

the results of the trivariate probit model. The upper part of the table shows the

coefficients of traditional risk classification variables and further variables from the

insurance contract dataset.

We start with risk factors for liability claim submission and the role of telemat-

ics variables in predicting it. Table 2.11 compares models fitted with and without

telematics-based variables. To compare the nested models we use the AIC scores. Wa-

genmakers and Farrell (2004) transform the AIC scores to AIC weights that can be

directly interpreted as conditional probabilities for each model. The resulting AIC

weights for the two models suggest that the full model is superior with probability over
12We cannot disclose the full scoring algorithm. For the argument, the important point is that

the scoring algorithm, and therefore ranking and pricing is to a great extent determined by elevated
g-force events per km driven only.

13A concern regarding the telematics variables is multicollinearity. Table 5.3 in the Appendix
provides the correlation matrix with variance inflation factors of telematics variables. Despite the fact
that some pairs of independent variables have weak to moderate correlation coefficients (0.3 - 0.6),
variance inflation factors indicate that this multicollinearity does not affect significance tests.
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99.9%. Figure 5.1 in Appendix 5 shows the corresponding ROC curves for the liabil-

ity claim submission models. Thus, the information provided from telematics data is

valuable to model risk measured by liability claim occurence.

Looking into the results of the full model in Table 2.11 (left columns), we observe

that both average distance per day (active) and no. of journeys per day (active) have

a positive and statistically significant effect on accident involvement. Note that both

variables reflect risk exposure, as opposed to driving style. The result for no. of

journeys per day active mirrors the result in Kremslehner and Muermann (2016).

Regarding the variables that describe driving style only average speeding (weighted)

and percentage of driving above speed limit (type 1 adjusted) are significant. Surpris-

ingly, neither number nor characteristics of elevated g-force events are relevant. Fur-

thermore, our analyses revealed that average speeding (weighted) is not statistically

significant unless information about speeding behavior in urban areas is included in

the model. An explanation for this finding could be the following: under normal cir-

cumstances a driver violates speed limits either if he is negligent and prone to risk

taking or if the limits are too stringent. Urban areas have more stringent speed re-

striction, thus a person driving 40 km/h can exceed allowed speed by e.g. 20 km /h.

Arguably, this type of driving has different implications for the hazard rate than driv-

ing 140 km/h on a motorway. Adding information about speed violations in urban

areas could help to separate the two cases. This could also partly explain why average

speeding is not a significant predictor in the model of Kremslehner and Muermann

(2016).14

Our results suggest a weakly significant negative effect of weekend driving percent-

age. Weekend driving could be used as a proxy for two important risk factors. On the

one hand, people driving during weekends might be less experienced (Sunday drivers

effect), thus higher weekend driving percentage should be associated with higher risk.

On the other hand, traffic intensity during weekends tends to be lower than during the

14 Kremslehner and Muermann (2016) evaluate speeding by comparing point speed with countrywide
speed limits per road type. This approach is imprecise since local speed limits might be lower in
certain urban areas, or on more dangerous roads. Consequently predictors used by Kremslehner and
Muermann (2016) might underestimate average speeding.
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week, therefore people who drive predominantly on weekends drive with less traffic and

consequently have a smaller accident probability. Since all policyholders in the dataset

are relatively inexperienced, the result suggests that the relevant factor is lower traffic

intensity.

Statistical significance does not necessary imply relevance. To illustrate the role of

significant telematics variables, we compute claim submission probabilities for their

sample quantiles while keeping other variables at the mean. Another way to assess

variable’s influence is to see by how much predictions vary relative to the accident

probability computed from regression model without the drive recorder data (‘small

mode’). This comparison highlights the extent of the imprecision from the absence

of drive recorder data in the regression model. This information can be found as the

respective third line in Table 2.12, (% of default probability).

The largest spread of predicted probabilities corresponds to the variable No. of

journeys per day (active). Undertaking on average 2.8 journeys per day (10% sample

quantile) instead of 5.9 (95% sample quantile) decreases claim submission probability

by almost the factor of two from 8.7% to 4.4%. The values vary from 48% to 161.6%

relative to probability computed using the ‘small regression model’ (line 6 in Table

2.12).

Both average speeding (weighted) and average distance per day (active) have a size-

able impact on liability claim submission. Using different sample quantiles, we obtain

values ranging from 3.6% to 8% for average speeding (weighted) and from 3.6% to 8.8%

for average distance per day (active). The effects of weekend driving percentage and

percentage of driving above speed limit are less pronounced with differences in predicted

probabilities amounting to approximately 3%.

With respect to standard risk classification variables, in both models with and

without telematics variables, older drivers are associated with a lower probability of

liability claim submission. This finding is consistent with older drivers being more ex-

perienced drivers. Furthermore, newer vehicles are associated with a lower probability

of liability claim submission. We also observe that the probability of a liability claim

is significantly higher if there was a recent change of address. A possible explanation
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of this finding is that following a change in address, the policyholder drives in a less

familiar area which adversely affects accident risk. Interestingly, no. of years without

first contract has a (weakly) significant positive effect. There are two possible expla-

nations that could account for this result: First, it might indicate an inexperienced

driver. Second, it could also be the case that the policyholder already had a previous

insurance contract with another insurer and recently switched insurers. In the latter

case, the result would indicate switching of a higher risk individual. However, we can-

not disentangle these two effects. In the absence of telematics variables, the magnitude

and, e.g. for recent change of address, the significance level of these variables slightly

increase. We furthermore find that the claim history, reflected by the Bonus Malus

Score TPL and no. of previous mobility claims, is not statistically significant in both

regression models with and without telematics based variables. At first glance, this

finding seems surprising. However, since the sample consists of young drivers, the past

claim history does not yet contain a lot of information about the policyholder’s risk

type.

We now turn to the results for contract choice displayed in the middle and right

columns of Table 2.11. With respect to variables from the insurance contract dataset,

women are associated with a higher probability to purchase collision cover and BM

protection. This finding could reflect a higher risk aversion of women.15 Note that the

left columns of Table 2.11 show that gender is not significantly associated with liability

claim occurence. The results furthermore show that vehicle age is negatively and a

leasing contract positively associated with collision coverage and BM protection. We

also find that age is significantly positively related to the purchase of collision cover.

Combined with the result of a negative effect of age on risk, this suggests that the

underlying driver is not risk type.

Regarding the telematics variables, a higher no. of journeys per day is associated

with a significantly higher propensity to purchase collision cover and BM protection.

15Several experimental studies have found gender differences in risk preferences with more averse
choices by women. However, in surveying the literature Filippin and Crosetto (2019) find that gender
differences are less ubiquitous than often discussed and systematically correlate with the features of
the elicitation method used.
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A higher no. of journeys per day also has a significant positive effect on liability

claim submission. The number of journeys per day is thus positively related to both

risk and coverage, consistent with the presence of asymmetric information given the

existing risk classification and contracting. Importantly, the number of journeys does

not enter the scoring and thus relative ranking of the policyholder that is the basis

for premium adjustments. We find the opposite result for average distance per day

(active). The average distance is significantly positively related to risk but negatively

to the purchase of insurance coverage. A possible explanation behind this result for

the average distance per day could be overconfidence as modelled in Sandroni and

Squintani (2013), who suggest that some policyholders might be overconfident and

underestimate their risk level. Individuals who drive longer distances (average distance

per day (active)) could thus be overestimating their driving skill and purchasing less

insurance coverage. Overall, we furthermore also observe telematics based variables

that are statistically significant in the risk regression, but that do not appear to be

systematically associated with the insurance choice, and vice versa.

The results of the positive correlation test are shown in Table 2.13 in which the

correlation coefficients between residuals from Equation (2.1) and Equation (2.2) or

respectively (2.3) alongside confidence intervals for significance tests are shown. The

positive correlation test fails to detect asymmetric information, both without and with

telematics variables included.

The combination of the above findings indicates that strong caution is required

for the interpretation of results: Different dimensions of risk type, preferences, per-

ceptions and information seem to interact. In particular with respect to information

about and perception of accident risk factors, an important question is how well the

policyholders in our sample—all under the age of 26 years with only a few years of

driving experience—understand these risk factors.

2.3.2 Older vs. Younger Drivers

In the previous subsection we did not distinguish between inexperienced, younger

drivers and more experienced, older drivers who might have a better understanding
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of their driving behavior and risk type. The purpose of this section is therefore to

stratify the dataset with respect to experience, fit the trivariate probit models on these

subsets of data and contrast the results.

To capture experience, the most direct proxy is the driving license issuance date,

however we do not possess this information. If the majority of policyholders started

driving upon reaching the age of 18, stratification with respect to age is a reasonably

good proxy. A second option is to infer experience based on the aggregate policy

duration, under the premise that policyholders do not change the insurance company.

For this option, low switching costs and the commodity-like nature of automobile

insurance however imply caution when interpreting the results.

For the selected proxies for driving experience, a threshold that separates more

and less experienced policyholders needs the be selected. This choice is constrained

by the following practical considerations: to obtain numerically stable results it is

desirable to have sufficient amount of claims and observations for every subgroup.

Table 2.14 reports this statistics for various feasible options of durational thresholds.

The distribution of aggregate contract duration in our dataset is right skewed and for

any meaningful choice of threshold, the subgroup of policyholders that have longer

contracts is relatively small, thus we won’t analyze them further. For three other

subgroups, we perform our inference for all plausible durational threshold choices to

ensure that the conclusions are robust.

Table 2.15 compares the means of selected telematics variables reflecting driving

patterns by experience. Older policyholder have a slightly higher distance driven per

day, and a higher average speed (type 1).

The results of the fitting trivariate probit models on subsamples by age for different

separation thresholds are summarized in Table 2.16. For a better readability, it is only

reported whether and at what level the variables are statistically significant. Table 5.5

in the Appendix provides the coefficients.

Table 2.16 shows that the number of journeys (active) and average speeding (weighted)

are statistically significant risk factors increasing liability claim occurence for young

drivers. For older drivers, additionally the average distance per day (active) and, de-
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pending on the threshold, the percentage of driving above the speed limit and night

driving percentage are additional risk factors. The results for insurance demand cor-

respond to those of the pooled sample and are largely the same for both older and

younger drivers. In particular, a higher number of journeys is associated with a higher

demand for collision cover and BM protection for both younger and older drivers and

a higher average distance per day is negatively related to insurance demand. Thus,

while the insurance demand patterns do not change across the two subsamples, the

analysis picks up more significant risk factors for older drivers. These pertain both

to risk exposure (average distance per day) and night driving percentage, as well as to

driving style (percentage of driving above the speed limit).

These results also suggest caution to interpret the findings as relevant asymmetric

information in the form of the policyholder having superior information about risk type

or preferences that affects selection in a systematical manner for insurer profits: While,

at least stastistically, more risk factors are highlighted for the subset of older—yet still

relatively inexperienced—drivers, we do not observe different patterns in insurance

contract choice.
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Table 2.10: Description of explanatory variables used in the regression analysis.

Variable Description

Recent change of address: true Did policyholder changed his address during insurance
year ?

No. of years without first contract How many years passed between driver turning 18 and
getting the first contract with the insurer

No. of previous mobility claims How many mobility claims did driver submit prior to the
beginning of insurance year

Average distance per day (active) Average distance driven during the days when the vehicle
is used

No. of journeys per day (active) Average no. of journeys during the days when the vehicle
is used

Average speed (type 1) Average speed of vehicle, calculated using Algorithm 1

Weekend driving percentage Ratio of distance driven on a weekend to total distance
driven

Urban driving percentage (speed = 50) Ratio of distance driven in urban area to total distance
driven. All areas with speed limit ≤ 50km/h are classi-
fied as Urban

Night driving percentage Ratio of distance driven during the night to total distance
driven.

Percentage of driving above speed limit
(type 1 adjusted)

Ratio of distance driven above speed to total distance
driven. Speed limits obtained from OSM database are
adjusted to conform with Swiss speed restrictions

Average speeding (weighted) Average of speeding with respect to adjusted speed limits,
weighted by the distances driven

No. of accelerations per km (tr = 2) Average no. of accelerations per km driven, whereby sev-
eral accelerations registered within the timespan of 2 sec-
onds are counted as 1

No. of braking per km (tr = 2) Average no. of braking per km driven, whereby several
accelerations registered within the timespan of 2 seconds
are counted as 1

Average speed at the beginning of ac-
celerations

Average speed at the beginning of acceleration event

speed difference after accelerations Difference between the vehicle’s speed after and before
acceleration

1 Variables with self-explanatory names are not included.
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Table 2.11: Coefficients of fitted probit models (with and without telematics based
predictors)

liability claim (> 10CHF ) BM protection Collision cover

Traditional Insurance Variables

Sex of driver: female −0.031 0.029 0.106∗∗ 0.136∗∗ 0.368∗∗∗ 0.361∗∗∗

(0.056) (0.059) (0.053) (0.056) (0.056) (0.059)
Age of driver −0.061∗∗∗ −0.053∗∗∗ −0.002 0.001 0.122∗∗∗ 0.119∗∗∗

(0.018) (0.019) (0.020) (0.020) (0.018) (0.018)
Vehicle: age 0.020∗∗∗ 0.020∗∗∗ −0.009 −0.009 −0.289∗∗∗ −0.291∗∗∗

(0.007) (0.007) (0.006) (0.007) (0.011) (0.011)
Vehicle: horsepower −0.000 −0.000 −0.001 −0.002∗∗∗ 0.001∗ 0.000

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
Vehicle: weight 0.000 0.000 −0.000∗∗ −0.000 −0.001∗∗∗ −0.001∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Vehicle: price 0.000 −0.000 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Vehicle: mileage −0.000 −0.001 −0.001∗∗ −0.001∗∗∗ −0.003∗∗∗ −0.004∗∗∗

(0.001) (0.001) (0.000) (0.000) (0.001) (0.001)
Leasing contract: true 0.059 −0.027 0.173∗∗ 0.194∗∗ 1.143∗∗∗ 1.184∗∗∗

(0.080) (0.083) (0.082) (0.085) (0.129) (0.133)
Recent change of address: true 0.151∗∗ 0.119∗ −0.114∗ −0.082 −0.043 −0.024

(0.069) (0.070) (0.065) (0.067) (0.071) (0.072)
Bonus Malus Score TPL −0.002 −0.011 0.050∗∗ 0.061∗∗ 0.016 0.021

(0.023) (0.024) (0.024) (0.025) (0.023) (0.023)
No. of years without first contract 0.036∗∗ 0.030∗ −0.095∗∗∗ −0.079∗∗∗ −0.086∗∗∗ −0.075∗∗∗

(0.017) (0.017) (0.020) (0.019) (0.016) (0.017)
No. of previous mobility claims −0.026 −0.040 0.196∗∗ 0.185∗∗ −0.047 −0.038

(0.069) (0.071) (0.083) (0.084) (0.062) (0.063)

Telematics-Based Predictors

Average distance per day (active) 0.004∗∗∗ −0.009∗∗∗ −0.006∗∗∗
(0.002) (0.001) (0.002)

No. of journeys per day (active) 0.112∗∗∗ 0.125∗∗∗ 0.087∗∗∗

(0.027) (0.030) (0.030)
Average speed (type 1) −0.002 0.002 0.002

(0.003) (0.003) (0.003)
Weekend driving percentage −0.449∗ −0.294 −0.347

(0.241) (0.208) (0.220)
Urban driving percentage (speed=50) −0.124 0.246 −0.174

(0.300) (0.294) (0.290)
Night driving percentage 0.589 1.389∗∗∗ −0.206

(0.450) (0.461) (0.450)
Percentage of driving above speed limit 0.610∗ 0.216 0.669∗

(type 1 adjusted) (0.348) (0.332) (0.350)
Average speeding (weighted) 0.022∗∗ −0.025∗∗∗ −0.005

(0.009) (0.008) (0.009)
Percentage of driving above speed limit −0.382 0.151 −0.025
in urban areas (type 1 adjusted) (0.292) (0.272) (0.283)
Average speeding in urban areas (relative) −0.107 0.081 −0.006

(0.109) (0.098) (0.100)
No. of accelerations per km (tr=2) 0.147 −0.196 −0.267

(0.178) (0.179) (0.175)
No. of braking per km (tr=2) 0.164 −0.053 −0.062

(0.179) (0.177) (0.181)
Average speed at the beginning of accelerations −0.001 −0.004 −0.015

(0.013) (0.013) (0.013)
Average speed difference after acceleration 0.001 0.020∗∗∗ 0.020∗∗∗

(0.006) (0.006) (0.006)
Average speed difference after braking 0.008 −0.014 0.023

(0.018) (0.017) (0.017)
Average speed at the beginning of braking 0.002 0.002 −0.008

(0.007) (0.007) (0.007)

McFadden Pseudo R2 0.012 0.036 0.060 0.093 0.611 0.616
Maximum VIF 2.780 3.230 3.380 3.270 3.890 4.170
AIC weights 0 1 0 1 0 1

Observations 5,690 5,690 5,690 5,690 5,690 5,690
Akaike Inf. Crit. 2,721.309 2,685.674 3,052.881 2,977.527 3,093.275 3,083.956

Notes: ∗∗∗Significant at the 1 percent level.
∗∗Significant at the 5 percent level.
∗Significant at the 10 percent level.
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Table 2.12: Predicted probability of an annual liability claim submission for selected
variables set to their sample quantiles

Quantiles
min 10% 25% 5% 75% 95% 97.5%

Average distance value of predictor 1.375 26.811 36.081 49.070 65.092 95.900 105.059
per day predicted probability 0.036 0.045 0.049 0.055 0.063 0.081 0.088
(active) % of default probability 61.3 77.6 84.4 94.6 108.6 139.9 150.4

No. of journeys value of predictor 1.000 2.802 3.209 3.784 4.467 5.911 6.302
per day predicted probability 0.028 0.044 0.048 0.055 0.064 0.087 0.094
(active) % of default probability 48.0 75.0 82.6 94.3 109.9 149.3 161.6

Weekend driving value of predictor 0.001 0.158 0.221 0.287 0.368 0.535 0.585
percentage predicted probability 0.074 0.065 0.061 0.058 0.054 0.046 0.044

% of default probability 127.5 111.4 105.3 99.3 92.3 79.0 75.4

Percentage of driving value of predictor 0.000 0.084 0.134 0.205 0.284 0.409 0.441
above speed limit predicted probability 0.043 0.048 0.051 0.056 0.062 0.072 0.074
(type 1 adjusted) % of default probability 74.6 83.0 88.4 96.6 106.3 123.3 127.9

Average speeding value of predictor 2.591 8.526 9.892 11.762 14.029 18.586 20.063
(weighted) predicted probability 0.036 0.048 0.051 0.056 0.062 0.075 0.080

% of default probability 62.2 82.5 87.8 95.6 105.7 128.6 136.8

Table 2.13: Correlation coefficients of residuals

with without
telematics predictors

ρliab,BM 0.0011 -0.0102
(−0.0248, 0.0272) (−0.0362, 0.0158)

ρliab,Col -0.012 -0.0006
(−0.0379, 0.0139) (−0.0267, 0.0253)

Table 2.14: Number of available claims and observations for more and less experienced
drivers depending on selection criteria and durational threshold.

Older drivers Younger drivers Contract duration
(Age ≥ Age Break) ( Age < Age Break) (<Threshold)

Threshold (years) 20 21 22 23 20 21 22 23 1 2 3
No. of policyholders 4750 4040 3229 2377 1182 1892 2703 3555 1679 3615 5103
No. of claims 279 237 182 135 96 138 193 240 103 249 338
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Table 2.15: Comparison of driving patterns between older (≥ 22) years of age) and
younger (< 22 years of age) drivers

Variable
Younger (< 22) Older (≥ 22) contract since less than 2 years

Average distance per day
(active)

50.953 54.537 53.634

No. of journeys per day
(active)

3.956 3.939 3.974

Average speed (type 1) 59.934 63.697 61.034
Weekend driving percentage 0.306 0.301 0.310
Urban driving percentage
(speed=50)

0.329 0.297 0.324

Night driving percentage 0.056 0.057 0.054
Percentage of driving above
speed limit (type 1 adjusted)

0.206 0.224 0.208

Average speeding (weighted) 12.145 12.391 12.184
Percentage of driving above
speed limit in Urban areas
(type 1 adjusted)

0.320 0.329 0.312

Average speeding in urban
areas (relative)

1.209 1.254 1.230

No. of accelerations per km
(tr=2)

0.217 0.194 0.209

No. of braking per km (tr=2) 0.335 0.327 0.334
Average speed at the
beginning of accelerations

10.864 11.038 10.878

Average speed difference after
acceleration

14.976 13.815 14.130

Average speed difference after
braking

-14.321 -14.376 -14.202

Average speed at the
beginning of braking

37.594 36.515 36.853
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2.3.3 Robustness: Risk Factors

For the analysis policyholders and liability claims are filtered based on several criteria.

In this subsection we discuss robustness of our conclusions regarding risk factors with

respect to these choices. Two parameters are considered: the minimum number of days

with driving logs available and the minimum liability claim size. The former is used to

for selecting policyholders, the latter for discarding very small liability claims.

Table 2.17 displays the coefficients of fitted probit models for liability claim oc-

curence when all claims less than 0 CHF, 10 CHF and 100 CHF are discarded. The

sign and order of magnitude of the stastisticially significant variables remain the same.

Riks factors that are significant at least on a 5 % level in one of the models are at least

10% significant in the other models. However, some weakly significant variables, such

as Recent change of address: true, Weekend driving percentage become insignificant

when the liability claim threshold changes. One potential explanation of this finding is

that different driving patterns and risk factors are associated with a higher likelihood

of more and less severe accidents. Due to a small number of observed liability claims,

we cannot further investigate this finding. However, the key results regarding distance

and no. of journeys remain unchanged. Regarding available driving logs, Table 2.18

displays the results of liability claim submission models fitted on subsets of policyhold-

ers with not less than 0, 10, 20, 30 and 50 days of available driving logs in 2016. We

observe similar patterns as in Table 2.17. Again, the results for distance and number of

journeys is robust. Furthermore, the model fit improves when more stringent criteria

are applied.
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Table 2.17: Coefficients of fitted probit models for liability claim submission. Com-
parison of different claim size thresholds. Minimum number of observations (days of
driving logs): 10

liability claim (> 0CHF) liability claim (> 10CHF) liability claim (> 100CHF)

Traditional Insurance Variables

Sex of driver: female −0.017 0.029 0.034
(0.056) (0.059) (0.059)

Age of driver −0.037∗∗ −0.053∗∗∗ −0.049∗∗∗
(0.018) (0.019) (0.019)

Vehicle: age 0.015∗∗ 0.020∗∗∗ 0.020∗∗∗

(0.007) (0.007) (0.007)
Vehicle: horsepower 0.000 −0.000 −0.000

(0.001) (0.001) (0.001)
Vehicle: weight 0.000 0.000 0.000

(0.000) (0.000) (0.000)
Vehicle: price −0.000 −0.000 −0.000

(0.000) (0.000) (0.000)
Vehicle: mileage −0.000 −0.001 −0.000

(0.001) (0.001) (0.001)
Leasing contract: true −0.047 −0.027 −0.023

(0.079) (0.083) (0.084)
Recent change of address: true 0.124∗ 0.119∗ 0.098

(0.066) (0.070) (0.071)
Bonus Malus Score TPL −0.022 −0.011 −0.022

(0.023) (0.024) (0.025)
No. of years without first contract 0.010 0.030∗ 0.029∗

(0.018) (0.017) (0.017)
No. of previous mobility claims −0.035 −0.040 −0.028

(0.065) (0.071) (0.070)

Telematics-Based Predictors

Average distance per day (active) 0.003∗∗ 0.004∗∗∗ 0.004∗∗∗

(0.001) (0.002) (0.002)
No. of journeys per day (active) 0.122∗∗∗ 0.112∗∗∗ 0.118∗∗∗

(0.026) (0.027) (0.027)
Average speed (type 1) −0.000 −0.002 −0.002

(0.003) (0.003) (0.003)
Weekend driving percentage −0.331 −0.449∗ −0.387

(0.228) (0.241) (0.244)
Urban driving percentage (speed=50) −0.035 −0.124 −0.139

(0.286) (0.300) (0.305)
Night driving percentage 0.650 0.589 0.722

(0.429) (0.450) (0.453)
Percentage of driving above speed limit 0.567∗ 0.610∗ 0.704∗∗

(type 1 adjusted) (0.331) (0.348) (0.352)
Average speeding (weighted) 0.021∗∗ 0.022∗∗ 0.022∗∗

(0.008) (0.009) (0.009)
Percentage of driving above speed limit −0.252 −0.382 −0.394
in Urban areas (type 1 adjusted) (0.277) (0.292) (0.296)
Average speeding in urban areas (relative) −0.040 −0.107 −0.117

(0.101) (0.109) (0.111)
No. of accelerations per km (tr=2) 0.258 0.147 0.139

(0.168) (0.178) (0.181)
No. of braking per km (tr=2) 0.074 0.164 0.160

(0.172) (0.179) (0.182)
Average speed at the beginning of accelerations −0.003 −0.001 −0.002

(0.012) (0.013) (0.013)
Average speed difference after acceleration −0.002 0.001 0.002

(0.006) (0.006) (0.006)
Average speed difference after braking −0.003 0.008 0.010

(0.017) (0.018) (0.018)
Average speed at the beginning of braking 0.002 0.002 0.003

(0.007) (0.007) (0.007)

McFadden Pseudo R2 0.033 0.036 0.038

Observations 5,690 5,690 5,690
Akaike Inf. Crit. 3,001.268 2,685.674 2,609.516

Notes: ∗∗∗Significant at the 1 percent level.
∗∗Significant at the 5 percent level.
∗Significant at the 10 percent level.
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Table 2.18: Coefficients of fitted probit models for liability claim submission. Compar-
ison of different minimum number of daily driving log observations.

submission of a liability claim> 10CHF in 2016

Minimum no. of observations 0 10 20 30 50

Traditional Insurance Variables

Sex of driver: female 0.026 0.029 0.028 0.037 0.048
(0.057) (0.059) (0.059) (0.060) (0.061)

Age of driver −0.054∗∗∗ −0.053∗∗∗ −0.051∗∗∗ −0.051∗∗∗ −0.047∗∗
(0.019) (0.019) (0.019) (0.019) (0.019)

Vehicle: age 0.020∗∗∗ 0.020∗∗∗ 0.020∗∗∗ 0.020∗∗∗ 0.021∗∗∗

(0.007) (0.007) (0.007) (0.007) (0.008)
Vehicle: horsepower −0.000 −0.000 −0.000 0.000 −0.000

(0.001) (0.001) (0.001) (0.001) (0.001)
Vehicle: weight 0.000 0.000 0.000 0.000 0.000

(0.000) (0.000) (0.000) (0.000) (0.000)
Vehicle: price −0.000 −0.000 −0.000 −0.000 −0.000

(0.000) (0.000) (0.000) (0.000) (0.000)
Vehicle: mileage −0.001 −0.001 −0.001 −0.001 −0.001

(0.001) (0.001) (0.001) (0.001) (0.001)
Leasing contract: true −0.029 −0.027 −0.025 −0.022 −0.013

(0.081) (0.083) (0.083) (0.084) (0.085)
Recent change of address: true 0.118∗ 0.119∗ 0.120∗ 0.122∗ 0.128∗

(0.070) (0.070) (0.070) (0.071) (0.072)
Bonus Malus Score TPL −0.013 −0.011 −0.012 −0.012 −0.010

