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Abstract

This thesis aims to improve our understanding of the role of knowledge in eco-

nomics and science. We analyze collaboration activities in these two domains,

and show how the interactions among firms and among scientists influence the

structure and the exchange of knowledge. We also model how the knowledge

of these actors defines their collaboration activity. We show that knowledge is

not only a consequence, but also a determinant of the collaborations. To cap-

ture this interplay, we combine a statistical analysis of patent and publication

data with agent-based models of collaboration activities.

We follow a data-driven approach to study the structure, exchange, and trans-

fer of knowledge. Specifically, using publication data we proxy the structure of

scientific knowledge by reconstructing the citation network between publica-

tions. On this network, we quantitatively show that citation patterns strongly

differ across time and scientific fields. We also identify the different knowledge

of scientists, and quantify their knowledge exchange occurring during collab-

orations. Similarly, we use patent data to identify firms’ knowledge and the

knowledge exchange between firms involved in R&D alliances. Then, to study

the transfer of knowledge, we re-construct scientists’ career paths by tracing

their affiliations reported on their publications. With these paths, we con-

struct the global migration network of scientists at city level, and analyze its

topological properties.

After analyzing collaborations activities, the exchange, and the transfer of

knowledge, we reproduce these using agent-based models that we calibrate an

validate against real-world data. In order to capture the very different pro-

cesses behind these phenomena, we develop three different models. Precisely,

to model collaborations activities among firms and their subsequent knowledge

exchange, we combine and extend two existing models that captured only one

of these phenomena each. Our a new model, instead, is able to simultaneously

reproduce both these phenomena. To show how the knowledge differences be-

tween scientists determine their collaboration activities, we develop a second

model that takes as input only these differences. Then, to model the transfer

of knowledge, we develop a third agent-based model that reproduces scientists’

xii



migration at city level and the observed topological properties of the global

migration network.

Finally, we show that citation patterns between journals and scientists’ ca-

reer paths are better modeled by a new mathematical framework defined by

higher-order networks than by traditional network models. By this, we chal-

lenge the application of the traditional network perspective to model the flow

of knowledge between journals and the transfer of knowledge across research

institutes.
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Sintesi

La seguente tesi intede mettere a fuoco come si esplica la funzione della

conoscenza, nell’ambito dell’econonomia e della scienza. Innanzi tutto anal-

izziamo le attività di collaborazione in questi due domini e mostriamo come

le interazioni tra le imprese e tra gli scienziati influenzano la struttura della

conoscenza e il suo scambio. Modelliamo anche come la conoscenza di questi

attori definisce le loro attività di collaborazione. Si dimostra quindi che la

conoscenza non è solo una conseguenza, ma anche una determinante delle

collaborazioni. Per cogliere questa reciproca influenza, combiniamo l’analisi

statistica di dati di brevetti e pubblicazioni scientifiche con modelli ad agenti

per modellare le attività di collaborazione.

Per esaminare la struttura, lo scambio e il trasferimento delle conoscenza,

seguiamo un approccio data-driven, ossia basato sui dati. Nello specifico, uti-

lizzando dati riguardanti pubblicazioni scientifiche, individuiamo la struttura

della conoscenza scientifica ricostruendo la rete di citazioni dalle pubblicazioni.

Su questa rete dimostriamo quantitativamente che le citazioni ricevute da pub-

blicazioni differiscono fortemente in base all’ età delle pubblicazioni e dal loro

ambito scientifico. Identifichiamo anche le diverse conoscenze degli scienziati e

quantifichiamo il loro scambio di conoscenza dovuto alle loro collaborazioni. In

modo analogo, utilizziamo i dati sui brevetti per identificare le conoscenze delle

imprese e lo scambio di conoscenza tra imprese coinvolte in alleanze di R&D.

Dopoddiche’ ricostruiamo le carriera degli scienziati tracciando le loro affili-

azioni riportate sulle loro pubblicazioni, in modo da studiare il trasferimento

della conoscenza. Con queste carriere, ricostruiamo anche la rete di migrazione

degli scienziati a livello di città e ne analizziamo le proprietà topologiche.

Dopo aver analizzato le attività di collaborazione, lo scambio e il trasferi-

mento di conoscenza, riproduciamo questi fenomeni utilizzando modelli ad

agenti che calibriamo e validiamo con dati provenienti dal mondo reale. Al

fine di catturare processi molto diversi alla base di questi fenomeni, svilup-

piamo tre diversi modelli. Per modellare le attività di collaborazione tra le

imprese e il loro successivo scambio di conoscenza, uniamo ed estendiamo due

modelli esistenti, ciascuno capace di modellare solo uno di questi due fenomeni

xiv



separatamente, mentre il nostro nuovo modello è in grado di riprodurre simul-

taneamente entrambi i fenomeni. Calibriamo e convalidiamo questo modello

confrontandolo con i dati del mondo reale e mostriamo come esso cattura bene

le proprietà macroscopiche osservate in questi fenomeni. Per mostrare come

le diverse conoscenze degli scienziati determinano le loro attività di collabo-

razione, sviluppiamo un secondo modello che prende come input solo le loro

differenze. Mentre, per modellare il trasferimento della conoscenza, sviluppi-

amo un terzo modello ad agenti che riproduce la migrazione degli scienziati da

città in citta’ e le proprietà topologiche della rete di migrazione osservata.

In fine, mostriamo che per rappresentare le citazioni tra riviste scientifiche e le

carriere degli scienziati e’ meglio utilizzare dei nuovi modelli matematici basati

sulle higher-order networks rispetto ai tradizionali modelli di rete. Con ciò

mettiamo in dubbio l’applicazione dei tradizionali modelli di rete per modellare

il flusso di conoscenza tra riviste scientifiche e il trasferimento di conoscenza

tra istituti di ricerca.
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Chapter 1

Introduction

Knowledge is considered one of the key production factors determining wealth

in modern capitalist societies. The competitive advantage of firms depends

more and more on their investments in knowledge-based capital, while a large

share of the market value of many leading firms reflects their knowledge as-

sets, such as patents and know-how. However, the importance of knowledge is

not solely related to economics. Science, too, creates new knowledge making

way for scientific progress, which has a direct impact on many aspects of our

society. As we live in a digitally-dominated era, thanks to the digitalization,

we collectively store and process, and we retrieve an exhaustive amount of

information. For the first time in human history, we easily access exabytes of

information coming from news, books, scientific publications, patents, prod-

uct descriptions, online forums, and many other sources. By navigating and

processing this information, we extract new knowledge that we use not only

to create new products and services, but also to make discoveries about the

functioning of our society.

The above statements clearly show that knowledge places a central role in

economics and science. Note that in these two domains, knowledge is created

more and more in a collaborative manner. This collaboration effort is evident

from the increasing number of research and development alliances established

between firms, or the increasing number of discoveries obtained by large teams

of scientists. These collaborations are not bound by geography, rather they

connect firms, or scientists, across nations and continents. Moreover, they

1
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are increasingly connecting firms working in different economic sectors, and

scientists of varying expertise.

The increasing number of collaborations devoted to the creation of knowledge

challenges the traditional approach to studying knowledge as a property owned

by single individuals. In other words, given that knowledge is created as a

joint effort of many scientists or even of groups of firms, why should we study

knowledge just by looking at individuals separately? In this thesis, we argue on

the necessity to study knowledge as dependent on the collection of interactions

among knowledge actors, such as scientists and firms.

In order to study the collection of interactions determining knowledge, we take

the complex system perspective to analyze the elements constituting knowl-

edge and their interactions – all at the same time. The analyzed elements

are knowledge artifacts, like patents and publications, and knowledge actors,

such as firms and scientists. The interactions between these elements range

from citation relations between knowledge artifacts to collaboration activities

among knowledge actors.

To analyze knowledge artifacts and their relations, we build on methods coming

from the scientific fields of information science and scientometrics. Scholars

from these fields have developed various criteria and indicators to classify, rank,

and retrieve patents, scientific papers, and journals. Developing new criteria

and indicators to perform these tasks is the first objective of this thesis.

As the second objective of this thesis, we study knowledge actors and how they

collectively produce knowledge. We do this by developing agent-based models,

i.e., using computational models that simulate the interactions of autonomous

agents to reproduce collective behavior. Note that our agent-based models will

not be just computer simulations. By theoretically grounding the microscopic

rules of our models and by calibrating and validating them against real data,

these models will not only reproduce observed collaborations patterns but also

allow for understanding.

In the following, we present the working definition of knowledge that we adopt

and define in which systems we investigate knowledge (see Sect. 1.1). Then, we

present our research agenda by describing the research gap that we have iden-

tified during the preliminary phase of the thesis (see Sect. 1.2). Additionally,
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in Sect. 1.3 we provide seven research questions, answers of which contribute

to filling the identified gap. In Sect. 1.4, we describe in which thesis chapters

we address the different research questions.

1.1 What is knowledge?

We aim to investigate knowledge in the domains of science and economics.

Though an unambiguous definition of knowledge is disputed, we now discuss

the meaning of this concept in both domains.

In economic theory, knowledge would typically be considered as “human cap-

ital” [18, 102, 137, 183, 207, 246]. This “capital” should not only be seen as a

bare collection of goods, for it is often embedded in a social context that can

strongly affect its properties and value [39, 51, 197]. To include this charac-

teristic, some scholars consider knowledge as ”a dynamic framework connected

to cognitive structures from which information can be stored, processed and

understood” [96, 197]. By this, we explicitly state that knowledge involves

cognitive structures, such as humans, that can be embedded in a social con-

text and hence be affected from it.

The above concept of knowledge comes from economics [96], and it is also ac-

cepted by scholars modeling the structure and evolution of science [197]. For

this reason, it well matches the general aim of this project, which is investi-

gating knowledge in the domain of science and economics.

Data, information and knowledge When defining knowledge we used the

term information. These are two distinct but connected concepts. A detailed

discussion about their differences goes beyond the scope of this thesis. At the

same time, let us clarify how we interpret and use these terms and how they

are related to data. Data is a collection of values and does not have a specific

meaning by itself. For example, a list of 100 dates alone is just some data.

Information is a collection of values whose meaning depends on a question

asked. For example, if we ask ”Which are the publishing dates of Einstein’s

articles?” and receive a list of 100 dates as an answer, this list is not just data,

but information. In other words, information is an answer to a question, while
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data is not. Lastly, by storing, processing, and understanding information,

we can discover and acquire knowledge. For example, by investigating the age

at which Einstein published his most successful articles, we could gain some

knowledge about his scientific productivity.

Academia and the R&D alliances as socio-technical systems. In

modern society, there are many systems in which social and technical aspects

are strongly intertwined. Prominent examples are academia, meaning scien-

tists with their research activities, and R&D alliances, meaning partnerships

arranged by firms to promote their R&D activities. In these systems, the

social actors (scientists and firms) influence each other depending on both

their social and technical characteristics. For example, in academia, scientists’

technical skills and knowledge are essential for their scientific impact. At the

same time, scientists’ scientific impact is correlated with their centrality in the

social network reconstructed using their co-authorship activities [194]. In eco-

nomics, firms select R&D partners depending on their social and technological

capitals [32, 82, 165, 185]. This interdependence between social and technical

aspects makes academia and the R&D alliances two socio-technical systems.

In this thesis, we will analyze the structure, exchange, and transfer of knowl-

edge in socio-technical systems.

1.1.1 The structure, exchange, and transfer of knowl-

edge.

There exists a vast literature studying the structure, exchange, and transfer

of knowledge. Important contributions are [7, 91, 101, 102, 109, 151, 152, 157,

225] in the economic domain and Boyack et al. [30], De Domenico et al. [48],

Gargiulo et al. [69], Lotka [123], Noyons and van Raan [155], Price [170, 171]

in the scientific domain.

In particular, Jaffe and Trajtenberg [102], Tomasello et al. [225] use patent

data to quantify innovation and measure knowledge flows. Indeed, knowl-

edge can be encoded in patents, and by this, patents become knowledge ar-

tifacts. In the attempt of establishing different types of knowledge, Polanyi
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[166] distinguished between explicit and tacit knowledge. By following this

point of view, we assume that explicit knowledge is encoded in knowledge

artifacts [96, 151, 152, 166]. Hence, we can investigate the structure and evo-

lution of knowledge using patents and their relations. Note that the possible

relations between patents are many. Obvious examples of relations include the

direct citations between patents, while less obvious ones are the geographical

distances between the inventors filing the patents.

In the field of scientometrics and information science, scholars use an equiva-

lent approach to study explicit knowledge in science. They consider scientific

publications as knowledge artifacts. By analyzing these artifacts and their

relations, they drawn map of scientific knowledge [30, 120, 210] and model

its evolution [26, 48, 170]. Additionally, scientific publications are tradition-

ally grouped in journals and hence, journals create a mesostructure organizing

knowledge artifacts. Developing indicators for ranking and classifying journals

is an ongoing effort also because these indicators are official evaluation tools

in various countries.

In both the economic and scientific domains, knowledge is created more and

more in a collaborative manner. In the economic domain, we have withstood

a shift towards open innovation [37] and an increasing number of R&D al-

liances [5, 85]. To interpret this, we follow the knowledge-base view of firms

and considers firms’ knowledge a fundamental resource of their competitive

advantage [56, 107, 253]. In order to expand or change their knowledge

base, firms establish alliances among each other allowing for knowledge to

be exchanged [46]. Then, modeling these alliances together with the possible

knowledge exchange, it is central to understand innovation processes in our

economies.

Similarly, in the scientific domain, scientists also collaborate in order to pro-

duce scientific progress and publish their results in journals. Indeed, the most

extensive available data about the scientific collaborations comes from bibli-

ographic databases containing co-authored scientific publications. From the

analysis of these, there is strong evidence that science is done more in more in

teams [256]. This result is partially explained by the fact that by collaborating

individuals can stimulate each other, share complementary resources and pro-
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duce original works [230]. In other words, collaborations allow for knowledge

to be exchanged, and this can increase the quality of the work done. To a lim-

ited extent, this is verified by the fact that scientific publications co-authored

by larger teams also tend to receive higher attention [113]. At the same time,

there are also pieces of evidence challenging the above claims. For example,

Wu et al. [255] show that smaller teams produce scientific works that are more

disruptive and Wagner et al. [243] failed to show that more international collab-

orations produce more original articles. Moreover, it is still an open problem

to quantify how much knowledge is exchanged thanks to collaborations.

Even though knowledge is often treated as an abstract quantity, it is still

coupled to the real, physical space. Recall that knowledge is connected to cog-

nitive structure, such as individual human beings, and individuals do not have

access to all the possible information [211]. Depending on their locations,

individuals have access to different local information that they can process.

From this, they obtain a “knowledge of the particular circumstances of time

and place” [91]. Individuals then own this knowledge and they can transfer

it thanks to their physical movements. Note that with their movements, in-

dividuals transfer both their explicit and tacit knowledge. For this reason,

the physical movement of humans is an essential form of knowledge diffusion

studied in various works [69, 115, 241].

In this thesis, we will focus on the mobility of scientists to proxy the transfer

of knowledge. We are tempted to use expressions such as mobility of knowledge

or migration of knowledge. At the same time, these terms could be easily mis-

interpreted. The term “migration” usually refers to the movement of humans

to a new country or the seasonal movement of animals. Whereas the term

“mobility” is mostly used in the field of physics to describe how quickly par-

ticles move in materials (e.g., electron mobility). In a similar sense, the term

“mobility” is also used to discuss human dynamics (e.g., urban mobility). To

avoid such confusion, we define the transfer of knowledge as the spreading of

knowledge occurring thanks to the physical movement of scientists or inven-

tors. For example, scientists move and transfer knowledge from one university

to another, or inventors move and transfer knowledge from one firm to another.
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Our analysis of the structure, exchange, and transfer of knowledge follows a

research agenda based on the research gap presented in the next section.

1.2 Research gap

To define the research gap, we start by introducing two broad classes of prob-

lems linked to two overarching questions. The first class of problems is related

to the question of how knowledge artifacts are linked to each other, ranked and

filtered in repositories. Examples of these repositories are patent and scientific

publication databases. The second class of problems relates to the question

of how knowledge is exchanged and transferred. Indeed, knowledge is not only

produced and encoded in knowledge artifacts, like patents or scientific publica-

tions, but it is also exchanged by human beings, and it diffuses in our society.

R&D alliances among firms and co-authorship of papers among scientists are

examples of activities favoring knowledge exchange. While the physical move-

ment of inventors or scientists is an example of knowledge transfer.

Answering the questions highlighted in the above paragraph is a multidisci-

plinary effort made by many researchers. In particular economists, biblio-

metricians and computer scientists contributed by proposing tools for man-

aging knowledge artifacts, modeling knowledge exchange and its transfer 1.

Successful tools have been developed by applying network-analytic methods

[31, 38, 69, 164, 225]. The use of such methods was possible as the data could

be represented using a network abstraction. For example, we can represent a

scientific publication database as a journal-journal citation network, that is a

network where a node is a scientific journal and a link between two journals

is a citation between two papers published in these journals [164]. Similarly,

data about scientists’ careers 2 can be represented as faculty hiring network,

which is a directed network where each node is a university, and a directed

link represents a scientist graduating from a (source) university and, becoming

a faculty member in a target university [38]

1When writing knowledge transfer, we always refer to the scientists mobility, i.e., to
scientists that move across firms, institution, cities or countries, unless otherwise specified.

2Here, we exactly mean the personal career trajectory of a scientist in his/her professional
life.
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Even though tools developed using network-analytic methods have been proven

to be useful, recent advances in data mining and network theory raised con-

cerns about their naive application to complex data [34, 129, 201, 262]. In the

following sections, we will give an overview of three critical concerns.

1.2.1 Network-analytic methods and citation data

One established method to extract knowledge from patent and scientific pub-

lication data is citation analysis. It is used to investigate citation patterns

in order to disclose the properties of documents. In citation analysis, we use

network-analytic methods as we can represent documents and their citations

as a citation network. In this network, nodes are documents, and links are

citations among documents. When representing citation data as a network,

we discard many proprieties of the documents, such as their age or their topic

of pertinence.

At the same time, the cumulative number of citations received by documents

strongly depends on their age and topic of pertinence [205, 240]. Then a

question arises: how can we use citation analysis to compare documents of

different age and belonging to different topics? Answering this question is

important for many reasons. For example, we increasingly use citation analysis

for research evaluation, but we cannot use it fairly to compare researches who

publish on different topics.

Various works proposed an answer to the above question (see [247] for a recent

review). A simple, yet successful method is to divide each document’s citation

count by the mean number of citations for documents on the same topic pub-

lished in the same year [179]. By this procedure, we obtain a new indicator

called relative citation count. Radicchi et al. [179] claim it can be used as

“an unbiased indicator for citation performance across disciplines and years”

for scientific publications. Subsequent works challenged this finding [6, 249],

which leaves the debate on age- and field- normalization procedures still open.

Besides, to the best of our knowledge, a statistical test to assess if indicators

are simultaneously age- and field-normalized is still missing.
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1.2.2 Collaboration networks and knowledge

Researchers from many disciplines have been addressing the long-lasting ques-

tion of how scientists and firms collaborate to create knowledge. In the eco-

nomic domain, they have investigated the mechanisms behind the formation

of R&D alliances [169], the complex networks they generate [187, 224], and the

way their evolution can be modeled [65, 110, 175]. In particular, Tomasello

et al. [224] successfully use an agent-model to reconstruct the R&D network

between firms and hence, their collaboration patterns. Building on such a

network model, [225] investigates how firms exchange knowledge during col-

laborations. Interestingly, the authors find that firms exchange knowledge at a

low rate, meaning that knowledge is rather a determinant than a consequence

of collaborations. This result is in line with the fact that firms use collab-

orations to access new knowledge [153]; however, then firms do not use this

knowledge to expand their knowledge base.

Tomasello et al. [225] assign a knowledge position, i.e., a vector, to firms by

looking at their patent portfolios. This approach is similar to the one proposed

in SKIN models where the knowledge of a firm is contained in a “kene” [75].

The main difference between SKIN models and the models of Tomasello et al.

[225] is that in the former each agent has its knowledge space defined by the

kene, while in the latter agents have different positions in a shared knowledge

space. Additionally, in [75] agents’ kenes are composed of three parts that

represent firms’ capability (i.e., technological or business domain), ability, and

expertise. While in Tomasello et al. [225], in a data-driven spirit, the authors

model only firms’ expertise using their observed patent portfolios.

In particular, Tomasello et al. [225] consider the main eight sections of the

International Patent Scheme (IPC) to classify firms’ patents, and hence, the

knowledge space has eight dimensions. Such choice raises two technical, but

rather critical problems. First, the model of [225] is a particular type of a n-

vector model in eight dimensions [218]. Then, its properties and behaviors are

linked to its dimensionality. This means that the results obtained using the

IPC might not hold when using another classification scheme with a different

number of dimensions. Second, it is reasonable to doubt that the eight dimen-

sions of the IPC sections can adequately describe the knowledge space: i) IPC
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sections are broad (i.e., sections include diverse technologies that are unlikely

to share the same knowledge base), ii) some technological fields are dispersed

across several IPC sections (e.g., food-chemistry related patents may be found

in two different sections). To establish if the result of [225] holds when using

more refined patent classification schemes with a higher dimension is still an

open question.

Also, the question of how the actors of other domains collaborate and exchange

knowledge is unanswered. One could argue that the answer to such question

changes with respect to the actors and the domain of activity, but there may

also be evidence for common features across different domains. Indeed, in a

recent article, we show that a unified modeling approach can reproduce and

explain the structural and the dynamic features of collaborations in different

domains [227]. Such work uses the same agent-based model of [224] to inves-

tigate the collaboration patterns in economics and science. Precisely, the au-

thors focus on collaborations aimed at the production of new knowledge: R&D

alliances among firms from 6 different industrial sectors and co-authorship ac-

tivities among scientists from 6 distinct disciplines of physics. Additionally,

the idea of using “kenes” to represent knowledge was successfully applied to

both the academic [73] and economic domains [75].

Building on the result and the methods presented in [73, 75, 225], it is inter-

esting to ask how much knowledge scientists exchange during co-authorship

activities. In particular, it is interesting to check if the result of [225], namely

that knowledge is rather a determinant than a consequence of collaborations,

holds in the scientific domain.

1.2.3 The loss of temporal correlations

The third concern arises as we often need to make the transitivity assumption

in order to use network-analytic methods. By transitivity assumption we mean

the following: when inferring (from data) the existence of links from a to b and

from b to c, we automatically permit the existence of a path from a to c via
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b 3. Recently, [204] have shown that this assumption is not justified in many

real-world systems as non-trivial temporal correlations of events invalidate it.

For this reason, network-analytic methods can be inadequate to investigate

time sequences of events.

Recent advances in data mining and network theory overcame some of the lim-

itations caused by the transitivity assumption. In particular, in [201, 203, 204],

the authors show how to correctly construct networks and study diffusion pro-

cesses by using data containing time sequences of events. Also, [201] provides

a statistical test for doing model selection that accounts for possible temporal

correlations (present in the data). And in this test, a network is one of the

candidate models. Hence, we can now verify when it is justified to interpret

data using a network abstraction and when it is not.

With the methods provided in [201, 203, 204], we can investigate two sets of

problems: old problems that might have been tackled incorrectly by using

a network perspective (i.e., relevant temporal correlations might have been

discarded), and new problems for which temporal ordering is critical, but have

not been tackled yet. In both these sets, we are interested in those problems

related to knowledge and its transfer.

1.3 Research Questions

We now provide 7 research questions (RQs) whose answers will contribute to

fill the above stated research gap.

1.3.1 The structure of knowledge

RQ1: Assessing multiple normalizations. We need to age- and field-

normalize citation-based indicators in order to compare documents of different

3From a mathematical point of view this assumption is equivalent to the following state-
ment: after inferring from the data a set of nodes and a set of links to construct a network
and its adjacency matrix, the nth-power of the adjacency matrix is the set of paths of length
n allowed on the network.
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ages and from different fields. How can we assess that these indicators have

been simultaneously age- and field- normalized?

RQ2: Developing a new normalization procedure. As the procedure

of [179] failed to correctly age- and field-normalize citation count, and to the

best of our knowledge, there are no better ones, how can we develop a better

one?

RQ3: Developing a new knowledge order. How can we include time-

correlations present in citation data to develop citation-based indicators?

1.3.2 Collaborations and knowledge exchange

RQ4: Knowledge as a determinant of alliances among firms. The

results of [225] indicate that knowledge is rather a determinant than a con-

sequence of R&D collaborations. How does this result change when using

different methods to quantify knowledge?

RQ5: Knowledge as a determinant of collaborations among scien-

tists. How can we extend the model and the analysis of [225] to the scientific

domain?

1.3.3 The transfer of knowledge

RQ6: Temporal correlations in the transfer of knowledge. How

should we model scientists’ career paths in order to retain temporal corre-

lations and a network perspective?

RQ7: A new agent-based model for knowledge transfer. Let us as-

sume that temporal correlations in scientists’ career paths break the transi-

tivity assumption. Then, how can we use an agent-based model to reproduce

these types of paths?
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1.4 Structure of the thesis

This thesis is divided into 10 Chapters. In this first introductory chapter

(Chapter 1), we have defined the scope of the thesis and our multidisciplinary

approach. To do it, we have introduced our working definition of knowledge,

determined the system we are going to consider, and identified a research gap

together with seven research questions. In the next chapter (Chapter 2), we

introduce the data and methods that we will use to address the posed research

questions. Then, we will address these questions in the subsequent chapters.

The first three research questions are related to the structure of knowledge

and are addressed in Chapter 3 (RQ1 and RQ2) and Chapter 4 (RQ3). In

these two chapters, we proxy the structure of knowledge space by using large

citation networks of scientific publications. By understanding how centrality

measures and clustering methods respectively rank and group publications

on citation networks, we learn about the structure of the knowledge space.

Precisely in Chapter 3, we discuss the field and time normalization problem of

scientometrics indicators based on citation data. In our discussion, we define

i) a statistical method that allows quantifying biases of indicators and ii) a

normalization procedure that suppresses the observed biases. In Chapter 4,

we study the temporal sequences in which publications cite each other at the

journal level. With our study, we identify statistically significant sequences of

citations between journals, and we use these sequences to rank journals and

better capture their similarity. Note that Chapter 3 is based on [232], while

Chapter 4 on [234].

In Chapters 5, 6, and 7, we address two research questions about the role of

knowledge in determining collaborations in socio-technical systems (RQ4 and

RQ5). In Chapter 5, we embed firms in a knowledge space depending on their

patent portfolios and model the formation of alliances among firms and their

consequent knowledge exchange. Our analysis follows the approach of [224,

225, 226]. Note that differently from these works i) we consider two different

patent classification schemes as firms’ embedding and ii) when modeling firms’

knowledge dynamics, we model only the knowledge exchange. By this, we can

reliably study how much knowledge is exchanged during R&D alliances and
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hence, how much firms move in the knowledge space. In other words, we

investigate whether firms’ knowledge should be regarded as a consequence or

a determinant of collaborations (RQ4). The work presented in Chapter 5 is

based on [233]

After analyzing R&D alliances, we turn our attention to collaborations among

scientists. To do this, we first perform an extensive analysis of the interplay

between knowledge and scientific co-authorship activities in Chapter 6. In this

analysis, we also propose a new measure to capture the empirical knowledge

exchange between scientists. Then, in Chapter 7, we present an agent-based

model where agents represent scientists and choose their collaborators only

depending on their knowledge. By this, we study the role of knowledge in de-

termining scientists’ collaborations (RQ5). Chapters 6 and 7 are unpublished.

Finally, in Chapter 8 and 9 we address RQ6 and RQ7, i.e., we analyze and

model scientists’ career trajectories across the geographical world. Recall that,

by focusing on scientists, we have the opportunity to capture both explicit and

tacit knowledge. Hence, when we analyze scientists’ career trajectories across

universities, cities, or countries, we are also analyzing the transfer of knowl-

edge across these locations. Additionally, in this chapter, we also reconstruct

the scientists’ mobility network at the city level and check whether there are

statistical significant temporal correlations in scientists’ career trajectories at

the affiliation, city, and country level (RQ6). In Chapter 9, we model scientist

career trajectories at the city level (RQ7). These last two chapters are based

on [231].

We conclude our thesis with Chapter 10 where we present our conclusions. In

these conclusions, we link the different chapters in order to have a new aggre-

gated picture of the interplay between knowledge and socio-technical systems.

After this last chapter, we also report various Appendices that complement

the results reported in the thesis.



Chapter 2

Data and methods

Summary

In this chapter, we present the data and the modeling approach used for this

thesis. Starting from the data, we describe seven large scale databases and

explain how we will use them to study knowledge in socio-technical systems.

After describing the data, we formally introduce the network perspective to-

gether with necessary network measures and algorithms. We will use this per-

spective to represent the systems analyzed in the following chapters. Finally,

we describe and discuss the difference between four micro-based modeling ap-

proaches for networks: temporal exponential random graph model (TERGM),

stochastic actor-oriented model (SAOM), relational event model (REM), and

data-driven agent-based model (ABM). In our discussion, we emphasize the

advantages and disadvantages of the different modeling approaches and moti-

vate why we use data-driven agent-based models in this thesis. 1

1Based on [227, 231, 232, 233, 234]

15
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Figure 2.1: The relation between databases used and RQs.

2.1 Data

We summarize the data used to address the research questions introduced in

Chap. 1. We divide the data accordingly to the previously identified macro-

search areas: Scientometrics, Collaboration and Knowledge Exchange, Knowl-

edge Transfer. For a visual representation of this division, see 2.1.

Scientometrics. To develop a framework capturing biases of rankings (RQ1)

and develop new indicators (RQ2 and RQ3), we use two different dumps of

the Microsoft Academic Graph(MAG) [213]. For answering RQ1 and RQ2,

we use the first version of this database, that we call MAG16. This version was

released for the KDD–cup of 2016, a computer science competition linked to a

prestigious conference on knowledge discovery and data mining2. We use the

second version of the MAG (MAG17) for answering RQ3. This second version

was released by the Open Academic Society3 in 2017. Both versions of the

MAG contain more than 100 million publications, and for each publication,

we have a unique publication identifier matched to its title, publication date,

journal (or venue), and many other pieces of information. The main differ-

ence between these two versions of the MAG is that name disambiguation was

provided in the first version, but not in the second. We provide a complete

description of MAG16 and MAG17 respectively in Sect. 2.1.1A and in Sect. 2.1.1B.

2www.kdd.org
3https://www.openacademic.ai/

www.kdd.org
https://www.openacademic.ai/
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Collaboration and knowledge exchange. In RQ4 and RQ5, we address

the problem of quantifying knowledge exchange occurring during collabora-

tions. In particular, we focus on collaborations observed in two distinct do-

mains: economic and academic. In the economic domain, we look at alliances

established for Research & Development between firms. These alliances are

listed in the SDC Platinum dataset that we describe in Sect. 2.1.1C. To cap-

ture the knowledge of firms, we reconstruct their patent portfolios using the

patent database of the National Bureau of Economic Research (NBER) (see

Sect. 2.1.1D). In the academic domain, we look at scientists co-authoring pa-

pers in physics journals published by the American Physical Society (APS).

The APS provides a dump of its data that contains more than 450 000 papers

and dates back to 1893. For these papers, we have many important metadata

including title, authors and PACS4 codes (see Sect. 2.1.1E). Note that PACS

codes are extremely relevant as they allow us to assign papers to different

research fields. Assuming that papers in different research fields contain dif-

ferent types of knowledge, PACS codes proxy the different knowledge of the

scientists writing these papers.

Knowledge Transfer. Knowledge is not only contained in knowledge ar-

tifacts, such as patents and papers, but also in human beings. Hence, to

understand where and why knowledge moves, we analyze and model the ge-

ographical mobility patterns of scientists (RQ6 and RQ7). To do this, we

reconstruct the career trajectories of scientists using two datasets extracted

from MEDLINE, the largest bibliographic database in the life sciences. The

first dataset is Author-ity that provides disambiguated author names, linking

them to their respective papers [229]. The second dataset is MapAffil that

provides for each paper and authors disambiguated city names of the listed

affiliations [228]. We present these datasets in Sect. 2.1.1F. Additionally, we

analyze the mobility patterns of scientists at the affiliation level using the

MAG16 data. We used this data set at the affiliation level as it covers more

disciplines compared to MEDLINE.

4Physics and Astronomy Classification Scheme (PACS).
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2.1.1 Full list of dataset and description

A – Microsoft Academic Graph (MAG16): KDD–cup version

The KDD Cup is a yearly competition linked to the most prestigious computer

science conference about Knowledge Discovery and Data Mining (KDD). For

this competition in 2016, a dump of the Microsoft Academic Graph (MAG)

was released [213]. It contains more than 126 million of publications and more

than 467 million citations. Each publication is also endowed with various

properties such as unique ID, publication date, title, and journal ID.

Among the primary interests of the community of computer scientists organiz-

ing the KDD Cup, there are the technical challenges related to web-scale data

collection and aggregation. For this reason, the released data for the KDD Cup

2016 went through only basic processing5. Hence, we further pre-process the

data to remove from the analysis papers with incomplete information (more

details are in Appendix A). With our pre-processing, we obtain N = 18 193 082

unique publications and E = 109 719 182 citations.

Additionally, to verify the data quality of this dump, we address the following

question: to which extent is the KDD dump of the MAG in accordance with

the most updated online version of the MAG6? For this comparison, we have

randomly sample 50 000 papers that are approximately 0.1% of the total num-

ber of papers. First, we have matched the hexadecimal publication ID present

in the data released for the KDD Cup to the int64publication ID present in

the on-line version of the MAG. For 50 papers, we have manually verified that

the paper IDs were the same in the two datasets, albeit represented in different

formats. Then, using the Academic Knowledge Api7, we have downloaded the

number of citations for each sampled paper.

For the 2.3% of the sampled papers, we were not able to find their correspond-

ing paper in the online MAG. For 50 unmatched papers, we found out that

these were papers with duplicates in the KDD Cup data, i.e., these papers are

present in the KDD data with two distinct IDs, and only one of the two IDs is

5https://kddcup2016.azurewebsites.net/Data
6We have performed this analysis during February 2017.
7https://www.microsoft.com/cognitive-services/en-us/academic-knowledge-api

https://kddcup2016.azurewebsites.net/Data
https://www.microsoft.com/cognitive-services/en-us/academic-knowledge-api
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present in the MAG. For the matched papers (97.7% of the sample), we com-

pared the number of citations reported in the KDD dump of the MAG with

the number of citations reported on the online version of the MAG. Since the

online MAG covers more years than the KDD data, in the absence of noise,

we expect the number of citations in the KDD data to be smaller than or

equal to the number of citations reported in the online MAG. We find that the

two citation counts are highly correlated (Fig. 2.2), and only the 2.2% of the

sampled papers have more citations in the KDD data compared to the online

version of the MAG. This sets a lower boundary for the error: the percentage

of papers with the wrong number of citations is 2.2%.

Figure 2.2: Scatter plot of the citation counts reported in the data released
for the KDD Cup 2016 and from the online version of the MAG (02/2017).

To summarize, after our filtering procedure, we find that the data released for

KDD Cup 2016 has about 2.3% of papers with duplicates. In addition, at least

2.2% of the matched papers have errors in their citation count. This means

that we have correct citation information for about 95.6% of the analyzed

papers.
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B – Microsoft Academic Graph (MAG17): Open Academic Society

version

A vast group of public and private institutions compose the Open Academic

Society. This society aims to create a shared, open, and expanding knowledge

graph of research, containing education-focused entities and relationships. In-

deed, they provide a free download of two large bibliographic databases: MAG

(166 192 182 papers) and AMiner (154 771 162) both updated to 2017. Addi-

tionally, they have generated 64, 639, 608 matching relations between the two

databases.

We have downloaded the 166 192 182 papers from the MAG. The downloaded

data was provided in 9 zip files each of them containing papers information as

JSON object. The main disadvantage of this version of the MAG compared to

the previous one is that the authors’ names are not disambiguated, i.e., each

paper has an authors’ list containing authors’ names and not unique authors’

IDs. The main advantages are two: MAG17 is more updated and its information

can be cross-checked using the AMiner dataset.

For addressing RQ2, we do not need disambiguated authors’ names. Hence

we use this second version of MAG as it is the more updated compared to the

first version.

C – SDC Platinum (SDC)

SDC Platinum database8 contains data about approximately 672 000 announced

alliances from all countries between 1984 and 2009 with daily resolution. The

economic actors participating in these alliances are of several types, e.g., man-

ufacturing firms and universities, but for simplicity, we address all of them

as firms. Each firm listed in the data set is associated with a SIC (Standard

Industrial Classification) code that allows us to assign its corresponding indus-

trial sector unambiguously. Further, the purpose of each alliance is character-

ized by various flags, e.g., manufacturing, licensing, research and development

(R&D). We restrict ourselves to all alliances with the flag “R&D”, which gives

8http://thomsonreuters.com/sdc-platinum/

http://thomsonreuters.com/sdc-platinum/
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us 14 829 alliances connecting 14 561 firms. The number of partners involved

in each alliance can vary. In most cases, it is two but can also be three or

higher. An interesting comparison between the SDC data and other alliance

databases is provided by [198]. The author finds that most alliances listed

in a database are not present in the others, and hence, she shows that each

database should be considered a sample of the collaborations established in the

real-world. Also, she finds that the SDC had the broader coverage of alliances

across industrial sectors and included many non-OECD alliances. Hence, by

using SDC, we are using (to our knowledge) the more complete databases list-

ing alliances spanning from different countries and sectors. At the same time,

we know that this database only represents a sample of all the established

alliances.

D – Patents from the U.S.A. National Bureau of Economic Research

(NBER)

The Patent Citations Data by the NBER contains about three million unique

patents granted in the U.S.A. between 1976 to 2006.9 For each patent, we have

various types of information such as the assignees, application year, granted

year, and IPC codes. We are particularly interested in the assignee informa-

tion and the Industrial Patent Classification (IPC) codes. Using the assignee

information, we can match the firms listed in the SDC Platinum dataset, and

hence, we reconstruct for these firms their patent portfolios. Using the IPC

codes of patents, we proxy the knowledge of the firms depending on their

patents. We provide more details on how we do this in Sect. 5.2.2.

E – American Physical Society (APS)

This dataset contains over 450 000 papers published in any APS journal, namely

Physical Review Letters, Reviews of Modern Physics, and all Physical Review

journals, between 1893 and 2009 (116 years)10. For each publication listed in

this dataset, we have various metadata information, such as the DOI, authors

9https://sites.google.com/site/patentdataproject/Home
10http://www.aps.org/

https://sites.google.com/site/patentdataproject/Home
http://www.aps.org/
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list, PACS codes of the papers, and publication date. One limitation of the

reported metadata is that authors are identified by their names. Thus, in order

to really make use of the APS data set to study the co-authorship activities,

we need to disambiguate authors’ names. Sinatra et al. [212] provides a list

of author names disambiguated together with the DOIs of their co-authored

paper. This data set contains more than 230 000 disambiguated authors names

and the total number of distinct papers in this second data set is 425 118.

By matching paper DOIs from the [212] and the original data, we assign to

each author a set of papers that he/she has co-authored together with the

PACS codes of these papers. Note that PACS codes were introduced only for

papers published after 1975, and hence, we retain information about authors

authoring papers after 1975.

F – MEDLINE: Author-ity and MapAffil

MEDLINE is the largest bibliographic database in the life sciences made avail-

able by the U.S. National Library of Medicine (NLM). It covers papers pub-

lished from 1966 to present from more than 5 200 journals in about 40 lan-

guages. The first subject scope of this database is biomedicine and health.

At the same time, these are broadly defined, and hence, MEDLINE includes

papers belonging to the areas of behavioral sciences, chemical sciences, bioengi-

neering, environmental science, marine biology, biophysics, plant, and animal

science.

From this database, we use two datasets extracted by Torvik Research Group11.

In particular, we use Author-ity [229] and MapAffil [228]. Author-ity con-

tains disambiguated author names linked to their papers from 1966 to 2009.

This dataset allows reconstructing for each author his/her list of publications.

MapAffil lists for each MEDLINE paper and each author the disambiguated

city names of the listed affiliation (37 396 671 city-name instances). It further

gives a unique identifier as well as the geo-coordinates of each city. This second

dataset covers publications from 1966 to 2015. With these the two datasets, we

can extract for each given author all the cities of her affiliation and the dates

of the associated publications. Combining these two sources of information

11http://abel.lis.illinois.edu/
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about geo-coordinates and time allows us to construct the “career trajectory”

of those scientists that have published in that time. These trajectories are the

sequences of cities where scientists have worked during their scientific careers

(as witnessed by their publications). An example of such a career trajectory is

given in Table 2.1. The merged dataset contains in total the career trajectories

of N = 3 740 187 scientists, which were active in the period between 1966 and

2009, traversing M = 5 485 unique cities.

Year Affiliation City PubMed ID

1 2003 Stony Brook, NY, USA 12703729
2 2003 Stony Brook, NY, USA 12595470
3 2005 Kansas City, KS, USA 15936007
4 2005 Stony Brook, NY, USA 15791955
5 2005 Stony Brook, NY, USA 15944300
6 2005 Milwaukee, WI, USA 16299285
7 2007 Milwaukee, WI, USA 17311921
8 2007 Milwaukee, WI, USA 17490406
9 2008 Boston, MA, USA 18566416
10 2008 Stony Brook, NY, USA 18591234

Table 2.1: Example of career trajectory of a specific author (Zhang Y.). For
each record we have the year of publication, the city of the affiliation and the
PubMed ID identifying the paper. (The PubMed ID is the unique identifier
of the paper within the MEDLINE corpus)

A
B
C

t0 t1 t2 t3 t4 t5

tM

t6 t7 A

C

B
1

Figure 2.3: Illustration of the procedure used to extract scientists’ move-
ments.

Formally we denote a career trajectory of an author i ∈ N as a sequence pi,

for example pi = {At0 , At1 , At2 , Bt2 , Bt4 , Ct5 , Ct6 , Bt7}. A denotes the city as

defined by its geo-location RA = (X,Y ) where X gives the latitude and Y the
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longitude according to the data from MapAffil. The subscript t0 refers to the

time measured in years that an author i was based in the respective city. An

illustration is shown in Figure 2.3. Note that due to the time resolution of one

year, an author may have multiple publications as well as multiple locations

in the same year. This can be seen in Figure 2.3 at t2 where an author is

observed in city A and in city B.

G – SCImago

The SCImago Journal & Country Rank12 is an open access portal that provides

indicators for journals and country using data contained in Scopus13. From this

portal, we have crawled the two years journal impact factors. The two years

journal impact factor is the average number of citations received by documents

belonging to a specific journal published in a two years time window. Precisely

it is computed by counting the “citations received in year X to documents

published in years X-1 and X-2”14. We have aggregated this score at scientists

level and then, at the city level. By this, we have obtained a fitness indicator

for scientists and cities. We will use this indicator when modeling scientists’

career trajectories in Chap. 9.

2.2 Network theory

When modeling and analyzing a system, we will often adopt a network per-

spective. With this perspective, we abstract from the details of the analyzed

system, and we retain only information about its elements represented as nodes

and their interactions represented as links. This allows us to have a simplified

but yet interesting representation of the analyzed system. Indeed, a network

perspective was successfully applied to different problems ranging from in-

formation retrieval, statistical physics, ecology, and sociology. Models and

analysis based on a network perspective go under the name of network theory.

12https://www.scimagojr.com/index.php
13https://www.scopus.com/
14https://www.scimagojr.com/help.php

https://www.scimagojr.com/index.php
https://www.scopus.com/
https://www.scimagojr.com/help.php
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2.2.1 Networks and their basic properties

In network theory, a network is an ordered pair G = (V,E) where V =

{v1, ..., vN} is a set of nodes and E = {(vi, vj), ..., (vk, vl) : vi, vj , vk, vl ∈ V }
is a set of links connecting the nodes in V . A critical property of a network is

that it can be either directed or undirected. A network is directed when a link

(vi, vj) 6= (vj , vi). This type of network is used to represent systems where

elements have directed interactions. For example, citation data are often rep-

resented as directed citation networks: a document-i citing a document-j is

represented as a node-i with a direct link towards node-j. An undirected net-

work is a network where a link (vi, vj) = (vj , vi). This type of network is used

to study systems where interactions among the systems’ elements do not have

a direction. An example is a social network, like Facebook: when two users

declare to be friends, we do not have a direction in their friendship link.

Both directed and undirected networks can be represented by using an adja-

cency matrix, A. The adjacency matrix of a network G = (V,E) is a matrix

where its element Aij represents the number of links (vi, vj) ∈ E. Note that if

a network is undirected, its adjacency matrix is symmetric, i.e., A = AT . For

a directed network, this is often not true.

When the possible values of A are either one or zero, then this adjacency

matrix is representing an unweighted network. An example of an unweighted

network is a social network composed of friendship links: two users i, j are

either friends ((vi, vj) ∈ E ⇒ Aij = 1) or not ((vi, vj) /∈ E ⇒ Aij = 0). When

the possible values of the elements of the adjacency matrix are real numbers,

the network is usually called a weighted network. An example of a weighted

network is the interbank network where nodes are bank and links represent

the credits or debits between banks. Note that to include the weights of each

link, the edge set E changes from being a set of tuple (vi, vj) to a set of triplets

(vi, vj , Aij).

Path, distance and diameter. Given a networkG(V,E), two nodes vi, vj ∈
V can be directly connected by a link (vi, vj) ∈ E or by a sequence of links,

e.g. ((vi, vk), (vk, vj)) both belonging to E. A sequence of links on a network

is called path and is usually represented by the traversed nodes. For example,
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the sequence of links ((vi, vk), (vk, vj)) is written as the path (vi → vk → vj).

A path made of n links has length n. The shortest path length between two

nodes vi, vj is the (network or topological) distance between these two nodes,

d(vi, vj). If two nodes do not have a path connecting them, they are considered

disconnected, and they have infinite distance. The maximum distance between

nodes is the diameter of the network, i.e., it is the length of the longest among

the shortest paths. Note that if a network is undirected network distances

are symmetric, meaning that d(vi, vj) = d(vj , vi)∀i, j. While on a directed

network d(vi, vj) can be different from d(vj , vi).

In the next section, we present two types of measures commonly used in net-

work theory. The first type of measures provide scores to individual nodes and

allow us to identify the critical nodes in the network. These measures are often

named centrality measures. The second type of measures are called clustering

algorithms. These are algorithms that group nodes depending on the network

structure.

2.2.2 Centrality measures

Degree. In a un-directed network G with adjacency matrix A, the degree

of a node i is defined as ki =
∑
lAil. In a directed network G with adjacency

matrix A, we define in-degree of node i as kini =
∑
lAli and its out-degree

as kouti =
∑
lAil. In other words, the in-degree of a node i is the sum of the

incoming links to i, while the out-degree is the sum of the outgoing links.

Betweenness. Nodes are directly connected by links and indirectly con-

nected by paths. Hence, nodes lying on paths are critical as they connect

nodes that do not have direct links. The betweenness centrality measures the

importance of a node by counting the shortest paths to which it belongs. In

formula, given a network G(V,E), the betweenness centrality of a node v ∈ V
is

b(v) =
∑
s6=v 6=q

σsq(v)

σsq
(2.1)
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where σsq is the number of shortest paths between nodes s and q both belong-

ing to V and σsq(v) is the number of shortest paths between nodes s and q

traversing v. Note that in weighted networks, the definition of betweenness

centrality has to be changed to account for the weights of the links.

Local clustering coefficient. Given a network G(V,E) and a focal node

v ∈ V , the local clustering coefficient measures how connected are the neigh-

bors of v. Precisely, it is the number of links between the neighbors of v,

divided by the number of possible links between the neighbors. In formula,

the local clustering coefficient of v is

c(v) =
2e

k(k − 1)
(2.2)

where k is the degree of v and e = |(w, y) ∈ E : (w, v) ∈ E ∧ (y, v) ∈ E|.
By taking the average on all the nodes of their local clustering coefficient, we

obtain the average clustering coefficient for the network.

Note that here we have covered only three fundamental nodes centrality mea-

sures. There exist a large number of centrality measures that capture very

different properties of the nodes. For an almost complete list of these mea-

sures and their interpretation, see [144].

2.2.3 Clustering algorithms

Many real-world systems are organized in groups. For example, inside ecosys-

tems, we often find groups of pollinator and plant species strongly interacting

with each other [156]. Similarly, in social organizations like firms, we find in-

dividuals divided into teams: members of the same team frequently interact

among each other, while interactions across teams are rarer. In network the-

ory, these groups or teams are named communities, and their identification is

performed using clustering algorithms. Precisely, a clustering algorithm iden-

tifies groups of nodes that are called modules, and the set of identified modules

is called clustering. A good clustering algorithm should identify modules that

match the communities present in a system.
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Note that there exists a wide variety of clustering algorithms. Probably the

number of clustering algorithms is even larger than the number of network

measures. This is because the clustering problem is not well defined. A clus-

tering algorithm should identify modules that contain a set of nodes “more

connected” inside the module than outside. Depending on the system under

analysis, the “more connected” can have different definitions. In other words,

depending on the system analyzed, the meaning and definition of a community

is different.

We present only two algorithms that are often used: the Louvain algorithm

and Infomap [24, 188]. We concentrate on these two as both have been demon-

strated to work very well on both synthetic [112] and real-world data [60].

Additionally, the Louvain algorithm is based on modularity [150], which is

one of the most used measures to define “more connected” nodes. Infomap,

instead, defines “more connected” nodes depending on a random walk process

on the network. Such a process is constructed by normalizing the network

adjacency matrix to create a transitions matrix. With this matrix, we can

define a Markov chain where nodes are possible states, and the elements of the

transition matrix are transition probabilities between the states. Using such a

process, Infomap identifies clusters on networks. In the next two paragraphs,

we describe with more details both clustering algorithms.

Luoivan algorithm. In order to capture sets of more connected nodes, many

clustering algorithms rely on the modularity score [150]. This score is com-

puted by taking the difference between the fraction of observed links that fall

within the same modules and the fraction of links that are expected to fall

within the same modules. Given a network G(V,E) and a clustering of this

network C, the fraction of observed links falling within the same modules can

be computed by summing over the elements of the adjacency matrix:

1

2m

∑
v,w

Avwδcv,cw (2.3)

where m = |E|, δcv,cw is the Kronecker delta (if i = j, δi,j is equal to 1; else it is

equal to 0) and cv is the cluster of node v. The fraction of expected links to fall
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within the same modules depends on the null model used. Usually, researchers

use the configuration model, that is a random network model that preserves

the degree of the nodes. Hence, the number of links expected between two

nodes v and w is kvkw
2m and the modularity score is

Q =
1

2m

∑
v,w

(
Av,w −

kvkw
2m

)
δcv,cw (2.4)

The Louvain algorithm maximizes the modularity score Q following three

steps. First, it assigns every node to a separate module, i.e., each module

contains a single node. Second, it computes the changes in modularity when

moving a node v to the modules of its neighbors. Then, the algorithm assigns

v to the module, causing the maximum positive change. This second step is

iterated over all the nodes more than once until no movements can increase

the modularity score. Third, the algorithm makes a size reduction [9]: each

module becomes a (macro-)node, and the links across modules become links

among the (macro-)nodes, while the links within the modules become self-

loops. On this reduced network, it performs again the above steps until the

modularity cannot be increased anymore. For a more detailed description of

this algorithm, see the original paper [24].

The advantage of the Louvain algorithm is that it is based on the modularity

score. This is a well-accepted measure of connectedness and is mathematically

well-defined. However, this measure has also some limitations that affect the

Louvain algorithm. For example, in a big network with many small commu-

nities, the modularity score increases when merging these smaller communities

in one module [58]. This limitation is called resolution limit and defines the

minimum size of the communities detect by Louvain algorithm. Addition-

ally, the Louvain algorithm is dependent on the null model used to compute

the modularity. In other words, it is dependent on the assumption that the

expected number of links between any nodes v and w is kvkw/2m. Hence,

the Louvain algorithm is dependent on the null model assumed to form the

network.
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Infomap. This algorithm is based on two concepts: random walk and com-

pression. The random walk is a stochastic process where a walker is assumed

to move randomly in a continuous or discrete space. In network theory, the

random walker moves on a network from one node to another by following

links. Infomap assumes that “more connected” nodes are those nodes that are

“more frequently visited” one after the other by a random walker. In other

words, two nodes v and w belong to the same module when it is easy to reach

the node w by randomly following links starting from v. To quantify which

nodes are “more frequently visited”, Infomap compresses the sequences of the

visited nodes. This compression is achieved by first encoding these sequences

using the Huffman coding. Then, the description length of the encoded se-

quences is minimized using the map equation. The details about the Huffman

coding and the map equation can be found in [188].

Infomap has a totally different approach to create modules compared to algo-

rithms based on modularity maximization, like the Louvain algorithm. From

a technical point of view, Infomap never computes the modularity score. It

only simulates a random walk process on the network and then, clusters nodes

depending on how frequently these nodes are visited one after the other. From

a conceptual point of view, Infomap creates modules by analyzing how the

network structure influences its functionality. Indeed, by assuming that a

network carries a flow (represented by the random walk process), it clusters

nodes where this flow is more stagnant. This allows us to detect communities

depending on the functioning, rather than the formation of the network.

In the next chapters, we will use Infomap to detect communities in the network

for two main reasons. First, we will be dealing mostly with large networks with

lots of links, but we will not have information about the size of the communities

on these networks. Hence, the resolution limit of the modularity score might

be an issue that we would need to correct. Second, in Chap. 4, we will study

journals depending on the knowledge traversing them. We will do this by

assuming that knowledge flows from cited paper to citing papers, i.e., that

knowledge flows in the opposite direction of citations. Then, Infomap will

perfectly fit this study as it detects communities by identifying where the flow

on a network is stagnant. In our case, this will mean that journals will be

assigned to groups where the knowledge is more similar.
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As a final remark, let us remind that the correct clustering algorithm to be used

depends on the system and on the analysis that a researcher wishes to perform.

Various review works can help to decide which algorithms should be used. One

of the most comprehensive and educative review work is [57], while a shorter

review with an engaging introduction for physicists is [167]. For a comparison

of clustering algorithms based on performance (accuracy and speed), see [45],

while for a comparison based on the definition of communities, see [41].