(0.024) (0.024) (0.024) (0.024) (0.025)
No. of years without first contract 0.031∗ 0.030∗ 0.028 0.028 0.028

(0.017) (0.017) (0.017) (0.017) (0.017)
No. of previous mobility claims −0.040 −0.040 −0.041 −0.044 −0.040

(0.071) (0.071) (0.071) (0.072) (0.072)

Telematics-Based Predictors
Average distance per day (active) 0.004∗∗∗ 0.004∗∗∗ 0.005∗∗∗ 0.005∗∗∗ 0.004∗∗∗

(0.002) (0.002) (0.002) (0.002) (0.002)
No. of journeys per day (active) 0.115∗∗∗ 0.112∗∗∗ 0.113∗∗∗ 0.113∗∗∗ 0.125∗∗∗

(0.027) (0.027) (0.027) (0.028) (0.029)
Average speed (type 1) −0.002 −0.002 −0.002 −0.002 −0.002

(0.003) (0.003) (0.003) (0.003) (0.003)
Weekend driving percentage −0.483∗∗ −0.449∗ −0.501∗∗ −0.473∗ −0.583∗∗

(0.235) (0.241) (0.246) (0.252) (0.269)
Urban driving percentage (speed=50) −0.114 −0.124 −0.057 −0.144 −0.200

(0.298) (0.300) (0.305) (0.312) (0.324)
Night driving percentage 0.586 0.589 0.436 0.561 0.591

(0.441) (0.450) (0.459) (0.465) (0.477)
Percentage of driving above speed limit 0.617∗ 0.610∗ 0.541 0.575 0.629∗

(type 1 adjusted) (0.346) (0.348) (0.352) (0.358) (0.369)
Average speeding (weighted) 0.023∗∗∗ 0.022∗∗ 0.022∗∗ 0.022∗∗ 0.024∗∗∗

(0.009) (0.009) (0.009) (0.009) (0.009)
Percentage of driving above speed limit −0.395 −0.382 −0.376 −0.381 −0.429
in Urban areas (type 1 adjusted) (0.289) (0.292) (0.295) (0.299) (0.307)
Average speeding in urban areas (relative) −0.105 −0.107 −0.082 −0.111 −0.128

(0.108) (0.109) (0.110) (0.113) (0.116)
No. of accelerations per km (tr=2) 0.151 0.147 0.101 0.123 0.115

(0.177) (0.178) (0.182) (0.186) (0.191)
No. of braking per km (tr=2) 0.144 0.164 0.158 0.136 0.153

(0.172) (0.179) (0.181) (0.185) (0.192)
Average speed at the beginning of accelerations −0.001 −0.001 −0.001 −0.005 0.000

(0.013) (0.013) (0.013) (0.013) (0.014)
Average speed difference after acceleration 0.001 0.001 0.001 −0.002 −0.001

(0.006) (0.006) (0.006) (0.006) (0.006)
Average speed difference after braking 0.005 0.008 0.011 0.011 0.013

(0.018) (0.018) (0.018) (0.018) (0.019)
Average speed at the beginning of braking 0.002 0.002 0.003 0.004 0.003

(0.007) (0.007) (0.007) (0.007) (0.007)

McFadden Pseudo R2 0.037 0.036 0.037 0.037 0.037
AIC/No. of obs 0.468 0.472 0.473 0.47 0.474

Observations 5,777 5,690 5,613 5,516 5,229
Akaike Inf. Crit. 2,690.415 2,685.674 2,654.028 2,590.371 2,479.813

Notes: ∗∗∗Significant at the 1 percent level.
∗∗Significant at the 5 percent level.
∗Significant at the 10 percent level.
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2.4 Conclusion

In the context of auto insurance, telematics datasets are a rich source of information

that allow the study of individual driving behavior at a high level of granularity. In

this paper, we take advantage of a telematics-based auto insurance contract provided

by a Swiss insurer to young drivers to study whether telematics data helps to identify

driving pattern related risk factors in a systematic way, and whether selection effects

can be identified. Our results regarding risk factors suggest that aggregate measures

of risk exposure, such as the number of journeys per day and the average distance

per day, are important risk factors, whereas most of the granular driving style related

variables such as e.g. average speed difference after acceleration are not found to be

significant risk factors.

With respect to risk factors and contract choice, we observe that a higher number

of journeys per day is positively correlated with the purchase of collision cover, but

that average distance per day is negatively correlated with the purchase of collision

cover, whereas both are statistically significant risk factors increasing liability claim

submission. These results suggest that multiple dimensions of private information may

be interacting. However, the interpretation of results has to be done with extreme

caution since the sample consists of drivers that are younger than 26 years of age and

thus are relatively inexperienced. In particular, the data does not allow to analyze how

well the policyholders actually understand their risk. Thus, while the telematics data is

important to identify risk factors, the results for our dataset with young drivers do not

allow the interpretation that the telematics data helps to identify relevant asymmetric

information in the form of the policyholder having superior information about risk type

or preferences that affects selection in a systematical manner for insurer profits.

The design of the telematics contract and the available data does not enable us

to analyze whether policyholders react to information about their driving patterns

and style. In particular, with the telematics contract policyholders receive primarily

information with color-coded relative rankings about the elevated g-force events (e.g.

accelerations, harsh brakings, cornerings) per km driven. However, we do not have
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data on whether this information is actually checked. A very interesting avenue for

future research are the incentive effects of providing information gathered with the

drive recorder, i.e. to analyze whether and how telematics data and the corresponding

provision of information and incentive design affect driving behavior and consequently

accident occurence.
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3. Into Twilight: on the Perils of Late

Visits to Unfamiliar Destinations.
Empirical papers analyzing vehicle accident risk come to the robust conclusion that

controlling for various factors such as experience, distance driven and speed, num-

ber of journeys per day has a statistically significant impact on the hazard level. I

used driving logs from a telematics device to search for possible explanations behind

this phenomenon and to explore whether more detailed information on visited locations

could improve risk modeling. I discovered that frequent driving on unfamiliar roads

increases the likelihood of accident involvement. Controlling for driving behavior, two

other potentially important risk factors: bad light conditions and fatigue do not influ-

ence accident hazard. These insights can be incorporated into risk classification schemes

to promote safe driving.

3.1 Introduction

In 2016, 17’799 accidents occurred on Swiss roads, of which 290 led to casualties (BFS

(2016)). Despite a steady decline, motor vehicle accidents remain one of the lead-

ing causes of mortality among young adults in Switzerland and in other countries.

This motivates an active research into accident causes and efficient intervention mea-

sures. Relevant empirical studies traditionally relied on various cross-sectional datasets

(accident statistics, socio-economical variables), surveys, interviews and laboratory ex-

periments. These sources frequently have one of the following limitations. First, they

do not always provide a sufficient level of detail for a rigorous inquiry. Second, as is the

case for surveys and interviews, information therein might be imprecise and unreliable.

As more data, both in volume and versatility, becomes available, the field is invigorated

since a lot of relevant situational factors can be captured and analyzed.
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In the late 90s following the developments in telematics technologies, insurance

companies introduced usage based insurance policies. Under these policies, the vehicle’s

motion is monitored by an on-board device, often in exchange for a premium reduction

or other value-added services. Currently, a typical observation contains information on

coordinates, time stamp, point speed and, under certain conditions, information about

the vehicle’s acceleration. These driving logs, also referred to as Telematics Data, have

been used in various driving behavior studies (Muermann et al. (2019), Ippisch (2010),

Ayuso et al. (2016) ).

Previous contributions by Muermann et al. (2019) and Sycheva et al. (2019) indi-

cate that controlling for speed and distance driven, additional journeys are correlated

with accident occurrence. In this chapter, I analyzed driving logs, aggregated on jour-

ney level, to shed more light on this phenomenon. My analysis delved deeper into

three different aspects: where, when and how long did the policyholder drive? With

regard to the first question, my results suggest that controlling for both traditional risk

classification variables and telematics-based predictors, driving on an unknown road

represents a higher risk situation.

I used information about journey’s temporal patterns to infer light conditions during

the trips. Light conditions are an important risk-relevant aspect of the environment, yet

commonly used premium calculation schemes employ unreliable proxies to incorporate

this information. It is a common practice to define night driving based on fixed hours

rather than tie it to sunrise and sunset times. I augmented the information on traveling

locations with exact sunrise/sunset times to accurately infer driving time during the

night, twilight, following the sunrise/before the sunset. Created predictors do not

significantly improve my risk model.

Statistics on the trip duration reflect exposure to another risk factor: fatigue. I

aggregated it over the study period and tested whether higher frequency of long jour-

neys translates into higher accident risk. I do not find a statistically significant link,

yet this result could be attributed to the fact that policyholders rarely take long trips

and consequently are not exposed to this risk factor.
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3.2 Related Literature

This paper primarily contributes to the literature studying motor vehicle accident risk.

Accidents are caused by an interplay of numerous factors therefore the research effort

spans over across variety of disciplines, from engineering and infrastructure design to

economics and psychology.

Milton and Mannering (1998) study the impact of road geometry on accident fre-

quency, Brodsky and Hakkert (1988) and Bergel-Hayat et al. (2013) quantify the nega-

tive impact of bad weather conditions on accident count, whereas Newstead and D’Elia

(2007) establish that certain vehicle characteristics, such as color, increase the likeli-

hood of accident involvement. These factors exacerbate that risk, but the main cause

behind the majority of accidents is the driver. Widely accepted driver-related risk fac-

tors include age, mobile phone usage (Lipovac et al. (2017)), biases in risk perception

(DeJoy (1989)), the presence and behavior of other passengers (Vollrath et al. (2002))

and substance abuse (Peck et al. (2008)).

Most of the previous contributions had to rely on self-reports, proxies or aggregated

information to capture risk relevant characteristics. Detailed driving logs represent a

qualitative shift in accident research, allowing the scientist to examine the impact of

various behavioral patterns. Our results in Sycheva et al. (2019) suggest that a deeper

analysis of a policyholder’s vehicle traveling patterns might be a worthy endeavor. In

this paper, I aggregate the logs on the journey-policyholder level and examine spatio-

temporal characteristics of the policyholders’ journeys.

Based on the created dataset I can quantify route familiarity. In the previous

contributions there is no consensus regarding its impact on the accident risk. Some

researchers support the intuitive conclusion that driving on a less familiar road consti-

tutes a higher risk situation. Indeed, drivers face unknown junctions, road conditions

and potentially different road systems. The situation is further exacerbated by the fact

that drivers frequently rely on a navigator to find their destination and consequently

pay less attention to the road and surrounding area. This assumption is supported by
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results of Yannis et al. (2007). They show that foreign drivers in Greece, who are not

permanent residents, face higher risk on the country’s roads. On the other hand, data

from Chen et al. (2005) suggests that the majority of accidents occurs close to home.

Charlton and Starkey (2013) explain this phenomenon by inattention blindness. Fa-

miliarity might also breed overconfidence: Intini et al. (2016) finds that study subjects

tend to increase their speed and be less compliant with speed limits while driving on

familiar roads.

Timestamps and coordinates of starting and end points of journey provide suffi-

cient information to infer light conditions during the trip. Wanvik (2009) shows that

improving road lights system leads to a decrease in accident count. However, it might

be not sufficient to completely offset the risk, as Uttley and Fotios (2017) discover

that the likelihood of accidents involving pedestrians still increases after dark. Even

with access to driving logs, the current empirical evidence on the impact of bad light

conditions is not conclusive: Muermann et al. (2019) do not find a statistically sig-

nificant association between night driving and subsequent claim submission, whereas

Ayuso et al. (2016) conclude that frequent night driving decreases the time until the

first accident.

Journey duration is a reliable proxy for another risk factor: fatigue. Several stud-

ies examine the effect of fatigue on driving behavior, and find statistical evidence of

task performance degradation. (Lyznicki et al. (1998), Brown (1994)). To be more

precise, fatigue increases reaction times, reduces attention and information processing

capability (Dinges (1995), Philip et al. (2005) ). To mitigate this risk, under Swiss law,

commercial drivers are required to take at least a 45 minute break after driving for a

maximum 4.5 hours.1

Policymakers and economists have contemplated various intervention measures to

reduce accident risk and provide incentives for safe driving. Some of their efforts were

fruitful. Empirical studies demonstrate that accident fatality rates can be reduced by

increasing gas (Ahangari et al. (2014)) and fuel prices (Chi et al. (2010)) or increasing
1Verordnung ueber die Arbeits- und Ruhezeit der berufsmaessigen Motorfahrzeugfuuehrer und

-fuehrerinnen 3. Abschnitt: Lenkzeiten, Arbeitszeiten, Pausen, Ruhezeiten Art. 8

50



3.3. Background and Data

the punishments for traffic infringements. Insurance risk-based pricing is also a potent

mechanism for accident prevention. Dionne et al. (2011) show that experience rating

is effective in inducing high effort, whereas results of Hultkrantz and Lindberg (2011)

suggest that adjusting the risk premium following speed violations helps to reduce this

type of behavior. The results presented in this chapter can also be used to better target

such intervention efforts.

The remainder of the chapter is organized as follows. Section 3.3 provides detailed

information on insurance and telematics datasets. Section 3.4 details the creation of

journey-based driving profile. Regression results are reported in Section 3.6, their

practical implications are the topic of Section 3.7. Section 3.8 concludes.

3.3 Background and Data

I extracted information from three datasets introduced in Section 2.2. The data was

provided by a large Swiss insurance carrier. The company offered young drivers a usage-

based vehicle insurance policy. In exchange for a premium reduction, policyholders were

obliged to install a telematics device, which collected detailed information about the

vehicle’s motion. During the first insurance year, the size of the reduction was fixed, in

subsequent periods it depended on the driving style. Bad driving scores decreased the

size of the reduction. However, all policyholders were still financially better off than

without a usage-based policy.

Available usage-based policies fall into one of two main categories: premiums of

pay-as-you-drive policies are determined primarily by the quantity of driving, whereas

the price of a pay-how-you-drive contract aims to reflect driving quality. Policyholders

in our dataset held a pay-how-you-drive contract. Risk-based scoring proceeded as

follows: a telematics device monitored vehicle’s acceleration along three principal axes.

The device was alerted every time the values exceed a predefined threshold, a situation I

refer to as an “elevated g-force event". Depending on the axis and duration, all elevated

g-force events were classified into three groups: accelerations, braking and cornering.
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Table 3.1: Summary statistics: Policyholder’s and vehicle’s characteristics.

mean median std Sample quantiles
min 5% 25% 75% 95% 97.5%

Policyholder’s
characteristics
Age of driver (years) 22.49 22.0 5.10 17.0 18.0 20.0 24.00 26.00 31.0

Bonus Malus score for
liability claims

13.39 13.0 1.19 9.0 12.0 13.0 14.00 15.00 17.0

No. of years without
first contract

3.19 3.0 3.41 0.0 0.0 1.0 5.00 7.00 8.0

No. of previous
mobility claims

0.12 0.0 0.45 0.0 0.0 0.0 0.00 1.00 1.0

Vehicle’s
characteristics
Price (CHF) 31819 28600 17647 8900 17700 22100 40300 62330 72622

Age (years) 6.92 6.0 5.55 0.0 0.0 2.0 11.00 17.00 19.0

Horsepower 131.37 115.0 57.04 45.0 68.0 90.0 150.00 241.00 295.0

Weight (kg) 1286.66 1257.0 236.48 785.0 940.0 1115.0 1420.00 1688.25 1816.5

Mileage 79.83 71.5 68.55 1.0 1.0 20.0 121.25 199.00 220.0

Every event was assigned a weight, depending on its type, severity, vehicle speed, time

of the day (night, day, rush hour) and road network type (urban, highway, other). The

weighted sum of all elevated g-force events determined the premium reduction in the

subsequent insurance year.

The installation of a drive recorder also offered non-financial benefits. First, it could

be used for a fast recovery of stolen vehicles. Second, it would alert the company in

case of an emergency. Lastly, driving logs prior to an accident can shed light on what

happen, who is responsible and consequently greatly simplify claims handling.

Offering usage-based insurance policies has the following potential benefits for the

insurer. First, telematics data is a promising tool to refine risk classification scheme

and improve the profit margin. Second, such contract optimizes the risk pool by a)

attracting low-risk drivers b) pushing away high-risk drivers c) motivating current

clients to exert more preventive efforts (Litman (1997)).
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3.3.1 Data

The analysis is based on three datasets. The policyholders’ driving logs are stored in

the Telematics Dataset introduced in Section 2.2.3. I combined this information with

insurance data using a unique identification number. This data comprises two tables:

Contract Data contains all information traditionally used for insurance pricing, Claims

Data stores all claims submitted by policyholders. For more detailed information about

these datasets I refer the reader to Section 2.2.1 and Section 2.2.2.

In the subsequent risk analysis I used all telematics-based predictors, created in

Chapter 2. The main creation steps are summarized in Figure 3.1. The procedure is

described Section 2.2.3 and Section 2.2.4.

The sample for the risk analysis slightly differs from the one in Chapter 2. First,

due to the reasons discussed in Section 3.4.3 I excluded policyholders with less than

20 days of available driving logs in 2016. Second, I did not exclude 213 policyholders

older than 26. Table 3.1 and Table 3.2 report the summary statistics of predictors

corresponding to policyholders in our sample. Provided that a policyholder used his

vehicle, he drove on average 53 km per day2 and made 3.92 journeys. On average 30%

of driving time corresponded to the weekends and 6% of the aggregate distance was

driven during the night. Speed violations were both frequent and severe: on average,

every fifth kilometer was driven with a certain degree of speed violation, whose relative

magnitude is 24% higher is urban areas. Approximately 2 accelerations and 3.3 braking

were registered per every 10 km driven.

2 This value is not directly comparable to the national swiss average of 36.8 km (see Federal
statistics office: Mobility and transport) since the number from the Federal Statistics Office is a) an
average over entire observational period b) does not include driving abroad.
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Table 3.2: Summary statistics of telematics based predictors

mean median std Sample quantiles
min 5% 25% 75% 95% 97.5%

General characteristics

Average distance per day (ac-
tive)

52.94 49.10 23.93 2.60 22.44 36.10 65.10 95.73 109.12

No. of journeys per day (ac-
tive)

3.97 3.80 1.07 1.26 2.59 3.23 4.49 5.97 6.60

Journey time and location

Weekend driving percentage 0.30 0.29 0.12 0.00 0.12 0.22 0.37 0.53 0.59

Urban driving percentage
(speed=50)

0.31 0.29 0.14 0.00 0.12 0.21 0.39 0.56 0.63

Night driving percentage 0.06 0.04 0.06 0.00 0.00 0.01 0.08 0.18 0.22

Speed and Speeding

Average speed (type 1) 62.07 61.75 13.18 2.61 41.65 54.18 70.55 83.52 88.04

Percentage of driving above 0.21 0.20 0.11 0.00 0.06 0.13 0.28 0.41 0.45

speed limit (type 1 adjusted)

Average speeding (weighted) 12.28 11.75 3.46 2.59 7.83 9.90 14.01 18.56 20.56

Percentage of driving above
speed limit in urban areas
(type 1 adjusted)

0.32 0.31 0.13 0.00 0.13 0.23 0.40 0.57 0.63

Average speeding in urban ar-
eas (relative)

1.24 1.16 0.31 0.18 0.93 1.05 1.33 1.80 2.03

Characteristics of ele-
vated g-force events
No. of accelerations per km
(tr=2)

0.20 0.16 0.18 0.00 0.03 0.08 0.27 0.55 0.69

No. of braking per km (tr=2) 0.33 0.29 0.20 0.00 0.09 0.20 0.42 0.69 0.82

Average speed at the begin-
ning of accelerations

10.98 10.50 2.57 0.00 7.84 9.32 12.13 16.15 17.59

Average speed difference after
acceleration

14.26 13.71 6.46 0.00 4.43 9.68 18.32 25.80 28.31

Average speed difference after
braking

-14.37 -14.37 2.03 -23.22 -17.56 -15.65 -13.10 -11.29 -10.68

Average speed at the begin-
ning of braking

36.86 36.87 5.82 0.00 27.90 33.27 40.57 46.08 47.88
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3.3. Background and Data

Figure 3.1: Creation of telematics-based predictors.
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3.4 Journey-based Risk Profile

3.4.1 Overview

In Section 3.4.3 I extracte and preprocessed information about individual journeys

from the driving logs. I merge it with corresponding spatial cluster labels, aggregate

this data over 2016 and mine the resulting dataset for accident risk factors. I focus on

three aspects of journey profile.

• Where did the policyholder drive? In Section 3.4.3 I evaluate how diverse the set

of locations visited by the driver is and use it as a proxy for route familiarity.

• When did the policyholder drive? In Section 3.4.4, I use the start and end times

of individual journeys to see whether and how long the person was driving under

bad light conditions.

• How long did the policyholder drive? In Section 3.4.5 compute the frequency of

long journeys.

3.4.2 Trip Data

I summarized information about all journeys contained in the telematics data set. Each

policyholder’s journey was assigned a unique identification number 3 For every trip, I

retrieved the following basic information: start and end time, locations, stop duration,

distance driven. I excluded 1) policyholders with less than a week of observations

2) journeys shorter than 10 seconds. The final dataset contains information about

8’720’447 journeys for 6’708 policyholder.

3Single journey can be extracted based on two indicators: a) every trip is assigned a unique (for
each policyholder) identification number b) the original dataset records the times when the engine is
switched on and off. Both procedures yield same results.
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3.4. Journey-based Risk Profile

Table 3.3: Summary statistics of Trip Data

Variable mean median std Sample quantiles
5% 25% 75% 95% 97.5%

No. of journeys per policy-
holder

1298.37 1081.0 1015.3 117.0 466.0 1867.5 3243.0 3720.75

Timespan (days) 425.44 369.0 282.96 51.8 169.0 641.0 939.0 985.0

Usage frequency 0.72 0.76 0.19 0.34 0.62 0.86 0.96 0.98

No. of days per policyholder 1 298.66 263.0 213.19 111.0 40.0 704.0 770.75

No. of journeys per day (ac-
tive)

4.35 4.0 2.65 1.0 2.0 6.0 9.0 11.0

Distance per journey 12.37 6.02 20.52 0.39 2.09 14.69 42.81 60.83

Stop duration ( minutes ) 390.0 105.0 2743.0 1.0 15.0 536.0 1247.0 2177.0

Table 3.3 reports summary statistics of the basic trip characteristics. People in our

sample used their vehicle 5 days a week and took 4 trips per day on average . The

values are obtained without excluding information about a) policyholders with a small

number of journeys b) short trips (5 m) c) journeys following a very short stop.

I performed hierarchical clustering to group together stops, that corresponded to a

single destination. Cutoff-values were selected primarily based on heuristics I had de-

veloped, following a short literature review. Further details are relegated to Appendix

5. I discovered 970’486 spatial clusters representing locations visited by policyhold-

ers. For every destination, I aggregated information over all visits to obtain statistics

on stop duration, arriving time arriving date and to compute visit frequency (gen-

eral/weekday/weekend).

3.4.3 Route Familiarity

Consider a policyholder that traveled on N different routes over the study period. I as-

sessed his average familiarity with the road by answering two complementary questions:

a) What is the aggregate percentage of journeys corresponding to K most popular routes

? b) What percentage of unique routes accounts for M percent of journeys? These

two measures are closely related, yet the latter provides more information about the

number of times a rarely-visited route is taken. It is not clear a priori what measure

better suits our purpose.
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Driving logs are sufficient to recreate the vehicle’s trips with a very high precision.

Analyzing coordinates of every observation in the driving logs is computationally ex-

pensive and not guaranteed to yield significant improvements in terms of final premium

adjustment. To explore the trade-off between computational burden and precision, I

adopted three approaches to represent a route.

The simplest approach is to proxy a route by its starting point. If a small number

of locations accounts for the majority of visits, it is likely that the policyholder was

driving on familiar roads most of the time. The reverse is probably the case when

person’s itinerary featured a lot of rarely-visited destinations. Table 3.4 shows that

on average, over one third of the trips started in the most frequently visited location,

and in 25% of the cases, the aggregate number of visits to 5 most popular locations

accounted for over 79% of all trips.

The second approach is to retain both start and end point of a journey. Resulting

predictors will not capture the fact that routes between different destinations might

overlap, whereby only a minor section of ‘unfamiliar" route is actually unfamiliar.

Yet this method offers a reasonable trade-off between accuracy and computational

burden. A further modification is to separately count trips in different directions.

This would allow to account for the fact that a driver primarily focuses on one part

of the road and thus certain important details on the other part, such as side roads,

escape his attention. If I did not differentiate between driving directions, according

to Table 3.4, approximately 24% of the journeys corresponded to the most popular

routes. Policyholders’ traveling habits varied within our sample: for 5% of the drivers

20 routes accounted for not more than 44% of visits, whereby for other 5%, 10 routs

corresponded to at least 82% of the trips. When I separately counted trips in different

directions, most popular route accounted on average for 13% of all journeys. 4

The created predictors can be divided into six different groups, based on two criteria:

1) what information is used to represent a route 2) how the familiarity with these routes

is measured. These variables, however, share a similar limitation: they do not capture
4Contrasting sample statistics corresponding to these two types of predictors suggests that some

routes are predominantly driven in one direction.
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3.4. Journey-based Risk Profile

Figure 3.2: Stability of concentration measures with respect to observation period
duration

information on the visits, not reflected in the driving logs. There are several plausible

scenarios where this is the case. First, prior to drive recorder installation policyholder

has been driving for a long time.T thus routes that do not often appear in the telematics

dataset are not necessarily unfamiliar. Second, the policyholder might regularly use

a second vehicle. Third, the policyholder has visited the destinations by using other

modes of transportation or as a passenger. I do not anticipate, however, that any of

these scenarios is likely to introduce a systematic bias into our predictors. 5

As in Section 2.2.4, the length of driving logs corresponding to 2016 varied sig-

nificantly between policyholders. This raised two related questions: a) Do created

predictors depend on the observation timespan b) If yes, how many days are sufficient

to obtain reliable estimates of route familiarity. Figure 3.2 provides scatter plots of

selected variables against the number of days with available telematics observations.