2.3 Scientometric indicators

To quantitatively study the relation between knowledge artifacts, like papers

and patents, we rely on scientometric indicators. In this thesis, we will fo-

cus on scientometric indicators based on citation analysis and a network per-

spective. This type of indicators has an established role in determining the

scientific impact of scientists and organizations [94]. At the same time, their

use is also highly disputed [1]. We dedicate the following section to introduce

citation-based indicators frequently used to detect papers’ impact and jour-

nals’ similarity. Here, we only introduce their definition and usage, but we will

not analyze them. Their analysis will be performed in Chap. 3 and Chap. 4. In

these chapters, we will discuss their shortcomings and propose new indicators

to overcome these shortcomings.

2.3.1 Indicators of paper impact

We now define four indicators used to detect paper impact: citation count

c, relative citation count cf , PageRank score p, age-rescaled PageRank score

RA(p).

Citation count, c. The citation count ci of node i is simply the number

of citations received by paper i. In terms of the citation network’s adjacency

matrix A (in a directed network, Aij = 1 if node i points to node j, otherwise

Aij = 0), we can express the citation count as ci =
∑
j Aji.
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Relative citation count, cf . To overcome citation count’s bias by paper

age and academic field, [179] defined the relative citation count cfi of paper

i as cfi := ci/µ
Y
i (c), where µYi (c) denotes the mean citation count for papers

published in the same field and year as paper i.

PageRank, p. Citation count and indicators built on it share a notable

limitation: the citations a paper receives are all counted the same, regardless of

the importance of the citing paper. A possible way to overcome this limitation

– recognized already in the 70s in the scientometric community [164] – is to

take into account the whole structure of the paper-paper citation network. In

this spirit, eigenvector-based indicators take as input the citation network’s

adjacency matrix A. This class of indicators has been applied in various

research domains, including scientometrics [23, 164], Web information retrieval

[31, 106], social science [25, 104] – see [53, 61, 76] for a review. Among these

indicators, we focus on Google’s PageRank score [31]. This score was initially

devised to rank webpages in the World Wide Web and has attracted lots of

interest in the scientometric community. The rationale behind its application

to citation networks is that citations coming from influential papers should

count more than citations from unknown papers.

The PageRank scores of papers are usually written in a vector p defined by

the following equation

p = αP p + (1− α)v, (2.5)

where α is a parameter of the algorithm (called damping factor), P is the

random-walk transition matrix with elements Pij = Aij/k
out
j , koutj =

∑
lAlj

is the number of references in paper j, and v is a uniform teleportation vector

with elements vi = 1/N for all papers i. Eq. (2.5) can be interpreted as

the stationary equation of a stochastic process on the citation network. In

this process, a random walker is placed on each paper and the walker either

follows a citation edge with probability α or jumps to a randomly chosen paper

with probability 1− α. When the number of walkers on each paper reaches a

stationary value, the PageRank score of a paper i is the fraction of walkers on

this paper. There is no universal criterion to choose the value of the damping

factor α. In agreement with [36], we set α = 0.5 which corresponds to a
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random walker covering paths of length two before teleporting to a random

node. [36] argue that the choice α = 0.5 better reflects the actual surfing

behavior of researchers than the commonly used value α = 0.85.

PageRank is based on a static, time-aggregated perspective of the consid-

ered network. Such a perspective is limiting for the analysis of evolving net-

works [129, 204] and indeed, PageRank has been found to be biased in favor

of old papers [36, 129, 130, 133].

Age-rescaled PageRank, RA(p). To suppress the age bias of PageRank,

Mariani et al. [130] proposed to rescale the PageRank score. Assuming that the

papers are ordered by older to younger, one computes the mean value µAi (p)

and the standard deviation σAi (p) of PageRank scores over ∆p papers around

paper i, i.e. j ∈ [i − ∆p/2, i + ∆p/2]. Consequently, the rescaled PageRank

score RAi (p) of paper i is defined as

RAi (p) =
pi − µAi (p)

σAi (p)
. (2.6)

The authors of [130] applied rescaled PageRank to the network of physics

papers to show that the resulting ranking is not biased by paper age. This

allows us to identify seminal publication much earlier than rankings by indica-

tors that are biased against recent papers. In the following, we set ∆p = 1000

as in [130].

2.3.2 Indicators of journal similarity

We now define two citation-based indicators: bibliographic coupling and cosine

similarity based on co-citations. These are commonly used to compute the

similarity scores between papers, authors, or journals. Since in this thesis we

are particularly interested to compare journals (see Chap. 4), we provide first

their initial definition (used to compare papers) and then, their extension to

the journal case.
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Bibliographic coupling. This measure was introduced in [105] to group

technical and scientific papers automatically. It is based on the concept of

bibliographic coupling unit, i.e., a paper cited by two different papers. Then,

the bibliographic coupling (strength) between two papers is defined as the

number of coupling units that these papers share. Given an adjacency matrix

A of the citation network at the paper level, the bibliographic coupling between

two papers pi and pj is

Bc(pi, pj) =
∑
k

AikAjk (2.7)

where the element Aik is 1 if the paper i cites paper k, and zero otherwise.

This measure has a limitation: it is static at the paper level as it is dependent

on the older papers co-cited by i and j. In other words, it does account for

the evolution of knowledge as the similarity between papers does not change

when new papers are produced. However, this limitation is overcome when

we aggregate citation at the journal level. Journals continuously publish new

papers, and hence, also their out-going citation change together with their

bibliographic coupling. Note also that bibliographic coupling captures the

“outward” similarity between two papers or journals as it is dependent on their

out-going citations. One of the first applications of bibliographic coupling to

journals was done by Small and Koenig [216]. Here, the authors also normalize

this measure to account for journal-size effects. The bibliographic coupling

between two journals, C and D, is:

Bc(C,D) =

∑
pk 6∈C,D

(∑
pi∈C

∑
pj∈D AikAjk

)
(∑

pi∈C
∑
pk 6∈C Aik

)(∑
pj∈D

∑
pk 6∈D Ajk

) . (2.8)

Cosine similarity based on co-citation. The co-citation similarity mea-

sure was introduced independently by Small [215] and Marshakova [132]. This

measure captures the similarity between papers depending on their “in-coming”

citations. Two papers pi and pj are similar if other papers cite both pi and

pj . When two papers are just published, their similarity is 0; as time goes

by, their similarity can increase. For this reason, co-citation similarity is by
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construction evolving in time. Given the adjacency matrix A of a citation

network, the co-citation similarity between two papers pi and pj is

C(pi, pj) =
∑
k

AkiAkj (2.9)

where the element Aki is 1 if the paper k cites paper i, zero otherwise. White

and Griffith [254] extended this measure to capture author similarity, while

McCain [135] used it to group journals. Their idea was to aggregate the co-

citation scores of papers belonging to the same authors or journals.

To account for the different sizes of journals, we can normalize the co-citation

similarity in different ways. Here, we consider its “cosine” normalization [235]

that is (probably) the most popular one [52]. Then, based on co-citation, the

cosine similarity of two journals, B and D, is:

Cc(B,D) =

∑
L∈J\{B,D}

∑
pk∈L

(∑
pi∈B

∑
pj∈D AkiAkj

)
√∑

L∈J\B

(∑
pi∈B

∑
pk∈LAki

)2

·
∑
L∈J\D

(∑
pj∈D

∑
pk∈LAkj

)2

(2.10)

2.4 Agent-Based and Network models

In this thesis, we take a network perspective to analyze socio-technical sys-

tems. Also, we reproduce their properties using agent-based models. We

have chosen this modeling approach out of many possible candidates. We now

motivate such a decision by discussing four popular models for longitudinal re-

lational data: Temporal Exponential Random Graph Models (TERGM) [89],

Stochastic Actor-Oriented Based Model (SAOM) [217], Relational Event Mod-

els (REM) [33], and Data Driven Agent-Based Models. The following discus-

sion wil not be sufficient to understand all the details of these models. At

the same time, it should be sufficient to understand why we have chosen data

driven agent-based models instead of the other models.

We start our discussion by describing two of the most popular models for

social scientists to analyze longitudinal relational data, i.e., an ordered se-
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quence of networks (Gt)Tt=1. The first model is the Temporal Exponential

Random Graph Models (TERGM) and the second model is the Stochastic

Actor-Oriented Based Model (SAOM). Both models are defined using the fa-

mous Exponential Random Graph Model (ERGM) [252]. An ERGM is fully

described by the probability function:

P (G|~θ ) =
e
~θ·~h(G)

Z(~θ,~h)
(2.11)

where G is the observed network, ~θ are the parameters weighting the impor-

tance of the effects/statistics ~h(G) calculated on the network G, and Z is the

partition function. This function is defined as Z(~θ,~h) =
∑
W∈G e

~θ·~h(W ) with

G representing the set of all possible network with the same number of nodes

as G. Note that each component of ~h(G) represents one of the dependent vari-

ables of the ERGM and these can be both endogenous and exogenous. The

former variables can be captured by the network representation of the system,

while the latter cannot.

2.4.1 Temporal ERGM (TERGM)

Description. TERGM extends ERGM by defining the probability to ob-

serve a network to be conditional to previous observations of the network. In

other words, given a network Gt at time t, the probability to observe Gt is

P (Gt|Gt−τ , ..., Gt−1, ~θ ) =
e
~θ·~h(Gt−τ ,...,Gt−1,Gt,~θ )

Z(Gt−τ , ..., Gt−1, Gt, ~θ,~h )
(2.12)

where τ is the memory of the system, i.e., how far back in the past the sources

of influence on the observed network are. Indeed, the statistics ~h is not only

dependent on the observed network, but also on its previous observations

Gt−1, ..., Gt−τ up to time t− τ .
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Advantages. We can model sequences of observed networks without the

need to assume temporal independence. Given a sequences of network (Gt)Ti=1,

the probability of observing the last network GT is

P (GT |(Gt)T−1
t=1 ,

~θ ) =
T−τ∏
t=1

P (Gt+τ |Gt, ..., Gt+τ−1, ~θ ) (2.13)

The temporal dependence is introduced by the effects in ~h that capture net-

work properties linked to time. For example, given a sequence of unweighted

networks (Gi)ti=1, then the stability of links between nodes is captured by the

memory effect
∑
v

∑
w A

t
vwA

t−1
vw + (1−Atvw)(1−At−1

vw ) where Ai is the adja-

cency matrix of the network Gi. In this discussion, we restrict our attention

to data represented using unweighted and undirected networks.

Disadvantages. The disadvantages of the TERGM are mainly of two kinds.

The first kind comes from the ERGM that we need to define a TERGM. To

use a TERGM, we have to fit an ERGM at every time step correctly. ERGMs

are known to suffer from many problems such as their inability to deal with

co-linearity among the effects. Additionally, they suffer from computational

issues when dealing with large networks. Indeed, even after a long computation

time, the networks resulting from fitting of ERGMs can be far away from the

observed networks.

The second kind of disadvantages is that TERGMs do not have a close con-

nection to the data generating process. In the vector ~h, we encode different

effects that explain how a network at a time t evolves into a new one at a

time t + 1. Then, we determine the importance of these effects by looking at

their corresponding parameters in ~θ. These are obtained by a fitting procedure

consisting of Monte Carlo simulations where edges are added and removed at

random using Eq. (2.12). In other words, the TERGM does not reproduce re-

alistic sequences of choices made by the agents(/nodes) present in the system.

It only tries to simulate the observed data by adding and removing links.
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2.4.2 Stochastic Actor-Oriented Based Models (SAOM)

Description. This is a popular model in social science to study longitudinal

relational data and is similar to TERGM as it is also based on Eq. (2.11).

However, TERGM and SAOM have many differences, especially in their as-

sumptions and how they reproduce network sequences First of all, SAOM

introduces several mini-steps n between two consecutive observations of the

network. The number of mini-steps can be large and tend to infinity, and it is

usually computed depending on the number of observed changes (i.e., added or

removed links) m. During each of this mini-step, nodes – so-called actors – are

activated with a certain probability p and they add or remove links depending

on an objective function f . Usually the activation probability p is computed

such that the number of mini-steps n matches the number of changes observed.

As a simple example, consider to observe N actors and m changes between

two consecutive networks, then we can require that n · (Np) = m. We refer to

the size of a mini-step using ε, such that t+ nε = t+ 1.

When an actor i has been activated, she has the opportunity to make a change,

i.e., to add or remove a link. The “direction” of the change (adding or removing

a link) depends on an actor-centric objective function:

fi(~θ,G) = ~θ · ~hi(G) (2.14)

where each element of ~θ is a parameter corresponding to an effect in ~hi. Note

that the vector containing the effects are computed only from the actor per-

spective. For example, the effect of link stability from the perspective of actor

i is
∑
v A

t+ε
iv Ativ + (1−Ativ)(1−A

t+ε
iv ).

The probability to choose and change a link (i, j) is proportional to efi with fi
computed on the network with the link (i, j) changed. The formula to calculate

the probability to choose and change the link (i, j) during the kth mini-step is

Pr(At+kεij = 1−At+(k−1)ε
ij ) =

exp (~θ · ~hi(Ĝt+(k−1)ε) )

Zi(Gt+(k−1)ε, ~θ, ~hi)
(2.15)

where Ĝt+(k−1)ε is the network Gt+(k−1)ε, but with the link (i, j) changed

(At+kεij = 1 − At+(k−1)ε
ij ) and Zi(G

t+(k−1)ε, ~θ, ~hi) is the partition function de-
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fined by only those network realizations under the direct influence of i. In

other words, Zi(G, ~θ, ~hi) =
∑
W∈Gi e

~θ· ~hi(W ) where Gi is a set containing G and

only those network realizations with an extra or missing link (i, k) with respect

to G.

Advantages. By taking an actor (node) perspective, SAOMs allow us to

give different influences to nodes during the network evolution. Indeed, the

activation probability p can be chosen to be actor-dependent (pi), and hence,

some actors can be chosen with higher or lower probability during a mini-

step. By this, we can impose a different (expected) number of activations per

agent between time steps. Hence, by defining different activation probabilities

pi, we model actors’ heterogeneity in establishing and terminating relations.

Such a heterogeneity is a key aspect of real-world actors belonging to social

and economic systems. Additionally, SAOMs produce a precise sequence of

events to move from one network to another other. This allows us to reproduce

the temporal order in social processes.

Disadvantages. Even though SAOMs can reproduce the temporal order in

sequences of events, they cannot simulate simultaneous ones. For example,

when an individual sends an email to two other individuals, we should not

consider this as two dyadic events, but as a multi-party event. This type

of event cannot be reproduced using SAOMs. The second disadvantage of

SAOMs is that they are based on a rational-choice of the actor to maximize

a specific objective function fi. This choice is performed only considering one

single change in the network, but “not long-run change that will result from

immediate changes”[117]. This poses significant limitations on the compatibil-

ity of rational-choice theory and SAOM. Additionally, SAOM shares the high

computational costs of TERGM.

2.4.3 Relational Event Model (REM)

Description. The key element of this model is a relational event, also called

action a. This is defined by a tuple made of a sender i, a receiver (or a set of

receivers) j, the action type k and a time t: a = (i, j, k, t, ). Given a sequence
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of time ordered actions (al)
t
l=1, REM posits that i) actions are conditionally

independent15 and ii) that probability to observe a new action a at time t+ τ

is the hazard function of observing a multiplied by the joint probability that

no other events occur between t and t+ τ . In formula,

Pr(a at time t+ τ) = h(al)
∏
a′∈At

S(t, t+ τ |a′) (2.16)

where h is the hazard function, S(t, t+τ |a′) is the survival probability of action

a′ between t and t+ τ , and At is the set of actions that could occur after time

t. Moreover, a REM also specifies the subfamilies of h and S. The former is

set to be a constant function λ and the latter to be an exponential e−λτ . Note

that λ is a constant function for the rate of actions, but it could be dependent

on the sender i, receiver(s) j, type of action k, past action history (al)
t
l=1 or

other exogenous co-variates Xa:

λ(i, j, k, (al)
t
l=1, Xa, ~θ) = exp (λ0 + ~θ · ~h(i, j, k, (al)

t
l=1, Xa)) (2.17)

where λ0 is a constant event rate, ~h are relevant statistics for the action rate,

and ~θ are the parameters of the statistics. When fitting a REM, we evaluate

those ~θ that better reproduce the full sequences of observed events (al)
T
l=1, i.e.,

that provide a λ maximizing
∏T
l Pr(al at time l).

Advantages. With REMs, we model events in an “actor-oriented” fashion

similar to SAOM. This modeling assumption allows us to keep a more realis-

tic description of the underlying process generating the observed sequence of

events. Also, a REM takes as input sequences of events and explains them

using the statistics contained in ~h. In contrast, TERGMs and SAOMs have

sequences of networks as input, and they only try to model these. Addition-

ally, REMs allow modeling not only dyadic interactions but also multi-agent

ones. For example, we can model an individual sending an email to two or

more people as a single action.

15Given the occurrence of an event C, two events A and B are conditionally independent
if, and only if, P (A ∩B|C) = P (A|C)P (B|C).
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Disadvantages. The first disadvantage of REM is that they cannot model

actors engaging in forward-looking behavior. This limitation depends on the

assumption that actions are conditionally independent, i.e., an actor chooses

her next action only considering the history of past actions. An actor cannot

make strategic decisions depending on actions not taken by the other actors.

In other words, given a history of past actions, actors “quickly” respond to this

and they lack in forward-looking and strategic behavior. From this “quick”

response, we also find the second disadvantage of REMs. They need complete

time-ordered sequences of relational events as input. If we are missing an event

in a sequence, we might miss the reason for the next observed action. Data

containing complete sequences of events between individual actors are actually

rare. Usually, this type of fine-grained data often misses events, so researchers

have to understand if the missing data are biasing the results of a REM.

2.4.4 Data Driven Agent-Based Models

Description. An agent-based model (ABM) is a microscopic model of a

system. It is typically defined by its agents, their internal dynamics, and their

interactions. The agents represent the elements of the system that a researcher

wishes to model. Agents are usually endowed with attributes that represent

relevant characteristics of the system elements. The agent’s internal dynamics

and interactions represents how the system elements evolve and interact, and

it should match the microscopic interaction laws of the analyzed system. Like

any other model, ABMs are dependent on parameters, and these typically

specify the intensity of the interactions between the agents.

We define a data-driven agent-based model an ABM for which data is used

in three different parts of the model: as input, for calibration and for valida-

tion. Using data as input means, for example, that both the initialization of

the ABM and the distribution of agents’ attributes are dependent on data.

A model is said to be calibrated against data when data is used to choose an

optimal combination of the model parameters. To choose an optimal combina-

tion of parameters, typically an ABM first needs to be simulated with different

combinations of parameters. Then, the optimal combination of parameters is

the combination with which the ABM better reproduces (previously chosen)
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observed properties. Finally, the validation of an ABM consists of verifying

that the ABM reproduces observed properties that were not used as input or

during the calibration procedure. These other properties reflect dimensions of

the modeled system that were captured by the ABM even though it was not

informed about it.

Advantages. ABMs are a general approach to model systems independently

of their representation. SAOMs and TERGMs should be used only to model

systems under a network perspective, and REMs are designed to model only se-

quential data. ABMs, instead, are not restricted to model networks or sequen-

tial data. Additionally, they allow us to introduce as many agents attributes

or refined interaction rules as necessary to capture the analyzed system. This

high flexibility places a massive advantage when modeling complex systems.

The focus of ABMs lies in defining agents’ attributes and interactions that

reproduce macroscopic properties of the analyzed system. For this reason,

they are similar to SAOMs or REMs in keeping agents (actors) at the center

of the model. At the same time, they also take a statistical approach similar

to TERGM to explain the full system. Indeed, the ability of an ABM to re-

produce macroscopic properties should not be dependent on the exact order

of interactions among the agents. An ABM typically has some randomness

inside that allows for a stochastic evolutions of the system. Such an evolution

results in different realizations of the analyzed system, but all these evolution

should share similar macroscopic properties. By this, it tests for those micro-

scopic details (i.e., agents’ attributes and interactions) sufficient to reproduce

macroscopic properties.

Data-driven ABMs are typically generative models, i.e., given a set of micro-

scopic interaction rules among the system elements, an ABM can generate the

macroscopic properties of the system. This is something that most contempo-

rary data-driven models do not do. For example, machine learning models can

discover and capture statistically significant patterns inside some data about

a system. However, they typically do not provide a method to re-generate the

found patterns, and when they do provide such a method, it is usually based

on a transformation of the observed data. Hence, the generation of the found

patterns does not come from an understanding of the analyzed system.
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Last, but not least, an ABM can be more computationally efficient than

SAOM, TERGM, and REM. For every system that we wish to model, we

can tailor a new ABM with minimal ingredients. Moreover, the different real-

izations of modeled system can be easily parallelled as they are independent.

For the present thesis, we are mostly interested in studying how individual

actor decisions shape the system in which they are found. For this reason,

we decide to use ABMs instead of TERGMs. Also, we do not use SAOMs or

REMs as we are not interested in the full details of the interaction sequences.

We are only interested in determining those microscopic rules sufficient to

reproduce the macroscopic properties of the system. Additionally, we will be

dealing with large datasets with often thousands of actors. Simulating systems

of this size becomes extremely time-consuming when using SAOM, TERGM,

and REM. Hence, we need to develop our programming code tailored to the

phenomena that we aim to investigate.

Disadvantages. ABMs are very different from each other even when they

are simulating the same system. These differences make it hard or even im-

possible, a direct comparison between them. These differences often arise from

the freedom in mapping the system elements and their dynamics. Indeed, dif-

ferent microscopic rules can be used to explain the same macroscopic property.

For example, power-law degree distributions in networks can arise from a pref-

erential attachment (PA) or a coping mechanism. This means that we could

develop two different ABMs (one with a PA and one with a coping mecha-

nism) to model the same system property (a power-law degree distribution).

However, we have no direct way to decide which model is using the correct

microscopic rules. One solution to this problem is to carefully check the theo-

retical foundations of the proposed rules in each ABM. A second solution is to

validate the ABMs against other no-trivial macroscopic features of the system.

The computational efficiency of an ABM comes at the cost of writing its code

from scratch. This means that the advantage in the simulation time can be lost

as developing and testing the new code is time-consuming. Moreover, usually,

a model and its code are prepared to capture one specific system optimally and

to be computationally efficient. Hence, the re-usability of a code for modeling

a new system is not trivial and often impossible.
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2.5 Conclusion

We have introduced the databases and the methods that we will use in the

next chapters. Data and methods have been chosen accordingly to the aim

of this thesis. Precisely, to study how knowledge is structured, exchanged,

and transferred in socio-technical systems, we need diverse databases and a

multidisciplinary approach.

To extract relevant information from knowledge repositories, such as patent

and bibliographic databases, we need methods coming from information sci-

ence. To interpret and represent the extracted information as one system,

we utilize a network perspective, and hence, we need tools from network the-

ory. Then, to model and reproduce the reconstructed networks, we will use

agent-based models.

Information science. We have presented various databases that we will use

to answer three different types of questions. The first type of question is about

how to develop and test indicators for information science. The second type

of question is about how to identify the interplay between collaboration and

knowledge exchange. The third type of question is about how knowledge is

geographically transferred. For addressing all of these questions, we use bibli-

ographic data: MAG16, MAG17, APS, NBER, MEDLINE, SCImago.16 To analyze the

documents present in these data, we have introduced different scientometric

indicators. These indicators are based on citation analysis and are used to

measure the impact and similarity of papers and journals.

Network theory. After presenting the data, we have introduced the net-

work perspective that we will use to study knowledge in socio-technical sys-

tems. Such a perspective is based on a mathematical object called network,

which is an ordered pair of sets. The first set contains nodes that repre-

sent the elements of the system; while the second set comprises links that

describe the microscopic interactions among the system elements. When tak-

16Additionally, for addressing the second type of questions in the R&D domain, we use
the SDC platinum data listing declared alliances among firms.
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ing a network perspective, we combine all the observed interactions into one

mathematical object. Then, by studying this object, we can determine the

relative importance of the system elements, for example, by using network

centrality measures. Additionally, we can identify the mesoscopic structure,

such as communities, that are present in the analyzed system.

Data-driven agent-based modeling. We will use ABMs to find the mi-

croscopic interaction rules reproducing the systems analyzed in this thesis. We

could have used other models, like TERGM, SAOM, and REM. Even though

these represent state of the art in network analysis, we have decided not to

use them as they do not fit the aim of this thesis. Precisely, we aim at iden-

tifying microscopic interaction rules from the actor perspective that explain

the macroscopic properties of the systems. To do this, we need ABMs. Note

that we will propose data-driven ABMs, meaning that data are used as input,

and for calibrating and validating the proposed models. Additionally, in our

models, we will introduce agents’ attributes and their dynamics by consider-

ing economic and social science theories. Hence, both attributes and dynamics

will be motivated from a theoretical perspective. By all this, our data-driven

ABMs will not be simple simulations, but rather a powerful tool to explain

systems observed in the real world.



Chapter 3

Quantifying and suppressing

ranking bias in citation networks

Summary

In this chapter, we use a large citation data set from Microsoft Academic

Graph and a new statistical framework based on the Mahalanobis distance

to show that the rankings by well known indicators, including the relative

citation count and Google’s PageRank score, are significantly biased by paper

field and age. Our statistical framework to assess ranking bias allows us to

exactly quantify the contributions of each individual field to the overall bias of

a given ranking. We propose a general normalization procedure motivated by

the z-score which produces much less biased rankings when applied to citation

count and PageRank score.1

1Based on [232]

46
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3.1 Introduction

Paper citation count itself and various quantities derived from it are used as

influential indicators of research impact [68, 95]. At the same time, it is well

known that the cumulative number of citations received by academic publi-

cations strongly depends on paper age and field [205, 240]. Old papers have

had more time to acquire citations than recent ones, and their advantage is

further enhanced by the preferential attachment mechanism [146, 170]. While

heterogeneous paper fitness and paper aging possibly attenuate the advantage

of old nodes [136, 251], empirical evidence typically shows that citation count

is still biased toward old nodes (see [130, 146, 176], among others). In addition,

different academic fields adopt very different citation practices (see [27] for a

review on the topic), which results in a strong dependence of the mean number

of citations on academic field, as shown in several works ([28, 124, 179], among

others).

A natural question arises: how can we “fairly” use citation-based indicators

to compare papers from different fields and of different age? The problem

of comparing papers from different fields is usually referred to as the field-

normalization problem. Several approaches to address this question have been

proposed in the literature (see [247] for a recent review). A particularly simple

approach is to divide each paper’s citation count by the mean number of

citations for papers of the same field published in the same year. The results

by [179] suggested that this indicator, called relative citation count, produces

a ranking that is statistically consistent with the hypothesis of a ranking that

is not biased by field and age. This finding has been challenged by subsequent

works by [6] and [249], which leaves the debate on age- and field- normalization

procedures still open.

In this chapter, we analyze a large data set from Microsoft Academic Graph

[213] to show that existing indicators of impact, including the relative cita-

tion count, fail to produce rankings that are not biased by age and field. To

simultaneously assess these biases, we present a new procedure based on the

Mahalanobis distance [127]. This permits to compare the ranking by a given

indicator with those obtained with a simulated unbiased sampling, and hence
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to quantify the overall ranking bias. An analytic result derived in Appendix

allows us to assess the contribution of each field to the overall ranking bias.

It is worth noticing that while we focus on the biases by age and field, our

bias assessment procedure can be easily extended to detect any other kind of

information bias.

We also present the first systematic study of the possible bias by field of the

PageRank score [31] and of its age-rescaled version introduced by [130] at

article-level. The motivation to analyze these network-based indicators comes

from the finding that they outperform other indicators in identifying expert-

selected milestone papers [130]. However, the application of PageRank and

its variants to academic citation networks focused on data sets composed of

papers from a single field [36, 129, 130, 244, 258, 260]. While the possible

bias by scientific field of eigenvector-based algorithms has been explored by

[248] at journal-level, the PageRank score’s possible bias by academic field at

article-level is still unexplored. We are the first ones to address it.

We introduce two novel indicators of impact motivated by the z-score: age-

and field-rescaled citation count RAF (c) and age- and field-rescaled PageRank

RAF (p). We find that the novel indicators produce paper rankings that are

much less biased by age and field than the rankings produced by the other

analyzed indicators. Nevertheless, also the Mahalanobis distance observed

for the new indicators is not statistically consistent with ones obtained for a

simulated unbiased process. This indicates that the problem of achieving an

ideal unbiased ranking of the publications remains open.

The rest of this chapter is organized as follows: Section 2 summarizes the an-

alyzed data set of publications obtained from the Microsoft Academic Graph.

Section 3 reports bias by scientific field of four existing paper-level impact indi-

cators. In Section 4, we introduce a rescaling procedure for citation count and

PageRank scores motivated by the z-score. In Section 5, we introduce a gen-

eral procedure to test for any kind of ranking bias, and present its application

to assess the field and age bias of the rankings by the indicators studied here.

In Section 6, we conclude by discussing possible limitations of our analysis and

future research directions.
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3.2 Data

We analyze a bibliographic data set which was provided for the KDD Cup

20162. This data is a dump of the Microsoft Academic Graph (MAG) and

contains more than 126 millions of publications and more than 467 millions

citations [213]. Each publication is also endowed with various properties such

as unique ID, publication date, title, journal ID, etc. We pre-processed the

data (details are provided in 2.1.1A) to remove from the analysis papers with

incomplete information, ending up with N = 18 193 082 unique publications

and E = 109 719 182 citations.

The MAG has a field classification at paper level [213]. In the KDD cup dump,

there are 19 main fields and numerous subfields up to 3 hierarchical levels of

subsubfields. However, all the different subfields can belong to several main

fields, meaning that each publication can belong to more than one main field.

We use here the field classification at the highest hierarchical level, i.e., we

only consider the 19 main fields. When calculating the citation count and

PageRank score of papers (see Section 3.3), we consider the publications that

belong to more than one field only once. In this way, we do not modify the

number of citations that each paper receives and gives, and we do not change

the topology of the network on which the PageRank scores are calculated.

On the other hand, in agreement with [249], to compute the fields’ size (see

Tab. A.1 in Appendix A) and the field-rescaled indicators (see Section 3.3

and Section 3.4), each publication can be considered multiple times in the

analysis, once for each field the publication belongs to. In this way, each field

is represented by all its publications even if some of these are shared with other

fields.

Before moving to the next Sections, we devote our attention to two main

assumptions of our analysis. First, we assume that the Microsoft Academic

data provide a representative sample of the population of publications and of

their citations. This assumption is motivated by the findings of independent

analyses of the Microsoft Academic data set [90, 98] that have shown that its

2https://kddcup2016.azurewebsites.net/Data

https://kddcup2016.azurewebsites.net/Data
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coverage is comparable to other popular academic databases, such as Scopus

and Web of Science.

Second, to quantify the bias by field of impact indicators, we assume that the

fields are given by the Microsoft Academic’s field classification scheme at its

highest hierarchical level. In the literature, there is no general agreement on

which field classification scheme should be used to classify papers and there is

an entire stream of works investigating issues related to this [2, 40, 178, 214,

261]. In particular, the choice of a suitable aggregation level has been shown

to be delicate: by considering the most aggregate fields, heterogeneities in the

subfields’ citation patterns might be hidden [176, 236] – this effect has been

shown to be magnified when iterative ranking algorithms are used instead of

citation count [250]. On the other hand, increasing the resolution of the field

classification may lead to largely-overlapping fields or to hardly interpretable

fields. For example, [97] show that the MAG fields at the second highest level

are too detailed and, for this reason, the authors suggest that they should

not be used for field-normalization purposes. We leave to future research the

important study of how different classification schemes impact the biases of

rankings and how our results generalize to other data sets.

3.3 Shortcomings of existing indicators

In Sect. 2.3.1, have defined four existing indicators used to detect paper impact:

citation count c, relative citation count cf , PageRank score p, age-rescaled

PageRank score RA(p). We now show that these indicators are severely biased

by scientific field (Section 3.3.1).

3.3.1 Field bias of the existing indicators

After having described a set of existing indicators, we now apply them to the

MAG data set to show that the rankings that they produce are biased by

scientific field. For a ranking that is not biased by scientific field, the num-

ber of top-ranked publications from each field should be proportional to the
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total number of publications from that field. In other words, for an unbiased

ranking, we expect

µf =
z

100
Kf (3.1)

papers from field f among the top z% papers in the ranking, where Kf is the

total number of publications from field f [179]. In the following, we denote by

k
(m)
f the number of publications from field f in the top-1% of the ranking by

indicator m. We restrict our analysis to z% = 1%; results for other values of

z are available upon request from the authors.

Figure 3.1: Field bias of the analyzed citation-based indicators. Top panels
show histograms of the fraction of top-1% publications for each field in the
ranking by (left to right) citation count and relative citation count. The black
horizontal line is at 0.01, i.e., the expected value. Bottom panels show for each
field the complementary cumulative distributions for citation count (left) and
relative citation count (right).

In the top panels of Fig. 3.1, we illustrate the field bias of citation count, c, and

relative citation count, cf . The presence of strong biases is evident for both

indicators because there are fields whose ratio k
(m)
f /Kf is far away from the

expected value 0.01. In particular, Environmental Science is extremely over-

represented in the top of the ranking by citation count. We argue that this
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bias comes from the fact that publications from this field have a mean citation

count almost twice as big compared to publications belonging to other fields

(see Table A.1). For relative citation count, we find a better agreement with

what we would expect from an unbiased indicator. However, relatively large

deviations are still evident, especially for the field of Political Science.

In the bottom panels of Fig. 3.1, we report the distributions of c and cf for

each field. These panels show that the bias by field is not limited to the top

1% papers in the ranking, but it arises from systematic differences between

the score distributions across different fields. For example, when looking at

the distribution of c, papers in the field of Political Science have consistently

smaller probability to have more than one citation compared to other fields.

For a detailed discussion about the bias of the ranking by cf , we refer to

Appendix B.

Fig. 3.2 reports the same analysis for PageRank scores, p, and age-rescaled

PageRank scores, RA(p). This figure provides the first study of the depen-

dence of PageRank score on academic field. The top panels of Fig. 3.2 show

that the top positions of both rankings are biased by field, and both rankings

overestimate the impact of publications in the field of Environmental Science.

Again, we argue that this happens because the mean in-degree of publications

from Environmental Science is approximately twice as big compared to publi-

cations that belong to other fields (see Table A.1). From the bottom-left panel

of Fig. 3.2, we find that the full distribution of scores of Page Rank have a sim-

ilar shape, but different broadness. These differences are slightly smaller for

the age-rescaled PageRank, with the exception of the field of Environmental

Science (see bottom right panel of Fig. 3.2).

3.4 New age- and field- normalized indicators

In this Section, we introduce two novel indicators of paper impact: the age- and

field-rescaled citation count, RAF (c), and the age- and field-rescaled PageR-

ank, RAF (p). The two indicators, RAF (c) and RAF (p), are obtained from

citation count c and PageRank score p, respectively, through a rescaling pro-

cedure. This procedure is based on the z-score and is aimed at suppressing
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Figure 3.2: Field bias of the analyzed measures based on PageRank. Top
panels show histograms of the fraction of top-1% publications for each field
in the ranking by (left to right): PageRank and age-rescaled PageRank. The
black horizontal line is at 0.01, i.e., the expected value. Bottom panels show
for each field the complementary cumulative distributions for PageRank (left)
and age-rescaled PageRank (right).

age and field bias. The idea of using the z-score is not new in scientometrics

[28, 124, 130, 134, 146, 259]; our new indicators can be considered as variants

of the indicator based on the z-score studied by [259] and their main difference

is explained below.

3.4.1 Age- and field-rescaled citation count, RAF (c)

To calculate the age- and field-rescaled citation count RAFi (c) of a paper i

belonging to a field f , we first compute the mean µAFi (c) and the standard

deviation σAFi (c) of the citation count of papers of the same field and of similar

age as paper i. In particular, µAFi (c) and σAFi (c) are computed over the papers

that belong to the same field f as paper i and that are among the ∆c closest
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papers to i as measured by the distance |i − j| between their rank by age.

Then, the age- and field-rescaled citation count score RAFi (c) is defined as

RAFi (c) =
ci − µAFi (c)

σAFi (c)
. (3.2)

The averaging window size ∆c is a parameter of the method, which we set to

∆c = 1000.

Differently from [259], for the computation of the z-score, we use temporal

windows with the same number of publications, which in general corresponds

to real-time intervals of different duration. This choice is supported by recent

findings [159] that indicate that in citation networks, time is better defined by

number of publications than by real time. Furthermore, rescaled indicators

based on the z-score with fixed temporal-window duration have already been

shown to under-perform with respect to the relative citation count cf in the

task of producing an unbiased ranking [259]. For these reasons, we do not

include indicators based on z-score with fixed temporal-window duration in

our analysis.

Differently from the relative citation count cf , RAF (c) is expected to have not

only uniform mean value across different publication dates and fields, but also

uniform standard deviation. This should lead to a more balanced ranking of

the papers. We show in the following that this is indeed the case.

3.4.2 Age- and field-rescaled PageRank, RAF (p)

Previous works have shown that PageRank is biased towards old papers in sci-

entific citation networks [36, 129, 133]. Moreover, we have shown in Section 3.3

that PageRank score p is biased by scientific domain. To simultaneously sup-

press these two biases, we propose the age- and field-rescaled PageRank score

RAF (p). RAF (p) is defined similarly as RAF (c): we compute the mean value

µAFi (p) and the standard deviation σAFi (p) of the PageRank scores of the pa-

pers that belong to the same field as paper i and that are among the ∆p closest
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papers to i as measured by the distance |i− j| between their rank by age. The

age- and field-rescaled PageRank score is then defined as

RAFi (p) =
pi − µAFi (p)

σAFi (p)
. (3.3)

In the following, we set ∆p = 1000.

3.4.3 Field bias of the new indicators

In the top panels of Fig. 3.3, we show that in the top-1% of the rankings by

RAF (p) and RAF (c) each field appears well represented. In fact, the deviations

from the expected value are very small especially if compared to the deviations

of the other rankings (see top panels in Figs. 3.1 and 3.2). In the bottom

panels of Fig. 3.3, we report that the the full score distributions for papers

from different fields collapse well on top of each other thanks to the rescaling

procedure.

3.5 Quantifying field and age biases

We begin this Section by introducing a new methodology to assess a ranking’s

bias based on the Mahalanobis distance (Subsection 3.5.1). Then, we use this

to quantify the bias by field (Subsection 3.5.2) and the bias by age and field

(Subsection 3.5.3).

3.5.1 A general framework to assess ranking biases based

on the Mahalanobis distance

While Figs. 3.1 and 3.2 illustrate the substantial field bias of the existing

indicators, the bias is much weaker (if any) for the new age- and field-rescaled

indicators in Figure 3.3. Now we quantify this improvement by extending the

statistical tests of bias suppression presented by [130, 177, 179, 249]. Similarly

to these works, we assume that a ranking is unbiased if its properties are

consistent with those of an unbiased selection process.
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Figure 3.3: Field bias of our normalized indicators. Top panels show his-
tograms of the number of top-1% publications for each field in the ranking by
(left to right): age- and field-rescaled citation count, and age- and field-rescaled
PageRank. The black horizontal line is at the expected value 0.01. Bottom
panels show the complementary cumulative distributions for age- and field-
-rescaled citation count (left), and age- and field-rescaled PageRank (right).

Assessing the bias by field. Consider an urn which contains N marbles,

each of them corresponding to one of the publications present in our data set.

An unbiased selection process then corresponds to sampling from this urn at

random without replacement a fixed number n= bN × 0.01c of publications.

From the extracted sample, we count the number of publications that belong

to each field f , kf , and record these numbers in the vector ~k = (k1, ..., kF )T ;

here F denotes the number of fields. The probability to observe a certain

vector, ~k, is given by the multivariate hypergeomentric distribution (MHD)

P
(
~k
)

=

∏F
f

(
Kf
kf

)(
N
n

) (3.4)

where Kf is the total number of publications in field f . Following this se-

lection process, among the n extracted publications, the expected number of

publications for field f is µf =nKf/N .
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Assume that the actual ranking by a given indicator m features k
(m)
f publica-

tions from field f in the top 1% of its ranking. In general, the observed k
(m)
f

deviates from its expected value µf . A simple approach to quantify this devia-

tion would consist in computing the z-score, defined as z
(m)
f := (k

(m)
f −µf )/σf ,

where σf is the expected standard deviation for field f according to the MHD

specified by Eq. (3.4). There are however two shortcomings of the z-score.

First, the z-score only gives partial information for a MHD – how far from

the expected values we are in units of standard deviations – but it does not

provide information on how statistically significant the deviations are. Second,

to quantify the overall bias of a given indicator m, we would need to aggregate

the z-scores from the different fields. For example, we could take the aver-

age z-score, but this would neglect the correlation between the different fields

coming from the constraint n =
∑
f k

(m)
f .

To overcome these two problems, we follow a different approach. We first

run various numerical simulations that reproduce the unbiased selection pro-

cess. These simulations produce a set of ranking vectors which are distributed

according to Eq. (3.4) around the vector of expected values, ~µ= (µ1, ..., µm).

Differently from [177], we do not estimate the confidence interval for the differ-

ent fields separately. We calculate instead the Mahalanobis distance (dM, [127]

and Appendix C) for each simulated vector from ~µ, and construct the distribu-

tion of dM’s obtained by the simulated unbiased selection process. The inset

of the left panel of Fig. 3.4 reports the distribution of the dM for 1 000 000

simulations. The distribution is centered around its mean value of 4.18 and the

upper bound for the 95% confidence level is around 5.37. 3 For an ideal unbi-

ased ranking, we would expect its dM to fall into the 95% confidence interval

of the distribution of the dM obtained from the simulated unbiased sampling

process.

3A curiosity for the reader. Here, the average of the square of the dM for the unbiased
sampling process is extremely close to the number of degrees of freedom of our problem.
This stems from the fact that the MHD defined by Eq. (3.4) converges to a Multivariate
Gaussian Distribution (MGD) as we increase the number of publications N while keeping
n/N fixed and small. Our data set is large enough for this approximation to be accurate.
The d2M of a MGD is distributed as a χ2 variable with average equal to the number of
degrees of freedom, i.e. 18 since we have 19 distinct fields and one constraint.
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Assessing the bias by age and field The methodology presented above

is easily generalized to simultaneously assess a ranking’s bias by age and field.

To add the temporal dimension to the bias assessment procedure, we split the

publications into T equally-sized age groups, and repeat the above analysis

by using F × T different categories of publications. In Section 3.5.3, we set

F = 19 representing the number of fields and T = 40 as in [130], and thus we

obtain 760 age-field groups of different sizes.

3.5.2 Results on the bias by field

The rankings produced by different indicators differ greatly by their dM (see

Fig. 3.4). As expected, the indicators that are not field-rescaled (c, RA(p), and

p) are far from being unbiased. At the same time, relative citation count that

is rescaled by field performs only slightly better than PageRank which is igno-

rant of any field information. The best results by a wide margin are achieved

by our indicators, RAF (c) and RAF (p), obtained using the new rescaling. Nev-

ertheless, both these indicators fail to meet the 95% upper bound achieved by

simulated unbiased rankings. As disappointing as it may seem, this finding is

not entirely surprising as the proposed rescaling procedures focus on equaliz-

ing the first two moments of the respective quantities (c and p) whereas the

quantities’ distributions can differ also by higher moments.

To understand which field contributes the most to the resulting dM values, we

have derived an alternative analytic expression for the dM

dM(~k, ~µ)2 =

F∑
i

z2
i

(
1− ki

N

)
(3.5)

where we omit the indicator superscript (m) from the notation for zi and ~k for

simplicity. We have proven this formula analytically for F = 3, 4, 5, 6, and we

have numerically tested it for F = 19 and 760 (see Appendix C); it remains

open to prove it in arbitrary dimensions.

In Table 3.1, we report the individual fields’ contributions to the d2
M calculated

using Eq. 3.5. We find that Biology and Computer Science are the fields which

give the biggest contributions to the d2
M for the rankings by citation count



3.5. QUANTIFYING FIELD AND AGE BIASES 59

Figure 3.4: Mahalanobis distances, dM, for the analyzed indicators when
considering the 19 main fields. From left to right: citation count, relative cita-
tion count, PageRank, age-rescaled PageRank, age- and field-rescaled citation
count and age- and field-rescaled PageRank. The horizontal red line represents
the upper bound of the 95% confidence interval obtained from the simulations.
In the insets, we report the distribution of dM coming from 1 000 000 simu-
lations of the unbiased sampling process. Again, the red line represents the
upper bound of the 95% confidence interval.

and relative citation count, respectively. This could not have been detected

by looking at the deviations from the expected values. Indeed, in Fig. 3.1

we only see that Environmental Science and Political Science have the largest

deviations. For the novel indicators, approximately one third of the d2
M of

RAF (c) is explained by the field of Economics and approximately one fourth

of the d2
M of RAF (p) is explained by the field of Mathematics.

In addition, we also find that the dM’s contributions across different fields

assume values in a relatively broad range. This suggests that findings on

rankings’ bias by field may strongly depend on which disciplines are included

or not in the analysis. We argue that arbitrary choices on which fields to

include should be avoided in future research on field-normalization of impact

indicators.
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Field c cf p RA(p) RAF (c) RAF (p)
Art 1.15 1.95 3.01 0.31 2.84 0.09

Biology 36.46 15.81 6.74 0.87 0.12 0.16
Business 2.06 2.08 5.95 1.51 14.56 13.50

Chemistry 0.34 8.44 0.85 9.28 4.23 0.00
Computer Sc. 0.29 23.86 0.02 3.09 0.12 13.50

Economics 3.34 6.51 4.20 5.77 32.32 7.93
Engineering 8.36 0.09 10.48 0.35 8.36 0.03

Environmental Sc. 16.82 0.04 35.67 29.89 2.45 2.23
Geography 0.05 1.34 0.15 0.50 0.15 0.51

Geology 1.02 3.04 6.42 0.13 2.10 10.06
History 0.69 2.48 1.67 0.15 3.12 0.52

Material Sc. 0.39 0.43 0.23 0.01 2.37 0.10
Mathematics 5.17 1.94 0.10 0.14 0.09 25.34

Medicine 4.02 7.66 0.06 1.94 2.16 19.56
Philosophy 1.49 3.23 0.12 0.36 0.15 0.07

Physics 8.30 0.21 6.00 33.67 14.34 0.01
Political Sc. 1.47 10.22 6.82 0.51 1.47 2.44
Psychology 5.75 1.43 8.56 10.24 2.93 1.65

Sociology 2.83 9.23 2.95 1.30 6.11 2.30

Table 3.1: The individual contribution z2
i (1 − ki/N) of each field i to the

dM by the different indicators.

To summarize, our bias suppression test allows us not only to estimate the level

of bias (dM) of the various indicators, but also to quantify which percentage

of the total bias (d2
M) of an indicator is explained by each single field.

3.5.3 Results on the bias by age and field

While the analysis of the previous Subsection focused on the ranking bias by

field, in this Subsection we use the dM to simultaneously assess the bias by

age and field of a given ranking.

In Fig. 3.5, we show the dM’s for the different indicators and for the 95%

confidence interval for the simulated unbiased selection process using 40× 19

age-field types of publications. For citation count, PageRank, relative citation

count and age-rescaled PageRank we have to reject the hypothesis that the
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Figure 3.5: Mahalanobis distances, dM, for the analyzed indicators when
considering the 760 age-field groups. From left to right: citation count, rela-
tive citation count, PageRank, age-rescaled PageRank, age- and field-rescaled
citation count and age- and field-rescaled PageRank. The horizontal red line
represents the upper bound of the 95% confidence interval obtained from the
simulations. In the insets, we report the distribution of dM coming from
1 000 000 simulations of the unbiased sampling process. Again, the red line
represents the upper bound of the 95% confidence interval.

rankings of these indicators are not biased by age and field. For the improved

indicators, age- and field-rescaled citation count and PageRank, we also have

to reject the null hypothesis, even though they are much closer to the 95%

confidence interval.

3.5.4 Simultaneously visualizing the bias by age and field

To visualize the field and age bias of the rankings by the analyzed indicators,

we use heat maps in the age-field group plane (see Fig. 3.6). In these heat

maps, each cell represents a field-age group, and its color indicates the level

of bias. A white cell indicates that the number of papers in the respective

age-field group falls into the 95% confidence level (C95%) determined with the

simulations. Hence, white means that no bias is detected for that age-field

group. While for representing the bias towards or against a group of papers,
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we use blue (overestimation) and red (underestimation). To obtain a range

of over/under-estimation, the brightness of the colors ranges from white (no

bias) to intense blue/red. The most intense colors indicate that the number of

papers from that age-field group is 5 standard deviation smaller/bigger than

the expected value.

Figure 3.6: Heat maps showing the bias by field and age of the rankings
by the different indicators. Each cell represents an age-field group: age groups
are represented horizontally, while fields are represented vertically. The color
of the cells shows the bias of the indicators with respect to that age-field
group. White means that the respective age-field group is fairly represented
in the top 1% of the ranking by the indicator. While we use a color scale
from white to intense red (blue) for age-field group which are underestimated
(overestimated).
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The top panel of Fig. 3.6 shows that, independently of field, citation count

and PageRank systematically over-represent old papers and under-represent

recent papers. This is in agreement with the findings of several other works

[36, 129, 130, 146]. The only exception is Political Science which is usually

underestimated independently of paper age. We argue that this happens be-

cause this is the smallest field in the data set, and it has become an academic

discipline by itself much later compared to most of the other fields 4. Also,

the oldest papers in most fields are under-represented by citation count, which

reflects the change of citation practices over time.

The middle panels of Fig. 3.6 show that the relative citation count and age-

rescaled PageRank suppress large part of the biases of the original indicators,

yet specific fields are consistently overestimated or underestimated. For exam-

ple, both age-rescaled PageRank and relative citation count under-represent

papers belonging to the field of Chemistry. A peculiarity of relative citation

count is that it over-represents both the oldest as well as the most recent

papers at the cost of the other papers.

The bottom panels of Fig. 3.6 show the heat maps for the new indicators age-

and field- rescaled citation count RAF (c) and PageRank RAF (p). We find that

the respective rankings are much less biased towards specific fields compared to

all the other analyzed measures. However, there are two patterns: for RAF (c)

recent publications tend to be underestimated for some fields, whereas for

RAF (p) recent publication tend to be overestimated for almost all fields. These

rather systematic patterns must have their roots in changes of the citation

and PageRank score distributions with time. Since our rescaling procedure

was fixing the first two moments of these distributions, the observed patterns

come from differences in higher moments. Thus, the distributions of RAF (c)

and RAF (p) are aligned only partially for papers of different age.

4We notice that the classification of Political Science as one of the highest-level fields
is not obvious. In Scopus categories, “Political Science and International Relations” is only
a subfield of the higher-level field Social Science [http://www.scimagojr.com/journalrank.
php?area=3300]. In the Web of Science classification scheme, “Political Science” is only
a subfield of the higher-level field “Social Sciences, General” [http://ipscience-help.
thomsonreuters.com/inCites2Live/8300-TRS.html].

http://www.scimagojr.com/journalrank.php?area=3300
http://www.scimagojr.com/journalrank.php?area=3300
http://ipscience-help.thomsonreuters.com/inCites2Live/8300-TRS.html
http://ipscience-help.thomsonreuters.com/inCites2Live/8300-TRS.html
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3.6 Conclusion

To summarize, in this chapter we have analyzed a large citation network from

the Microsoft Academic Graph to show that the rankings of papers by well-

known indicators are extremely biased by age and field. The level of bias of

the rankings has been quantified with a new statistical framework based on

the Mahalanobis distance. This framework has allowed us to simultaneously

quantify the age and field biases of the analyzed rankings, and to determine

which groups of papers give the largest contributions to the observed bias. To

allow other researcher to easily implement our statistical test for ranking bias,

we make the respective code publicly available5 together with a quick tutorial

on how to use it6. In addition, we have also introduced two new indicators of

paper impact, rescaled citation count RAF (c) and rescaled PageRank RAF (p)

that produce much less biased rankings than existing indicators. In particular,

the ranking by RAF (p) is approximately three times less biased compared to

the least biased existing indicators, relative citation count and age-rescaled

PageRank.

The contribution of our results to the debate on the validity of field normal-

ization procedures is threefold. First, our findings are in agreement with the

conclusions of [6] and [249] which argued that the relative citation count in-

troduced by [179] can be insufficient to effectively remove citation count’s bias

by age and field. Second, we show the importance of testing indicators using

an accurate statistical procedure, such the one introduced here. Indeed, for

the least-biased indicators analyzed, RAF (c) and RAF (p), no clear indication

of bias is found at first glance. However, when using the statistical test based

on the Mahalanobis distance, we find a significant discrepancy between their

rankings and those coming from unbiased sampling process. We argue that

including higher-order momenta (such as the skewness) in the rescaling pro-

cedure can be an efficient way to further reduce the rankings’ level of bias.

Third, by deriving an explicit formula to calculate the contribution of each

field to the bias of a ranking, we find that the these contributions assume a

broad range of values. We obtain similar findings also for the contributions

5https://github.com/giava90/quantifying-ranking-bias.
6https://www.sg.ethz.ch/team/people/gvaccario/quantifying-ranking-bias/.

https://github.com/giava90/quantifying-ranking-bias
https://www.sg.ethz.ch/team/people/gvaccario/quantifying-ranking-bias/
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to the age-field bias. This means that the level of bias of rankings depends

heavily on which years or fields are included in the analysis. For this reason,

in future research on age and field normalization of indicators, it is essential to

clearly motivate which years and fields are included in the analysis, avoiding

arbitrary or uncritical decisions.

To address the bias by age and field of ranking of papers, we have first divided

the papers in groups with similar age and from the same field. Then, we

considered only the sizes of these groups to define an unbiased selection process

from which we obtained a statistical null model for an unbiased ranking. In

principle, additional information can be included into the null model to correct

for other effects. For example, including information about the co-authorship

network would permit to correct for the effect of this network on the growth

and structure of the citation network [193, 194]. In this way, we would gain a

better understanding of how the social dimension of science contributes to the

field and age biases of impact indicators.

We emphasize that removing the biases addressed in this work and those that

come from social aspects is of primary importance not only for scholarly pub-

lication databases, but also for several other information systems, such as the

WWW or online social networks [202]. As a matter of fact, every day schol-

ars and on-line users explore available knowledge using recommender systems

based on ranking algorithms. This challenges us to design more sophisticated

filtering and ranking procedures to avoid biases that can systematically hide

relevant contents or only show information too similar to what the users al-

ready know.