It indicates that the first type of concentration measures are rather stable, however

second group exhibit a distinctive downward trend. Its magnitude decreases sharply,

once over 50 days of observations are collected. This has implications for our risk

5First scenario: a) drivers are young thus it is likely their first vehicle b) even if not, if they did not
use the road for a long time, certain details are likely to slip their memory. Second scenario: vehicle
usage frequency on is average 80% which means that policyholders in our sample drive between 5 and
6 days per week. Even if they occasionally use another vehicle (for instance of their parents) this is
not likely to affect the general picture. Third scenario: arguably a lot of relevant details might escape
person’s attention unless he is the driver. Previous argument about usage frequency is also valid here
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Table 3.4: Summary statistics: Route familiarity measures

mean median std Sample quantiles
min 5% 25% 75% 95% 97.5%

% of short journeys 0.09 0.08 0.04 0.01 0.04 0.06 0.11 0.17 0.20

Percentage of visits to:

the most popular location 0.36 0.36 0.09 0.06 0.22 0.30 0.41 0.49 0.53

5 most popular locations 0.72 0.72 0.11 0.15 0.54 0.65 0.79 0.88 0.91

10 most popular locations 0.81 0.81 0.09 0.19 0.64 0.75 0.87 0.94 0.96

20 most popular locations 0.87 0.88 0.07 0.23 0.74 0.83 0.93 0.97 0.98

Percentage of clusters
accounting for:
for 75% of visits 0.11 0.09 0.07 0.01 0.04 0.06 0.14 0.26 0.30

for 90% of visits 0.35 0.32 0.15 0.03 0.15 0.23 0.44 0.64 0.68

for 95% of visits 0.60 0.61 0.15 0.09 0.33 0.48 0.72 0.82 0.85

Percentage of journeys on (undi-
rected):
the most popular route 0.24 0.21 0.13 0.02 0.08 0.14 0.31 0.49 0.56

5 most popular routes 0.48 0.47 0.15 0.06 0.25 0.37 0.58 0.74 0.79

10 most popular routes 0.58 0.58 0.15 0.08 0.34 0.47 0.68 0.82 0.86

20 most popular routes 0.68 0.68 0.14 0.12 0.44 0.58 0.78 0.90 0.93

Percentage of routes (undirected)
accounting for:
75% of journeys 0.25 0.23 0.13 0.01 0.08 0.15 0.32 0.50 0.55

90% of journeys 0.61 0.63 0.14 0.06 0.34 0.52 0.72 0.80 0.82

95% of journeys 0.80 0.82 0.09 0.19 0.62 0.76 0.86 0.90 0.91

Percentage of journeys (di-
rected):
the most popular 0.13 0.12 0.07 0.01 0.05 0.08 0.17 0.26 0.30

5 most popular routes 0.38 0.36 0.15 0.04 0.17 0.27 0.47 0.65 0.70

10 most popular routes 0.49 0.48 0.15 0.06 0.26 0.38 0.59 0.75 0.80

20 most popular routes 0.59 0.59 0.15 0.08 0.36 0.49 0.70 0.84 0.87

Percentage of routes (directed)
accounting for:
75% of journeys 0.32 0.29 0.15 0.02 0.10 0.20 0.44 0.60 0.63

90% of journeys 0.69 0.71 0.12 0.08 0.43 0.63 0.78 0.84 0.86

95% of journeys 0.84 0.86 0.07 0.24 0.72 0.82 0.89 0.92 0.93

analysis: to reliably estimate the impact of this type of variables, our sample should

be restricted to policyholders with sufficient number of daily observations. With that

in mind, I decided to fit all subsequent regression models based on data from drivers

with at least 20 days of driving records in 2016.
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3.4. Journey-based Risk Profile

3.4.4 Night and Twilight Driving

To accurately incorporate information about light conditions, I downloaded data on

sunrise, sunset and twilight times on a daily basis for 6 locations, scattered around

Switzerland 6 and 44 locations abroad (41 in Europe, 2 in Africa and 1 in Asia)7. I

matched this data to individual journeys in the Trip Data, based on dates and on

the coordinates of starting and end points. The distance to the closest locations with

known sunrise and sunset times reflects the precision of our predictors. I excluded 0.3%

of journeys from subsequent computations, since corresponding information was too

imprecise. In the remaining dataset, average distance is 27.33 km and does not exceed

130 km. To put this in perspective, consider two towns 135 km apart on approximately

same latitude: Basel and St. Gallen. The time difference between the start of twilight

vary between 3 and 5 minutes.

I estimated the fraction of time driven during the night, astronomical, nautical,

6Zurich, Basel, Geneva, Lugano, St Gallen and Davos
7France: Paris, Lyon, Strasbourg, Marseille, Portugal: Lisbon, Proto, Albufeira, Coimbra, Spain:

Barcelona, Bilbao, Malaga, Italy: Bari, Milan, Naples, Rome, Venice, Verona, Florence, Slovakia:
Ljublijana, Croatia: Dubrovnik, Zagreb, Split, Zadar, Bosnia-Herzegovina: Sarajevo, Kosovo: Prizren,
Serbia: Belgrade, Albania: Tirana, Macedonia: Skopje, Austria: Vienna, Graz, Innsbruck, Salzburg,
Germany: Frankfurt, Stuttgart, Munich, Berlin, Hannover, Cologne, Netherlands: Amsterdam, Bel-
gium: Brussels, Turkey: Antalya, Benin: Porto-Novo, Guinea: Conakry

Figure 3.3: Twilight Phases and corresponding light conditions.
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Table 3.5: Summary statistics: frequency of driving under bad light conditions

mean median std Sample quantiles
min 5% 25% 75% 95% 97.5%

Percentage of driving time dur-
ing:
Night (2) 0.15 0.13 0.07 0.0 0.05 0.09 0.18 0.28 0.32

Twilight 0.16 0.16 0.07 0.0 0.08 0.12 0.20 0.28 0.32

Evening twilight 0.08 0.07 0.04 0.0 0.03 0.05 0.10 0.16 0.18

Morning twilight 0.09 0.08 0.05 0.0 0.01 0.05 0.12 0.18 0.21

After sunrise 0.02 0.01 0.01 0.0 0.00 0.01 0.02 0.05 0.06

Before sunset 0.03 0.03 0.02 0.0 0.01 0.02 0.04 0.06 0.08

Astronomical twilight 0.06 0.05 0.03 0.0 0.02 0.04 0.07 0.11 0.13

Nautical twilight 0.06 0.05 0.03 0.0 0.02 0.04 0.07 0.11 0.13

Civil twilight 0.05 0.05 0.02 0.0 0.02 0.04 0.06 0.09 0.11

civil twilight8 and fraction of driving right before (30 minutes) sunset and following

(30 minutes) sunrise. I aggregated these values to obtain overall driving time during

(morning/evening) twilight.

Table 3.5 presents the summary statistics of the new predictors. On average, 16%

of driving time corresponded to twilight and this proportion was within a 8% and 28%

range for 90% of policyholders. During around 5% of driving time, the sun was at

the eye level of the policyholder. Finally, on average 15% of aggregate travel time fell

between the end and start of astronomical twilight, simply referred to as night.

I constructed an additional set of predictors capturing during what fraction of the

time with bad light conditions the driver was in an unknown area. General statistics on

the new variables is reported in Table 3.6. It appears, that the conditional probability

of driving in an unknown area, provided that light conditions were bad, is quite high:

on average 0.39% of night driving, 0.37% of twilight driving took place on routes, with

an aggregate number of trip lower than 1% of all trips over the study period.

8 Twilight are separated into several stages depending on the solar elevation angle. The darkest
phase is known as Astronomical twilight: it is the time when the sun is 12-18 degrees below the horizon.
During Nautical and Civil twilight sun moves between 6 - 12 degrees and 0-6 degrees respectively.
This information is illustrated in Figure 3.3.
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Table 3.6: Summary statistics. Frequency of driving under bad light conditions on
unfamiliar roads

mean median std Sample quantiles
min 5% 25% 75% 95% 97.5%

Relative proportion of driving on
unfamiliar roads (less than 1% of
journeys) during:
Night 0.39 0.38 0.22 0.0 0.00 0.23 0.54 0.76 0.83

Twilight 0.37 0.36 0.19 0.0 0.01 0.23 0.50 0.70 0.77

Morning twilight 0.29 0.23 0.23 0.0 0.00 0.12 0.42 0.76 0.85

Evening twilight 0.49 0.51 0.22 0.0 0.00 0.35 0.64 0.81 0.86

After sunrise 0.46 0.44 0.32 0.0 0.00 0.20 0.68 1.00 1.00

Before sunset 0.48 0.50 0.25 0.0 0.00 0.33 0.67 0.88 1.00

Astronomical twilight 0.34 0.32 0.21 0.0 0.00 0.18 0.48 0.74 0.81

Nautical twilight 0.38 0.37 0.21 0.0 0.00 0.22 0.52 0.74 0.80

Civil twilight 0.43 0.44 0.21 0.0 0.00 0.29 0.58 0.77 0.82

3.4.5 Journey Duration

Drivers are more likely to experience fatigue a) after traveling for a long time without

stops and b) during the night. The latter is captured by the predictors created in

Section 3.4.4.

The stop duration between journeys can be quite short. Upon examining the data, I

decided to sum the travel time if the stop between subsequent journeys did not exceed

ten minutes. Philip et al. (2005) demonstrate that if non-professional drivers take

three short breaks (two of 15 minutes and one of 30 minutes), their performance does

not deteriorate during a 1’000 km journey. Bearing in mind that policyholders in our

sample drove much less, a ten minute break is arguably sufficient to recover.

Summary statistics reported in Table 3.7 suggested that journeys exceeding a couple

of hours were extremely rare: an average policyholder drove longer than 2 hours less

than once per month. This is not surprising, provided that on the one hand, our sample

consists of non-professional drivers and on the other, the area of country is not that

large.
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Table 3.7: Summary statistics: Frequency of long journeys

mean median std Sample quantiles
min 5% 25% 75% 95% 97.5%

Frequency (per day)
of journeys exceeding:
2 hours 0.029 0.014 0.048 0.0 0.0 0.0 0.036 0.112 0.160

3 hours 0.010 0.000 0.022 0.0 0.0 0.0 0.010 0.043 0.068

4 hours 0.004 0.000 0.012 0.0 0.0 0.0 0.003 0.021 0.033

5 hours 0.002 0.000 0.007 0.0 0.0 0.0 0.000 0.011 0.018

6 hours 0.001 0.000 0.005 0.0 0.0 0.0 0.000 0.006 0.011

7 hours 0.001 0.000 0.003 0.0 0.0 0.0 0.000 0.004 0.008

8 hours 0.000 0.000 0.002 0.0 0.0 0.0 0.000 0.000 0.004

3.5 Hypotheses

Variables created in Section 3.4.3 - Section 3.4.5 are potent proxies for several risk

factors. I used predictors from Section 3.4.3 to test the following hypothesis:

(H1) Accident risk increases if policyholder frequently drives on unfamiliar roads.

Variables created in Section 3.4.4 allowed me to study the link between driving

under bad light conditions and subsequent accident involvement. I check whether:

(H2) Higher frequency of driving under bad light conditions (night / twilight / before

sunset and after sunrise) increases accident risk;

(H2.1) When driving in unknown area, accident risk is further amplified by bad light

conditions.

Lastly, I incorporated predictors from Section 3.4.5 into the regression model to

test whether:

(H3) Higher frequency of long journeys increases accident risk.
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3.6. Results

3.6 Results

I employ a probit regression to study the impact of new predictors on accident risk. The

risk is expressed as a binary variable that takes a positive value if the policyholder has

submitted at least 1 liability claim, with compensation exceeding 10 CHF in 2016. The

base model comprises predictors described in Section ?? and Section ??. A detailed

discussion of the base model can be found in Sycheva et al. (2019).

I add characteristics derived in Section 3.4.3 to Section 3.4.5 and compare fitted

models. Variables from Section 3.4.3 are included separately to avoid biases due to

multicollinearity. I examine results in Table 3.8, Table 3.9, Table 3.10 and to answer

two questions: (1) Does route familiarity affect accident risk? (2) What is the best way

to incorporate it into the model?

Each of the six variable groups created in Section 3.4.3 contains statistically sig-

nificant predictors of accident involvement as measured by liability claim submission.

The sings of corresponding marginal effects indicate that driving on an unfamiliar road

is associated with higher accident hazard, thus yielding support for (H1). McFadden

Pseudo R2 coefficients suggest representing a route by the start and the end point

cluster to achieve a better model fit. Furthermore, predictors that are more informa-

tive regarding the number of trips per a rarely visited route have greater explanatory

power.

Including new predictors in the model affects the relationship between other sig-

nificant telematics variables and accident risk. Weekend driving percentage becomes

statistically significant at a 5% level and the magnitude of the effect increases by 28%

on average across the fitted models. A plausible explanation for this shift is as follows:

weekend driving combines effect of several factors with counteracting effects on the

accident hazard. On the one hand, during the weekend, drivers are more likely to visit

new destinations, whereby increasing risk. On the other, traffic intensity tends to be

much lower during the weekend, which improves the driving situation. Accounting for
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route familiarity helps to crystallize the latter effect.9 The effect is most pronounced

on the daily distance driven: the magnitude of this effect decreases by the factor of

2 once familiarity measures are incorporated in the model. Interestingly, the impact

of average no. of journeys does not significantly change after accounting for route

familiarity.

Table 3.11 reports results of incorporating information about light conditions in

the model. They do not support (H2). Furthermore, ambient light conditions do

not exacerbate the risk of driving in unfamiliar area (H2.1). I have added different

combinations of variables from Section 3.4.4 and in neither case were these variables

statistically significant or considerably improved the model fit (see Table 3.12 and Table

3.13).

I do not find statistically significant relation between long journey frequency and

accident risk (Table 3.14), thus (H3) is rejected. Bearing in mind that according to

Table 3.7 such journeys are extremely rare, driving-induced fatigue is not a prevalent

problem for our policyholders.

The external validity of my conclusions could be questioned due to selection bias.

The dataset comprises young drivers that have opted for a usage-based insurance policy.

Furthermore they have purchased a pay-how-you-drive contract, where the premium

depends on the driving style as opposed to distance-based pay-as-you-drive policy.

In the absence of driving logs from policyholders with other contract types, it is not

possible to test whether these results hold for both subsamples. However, none of the

risk factors I have tested has a direct impact on the premium discount, which reduces

the gravity of the problem.

9 Kremslehner and Muermann (2016) finds that driving on the weekend decreases the risk and
attributes it to Sunday drivers.
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3.6. Results

Table 3.8: Annual probability of liability claim submission (probit) (Average marginal effects)

Dependent variable: Liability claim submission in 2016 (> 10CHF )
(1) (2) (3) (4) (5) (6) (7) (8)

Traditional Insurance Variables

Sex of driver: female 0.003 0.003 0.003 0.004 0.004 0.003 0.004 0.004
(0.058) (0.058) (0.058) (0.058) (0.059) (0.058) (0.058) (0.058)

Age of driver −0.003∗∗ −0.003∗∗ −0.003∗∗ −0.003∗∗ −0.003∗∗ −0.003∗∗ −0.003∗∗ −0.003∗∗
(0.011) (0.011) (0.011) (0.011) (0.011) (0.011) (0.011) (0.011)

Vehicle: age 0.002∗∗ 0.002∗∗ 0.002∗∗ 0.002∗∗ 0.002∗∗ 0.002∗∗ 0.002∗∗ 0.002∗∗

(0.007) (0.007) (0.007) (0.007) (0.007) (0.007) (0.007) (0.007)
Vehicle: horsepower −0.00003 −0.00002 −0.00002 −0.00002 −0.00000 −0.00003 −0.00003 −0.00003

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
Vehicle: weight 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001

(0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002)
Vehicle: price −0.00000 −0.00000 −0.00000 −0.00000 −0.00000 −0.00000 −0.00000 −0.00000

(0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000)
Vehicle: mileage 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00000 0.00000

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
Leasing contract: true −0.0003 −0.0002 −0.0002 −0.0002 −0.0002 −0.0003 −0.001 −0.001

(0.080) (0.080) (0.080) (0.080) (0.081) (0.080) (0.080) (0.080)
Recent change of address: true 0.011 0.015 0.010 0.010 0.011 0.011 0.012 0.012

(0.069) (0.071) (0.069) (0.069) (0.069) (0.069) (0.069) (0.069)
Bonus Malus Score TPL −0.001 −0.001 −0.001 −0.001 −0.001 −0.001 −0.002 −0.002

(0.023) (0.023) (0.023) (0.023) (0.023) (0.023) (0.023) (0.023)
No. of years without first contract 0.003∗ 0.003∗ 0.003∗ 0.003∗ 0.003∗ 0.003∗ 0.003∗ 0.003∗

(0.014) (0.014) (0.014) (0.014) (0.014) (0.014) (0.014) (0.014)
No. of previous mobility claims −0.007 −0.007 −0.007 −0.007 −0.007 −0.007 −0.007 −0.008

(0.067) (0.067) (0.067) (0.068) (0.068) (0.067) (0.068) (0.068)

Telematics-Based Predictors

Average distance per day (active) 0.001∗∗∗ 0.001∗∗∗ 0.0004∗∗ 0.0005∗∗ 0.0005∗∗ 0.001∗∗∗ 0.0005∗∗ 0.0004∗∗

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
No. of journeys per day (active) 0.012∗∗∗ 0.012∗∗∗ 0.011∗∗∗ 0.011∗∗∗ 0.011∗∗∗ 0.013∗∗∗ 0.014∗∗∗ 0.014∗∗∗

(0.027) (0.027) (0.027) (0.027) (0.027) (0.028) (0.027) (0.027)
Average speed (type 1) −0.0004 −0.0004 −0.0003 −0.0003 −0.0004 −0.0004 −0.0003 −0.0003

(0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003)
Weekend driving percentage −0.055∗ −0.053∗ −0.068∗∗ −0.068∗∗ −0.062∗∗ −0.058∗∗ −0.069∗∗ −0.073∗∗

(0.238) (0.238) (0.247) (0.247) (0.250) (0.240) (0.245) (0.247)
Urban driving percentage (speed=50) −0.013 −0.014 −0.011 −0.011 −0.016 −0.013 −0.012 −0.010

(0.297) (0.297) (0.299) (0.300) (0.307) (0.297) (0.297) (0.298)
Night driving percentage 0.052 0.050 0.058 0.060 0.042 0.058 0.067 0.068

(0.449) (0.449) (0.452) (0.455) (0.470) (0.452) (0.453) (0.452)
Percentage of driving above speed limit (type 1 adjusted) 0.080∗∗ 0.082∗∗ 0.073∗ 0.072∗ 0.079∗ 0.082∗∗ 0.081∗∗ 0.077∗

(0.342) (0.343) (0.344) (0.345) (0.349) (0.343) (0.342) (0.342)
Average speeding (weighted) 0.003∗∗∗ 0.003∗∗∗ 0.003∗∗∗ 0.003∗∗∗ 0.003∗∗ 0.003∗∗∗ 0.003∗∗∗ 0.003∗∗∗

(0.009) (0.009) (0.009) (0.009) (0.009) (0.009) (0.009) (0.009)
Percentage of driving above speed limit in Urban areas (type
1 adjusted)

−0.061∗ −0.061∗ −0.060∗ −0.060∗ −0.068∗ −0.061∗ −0.059∗ −0.059∗

(0.289) (0.289) (0.291) (0.292) (0.297) (0.289) (0.289) (0.290)
Average speeding in urban areas (relative) −0.009 −0.009 −0.009 −0.009 −0.007 −0.009 −0.009 −0.009

(0.107) (0.107) (0.108) (0.108) (0.109) (0.107) (0.107) (0.107)
No. of accelerations per km (tr=2) 0.008 0.007 0.008 0.009 0.010 0.008 0.009 0.009

(0.180) (0.180) (0.180) (0.181) (0.183) (0.180) (0.180) (0.180)
No. of braking per km (tr=2) 0.019 0.019 0.018 0.018 0.019 0.018 0.017 0.017

(0.176) (0.176) (0.177) (0.177) (0.180) (0.176) (0.176) (0.176)
Average speed difference after acceleration −0.0004 −0.0004 −0.0005 −0.0005 −0.001 −0.0004 −0.001 −0.001

(0.013) (0.013) (0.013) (0.013) (0.013) (0.013) (0.013) (0.013)
Average speed at the beginning of accelerations 0.0005 0.0004 0.0005 0.0005 0.0003 0.0005 0.0004 0.0004

(0.006) (0.006) (0.006) (0.006) (0.006) (0.006) (0.006) (0.006)
Average speed difference after braking 0.001 0.001 0.001 0.001 0.001 0.001 0.0005 0.0004

(0.018) (0.018) (0.018) (0.018) (0.018) (0.018) (0.018) (0.018)
Average speed at the beginning of braking 0.00003 0.00002 0.0001 0.0001 0.0001 0.00003 0.0001 0.0001

(0.007) (0.007) (0.007) (0.007) (0.007) (0.007) (0.007) (0.007)

Percentage of visits to:

the most popular location 0.055
(0.323)

5 most popular locations −0.069∗∗
(0.292)

10 most popular locations −0.078∗∗
(0.332)

20 most popular locations −0.081∗
(0.394)

Percentage of clusters accounting for:

for 75% of visits 0.041
(0.413)

for 90% of visits 0.047∗∗

(0.203)
for 95% of visits 0.058∗∗

(0.203)

McFadden Pseudo R2 0.0328 0.0335 0.0342 0.0341 0.0336 0.0330 0.0342 0.0349
Log Likelihood −1,352.928 −1,351.866 −1,350.838 −1,350.146 −1,320.990 −1,352.541 −1,350.953 −1,349.940
Akaike Inf. Crit. 2,763.856 2,763.732 2,761.677 2,760.292 2,701.980 2,765.083 2,761.906 2,759.881

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Chapter 3. Into Twilight: on the Perils of Late Visits to Unfamiliar Destinations.

Table 3.9: Annual probability of liability claim submission (probit) (Average marginal effects)

Dependent variable: Liability claim submission in 2016 (> 10CHF )
(1) (2) (3) (4) (5) (6) (7) (8)

Traditional Insurance Variables

Sex of driver: female 0.003 0.003 0.003 0.003 0.004 0.004 0.004 0.003
(0.058) (0.058) (0.058) (0.058) (0.058) (0.058) (0.058) (0.058)

Age of driver −0.003∗∗ −0.003∗∗ −0.003∗∗ −0.003∗∗ −0.003∗∗ −0.003∗∗ −0.003∗∗ −0.003∗∗
(0.011) (0.011) (0.011) (0.011) (0.011) (0.011) (0.011) (0.011)

Vehicle: age 0.002∗∗ 0.002∗∗ 0.002∗∗ 0.002∗∗ 0.002∗∗ 0.002∗∗ 0.002∗∗ 0.002∗∗

(0.007) (0.007) (0.007) (0.007) (0.007) (0.007) (0.007) (0.007)
Vehicle: horsepower −0.00003 −0.00003 −0.00002 −0.00002 −0.00002 −0.00003 −0.00003 −0.00003

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
Vehicle: weight 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001

(0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002)
Vehicle: price −0.00000 −0.00000 −0.00000 −0.00000 −0.00000 −0.00000 −0.00000 −0.00000

(0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000)
Vehicle: mileage 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
Leasing contract: true −0.0003 0.00003 −0.0002 −0.0003 −0.0001 −0.001 −0.001 −0.001

(0.080) (0.080) (0.080) (0.080) (0.080) (0.080) (0.080) (0.080)
Recent change of address: true 0.011 0.009 0.009 0.009 0.009 0.011 0.011 0.010

(0.069) (0.069) (0.069) (0.069) (0.069) (0.069) (0.069) (0.069)
Bonus Malus Score TPL −0.001 −0.001 −0.001 −0.001 −0.001 −0.002 −0.001 −0.001

(0.023) (0.023) (0.023) (0.023) (0.023) (0.023) (0.023) (0.023)
No. of years without first contract 0.003∗ 0.003∗ 0.003∗ 0.003∗ 0.003∗ 0.003∗ 0.003∗ 0.003∗

(0.014) (0.014) (0.014) (0.014) (0.014) (0.014) (0.014) (0.014)
No. of previous mobility claims −0.007 −0.007 −0.007 −0.007 −0.007 −0.007 −0.008 −0.007

(0.067) (0.068) (0.068) (0.067) (0.068) (0.068) (0.068) (0.068)

Telematics-Based Predictors

Average distance per day (active) 0.001∗∗∗ 0.001∗∗∗ 0.0005∗∗ 0.0005∗∗ 0.0005∗∗ 0.0004∗∗ 0.0004∗∗ 0.0004∗∗

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
No. of journeys per day (active) 0.012∗∗∗ 0.011∗∗∗ 0.011∗∗∗ 0.010∗∗∗ 0.010∗∗∗ 0.013∗∗∗ 0.012∗∗∗ 0.012∗∗∗

(0.027) (0.027) (0.027) (0.027) (0.028) (0.027) (0.027) (0.027)
Average speed (type 1) −0.0004 −0.0004 −0.0004 −0.0003 −0.0004 −0.0003 −0.0003 −0.0003

(0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003)
Weekend driving percentage −0.055∗ −0.061∗∗ −0.066∗∗ −0.067∗∗ −0.066∗∗ −0.070∗∗ −0.076∗∗∗ −0.074∗∗

(0.238) (0.243) (0.245) (0.246) (0.246) (0.246) (0.248) (0.248)
Urban driving percentage (speed=50) −0.013 −0.012 −0.011 −0.011 −0.017 −0.011 −0.010 −0.009

(0.297) (0.298) (0.299) (0.300) (0.301) (0.297) (0.299) (0.299)
Night driving percentage 0.052 0.057 0.059 0.059 0.059 0.067 0.069 0.067

(0.449) (0.452) (0.453) (0.453) (0.458) (0.452) (0.453) (0.452)
Percentage of driving above speed limit (type 1 adjusted) 0.080∗∗ 0.075∗ 0.071∗ 0.069∗ 0.070∗ 0.078∗ 0.074∗ 0.073∗

(0.342) (0.344) (0.345) (0.346) (0.347) (0.342) (0.342) (0.343)
Average speeding (weighted) 0.003∗∗∗ 0.003∗∗∗ 0.003∗∗∗ 0.003∗∗∗ 0.003∗∗∗ 0.003∗∗∗ 0.003∗∗∗ 0.003∗∗∗

(0.009) (0.009) (0.009) (0.009) (0.009) (0.009) (0.009) (0.009)
Percentage of driving above speed limit in Urban areas (type
1 adjusted)

−0.061∗ −0.061∗ −0.060∗ −0.060∗ −0.061∗ −0.059∗ −0.060∗ −0.060∗

(0.289) (0.290) (0.291) (0.291) (0.292) (0.290) (0.291) (0.290)
Average speeding in urban areas (relative) −0.009 −0.009 −0.009 −0.009 −0.010 −0.009 −0.008 −0.008

(0.107) (0.108) (0.108) (0.108) (0.109) (0.107) (0.108) (0.108)
No. of accelerations per km (tr=2) 0.008 0.009 0.009 0.009 0.005 0.009 0.010 0.010

(0.180) (0.180) (0.180) (0.181) (0.182) (0.180) (0.180) (0.180)
No. of braking per km (tr=2) 0.019 0.018 0.017 0.017 0.021 0.017 0.017 0.017

(0.176) (0.176) (0.177) (0.177) (0.178) (0.176) (0.176) (0.176)
Average speed difference after acceleration −0.0004 −0.0005 −0.001 −0.0005 −0.0004 −0.001 −0.001 −0.001

(0.013) (0.013) (0.013) (0.013) (0.013) (0.013) (0.013) (0.013)
Average speed at the beginning of accelerations 0.0005 0.0005 0.0005 0.0005 0.001 0.0004 0.0004 0.0004

(0.006) (0.006) (0.006) (0.006) (0.006) (0.006) (0.006) (0.006)
Average speed difference after braking 0.001 0.001 0.001 0.001 0.001 0.0004 0.0003 0.0005

(0.018) (0.018) (0.018) (0.018) (0.018) (0.018) (0.018) (0.018)
Average speed at the beginning of braking 0.00003 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

(0.007) (0.007) (0.007) (0.007) (0.007) (0.007) (0.007) (0.007)

Percentage of journeys on (undirected):

the most popular route −0.036
(0.237)

5 most popular routes −0.050∗∗
(0.212)

10 most popular routes −0.054∗∗
(0.218)

20 most popular routes −0.058∗∗
(0.228)

Percentage of routes (undirected) accounting for:

for 75% of journeys 0.059∗∗

(0.233)
for 90% of journeys 0.072∗∗∗

(0.222)
for 95% of journeys 0.103∗∗

(0.355)