To conclude, by reducing the age and field biases from indicators of scientific

impact and by extending the existing statistical tests for biases, we contribute

to the challenge of quantifying and suppressing biases of rankings in informa-

tion systems.



Chapter 4

The empirical flow of knowledge

at the journal level

Summary

We investigate the importance of journals by using a large citation data set

from Microsoft Academic Graph (MAG). For our investigation, we adopt a

path perspective to reconstruct the knowledge flow among journals from cita-

tion data. We show that this is radically different compared to the network

perspective often used in citation analysis. Indeed, with the path perspective,

we retain the empirical flow of knowledge and ideas that are generally dis-

carded by the network perspective. Based on this approach, we propose new

indicators to determine the similarity and influence of journals. Finally, we

compare our indicators with established ones, such as Bibliographic coupling

and PageRank, computed using the network perspective. From this compar-

ison, we validate our approach based on the path perspective and un-hidden

new patterns present in the data. 1

1Based on [234]

66
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4.1 Introduction

In academia, journals have mainly two roles: the evaluation of new works and

serving as basis for academic credit. Especially for this second role, scientome-

tricians and bibliometricians have been developing indicators that capture the

importance of journals. With the increasing availability of citation data, more

and more indicators are developed using citation analysis often in combina-

tion with a network perspective. However, indicators based on this perspective

need a path transitivity assumption that is not justified for the citation net-

work at the journal level. To overcome this problem, we develop new reliable

indicators of journal importance by combining two modeling approaches based

on path abstraction and higher-order networks. We show that our new indica-

tors are more reliable compared to established ones as they better capture the

empirical flow of knowledge occurring between journals.

In order to develop quantitative indicators, scientometricians and bibliometri-

cians traditionally use citation analysis. This analysis consists of identifying

properties of documents trough their cross-referencing. One example is the

commonly used impact factor [66, 67]. It captures the influence of journals

by computing the average number of citations received by papers belonging

to them. More sophisticated indicators have been obtained by combining ci-

tation analysis with a network perspective. Researchers have adopted this

perspective by constructing a citation network at the journal level. In this

network, nodes are journals and links are citations among papers published in

the journals. Network measures, such as eigenvector and betweenness central-

ities, have been proposed as indicators to determine the influence [164] and

interdisciplinarity [119] of journals.

The use of network measures on citation data lies on the assumption that

knowledge flows in the opposite direction compared to citation links. This

means that a paper, i.e., a knowledge artifact, receiving many citations con-

tains knowledge that is often re-used to create new knowledge, i.e., new papers.

At the journal the level a similar statement holds, namely that citation links

among journals capture how knowledge flows from one journal to another.

Additionally, most network measures depend also on the path transitivity as-
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sumption: when inferring (from data) the existence of links from A to B and

from B to C, we automatically permit the existence of a path of length two

from A to C via B. For example, this assumption is necessary to construct

paths from citation links at the journal level. These paths represent flows

of knowledge between journals and hence, they have been used to compute

journals’ similarity [216], influence [164] and interdisciplinarity [119].

However, the path transitivity assumption is not justified in the citation net-

work at the journal level for two reasons. The first reason depends on the

projection of the citation links from the paper to the journal level. This pro-

cedure changes the single units of analysis from papers to journals, and this

change invalidates the transitivity assumption. Indeed, given two consecutive

links in the citation network {(A,B), (B,C)}, we do not know if the paper in

B cited by the paper in A is also the paper citing the paper C. This means

that we cannot know if there was any knowledge exchanged by A or C via B.

With the path transitivity assumption, we would instead assume the presence

of a path between A and C via B. In other words, it would assume a fictitious

knowledge mixing between papers in B and overestimate the flow of knowledge

between journals.

The second reason that invalidate the transitivity assumption comes from the

time aggregation of citation links. When we aggregate paper citations infor-

mation into journals, we aggregate citations belonging to papers published

at different times. This procedure discards timing information of the cita-

tions and does not preserve their empirical temporal ordering. This implies

that two consecutive citation links on the citation network at the journal level

(e.g., {(A,B), (B,C)}) could have appeared in the same temporal order in the

data (i.e., first (A,B) and then (B,C)). Thus, the knowledge went first from

B to A and then from C to B. By this, the two journals A and C cannot share

any knowledge using the middle journal B. While, by assuming path transitiv-

ity, one would infer the existence of a knowledge flow that was never observed

in the data. Again with this assumption, one overestimates the knowledge

exchanged between journals.

To overcome the problems introduced by the path transitivity assumption, we

use path abstraction, meaning that instead of concentrating on single citation
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links, we look at consecutive citations between papers. These citations repre-

sent the knowledge flow at the paper level, and we can use them to construct

sequences of papers, i.e., paths on the citation network at the paper level.

Then, we project such paths at the journal level and obtain a set of journal

sequences that match the empirical flow of knowledge. With these paths at the

journal level, we can investigate the role of journals in the dynamic process

of knowledge diffusion. Additionally, by using the statistical test developed

in [201], we recover a network perspective. With this test, we detect the more

statically significant paths in the empirical data and how to represent them as

links and nodes in a higher-order network [204]. Following [201], we name such

a network the optimal-order network, and on this network, we apply network

analytic methods.

In order to quantify the empirical flow of knowledge, this chapter focuses on one

centrality measure and one algorithm: PageRank [31] and Infomap [188]. The

former is used to rank nodes, while the latter to cluster them (see Chap. 2.3.1

and Chap. 2.2.3 for their definition). Both of them are defined using a diffusion

process on the network, and hence, both of them capture different aspects

of the knowledge flow among journals. In particular, with PageRank, we

rank journals depending on how important they are in the knowledge diffusion

process. Whereas with Infomap, we group journals depending on how similar

is the knowledge traversing them. We are not first one to rank journals using

PageRank [164] or to cluster them with Infomap [188, 190]. However, we are

the first one to apply this measure and algorithm on the optimal-order network

detected from the empirical paths.

The remaining of this chapter is divided in the following way: Sect. 4.2 clarifies

the pitfalls in analyzing citations data with a network perspective at the journal

level and how they can be avoided using path abstraction. Then, we apply the

standard network approach and the path abstraction to analyze citation data

coming from the MAG in Sect. 4.3. We show that the reconstructed knowledge

flows are different and how this influences the ranking of journals according to

PageRank. In Sect. 4.4, we apply Infomap on the optimal-order network and

define new measures to classify journals and compute their similarity. Also,

we validate our new measures and compare them against established ones. We

conclude and summarize our results in Sect. 4.5.
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4.2 The network and the path perspectives

Before jumping into the definition of new indicators to determine journals

influence and similarities, let us discuss why we have to use path abstraction

to analyse citation data at the journal level. In citation data, we usually have

a set of documents D = {p1, p2, .., pN}, and a set of citations among them

C = {(p2, p1), (...), ...} where (pj , pi) represents a citation from document pj
to pi with i < j. For the sake of notation, we assume that the subscript of

documents represents an ordering by age: so for example, p1 is older than p2

and p2 is older of p3 and so on and so forth.

4.2.1 Why the network perspective fails at the journal

level

We restrict our attention to the case where the documents in D are scientific

papers published in journals2. From the sets of papers, D, and of citations,

C, we can reconstruct a citation network at the paper level, where nodes are

the papers in D and links are the citations in C. One could argue that to

investigate the citation network at the journal level we could define a new

network where (a) nodes are journals that contain the papers in D, and (b)

links are the citations in D projected at the journal level. Even thought the

first part is correct, the second part will make us lose information about how

knowledge flows between journals. To understand why this is the case, consider

the following situations:

1. we have 4 papers D = {p1, p2, p3, p4} and three journals J = {A,B,C}.
The younger paper, p4, belongs to journal-A, the second and third

papers, p2 and p3, belong to journal-B and the older paper, p1, be-

longs to journal-C. Additionally, we have the following citations C =

{(p4, p3), (p3, p1)} (see Fig.4.1(a)).

2The problem that we are about to address goes beyond the specific data that we are here
considering. As we will see, the failure of a network perspective lies in a projection needed
to aggregate information, and it is not dependent on particular details of the bibliographic
data used.
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(a) (b)

Figure 4.1: The citation projection from the paper to the journal level.
In (a) we illustrate the case where citation links allow for knowledge to flow
from journal A to journal C via journal B. This knowledge flow is correctly
captured at the citation network at the journal level. While in (b), we have
the case where citation links do not allow knowledge to flow from A to C via
B and this is not captured at the citation network at journal level.

2. we have the exact same setting as before, but we change one link: instead

of (p3, p1), we have (p2, p1), i.e. C ′ = {(p4, p3), (p2, p1)} (see Fig.4.1(b)).

In Fig. 4.1, we reconstruct the citation network at the journal level for both

situations by aggregating and projecting the citations from the papers to the

journals. Here, we find that the citation networks at the journal level are the

same, i.e. for both situations we obtain the network G(V,E) where V = J =

{A,B,C} and E = {(A,B), (B,C)}. However, we had two different citation

network at the paper level as C 6= C ′. What do we miss by looking at the

citation network at the journal level? Unfortunately, precisely what matters

to study the flow of knowledge. In the first case, Fig. 4.1(a), we see that

knowledge and information can be propagated from journal-C to journal-A

via journal-B. While in the second case, see Fig. 4.1(b), this cannot happen.

However, when looking at the citation network at the journal level, we cannot

detect such a difference. In other words, by adopting a (standard) network

perspective, one wrongly infers knowledge flows between journals.
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Citation analysis and a network perspective at the journal level do not work

as we project too naively information from the paper level to the journal level.

The projection at the journal level introduces a fake mixing of knowledge

between papers belonging to the same journals. In the above example, when

we project we are indirectly assuming that there is a flow of knowledge between

p2 and p3 just because they belong to the same journal (see Fig. 4.1). However,

such internal knowledge mixing does not exist. In the next section, we show

how to solve this problem.

4.2.2 Recovering the empirical flow of knowledge at jour-

nal level

To solve the fake mixing of knowledge, we use the concept of time respect-

ing paths developed in [190, 201, 257]. In these works, the authors propose

a framework for modeling sequential data, such as click streams and travel

patterns, as paths on networks. In sequential data, a time respecting path is

a sequence that respects the observed temporal ordering (e.g., sequences of

web-pages visited by a user or sequences of airports visited by a traveler). We

adopt this approach to analyze citation data as also this data can be seen as

sequential data: each outgoing citation can be interpreted as a time-stamped

interaction between the citing and cited papers. By following the citations

among the different papers, we construct paths on the citation network at the

paper level. In oder words, we follow citations from the citing to the cited

papers and obtain sequences of papers that respect the time ordering of the

citations.

The citation network at the paper level is a Directed Acyclic Graphs (DAG).

In this type of network, if we follow directed links from a starting node, it

does not exist a path bringing us back to this starting node. This happens

as an older paper cannot cite a younger one. Each cited paper/node in the

network can be seen as the origin (roots) of some paths, and we can follow its

citation links (in the opposite direction) towards younger papers (leaves). By

connecting all the root to the leaf papers, we can reconstruct all the paths via

which knowledge has been recombined and propagated. These paths represent

the empirical flow of knowledge.
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Once we have reconstructed the empirical flow of knowledge using sequences

of papers, we project such sequences at the journal level. This means that we

replace the papers inside the sequences with the journals to which the papers

belong. By this, we obtain sequences of journals that correctly represent the

empirical citation patterns. Now that we have reconstructed the empirical

knowledge flow at the journal level, how can we use this to analyze journals

with network analytics methods? We answer this question in the next section.

4.2.3 Recovering a network perspective

We use higher-order network models to represent journal sequences with a

network perspective. These models have been developed in [203, 204, 257] and

extended to path data in [201]. To understand what higher-order networks are,

we can consider a first-order network as the “standard” aggregated network,

e.g., where nodes represent journals and links citations. Then, a second-order

network is a network where nodes are links in the “standard” network and links

are paths of length two observed in the data, e.g.. two consecutive citations

among three papers, (pk, pj) and (pj , pi) with i < j < k. Similarly, a third-

order network is a network where the nodes are the links in the second-order

network, and the links are paths of length three observed in the data. In

general, on the K-order network, nodes represent observed paths of length-K,

and links represent observed paths of length-(K + 1).

Our data contains paths of different lengths. When a data set contains paths

with different lengths, we can use a multi-order graphical model [201]. A MOG

combines higher-order network models from order K = 0 to an optimal maxi-

mum order Kopt. If the data contains paths with a maximum length of Kmax,

then one could preserve all the details of the data by choosing Kopt = Kmax.

However, this causes overfitting, i.e., the multi-order model obtained would

model only the analyzed data. Instead, a good model should capture only

patterns that can be generalized also to other unseen data. Using a statistical

test, the author of [201] provides criteria to balance between “keeping all the

details of the data” and “overfitting”. The test is based on a Maximum Like-

lihood approach and it allows us to determine the optimal maximum order,

Kopt.
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In the next section, we will apply the statistical test of [201] to our citations

pathways to compute the Kopt. Then, we will represent our paths using a

Kopt-order network instead of the full multi-order graphical model. The de-

velopment of measures that analyze the multi-order graphical is still ongoing.

Whereas, it has been shown that the optimal -order network well models both

synthetic and empirical data [201].

Why does it work? When choosing the optimal order, we are again pro-

jecting paths into a (higher-order) network. Hence, we are introducing again

a fictitious mixing of knowledge among papers belonging to the same journals.

However, now the mixing mainly occurs between those sub-sets of papers that

share the same incoming and outgoing links at the journal level. This hap-

pens as the optimal-order network encodes in its topology those paths more

frequently observed.

We visualize and summarize the discussed procedure in Fig. 4.2. The citation

data at the paper level allow us to create a DAG Fig. 4.2(a). From a DAG, we

can construct a citation network at journal level in two ways: by projecting

the citation Fig. 4.2(b), or by projecting the paths Fig. 4.2(c). The former

method destroys the empirical knowledge flow between the journals, while the

latter preserves it.

We use the above presented methodology in the next section in order to analyze

real citation data coming from the MAG17 . By this, we represent the MAG17

citation data as a higher-order network. After reconstructing this network, we

apply network-analytic tools to investigate the role of journals in the empirical

flow of knowledge.

4.3 Reconstructing the knowledge flow

We use information coming from the Microsoft Academic Graph (MAG17). In

particular, we use a dump of the data-set coming from OpenAcademic web-

portal3 released on the 2017-06-09. These are nine zipped files of about 13 GB

3https://www.openacademic.ai/oag/
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(a) (b)

(c)

Figure 4.2: Summary of the citation projection from a DAG. Given a set of
publications {a1,2 ∈ A, b1,2,3,4 ∈ B, c1,2 ∈ C, d1,2 ∈ D, e1,2 ∈ E} and citations,
we can construct a DAG (a). Then, we can project the citations at the journal
level and obtain (b) where we observe a fictitious knowledge mixing among all
the papers belonging to B. Otherwise, we can project the paths and obtain
(c) where the fictitious knowledge mixing occurs only among smaller sets of
papers sharing the incoming and outgoing citations.

each. The data contains 166 192 182 papers with different information, such

as the DOI, venues in which was published and the reference list [213, 220].
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(a) (b)

Figure 4.3: Number of papers per journal. (a) Histogram of the number
of journals with a given number of papers. (b) Percentage of journals with at
least a given number of papers.

papers citations journals links (unique) paths [ Min, Max ]
109 969 150 000 94 3 038 722 999 [1, 22]

Table 4.1: Key statistics of the data.

The MAG17 is a massive data-set, and to explore all of it is computationally

challenging. When using only one file, we find that there are more than 20 000

journals and about 8 million papers out of 45 million have a DOI. In addi-

tion, about 2 500 of these journals appear less than ten times in our data.

This means that there are 2 500 journals that contains less than ten papers.

However, more than 80% of the journals have at least 100 papers (see Fig. 4.3).

Among the 20 000 journals, we concentrate on 100 main ones according to

Google metrics 4. We concentrate on top-journals as for these journals we

have higher statistics, and they tend to be more known. This will allow us

to obtain more statistically significant results and more interpretable results.

Note that deciding the top journals according to Google metrics is not particu-

larly limiting. Most rankings contain in their top positions the same journals,

only their relative rankings usually change. Also, the top journals according

to Google metrics belong to various scientific disciplines. Hence, our results

will not be restricted to citation data coming from one scientific discipline.

4https://scholar.google.ch/citations?view_op=top_venues retrieved on the
01/06/2018.

https://scholar.google.ch/citations?view_op=top_venues
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In order to use the journal list coming from Google, we have to match the

names from the MAG data to the names provided by Google. From the 100

journal names coming from Google metrics, we were able to match 94 journals

(see Appendix D for more details). For the 94 matched journals, we project

both the MAG citations among papers and the paths reconstructed from these

citations. Both these steps have been accomplished using Pathpy, an open

source python package available on GitHub 5. To our knowledge, this is the

only package that allows for such type of analysis and hence, it provides the

unique opportunity to perform the following analysis. By using such a package,

we reconstruct the DAG from the raw citation data, extract the paths at

the paper level, and project them to the journal level. Note that the path

extraction process is computationally costly with increasing citation links. For

the analysis in this chapter, we only considered 150 000 citation links among 94

journals. This clearly limits our results to the sub-sample of citations analyzed.

In Table 4.1, we report key statistics of the paths extracted from the MAG17.

From 109 969 papers with 150 000 citation links between them, we obtain

232 182 unique paths out of 722 999. The 722 999 paths generate 24 496 391

sub-paths between our 94 journals. Note how from ∼ 106 citation links, the

number of paths reconstructed paths is ∼ 108, i.e., it is two order of magnitude

bigger! Also, note that the citation network at the journal level is much denser

compared to the citation network at the paper level. This result is expected

as we are projecting and aggregating 150 000 links between 109 969 papers to

94 journals. At the same time, we believe that the number of observed unique

links at the journal level (3 038) is small. Indeed, we argue that we would

expect a network with more different links if we were randomly projecting

citations from the paper level to the journal level. To verify this statement,

we would need to define a null for the randomized projection, and this goes

beyond the scope of the present chapter. We leave such a study for the future.

The longest paths are three and have length 22. They connect Cell Stem Cell,

Nucleic Acids Research, and Nature Communications to Gut. By checking the

publication history of these journals, we find that Cell Stem Cell, Nucleic Acids

Research, and Nature Communications are all at least ten years younger than

5https://github.com/uzhdag/pathpy

https://github.com/uzhdag/pathpy
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Gut. This age difference partially explains why we find Gut at the end of the

longest paths. Indeed, in our sample, we also have older journals like Nature

that was created in 1869, i.e., 90 years before Gut. However, Nature is not at

the end of the longest paths. We believe that the reason explaining why Gut is

at the end of the longest paths goes beyond its age and we leave this for future

analysis6. The most frequent path is of length one, and it connects Monthly

Notices of the Royal Astronomical Society with itself. This path occurs 614 318

times when also considering its appearance as a sub-path. The most frequent

path connecting two different journals connects Cell to Science, and it occurs

108 539 times (when also considering its appearance as a sub-path).

4.3.1 Difference between projecting citation links and

paths at the journal level

To compare the standard network approach and our path abstraction, we

study the difference between the first-order network and the higher-order net-

work constructed using citation paths. Recall that the first-order network is

a network where nodes are journals and links are citations between papers

belonging to the journals. A second-order network contains pairs of journals

as nodes and links as citation paths at the paper level of length 2.

Among the various possible higher-order network, we analyze the optimal-

order network as defined in [201]. Using the statistical test presented by Scholtes

[201], we find two as optimal order. This means that when a paper in a journal-

A cites a paper in a journal-B, the out-going citations of this last paper in B

strongly depends on journal-A. This is a first interesting result. Indeed, even

though one would argue that the out-going citations of a paper depend on its

incoming citations, it is not trivial to find that this dependency extends at the

journal level.

To study the differences between the first-order and the optimal-order network,

we focus on measures defined using diffusion processes. These processes are

based on random walk processes and are relatively simple. However, they are

extremely good at capturing nodes and network properties. Indeed, diffusion

6It might even be an artifact of the citation sampled for this study.
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(a) (b)

Figure 4.4: Alluvial diagrams on the first order network for Nature Physics
(a) and Plos One (b).

(a) (b)

Figure 4.5: Alluvial diagrams on the optimal order network for Nature
physics (a) and Plos One (b).

processes are at the base of successful network centrality measures, such as

PageRank, and clustering algorithm, such as Infomap. For more details about

PageRank and Infomap see Sect. 2.3.1 and Sect. 2.2.3.

We use the alluvial diagrams introduced in [111, 189, 190] to study diffusion

processes on the first and the optimal order network. In Fig. 4.4, we visualize a

diffusion process evolving on the first-order network from two journals (Nature

Physics (a) and Plos One (b)). The diffusion process starts from the top of

the plot and moves to the bottom. From the starting journal, the process

evolves towards many other journals depending on outgoing citations listed

in the data. The blue out-going links represent the evolution of the diffusion

process. The size of the links is proportional to the probability with which a

random walker would follow them, i.e., proportional to the number of out-going

citations. Note that we plot only the first two steps of the process.
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rank score 1 rank score 2 change journal name
1 0.0236 1 0.0465 === Nature
2 0.0231 3 0.0432 ↓↓↓ PNAS
3 0.0220 2 0.0434 ↑↑↑ Science
4 0.0184 34 0.0118 ↓↓↓ Physical Review Letters
5 0.0165 14 0.0161 ↓↓↓ Nature Communications
6 0.0147 5 0.0254 ↑↑↑ The New England Journal of Medicine
7 0.0145 12 0.0187 ↓↓↓ Plos One
8 0.0144 4 0.0283 ↑↑↑ Cell
9 0.0142 9 0.0198 === Nature Medicine
10 0.0141 6 0.0217 ↑↑↑ Journal of Clinical Investigation

Table 4.2: Ranking of journals according to PageRank. The columns are
(from left to right): the ranks and the scores in the first-order network, the
ranks and the scores in the second -order network. The change column contains
a red arrow pointing downwards when the journal decreases its position from
the rank in the first-order network to the one in the second-order network.
Viceversa, when the journal increases its rank position we put a green arrow
pointing upwards.

From Fig. 4.4, we immediately see that from both initial journals, we move al-

most with the same probability to any other journals after two steps. The main

difference between Nature Physics (Fig. 4.4(a)) and Plos One (Fig.Fig. 4.4(b))

is in the number of nodes that can be reached after one step: Plos One has

more first-order neighbors compared to Nature Physics. This is understand-

able as Plos One is a multidisciplinary journal, and hence, its papers tend to

cite a much wider variety of journals.

In Fig. 4.5, we show the first two steps of a diffusion process evolving on

the optimal -order network, again starting from Nature Physics (a) and Plos

One (b). This time the process starting from the two journals shows more

heterogeneity compared to Fig. 4.4. The probabilities of reaching different

journals after two steps are visibly different and depend on the initial journal.

Such property was utterly lost when aggregating the information on the first-

order network. In the next section, we show how this affects the ranking of

journals according to PageRank.



4.3. RECONSTRUCTING THE KNOWLEDGE FLOW 81

rank score 2 rank score 1 change journal name
1 0.0465 1 0.0236 === Nature
2 0.0434 3 0.0220 ↓↓↓ Science
3 0.0432 2 0.0231 ↑↑↑ PNAS
4 0.0283 8 0.0144 ↓↓↓ Cell
5 0.0254 6 0.0147 ↓↓↓ The New England Journal of Medicine
6 0.0217 10 0.0141 ↓↓↓ Journal of Clinical Investigation
7 0.0206 12 0.0138 ↓↓↓ Nature Genetics
8 0.0198 13 0.0137 ↓↓↓ Nucleic Acids Research
9 0.0198 9 0.0142 === Nature Medicine
10 0.0189 14 0.0133 ↓↓↓ Journal of the American Chemical Society

Table 4.3: Ranking of journals according to PageRank. The columns are
(from left to right): the ranks and the scores in the second -order network, the
ranks and the scores in the first-order network. The change column contains
a red arrow pointing downwards when the journal decreases its position from
the rank in the second-order network to the one in the first-order network.
Viceversa, when the journal increases its rank position we put a green arrow
pointing upwards.

(a) (b)

Figure 4.6: Diffusion process computed using the citation network from any
starting journal ending in Physical Review Letters (a) and Cell (b).

4.3.2 Ranking journals using the empirical knowledge

flow

In Table 4.2, we report the rankings of the top-10 journals among the 94

analyzed ones according to PageRank computed on the first-order network.

Additionally, we also report the rank position of these top-10 journals accord-

ing to PageRank computed on the optimal-order network. From this table,

we find that a journal either gains or loses rank positions when computing
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(a) (b)

Figure 4.7: Empirical diffusion process computed from any starting journal
ending in Physical Review Letters (a) and Cell (b).

its centrality on the optimal-order or it does not move. For example, we

find that journals like Nature and Nature Medicine do not change their rank-

ing positions. Whereas, journals like Physical Review Letters (PRL), Nature

Communications, and Plos One lose many positions. The most extreme ex-

ample is PRL that is at the 4th position in the ranking computed using the

first-order network and it goes all the way down to 34th position in the ranking

obtained with the optimal-order network. For other journals, like Cell, we see

an improvement in their raking position.

To understand what drives changes in ranking positions, we use alluvial di-

agrams. Differently from before, now we do not look at paths starting from

a focal node (journal), but we rather consider those paths arriving there. In

Fig. 4.7(a), we report the empirical paths of length two that start from any

journal and finish in PRL. From this figure, we find that PRL is not as central

as one would have guessed by looking at the first-order network Fig. 4.6(a).

Precisely, we notice that fewer journals belong to paths reaching PRL, mean-

ing that fewer journals build their knowledge on the one contained in PRL.

In addition, most of the paths empirically reaching PRL come from specific

journals not particularly central, i.e., few paths go trough them (Fig. 4.7(a)).

The only three journals that are central and that are directly connect to PRL

are Science, Nature, and Nature Materials. However, from the first two jour-

nals, few paths continue to PRL, i.e., thin lines connect Nature and Science

to RPL. Only from Nature Materials, we see a more relevant fraction of paths

continuing to PRL, i.e., they are connected by a wider and darker line.



4.4. CLASSIFYING THE JOURNALS 83

In Fig. 4.7(b), we report the empirical paths of length two that start from any

journal and finish in Cell. We find that Cell is almost as central as one would

have guessed by looking at the first-order network Fig. 4.6(b). Precisely, we

notice that Cell is reached from almost any journals in the same way. Moreover,

we see that the paths reaching Cell are more and more diverse compared to

PRL. Recalling that PageRank scores are relative values and sum up to one,

we find that journals like Cell acquire the scores lost by journals like PRL for

not being well embedded in the network.

With Fig. 4.7, we have provided a clear visualization of citations paths that

represent the empirical flow of knowledge between journals. Additionally, from

this visualization, we have provided an intuition of why PageRank scores calcu-

lated on the optimal-order network better capture the influence of journals in

the empirical flow of knowledge. In the next section, we will continue to show

how the optimal-order network allows us to capture better journal properties.

In particular, we will investigate topic similarities between journals.

4.4 Classifying the journals

We focus on two problems: 1) how to capture the similarity of two journals and

2) how to assign similar journals to the same category, such as Mathematics or

Physics. To develop our similarity measures, we use the clustering algorithm

Infomap [188]. Recall that this algorithm clusters together nodes that are fre-

quently visited one after the other by a random walker. The random walker

visits differently journals following the citation links in the opposite directions.

Hence, the trajectory of a random walker reproduces the knowledge flow be-

tween journals, and Infomap clusters journals where the flow is more stagnant.

Note that Infomap has already been successfully applied to study the memory

effects in citation networks at the journal level [190]. However, compared to

this previous work, we apply the clustering algorithm on the optimal order

network detected using the procedure presented in [201]. As we have found

two as optimal order, we can directly compare the results of [190] with ours.
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Order nodes links DOF p-value

0th 95 94 5109717 ≈ 1
1st 94 3038 4385706 ≈ 1
2nd 2689 20389 3661695 ≈ 0
3rd 16029 43651 2999567 ≈ 1

Table 4.4: Order detection with Pathpy

and Infomap. For the former, we report
the p-values for the Likelihood ratio be-
tween to models of increasing order, see
eq. 7 in [201] for details). While for the
latter we report the Minimum Description
Length (MDL), see eq. 1 in [188].
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Figure 4.8: Correspondence
between MDL and statistical test
of Pathpy

4.4.1 Clustering journals

We apply Infomap on the first, second, third, and fourth-order network. As

reported in Table 4.8, we find that Infomap finds more tight clusters on the

second-order network. This means that both Infomap and Pathpy suggest the

second-order as the most optimal one for both clustering and reproducing the

knowledge flows. It is worth noticing that this is an exciting and not trivial

congruence. Indeed as shown in [111], Infomap and Pathpy capture different

properties of the data.

We interpret the congruence as follows. In the empirical knowledge flow, the

second-order memory effects are not only dominating from a statistical point of

view, but they also better capture where knowledge is more often re-combined.

We argue that this derives from the presence of multidisciplinary journals that

act as intermediaries between specialized journals. Paths of length two in the

citation network represent knowledge indirectly exchanged among journals spe-

cialized on the same topics via multidisciplinary journals. This phenomenon

is so strong that it creates exceptionally tight clusters on the second-order

network.

Note that our path abstraction allows us to identify the influence of multidisci-

plinary journals by capturing the empirical knowledge flow. When considering

knowledge flows using paths of length two, we retain information about the

origin and final destination of knowledge. Hence, with the path abstraction,
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we do not lose information about the journal containing the original knowl-

edge even when this knowledge is crossing multidisciplinary journals. Such

information is instead lost when we use a first-order network, i.e., a standard

network perspective.

Recognizing the presence of multidisciplinary and specialized journals well

explains the congruence between by Pathpy and Infomap. At the same time,

this might not be the only reason why we observe such a congruence. It would

be fascinating to understand which are the necessary and sufficient conditions

to observe this congruence. However, this goes well beyond the scope of this

thesis and left for future research.

In the next section, we build on the clustering obtained by Infomap to develop

a new similarity measure for journals. We will not discuss the details of the

obtained clustering. The analysis of the Infomap clustering at journal level

has already been done by various works [189, 190]. We will rather use the

obtained clustering as input for defining new similarity measures that outper-

form established ones. Indeed, we will show that our similarity measures are

better able to define journal categories compared to established ones.

4.4.2 Similarity of journals

To define a new similarity measure for journals, we use the following idea: two

journals are similar when they often publish papers containing similar knowl-

edge. To define “similar knowledge”, we use the fact that new papers cite older

ones, and re-build on the knowledge contained in these older papers. Given

this, we assume that knowledge contained in citing and cited papers is similar

or at least topically similar. By analyzing citations with a path abstraction,

we reconstruct paths that proxy the empirical flow of knowledge at the paper

level and along these paths, nearby papers contain similar knowledge. Hence,

when projecting these paths at the journal level, nearby journals are those

publishing papers with similar knowledge.

To define when journals often publish papers with similar knowledge, we an-

alyze journals on the optimal -order network. On this network, links preserve

sub-paths that are statistically more significant, i.e., that appear more fre-
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quently in the data. In other words, these sub-paths capture where similar

knowledge is often published. Hence, when two or more journals frequently

appear close to each other on these sub-paths, we can consider these journals

similar.

We capture the similarity of journals by clustering journal pairs with Infomap

on the optimal -order network. In the previous section, we have obtained two

as optimal order, and hence, the optimal-order network is a second-order net-

work. On this network, nodes are journal-pairs, and each journal can appear in

different nodes. This implies that when clustering nodes on the second-order

network, each cluster is a set of journal pairs and each journal can appear in

different clusters. With Infomap we cluster journal pairs and then, we create

for each journal a vector containing the clusters in which it has appeared. Each

dimension of this vector represents a cluster, and the vector values represent

the number of times a journal was assigned to the different clusters. By this,

for each journal, we obtain a feature vector that we can use to measure its

similarity to other journals.

To compute journal similarity using their feature vectors, we focus on two

similarity measures: Jaccard similarity [100] and weighted Jaccard similar-

ity [191, 206]. These two measures are among the most simple similarity

measures that can be computed between sets and are commonly used in many

disciplines, ranging from ecology to computer science. Given two sets M(A)

and M(B), the Jaccard similarity is the ratio between the size of the intersec-

tion and the union of the sets:

J(A,B) =
|M(A) ∩M(B)|
|M(A) ∪M(B)|

. (4.1)

In our analysis, M(A) is the set of clusters to which journal A belongs. Hence,

J(A,B) is the ratio of unique clusters shared between two journals A and B.

Each journal might appear more than once in the same cluster, and hence,

we can also use the weighted Jaccard similarity to compare feature vector of

journals:

Jw(A,B) =

∑
c min (X(A)c, X(B)c)∑
c max (X(A)c, X(B)c)

, (4.2)
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where X(A)c is the number of times journal A appears in cluster c and the

summation is taken over all the detected clusters. Then, Jw gives the fraction

of the joint appearances of two journals in the same clusters. The advantage

of Jw over J is that Jw uses journal frequencies of appearance in each cluster,

while J does not. This allows a more refined comparison when journals are

assigned to many different clusters with different frequencies.

We define as our new similarity measures between two journals A and B the

J(A,B) and Jw(A,B) where the feature vectors for the journals are obtained

from the clustering created by Infomap.

Validation procedure. We verify if our similarity measures can identify as

similar journals those journals publishing inside the same scientific field. We

name scientific fields, such as Mathematics and Physics, journal categories.

We assume the categories assigned by Clarivate Analytics (CA) to journals as

the correct categories of journals 7. In other words, we assume the CA journal

categorization as the ground truth for our data in our validation procedure.

Our validation procedure is divided in three steps.

First, we match journal names from CA with names coming from Google

Metrics. We were able to match 85 journal names out of the 94 under analysis.

The names not matched are nine arXiv journals as these are not present in the

CA database. We report in Table 4.5 the names of the CA categories together

with their sizes. We see that among 22 categories only 12 contain a paper

belonging to the top-85 matched journals.

Second, we calculate two quantities: the in- and out-category similarity. The

in-category similarity is the sum of similarities between pairs of journals be-

longing to the same category. We can express this quantity with the following

formula:

S̃min(C) =
∑
cα∈C

∑
A,B∈cα,A 6=B

Sm(A,B) (4.3)

7Note that Thomson Reuters previously owned CA. Their journal categorization can
be retrieved at http://ipscience-help.thomsonreuters.com/incitesLiveESI/10678-TRS.

html

http://ipscience-help.thomsonreuters.com/incitesLiveESI/10678-TRS.html
http://ipscience-help.thomsonreuters.com/incitesLiveESI/10678-TRS.html
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Category Clarivate Top-100 from Google
AGRICULTURAL SCIENCES 344 0
BIOLOGY & BIOCHEMISTRY 431 4
CHEMISTRY 531 10
CLINICAL MEDICINE 1928 22
COMPUTER SCIENCE 394 0
ECONOMICS & BUSINESS 583 2
ENGINEERING 854 4
ENVIRONMENT/ECOLOGY 355 2
GEOSCIENCES 414 0
IMMUNOLOGY 165 4
MATERIALS SCIENCE 363 7
MATHEMATICS 485 0
MICROBIOLOGY 124 0
MOLECULAR BIOLOGY & GENETICS 302 9
MULTIDISCIPLINARY 52 6
NEUROSCIENCE & BEHAVIOR 330 4
PHARMACOLOGY & TOXICOLOGY 273 0
PHYSICS 313 9
PLANT & ANIMAL SCIENCE 795 0
PSYCHIATRY/PSYCHOLOGY 633 0
SOCIAL SCIENCES, GENERAL 1977 0
SPACE SCIENCE 54 2
TOTAL 11700 85

Table 4.5: Categories of Clarivate Analytics with their size in their data
and our data.

where S̃min(C) is the in-category similarity according to similarity measure m,

C is a journal categorization, i.e. C = {c1, c2, ..}, cα = {A,B, ..} is a set

containing the various journal assigned to category-α and Sm(A,B) is the

similarity score between A and B according to the indicator m. The out-

category similarity is the sum of similarity between pairs of journals belonging

to different categories. We can write this as

S̃mout(C) =
1

2

∑
A∈cα

∑
B∈cβ ,α6=β

Sm(A,B) , (4.4)

S̃min(C) is the out-category similarity according to the similarity measure m.

The S̃min(C) and S̃mout(C) respectively quantify how similar are journals belong-

ing to the same or to different categories. In other words, given a journal

categorization C, a good similarity measure m should have large S̃min(C) and

small S̃mout(C).
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Metrics S̃m
in(Crandom) and S̃m

int(C)

1st Order
Network

Bibliographic (Out-sim)

Cosine Co-occ. (In-sim)

Optimal Order
Network

Jaccard

Jaccard (weighted)

Table 4.6: We compare the aggregated in-cluster similarity score coming
from the different similarity measures. For each similarity measure, we plot
their observed in-cluster score (in yellow) and the distribution of in-cluster
scores simulated by randomizing the categorizations of the journals (in blue).
For these distributions, we also report their average values (in black) and their
(right side of the) 95% confidence intervals (red shaded area). We find that
for all similarity measures, the observed in-cluster score is much bigger than
the simulated scores and hence, all measures are good in detecting similarities
among journals.

Third, we compute the S̃min(C) and the S̃mout(C) for our new two indicators

and for two established ones. The two established indicators that we consider

are bibliographic coupling Bc and cosine similarity based on co-citations Cs.

For the definition of these two indicators see Sect. 2.3.2. In Table 4.6, we

report the S̃min(C) computed using the journal categorization C coming from

CA for the four similarity measures, m = Bc, Cs, J and Jw. To understand

if the computed values of S̃min(C) are significantly large, we show how distant

they are from the distribution of S̃min coming from a sample of randomized

categorizations {Crandom}. These are obtained by assigning the journals to

random categories while keeping the size of the categories equal to the true

ones. For the four analyzed measures, we find that their S̃min(C) are far away
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(bigger) from the distribution of S̃min(Crandom). This finding means that the

high values of S̃min(C) could not be obtained with a random categorization.

Hence, all the similarity measures can capture the similarity between journals

belonging to the same category. We have performed the same analysis also for

S̃mout(C) and we have obtained similar results. For the four analyzed measures,

the S̃mout(C) are statically significant smaller compared to the values coming

from the distribution of S̃mout(Crandom) (not shown).

With the above procedure, we have verified that our indicators capture sim-

ilarity values that are consistent with the journal categorization of CA. In

addition, we have shown that their capacity to capture similarities between

journals is qualitatively comparable to other established measures. How can

we quantitatively compare our indicators with the established ones? Which is

the best indicator capturing journal similarity?

J and Jw outperform established indicators. To establish which of the

analyzed indicators m better captures journal similarity, we compare them

using their S̃min/out(C). Note that the absolute values of S̃min/out(C) cannot

be directly compared as they come from different measures that have different

properties. Indeed, the distributions of S̃min/out (Crandom) are centered at differ-

ent values and their 95% confidence bounds have different sizes (see Tab. 4.6).

Therefore we use a train-test prediction approach to compare the different

measures. In other words, we verify if we can predict the category of journal

A (test) using its similarities with other categorized journals (train). To do

this, we divide the data in train-test and use a simple greedy algorithm to

predict the categories of the journals in the test group. For each similarity

measure, the greedy algorithm performs the following steps:

1. it chooses a journal A from the test group

2. for all possible categories cα, it computes the ratio fα = S̃min/S̃
m
out by

considering A ∈ cα

3. it assigns journal A to the category-α∗ with highest ratio, i.e. α∗ =

argmaxαfα
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Figure 4.9: Precision of the different similarity measures in function of the
size of the train group. For each training size, we have divided the journals
randomly in train and test 500 times. The reported precision is the average
one.

4. it removes the classified journals from the test group and repeats all steps

until all journals are classified

In Fig. 4.9, we report the precision of the measures in predicting categories.

For each measure, we compute its precision, i.e., the ratio between the number

of correctly predicted categories over the size of the test group. The precision

of the greedy algorithm is higher when using the weighted Jaccard on the

second order network. This means that among the analyzed indicators, Jw

better captures the similarities between journals. Additionally, we find that

both the indicators computed on the second-order network outperform the

ones computed on the first-order network.

What do we learn? From the comparison of the different indicators, we

have found that we better capture journal similarity when considering the

optimal-order network. Now we look for which particular pairs of journals we

have an information gain. In other words, what new or different information

we obtain by using Jw? To answer this question, we compare the similarity

scores of journal pairs coming from different indicators. Since the absolute

scores should not be directly compared, we compare their percentiles. Given
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Figure 4.10: ∆(m1,m2) between all journal pairs where m1 is the biblio-
graphic coupling Bc and m2 is Jaccard similarity computed using the infomap
clustering on the optimal order network

a measure m, we have a score for each pair of journals Sm(A,B) and hence,

a distribution of similarity scores Sm. For each similarity score Sm(A,B), we

compute its percentile pm(A,B) in Sm. Note that we have decided to use

the percentile instead to compute other values, such as the z-score, as the

distribution of similarity scores are bounded between [0,1] and skewed (not

shown). After calculating the percentiles for two different measures m1 and

m2, we take their difference:

∆(m1,m2)(A,B) = pm1(A,B)− pm2(A,B) (4.5)
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overestimated

journal-A journal-B ∆(Bc,Jw)

arXiv: Quantum Physics Nature Climate Change 87.0
Nature Climate Change Physical Review B 86.0
arXiv: Materials Science Nature Climate Change 81.0

Table 4.7: Pairs of journals for which Bibliographic coupling has mostly
over -estimated the similarity.

overestimated

journal-A journal-B SBmultc SBsamec SBothersc

arXiv: Quantum Physics Nature Climate Change 0.3838 0 0
Nature Climate Change Physical Review B 0.3611 0 0
arXiv: Materials Science Nature Climate Change 0.2841 0 0

Table 4.8: Breakdown of the Bibliographic coupling for the mostly
over -estimated pairs of journal by using Eq. (4.6).

In Fig. 4.10, we show the ∆(m1,m2)(A,B) between the percentile scores of

bibliographic coupling Bc and weighted Jaccard similarity Jw as a heat map.

Each cell represents a journal pair and cell color the percentile difference:

When ∆(Bc,Jw)(A,B) � 0, we use an intense blue color and it means that

the bibliographic coupling Bc was over -estimating the similarity between the

journals A and B. While when ∆(Bc,Jw)(A,B) � 0, we use an intense red

color and it means that Bc was under -estimating the similarity between the

journals A and B.

To understand why there are big differences in the similarity scores computed

by the different measures, we focus on the most over -estimated pairs (see

Table 4.7). For each pair (A,B) we split its bibliographic coupling score in

three terms: a first term coming from citations belonging to journals in the

same categories of A and B, Bsamec , a second term from citations belonging

to multidisciplinary journals, Bmultc , and a third term with the rest, Bothersc .

Hence, for every journal pair (A,B),

SBc(A,B) = SB
same
c (A,B) + SB

mult
c (A,B) + SB

others
c (A,B) . (4.6)

We find that the bibliographic coupling scores for the most over -estimated

pairs are dominated by the term SB
mult
c (A,B) (see Table 4.8). This means

that dissimilar journals, like “arXiv: Quantum Physics” and “Nature Climate
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Change” were considered similar only because multidisciplinary journals were

citing both of them. Note that by using a path abstraction to reproduce the

knowledge flow and measure journals similarity, we do not commit such wrong

judgments.

4.4.3 Multidisciplinary index

Given the statistical evidence that the second-order network optimally cap-

tures knowledge flows (see Sect. 4.3.1), we now propose a multidisciplinary

index for journals using this evidence and an idea proposed by [190]. In this

work, the authors suggest that we can detect multidisciplinary journals by

using the Infomap clustering. Here, we do the following: first, for each journal

A we count the number of clusters to which A is assigned by Infomap in the

second-order network, and then, we rank journals according to this number.

In other words, the multidisciplinarity index of journal A is |M(A)|, i.e. the

size of the feature set M(A) defined in Sect. 4.4.2. Recall that number of

clusters to which a given journal is assigned is the number of “stagnant flows”

in which this journal appears. This means that we quantify the number of

distinct knowledge flows to which a given journal contributes, and hence, we

are quantifying how diverse is the knowledge that its papers foster.

In Table 4.9, we report the 20 most multidisciplinary journals according two

this procedure. We find that 6 out of the top-10 are the journals belonging to

the MULTIDISCIPLINARY category. This is a first good result as it confirms

that the via the method suggested by [190] we can detect multidisciplinary

journals.

Ranking bias. To verify that the ranking obtained in Table 4.9 is not biased

in favor of any category, we use the approach developed in Chap. 3. To do

this, we test whether the ranking vector containing the top-20 journals favor

or disfavor any category. Note that in these top-20 journals, we expect to find

the six multidisciplinary journals in our sample (that we actually find) and

other 14 journals randomly sampled from the remaining. Thus, we sample

14 journals without replacement various times and compute the Mahalanobis

distance (dM) between the sampled ranking vectors and the expected one. In
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rank score modules journal name (category)
1 1.0 28 Plos One (MULTIDISCIPLINARY)
2 2.0 26 Scientific Reports (MULTIDISCIPLINARY)
3 3.0 23 Nature Communications (MULTIDISCIPLINARY)
4 4.0 20 PNAS (MULTIDISCIPLINARY)
5 5.5 19 Clinical Cancer Research (CLINICAL MEDICINE)
6 5.5 19 Nature Medicine (MOLECULAR BIOLOGY & GENETICS)
7 7.5 18 Biomaterials (MATERIALS SCIENCE)
8 7.5 18 Science (MULTIDISCIPLINARY)
9 9.5 17 Nature (MULTIDISCIPLINARY)
10 9.5 17 Nucleic Acids Research (BIOLOGY & BIOCHEMISTRY)
11 11.5 16 Cancer Research (CLINICAL MEDICINE)
12 11.5 16 Nature Methods (BIOLOGY & BIOCHEMISTRY)
13 14.0 15 Blood (CLINICAL MEDICINE)
14 14.0 15 Gastroenterology (CLINICAL MEDICINE)
15 14.0 15 The New England Journal of Med. (CLINICAL MEDICINE)
16 19.0 14 ACS Nano (CHEMISTRY)
17 19.0 14 Cell (MOLECULAR BIOLOGY & GENETICS)
18 19.0 14 Cell Stem Cell (MOLECULAR BIOLOGY & GENETICS)
19 19.0 14 Chemical Reviews (CHEMISTRY)
20 19.0 14 Hepatology (CLINICAL MEDICINE)

Table 4.9: Multidisciplinary Ranking of scientific journals. Ties are resolved
using alphabetic order. The ranking score is obtained by the average position
of the journals with the same number of modules. For example we have two
journals with 19 modules in rank position 5 and 6, then we assign to both
journals score 5.5..

Figure 4.11: In blue, the distribution of the dM calculated between the
ranking vectors coming from the unbiased selection process and the expected
vector ~µ computed using the methodology described in Chap. 2. In red, we
provide the 95% confidence interval of the distribution. In green, we report
the dM between the ranking vector coming from our multidisciplinary score
and ~µ.
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rank score size name
1 4.5 6 MULTIDISCIPLINARY
2 16.2 4 BIOLOGY & BIOCHEMISTRY

3–4 21.3 22 CLINICAL MEDICINE
3–4 21.3 9 MOLECULAR BIOLOGY & GENETICS
5 22.9 7 MATERIALS SCIENCE
6 23.9 4 NEUROSCIENCE & BEHAVIOR

7–9 24.0 10 CHEMISTRY
7–9 24.0 4 ENGINEERING
7–9 24.0 2 ECONOMICS & BUSINESS
10 24.5 2 ENVIRONMENT/ECOLOGY
11 24.6 4 IMMUNOLOGY
12 24.8 9 PHYSICS
13 25.8 2 SPACE SCIENCE

Table 4.10: Multidisciplinary Ranking of scientific categories according to
the Multidisciplinary score of its journals. We use Borda counting to aggregate
the scores of the different journals.

Fig. 4.11, we report the distribution of dM of the sampled vectors and of the

ranking obtained with our multidisciplinarity index. We find that the dM of

our ranking follows inside the 95% band of the distribution of the unbiased

rankings. This implies that the ranking generated by our indicators is not

biased, and hence, it does not favor or disfavor any categories.

We further use our multidisciplinarity index to evaluate which journal cat-

egory is more multidisciplinary. To do this, we aggregate ranking positions

of journals per category using a Borda count approach. We assign to each

category a score equal to the average ranking positions of journals belonging

to the same category. Then, rank journal categories in increasing order such

that the category with a lower (average) score is at the top of the ranking. By

this, the most multidisciplinary category is the one that has more journals in

the top positions in the multidisciplinarity ranking obtained in the previous

paragraph.

We report our multidisciplinary (Borda) ranking for categories in Table 4.10.

We find that at the top of the ranking the category MULTIDISCIPLINARY.

This result is expected. We also find that all the other categories have higher

scores compared to MULTIDISCIPLINARY, but their scores are close to each

other. This is a good indication that the multidisciplinary index can separate

multidisciplinary and specialized categories. The only exception is BIOLOGY
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& BIOCHEMISTRY at the second position in the ranking that has a score

close to 16, while the remaining categories have scores bigger than 21. This

is something slightly unexpected. One could have argued that scientific cat-

egories doing more fundamental research, like CHEMISTRY and PHYSICS,

should have appeared at the top of the ranking. Instead, we find that these

two disciplines are the bottom of the ranking with scores close to 24.

4.5 Conclusion

Increasing attention has been given to data in order to govern science [94]. This

has produced the need for developing new and more sophisticated measures for

quantifying scientific performance. In particular, measures have been obtained

by combining citation analysis and network theory. In this chapter, we have

shown how a naive combination of the two disciplines produces misleading and,

in some cases, even wrong results. By assuming that papers are knowledge

artifacts and that citation links represent flows of knowledge, the citation

network at the paper level can be used to study the flow of knowledge among

these artifacts. However, when projecting citations from the paper to the

journal level, we lose information about the empirical knowledge flows.

To overcome the projection problem, we have provided a solution based on the

path abstraction [190, 201]. In addition, to recover methods and tools from

network analysis, we have used the statistical test developed in [201] allowing

us to select an optimal higher-order network to represent our citation data.

We have found that a second-order network optimally represents the 150 000

citation links among 94 top-journals listed in our sub-sample of the MAG17

dataset. Note that we have recently used a more recent version of Pathpy

allowing us to analyze a bigger sub-sample of citations. We analyzed more

than 240 000 citations among our 94 journals and have detected that three as

optimal-order. In other words, by increasing the number of citations, we have

more data that justify even more a path abstraction.

By obtaining a second-order network as an optimal-order network in our sub-

sample, we learn that the analyzed data contains many identical paths and

sub-paths of length 2. These paths are triples of papers belonging to journals
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always citing each other in a specific order. These frequent paths break the

transitivity assumption necessary for applying standard network methods to

analyze the empirical knowledge flow on the journal citation network. In other

words, any past applications of algorithms or metrics using powers of the

adjacency matrix of the journal citation network might have provided wrong

results.

By relying on a naive projection of citation links from the paper to the jour-

nal level, one would overestimate how much knowledge is exchanged among

journals. To do this, we have used alluvial diagrams to visualize the diffusion

processes (of knowledge) evolving on the citation network from and to specific

journals. With these diagrams, we have shown that the empirical knowledge

flow is captured by a higher-order topology containing fewer paths compared

to what one would have obtained from the ordinary network perspective.

Additionally, we have analyzed whether the overestimation of knowledge ex-

change is stronger for some journals. To capture this, we have computed the

PageRank scores of journals on both the first and the optimal-order network.

We have observed that some journals, like PRL, lose rank positions when mov-

ing from the first-order to the optimal-order network, whereas others, like Cell,

move up in the ranking. At the same time, by inspecting the alluvial diagrams

for PRL and Cell, we find that the number of paths to which both journals

belong is overestimated in the first-order network. However, for Cell, the dif-

ference between the alluvial diagrams in the first-order and the optimal-order

network is smaller. This means that the moving up of a journal, like Cell,

in the ranking computed using the optimal order does not imply an absolute

higher contribution to the empirical knowledge flow. It rather implies a rela-

tive higher contribution, i.e., there are other journals, like PRL, for which one

overestimates even more their contribution the knowledge flow when using a

first-order network.

In Sect. 4.4, we have shown that we can construct more informative similar-

ity measures for journals by using the optimal-order network. In our case,

the optimal order is two, meaning that nodes of the optimal-order networks

are pairs of journals. By clustering nodes with Infomap on the optimal-order

network, we have found that journals are assigned to multiple clusters. For
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every journal, we have grouped their assigned clusters in different sets. Using

these sets, we have computed the weighted Jaccard similarity between every

pair of journals and compared this to other established citation-based similar-

ity measures: Bibliographic coupling and cosine distance. We have performed

the comparison by checking which measure was better able to identify journal

categories (MULTIDISCIPLINARY, PHYSICS, etc. ) assigned by CA. We

find that our combination of Infomap on the optimal-order network with the

weighted Jaccard similarity outperforms the other analyzed similarity mea-

sures in recovering journal categories.

Finally, we have created a multidisciplinary indicator for journals and journal

categories. Starting from an idea of [190], we have first created a ranking of

journals from more to less multidisciplinary by counting the number of clus-

ters to which Infomap assigns each journal. Then, by aggregating journal

ranking positions with the Borda’s method, we have produced a multidisci-

plinary score for each category and ranked them using this score. We find that

most categories are not multidisciplinary, but rather specialized and similar

in having most of the empirical knowledge flow running inside them. Indeed,

even the second-ranked category, BIOLOGY & BIOCHEMISTRY, has a score

that is four times bigger compared to the first ranked category (MULTIDIS-

CIPLINARY) that contains only multidisciplinary journals. This means that

on average journals belonging to BIOLOGY & BIOCHEMISTRY obtain po-

sitions that are four times lower (less multidisciplinary) compared to journals

belonging to the MULTIDISCIPLINARY category.

To conclude, in this chapter, we have shown how to retain a network per-

spective when studying citation data at the journal level. This was not a

trivial task as we had to combine two novel modeling approaches based on

path abstraction and higher-order network models. However, we find that this

procedure is necessary to preserve the empirical knowledge flow traversing the

journals. Furthermore, it permitted to develop new refined methods to deter-

mine how journals are influent, similar, and multidisciplinary. With all this,

we not only provide a new perspective to use citation analysis at the journal

level but also better tools to support research evaluators and administrators in

the challenging tasks of assessing scientific performance and governing science.