McFadden Pseudo R2 0.0328 0.0334 0.0342 0.0343 0.0342 0.0345 0.0356 0.0351
Log Likelihood −1,352.928 −1,352.044 −1,350.864 −1,350.268 −1,345.746 −1,350.563 −1,349.016 −1,349.665
Akaike Inf. Crit. 2,763.856 2,764.089 2,761.728 2,760.536 2,751.492 2,761.127 2,758.032 2,759.329

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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3.6. Results

Table 3.10: Annual probability of liability claim submission (probit) (Average marginal effects)

Dependent variable: Liability claim submission in 2016 (> 10CHF )
(1) (2) (3) (4) (5) (6) (7) (8)

Traditional Insurance Variables

Sex of driver: female 0.003 0.003 0.003 0.003 0.003 0.004 0.003 0.003
(0.058) (0.058) (0.058) (0.058) (0.058) (0.058) (0.058) (0.058)

Age of driver −0.003∗∗ −0.003∗∗ −0.003∗∗ −0.003∗∗ −0.003∗∗ −0.003∗∗ −0.003∗∗ −0.003∗∗
(0.011) (0.011) (0.011) (0.011) (0.011) (0.011) (0.011) (0.011)

Vehicle: age 0.002∗∗ 0.002∗∗ 0.002∗∗ 0.002∗∗ 0.002∗∗ 0.002∗∗ 0.002∗∗ 0.002∗∗

(0.007) (0.007) (0.007) (0.007) (0.007) (0.007) (0.007) (0.007)
Vehicle: horsepower −0.00003 −0.00002 −0.00002 −0.00002 −0.00002 −0.00003 −0.00003 −0.00003

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
Vehicle: weight 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001

(0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002)
Vehicle: price −0.00000 −0.00000 −0.00000 −0.00000 −0.00000 −0.00000 −0.00000 −0.00000

(0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000)
Vehicle: mileage 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
Leasing contract: true −0.0003 0.0001 −0.0001 −0.0002 −0.0003 −0.001 −0.001 −0.001

(0.080) (0.080) (0.080) (0.080) (0.080) (0.080) (0.080) (0.080)
Recent change of address: true 0.011 0.009 0.009 0.009 0.009 0.011 0.010 0.011

(0.069) (0.069) (0.069) (0.069) (0.069) (0.069) (0.069) (0.069)
Bonus Malus Score TPL −0.001 −0.001 −0.001 −0.001 −0.001 −0.002 −0.001 −0.001

(0.023) (0.023) (0.023) (0.023) (0.023) (0.023) (0.023) (0.023)
No. of years without first contract 0.003∗ 0.003∗ 0.003∗ 0.003∗ 0.003∗ 0.003∗ 0.003∗ 0.003∗

(0.014) (0.014) (0.014) (0.014) (0.014) (0.014) (0.014) (0.014)
No. of previous mobility claims −0.007 −0.007 −0.007 −0.007 −0.007 −0.007 −0.007 −0.007

(0.067) (0.068) (0.068) (0.068) (0.067) (0.068) (0.068) (0.068)

Telematics-Based Predictors

Average distance per day (active) 0.001∗∗∗ 0.001∗∗∗ 0.0005∗∗ 0.0005∗∗ 0.0005∗∗ 0.0004∗∗ 0.0004∗∗ 0.0005∗∗

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
No. of journeys per day (active) 0.012∗∗∗ 0.011∗∗∗ 0.011∗∗∗ 0.011∗∗∗ 0.010∗∗∗ 0.013∗∗∗ 0.012∗∗∗ 0.012∗∗∗

(0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027)
Average speed (type 1) −0.0004 −0.0004 −0.0004 −0.0004 −0.0003 −0.0003 −0.0003 −0.0004

(0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003)
Weekend driving percentage −0.055∗ −0.063∗∗ −0.065∗∗ −0.067∗∗ −0.068∗∗ −0.071∗∗ −0.074∗∗ −0.071∗∗

(0.238) (0.244) (0.245) (0.246) (0.247) (0.247) (0.248) (0.248)
Urban driving percentage (speed=50) −0.013 −0.011 −0.011 −0.011 −0.011 −0.011 −0.010 −0.009

(0.297) (0.299) (0.299) (0.299) (0.300) (0.297) (0.299) (0.299)
Night driving percentage 0.052 0.060 0.059 0.060 0.061 0.068 0.068 0.066

(0.449) (0.453) (0.453) (0.453) (0.456) (0.453) (0.453) (0.452)
Percentage of driving above speed limit (type 1 adjusted) 0.080∗∗ 0.074∗ 0.073∗ 0.071∗ 0.069∗ 0.078∗ 0.074∗ 0.075∗

(0.342) (0.344) (0.345) (0.345) (0.346) (0.342) (0.343) (0.343)
Average speeding (weighted) 0.003∗∗∗ 0.003∗∗∗ 0.003∗∗∗ 0.003∗∗∗ 0.003∗∗∗ 0.003∗∗∗ 0.003∗∗∗ 0.003∗∗∗

(0.009) (0.009) (0.009) (0.009) (0.009) (0.009) (0.009) (0.009)
Percentage of driving above speed limit in Urban areas (type
1 adjusted)

−0.061∗ −0.061∗ −0.060∗ −0.060∗ −0.061∗ −0.059∗ −0.060∗ −0.060∗

(0.289) (0.290) (0.291) (0.291) (0.292) (0.290) (0.290) (0.290)
Average speeding in urban areas (relative) −0.009 −0.009 −0.009 −0.009 −0.009 −0.009 −0.009 −0.009

(0.107) (0.108) (0.108) (0.108) (0.108) (0.107) (0.108) (0.108)
No. of accelerations per km (tr=2) 0.008 0.009 0.009 0.009 0.009 0.009 0.010 0.010

(0.180) (0.180) (0.180) (0.180) (0.181) (0.180) (0.180) (0.180)
No. of braking per km (tr=2) 0.019 0.018 0.017 0.017 0.018 0.017 0.017 0.018

(0.176) (0.176) (0.177) (0.177) (0.177) (0.176) (0.176) (0.176)
Average speed difference after acceleration −0.0004 −0.0005 −0.0005 −0.001 −0.0005 −0.001 −0.001 −0.001

(0.013) (0.013) (0.013) (0.013) (0.013) (0.013) (0.013) (0.013)
Average speed at the beginning of accelerations 0.0005 0.0004 0.0005 0.0005 0.0005 0.0004 0.0004 0.0004

(0.006) (0.006) (0.006) (0.006) (0.006) (0.006) (0.006) (0.006)
Average speed difference after braking 0.001 0.001 0.001 0.001 0.001 0.0004 0.0004 0.001

(0.018) (0.018) (0.018) (0.018) (0.018) (0.018) (0.018) (0.018)
Average speed at the beginning of braking 0.00003 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

(0.007) (0.007) (0.007) (0.007) (0.007) (0.007) (0.007) (0.007)

Percentage of journeys on (directed):

the most popular route −0.080
(0.449)

5 most popular routes −0.045∗
(0.216)

10 most popular routes −0.050∗∗
(0.212)

20 most popular routes −0.053∗∗
(0.218)

Percentage of routes (directed) accounting for:

for 75% of journeys 0.051∗∗

(0.198)
for 90% of journeys 0.075∗∗

(0.260)
for 95% of journeys 0.110∗∗

(0.469)

McFadden Pseudo R2 0.0328 0.0336 0.0339 0.0342 0.0342 0.0345 0.0350 0.0343
Log Likelihood −1,352.928 −1,351.716 −1,351.257 −1,350.790 −1,349.691 −1,350.510 −1,349.745 −1,350.734
Akaike Inf. Crit. 2,763.856 2,763.432 2,762.514 2,761.580 2,759.382 2,761.019 2,759.491 2,761.469

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Chapter 3. Into Twilight: on the Perils of Late Visits to Unfamiliar Destinations.

Table 3.11: Annual probability of liability claim submission (probit) (Average marginal effects)

Dependent variable: Liability claim submission in 2016 (> 10CHF )
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Traditional Insurance Variables

Sex of driver: female 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003
(0.058) (0.058) (0.058) (0.058) (0.058) (0.058) (0.058) (0.058) (0.058)

Age of driver −0.003∗∗ −0.003∗∗ −0.003∗∗ −0.003∗∗ −0.003∗∗ −0.003∗∗ −0.003∗∗ −0.003∗∗ −0.003∗∗
(0.011) (0.011) (0.011) (0.011) (0.011) (0.011) (0.011) (0.011) (0.011)

Vehicle: age 0.002∗∗ 0.002∗∗ 0.002∗∗ 0.002∗∗ 0.002∗∗ 0.002∗∗ 0.002∗∗ 0.002∗∗ 0.002∗∗

(0.007) (0.007) (0.007) (0.007) (0.007) (0.007) (0.007) (0.007) (0.007)
Vehicle: horsepower −0.00003 −0.00003 −0.00003 −0.00003 −0.00003 −0.00003 −0.00003 −0.00003 −0.00002

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
Vehicle: weight 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001

(0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002)
Vehicle: price −0.00000 −0.00000 −0.00000 −0.00000 −0.00000 −0.00000 −0.00000 −0.00000 −0.00000

(0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000)
Vehicle: mileage 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00000

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
Leasing contract: true −0.0003 −0.0003 −0.0005 −0.001 −0.0001 −0.0003 −0.0003 −0.0002 −0.0005

(0.080) (0.080) (0.080) (0.080) (0.080) (0.080) (0.080) (0.080) (0.080)
Recent change of address: true 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011

(0.069) (0.069) (0.069) (0.069) (0.069) (0.069) (0.069) (0.069) (0.069)
Bonus Malus Score TPL −0.001 −0.001 −0.001 −0.001 −0.001 −0.001 −0.001 −0.001 −0.001

(0.023) (0.023) (0.023) (0.023) (0.023) (0.023) (0.023) (0.023) (0.023)
No. of years without first contract 0.003∗ 0.003∗ 0.003∗ 0.003∗ 0.003∗ 0.003∗ 0.003∗ 0.003∗ 0.003∗

(0.014) (0.014) (0.014) (0.014) (0.014) (0.014) (0.014) (0.014) (0.014)
No. of previous mobility claims −0.007 −0.007 −0.007 −0.007 −0.007 −0.007 −0.007 −0.007 −0.007

(0.067) (0.067) (0.067) (0.068) (0.067) (0.067) (0.068) (0.068) (0.068)

Telematics-Based Predictors

Average distance per day (active) 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
No. of journeys per day (active) 0.012∗∗∗ 0.012∗∗∗ 0.012∗∗∗ 0.012∗∗∗ 0.012∗∗∗ 0.012∗∗∗ 0.012∗∗∗ 0.012∗∗∗ 0.012∗∗∗

(0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027)
Average speed (type 1) −0.0004 −0.0004 −0.0004 −0.0004 −0.0004 −0.0004 −0.0004 −0.0004 −0.0004

(0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003)
Weekend driving percentage −0.055∗ −0.054∗ −0.061∗ −0.056∗∗ −0.057∗∗ −0.053∗ −0.052∗ −0.054∗ −0.056∗

(0.238) (0.247) (0.266) (0.243) (0.242) (0.244) (0.244) (0.247) (0.252)
Urban driving percentage (speed=50) −0.013 −0.013 −0.013 −0.013 −0.013 −0.013 −0.013 −0.012 −0.013

(0.297) (0.297) (0.297) (0.297) (0.297) (0.297) (0.297) (0.297) (0.297)
Night driving percentage 0.052 0.054 0.055 0.057 0.038 0.056 0.052 0.037 0.042

(0.449) (0.470) (0.470) (0.490) (0.498) (0.471) (0.450) (0.507) (0.509)
Percentage of driving above speed limit (type
1 adjusted)

0.080∗∗ 0.080∗∗ 0.080∗∗ 0.082∗∗ 0.080∗∗ 0.079∗∗ 0.080∗∗ 0.080∗∗ 0.083∗∗

(0.342) (0.342) (0.342) (0.343) (0.343) (0.342) (0.343) (0.343) (0.343)
Average speeding (weighted) 0.003∗∗∗ 0.003∗∗∗ 0.003∗∗∗ 0.003∗∗∗ 0.003∗∗∗ 0.003∗∗∗ 0.003∗∗∗ 0.003∗∗∗ 0.003∗∗∗

(0.009) (0.009) (0.009) (0.009) (0.009) (0.009) (0.009) (0.009) (0.009)
Percentage of driving above speed limit in Ur-
ban areas (type 1 adjusted)

−0.061∗ −0.061∗ −0.060∗ −0.061∗ −0.061∗ −0.061∗ −0.061∗ −0.062∗ −0.061∗

(0.289) (0.289) (0.289) (0.289) (0.289) (0.289) (0.289) (0.289) (0.289)
Average speeding in urban areas (relative) −0.009 −0.009 −0.009 −0.009 −0.009 −0.009 −0.010 −0.010 −0.010

(0.107) (0.107) (0.107) (0.107) (0.107) (0.107) (0.107) (0.107) (0.107)
No. of accelerations per km (tr=2) 0.008 0.008 0.008 0.007 0.007 0.008 0.008 0.008 0.007

(0.180) (0.180) (0.180) (0.180) (0.180) (0.180) (0.180) (0.180) (0.180)
No. of braking per km (tr=2) 0.019 0.019 0.019 0.018 0.018 0.019 0.019 0.018 0.017

(0.176) (0.176) (0.176) (0.177) (0.176) (0.176) (0.176) (0.176) (0.177)
Average speed difference after acceleration −0.0004 −0.0004 −0.0004 −0.0004 −0.0004 −0.0004 −0.0004 −0.0004 −0.0004

(0.013) (0.013) (0.013) (0.013) (0.013) (0.013) (0.013) (0.013) (0.013)
Average speed at the beginning of accelera-
tions

0.0005 0.0005 0.0004 0.0004 0.0005 0.0005 0.0004 0.0004 0.0004

(0.006) (0.006) (0.006) (0.006) (0.006) (0.006) (0.006) (0.006) (0.006)
Average speed difference after braking 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

(0.018) (0.018) (0.018) (0.018) (0.018) (0.018) (0.018) (0.018) (0.018)
Average speed at the beginning of braking 0.00003 0.00003 0.00004 0.00003 0.00004 0.00003 0.00002 0.00001 −0.00000

(0.007) (0.007) (0.007) (0.007) (0.007) (0.007) (0.007) (0.007) (0.007)

Percentage of driving time during:

Twilight 0.006
(0.472)

Morning twilight −0.017
(0.591)

Evening twilight 0.045
(0.756)

After sunrise −0.044 0.394
(2.029) (2.878)

Before sunset 0.194 0.533∗

(1.624) (2.327)
Civil twilight −0.086 −0.161 −0.576∗

(1.363) (1.687) (2.639)
Nautical twilight 0.029 0.078 0.165

(1.092) (1.565) (1.596)
Astronomical twilight 0.052 0.044 −0.001

(1.041) (1.270) (1.331)

McFadden Pseudo R2 0.0328 0.0328 0.0329 0.0332 0.0329 0.0328 0.0329 0.0331 0.0344
Log Likelihood −1,352.928 −1,352.922 −1,352.774 −1,352.395 −1,352.785 −1,352.902 −1,352.839 −1,352.517 −1,350.684
Akaike Inf. Crit. 2,763.856 2,765.845 2,767.548 2,766.790 2,765.570 2,765.804 2,765.678 2,769.034 2,769.368

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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3.6. Results

Table 3.12: Annual probability of liability claim submission (probit) (Average marginal effects)

Dependent variable: Liability claim submission in 2016 (> 10CHF )
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Traditional Insurance Variables

Sex of driver: female 0.003 0.004 0.003 0.004 0.004 0.004 0.004 0.004 0.004
(0.058) (0.058) (0.058) (0.061) (0.058) (0.058) (0.058) (0.058) (0.061)

Age of driver −0.003∗∗ −0.003∗∗ −0.003∗∗ −0.002∗ −0.003∗∗ −0.003∗∗ −0.003∗∗ −0.003∗∗ −0.002∗
(0.011) (0.011) (0.011) (0.011) (0.011) (0.011) (0.011) (0.011) (0.011)

Vehicle: age 0.002∗∗ 0.002∗∗ 0.002∗∗ 0.002∗∗ 0.002∗∗ 0.002∗∗ 0.002∗∗ 0.002∗∗ 0.002∗∗

(0.007) (0.007) (0.007) (0.008) (0.007) (0.007) (0.007) (0.007) (0.008)
Vehicle: horsepower −0.00003 −0.00002 −0.00004 −0.0001 −0.00002 −0.00004 −0.00002 −0.00004 −0.0001

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
Vehicle: weight 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001

(0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002)
Vehicle: price −0.00000 −0.00000 −0.00000 −0.00000 −0.00000 −0.00000 −0.00000 −0.00000 −0.00000

(0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000)
Vehicle: mileage 0.00001 0.00001 0.00001 0.00000 0.00001 0.00000 0.00001 0.00001 0.00000

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
Leasing contract: true −0.0003 −0.001 −0.001 0.003 −0.001 −0.002 −0.001 −0.002 0.003

(0.080) (0.080) (0.080) (0.083) (0.080) (0.080) (0.080) (0.080) (0.083)
Recent change of address: true 0.011 0.010 0.010 0.012 0.010 0.010 0.010 0.010 0.012

(0.069) (0.069) (0.069) (0.071) (0.069) (0.069) (0.069) (0.069) (0.071)
Bonus Malus Score TPL −0.001 −0.001 −0.001 −0.0004 −0.001 −0.001 −0.001 −0.001 −0.0004

(0.023) (0.023) (0.023) (0.024) (0.023) (0.023) (0.023) (0.023) (0.024)
No. of years without first contract 0.003∗ 0.003∗ 0.003∗ 0.003 0.003∗ 0.003∗ 0.003∗ 0.003∗ 0.003

(0.014) (0.014) (0.014) (0.014) (0.014) (0.014) (0.014) (0.014) (0.014)
No. of previous mobility claims −0.007 −0.008 −0.007 −0.006 −0.008 −0.007 −0.008 −0.007 −0.006

(0.067) (0.068) (0.068) (0.068) (0.068) (0.067) (0.067) (0.067) (0.068)

Telematics-Based Predictors

Average distance per day (active) 0.001∗∗∗ 0.0004∗∗ 0.0004∗∗ 0.0004∗ 0.0004∗∗ 0.0004∗∗ 0.0004∗∗ 0.0004∗∗ 0.0004∗

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
No. of journeys per day (active) 0.012∗∗∗ 0.010∗∗∗ 0.010∗∗∗ 0.011∗∗∗ 0.010∗∗∗ 0.010∗∗∗ 0.010∗∗∗ 0.010∗∗∗ 0.010∗∗∗

(0.027) (0.029) (0.029) (0.030) (0.029) (0.029) (0.029) (0.029) (0.031)
Average speed (type 1) −0.0004 −0.0003 −0.0003 −0.0001 −0.0003 −0.0003 −0.0003 −0.0003 −0.0001

(0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003)
Weekend driving percentage −0.055∗ −0.078∗∗∗ −0.076∗∗∗ −0.077∗∗ −0.077∗∗∗ −0.076∗∗∗ −0.078∗∗∗ −0.076∗∗∗ −0.078∗∗

(0.238) (0.249) (0.250) (0.267) (0.249) (0.249) (0.249) (0.250) (0.268)
Urban driving percentage (speed=50) −0.013 −0.009 −0.006 0.003 −0.009 −0.007 −0.009 −0.007 0.004

(0.297) (0.299) (0.300) (0.324) (0.299) (0.300) (0.299) (0.300) (0.324)
Night driving percentage 0.052 0.065 0.070 0.065 0.064 0.070 0.063 0.068 0.062

(0.449) (0.455) (0.456) (0.500) (0.458) (0.454) (0.456) (0.462) (0.506)
Percentage of driving above speed limit (type
1 adjusted)

0.080∗∗ 0.068∗ 0.064 0.044 0.069∗ 0.065 0.068∗ 0.065 0.042

(0.342) (0.345) (0.346) (0.368) (0.345) (0.346) (0.345) (0.346) (0.369)
Average speeding (weighted) 0.003∗∗∗ 0.003∗∗∗ 0.003∗∗∗ 0.003∗∗∗ 0.003∗∗∗ 0.003∗∗∗ 0.003∗∗∗ 0.003∗∗∗ 0.003∗∗

(0.009) (0.009) (0.009) (0.009) (0.009) (0.009) (0.009) (0.009) (0.009)
Percentage of driving above speed limit in Ur-
ban areas (type 1 adjusted)

−0.061∗ −0.061∗ −0.062∗ −0.046 −0.061∗ −0.059∗ −0.061∗ −0.060∗ −0.045

(0.289) (0.291) (0.292) (0.305) (0.291) (0.291) (0.291) (0.292) (0.306)
Average speeding in urban areas (relative) −0.009 −0.008 −0.008 −0.002 −0.008 −0.008 −0.008 −0.007 −0.001

(0.107) (0.108) (0.108) (0.114) (0.108) (0.108) (0.108) (0.108) (0.114)
No. of accelerations per km (tr=2) 0.008 0.010 0.010 0.015 0.010 0.010 0.011 0.011 0.016

(0.180) (0.180) (0.181) (0.189) (0.180) (0.180) (0.180) (0.180) (0.189)
No. of braking per km (tr=2) 0.019 0.018 0.020 0.023 0.018 0.019 0.018 0.020 0.023

(0.176) (0.176) (0.177) (0.190) (0.176) (0.176) (0.176) (0.177) (0.190)
Average speed difference after acceleration −0.0004 −0.001 −0.0005 0.0005 −0.001 −0.001 −0.001 −0.001 0.0005

(0.013) (0.013) (0.013) (0.014) (0.013) (0.013) (0.013) (0.013) (0.014)
Average speed at the beginning of accelera-
tions

0.0005 0.0004 0.001 0.001 0.0004 0.001 0.0004 0.001 0.001

(0.006) (0.006) (0.006) (0.006) (0.006) (0.006) (0.006) (0.006) (0.006)
Average speed difference after braking 0.001 0.0004 0.0004 0.001 0.0004 0.0004 0.0004 0.0005 0.001

(0.018) (0.018) (0.018) (0.019) (0.018) (0.018) (0.018) (0.018) (0.019)
Average speed at the beginning of braking 0.00003 0.0002 0.0001 −0.0003 0.0002 0.0002 0.0002 0.0002 −0.0003

(0.007) (0.007) (0.007) (0.007) (0.007) (0.007) (0.007) (0.007) (0.007)

Relative proportion of driving on unfa-
miliar roads (less than 1% of journeys)
during:
Twilight 0.043

(0.240)
Morning twilight −0.017

(0.435)
Evening twilight 0.037

(0.265)
Before sunset 0.024 −0.020

(0.237) (0.459)
After sunrise 0.007 −0.008

(0.205) (0.261)
Civil twilight 0.034 −0.004 0.037

(0.210) (0.573) (0.863)
Nautical twilight 0.041 0.033 0.018

(0.234) (0.805) (0.823)
Astronomical twilight 0.043 0.016 0.024

(0.243) (0.626) (0.653)
Percentage of routes (undirected) accounting
for for 90% of journeys

0.073∗∗∗ 0.078∗∗∗ 0.073∗∗∗ 0.074∗∗∗ 0.074∗∗∗ 0.074∗∗∗ 0.075∗∗∗ 0.072∗∗∗

(0.223) (0.225) (0.237) (0.223) (0.224) (0.223) (0.224) (0.238)

McFadden Pseudo R2 0.0328 0.0364 0.0359 0.0354 0.0363 0.0359 0.0362 0.0360 0.0358
Log Likelihood −1,352.928 −1,347.808 −1,343.269 −1,228.046 −1,347.727 −1,345.044 −1,347.604 −1,344.513 −1,227.327
Akaike Inf. Crit. 2,763.856 2,757.617 2,750.537 2,520.091 2,757.454 2,752.089 2,757.207 2,755.027 2,524.655

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Chapter 3. Into Twilight: on the Perils of Late Visits to Unfamiliar Destinations.