Chapter 5

Quantifying knowledge exchange

in R&D networks:

A data-driven model

Summary

We propose a model that reflects two important processes in R&D activities

of firms, the formation of R&D alliances and the exchange of knowledge as

a result of these collaborations. In a data-driven approach, we analyze two

large-scale data sets extracting unique information about 7500 R&D alliances

and 5200 patent portfolios of firms. This data is used to calibrate the model

parameters for network formation and knowledge exchange. We find that R&D

alliances have a duration of around two years and that the subsequent knowl-

edge exchange occurs at a very low rate. Hence, we find that firm’s position in

the knowledge space is rather a determinant than a consequence of its R&D

alliances. From our data-driven approach we also find model configurations

that can be both realistic and optimized with respect to a collaboration ef-

ficiency measure Ĉn. This is a new measure, that takes also in account the

effort of firms to maintain concurrent alliances, and is evaluated via extensive

computer simulations. 1

1Based on [233]
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5.1 Introduction

The last three decades have been characterized by a growing number of inter-

firm alliances, aimed at Research and Development (R&D) purposes. Albeit

this phenomenon has especially affected highly technological industries such

as IT, Pharmaceuticals or Medical Supplies [4, 85], all industrial sectors have

simultaneously experienced an increased number of such alliances [223].

From a theoretical point of view, it has been shown that firms engage in

alliances for several reasons. They can gain access to more and diverse assets

[46, 121]. Next, alliances foster the exchange of knowledge between firms: by

joining their technological resources, firms can actually enlarge their knowledge

bases faster than they could do individually [17, 139, 184]. Finally, firms can

share the costs and risks of a project, especially when this is expensive or with

uncertain outcome [87]. All of these aspects result in a learning process of

the involved firms, making R&D alliances an important part of every firm’s

knowledge management strategy.

The focus of the present study is indeed such a learning process, which we

model as a mutual exchange of knowledge occurring after the establishment of

an alliance between two firms. In particular, we develop an agent-based model

to investigate the determinants leading to the formation of inter-firm R&D col-

laborations and the subsequent emergence of an R&D network. Additionally,

we estimate the performance of such networked systems, in terms of explored

technological space. Note that to do this, we will discard differences in the

collaboration strategies that firms adopt across industrial sectors [199, 227].

At the same time, with this simplification, we can shift our focus from the

specific collaboration strategies of firms to the collective effect that these col-

laborations have on the technological positions of firms.

The approach that we adopt in our study can be defined as data-driven mod-

eling. Starting from the empirical evidence, we design a set of realistic and

theoretically grounded microscopic interaction rules, which we incorporate in

an agent-based model; next, we implement the model through computer sim-

ulations, followed by calibration and validation against empirical data. The

fine-tuning of the model parameters gives us not only a deep understanding
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of the system under examination, but also an indication on how to optimize

it. The model that we develop here is based on previous empirical findings

[88, 187, 223], and combines two existing agent-based models [224, 226], in

order to reproduce both the alliance formation and the knowledge exchange

process in an R&D network.

5.1.1 Theoretical foundations: knowledge exchange in

inter-firm R&D networks

Our agent-based model follows a number of extant works on bounded con-

fidence and continuous opinion dynamics [10, 49, 50, 80, 92], in particular

applied to innovation networks [16, 56]. In the wake of this previous work,

and similar to the model proposed by Tomasello et al. [226], we assume that

the collaborating agents are characterized by an evolving knowledge basis, that

is affected by the set of alliances in which are involved. However, differently

from the studies that have been done so far, our model does not focus on the

formation of consensus clusters – see Axelrod [10], Schweitzer and Behera [208]

in the case of social systems, or Fagiolo and Dosi [54] for technology islands,

but on the exploration of a knowledge space (defined below). In addition, our

study does not consider the network of R&D alliances as fixed, but it assumes

a dynamically evolving R&D network, whose topology corresponds to those of

empirically observed networks [see 84, 223].

The knowledge-based view of the firm [56] assumes that every company is en-

dowed with a knowledge basis that uniquely identifies its resources and capabil-

ities. In other words, a firm can always be associated with a vector consisting

of several components [192], each of which represents its level of knowledge in

a given area. These vectors can in turn be associated with a metric knowledge

space in which the collaborations occur. Thus, every firm occupies a point

in this multi-dimensional space, whose coordinates are given by its knowledge

vector. Such an approach is similar to a more general model [10], proposed

in the broader context of social influence. The concept of a metric knowledge

space has already been used in one [80], and two dimensions [16, 54]; here, we

generalize this approach to metric spaces of arbitrary dimensionality.



5.1. INTRODUCTION 103

On the other hand, R&D alliances have been conceptualized by several studies

[77, 79, 139, 157] as a means to exchange technological knowledge among firms,

and such an idea is at the heart of several agent-based models [43, 74, 172, 174].

In these models, agents’ knowledge bases become more similar over time, as a

consequence of R&D collaborations. The speed at which the agents approach

each other in the knowledge space represents one of the aspects of this family

of models, and our work is no exception. Besides, we rely on the assumption

that knowledge spillovers occurring in a R&D alliance cause the partners to

exchange knowledge along every dimension of their knowledge bases, not lim-

iting the transfer to a specific R&D project that they have in common [16].

Note this assumption makes our model different to other ones, like the one pre-

sented in [173], where firms decide to have collaborations to develop specific

products and hence, acquire only specific knowledge from their partners. In

our data-driven approach, introducing firms’ preferences to specific knowledge

dimensions is not justified as we do not have data about the reason behind the

R&D alliances. Thus, we study a scenario in which two partner firms approach

with respect to all dimensions of the knowledge space.

Finally, we aim at studying the performance of the whole collaboration network

as a function of the relevant model parameters. To quantify it, we propose

a measure that takes into account the global knowledge exploration of the

systems. I.e., it takes into account the distances in knowledge space traveled

by all agents during the evolution of our simulated R&D network. In our

model, we consider that the knowledge exploration itself is represented by the

motion in the knowledge space, which is fully captured by such a measure.

The underlying assumption is that a throughout exploration of the knowledge

space is beneficial for the R&D network, in that it allows the agents to come

in contact with many technological opportunities, potentially leading to more

frequent innovations [54]. Precisely, we make use of an existing performance

indicator [226] and refine it by taking into account the actual number of active

collaborations in the system, in order to obtain a more reliable measure.
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5.1.2 Theoretical foundations: formation of inter-firm

R&D networks

The extant literature on R&D networks has shown that two crucial types of

mechanisms drive the formation of new R&D alliances [186]: endogenous mech-

anisms and exogenous mechanisms. The endogenous mechanisms depend on

firms’ social capitals which describe the firms’ positions in the network, while

the exogenous mechanisms are affected by firms’ technological and commercial

capitals. Here, we refer to an alliance as “endogenous” if it involves a partner

that belongs already to the R&D network. While if it involves a partner that

does not belong to the R&D network, we refer to the alliance as “exogenous”.

Typically, empirical and theoretical studies have focused on the mechanisms

driving endogenous and exogenous alliances separately, also called “network

endogeneity” [65, 83, 168, 245] and “exogenous partner selection” [32, 42,

185]. However, to explain the observed empirical R&D network both types of

mechanisms are needed. As matter of fact, network endogeneity by itself would

produce more and more centralized network over time, which does not occur

in the real R&D network [223]. On the other hand, a purely exogenous partner

selection would lead to regular network topologies, which also does not occur

(a prominent example is represented by the “monogamous” networks analyzed

by Tomasello et al. [226]). A notable exception is the agent-based model

developed by Tomasello et al. [224], which incorporates both endogenous and

exogenous rules of alliance formation and successfully reproduce the structure

of a real R&D network. In fact, the model permits to tune the weight of both

endogenous and exogenous mechanisms for alliance formation, and to test the

outcome against real data.

Inspired by these works, the agent-based model that we develop in the present

study includes all the microscopic rules introduced in Tomasello et al. [224],

and combines them with the knowledge exchange rules briefly discussed above.

Our model allows us to modulate the weight of both endogenous and exogenous

mechanisms for alliance formation, and to study the knowledge exchange in

R&D networks.
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5.1.3 Our contribution

As mentioned, we combine, and extend, two existing agent-based models in

a straightforward, yet effective, manner. The model introduced by Tomasello

et al. [226] represents a first attempt to investigate the process of knowledge

exchange occurring in a dynamic collaboration network; it has identified a

mechanism of volatile alliances to help the collaborating agents better explore

a knowledge space, using the approximation of monogamous (i.e. sparse) col-

laboration networks. On the other hand, the model developed by Tomasello

et al. [224] can realistically reproduce the complex topology of real R&D net-

works, but without considering the effect of alliances on the firms’ knowledge

positions.

The agent-based model we introduce here constitutes an important step to-

ward a general framework that combines two dynamic processes, the formation

of alliances and the knowledge exchange in collaboration networks. The mi-

croscopic interaction rules of our model and its calibration involve a two-step

procedure that can be described as follows. The firms form R&D collabo-

rations based on their network features and their social capital; the model

parameters related to these mechanisms are estimated through a comprehen-

sive inter-firm alliance data set. Next, we assume that the formation of each

network link causes a process of knowledge exchange between the involved

firms, which consequently approach in the knowledge space; the model param-

eters related to this mechanism are estimated through a second data set on

firm patents. Remarkably, the underlying knowledge space that we consider in

our study is defined by real patent classes, allowing for a precise quantification

of every firm’s technological position. In this chapter, we also investigate how

the dimensionality of the knowledge space impacts our results.

Our findings point out a predominance of the endogenous network mechanisms

(over the exogenous ones) for the alliance formation; in other words, previous

network structures and alliance history matter when selecting new collabora-

tion partners. Next, we find that real R&D alliances have a duration of around

two years, and that the subsequent knowledge exchange between the partners

occurs at a very low rate. Most of the alliances, indeed, have no consequence

on the partners’ knowledge position: this suggests that a firm’s position – eval-
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uated through its patents – is rather a determinant than a consequence of its

R&D alliances. Finally, we investigate the performance of such a network in

terms of explored knowledge trajectories, and we check whether the real R&D

network under examination maximizes our proposed performance indicator.

Interestingly, we find that this is the case: effective policies to obtain an opti-

mized collaboration network – as suggested by our model – would incentivize

shorter R&D alliances and higher knowledge exchange rates.

The rest of the chapter is organized as follows. Section 5.2 presents the data

sets and the methodology used to build the network, as well as to measure the

firms’ knowledge positions. Section 5.3 describes all the microscopic interac-

tion rules defining our agent-based model. Sections 5.4.1 and 5.4.2 present the

results of our computer simulations and the model calibration on the alliance

and the patent data sets, respectively. In Section 5.5, we introduce a quan-

tification of the collaboration efficiency and study the optimality of the real

R&D network under examination. Finally, Section 5.6 concludes.

5.2 Data and Methodology

5.2.1 Network reconstruction, activities and patents

We define an R&D network as a set of nodes, or agents (the firms), and links

(the alliances between them). By R&D alliance (or collaboration), we refer

to an event of partnership between two firms that can span from formal joint

ventures to more informal research agreements, specifically aimed at research

and development purposes. To detect such events, we use the SDC Platinum

database, provided by Thomson-Reuters [221], that reports all publicly an-

nounced alliances, from 1984 to 2009 between several kinds of economic actors

(including manufacturing firms, investors, banks and universities). In our net-

work representation, we draw an undirected link connecting two nodes every

time an alliance between the corresponding firms is announced in the data set.

When an alliance involves more than two firms (consortium), all the involved

firms are connected pairwise, resulting into a fully connected clique. This

procedure is consistent with a previous empirical study [223], where there is
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Figure 5.1: The R&D network: each node is a firm and its color refers to
the domain where the firm has filed more patents between 1984 and 2009. For
figure (a) we used the main 8 IPC-sections to classify the patents, while for
(b) we used the main 5 areas from ISI-OST-INPI classification scheme. For
a discussion about the colors of the nodes see Sect.5.2.2. We use the layout
algorithm of [64] for both networks.

no conceptual difference between a consortium and a “standard” two-partner

alliance, which is only a special case of it (and can be thought of as a fully

connected clique of size 2). Fig. 5.1 shows a visualization of the time aggre-

gated R&D network, where each node is a firm and links are alliances listed

in the above mentioned data set.

A quantity that we measure directly from the data prior to the implementation

of our agent-based model is the firms’ activity distribution.2 The activity

expresses the probability that a firm takes part in any alliance event occurring

in a given time window. For the calibration of the present model we use the

overall firm activity, measured on the entire observation period of the data

set. We define such activity ai of firm i as the number of alliance events ei
involving firm i divided by the total number of alliance events E involving any

firm reported in the data set. We then assign such empirical activities ai to

the agents in our computer simulations.

2For a more detailed definition and more empirical examples on agents’ activity in col-
laboration networks see Tomasello et al. [224] and its Supplementary Information.
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The SDC Platinum database [221] reports approximately 672’000 publicly an-

nounced alliances in all countries with a granularity of 1 day. We apply two

filters: first, to select only the alliances characterized by the “R&D” flag; with

this, we obtain a list of 14’829 alliances, connecting 14’561 firms. Second, we

keep in our network representation only firms that have a corresponding entry

in the patent data set such that we can determine their knowledge positions.

The patent database used is the Patent Citations Data by the U.S.A. National

Bureau of Economic Research (NBER), that contains detailed information on

patents granted in the U.S.A. and other contracting countries, from 1971 to

present. Obviously, we select only the entries that have a match with the SDC

alliance data set, both with respect to assignees and time period, thus obtain-

ing a total of around 1’400’000 listed patents. Every patent is associated with

one or more assignees and with an International Patent Classification (IPC)

class. Companies are associated with a unique identifier, and a relatively big

part of them (5’168 firms, precisely) are matched to the SDC alliance data set.

These firms take part in 7’417 distinct R&D alliances.

5.2.2 Firms positions in knowledge space

Classification schemes In this chapter we we use – and compare – different

approaches to determine the knowledge position of a firm. Both approaches

compute the shares of patents of a firm with respect to two different classifi-

cation schemes, the Industrial Patent Classification (IPC) and the Fraunhofer

ISI, Observatoire des Sciences et des Techniques (OST) and French patent

office (INPI) classification (ISI-OST-INPI). These classifications differ in the

number of classes taken into account, which will correspond to the dimension-

ality of the knowledge space in which the firms are located. IPC operates on

8 dimensions, while ISI-OST-INPI considers 35 dimensions. More details are

given in the following.

The IPC, introduced in 1971 by the Strasbourg Agreement, is a hierarchical

system of symbols for the classification of patents according to the different

areas of technology to which they pertain.3 A generic IPC category consists

3For more information on the International Patent Classification, see http://www.wipo.

int/classifications/ipc.

http://www.wipo.int/classifications/ipc
http://www.wipo.int/classifications/ipc
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IPC Section Title Patents

A Human Necessities 152,974

B Performing Operations, Transporting 244,791

C Chemistry, Metallurgy 309,675

D Textiles, Paper 12,914

E Fixed Constructions 17,842

F Mechanical Engineering, Lighting, Heating, Weapons 119,581

G Physics 508,815

H Electricity 476,437

Table 5.1: International Patent Classification (IPC) sections and their de-
scription. The last column reports the number of patents registered in our
data set for the corresponding IPC section.

of a letter, the so-called “section symbol”, followed by two digits, the so-called

“class symbol”, and a final letter, the “subclass”. This four-character term

is then followed by a group/subgroup indication, represented by additional

digits. A typical IPC term can be written as follows: B34H 6/99. The sections

identified by the IPC are historically stable and amount to 8, from A (human

necessities) to H (electricity). The lower levels are instead subject to more

frequent revisions; the eighth and last IPC edition consists of more than 120

classes, 600 subclasses, 7’000 main groups and 60’000 subgroups.

The titles of the 8 sections, as well as a patent count for each section in our

data set, is reported in Table 5.1. We find that the number of patents in all

sections reflects their technological dynamism [187]. Indeed, all sections are

not equally represented. For example, the two sections with the lowest patent

counts are Textiles, Paper and Fixed Constructions (less than 20 000 patents),

two typical mature industries, while the sections of Physics and Electricity has

the highest patent count (about 50 000 patents). In these sections, patents are

often filed by firms belonging to industrial sectors where products innovation

and radical innovations play a major role (e.g., from firms working on computer

hardware, computer software and electronic components).

In contrast to the IPC, the ISI-OST-INPI classification scheme is more adapted

to the technological knowledge space for patents data [200]. As suggested

above, this scheme was developed by the Fraunhofer ISI, the Observatoire des

Sciences et des Techniques (OST) and French patent office (INPI) in order

to overcome problems in the IPC and the US classification scheme. There
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exist various versions of ISI-OST-INPI classification and we chose to use the

most updated one, available from PATSTAT, Patent Statistical Database4. In

this version, the scheme groups different IPC codes into 5 technology areas,

which are again divided in a total of 35 fields. The main 5 areas are: 1)

Electrical engineering 2) Instruments, 3) Chemistry, 4) Mechanical engineering

and 5) Other fields. In table 5.2, we report as an example the classification

scheme for the technology area Electrical engineering, as provided from

table tls901 techn field ipc available in PATSTAT Online, edition Autumn

2016. In each entry of the table there is an ISI-OST-INPI code with the

corresponding name of the field and IPC codes. We have created similar tables

also for the other four technology areas (not shown). Using these tables, we

assigned to the patents present in our database with one or more IPC codes

new ISI-OST-INPI codes. Our matching procedure was successful since it

worked for about 99% of the patents.

We intend to test our model on a broad set of firms, belonging to several

industrial sectors, and therefore exhibiting patent activities distributed across

all sections, classes and subclasses. For this reason, we have only considered

the 8 dimensions (i.e. the first letter) of the IPC code, and the 35 dimensions

of the ISI-OST-INPI code. Choosing a more refined class- or subclass-level

division would result in an excessive patent granularity, meaning a even higher

dimensionality for the corresponding knowledge space. However, comparing

the results for the 8- and the 35-dimensional knowledge space already allows

us to draw conclusions about the robustness of our findings with respect to

the dimensionality of the knowledge space.

Knowledge position To ensure a match with our model representation,

we define the knowledge position of a firm xi ≡ (xi1, xi2, . . . , xiD) as the set

of normalized patent counts xis in each class s = 1, 2, . . . D (where D is the

maximum number of dimensions in the respective classification scheme, i.e.

either 8 or 35):

xis ≡
Nis∑
sNis

s = 1, . . . , D (5.1)

4https://www.epo.org/searching-for-patents/business/patstat.html

https://www.epo.org/searching-for-patents/business/patstat.html
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Electrical engineering

1 Electrical machinery, F21H, F21K, F21L, F21S, F21V, F21W,
apparatus, energy F21Y, H01B, H01C, H01F, H01G, H01H,

H01J, H01K, H01M, H01R, H01T, H02B,
H02G, H02H, H02J, H02K, H02M, H02N,
H02P, H02S, H05B, H05C, H05F, H99Z

2 Audio-visual technology G09F, G09G, G11B, H04N 3, H04N 5,
H04N 7, H04N 9, H04N 11, H04N 13,
H04N 15, H04N 17, H04N 19, H04N 101,
H04R, H04S, H05K

3 Telecommunications G08C, H01P, H01Q, H04B, H04H,
H04J, H04K, H04M, H04N 1, H04Q

4 Digital communication H04L, H04N 21, H04W
5 Basic communication processes H03B, H03C, H03D, H03F, H03G,

H03H, H03J, H03K, H03L, H03M
6 Computer technology G06C, G06D, G06E, G06F, G06G,

G06J, G06K, G06M, G06N, G06T,
G10L, G11C

7 IT methods for management G06Q
8 Semiconductors H01L

Table 5.2: ISI-OST-INPI classification scheme based on the IPC, for
the technology area of Electrical engineering. The first column is the
ISI-OST-INPI code, the second gives the name of the field and the third col-
umn groups the different IPC codes corresponding to the same ISI-OST-INPI
code.

Nis is the number of patents that the firm i has in a given class s. In order

to compute knowledge distances between pairs of firms, we use the Euclidean

metric, similar to Tomasello et al. [226]. This means that the knowledge

distance between two firms i and j reads as:

|xi − xj | =

√√√√ D∑
s=1

(xis − xjs)2 (5.2)

In Figs.5.1(a,b) we provide a visualization of the knowledge positions of firms

using the two patent classification schemes. In the time-aggregated R&D net-

work, nodes represent firms and their colors depend on the patents they have

filed between 1984 and 2009. In Fig.5.1(a), we have assigned different to each

firm the color of IPC-section where it has filed more patents. With this, we
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approximate the knowledge position of each firm for visualization purposes.

In Fig.5.1(b), we apply the same procedure but considering the 5 main areas

of the ISI-OST-INPI classification scheme. From both figures, we find that

the two main clusters, which are comprised mainly by pharmaceutical compa-

nies (bottom cluster) and firms working on computer hardware, software and

communications (top cluster), are dominated by few colors. This shows that

most alliances occur among firms with a similar knowledge base; alliances with

different knowledge bases occur only in specific combinations.

Distributions of pre-alliance knowledge distances Using the defini-

tions provided in Eqs. (5.1) and (5.2), we can now compute the knowledge

positions of the 5’168 firms listed in our data set for the two different classifi-

cation schemes together with the knowledge position of their alliance partners.

This allows us to calculate the distribution of the knowledge distances between

every pair of allied firms, at the moment of alliance formation (which we know

precisely). We save these pre-alliance distances together with the positions of

the firms in knowledge space, to later use this information for setting up the

computer simulations.

In Fig. 5.2 we report the distributions of pre-alliance knowledge distances for

the two different classification schemes. The minimum observed value of knowl-

edge distance is 0, while the maximum equals
√

2 (see Eq.(5.2)), for normaliza-

tion reasons. We find, for both schemes, that the distribution is peaked around

an intermediate distance and left-skewed, i.e. shifted toward small values. In-

terestingly, we observe that the counts drop when such distances approach

zero, meaning that firms with the exact same patenting activity tend not to

form alliances. In addition, it is important to remark that the granularity of

the different schemes does not impact the distributions.

When computing the empirical knowledge position xi of a firm at a given date

t, we consider all the patents for which the firm has applied in a preceding time

window [t−∆t, t]. To have a reliable and updated measurement, without losing

at the same time too much patent information due to a short time window,

we use ∆t = 5 years. We have tested different time windows, ranging from

1 to 10 years, and have found that this only increases the number of missing

observations or the noise in the distributions, with no effect on our results.
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Figure 5.2: Empirical knowledge distance between every pair of partnered
firms, as of the day preceding the alliance formation, calculated in (a) the
8 dimensional knowledge space defined by the IPC scheme and in (b) the
35 dimensional knowledge space defined by the ISI-OST-INPI classification
scheme.
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5.3 The model

We now describe the microscopic interaction rules of our agent-based model.

In a first phase, the agents form links based on their network features and their

social capital; we call this the “exploration (link formation)” phase. Subse-

quently, they exchange knowledge through these links, thus approaching each

other in a metric knowledge space; we call this “exploitation (knowledge trans-

fer)” phase. While exchanging knowledge, agents can also form new links; in

addition, each link can be terminated with a given probability. Hence, the

exploration and exploitation phases are not separated in time.

5.3.1 Exploration: link formation

Activation. We consider a network composed of N agents. Each agent rep-

resents an agent that is endowed with two fundamental attributes, an activity

and a label. The activity ai of agent i defines her propensity to engage in a

collaboration event. We obtain ai from the distribution of empirical activities

extracted from the SDC alliance data set (see Section 5.2). At every time

step, agent i initiates an alliance with probability pi = ηaidt. Consequently,

the number of active agents per time step is NA = η〈a〉Ndt. Here 〈a〉 is the

average agent activity and η is a rescaling factor that allows to adjust the acti-

vation rates. We fix η = 0.0115 to obtain NA close to 2 which is the number of

active firms per day reported in the alliance data set. More details will follow

on the interpretation of the time step duration dt.

Alliance size. Upon activation, an agent selects the number of partners for

a collaboration. We simulate this selection by sampling without replacement

a value n from the empirical distribution of alliance sizes, directly measured

from the SDC Platinum data set. With this, we assume that the number of

partners, m = n− 1, with whom the alliance is formed is independent of any

characteristic of the active agent.
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Label propagation. The second key attribute, called label, is used to model

the belonging of firms to communities that are implicitly defined through

shared practices and/or behaviors. In other words, a label can be thought

as a membership to a well defined and recognized “club” or “circle of influ-

ence”. We assume that such membership is unique and fixed, i.e. an agent

cannot change it nor have more than one. At the beginning of each simulation

all agents are non-labeled. They can obtain a label in two different ways, (i)

by being selected as partner for an alliance or (ii) by initiating one. In the

former case, the non-labeled agent receives the label of the initiator of the

alliance, while in the latter she receives a new label that no other agent has in

the network. Both cases are illustrated in Fig. 5.3. It was shown that the de-

scribed label propagation mechanism can very effectively explain the presence

of clusters, or communities, in R&D networks [224].

Selection of the partner categories. The presence of labels allows to

distinguish between different types of alliances, dependent on the initiator. If

the initiator is a labeled agent, she can link to an agent with the same label

(with probability pLs ), to an agent with a different label (pLd ), or to an agent

without a label (pLn). If the initiator is a non-labeled agent, i.e. she is a

newcomer in the collaboration network, she can link to a labeled agent (with

probability pNl ), or to another non-labeled agent (pNn ). The link formation

with a labeled agent (described by the probabilities pLs , pLd and pNl ) describes

endogenous mechanisms, because the initiator of the alliance has information

about the network position (i.e. social capital) of its potential partners. For

this case, the two linking probabilities pLs and pLd allow to tune the importance

of the cohesiveness as an endogenous driver. The connection with a non-

labeled agent (events pLn and pNn ) describes exogenous mechanisms because, in

this case, the initiator has no information about the social capital of an agent

that is not yet part of the network.

Link formation. Once the category (label) of each partner is determined,

the initiator of the alliance selects the specific partner. To do this, we employ

a linear preferential attachment rule, where a agent j is selected with proba-

bility proportional to her degree kj (i.e., the number of previous collaborations



5.3. THE MODEL 116

with distinct partners). This rule is chosen to capture the prominence of a

firm, namely the history of its previous alliances, as an endogenous driver.

Obviously, this does not apply when the initiator, labeled or not, decides to

connect to a non-labeled agent, which has by definition no previous partners

(kj = 0). In this case, the partner is selected among all non-labeled agents

with equal probability. When the selection process is complete, the initiator

connects to its m partners, which accept the offer. A variant of the model in

which partners can also reject the offer is discussed in [222]. In agreement with

our representation of the R&D network, we assume that all the m partners

will also link to each other, forming a fully connected clique of size n = m+ 1

with m(m+ 1)/2 links (see Fig. 5.3).

5.3.2 Exploitation: knowledge transfer

The second set of microscopic rules models the process of knowledge exchange

between pairs of collaborating agents, similar to what has been investigated in

Tomasello et al. [226]. Basically, we assume that every agent in the network is

located in a metric knowledge space and, as a consequence of its collaborations,

approaches its partners in this space. In case of multiple partners, the motion

of the focal agent is determined by the vectorial sum of the effects of all of its

partners.