Table 3.13: Annual probability of liability claim submission (probit) (Average marginal effects)

Dependent variable: Liability claim submission in 2016 (> 10CHF )
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Traditional Insurance Variables

Sex of driver: female 0.003 0.004 0.003 0.004 0.004 0.004 0.004 0.004 0.004
Age of driver −0.003∗∗ −0.003∗∗ −0.003∗∗ −0.003∗ −0.003∗∗ −0.003∗∗ −0.003∗∗ −0.003∗∗ −0.003∗

(0.011) (0.011) (0.011) (0.011) (0.011) (0.011) (0.011) (0.011) (0.011)
Vehicle: age 0.002∗∗ 0.002∗∗ 0.002∗∗ 0.002∗∗ 0.002∗∗ 0.002∗∗ 0.002∗∗ 0.002∗∗ 0.002∗∗

(0.007) (0.007) (0.007) (0.008) (0.007) (0.007) (0.007) (0.007) (0.008)
Vehicle: horsepower −0.00003 −0.00002 −0.00004 −0.0001 −0.00002 −0.00004 −0.00002 −0.00004 −0.0001
Vehicle: weight 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001
Vehicle: price −0.00000 −0.00000 −0.00000 −0.00000 −0.00000 −0.00000 −0.00000 −0.00000 −0.00000
Vehicle: mileage 0.00001 0.00001 0.00001 0.00000 0.00001 0.00000 0.00001 0.00000 0.00000
Leasing contract: true −0.0003 −0.001 −0.002 0.003 −0.001 −0.002 −0.001 −0.002 0.003
Recent change of address: true 0.011 0.010 0.010 0.012 0.010 0.010 0.010 0.010 0.012
Bonus Malus Score TPL −0.001 −0.001 −0.001 −0.0004 −0.001 −0.001 −0.001 −0.001 −0.0003
No. of years without first contract 0.003∗ 0.003∗ 0.003∗ 0.003 0.003∗ 0.003∗ 0.003∗ 0.003∗ 0.003∗

(0.014) (0.014) (0.014) (0.014) (0.014) (0.014) (0.014) (0.014) (0.014)
No. of previous mobility claims −0.007 −0.008 −0.007 −0.006 −0.008 −0.008 −0.008 −0.008 −0.006

Telematics-Based Predictors

Average distance per day (active) 0.001∗∗∗ 0.0004∗∗ 0.0004∗∗ 0.0004∗ 0.0004∗∗ 0.0004∗∗ 0.0004∗∗ 0.0004∗∗ 0.0004∗∗

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
No. of journeys per day (active) 0.012∗∗∗ 0.010∗∗∗ 0.010∗∗∗ 0.011∗∗∗ 0.010∗∗∗ 0.010∗∗∗ 0.010∗∗∗ 0.010∗∗∗ 0.010∗∗∗

(0.027) (0.029) (0.030) (0.031) (0.029) (0.029) (0.029) (0.030) (0.031)
Average speed (type 1) −0.0004 −0.0003 −0.0003 −0.0001 −0.0003 −0.0003 −0.0003 −0.0003 −0.0001

(0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003)
Weekend driving percentage −0.055∗ −0.075∗∗ −0.076∗∗ −0.073∗∗ −0.080∗∗∗ −0.072∗∗ −0.075∗∗ −0.074∗∗ −0.075∗∗

(0.238) (0.256) (0.271) (0.272) (0.253) (0.254) (0.254) (0.257) (0.281)
Urban driving percentage (speed=50) −0.013 −0.009 −0.006 0.003 −0.009 −0.007 −0.009 −0.006 0.003

(0.297) (0.299) (0.300) (0.324) (0.299) (0.299) (0.299) (0.300) (0.324)
Night driving percentage 0.052 0.070 0.073 0.076 0.052 0.070 0.070 0.055 0.059

(0.449) (0.476) (0.476) (0.542) (0.504) (0.455) (0.477) (0.516) (0.569)
Percentage of driving above speed limit (type
1 adjusted)

0.080∗∗ 0.068∗ 0.064 0.043 0.069∗ 0.066 0.068∗ 0.065 0.042

(0.342) (0.345) (0.346) (0.368) (0.345) (0.346) (0.345) (0.347) (0.369)
Average speeding (weighted) 0.003∗∗∗ 0.003∗∗∗ 0.003∗∗∗ 0.003∗∗∗ 0.003∗∗∗ 0.003∗∗∗ 0.003∗∗∗ 0.003∗∗∗ 0.003∗∗

(0.009) (0.009) (0.009) (0.009) (0.009) (0.009) (0.009) (0.009) (0.009)
Percentage of driving above speed limit in Ur-
ban areas (type 1 adjusted)

−0.061∗ −0.061∗ −0.062∗ −0.046 −0.061∗ −0.059∗ −0.061∗ −0.060∗ −0.045

(0.289) (0.291) (0.292) (0.306) (0.291) (0.291) (0.291) (0.292) (0.306)
Average speeding in urban areas (relative) −0.009 −0.008 −0.008 −0.002 −0.008 −0.008 −0.008 −0.008 −0.001

(0.107) (0.108) (0.108) (0.114) (0.108) (0.108) (0.108) (0.108) (0.114)
No. of accelerations per km (tr=2) 0.008 0.011 0.011 0.016 0.010 0.011 0.011 0.011 0.017

(0.180) (0.180) (0.181) (0.189) (0.180) (0.180) (0.180) (0.180) (0.190)
No. of braking per km (tr=2) 0.019 0.018 0.020 0.023 0.018 0.019 0.018 0.018 0.023

(0.176) (0.176) (0.177) (0.190) (0.176) (0.177) (0.176) (0.177) (0.190)
Average speed difference after acceleration −0.0004 −0.001 −0.0005 0.0005 −0.001 −0.001 −0.001 −0.001 0.0005

(0.013) (0.013) (0.013) (0.014) (0.013) (0.013) (0.013) (0.013) (0.014)
Average speed at the beginning of accelera-
tions

0.0005 0.0004 0.001 0.001 0.0004 0.0005 0.0004 0.0005 0.001

(0.006) (0.006) (0.006) (0.006) (0.006) (0.006) (0.006) (0.006) (0.006)
Average speed difference after braking 0.001 0.0004 0.0004 0.001 0.0004 0.0004 0.0004 0.0004 0.001

(0.018) (0.018) (0.018) (0.019) (0.018) (0.018) (0.018) (0.018) (0.019)
Average speed at the beginning of braking 0.00003 0.0002 0.0001 −0.0003 0.0002 0.0001 0.0002 0.0002 −0.0003

(0.007) (0.007) (0.007) (0.007) (0.007) (0.007) (0.007) (0.007) (0.007)

Percentage of driving time during:

Twilight 0.018
(0.474)

Morning twilight 0.004
(0.614)

Evening twilight 0.023
(0.781)

After sunrise 0.150 0.500
(2.211) (3.169)

Before sunset −0.050 0.230
(1.937) (2.742)

Civil twilight −0.082 −0.186 −0.470
(1.369) (1.704) (2.979)

Nautical twilight 0.055 0.114 0.139
(1.096) (1.563) (1.909)

Astronomical twilight 0.088 0.060 −0.011
(1.050) (1.280) (1.543)

Relative proportion of driving on unfa-
miliar roads (less than 1% of journeys)
during:
Twilight 0.043

(0.241)
Morning twilight −0.016

(0.439)
Evening twilight 0.038

(0.267)
Before sunset 0.022 −0.017

(0.238) (0.462)
After sunrise 0.009 −0.005

(0.207) (0.263)
Civil twilight 0.033 −0.012 0.028

(0.211) (0.576) (0.866)
Nautical twilight 0.042 0.037 0.025

(0.235) (0.807) (0.825)
Astronomical twilight 0.045 0.021 0.021

(0.245) (0.631) (0.657)
Percentage of routes (undirected) accounting
for for 90% of journeys

0.073∗∗∗ 0.077∗∗∗ 0.074∗∗∗ 0.074∗∗∗ 0.075∗∗∗ 0.074∗∗∗ 0.077∗∗∗ 0.072∗∗

(0.224) (0.231) (0.239) (0.223) (0.224) (0.224) (0.225) (0.242)

McFadden Pseudo R2 0.0328 0.0364 0.0360 0.0355 0.0364 0.0361 0.0363 0.0364 0.0367
Log Likelihood −1,352.928 −1,347.754 −1,343.235 −1,227.851 −1,347.598 −1,344.790 −1,347.512 −1,343.855 −1,226.211
Akaike Inf. Crit. 2,763.856 2,759.507 2,754.469 2,523.703 2,759.196 2,753.579 2,759.023 2,759.710 2,532.422

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

72



3.6. Results

Table 3.14: Annual probability of liability claim submission (probit) (Average marginal effects)

Dependent variable: Liability claim submission in 2016 (> 10CHF )
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Traditional Insurance Variables

Sex of driver: female 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003
(0.058) (0.058) (0.058) (0.058) (0.058) (0.058) (0.058) (0.058) (0.058)

Age of driver −0.003∗∗ −0.003∗∗ −0.003∗∗ −0.003∗∗ −0.003∗∗ −0.003∗ −0.003∗ −0.003∗ −0.003∗
(0.011) (0.011) (0.011) (0.011) (0.011) (0.011) (0.011) (0.011) (0.011)

Vehicle: age 0.002∗∗ 0.002∗∗ 0.002∗∗ 0.002∗∗ 0.002∗∗ 0.002∗∗ 0.002∗∗ 0.002∗∗ 0.002∗∗

(0.007) (0.007) (0.007) (0.007) (0.007) (0.007) (0.007) (0.007) (0.007)
Vehicle: horsepower −0.00003 −0.00003 −0.00003 −0.00003 −0.00003 −0.00003 −0.00003 −0.00003 −0.00003

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
Vehicle: weight 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001

(0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002)
Vehicle: price −0.00000 −0.00000 −0.00000 −0.00000 −0.00000 −0.00000 −0.00000 −0.00000 −0.00000

(0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000)
Vehicle: mileage 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00000 0.00000

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
Leasing contract: true −0.001 −0.001 −0.001 −0.0004 −0.0003 −0.001 −0.001 −0.001 −0.001

(0.080) (0.080) (0.080) (0.080) (0.080) (0.080) (0.080) (0.080) (0.080)
Recent change of address: true 0.011 0.011 0.011 0.012 0.012 0.011 0.011 0.011 0.011

(0.069) (0.069) (0.069) (0.069) (0.069) (0.069) (0.069) (0.069) (0.069)
Bonus Malus Score TPL −0.001 −0.001 −0.001 −0.001 −0.001 −0.001 −0.001 −0.001 −0.002

(0.023) (0.023) (0.023) (0.023) (0.023) (0.023) (0.023) (0.023) (0.023)
No. of years without first contract 0.003∗ 0.003∗ 0.003∗ 0.003∗ 0.003∗ 0.003 0.003 0.003 0.003

(0.014) (0.014) (0.014) (0.014) (0.014) (0.014) (0.014) (0.014) (0.014)
No. of previous mobility claims −0.007 −0.007 −0.007 −0.007 −0.007 −0.008 −0.008 −0.007 −0.007

(0.068) (0.068) (0.068) (0.067) (0.067) (0.068) (0.068) (0.068) (0.068)

Telematics-Based Predictors

Average distance per day (active) 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.0004∗∗ 0.0004∗∗ 0.0004∗ 0.0004∗∗

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
No. of journeys per day (active) 0.012∗∗∗ 0.012∗∗∗ 0.012∗∗∗ 0.012∗∗∗ 0.012∗∗∗ 0.012∗∗∗ 0.012∗∗∗ 0.012∗∗∗ 0.012∗∗∗

(0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027)
Average speed (type 1) −0.0004 −0.0004 −0.0004 −0.0004 −0.0004 −0.0003 −0.0003 −0.0003 −0.0003

(0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003)
Weekend driving percentage −0.059∗∗ −0.059∗∗ −0.059∗∗ −0.062∗∗ −0.062∗∗ −0.080∗∗∗ −0.081∗∗∗ −0.083∗∗∗ −0.083∗∗∗

(0.234) (0.237) (0.236) (0.235) (0.235) (0.247) (0.246) (0.246) (0.246)
Urban driving percentage (speed=50) −0.012 −0.012 −0.012 −0.013 −0.012 −0.008 −0.009 −0.009 −0.009

(0.296) (0.296) (0.296) (0.296) (0.296) (0.298) (0.298) (0.298) (0.298)
Night driving percentage (new) 0.045 0.045 0.045 0.044 0.042 0.041 0.041 0.039 0.038

(0.380) (0.380) (0.380) (0.380) (0.380) (0.379) (0.379) (0.378) (0.379)
Percentage of driving above speed limit (type
1 adjusted)

0.081∗∗ 0.081∗∗ 0.081∗∗ 0.083∗∗ 0.082∗∗ 0.075∗ 0.075∗ 0.078∗ 0.077∗

(0.342) (0.343) (0.343) (0.343) (0.343) (0.343) (0.343) (0.343) (0.343)
Average speeding (weighted) 0.003∗∗∗ 0.003∗∗∗ 0.003∗∗∗ 0.003∗∗∗ 0.003∗∗∗ 0.003∗∗∗ 0.003∗∗∗ 0.003∗∗∗ 0.003∗∗∗

(0.009) (0.009) (0.009) (0.009) (0.009) (0.009) (0.009) (0.009) (0.009)
Percentage of driving above speed limit in Ur-
ban areas (type 1 adjusted)

−0.061∗ −0.061∗ −0.061∗ −0.059∗ −0.060∗ −0.059∗ −0.059∗ −0.058∗ −0.058∗

(0.289) (0.289) (0.289) (0.289) (0.289) (0.290) (0.290) (0.290) (0.290)
Average speeding in urban areas (relative) −0.009 −0.009 −0.009 −0.009 −0.009 −0.008 −0.008 −0.008 −0.008

(0.107) (0.107) (0.107) (0.107) (0.107) (0.107) (0.107) (0.107) (0.107)
No. of accelerations per km (tr=2) 0.008 0.008 0.008 0.008 0.008 0.010 0.009 0.009 0.009

(0.180) (0.180) (0.180) (0.180) (0.180) (0.180) (0.180) (0.180) (0.180)
No. of braking per km (tr=2) 0.017 0.017 0.017 0.017 0.017 0.014 0.014 0.014 0.014

(0.175) (0.175) (0.175) (0.175) (0.175) (0.175) (0.175) (0.175) (0.175)
Average speed difference after acceleration −0.0004 −0.0004 −0.0004 −0.0004 −0.0004 −0.001 −0.001 −0.001 −0.001

(0.013) (0.013) (0.013) (0.013) (0.013) (0.013) (0.013) (0.013) (0.013)
Average speed at the beginning of accelera-
tions

0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004

(0.006) (0.006) (0.006) (0.006) (0.006) (0.006) (0.006) (0.006) (0.006)
Average speed difference after braking 0.001 0.001 0.001 0.001 0.001 0.0002 0.0002 0.0002 0.0002

(0.017) (0.017) (0.017) (0.017) (0.017) (0.018) (0.018) (0.018) (0.018)
Average speed at the beginning of braking 0.00003 0.00003 0.00003 0.00004 0.00003 0.0001 0.0001 0.0001 0.0001

(0.007) (0.007) (0.007) (0.007) (0.007) (0.007) (0.007) (0.007) (0.007)

Frequency of journeys exceeding

4 hours −0.025 −0.038
(2.341) (2.360)

5 hours 0.028 0.004
(3.825) (3.820)

6 hours 0.621 0.572
(5.573) (5.571)

7 hours 0.771 0.732
(6.938) (6.915)

Percentage of routes (undirected) accounting
for 90% of journeys

0.067∗∗∗ 0.067∗∗∗ 0.067∗∗∗ 0.067∗∗∗

(0.221) (0.221) (0.221) (0.221)

McFadden Pseudo R2 0.0328 0.0328 0.0328 0.0331 0.0331 0.0353 0.0353 0.0355 0.0355
Log Likelihood −1,352.907 −1,352.903 −1,352.905 −1,352.479 −1,352.503 −1,349.420 −1,349.430 −1,349.060 −1,349.057
Akaike Inf. Crit. 2,763.814 2,765.806 2,765.810 2,764.958 2,765.006 2,760.841 2,760.859 2,760.120 2,760.114

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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3.7 Discussion

In this section I elaborate on potential practical implications of my results. First, I es-

tablished that driving on unfamiliar roads increases accident risk. The magnitude of the

effect is illustrated in Figure 3.4: (top) shows accident probabilities for different levels

of sample quantiles of six variables: Percentage of clusters (routes directed/undirected)

accounting for 90% and 95% of visits (journeys). Accident probabilities corresponding

to 25% sample quantiles of these variables are on average 1.2% lower than the values

for 75% sample quantiles.10

Williams (2006) suggests to counter accident risk by using information about haz-

ardous driving patterns for insurance pricing. After an initial exploitation period,

driving logs are sufficient to evaluate the policyholder’s familiarity with an undertaken

route. Consequently it is possible to incorporate this factor into risk classification.

The first approach would be to make the premium proportional to the relative dis-

tance driven on rarely visited roads. This however could alienate a lot of low-risk

clients. Alternatively, the insurer could introduce stricter penalties for speed violations,

harsh braking and accelerations when driving on unfamiliar routes. This practice is

widespread to gauge the potential risk stemming from urban and night driving.

It is challenging to distil the effect of light conditions on accident hazard. The

most commonly-used proxy, night driving percentage, combines the impacts of several

different risk factors: on the negative side, drivers are more likely to be tired or under

the influence of alcohol, on the positive side, traffic intensity is lower.11 Two possibilities

to crystallize the effect are a) to focus on twilight driving, since the effect of additional

risk factors is weaker, b) compare accident rates in the same area at the same time of

day between two time periods: in winter after dark and in summer when it’s not dark

10In our sample, assuming that an accident results in the loss of vehicle and using average vehicle
prices reported in Table 3.1, a 1.2% change in the accident probability would require a 380 CHF
adjustment of a pure risk premium.

11I fit several models where I exclude speed and speeding related telematics predictors to see whether
in their absence night driving becomes statistically significant. Contrarily to my expectations this was
not the case
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Figure 3.4: Predicted annual accident probabilities for different empirical quantiles of
route familiarity variables.

yet. The second approach is not feasible with our dataset, since accidents are infrequent

and exact times and locations are not known. Following the former approach, I find

no evidence that frequent driving under bad light conditions increases the accident

hazard.

When discussing practical implications of this result, it is worth noting that pre-

mium increase is not the only punishment for driving “misbehavior" and accident in-

volvement. Since the average driver age is 22.5 years in our sample, a considerable

share only has a probationary driver’s license. A driver with such a license faces

harsher penalties and stricter restrictions on alcohol consumption. This might suffice

to offset the risks associated with late driving. Therefore insurers could attract more

policyholders without incurring considerable losses by not using information about

night driving for premium calculation. This result also suggests that the government

could save money by using more energy-efficient technologies for road lighting without
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compromising traffic safety.

I do not find any statistically significant association between accident involvement

and the frequency of long journeys. To summarize, neither of two situations (late driv-

ing and long uninterrupted traveling), when driver could be prone to fatigue, translates

into higher accident probability. This might challenge the necessity of governmental

regulations of the maximum driving time for the professional drivers. The external

validity of such a conclusion is under question since our sample comprises drivers who

rarely undertake long journeys and thereby is not suitable for exploring the impact

of fatigue on accident risk. This is further exacerbated by the fact that due to well-

maintained infrastructure on the one hand and a good driving situation on the other

driving is less effortful and more time passes before the driver gets tired.

3.8 Conclusion

Some aspects of the Big Data revolution are reminiscent of the so-called Gold Rush:

stakeholders greedily and indiscriminately collect data in the hope that one day they

can mine it for economic value. Driving logs are good examples for these new types

of data. Large businesses collect them to monitor their vehicle fleet, car producers use

this information to improve vehicle diagnostics, driving logs enable emergency service

operations, thereby decreasing the number of accident fatalities. In this contribution I

focused on a particular use case of driving logs: insurance pricing.

I created driving profiles for policyholders of a large Swiss insurance carrier and

studied whether this information can predict subsequent accident involvement. Previ-

ous contributions suggest that controlling for distance driven, location and frequency of

speed violations, the No. of journeys is a statistically significant risk factor (Muermann

et al. (2019), Sycheva et al. (2019)). To shed light on this phenomenon I extended the

driving profiles to reflect where, when and how long did policyholder drive. I found

that driving in unfamiliar locations increases accident hazard. Neither driving under

ambient light conditions nor undertaking long distance journeys impacts the likelihood
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of accident involvement.

These insights could be used by the insurance company to reach two closely-aligned

objectives: refine risk classification scheme and provide incentives for safe driving. In a

field experiment, Hultkrantz and Lindberg (2011) demonstrate that financial penalties

are effective in reducing speed violations. The trade-off between these goals arises when

deciding how to incorporate risk-relevant information into premium calculation. Ma-

chine learning algorithms would yield more accurate premia. In these models, however,

the link between driving behavior and the premium is obfuscated. Consequently, the

incentives embedded in the pricing scheme are less clear for policyholders and therefore

less effective.

Apart from accident risk, driving produces a lot of externalities, including CO2

emissions, traffic congestion and further environmental damages. Driving logs could

serve as basis for successful internalization mechanisms. The greatest hurdle to col-

lecting more data are the privacy concerns of data subjects. Thus various stakeholders

would need to find a delicate balance between extracting valuable insights from the

data without infringing on individual’s privacy.
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4. A Franc Less for a Pound More:

(Price) Discrimination and the Value

of Privacy

Price discrimination based on consumers’ personal data has become common practice

in many markets. We analyze the willingness to share personal data when this data

is used for price discrimination in subsequent markets. In a laboratory experiment,

participants can sell a bundle of personal data. Participants are categorized based on

the content of their personal data and receive category-dependent payoffs in a subsequent

stage. The experimental variations modify the category-dependent payoff structure. We

find no effect of subsequent financial discrimination on the general willingness to sell

personal data. A significant change in the data reservation price is only observed under

strong negative discrimination. Furthermore, we observe important gender differences

in the reservation price for private information and the role of underlying privacy

concerns.

4.1 Introduction

Using customer information to boost sales is an old and time-tested strategy. Private

doctors traveling between cities in Ancient Greece charged more to the rich than to

the poor. With easier access to private information, price discrimination based on

consumers’ detailed personal data as well as individual behavior is increasingly becom-

ing common practice in many markets.1 Airlines and other companies, such as Home
1Price discrimination can be beneficial for consumers and retailers. The seller can often generate

more revenue by offering services and products at lower costs to groups that tend to be more price
sensitive, for example in the case of student and senior discounts.
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Depot, offer individual prices for different customers on their websites based on factors

such as the time and day of the online activity as well as the customers’ zip codes.2

While price discrimination can be beneficial for consumers, these practices are often

intransparent to consumers and violate their privacy.

The use of Big Data enables firms to pursue these practices with greater preci-

sion and therefore may lead to negative outcomes for consumers. Ezrachi and Stucke

(2016) argue that online behavioral discrimination through big data will likely dif-

fer from the brick-and-mortar type of price discrimination in three ways: (1) a shift

from third-degree, imperfect price discrimination to near-perfect or first-degree price

discrimination by segmenting consumers into smaller groups and identifying their reser-

vation prices more precisely (2) an increase in overall consumption through marketing

strategies that target consumers’ emotions more effectively and (3) a stronger durabil-

ity of discrimination stemming from personalization and data-driven network effects.

The authors point out that the increase in personalized product offers and individual

pricing makes it harder for consumers to evaluate all options and assess general market

prices.

A very controversial issue is risk-based pricing in insurance. In various lines of

insurance business, such as health insurance, life insurance and automotive insurance,

policies are priced based on policyholders’ personal data that is used to predict their

risk type. Risk-based pricing can incentivize policyholders to behave less risky and

create desirable spill-over effects, such as an improvement in road safety and better

general health. Risk-based pricing can become problematic though when potential

insurance buyers are priced out of the market based on factors beyond their control,

such as genetic conditions. A pricing scheme that makes health insurance prohibitively

expensive for an individual with such a condition seems unfair and possibly illegal.

Genetic tests may even allow insurers to uncover medical conditions that the affected

customer might not yet know about.

2Access to consumer information may intensify competition. E.g., Choe et al. (2019) show that
the ability to gather information and use personalized prices reduces firms’ total profits in a model of
asymmetric collection of personal information of consumers (e.g. via cookies).
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The willingness to share personal information that influences the demand for in-

surance products with such a pricing scheme differs across individuals. In a data set

for pay-as-you-drive contracts, Kremslehner and Muermann (2016) show that such a

car insurance policy that involves information sharing is more likely to be chosen by

younger, female consumers who live in urban and/or wealthier areas.

Besides the potential direct economic consequences, privacy concerns play an im-

portant role for consumers’ decision to purchase such products. The value of privacy

has been subject to a public debate that has become increasingly relevant with public

scandals, such as the Facebook–Cambridge Analytica data scandal.3

In this article, we make use of a laboratory experiment to elicit individuals’ willing-

ness to share personal data when this data is subsequently used to price discriminate.

Thus, we analyze participants’ privacy concerns as well as their response to payoff dis-

crimination based on the content of their personal data. The personal data that the

participants can sell in the experiment consists of the bundle of their height, weight,

bank account balance information as well as a photo of their face. To implement price

discrimination in the lab, participants are then categorized based on whether they sold

their data to the experimenters, and importantly based on the content of their data,

whereby the category-cutoffs depend in particular on a person’s weight and bank ac-

count balance. These categories entail different payoffs in a subsequent stage, thus

implementing data-based price discrimination in a reduced form.

Comparing treatments with and without data-dependent payoff differences, we find

no effect of price discrimination per se on the general willingness to sell personal data.

Thus, within the experiment, we don’t find evidence of a disutility of financial dis-

crimination attached to the content of personal data per se. With respect to the price

of personal data demanded by participants, we find a significant change in the data

reservation price under strong negative discrimination, i.e. when the subsequent payoff

decreases strongly for one data category. Interestingly, this increase in the reservation

price is observed also for participants that do not fall into the corresponding category.

3See for instance New York Times (2018).
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Furthermore, we find important gender differences in how general privacy concerns and

trust related to the context of the experiment affect both the general willingness to

sell the data as well as the reservation price of the data. The general privacy concerns

and trust with respect to the decision context are thereby derived from answers of a

comprehensive survey about privacy-related attitudes and behavior. These findings are

important in light of the consequences of personal data sharing for subsequent market

interaction, not only with respect to price discrimination, but the usage of personal

data more generally.

Related Literature

This article mainly relates to two areas of research: (1) Price discrimination based on

consumers’ personal data and (2) Consumers’ valuation of private information.

Academic research on price discrimination based on consumers’ personal data mainly

focuses on the effects on market allocations, market efficiency, and social welfare. One

common example in academic literature is the use of genetic information for the pricing

of health insurance and life insurance contracts (Crocker and Snow (2013), Dionne and

Rothschild (2014), Crainich (2017)).

Montes et al. (2018) analyze theoretically how price discrimination based on con-

sumers’ private information affects prices, profits, and consumer surplus in a consump-

tion goods market. In their framework, firms can acquire consumer data for price dis-

crimination from a third party intermediary and individual consumers can prevent the

use of their private information by paying a privacy cost. The authors find that higher

privacy costs decrease competing duopolists’ profits and increase consumer surplus. In

the monopoly case, the effect on consumer surplus and social welfare is ambiguous.

Belleflamme and Vergote (2016) assume that consumers can react to a monopo-

list’s tracking technology, that identifies consumers’ willingness to pay with a certain

probability, by making use of a hiding technology. The authors show that while more

accurate price discrimination by the use of such tracking technologies decreases con-
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sumer surplus, the availability of privacy protecting technologies may imply an even

higher reduction of consumer surplus. The rationale is that the availability of privacy

protecting technologies incentivizes the monopolist to limit the use of the tracking

technology and to raise the regular market price of the product or service.

In an experimental setting, Richards et al. (2016) analyze perceptions of price fair-

ness and self-interested inequity aversion in the context of price discrimination. Con-

sumers with self-interested inequity aversion regard prices as unfair and tend to pur-

chase less, if they perceive other consumers to pay a lower price. They tend to regard

prices as more fair, if inequity is in their favor, which results in higher purchases. The

authors find that the implications of such inequity aversion can be at least partially

reversed if consumers are involved in the price formation.

The literature on consumers’ valuation of private information is extensive and cov-

ers a wide range of fields. Acquisti et al. (2016) summarize and link various streams

of theoretical and empirical economic research that investigates individual and societal

trade-offs associated with protecting and disclosing personal information. The authors

note that privacy related issues of economic relevance can be observed in diverse con-

texts and that situations can arise in which the protection of privacy can both enhance

and reduce individual and social welfare. Further, they find that imperfect information

about the purpose and the consequences of data collection severely hinders consumers’

ability to make informed decisions about their privacy in digital economies.

Some experimental studies evaluate individuals’ valuation of privacy by asking par-

ticipants indirectly (Beresford et al. (2012), Regner and Riener (2017)) and directly

(Benndorf and Normann (2017)) to sell private information.4

Beresford et al. (2012) conduct a field experiment to measure participants’ willing-

ness to pay for privacy. Participants are given the opportunity to purchase a DVD

from one of two online stores, for which they have to provide personal information,

such as last name, postal address, and e-mail address. In addition to those common

data items, one store requires information about the date of birth and monthly in-

4For a detailed overview, see Kern et al. (2018).
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come, whereas the other store asks for year of birth and favorite color. Except that

the first store requires more sensitive personal information than the latter, both stores

are identical. The authors find that when DVDs are offered for one Euro less at the

store asking for more sensitive information, almost all participants choose to buy from

the cheaper store. When prices are identical at both stores, however, participants buy

equally often from either one.

In a Pay-What-You-Want (PWYW) online music store and a mimicking online

experiment, Regner and Riener (2017) analyze the effect of revealing customer in-

formation, such as name and e-mail address, to the seller on consumers’ purchasing

behavior. While for donations and public goods, reduced anonymity can lead to higher

PWYW revenues due to self-image motivations, Regner and Riener (2017) find that

revealing customers’ information in the online store context reduces the number of

customers purchasing. Overall, lifting anonymity leads to a revenue loss of 25% (35%)

in the online music store (in the online experiment). The authors conclude that the

substantial reduction of customers might be explained by privacy concerns.

Benndorf and Normann (2017) conduct laboratory experiments to assess partici-

pants’ willingness to sell personal data to a telecommunications company. Participants

in the experiments can sell five different bundles of personal information that covered

participants’ information on (1) preferences (2) contact data (3) both preferences and

contact data (4) facebook profile and (5) facebook timeline. The authors find consider-

able heterogeneity in participants’ willingness to sell personal information. About one

sixth of the participants refuse to sell any personal data while a similar fraction sells

for 2.50AC or less. The average price requested is 15AC for contact details and 19AC for

Facebook data. The authors also find a gender effect: Female participants’ valuation

of personal data appears to be more sensitive to the type of data.

Various articles analyze the effect of external factors on the value of privacy. These

include among others endowment effects (Acquisti et al. (2013)), pre-existing attitudes

or dispositions, limited cognitive resources, and momentary affective states (Kehr et al.

(2015b)), data-breach notifications (Feri et al. (2016)), positive or negative informa-
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tion on companies’ attitudes towards privacy (Marreiros et al. (2017)), the number

of information recipients (Schudy and Utikal (2017)), and implicitly and explicitly

stated prices, political orientation, income proxies and membership in loyalty programs

(Plesch and Wolff (2018)).

Benndorf and Normann (2017) name three explanatory factors for differences in

results between different studies on the value of privacy: incentivized decisions to share

personal information, a salient focus on privacy issues, and transparent information

with respect to the use of data shared.

In this experiment, we highlight in the experimental instructions for participants

that personal information sold is not shared with third parties nor used for other

purposes than for the data analysis in this experiment. Subjects are informed about the

use of their personal information and data is sold explicitly. Hence, our experimental

setting ensures salience, incentivization, and transparency. Apart from the pure value

of privacy, we examine the effects of financial discrimination based on the personal

information shared.

The remainder of this chapter is organized as follows. In the next section, we present

the experimental set-up and our hypotheses. Section 4.3 provides the data analyses

and discusses the results. The final section concludes.

4.2 Experiment

4.2.1 Experimental Design

We apply a between-subject design to analyze individuals’ valuation of personal data

in light of potentially discriminatory use of this data. Specifically, we examine whether

and how subjects’ willingness to sell their personal data is affected by both inherent

privacy concerns and financial discrimination based on their data. The mechanism by

which personal data is bought/sold in the experiment is the Becker-DeGroot-Marschak
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(BDM) mechanism (Becker et al. (1964)), a standard incentive-compatible method for

eliciting private values in laboratory experiments. Only if the participant wants to sell

his or her personal data according to the BDM mechanism, the data is collected by

the experimenters.

The experiment consists of three parts: In Part 1, participants practice the BDM

procedure by having the option to sell back a 5 CHF coin which they receive as initial

endowment to the experimenter. In Part 2, subjects can sell their personal data to

the experimenters via the BDM mechanism. In the experiment, the personal data is

the following bundle of personal information: The participant’s height, weight, gender,

bank account balance, and a picture of the participant’s face. If participants sell their

personal data via the BDM mechanism, their personal data is collected subsequently.

In Part 3, participants first receive an additional payoff, and after that play a trust

game, make decisions with respect to risky payoffs, and answer a post-experimental

questionnaire. The payoff at the beginning of Part 3 represents the “payoff discrimina-

tion stage” in a reduced form: Depending on the experimental treatment, the payoff

differs according to whether data was sold and the content of the data. There are five

experimental treatments, which differ precisely in whether and how subjects are cate-

gorized based on their personal data, and the associated Part 3 payoffs. Participants

have full information about data dependent categorization and associated payoffs prior

to selling the data.

At the beginning of the experiment, control questions ensure that subjects have

understood the instructions that describe the experiment. After all participants have

successfully completed the control questions, and before Part I starts, subjects have

the opportunity to self-verify their personal data in the absence of the experimenters.

For this purpose, a measurement tape and a scale are located in the entry hall in front

of the laboratory. Participants are informed that they can go to this entry hall in order

to measure their height and weight and use their own cell phones to self-verify their

bank account balance without experimenters observing it.

After the self-verification, participants begin with Part 1. Part 1 precedes the
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selling of personal data to familiarize participants with the BDM mechanism. Subjects

receive a 5 CHF coin which they can sell back to the experimenters via the Becker-

DeGroot-Marschak (BDM) mechanism (Becker et al. (1964)). The BDM mechanism

by which the 5 CHF coin is bought/sold works as follows. Subjects have to state the

minimum amount of money they would accept in exchange for an object they could

sell to the experimenters. We refer to this amount as the reservation price for the

respective object. The market price is then determined by a random draw. If this

market price exceeds the reservation price stated by a participant, the object is sold

and the subject receives the randomly determined market price as a payment. If the

reservation price claimed exceeds the market price, the participant keeps the object but

does not receive any money. Because the BDM procedure can be rather demanding,

we make several arrangements to familiarize the participants with the mechanism.

Following Grether and Plott (1979), we stress that subjects have an incentive to state

their true valuation and that renegotiations are excluded. We also clarify that the

random draw is independent of actual choices. Finally, prior to making their actual

choices, subjects also have the possibility to conduct several tests with different prices

and random draws using a payoff simulator that displays the hypothetical outcomes.

Participants can use the simulator as long as they want to before continuing to Part 2.

In Part 2, participants can sell the bundle of personal data to the experimenters via

the BDM mechanism. Participants are informed that their market price is randomly

drawn from the range [0 CHF, 60 CHF], where each 10 cent increment is equally likely.

Prior to selling their data via the BDM mechanism, subjects receive information about

what happens with the data sold to the experimenters, i.e. whether and how the data

is used subsequently. The BDM ensures that participants only sell the data if they

wish to do so. Their decision screen has two items: A field where they can put the

minimum price (reservation price) at which they are willing to sell the data, as well as

a box they can tick which reads “I don’t want to sell the data in any case”. Participants
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ticking this box will be classified as not agreeing to sell the data in the results section.5

In all parts, the markets are fully internal to the experiment such that no personal

data is shared outside of the lab. Participants have this information and are asked a

corresponding control question to ensure that there is no ambiguity about data sharing.

Subsequent to the decision to sell their personal data, all participants are brought

one by one into a separate part of the laboratory, the measurement room, that other

participants can neither enter, nor can they hear or see anything that is happening

inside this room. If participants have decided to sell their data, their personal data is

collected by experimenters in this separate room.6 If participants have decided to not

sell their data, they are brought to the measurement room by the experimenters and

are asked to wait there for 2-3 minutes before they are picked up and brought back to

the main part of the laboratory again. This serves the purpose that all participants

are brought to the separate room by the experimenters and other participants do not

observe who sold their personal data. Participants know this process.

The experimental treatment variation is about whether and how personal data

sold is used in Part 3 for discriminatory purposes. In the baseline Treatment (I), the

personal data is not used, and all subjects receive the same payoff of 20 CHF from this

part of the experiment.7 I.e., the Part 3 payoff is independent of their personal data

and of whether personal data is sold to the experimenters. In this treatment, with the

BDM mechanism, we elicit the pure privacy value attached to the personal data.

In Treatments (II)-(V), participants are classified into one of three groups according

to their data provided. Subjects that do not sell their personal data are classified as

category A. For those that did sell their personal data, the classification is based on

5If participants tick the box but specify a reservation price lower than 60 CHF in the other field,
they are asked whether they want to adjust their answer, as the box tick of not selling in any case
will receive priority. Independent of that, all participants are asked whether they are certain about
the decision or would like to adjust it before proceeding to the next screen.

6A detailed description of how data was collected in the measurement room is provided in the
additional Online Appendix.

7Additional to this payoff, participants can earn money in the trust game and the lottery choice
decision in Part 3. Besides providing information about social and risk preferences, these two decision
situations serve the purpose of putting weight on Part 3.
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both Body-Mass-Index (BMI)8 (gender-specific) as well as bank account balance. In

particular, subjects with a bank account balance above or equal to 1000 CHF and a

BMI below 22 (23.5) for female (male) participants are classified as category B.9 The

remaining subjects, i.e. participants who did sell their data and have a bank account

balance below 1000 CHF or a BMI above 22 (23.5) for female (male) participants, are

classified as category C. Table 4.1 summarizes how participants’ categorization depends

on their decision to sell their personal data and the content of the data.

Table 4.1: Categorization based on BMI and Bank Account Balance

Sold Data BMI Bank Account (CHF) Category

No - - A

Yes < 22 female (< 23.5 male) ≥ 1000 B

Yes < 22 female (< 23.5 male) < 1000 C
Yes < 22 female (< 23.5 male) ≥ 1000 C
Yes ≥ 22 female (≥ 23.5 male) < 1000 C

In Treatment (II), subjects are categorized as described above but participants’

payoff is independent of their category and of whether they sell their personal infor-

mation to the experimenter. All subjects receive a payoff of 20 CHF from this part

of the experiment as in Treatment (I). We use Treatment (II) additionally to Baseline

Treatment (I) to have a second baseline with non-payoff relevant categorization based

on personal data, and the corresponding willingness to sell the data.

In Treatments (III)-(V), payoffs in Part 3 vary with the personal data based catego-

rization. This is done in the following way: In Treatment (III), both categories, A and

C, receive the baseline payoff of 20 CHF from this part of the experiment. Participants

classified as category B, i.e. with a high bank account balance and a low BMI, receive

CHF 30 instead. In both Treatments, (IV) and (V), categories A and B receive the

baseline payoff of 20 CHF, whereas participants classified as C receive a lower payoff

8The BMI is calculated as BMI = Body weight in kilogramm
(Body height in meter)2 .

9We chose values in the interval [18.5, 24.9] that defines a normal or healthy BMI according to
the World Health Organization (2018a). Since in Switzerland, the mean BMI for males is slightly
higher than for females World Health Organization (2018b), we chose a higher threshold for the BMI
categorization for male participants than for female participants.
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from this part of the experiment. In Treatment (IV), we employ the same payoff differ-

ence between category A and C as we have used in Treatment (III) between category

A and B. Therefore, participants that are categorized as C receive 10 CHF as a payoff

from this part of the experiment in Treatment (IV). In Treatment (V), we amplify

the payoff difference and the payoff for subjects in category C is 0 CHF. Table 4.2

summarizes how the participants’ payoffs depend on their data-based categorization

in the respective Treatments. Participants receive full information in the experimental

instructions about data dependent categorization and associated payoffs prior to selling

the data, i.e. they have full knowledge about data-based payoff discrimination.

After payoffs in Part 3, we elicit each participant’s tendency to trust others using

the loss domain treatment of the trust game from Kvaløy et al. (2017). Further, we

elicit participants’ risk preferences using the standard (Holt and Laury (2002)) price

list. One of the two games is randomly selected to be payoff-relevant. Subsequent

to that, participants answer a comprehensive post-experimental questionnaire that

collects information on privacy attitudes and behavior. At the end of the experiment,

subjects observe a summary screen of their payoffs.

Table 4.2: Payoffs for Different Experimental Treatments

Treatment Payoff
Name Abbreviation Categorization A B C

Baseline Treatment (I) no 20 20 20
Baseline Treatment (Categorization) (II) yes 20 20 20
Positive Discrimination (III) yes 20 30 20
Negative Discrimination (IV) yes 20 20 10
Strong Negative Discrimination (V) yes 20 20 0

4.2.2 Experimental Procedure

We make use of a standard laboratory experiment at the ETH Decision Science Lab.

The recruitment was performed by the Decision Science Lab using the joint subject

pool of University of Zurich and ETH Zurich. Invitations were sent out via email

to randomly selected German speaking subjects. The subjects sign up for a specific
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session, whereas the signing up procedure was limited in order to maintain a gender-

balanced pool of subject in each session. Participants are instructed upon arrival at

the lab. This includes a short verbal introduction about the organizational procedure

as well as written instructions that explain the detailed experimental procedure.10

Participants receive a show-up fee of 5 CHF. The experiment is partly computerized

using the standard z-Tree software (Fischbacher (2007)), and partly performed with

pen and paper in the lab (collection of personal data).

The experimental sessions were conducted from August to October and in Decem-

ber 2018 at the ETH Decision Science Laboratory. 282 subjects participated in 29

experiment sessions, 5 sessions were conducted for Treatment (I) and (II) each, 6 ses-

sions per treatment were conducted for Treatment (IV) and (V) and finally 7 sessions

of Treatment (III). Participants were, on average, 22.29 years old; 50.0% of the par-

ticipants were female. All participants were enrolled students. More than one third of

the participants were enrolled for natural sciences (28.36%), roughly one fifth for engi-

neering (22.69%), 9.21% for medicine, 6.38% for humanities, and 9.21% for economics.

The remaining 24.11% of participants were enrolled in other subjects. Subjects partici-

pated in exactly one session. Sessions lasted on average about 75 minutes. Participants

earned 55 CHF (including a 5 CHF show-up fee), on average with some variance de-

pending on participants’ own decisions. A comprehensive set of control questions and

the BDM practice procedure with the 5 CHF coin as initial endowment ensured that

all participants understood the sequence of decisions in the experiment, the payoff

consequences, and the BDM procedure.

After the main experiment and the trust game from Kvaløy et al. (2017) and stan-

dard (Holt and Laury (2002)) price list decisions, we also launch a comprehensive post-

experimental questionnaire. Among other statements, participants can but do not have

to specify whether they have self-verified their data, what category they would have

been in if they had sold their data (in case they have not sold it), whether they were

allocated to the category that they had expected to be allocated to, and why they did

10The German written instructions as well as the respective English translation for Treatment (I)
and Treatment (IV) can be found in the additional Online Appendix.
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not sell their data in case they had not done so. Furthermore, besides including the

Falk et al. (2016) preference modules on social preferences and risk attitudes, partici-

pants are asked questions about their privacy concerns in other domains, their behavior

with respect to private information in social networks and in the communication with

various institutions, and about their self-assessment on trust in human beings as well

as institutions.11 In a last step, we ask participants about their rationale when taking

decisions in the experiment and record the age, the gender and their field of study.

Figure 4.1 illustrates the timeline of the experiment.

Figure 4.1: Experimental timeline

At the end of each session, participants’ payoff is calculated as the sum of the payoff

from decisions in Parts 1-3. Participants are paid the total amount in private at the

very end of the experiment.

Incentives to sell the data

Without selling personal data, with the show-up fee of 5 CHF, the 5 CHF coin in

Part 1 that can result in a payoff exceeding 5 CHF, the baseline Part 3 payoff of 20

CHF as well as the two short games at the end of Part 3, participants receive a payoff

that corresponds approximately to the average payoff of participating in a laboratory

experiment of that length in Zurich. I.e. participants are remunerated for their time

11The full German questionnaire as well as the respective English translation can be found in the
additional Online Appendix.
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cost and according to standard expected payoffs even without selling the data. Thus,

the stated reservation price for the personal data does not have the problem of needing

to remunerate participation in the experiment per se, but captures the valuation for

the personal data.

4.2.3 Predictions

In the experiment, we elicit the valuation of personal data and analyze whether and

how data-based financial discrimination is accounted for. In the experiment, subjects

have full information about subsequent payoff discrimination. If a subject’s utility

depends only on final payoffs, then by backward induction the reservation price (RP)

for personal data should fully adjust to payoff differences of the data-based categories.12

For the Baseline Treatments (I) and (II), the only difference is that participants

are categorized based on their personal data, but there are no associated payoff dif-

ferences. Unless there is a (dis)utility of categorization based on personal data per

se, even without payoff consequences, the average RP should not differ. In the Dis-

crimination Treatments (III-V), the RP adjustments should be upward for category C

types in Treatments (IV) and (V) compared to both Treatment (III) and the Baseline

Treatments. For category B types, the RP adjustments should be downward in Treat-

ment (III) compared to all other treatments. Importantly, if utility depends only on

final payoffs, then there should be no difference in category B types’ RP between the

Baseline Treatments and the Negative Discrimination Treatments (IV) and (V). Given

the design, these RP adjustments by category/type are also underlying the overall

RP adjustments by treatment. These predictions are summarized below. The average

reservation price in treatment j is denoted by RP j and the average reservation price

for revealed category k in treatment j by RP k

j .

Hypothesis. Overall RP
12As the personal data in our experiment pertains to personal attributes of the individual, i.e. type

and not behavior, we cannot analyze the impact of financial discrimination in a within-subject design,
as the personal attributes (contrary to behaviors) cannot be sold multiple times. In our between-
subject design, we therefore need to analyze the impact of discrimination across groups of subjects.
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The average reservation price does not differ between Treatment (I) and (II).

Furthermore, RP III ≤ RP I+II ≤ RP IV ≤ RP V .

Hypothesis. RP by Revealed Category

For revealed category B, RPB

III ≤ RP
B

I+II = RP
B

IV = RP
B

V .

Furthermore, for revealed category C, RPC

III = RP
C

I+II ≤ RP
C

IV ≤ RP
C

V .

4.3 Results

This section presents the main results of the experiment: Subsection 4.3.1 provides an

overview of the results on the reservation price for personal data in light of subsequent

financial discrimination. In section 4.3.2, we use the data from the post-experimental

survey to uncover privacy attitudes. Section 4.3.3 uses these in regression analyses of

the reservation price for personal data under financial discrimination.

4.3.1 The Willingness to Sell Personal Data

Before presenting the results on the valuation of personal data, we look at the results

from Part 1—the selling of a 5 CHF coin using the BDM mechanism—to check the

understanding of the BDM method among participants. In the following, we will refer

to the minimum price for the good (either the 5 CHF coin or the personal data bundle)

stated by the participant as the (participant’s) ’reservation price’ and to the random

draw in the BDM as the ’market price’.

The participants’ reservation prices for the 5 CHF coins are reported in Figure 4.2.

Values exceeding 5 CHF could be attributed to an endowment effect.13 Reservation

prices below 5 CHF are less easy to explain and suggest that the corresponding partic-

ipant might not have understood the workings of the BDM or how to set their selling

price. For this reason, we chose to exclude the 11 observations (participants) stating

13Furthermore, a gambling motive might explain high stated reservation prices.
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Figure 4.2: Histogram of reservation prices for the 5 CHF coin

a reservation price below 4 CHF in the subsequent analysis of the willingness to sell

personal data.14

A summary for the 271 remaining observations is provided in Table 4.3. Female

and male participants are represented equally. Whether we observe the personal data

(type) depends on the willingness to sell the data as well as on the market price, i.e.

the results from the random number generator. There are three scenarios:

1. Participant refuse to sell the personal data in any case and signal this by checking

the box for "I don’t want to sell the data in any case". In this case, no data is

sold and consequently the data cannot be used in the analyses. In the following,

these observations are classified as ‘‘not agreeing to sell the personal data” .

2. Participants are willing to sell the personal data for a certain price but the stated

reservation price exceeds the market price. In this case, no data is sold and the

participant’s type is not observed. The reservation price is available.

3. Participants are willing to sell the personal data and the market price exceeds

the reservation price. In this case, the personal data is collected and can be used

in the analyses.

14These 11 observations are not excluded from the survey analyses.
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Table 4.3: Number of observations, grouped by experimental treatment, gender and
reservation prices

Total no. of subjects No. of subjects that did No. of subjects that
not agree to sell the data not sell the data sold the data

female male female male female male female male

Baseline 46 21 25 5 2 3 22 13 9 24 8 16
Treatment (I)

Baseline 47 22 25 9 6 3 25 13 12 22 9 13
Treatment with
Categorization (II)

Positive 61 31 29 9 8 1 27 16 10 34 15 19
Discrimination (III)

Negative 58 30 28 5 2 3 29 14 15 29 16 13
Discrimination (IV)

Strong 59 31 28 13 7 6 32 20 12 27 11 16
Negative
Discrimination (V)

Total 271 135 135 41 25 16 135 76 58 136 59 77

Columns (5) to (7) in Table 4.3 show the participants not agreeing to sell by treat-

ment and gender, (8) to (10) in Table 4.3 summarize the numbers of observation for

which no personal data was sold, that is all observations in the first two scenarios.

Columns (11) to (13) in Table 4.3 show the numbers of observation where the data was

sold.15

Across all treatments, 15.1% (41/271) subjects refuse to sell the data at all, even

though the data stay within the experiment. To compare, the rates of refusing to

sell facebook timeline data and a combination of preference and contact data to a

telecommunications company in Benndorf and Normann (2017) are at roughly 20%.

Figure 4.3 displays the shares of participants not agreeing to sell the data by treatment.

These shares do not differ significantly across treatments, in particular, the shares for

the Treatments (III)-(V) do not differ significantly from the shares in the Baseline

Treatments (I) and (II). Thus, a first observation is that financial discrimination based

on personal data per se does not significantly impact the decision on agreeing to sell

data overall, as measured by ticking the box "I don’t want to sell the data in any case".

15In one Positive Discrimination Treatment (III) session, one of the participants did not indicate
his or her gender in the post-experimental questionnaire. This participant agreed to sell private
information for a certain price but did not sell the data (scenario 2). As a result, the observations for
male and female subjects do not add up to the overall number of subjects for subjects who agreed to
sell data (columns (11) to (13)), for subjects who did not sell the data (columns (8) to (10)) and for
the total number of subjects (columns (2) to (4)).
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Figure 4.3: Share of subjects that do not agree to sell the data by experimental treat-
ment

We now turn to the valuation of personal data as measured by the participants’

stated reservation price for those who indicate one. Figure 4.4 displays the boxplots

with quantiles, means and individual observations differentiated by whether the data

was actually sold per treatment. The data presented is based on all subjects that

indicate a RS, e.g. it is excluding the subjects that do not agree to sell the data. In

both baseline treatments, in which the personal data has no impact on subsequent

payoffs, the mean reservation price for participants who are willing to sell their data

is roughly 24 CHF. This suggests that participants on average place a substantial

monetary value on the privacy of their personal data, even when the data remains fully

internal to the experiment. The share of subjects that indicate a reservation price of 0

is 8.7% and 8.5% in Treatments (I) and (II) respectively.

For a first analysis of the role of financial discrimination on the value of privacy,

we group the non-discrimination treatments (I) and (II) together and compare these

to the Discrimination Treatments (III)-(V).16 In line with predictions, the mean reser-

vation price is lower compared to the Baseline (I+II) when data-based discrimination

is only positive in Treatment (III)(19.77 CHF), whereas it is higher when data-based

discrimination is negative (28.22 CHF in (IV) and 30.66 CHF in (V) respectively). For

16As the Baseline Treatments (I) and (II) do not differ in important ways in the distribution of
reservation prices, they are pooled together for most parts of the analysis.
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Figure 4.4: Reservation price of data by treatment.

†Points represent individual observations and their color indicates, whether the bundle was sold

this average reservation price, the differences are statistically significant for (V) versus

(I+II) (MWU: one-sided p < 0.01), as well as comparing the Negative Discrimina-

tion Treatments against the Positive Discrimination Treatments: (V) vs. (III) (MWU:

one-sided p < 0.01) and (IV) vs. (III) (MWU: one-sided p = 0.02).17

Figure 4.5 displays the average reservation price stratified by gender. A first obser-

vation is that the mean reservation price of women is higher than that of men in each

treatment. This difference in reservation prices between women and men is statisti-

cally significant in Baseline Treatment (I + II) (MWU: p < 0.01) and Treatment (V)

(MWU: p = 0.012).

The higher mean reservation price also translates into lower shares of personal data

revealed, as illustrated in Figure 4.6.18 Interestingly, when stratifying by gender, we

find that the differences in average reservation prices across experimental treatments

for women are not statistically significant at the 5% level, except for (V) vs. (III).

Thus, the above found treatment differences, in particular of Treatment (V) versus

17Table 5.13 in Appendix 5 shows nonparametric test results for all treatment comparisons and by
gender.

18These differences are not statistically significant.
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Baseline Treatment (I+II), are more strongly driven by changes in men’s reservation

prices.

Payoff discrimination is based on a subject’s category. The experimental variation

allows us to compare reservation price adjustments conditional on the category, and

compare it to the payoff differences stemming from data-based discrimination. Table

4.4 displays the mean reservation prices by treatments, category, and gender as well as

the corresponding numbers of observations. In the following, we will analyze reserva-

tion prices by category, but refrain from a detailed discussion of gender differences by

category due to our small sample sizes for gender-category groups.

Figure 4.7 displays the mean reservation prices by revealed category B and C. A

first observation is that category C types have a higher average reservation price than

category B types in Treatments (I) and (II), despite facing the same payoff conse-

quences.

We find that the mean reservation price of category B types is significantly lower

in (III) than in (V) (MWU: p < 0.01), as predicted based on simple payoff differences.

The mean reservation price in (III) is also lower than that in the Baseline (I+II) as

Figure 4.5: Mean reservation prices for data by treatment and gender
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Figure 4.6: Proportion of participants selling personal data by gender

Table 4.4: Mean reservation price of personal data, grouped by experimental treatment,
gender and category

Overall Category B Category C
all female male all female male all female male

(I) mean 24.62 35.32 15.38 7.66 2.10 9.52 13.31 17.67 10.70
(no. obs) 41 19 22 8 2 6 16 6 10

(II) mean 23.69 26.81 21.28 11.74 9.15 14.33 14.89 27.90 9.31
(no. obs) 38 16 22 12 6 6 10 3 7

(III) mean 20.12 22.77 16.91 7.80 8.33 7.67 13.34 16.02 8.73
(no. obs) 52 23 28 15 3 12 19 12 7

(IV) mean 27.81 30.51 24.78 15.59 14.94 16.67 20.07 26.85 12.60
(no. obs) 53 28 25 8 5 3 21 11 10

(V) mean 31.29 36.01 26.35 22.11 32.23 14.23 28.42 32.62 26.01
(no. obs) 46 24 22 16 7 9 11 4 7

predicted, however the difference is not statistically significant. Furthermore, we find

that mean reservation prices in Treatments (IV) and (V) are higher than in Treatments

(I) and (II). Participants with revealed category B demand on average 7.4 CHF more

in Treatment (IV) and 11.94 CHF in Treatment (V) compared to the pooled Baseline

Treatment (I + II) without financial consequences. The difference between Treatment
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Figure 4.7: Mean reservation prices for data by treatment and revealed category

(V) and (I+II) is statistically significant (MWU: p=0.04).19 This finding is curious, as

category B types face the same payoff consequences in Treatments (V), (I) and (II).

One interpretation of this result is that, while there is full information on how the

personal data is categorized, subjects perceive their data or in which category they fall

as uncertain and therefore increase their reservation price. Another potential interpre-

tation is that while category B types are not discriminated against, they experience

a disutility similar to advantageous inequality aversion from the data-based financial

discrimination and therefore increase the reservation price.

For category C, changes in subsequent payoff translate in statistically significant

shifts of reservation prices in line with predictions: The mean reservation price is

significantly lower in (III) vs. (V) (MWU: p < 0.01) and significantly higher in (V)

vs. (I + II) (MWU: p < 0.01). The higher mean reservation price in (IV) compared

to (III) is not statistically significant. Looking at the magnitudes, we observe that the

average reservation price of category C types in (V) is 14.50 CHF higher than that in

(I+II), compared to a payoff difference of 20 CHF.

19Table 5.14 and Table 5.15 in Appendix 5 report the effect sizes alongside with p-values from
several non-parametric tests by category.
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4.3.2 Survey Analysis

Besides subsequent data-based financial discrimination, other characteristics may in-

fluence the decision to sell personal data. To minimize the risk of omitted variables

in our analysis, in this section we will discern and quantify other relevant factors of

the privacy calculus with the help of a post-experimental survey. In Section 4.3.2, we

introduce the survey questions that participants are asked to answer, and in Section

4.3.2, we discuss the role of two latent variables that can affect participants’ decision

whether to sell their private information: trust towards the experimenters and general

attitudes towards privacy related issues. Sections 5 and 5 in the Appendix describe the

construction of these latent variables via exploratory and confirmatory factor analyses.

Survey creation

Table 4.5 presents parts of the post-experimental survey questions that are grouped

into six different categories: (1) Risk aversion (2) Value of privacy (3) General privacy

concerns (4) Privacy related behavior (5) Social network usage and (6) Lack of trust

towards the experimenters. Henceforth, we refer to the individual questions using the

corresponding abbreviations listed in the table.

Malhotra et al. (2004), Kehr et al. (2015b) and Smith et al. (1996) have proposed

and tested instruments to infer individuals’ attitudes towards privacy. Following Kehr

et al. (2015b), we assess the general importance of privacy for the participants by

slightly adapting 3 out of 5 questions from the construct Global informational privacy

concerns of Malhotra et al. (2004). These questions are designated as VP.1 - VP.3.

Since, the motivation for our experiment partially comes from the secondary usage

of personal information by companies, measuring attitudes towards privacy in this

context could potentially be a strong predictor in our regression analyses. Therefore,

we include questions GP.1 - GP.6 from Smith et al. (1996) in order to assess subjects’

perception of information privacy practices in organizations.
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Expressed general attitudes are not always reliable predictors for behavior. Recent

research on online user behavior has discovered great discrepancies between users’

stated attitudes and their actual behavior with respect to the value of their privacy.

Specifically, users tend to claim a high level of concern about their privacy, while they

engage in little action to protect their private information. This phenomenon is known

as the privacy paradox.20 Potential reasons behind this discrepancy are numerous:

situation specific factors, affect, perceived behavioral control, or social desirability bias.

To assess whether individual’s concerns actually translate into concrete actions, we

collect more information about participants’ behavior in situations related to protecting

personal data (PB.1 - PB.8).

Voluntary sharing of personal data in social networks is a frequently observed and

studied phenomenon in the context of the privacy paradox. Active users of online

social network seem to be either unaware or unconcerned about the consequences of

their data sharing. To capture this potentially informative behavior, we develop and

add questions SN.1 - SN.10 to our survey.

In the context of our experiment, it is of great importance whether study partici-

pants believe in the integrity of the experimenters and hence whether subjects believe

that all information stated in the instructions is true. To capture this, we include ques-

tions IT.1 - IT.3. Acquisti et al. (2016) consider control over information flow integral

to the very definition of privacy. This further motivates question IT.3. that clarifies

whether participants believe they can influence the subsequent usage of information

provided during the experiment.

20For a literature review on the theories regarding the privacy paradox, see Barth and de Jong
(2017).
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Table 4.5: Excerpt from the post experimental survey (english translation)

Abbreviation Question

Risk aversion

RA How do you see yourself: as a person who is generally willing to take risks, or as someone who prefers to avoid them?

Value of privacy

VP.1 Compared to others, I am more sensitive/cautious with respect to how companies handle my personal information

VP.2 To me, keeping my data private is of highest importance

VP.3 Compared to others, I tend to be more concerned about threats to my data privacy

General privacy concerns

GP.1 It usually bothers me when companies ask me for personal information

GP.2 Companies should not use personal information unless it has been authorized by the respective person

GP.3 Companies should invest more time, effort, and costs in preventing unauthorized access to personal information

GP.4 I (sometimes) think twice before sharing private information with companies

GP.5 Companies should never share personal information with other companies without authorization by the respective person

GP.6 I am concerned that companies collect too much personal information about me

Privacy related behavior

PB.1 Do you use a mobile app to execute transactions from your bank account or to check your account balance?

PB.2 Do you hide your bank card’s PIN number when using an ATM or making purchases?

PB.3 Do you read the privacy policy before registering on a website?

PB.4 Do you remove cookies?

PB.5 Do you check your computer for spy ware?

PB.6 Do you use the private browser mode?

PB.7 How often do you change your passwords?

PB.8 Do you use the same password for different websites and services?

Social networks usage

SN.1 How often are you active or online on social networks (e.g. Facebook, Twitter, Instagram, ...)?

SN.2 I share my general contact information (name, hometown, age, occupation)

SN.3 I share my online contact information (email, Skype, MSN)

SN.4 I share my physical contact information (phone number, address)

SN.5 I use my own photograph in my profile

SN.6. I am honest with respect to the information about myself in my profile and my posts

SN.7 I post information on my current mood

SN.8 I share content and engage in activities that reveal my lifestyle

SN.9 Do you use the privacy settings to control who can see which piece of your information in social networks?

SN.10 Do you delete anything that you have posted in the past?

Lack of trust towards experimenters

IT.1 I am concerned that the information I share during this experiment could be misused

IT.2 I am concerned about providing personal information during this experiment because it could be used in a way I did not foresee

IT.3 I believe I am in control over how my personal information is used by the experimenters
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Latent variables

In order to identify latent characteristics of the participants, we first conduct an ex-

ploratory factor analysis to group the questions presented in the previous subsections

into seven groups, of which each measures one latent characteristics. Via a confirma-

tory factor analysis, we identify two groups that satisfy our reliability criteria and that

provide us with a good model fit. The detailed process of constructing and selecting

the latent variables is described in Section 5 and Section 5 in the Appendix. In the

current subsection, we introduce and interpret the two latent variables estimated by

our measurement model (Figure 5.4 in Section 5 of the Appendix). The plausibility of

conclusions is checked by the means of data plots on the one hand and using correlation

analysis on the other.

The first latent factor, denoted as PC, is measured through the responses to ques-

tions VP.1 - VP.3 using a 7-point Likert-scale anchored by the response options "very

untrue for me" and "very true for me". The relationships between survey items and

the estimated value of latent characteristics are depicted in Figure 4.8. This visualiza-

tion suggests that subjects with higher values of PC put more value on their privacy

and tend to be more concerned about it.

Figure 4.8: Values of estimated variable PC grouped by survey responses

To cross-check our interpretation, we compute correlations between PC and various

related characteristics. The results reported in Table 4.6 confirm our hypothesis that

the latent variable PC captures general attitudes towards privacy related issues, as
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Table 4.6: Correlation between PC and other variables

General privacy concerns Privacy related behavior

GP.1 GP.2 GP.3 GP.4 GP.5 GP.6 PB.1 PB.2 PB.3 PB.4 PB.5 PB.6 PB.7 PB.8

tau 0.346 0.106 0.219 0.372 0.147 0.454 -0.193 0.139 0.235 0.256 0.294 0.19 0.207 -0.274
pvalue 0.000 0.026 0.000 0.000 0.002 0.000 0.000 0.002 0.000 0.000 0.000 0.00 0.000 0.000

Social Network usage

SN.1 SN.2 SN.3 SN.4 SN.5 SN.6 SN.7 SN.8 SN.9 SN.10

tau 0.138 0.155 0.125 0.081 0.162 0.159 0.020 -0.091 0.195 0.062
p-value 0.003 0.002 0.011 0.102 0.001 0.001 0.671 0.045 0.000 0.165

we find a significant correlation between PC and responses to the questions related to

general attitudes towards privacy and privacy related behavior.21

We denote the second latent variable that is determined by questions IT.1 and IT.2

as Distrust towards the experimenter (DTE ).22 Figure 4.9 illustrates the relationship

between the survey items and the estimated value of DTE. The boxplots show that

high values of the latent variable DTE indicate that a participant is concerned about

the protection and the use of private information that is sold to the experimenters.

Figure 4.9: Values of estimated variable DTE grouped by survey questions

21To measure the relation between the continuous latent variable PC and ordinal answers to post-
experimental survey questions, we use kendall’s tau correlation coefficient. An association with the
binary decision whether to sell private information is captured using point biserial correlation. For the
relationship between PC and the reservation price for the personal data bundle, we use the Pearson
correlation coefficient.

22The answer pattern suggest that responses to IT.1 and IT.2 are affected by a different unobserved
factor as the answers to IT.3. Indeed, the first two questions assess trust towards the experimenters,
whereas the last question refers more to the perceived control overs subsequent usage. It is plausible
that subjects do not trust the experimenters, but are still convinced they have control over the situation
and vice versa. More details can be found in Section 5.
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Figure 4.10: Distribution of created variables: PC (left) and DTE (right) grouped by
gender

Again, we cross-check our interpretation using other variables generated from the

survey questions. DTE is not significantly correlated with answers to question I.16

and 10% correlated with answers to I.17. Furthermore, there is no association between

the second latent variable DTE and the amount insured in the trust game. These

discrepancies can be attributed, however, to the importance of context and situational

factors. This suggests that DTE captures the specific trust towards the experiment

with respect to the personal data rather than more general trust as it is captured in

the trust game.

Our results from the previous subsection point at gender differences with respect to

privacy related decision making. One questions is whether the variables DTE and PC

could shed light on the sources of gender differences. To address this, we first compare

the variables’ distribution by gender. Figure 4.10 presents population kernel density

estimators of PC and DTE. Neither visual inspection nor statistical tests (Table 4.7)

indicate that male or female subjects tend to be more concerned about their privacy

or more distrustful towards experimenters.

For a first indication of whether these two latent characteristics are related to partic-

ipants’ willingness to sell personal data, we determine the latent variables’ correlation

Table 4.7: Comparison of distributions of latent characteristics by gender

Variable mean effect MWU KS test
difference size

PC -0.087 -0.054 0.698 0.798
DTE -0.083 -0.073 0.664 0.723
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Table 4.8: Correlation between latent variables and decision variables by gender.

Female Male
Reservation price Agree to sell Reservation price Agree to sell

for data the data for data the data
full partial full partial full partial full partial

PC 0.365 0.337 -0.468 -0.309 0.141 -0.005 -0.165 0.001
(0.00***) (0.00***) (0.00***) (0.00***) (0.125) (0.961) (0.241) (0.988)

DTE 0.157 -0.046 -0.173 0.068 0.308 0.300 -0.350 -0.191
(0.101) (0.636) (0.167) 0.435 (0.00***) (0.00***) (0.012**) (0.027**)

1 Partial correlation: measures association between two variables controlling for the effect of the third.

with subjects’ decision to agree to sell personal data, as well as with participants’

reservation price for the data bundle. Table 4.8 presents these correlations separately

for both gender and both latent variables. Since latent variables are also correlated,

to account for potential confounding, we compute partial correlation coefficients. All

but one full correlation coefficients are significant, yet the magnitude of this associa-

tion differs. General privacy concerns have a stronger influence on women’s decision

to agree to sell and on the reservation price they demand in return. For male partic-

ipants, DTE exhibits a significant and positive correlation with the reservation price

and a significant and negative correlation with the binary decision variable whether to

agree to sell the data. Gender differences become more pronounced when we examine

partial correlation coefficients: controlling for PC, there is no statistically significant

association between DTE and the main decision variables for female participants, the

opposite holds for males. Thus, both latent variables could increase the explanatory

power of our regression models and are therefore included in the subsequent analyses.

4.3.3 Regression Analysis

We can now extend our analysis of the willingness to sell personal data under financial

discrimination using the two latent variables for privacy concerns and trust derived

from survey responses. We perform regression analyses to model two decisions made

by the participants: whether to agree to sell the data at all and which reservation price

(RP) to chose for the data.

As the first stage, we examine what factors determine whether an individual agrees
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to sell the data. We fit a probit regression model where the dependent variable equals

1 if the subject does not tick the box “I don’t want to sell the data in any case”,

i.e. the subject indicates a reservation price. Since both treatments do not feature

any financial discrimination, we pool together Treatment (I) and Treatment (II), as

discussed in Section 4.3.1.

Besides controlling for underlying privacy concerns and trust, we include further

covariates, which are either derived from responses in the survey or participants’ deci-

sions in other parts of the experiment. For the covariates from survey responses, first,

we control for e-banking usage, since it is related to effort costs of information disclo-

sure. Furthermore, we include whether participants self-checked their personal data.

The variable ‘perceived control over data’ is a binary variable derived from the answers

to the survey question of whether the subjects agree that they control over how the

personal data is used in the experiment.23 The data nonsensitivity score measures how

sensitive the personal data bundle is for the participant. For each personal data item,

weight, height and bank account statement24, the participants are asked how sensitive

the item is on a scale of 1 (most sensitive) to 5 (least sensitive). The data nonsensitiv-

ity score corresponds to the sum of the answers, i.e. a higher value indicates a lower

overall sensitivity for the data bundle. Figure 4.11 plots the nonsensitivity by gender.

From Figure 4.11, it is apparent that the sensitivity of the data bundle does not differ

importantly across gender.

We furthermore control for risk aversion25, age (self-reported), family income26, 5

CHF coin stage income and the net reservation price (RP) for the 5 CHF coin, which

is calculated as the participant’s reservation price for the 5 CHF coin - 5 CHF.

Table 4.9 shows the estimation results of probit models for the propensity to agree-

ing to sell the data. The regression results, showing no significant effect of the Treat-

23The variable takes the value one if participants agree strongly, moderately or rather agree that
they have control over how the personal data is used in the experiment.

24These are the three personal data items which are used for the categorization.
25Risk aversion is measured by the answer to the corresponding Falk et al. (2016) preference module.
26The family income is measured by the self-reported allocation into one of four income brackets in

the post-experimental questionnaire.
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Figure 4.11: Nonsensitivity score by gender.

ments (III)-(V), confirm the result from the previous sections that the general willing-

ness to sell the data is not affected by data-based payoff discrimination. Model (2)

shows a significant negative impact of the privacy concerns PC on the probability of

agreeing to sell the data. However, when including gender and the interaction effects

of gender with PC and DTE (Model 5), we can observe that the effect is moderated

by gender: while PC is not statistically significant any more when including the in-

teraction effects, we observe a significant negative interaction term of female and PC,

suggesting that higher privacy concerns for females lead to a willingness to agree to

sell the data. Interestingly, regarding trust towards the experimenter, the interaction

term with female is positive, suggesting that for men a higher distrust translates into a

lower willingness to agree to sell the data. We also find a significant positive impact of

the perceived control over data and the data nonsensitivity, consistent with intuition.

Furthermore, self-checking the data significantly increases the probability to agree to

sell. This can be interpreted as an effect of risk/ambiguity about the content of the

personal data on agreeing to sell. Interestingly, general risk aversion, as measured by

the response to the Falk et al. (2016) preference module question on general risk pref-

erences, is not significantly associated to the probability of agreeing to sell the personal

data. Furthermore, we do not find an effect of prior experimental income (5 CHF coin

income).

We now turn to the second-stage regression. Table 4.10 shows the OLS estimation
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results for the reservation price. Model (2), which includes the treatments and gender,

confirms our results from Section 4.3.1: The coefficient of female is positive and statis-

tically significant. We also find that the RP is weakly significantly lower in the Strong

Negative Discrimination treatment (V) compared to the no-discrimination treatments

(I+II). As seen in Section 4.3.1, this is due not only to the higher RP of revealed

and unrevealed category C types, but also due to a higher RP of revealed category B

types. Furthermore, we find a significant positive effect of DTE on the RP for men.

General privacy concerns as captured by PC are the driver of an increase the RP for

women. Thus, the gender-specific impact of privacy concerns and distrust towards the

experimenter not only affect the general willingness to agree to sell the data, as seen

in Table 4.9, but also the reservation price for the data. Interestingly, both perceived

control and data nonsensitivity, which had a significant association with agreeing to sell

the data at all, are not significant determinants of the reservation price for the data.

The net RP 5 CHF, but not the first stage income, however is significantly positively

related to the data reservation price. One interpretation of the net RP for the 5 CHF

is that of a gambling motive: Although it is a dominant strategy to state the true

valuation, participants in the 5 CHF selling and the data selling might try to state a

high price to receive a higher selling gain. Importantly, all the effects discussed above,

most importantly that of Treatment (V), are unaffected by controlling for this possible

gambling motive.

The results from the regression analyses including privacy-related attitudes derived

from the survey answers confirm the overview results from Section 4.3.1. In particular,

subsequent data-based payoff discrimination does not affect the general willingness to

agree to sell personal data, and a (weak) significant change in the reservation price

is only observed when there is a strong negative payoff adjustment for one category.

The regression analysis using the survey answers furthermore highlights the important

gender-differentiated effect of privacy concerns—which are relevant for females— and

distrust towards the experimenter—more relevant for males—for both the willingness

to agree to sell the data as well as the reservation price.
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Table 4.9: Probability of Agreeing to Sell the Personal Data (Probit) (Average marginal
effects)

Dependent variable: Agree to sell the data

(1) (2) (3) (4) (5) (6) (7)

(III) 0.003 0.007 −0.011 −0.008 −0.024 −0.018 −0.020
(0.253) (0.256) (0.260) (0.263) (0.268) (0.286) (0.294)

(IV) 0.069 0.070 0.067 0.068 0.060 0.035 0.024
(0.283) (0.284) (0.297) (0.298) (0.305) (0.334) (0.342)

(V) −0.065 −0.061 −0.059 −0.057 −0.074 −0.078 −0.048
(0.242) (0.243) (0.253) (0.254) (0.260) (0.284) (0.304)

PC −0.043∗∗∗ −0.044∗∗∗ −0.005 0.0001 −0.014
(0.071) (0.072) (0.102) (0.107) (0.114)

DTE −0.012 −0.012 −0.048 −0.057∗∗ −0.042
(0.101) (0.102) (0.142) (0.153) (0.160)

Female −0.066 −0.065 0.110 0.111 0.086
(0.190) (0.197) (0.669) (0.708) (0.759)

Female * PC −0.080∗∗∗ −0.064∗∗ −0.043
(0.151) (0.160) (0.169)

Female * DTE 0.083∗∗ 0.070∗ 0.038
(0.205) (0.220) (0.234)

Self check: any 0.125∗∗∗ 0.114∗∗∗
(0.259) (0.264)

Perceived control over data 0.131∗∗ 0.153∗∗
(0.251) (0.266)

Data nonsensitivity 0.019∗∗ 0.019∗∗
(0.044) (0.047)

E-banking usage: false −0.048 −0.055
(0.223) (0.231)

Risk Aversion −0.001
(0.058)

Net RP 5CHF 0.006
(0.107)

First stage (5 CHF coin) −0.011
income (0.061)

Age −0.006
(0.037)

Family income 0.018
(0.112)

McFadden Pseudo R2 0.0182 0.0282 0.0760 0.0873 0.1193 0.2193 0.2352
Observations 271 270 271 270 270 267 262
Log Likelihood −113.068 −111.756 −106.407 −104.959 −101.272 −89.392 −84.304
Akaike Inf. Crit. 234.136 233.512 224.815 223.918 220.543 204.784 204.609

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 4.10: Reservation Price for Personal Data (OLS)

Dependent variable: Reservation price of Personal Data

(1) (2) (3) (4) (5)

(III) −3.971 −4.611 −4.326 −3.936 −4.333
(3.253) (3.157) (3.136) (2.992) (3.005)

(IV) 3.714 2.916 4.267 3.735 2.885
(3.234) (3.126) (3.117) (2.951) (3.001)

(V) 6.567∗ 5.831∗ 5.269 6.129∗ 5.421∗
(3.379) (3.264) (3.295) (3.145) (3.195)

PC 1.566∗ −0.030 −0.172
(0.847) (1.047) (1.048)

DTE 3.443∗∗ 5.405∗∗∗ 5.593∗∗∗
(1.368) (1.702) (1.703)

Female 9.359∗∗∗ 3.382 2.096
(2.331) (6.567) (6.576)

Female*PC 4.929∗∗∗ 4.308∗∗∗
(1.650) (1.632)

Female *DTE −6.393∗∗ −5.332∗∗
(2.593) (2.593)

Self check: any −1.247
(2.331)

E-banking usage: false −3.003
(2.385)

Perceived control over data −0.367
(2.857)

Data nonsensitivity −0.129
(0.434)

Risk aversion −0.213
(0.577)

Net RP 5CHF 3.855∗∗∗
(1.090)

First stage (5 CHF coin) income −0.473
(0.644)

Age 0.308
(0.384)

Constant 24.094∗∗∗ 19.947∗∗∗ 10.107∗∗∗ 7.918∗ 7.468
(2.050) (2.231) (3.805) (4.709) (12.333)

Observations 230 229 230 229 226
R2 0.040 0.109 0.118 0.223 0.284
Adjusted R2 0.028 0.093 0.099 0.194 0.229

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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4.4 Conclusion

We provide the results of an experiment on the value of personal data in light of data-

based price discrimination. We find that in our experiment the general willingness

to sell personal data is not significantly affected by subsequent data-based payoff dis-

crimination. Furthermore, we only find a significant change in the reservation price

of the data when one data-based category implies a strong decrease of the subsequent

payoff. Interestingly, the change in the reservation price is not only driven by partici-

pants who fall into this category, but a general increase of the reservation price under

strong negative price discrimination. We observe this effect even though the data-based

categorization is fully known and risk/ambiguity-free.

The bundle of personal data that the participants can sell consists of their height,

weight, gender, information on their bank account balance and a photo of their face.

A comparison of the self-reported sensitivity of this personal data bundle shows that

there are no important differences across gender how sensitive this data is perceived to

be. Nevertheless, we find important gender differences in how general privacy concerns

and trust related to the context of the experiment affect both the general willingness to

sell the data as well as the reservation price of the data. These findings are important in

light of the consequences of personal data sharing for subsequent market interaction,

not only with respect to price discrimination, but the usage of personal data more

generally.

In our setting, the rules of how the personal data is used were fully known and

transparent: Both the data-based categorization was known to participants and ex-

ogenous, as well as the attached payoff consequences. When sharing personal data in

online markets, however both how this data is interpreted, e.g. by algorithms, as well

as the (financial) consequences are much less transparent, and often fully ambiguous.

It is an interest avenue for future research to analyze how ambiguity about the infor-

mational content of personal data and the attached consequences affect the willingness

to share this data.
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Not everything that counts can be counted, and not

everything that can be counted counts.

William Bruce Cameron / Albert Einstein

This thesis comprises three empirical studies pertaining to Big Data technologies.

In Chapter 2 and Chapter 3, I explored a telematics dataset to determine what new

insights can we get from this data and what practical implications they could have.

Chapter 4 switched the focus to data subjects. We conducted a laboratory experiment

to explore the impact of financial incentives on the decision to share personal informa-

tion. Today, there is little doubt that Big Data technologies will be widely adopted in

different industries, yet their role and impact are yet unclear. This thesis contributes

to the analysis of the role of Big Data technologies and shows promising avenues for

future research in this area.

The experimental setting of Table 4 can be extended in several ways to yield fur-

ther insights into privacy-related decision making. First, the study participants knew

the effect of disclosing personal information. In practice, useful insights from large

datasets are extracted by Machine Learning algorithms. These algorithms are well

described by the “black box" metaphor: neither the person who has created, nor the

one who has implemented an algorithm can predict with certainty which output will

be obtained from the input. With that in mind, it would be instructive to incorporate

risk, ambiguity, or even uncertainty regarding financial consequences into the setting.

Second, one could modify the payoff structure. The magnitude of price discrimination

did not exceed 20 CHF. As the gap between category-dependent payoffs increases, I

expect financial incentives to play a more prominent role.

Our results suggest that non-financial factors play a significant role in privacy-

related decisions. Bearing in mind that information is the main unit of currency in a
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data-driven economy, it is interesting to further explore what could prompt individuals

to share it. Kehr et al. (2015a) show that positive affect, elicited by a well-designed

user interface, influences privacy assessment. Examining the role of general mental

attitudes, such as optimism and pessimism, and the Big Five personality traits is a

promising endeavor.

A unifying objective of Big Data technologies is to extract insights and economic

value from a variety of data sources. If a market participant prevails in inferring relevant

information, this can lead to a power shift on the market. Markets with informational

problems are expected to be more affected by the change. In this vein the following

questions arise: (1) whether and if yes how much information is disclosed in the market

equilibrium (2) how will privacy concerns affect the outcomes and (3) whether these

markets should be regulated.

On the markets, where collecting more personal data yields significant competitive

advantage, privacy concerns of data subjects are likely to affect not only the mar-

ket equilibrium but also the market structure. There is a perceived link between a

company’s size and the probability of a data breach. Consequently, privacy-sensitive

individuals are more likely to disclose pertinent information to well-established mar-

ket players. Campbell et al. (2015) develop a theoretical model to demonstrate that

requiring companies to obtain an individual’s consent for using his information dispro-

portionately affects smaller companies and new entrants. Designing optimal policies

that are able to balance the interests of various stakeholders is an important open

challenge.

The premise of the discussion above is that market players can realize the potential

of the new data sources. However, many companies lack the time or the intellectual

capacity to do it. Outsourcing data analytics is a potential remedy but not a solu-

tion. Another big challenge is the selection bias : if the decision to disclose the data

is correlated with its content, the out-of sample predictive power of the algorithm is

damaged. Consider as an example usage based insurance: risk scores from driving logs

were developed by a third-party telematics company. The algorithm punished drivers
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for elevated g-force events and night driving. Yet we do not find a statistically signif-

icant relation between these characteristics and subsequent accident involvement. We

cannot establish whether this result is attributed to the selection bias or to deficien-

cies of risk modeling. In this regard, due to a rich talent pool and lower potential for

conflict of interest, the academic community might be in a better position to explore

various use cases of new datasets.

The discussion about the future of Big Data has moved from whether to when.

Optimistic scenarios promise a higher life standard and a decrease in the welfare gap

between developing and developed countries (Schwab (2017)). Sceptics predict a fur-

ther increase in social inequality (O’Neil (2017))1 and a power shift towards big cor-

porations and governments. Yet, a concerted effort of researchers with backgrounds

in economics, computer science and psychology could gear the society towards better

outcomes.

1As an example: the errors, and imprecisions in ML predictions are much more likely to affect low
level employees and lower income citizens. For more privileged individuals and valuable specialist, a
human is more likely to enter the decision making loop and correct for algorithmic errors.
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Appendix

Appendix to Chapter 2

Additional Figures and Tables

Table 5.1: Notation

Notation Explanation

type type of elevated g-force event (acceleration, harsh braking, cornering, speeding)
d time of event d ∈ {Rush,Night,Other}
r road type on which the event is registered r ∈ {Urban,Motorway,Other}
distt,r total weekly distance driven on road type r during daytime d
vt speed at the time of the event
sev severity of the event sev ∈ {Red, Y ellow}

#Evtyper,d,vt,sev
number of events with certain type and severity
that took place during ceratin daytime and on certain road type

wl l ∈ {d, r, vt, sev} weight of the event due to the factors above
wtype

d,r,vt,sev
resulting weight of the event

AbsSc(w) Absolute weekly driving score
NormSc(w) Normalized weekly driving score

Table 5.2: Summary of the driver / liability claim filtering process

Policyholders Liability claims

Original datasets 9244 1799

Data from 2016 -1775 -1095
Driving logs available ? -1479 -223
Multiple liability claims during 2016 NA -10
Claim size > 10 CHF NA -77
Younger than 26 -213 -18
No. of daily observations in 2016 ≥ 10 ? - 87 -5

Data used in the regression analysis 5690 371



Table 5.3: Correlation table (left) and variance inflation factors (right) for the regres-
sion models

VIF
Equation (1) (2) (3)

Average distance per day (ac-
tive)

2.207 2.233 2.154

No. of journeys per day (ac-
tive)

1.421 1.370 1.350

Average speed (type 1) 2.436 2.331 2.319
Weekend driving percentage 1.113 1.123 1.126
Urban driving percentage
(speed=50)

2.461 2.428 2.386

Night driving percentage 1.133 1.115 1.136
Percentage of driving above
speed limit (type 1 adjusted)

2.017 1.913 2.021

Average speeding (weighted) 1.396 1.340 1.361
Percentage of driving above
speed limit in Urban areas
(type 1 adjusted)

2.172 2.050 2.159

Average speeding in urban ar-
eas (relative)

1.415 1.433 1.442

No. of accelerations per km
(tr=2)

1.522 1.536 1.522

No. of braking per km (tr=2) 1.812 1.798 1.785
Average speed at the beginning
of accelerations

1.544 1.551 1.415

Average speed difference after
acceleration

2.182 2.132 2.183

Average speed difference after
braking

1.791 1.849 1.777

Average speed at the beginning
of braking

2.327 2.279 2.237

Figure 5.1: Receiver Operating Characteristics Curve (ROC) illustrating predictive
power of probit models of annual submission of liability claims exceeding 10 CHF with
and without telematics based predictors.
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Table 5.4: Average marginal effects computed from the trivariate model.

liability claim (> 10CHF ) BM protection Collision cover

Traditional Insurance Variables

Sex of driver: female 0.004 0.019∗∗ 0.054∗∗∗

(0.059) (0.056) (0.059)
Age of driver −0.006∗∗∗ 0.000 0.018∗∗∗

(0.019) (0.020) (0.018)
Vehicle: age 0.002∗∗∗ −0.001 −0.043∗∗∗

(0.007) (0.007) (0.011)
Vehicle: horsepower −0.000 −0.000∗∗∗ 0.000

(0.001) (0.001) (0.001)
Vehicle: weight 0.000 −0.000 −0.000∗∗∗

(0.000) (0.000) (0.000)
Vehicle: price −0.000 0.000∗∗∗ 0.000∗∗∗

(0.000) (0.000) (0.000)
Vehicle: mileage −0.000 −0.000∗∗∗ −0.001∗∗∗

(0.001) (0.000) (0.001)
Leasing contract: true −0.003 0.024∗∗ 0.179∗∗∗

(0.083) (0.085) (0.133)
Recent change of address: true 0.015 −0.012 −0.004

(0.070) (0.067) (0.072)
Bonus Malus Score TPL −0.001 0.008∗∗ 0.003

(0.024) (0.025) (0.023)
No. of years without first contract 0.004∗ −0.011∗∗∗ −0.011∗∗∗

(0.017) (0.019) (0.017)
No. of previous mobility claims −0.005 0.025∗∗ −0.006

(0.071) (0.084) (0.063)

Telematics-Based Predictors

Average distance per day (active) 0.001∗∗∗ −0.001∗∗∗ −0.001∗∗∗
(0.002) (0.001) (0.002)

No. of journeys per day (active) 0.014∗∗∗ 0.017∗∗∗ 0.013∗∗∗

(0.027) (0.030) (0.030)
Average speed (type 1) −0.000 0.000 0.000

(0.003) (0.003) (0.003)
Weekend driving percentage −0.055∗ −0.041 −0.052

(0.241) (0.208) (0.220)
Urban driving percentage (speed=50) −0.015 0.034 −0.026

(0.300) (0.294) (0.290)
Night driving percentage 0.072 0.191∗∗∗ −0.031

(0.450) (0.461) (0.450)
Percentage of driving above speed limit (type 1 adjusted) 0.074∗ 0.030 0.100∗

(0.348) (0.332) (0.350)
Average speeding (weighted) 0.003∗∗ −0.003∗∗∗ −0.001

(0.009) (0.008) (0.009)
Percentage of driving above speed limit in urban areas (type 1 adjusted) −0.047 0.021 −0.004

(0.292) (0.272) (0.283)
Average speeding in urban areas (relative) −0.013 0.011 −0.001

(0.109) (0.098) (0.100)
No. of accelerations per km (tr=2) 0.018 −0.027 −0.040

(0.178) (0.179) (0.175)
No. of braking per km (tr=2) 0.020 −0.007 −0.009

(0.179) (0.177) (0.181)
Average speed at the beginning of accelerations −0.000 −0.001 −0.002

(0.013) (0.013) (0.013)
Average speed difference after acceleration 0.000 0.003∗∗∗ 0.003∗∗∗

(0.006) (0.006) (0.006)
Average speed difference after braking 0.001 −0.002 0.003

(0.018) (0.017) (0.017)
Average speed at the beginning of braking 0.000 0.000 −0.001

(0.007) (0.007) (0.007)

McFadden Pseudo R2 0.036 0.093 0.616
Maximum VIF 3.23 3.27 4.17

Observations 5,690 5,690 5,690
Akaike Inf. Crit. 2,685.674 2,977.527 3,083.956

Notes: ∗∗∗Significant at the 1 percent level.
∗∗Significant at the 5 percent level.
∗Significant at the 10 percent level.
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Appendix to Chapter 3

Appendix 1: Additional figures

Figure 5.2: Dataflow diagram.
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Appendix 2: End point clustering

Cluster analysis is an unsupervised learning technique that poses a lot of practical

challenges, most prominently algorithm selection and subsequent parameter tuning.

The choice can be guided by general domain knowledge on the one hand and by various

cluster validation techniques on the other.

Spatial clusters oftentimes have non-convex shapes, the number of clusters is not

known in advance which suggests using either hierarchical clustering with single linkage

or density based algorithms (Aggarwal (2015)). Domain of feasible input parameter

values is be restricted based on the insights from the literature. We are interested in

distances a driver is willing to walk between parking facilities and final destinations.

Benenson et al. (2008) and van der Waerden et al. (2017)2 assume that in general it

does not exceed 700 meters. Statistics on the maximum and average walking distance

is used for (a) restricting the set algorithm input parameters ( eps for DBSCAN and

2write more about partition
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cut-off point for hierarchical clustering ) (b) result validation.

Input parameters tuning based on internal cluster validation criteria turned out to

be misleading 3 The potential reasons behind are discussed in Chapter 6.9 of Aggarwal

(2015). We conceive of two approaches to overcome this issue: constructing more ap-

propriate (for the task domain) clustering scores and using external validation criteria.

Having labeled stops that are known to correspond to single destination provides a

more reliable instrument for cluster validation. With this objective in mind, in the

next subsection we try to get reliable cluster labels for a subset of destination.

Cluster analysis of overnight journeys.

We focus our attention on overnight stops. This decision has the following benefits:

first, we have certain intuitive beliefs about some characteristics and number of such

clusters, second problem size decreases significantly. Cluster labels from this stage,

combined with results from previous subsection can be used to validate candidates for

final location clustering.

For every policyholder we have extracted coordinates of the earliest journey of every

day and filtered out locations with previous stop duration shorter than 4 hours 4 This

gave us 1884120 journeys for 6706 policyholders.

The locations were analyzed separately for each policyholder using hierarchical

clustering algorithm where clusters are merged using single linkage criteria. This allows

the algorithm to discover clusters of arbitrary non-convex shapes. The main challenge is

the choice of cut-off value for the dendogram, that determines the number of clusters.

The physical interpretation of this parameter is elusive and depends on the linkage

method. In single linkage agglomerative clustering, two groups of points will be merged

in one cluster if the minimum distance between the points is less than cut-off value.
3We ran a slightly updated version of DBSCAN and selected minEps based on silhouette coefficient.

In the resulting partitions some of the points belonging to different clusters were 5 - 10 meters apart
4If the driver travels overnight, the start of his earliest journey would not necessary correspond to

the place where he has spent the night. 4 hours restriction allows to discard these locations from our
analysis.
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Conversely, the minimum distance of each resulting cluster to its neighbor clusters

is guaranteed to exceed cut-off distance. Following suggestions from Benenson et al.

(2008) and van der Waerden et al. (2017) we have restricted the set of possible cut-off

values to {50m, 100m, 200m, 300m, 400m, 500m, 700m } and obtained 7 versions of

location cluster labels for each policyholder.

In the absence of any information regarding the "ground truth" labeling of the

locations, we first resorted to internal cluster validation criteria. 7 different solutions

were evaluated using Silhouette coefficient and Dunn index, the results are reported in

Table 5.7. It suggests that both measures tend to favor larger cutoff values. Aggarwal

(2015) cautions however against relying too much on any metrics, therefore we have

decided to check the basic physical characteristics of results. Some of the clusters have

diameter larger than 5 km respectively 7 km and contain points that are more than

3 km respectively 5 km away from the cluster centroid for solutions with best values

of silhouette and Dunn coefficient. Due to that we refrain from using these metrics in

subsequent decision making and construct our own measures of clustering results.

For every set of clusters for a policyholder we calculate the following aggregate

characteristics: minimum distance to other clusters, various quantiles of inter-cluster

distances (50 %, 75%, 95%) and quantiles of distances to cluster centroids. Since

we consider only overnight stops, common sense suggests that preference should be

given to solutions with less clusters and consequently larger cutoffs, provided cluster

characteristics satisfy certain5 criteria.

We select the dendogram cutoff value for each policyholder using the following

iterative procedure: on every step for all unassigned policies restrict the set of possible

solutions using criteria, described in Table 5.6. Set the cutoff value to the highest

cut off value available, or apply other less stringent criteria. Prior to that we deal

separately with policies, that had stable solutions across medium parameter values

(200, 300, 400). Cutoff values for the last 3 policies were assigned manually using

visual inspection.6 As we can see from Table 5.7, resulting cut-off values quite often
5they are not known in advanced and established only once we take a look at the data
6I was looking for a cutoff point, where characteristics of clustering solutions abruptly changed
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Table 5.6: Parameter selection for overnight clusters

Step Variable Threshold (m) No. of assigned policies

Step 0
Minimal distance to other clusters 400
95% distance to centroid 300
75% distance to centroid 200
Median distance to centroid 100

2451

Step 1
Maximum distance to centroid 700
Minimal distance to other clusters 300
95% distance to centroid 300
75% distance to centroid 200
Median distance to centroid 100

3632

Step 2
Maximum distance to centroid 700
Minimal distance to other clusters 200
95% distance to centroid 400
75% distance to centroid 200
Median distance to centroid 100

454

Step 3
Maximum distance to centroid 800
Minimal distance to other clusters 100
95% distance to centroid 400
75% distance to centroid 200
Median distance to centroid 100

134

Step 4
Maximum distance to centroid 800
Minimal distance to other clusters 100
95% distance to centroid 500
75% distance to centroid 400
Median distance to centroid 150

32

Table 5.7: Propositions of silhouette coefficient and Dunn’s index.

cutoff value Silhouette Dunn Our

0.70 2205 2637 1703
0.50 974 950 984
0.40 781 723 2982
0.30 760 652 566
0.20 956 799 361
0.10 606 536 110
0.05 352 409

differ from the ones indicated by the internal validation criteria.
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Table 5.8: Parameter selection for all clusters

Step Variable Threshold (m) No. of assigned policies

Step 0
Minimal distance to other clusters 200
95% distance to centroid 400
75% distance to centroid 200
Median distance to centroid 50

2999

Step 1
Maximum distance to centroid 700
Minimal distance to other clusters 200
95% distance to centroid 300
75% distance to centroid 200
Median distance to centroid 50

1093

Step 2
Maximum distance to centroid 800
Minimal distance to other clusters 100
95% distance to centroid 300
75% distance to centroid 200
Median distance to centroid 50

1992

Step 3
Maximum distance to centroid 800
Minimal distance to other clusters 90
95% distance to centroid 400
75% distance to centroid 200
Median distance to centroid 100

311

Step 4
Maximum distance to centroid 800
Minimal distance to other clusters 50
95% distance to centroid 500
75% distance to centroid 200
Median distance to centroid 100

305

Spatial clustering of all stops of a policyholders

We use single linkage hierarchical clustering with different dendogram cutoff values to

group policyholder’s stops based on their spatial proximity. In previous subsection, we

have preformed spatial clustering on a subset of overnight stops. Resulting labels are

used to contrast possible solutions. More precisely, for every policyholder and for all 7

different sets of cluster labels we compute the following characteristics: cluster purity,

recall, entropy and gini index.

Optimal cut off selection procedure is similar to the one used in Section5. Restric-

tion criteria applied on every step are listed in Table 5.8. The main difference is that on
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Step 0 we focus on clustering solutions that maximize all external validation criteria.

During Step 1 and Step 2 we select among options that maximize at least one of

external validation measures. Cut off values for 6 last policies are assigned manually,

based on visual inspection.7

7I have examined aggregated cluster characteristics and selected cutoffs corresponding to "jumps".

139



Appendix to Chapter 4

Exploratory factor analysis

The latent traits that we try to measure are inextricably linked and boundaries between

them can be quite elusive. For many items in our survey it is difficult to provide a

definite answer what latent trait it is related to. For instance, positive answers to

question GP.6.8 might be affected by both, lack of trust towards the companies and

/or high level of privacy concerns. Instead of entering a lengthy discourse on the nature

and relevance of various survey items for individual’s latent characteristics, we take a

more pragmatic approach and perform an exploratory factor analysis whereby letting

the data speak for itself. Our general knowledge can be used later to check the validity

of the conclusions and select the most promising measurement model. To perform

an exploratory factor analysis, we need to provide a correlation matrix, select the

factor analysis method and determine the number of factors to extract. The following

paragraphs elaborate on each of these aspects.

Almost all survey items are measured using different types of Likert scales. These

scales are conventional practice in social sciences and psychology, however they are

prone to several behavioral biases that should be kept in mind.9 We treat answers from

the Likert scale as ordinary variables10 and compute Spearman’s rho and Kendall’s tau

correlation coefficients.

We extract common factors using the weighted least squares (WLS) procedure,

since it relies on few distributional assumptions and has good numerical convergence

8"I’m concerned that companies collect too much information about me"
9The composition of a Likert scale makes the answers susceptible to an acquiescence bias, when

participants tend to agree with most of the statements. To counter this effect, several reversed items
are included. Furthermore, responses might exhibit a central tendency bias with which individuals
avoid using extreme answers in fear of not confirming to the general norm. This is a subcase of
the social desirability bias. Social desirability biases could further manifest themselves with subjects
providing answers that rather reflect society’s expectations than their own views.

10There is no general consensus on whether answers to a Likert scale should be treated as ordinal
or interval variables, however the majority view tends to favor the former option.
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Table 5.9: Optimal number of factors based on different criteria for Spearman and
Kendall correlation matrices.

correlation
coefficient

parallel vss1 vss2 eBIC SABIC

Spearman 9 2 9 9 10
Kendall 9 2 7 6 8

properties.11 The last required input parameter is the number of factors to be extracted.

Costello and Osborne (2005) list various procedures, that could facilitate the choice.12

Recommendations based on various criteria are summarized in Table 5.9.

The optimal number of factors varies significantly depending on the type of corre-

lation coefficient and the measure chosen. Instead of selecting a single approach, we

have decided to perform an exploratory factor analysis using all suggested parameters

and aggregate the results. Our objective is to see, which survey items are more likely

to assess the same latent trait. This is achieved using the following steps: for every

model we compute a binary matrix, where rows and columns correspond to observed

variables. An entry equals 1 if both variables have an absolute factor loading exceeding

0.3 for the same latent variable. All matrices are summed together, rows are divided

by the size of the diagonal element, representing for how many latent variables the

questions was used, and then substracted from a matrix of ones. The resulting object

could be viewed as a distance matrix, where variables measuring similar characteristics

are closer to one another.

Visual representation of this information is obtained using multidimensional scaling.

11Sometimes the estimation algorithm might yield item commonalities equal or exceeding 1. This
is the proportion of each variable’s variance that can be explained by the factors (e.g., the underlying
latent continua). These situations are referred to as Heywood and ultra-Heywood cases respectively
and indicate that the resulting factor solution is invalid. Such anomalies could be caused by low
sample size, too many factors extracted or other inadequacies in the common factor model. After
trying different factoring method options available in the psych package in R, we have decided to
extract factors using the weighted least squares approach, since it did not produce ultra-Heywood
cases despite our low sample size. Note that the results of the inference will differ depending on the
type of correlation coefficient used.

12An important pragmatic consideration is, that due to a limited sample size, number of independent
variables in the regression equations should not be too high, furthermore having too few observed
variables per latent factor might lead to unstable solutions. Due to these considerations we have
decided to restrict our search to models with no more than 10 latent variables
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Figure 5.3: Multidimensional scaling of observed variables.

The results are depicted in Figure 5.3 from which we see that certain groups of variables,

for instance, PB.4 - PB.8, SN.1, SN.8, and SN.7, are almost always used together

to assess a latent factor. Some of the variable clusters confirm our earlier intuition:

items VP.1 - VP.3 measure the same latent characteristics - how much an individual

values his privacy. Other suggested combinations, such as SN.9, SN.10, I.16, and I.17

are not anticipated. Post factum, the logic behind grouping them together becomes

more apparent. Certain questions seem to be only loosely related to the common

factors in the data set, this however does not render them invaluable for the subsequent

analysis. Question PB.1, for instance, is directly related to the effort cost of providing

information about the bank account.

Confirmatory factor analysis

Based on the insights from Figure 5.3 and a literature review, we can start developing

our measurement model and study its psychometric properties. Table 5.10 lists various

groupings of variables suggested by the exploratory factor analysis, whereby each group

of questions measures one latent characteristics. For each instrument proposed we first

ascertain its reliability by computing Cronbach’s alpha and split half reliability. Values
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Table 5.10: Grouping of the survey questions

Group Variables Reliability
alpha best alpha split half

group 1 VP.1, VP.2, VP.3, GP.4 0.838 0.871 0.850
group 2 IT.1, IT.2 0.877 0.787 0.880
group 3 VP.4, VP.5, VP.6 0.542 0.565 0.532
group 4 PB.3, PB.4, PB.5, PB.6, PB.7, PB.8 0.743 0.736 0.567
group 5 SN.9, SN.10, I.16, I.17 0.419 0.429 0.453
group 6 SN.1, SN.7, SN.8 0.538 0.549 -0.285
group 7 GP.1, GP.2, GP.3, GP.5, GP.6 0.749 0.736 0.768
group 7 (full) GP.1, GP.2, GP.3, GP.4, GP.5, GP.6 0.785 0.777 0.803

exceeding 0.7 are considered acceptable.

It reveals that group 3, group 5 and group 6 do not possess desirable psychometric

properties and consequently won’t be considered in further analyses. The reliability of

group 1 can be slightly improved from 0.835 to 0.863 if the variable GP.4 is dropped.

The confirmatory factor analysis is based on a correlation matrix with Spearmann’s

correlation coefficients. To ensure that the model is identified, we fix the variances of

latent variables to 1. Fitting a model with 3 latent variables results in a poor model

fit, with Chi = 101.054 on 39 df suggesting significant differences between model-

based and observed correlation matrices. To achieve a better model fit, we drop the

third latent variable. This decision should not have a strong negative impact on the

explanatory power of our regression models since group 1 and group 4 measure similar

latent characteristics (which is further confirmed by an estimated covariance of 0.536).

The model with two latent variables has a good fit, reflected by a non-significant Chi-

square p-value of 0.132, and value of RMSEA = 0.053. Path coefficients and relevant

statistics are reported in Table 5.11. Figure 5.4 visualizes the final measurement model.

Based on the model fit, we can check other psychometric properties of our scales.

Table 5.12 contains all necessary information to check the composite reliability and

convergent/discriminant validity of survey items. Both latent factors have a composite

reliability exceeding 0.9. Convergent validity can be established if the average variance

extracted (AVE) is higher than 0.5. Discriminant validity is checked using the For-

nell–Larcker criterium that compares the square root of the average variance extracted

with correlations between the latent factors. If the former is higher, discriminant va-
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Figure 5.4: Diagram of fitted CFA model

lidity can be established.

The objective of our analysis is to estimate the values of latent characteristics

for all study participants. However, several subjects did not provide answers to all

survey questions as this part of the experiment is neither mandatory nor financially

compensated. Out of 282 people, 4 did not provide answers to one of the questions

Table 5.11: Coefficients of fitted CFA model
Model

Estimate Std. Err. z p
Factor Loadings

PC
VP.1. 0.779 0.047 16.676 0.000
VP.2. 0.787 0.047 16.703 0.000
VP.3. 0.923 0.044 20.903 0.000

TE
IT.1. 0.89 0.06 15.96 0.00
IT.2. 0.87 0.06 15.48 0.00

Residual Variances
VP.1. 0.26 0.03 9.27 0.00
VP.2. 0.27 0.03 9.25 0.00
VP.3. 0.06 0.02 2.63 0.01
IT.1. 0.14 0.06 2.27 0.02
IT.2. 0.19 0.06 3.07 0.00

Latent Variances
PC 1.00+

DTE 1.00+
Latent Covariances

PC w/TE 0.47 0.05 9.10 0.00
Fit Indices

χ2 1.04(df=4) 0.132
CFI 0.997
TLI 0.992

RMSEA 0.053
+Fixed parameter
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Table 5.12: Check for composite reliability, discriminant validity and Convergent Va-
lidity

CR AVE PC DTE

PC 0.912 0.778 0.882 0.472
DTE 0.905 0.827 0.472 0.909

VP.1 - VP.3 and 2 other participants did not answer one of the questions IT.1 - IT.2.

Due to the small sample size, we want to avoid loosing observations and impute missing

answers based on the information from other questions in the post experimental survey.

This task is accomplished using a combination of bootstrap and the EM algorithm

(Honaker et al. (2011)) implemented in the R package Amelia.
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Answers to post-experimental survey

Figure 5.5: Answers to privacy-related questions in the post-experimental survey
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Results of directional non parametric tests

Table 5.13: Results of directional non parametric tests. Dependent variable: price of
informational bundle (not adjusted by 60)

Hypothesis all observations
female male

(V) ≥ (I + II) mean difference 7.12 4.71 8.02
effect size 0.36 0.22 0.49
MWU 0.01∗∗∗ 0.27 0.02∗∗
KS test 0.01∗∗∗ 0.13 0.06∗
Permutation Test 0.02∗∗ 0.17 0.03∗∗
Bootstrap 0.01∗∗∗ 0.15 0.04∗∗

(IV) ≥ (I + II) mean difference 3.64 -0.79 6.45
effect size 0.19 -0.04 0.40
MWU 0.13 0.58 0.07∗
KS test 0.24 0.79 0.17
Permutation Test 0.14 0.56 0.07∗
Bootstrap 0.14 0.57 0.07∗

(I + II) ≥ (III) mean difference 4.04 8.53 1.42
effect size 0.23 0.47 0.08
MWU 0.11 0.06∗ 0.26
KS test 0.44 0.22 0.66
Permutation Test 0.12 0.06∗ 0.36
Bootstrap 0.11 0.06∗ 0.38

(V) ≥ (III) mean difference 11.16 13.24 9.44
effect size 0.62 0.74 0.55
MWU 0.00∗∗∗ 0.00∗∗∗ 0.02∗∗∗
KS test 0.00∗∗∗ 0.02∗∗ 0.02∗∗
Permutation Test 0.00∗∗∗ 0.00∗∗∗ 0.03∗∗
Bootstrap 0.00∗∗∗ 0.00∗∗∗ 0.03∗∗

(IV) ≥ (III) mean difference 7.68 7.74 7.87
effect size 0.43 0.43 0.45
MWU 0.02∗∗ 0.07∗ 0.05∗∗
KS test 0.13 0.11 0.10∗
Permutation Test 0.02∗∗ 0.07∗ 0.05∗∗
Bootstrap 0.02∗∗ 0.07∗ 0.05∗∗

(V) ≥ (IV) mean difference 3.48 5.50 1.57
effect size 0.19 0.29 0.09
MWU 0.13 0.13 0.35
KS test 0.30 0.33 0.76
Permutation Test 0.16 0.12 0.37
Bootstrap 0.16 0.13 0.38
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Table 5.14: Results of directional non parametric tests. Dependent variable: price of
informational bundle. Category B

Hypothesis Category B
female male

(III) ≤ (I + II) mean difference 2.31 -0.95 4.26
effect size 0.21 -0.09 0.38

MWU 0.28 NA 0.23
KS test 0.68 NA 0.47
Permutation Test 0.28 NA 0.20
Bootstrap 0.24 NA 0.18

(I + II) vs (IV) mean difference 5.48 7.55 4.74
effect size 0.46 0.76 0.36

MWU 0.28 0.55 NA
KS test 0.87 0.71 NA
Permutation Test 0.16 0.17 NA
Bootstrap 0.14 0.15 NA

(I + II) vs (V) mean difference 12.00 24.84 2.31
effect size 1.00 2.49 0.17

MWU 0.04∗∗ 0.03∗∗ 0.54
KS test 0.14 0.04∗∗ 0.90
Permutation Test 0.01∗∗∗ 0.00∗∗∗ 0.34
Bootstrap 0.01∗∗∗ 0.00∗∗∗ 0.34

(III) ≤ (V) mean difference 14.31 23.90 6.57
effect size 1.33 2.30 0.58

MWU 0.01∗∗∗ NA 0.06∗
KS test 0.03∗∗ NA 0.17
Permutation Test 0.01∗∗∗ NA 0.11
Bootstrap 0.01∗∗∗ NA 0.10∗

(III) ≤ (IV) mean difference 7.79 6.61 9.00
effect size 0.72 0.63 0.80

MWU 0.09∗ NA NA
KS test 0.39 NA NA
Permutation Test 0.09∗ NA NA
Bootstrap 0.08∗ NA NA

(IV) vs (V) mean difference 6.52 17.29 -2.43
effect size 0.45 0.97 -0.23

MWU 0.46 0.17 NA
KS test 0.67 0.30 NA
Permutation Test 0.18 0.07 NA
Bootstrap 0.19 0.06 NA
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Table 5.15: Results of directional non parametric tests. Category C

Hypothesis Category C
female male

(I + II) ≤ (V) mean difference 14.50 11.55 15.88
effect size 1.12 0.76 1.57

MWU 0.00∗∗∗ NA 0.00∗∗∗
KS test 0.00∗∗∗ NA 0.00∗∗∗
Permutation Test 0.00∗∗∗ NA 0.00∗∗∗
Bootstrap 0.00∗∗∗ NA 0.00∗∗∗

(I + II) ≤ (IV) mean difference 6.15 5.78 2.47
effect size 0.48 0.38 0.24

MWU 0.09∗ 0.17 0.36
KS test 0.19 0.36 0.59
Permutation Test 0.07∗ 0.21 0.29
Bootstrap 0.0∗7 0.22 0.26

(III) vs (I + II) mean difference 0.58 5.05 1.40
effect size 0.04 0.35 0.13

MWU NA NA NA
KS test NA NA NA
Permutation Test 0.44 0.22 0.40
Bootstrap 0.42 0.21 0.40

(III) ≤ (IV) mean difference 6.73 10.83 3.87
effect size 0.50 0.75 0.35

MWU 0.10∗ 0.05∗∗ 0.29
KS test 0.29 0.18 0.58
Permutation Test 0.08∗ 0.05∗∗ 0.26
Bootstrap 0.07∗ 0.04∗∗ 0.23

(III) ≤ (V) mean difference 15.08 16.60 17.29
effect size 1.12 1.15 1.58

MWU 0.00∗∗∗ NA 0.01∗∗∗
KS test 0.00∗∗∗ NA 0.01∗∗∗
Permutation Test 0.00∗∗∗ NA 0.01∗∗∗
Bootstrap 0.00∗∗∗ NA 0.02∗∗

(IV) ≤ (V) mean difference 8.35 5.77 13.41
effect size 0.54 0.37 1.10

MWU 0.08∗ NA 0.02∗∗
KS test 0.12 NA 0.05∗∗
Permutation Test 0.06∗ NA 0.02∗∗
Bootstrap 0.06∗ NA 0.02∗∗
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