Location in a metric knowledge space. Here we refer to the description

of the (two different) knowledge spaces given in Sect. 5.2.2. Every agent i (i =

1, . . . , n) is characterized by a D-dimensional vector xi ≡ (xi1, xi2, . . . , xiD),

where the components xi1, xi2, ... are real numbers ranging from 0 to 1. In

the case of R&D networks, these numbers are given by the ratios of patents,

reflecting the firm’s expertise in each of the D dimensions. Only D− 1 values

of the xis are independent because of the boundary condition that the patent

fractions have to sum up to 1. The dimension of the knowledge space, D, is a

structural characteristic of the system and fixed depending on the classification

scheme and granularity selected to classify the patents.
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Approaching in the metric knowledge space. We assume that the ex-

istence of a link causes the involved agents to exchange knowledge with their

partners and to align their knowledge bases. Hence, as a result of this ex-

change, they should approach each other in knowledge space. To capture this

dynamics, every agent is characterized by a learning rate µ. This parameter

is, in first approximation, constant over time and the same for all agents in

the collaboration network. The model dynamics equation can be written as

follows:

ẋi(t) = µ
∑

j∈Ni(t)

[xj(t)− xi(t)] (5.3)

where Ni(t) is the set of partners of the agent i at time t. For implementing

the model in computer simulations, we use discrete time steps of length dt.

The evolution of every agent’s position xi can then be expressed as:

xi(t+ dt) = xi(t) + µ
∑

j∈Ni(t)

[xj(t)− xi(t)] dt (5.4)

It should be noted from Eq. (5.3) that the speed at which a collaborating

agent moves in the knowledge space is given by the product of two factors: µ

– the approach rate – and its distance from the partners. With this dynamics,

the farther agents are in the knowledge space, the faster they move towards

each other. When the agents’ distance decrease, the potential for new learning

from the collaboration and consequently the approaching speed decrease as

well. This, eventually, motivates to cancel the collaboration and to terminate

the alliance after some time.

Although the dynamics of knowledge exchange is quite simple, it has a number

of implications we would like to point out. First of all, in the present model

proximity in knowledge space is not a precondition for the agents’ interactions.

This is different from other existing models [see, for instance, 16, 80, 226] where

some sort of “similarity” is assumed for a possible collaboration. In our model

collaboration is determined by the network formation mechanisms, where the

different link probabilities are independent of the agents’ knowledge positions.

Second, in our model every link (i.e. every collaboration) necessarily implies

that the involved partners approach each other in the knowledge space. This
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Parameter Explanation

pLs Prob. for a Labeled agent to chose an agent with same label (NF)

pLd Prob. for a Labeled agent to chose an agent with different label (NF)

pNn Prob. for a Non-labeled agent to chose a non-labeled agent (NF)

µ Approaching rate in the knowledge space (KE)

τ Link characteristic life time (KE)

Table 5.3: Model parameters and their description. The “network forma-
tion” (NF) parameters are associated with the creation of new links in the
collaboration network. The “knowledge exchange” (KE) parameters are asso-
ciated with the approach of the agents in a metric knowledge space, occurring
as a consequence of a collaboration.

reflects the purpose of the network formation, namely exchange of knowledge.

Our dynamics assumes that agents approach each other in all dimensions of the

knowledge space, not just in one particular dimension representing their area

of collaboration. This reflects the effect of knowledge spillovers [16], i.e. agents

profit from the collaboration not just by the exchange of specific knowledge,

but also by learning more general experience.

Alliance termination. R&D alliances have been proven to have a finite

duration [163, 223]. In order to develop a realistic model, we introduce as

a key parameter the characteristic life time τ of a link. Assuming that the

durations of alliances are distributed according to a Poisson process with rate

1/τ , the mean duration is obviously equal to τ . In our computer simulations,

which use discrete time steps of length dt, this translates into the use of a fixed

termination probability pT = dt/τ for any link at any time step.

To keep a simplistic set of rules, we assume that the parameter τ is a constant,

independent of any other feature of the network or the knowledge exchange

dynamics or the knowledge stock of the agents. One possible extension would

be to link τ to the knowledge distance of the two partners, or some other

network-related feature.

To sum up, in this section we have described a set of microscopic rules which

aim at reproducing the formation of links in a collaboration network, together

with the approach of the agents in an underlying knowledge space. We sum-

marize the model microscopic rules by means of a visual example in Fig. 5.3

and report the nomenclature of all parameters in Table 5.3.
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Figure 5.3: A representative example of network evolution in a bi-dimen-
sional (D = 2) knowledge space. The position of the agents in the plot corre-
sponds to their coordinates in the knowledge space. At time t+dt, all existing
links cause the respective agents to approach in the knowledge space. Fur-
thermore, we illustrate two collaboration events occurring at time t. The first
one is initiated by a labeled agent (in green), that has linked to m = 3 new
partners, forming a fully connected clique. The second one is initiated by a
non-labeled agent, that has linked to m = 2 new partners and has taken a
new arbitrary label (red). At time t + dt, the alliance initiators propagate
their labels (respectively, the green one and the red one) to the partners that
were not labeled at time t yet. Finally, we illustrate the termination of 3 links
(depicted with red dashed lines) at time t.

5.4 Model calibration: a two-step procedure

We now calibrate our model against the data, to estimate the value of its pa-

rameters. This is performed in two steps, for network formation and knowledge

exchange, by using two data sets, R&D alliances and patents.

5.4.1 Network formation parameters

In the first step, calibrating the network formation model, we fix a set of pa-

rameters that we can directly measure from the data, namely the number of

agents N =5’168, the distribution of the agents activities ai, and the distribu-

tion of number of partners m per alliance event.
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We then estimate the remaining parameters, i.e. pLs , pLd and pNn , by running

a set of computer simulations, to identify the simulated collaboration network

that matches best with the alliance data set. We stop every computer simula-

tion when the total number of formed alliances equals the number of alliance

events reported in the SDC data set, E =7’417. We vary the values of pLs , pLd
and pNn in discrete steps spaced by 0.05, in the interval (0, 1). The parameters

pLs and pLd are bounded by the condition pLn = 1− pLs − pLd ≥ 0, meaning that

their sum has to be smaller or equal to 1. This condition translates into 3’249

points to explore in the 3-dimensional parameter space, for each of which we

run 100 simulations (for a total of 324’900 runs).

The networks that we generate by means of computer simulations are matched

to the data with respect to three global indicators: average degree 〈k〉, average

path length 〈l〉, and global clustering coefficient C 5. For the empirically

observed R&D network, we denote such measures as 〈k〉obs
, 〈l〉obs

, and Cobs,

respectively, and their values are 〈k〉obs
= 3.45, 〈l〉obs

= 5.05 and Cobs = 0.11.

In order to identify which parameter combination is able to give the best match

with the real R&D network, we use a Maximum Likelihood approach, similar

to Tomasello et al. [224]. We do not have a set of observations against which

we can calibrate our model; instead, we only have one empirical point: the

real R&D network. In particular, we cannot consider the three measures 〈k〉,
〈l〉 and C as independent, therefore the Likelihood function L reads as:

L(p|V obs) = f(V obs|p) (5.5)

where f(·) is the joint density function of all parameter combinations p re-

sulting in a network that is equivalent to the observed one, Gobs. Both p

and V obs are vectors with three components, expressing respectively the three

model parameters p ≡ (pLs , p
L
d , p
N
n ) and the three global network measures

V obs ≡
(
〈k〉obs, 〈l〉obs, Cobs

)
. Therefore, we need to find the parameter com-

bination (pLs , p
L
d , p
N
n ) maximizing the Likelihood L(p|V obs) to generate a net-

work whose macroscopic properties are sufficiently similar to the real network

Gobs. By this, we mean that the relative errors from the observed values for

5For a rigorous definition of these measures, see Tomasello et al. [224].
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Optimal simulated R&D network Real R&D network6

Model parameter Value Measure Value Measure Value

p∗Ls 0.45 〈k〉∗ 3.48± 0.01 〈k〉obs 3.45

p∗Ld 0.2 〈l〉∗ 5.02± 0.08 〈l〉obs 5.05

p∗Ln 0.35 C∗ 0.111± 0.007 Cobs 0.109

p∗Nn 0.1

p∗Nl 0.9

Table 5.4: Link formation parameters p∗ defining the optimal simulated
R&D network. The average degree, average path length and global clustering
coefficient of the 100 realizations of the optimal R&D network are compared
to their empirical counterparts.

the average degree ε〈k〉, the average path length ε〈l〉 and the global clustering

coefficient εC have to be smaller than a certain threshold ε0.

We empirically compute the Likelihood function L for each point in the pa-

rameter space by counting the fraction of its 100 simulation realizations that

fulfill the criteria ε〈k〉 < ε0; ε〈l〉 < ε0; εC < ε0. This way, we obtain values

that can range from 0 (no realization of that parameter combination fulfills

the criteria) to 1 (all of its realizations fulfill the criteria). For the choice of the

error threshold ε0, we take a conservative approach and use ε0 = 0.02, that

ensures a good matching with the real R&D network, without cutting out too

many points in the parameter space.

We find that the point in the parameter space with the highest likelihood

score has coordinates: p∗Ls = 0.45, p∗Ld = 0.2 and p∗Nn = 0.1. This means

that labeled agents show a fairly balanced alliance strategy, with p∗Ls = 0.45,

p∗Ld = 0.2, and consequently p∗Ln = 0.35, while non-labeled agents connect

rarely with other non-labeled agents (p∗Nn = 0.1) and prefer to link with labeled

ones (p∗Nl = 0.9). In Table 5.4, we report the full set of parameter values

maximizing the likelihood score, together with the values of average degree,

average path length and global clustering coefficient for the simulated and the

real R&D networks.

These results are in line with those presented by Tomasello et al. [224]. How-

ever, the R&D network with patent data, used here, exhibits an even stronger

tendency to favor connections with labeled agents (i.e. incumbent firms) than
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the pooled R&D network including all firms, irrespectively of their patent-

ing activity. Let us spend a few words on the comparison between these two

networks.

Due to the fact that our analysis in now restricted only to firms for which

patent data are available, one could expect either an increase in the importance

of network endogenous mechanisms, given that we are considering, on the

one hand, larger and more active firms – or an increase in the importance

of exogenous mechanisms, given that we are considering, on the other hand,

firms for which the technological dimension could be more relevant in the

alliance formation strategy. Our data confirm the first hypothesis, that is the

increase in the relevance of network endogenous mechanisms, which results in

higher probabilities for the agents to collaborate with agents that are already

part of the network, and therefore already labeled. This behavior is present

irrespective of whether the alliance event is initiated by a labeled or a non-

labeled agent: precisely, 65% of the collaborations initiated by labeled agents

(p∗Ls +p∗Ld ), as well as 90% of the collaborations initiated by non-labeled agents

(p∗Nl ), involve a labeled agent as a partner.

5.4.2 Knowledge exchange parameters

In the second step, we fix the network formation parameters to the values ob-

tained in the first step, and run a second set of computer simulations. This

time we estimate the knowledge exchange parameters, i.e. µ and τ , by identi-

fying the simulated collaboration network that best matches with the patent

data set. To quantify the knowledge space, we use either the eight main sec-

tions of the IPC scheme or the 35 technological fields of the ISI-OST-INPI

classification scheme, i.e. the dimensions are set to D = 8 or D = 35.

Pre-alliance conditions In order to calibrate the dynamics of knowledge

transfer, we need to assign to the agents a current position in the respective

knowledge space, to calculate their future positions. Following the model of

network formation, we need to distinguish between the agent that initiates a

collaboration (when becoming active), and the m collaborators chosen by the

initiator.
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A naive approach would assume that we first randomly choose an initiator with

its initial position in knowledge space, then randomly choose m collaborators,

their distances in knowledge space randomly sampled from the empirical dis-

tribution of pre-alliance distances shown in Figure 5.2. Second, we run the

knowledge exchange dynamics of Eq. (5.2), to calculate the expected move-

ment in knowledge space for a given set of parameters τ , µ. Eventually, we

compare the distribution of distances for various τ , µ with the empirical distri-

bution of post-alliance knowledge distances, to find out which set of parameters

matches best.

While the second part of the procedure is correct, the first part is based on

the wrong assumption that firms randomly choose their collaboration partners

from the knowledge space. Figure 5.4 shows, for the two different knowledge

metrics used, how the distribution of pre-alliance distances should look like

if every possible knowledge distance would be realized. We note the strong

deviations between the random and the empirical distributions. First, the

random distributions appear right-skewed while the empirical are left-skewed.

Second, the average pre-alliance distance are around 0.9 in the random case,

while the averages of the empirical pre-alliance distances is much smaller,

around 0.6.

With this, we can conclude that the empirical pre-alliance distance distri-

butions cannot be explained by assuming that firms create alliances without

considering the position of their possible collaborators in the knowledge space.

Hence, we need to essentially consider the full agent-based model – not to

calibrate the dynamics of knowledge exchange, but to correctly determine the

initial conditions for the knowledge exchange dynamics. This lends strong sup-

port to consider the combined processes of network formation and knowledge

exchange, as it is proposed in our model, instead of investigating knowledge

exchange in isolation.

In order to determine the pre-alliance conditions in knowledge space for our

model at a given time t, we distinguish between agents that are not currently,

at time t, involved in any collaboration and those that are currently involved.

Agents that are involved, already have a position in knowledge space that

reflects their previous interaction with other agents during the simulation up
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Figure 5.4: Pre-alliance distance distributions from the empirical and a
randomized R&D network. In (a) we used the IPC scheme to calculate the
firms positions, while in (b) the ISI-OST-INPI scheme.
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to time t. Thus, we decide to keep these (simulated) positions at time t as

starting point for their knowledge exchange in the new alliance. For those

agents that are not involved in a collaboration at time t, we obtain the initial

conditions from sampling from the empirical data. Precisely, the position of

an initiator that is not currently involved in an alliance is sampled from the

distribution of pre-alliance positions obtained from the real patent data. And

for the collaborating agents that are not involved in any other alliance at

time t, we assign a knowledge distance by sampling with replacement from the

empirical distribution of pre-alliance distances given in Figure 5.2.

This procedure of determining the pre-alliance distance distribution mixes up

two conceptually different information. Part of it is obtained from simula-

tions, this way taking into account the path dependence of the recent history

in collaborations, i.e. the active partners in alliances and their influence on

knowledge exchange. Another part of information comes from the empiri-

cal distribution of pre-alliance knowledge positions/distances that reflects e.g.

preferences of agents in choosing partners at shorter distances. Further, it

captures the fact that firms not engaged in any R&D alliance can still perform

related activities and thus move in knowledge space, which is reflected by their

new position assigned when engaging in a new alliance. We emphasize again

that, without the empirical information, we would randomly pair agents that

likely had not chosen to collaborate or we would assume that agents do not

move in knowledge space by themselves. Without the simulations, on the other

hand, we would create problematic artifacts in all cases where agents already

involved in a collaboration are chosen to participate in a new alliance. In such

cases, we cannot assign two positions in knowledge space to the same agent or

randomly switch between profiles. Thus, the best solution is to keep the evo-

lution of agents during existing collaborations into account, as a precondition

for new ones.

This leads us to an important question that we need to answer before we can

discuss the details of the parameter calibration: What is the error that we may

introduce by mixing these two source of information for determining the initial

conditions? In Fig. 5.5(a), we show the distribution of pre-alliance distances

that follows from the constraint of respecting current knowledge positions in

comparison to the empirical distribution. We find that the simulated distri-
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bution matches the empirical one over a large range; however, the simulations

overestimate the probability of having alliances among firms separated by a

small knowledge distance. This deviation is significant only in the range of

distances between 0.2 and 0.4, where the distribution has its maximum.

Obviously, such deviations in the initial conditions are amplified during the

simulated knowledge exchange, as can be seen in Fig. 5.5(b) which shows

the post-alliance distance distribution. Precisely, compared to the empirical

distribution of pre-alliance distances, in the empirical distribution of post-

alliance distances the probability to have a small knowledge distances has

decreased, whereas it has increased in the corresponding simulations. We will

comment on this interesting observation further in Sect. 5.6.

At this point, we just emphasize that the empirical distribution of pre-alliance

distances is much better matched by the distribution obtained from our sim-

ulations that use the selection process described above (see Fig. 5.5(a)) com-

pared to the distribution obtained assuming a random selection process (see

Fig. 5.4(b)). Indeed, when we perform a two-sided Kolmogorov-Smirnov (KS)

test between our simulated distribution of pre-alliance distances and the empir-

ical one, we find an average D-statistic 10 times smaller, i.e. better, compared

to the D-statistic coming from the KS-test performed between the distribu-

tions shown in Fig. 5.4(b). We disregard the p-value of the KS-test, because we

are not interested in statistically inferring the provenience of the two distribu-

tions from a hypothetical common distribution. Our aim is instead to quantify

the similarity between pairs of distributions, a measure that is already fully

captured by the D-statistics of a two-sided KS-test. Hence, in the following

we will take the distribution of pre-alliance distances shown in Fig. 5.5(a) as

a good proxy for the initial condition at the moment of alliance formation.

Optimal parameters In the subsequent computer simulations we vary the

values of the two remaining knowledge exchange parameters, i.e. the agents’

approaching rate µ and the characteristic alliance life time τ . We consider

the values 5 × 10−8, 10−7, 5 × 10−7, 10−6, 5 × 10−6, 10−5 for the parameter

µ and the values 700, 1000, 1500 and 2000 for the parameter τ , thus having

a total of 24 points to explore in the parameter space. The interpretation of

the parameter τ is straightforward: as explained in Section 5.3.1, we adjust
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Figure 5.5: Empirical and simulated distances between firms at the moment
of alliance formation and at the assumed termination of alliances after τ = 700
days. In both plots the distances are calculated in the 35 dimensional space
defined by the ISI-OST-INPI classification, the blue circles correspond to the
mean values and the error bars correspond to the standard deviations of all
the measures we study on the 100 realizations of the optimal simulated R&D
network.
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the activation rate of the agents such that the length of a time step dt can

be directly interpreted as 1 day. Therefore, the value of τ , which is by design

expressed in time steps, can be thought of as the characteristic duration of a

real alliance in days.

For each of the 24 parameter combinations, we run 100 simulations that com-

bine the network formation process (using the optimal parameters determined)

and the knowledge exchange dynamics. This results in a total of 2’400 sim-

ulation runs only to complete the second step of our calibration procedure,

namely to determine the optimal knowledge exchange parameters. We store

the distributions of post-alliance knowledge distances and knowledge distance

shifts in each run. Similar to the first step, we stop every computer simulation

when the total number of collaborations equals the number of alliance events

reported in the SDC data set, E =7’417.

As explained, the distribution of pre-alliance distances shown in Fig. 5.5(a) is

used as an input of the simulations. Thus, we use the distribution of post-

alliance knowledge distances, obtained from each of the 100 simulations for

every parameter combination, to compare it to the respective distance dis-

tribution obtained from the empirical R&D network. This comparison relies

on determining the post-alliance time. It becomes a problem for the empiri-

cal data because the termination dates of alliances are not available. In the

simulations, however, we have assumed that alliances have a duration τ and

are terminated stochastically, afterwards. To allow for comparison, we com-

pute, from the empirical data, the knowledge distance between every pair of

linked firms after the same time period τ , in days, as used in the corresponding

simulation.

To compare the two distributions of simulated and empirical knowledge dis-

tances, we use the two-sided KS-test that assigns a score, the D−statistics,

to each simulated distribution. The value of the D−statistics decreases as the

simulated and the empirical distributions become more similar, hence, it is

used here as goodness score for each simulation. We finally average the 100

score values for the 100 simulations, for each combination of the parameters.

The resulting goodness scores are presented in the heat map plot of Fig. 5.6. It

shows the bi-dimensional parameter space of alliance duration τ and learning
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Figure 5.6: Goodness score for every point in the parameter space, depicted
by means of a heat-map. The color scale corresponds to the score value; the
lower the score, the closer the simulated distribution of post-alliance distances
is to the empirical one. The simulations and the distances have been obtained
considering the 35 dimensional space defined by the ISI-OST-INPI classifica-
tion scheme.

rate µ. As the color code indicates, we find an entire region of parameters

with maximized goodness score for parameter combinations with medium to

large µ, but low τ values.

Although many parameter combinations exhibit a similar, low goodness score,

i.e. they are fairly equally able to reproduce the empirical post-alliance knowl-

edge distance distribution, the best parameter sets can be ranked quantita-

tively. We find that the parameter point yielding the best goodness score is

identified by the following coordinates: µ = 10−7 and τ = 700. This means the

optimal simulated collaboration network exhibits a low approaching rate, and
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a characteristic alliance duration slightly shorter than 2 years. This is not only

consistent with previous theoretical and empirical observations [99, 163], but

also in line with our previous assumption Tomasello et al. [223] to terminate

alliances after 3 years in the empirical network representation. Taking into

account that we have obtained this result here by using two different data sets

and an involved agent-based model, the agreement is even more remarkable.

5.4.3 Robustness analysis

Distribution of post-alliance knowledge distances. Already for the

model calibration, we addressed the problem that the exact durations of R&D

alliances are not known from the data set. Hence, the above estimations of the

optimal duration τ is conditional on the knowledge transfer rate µ. However,

we can also independently investigate how sensitive the distribution of post-

alliance distances responds to changes of the (unknown) duration of alliances.

This is done in the following two steps for both of the knowledge space metrics

used.

In the first step, we analyze the empirical distribution of knowledge distances

for different alliance durations. The NBER patent data set has a time granu-

larity of 1 year. This forces us to use time increments of 1 year with a minimum

window of 1 year. In Fig. 5.7 we show the post-alliance knowledge distance

distribution for different time windows: 1, 3, 5 and 10 years. We find that, for

both knowledge space metrics, the shape of the knowledge distance distribu-

tion appears to have the same shape, irrespective of the time window chosen.

This allows for two conclusions. First, an assumed increase of the alliance

duration does not considerably impact the post-alliance distance distribution,

most likely because firms do not move much in knowledge space over time. Sec-

ond, because of this our modeling approach is robust against the (unknown)

duration of alliances. There is a firm relation between τ and µ as discussed

in Figure 5.6. But even for larger durations τ , the properly calibrated model

can be used to reproduce the empirical distribution of post-alliance knowledge

distances.
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Figure 5.7: Empirical knowledge distance between every pair of partnered
firms, computed 1, 3, 5 and 10 years after the date of the alliance formation.
In (a) we have calculated the distance using the 8 dimensional knowledge space
defined by the IPC scheme and in (b) used the 35 dimensional knowledge space
defined by the ISI-OST-INPI classification scheme.
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Figure 5.8: (a) Empirical shift of knowledge distance between every pair of
partnered firms, computed 1, 3, 5 and 10 years after the date of the alliance
formation. (b) Empirical and simulated distance shifts between all allied firms
for τ = 700days and µ = 10−7days−1 . In both plots, we report results
obtained considering the 35 dimensional space defined by the ISI-OST-INPI
classification scheme.

Changes of knowledge distances In the second step, we calculate the

changes of the knowledge distances between the empirical pre-alliance dis-

tance distribution shown in Fig. 5.2 and the empirical post-alliance distance
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distribution shown in Fig. 5.7. Because the time of alliance termination is not

known, we have to vary the duration again in time steps of 1 year. Our results

are shown in Fig. 5.8 (a) for the ISI-OST-INPI classification scheme. The

results for the IPC scheme are rather similar and therefore not shown here.

There are two remarkable observations in Fig. 5.8 (a). First, the distributions

are clearly centered around zero, i.e. small changes of knowledge distances

are very frequent. Larger changes of knowledge distances are rare, but not

unlikely. This is in line with the broad distributions we find for both the

pre- and the post-alliance knowledge distances. Second, the results for the

changes in knowledge distances are robust against choosing a longer duration

for alliances. We note that positive changes are more prominently seen for the

ISI-OST-INPI classification scheme, whereas they look symmetric for the IPC

scheme.

In order to see whether these findings are captured by our model of knowledge

exchange, we have calculated the changes in distances also in the computer sim-

ulations (using optimal parameters). The result is shown in Fig. 5.8(b), where

we compare the changes in the empirical knowledge distances (also shown on

the left side) with the changes in the simulated knowledge distances. We see

that the (rather) symmetric distribution peaked at zero can be reproduced by

our model, even with the long tails. Some deviations occur close to zero, where

the empirical distribution is more peaked, to decay faster than the simulated

one. These deviations are in line with the deviations already discussed for

Fig. 5.7, where small distances are slightly overrepresented in the simulated

initial conditions.

More interesting is the fact that both the empirical and the simulated dis-

tributions of distance changes exhibit tails on both sides. I.e., some alliances

cause the partners to significantly move closer in the knowledge space, whilst

during other alliances the partners significantly move farther away. In our

model of knowledge exchange, however, we have only assumed that alliance

partners approach each other in knowledge space, which would lead to a left

skew distribution of (mostly negative) changes. The explanation comes from

the fact that firms, while forming new alliances, can be still engaged in existing

alliances or establish new ones. The resulting change in the knowledge dis-
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tance with respect to a given partner is thus the superposition of all influences

a firm is subject to, at the time of alliance termination. In other words, there

exists a nonlinear (and nontrivial) feedback of the network formation process

on the knowledge exchange dynamics, which we further comment on in Sect.

5.6. At this point, we just emphasize that this influence is correctly captured

in our agent-based model, as it also reflects the movement of agents farther

away in knowledge space.

5.5 Estimating the performance of knowledge

exchange

One of the most prominent reasons for R&D collaborations, seen from the

perspective of the firm, is the exchange of knowledge, as already argued in

Section 5.1. The formation of R&D alliances between individual firms results

in a large-scale R&D network pictured in Fig. 5.1. This network represents one

projection of the systemic, or “macroscopic”, perspective. The complementary

projection of the systemic perspective is given by the knowledge space made

up by the patent portfolios of individual firms. Only the dimensions of that

space are defined by the (two different) patent classification schemes. Firms

collectively shape, and explore, this knowledge space by forming alliances and

exchanging knowledge with their partners.

The collective exploration of the knowledge space is beneficial for the whole

system [54]. Therefore, we now want to evaluate the performance of this collec-

tive exploration, by analyzing different indicators. We do not intend to directly

match these indicators to any possible empirical counterpart. Rather, we ad-

dress the question of to what extent the empirical R&D network corresponds

to a simulated network that is optimal with respect to such indicators.

As the possibly simplest performance indicator for our simulated networks, we

investigate the total distance that all agents have traveled in knowledge space

[226]. For an individual agent, the length Li(t) of the path traveled in the
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Figure 5.9: The heat map for the average total distance, 〈L〉, traveled
by the agents is reported in (a). In (b) we report the heat map for network
collaboration efficiency, C, and in (c) the heat map for its normalized and
rescaled version version, Ĉn. For all the three plots, we report results obtained
using the 35 dimensional space defined by the ISI-OST-INPI classification
scheme.

knowledge space is defined by the sum of all distances that the agent traveled

in every time step of the simulation until time t:

Li(Tmax) =

∫ Tmax

t=0

|ẋi(t)| dt (5.6)

For our convenience Tmax is the duration of the entire computer simulation. It

should be noted that the measure |ẋi(t)| dt is a positive scalar and expresses

the actual distance traveled by the agent i, differently from its net displacement

ẋi(t) dt, which is a vectorial quantity.

The measure Li(t) is then averaged over all the agents in the network to obtain

the averaged total distance in knowledge space, 〈L(t)〉 = N−1
∑N
i Li(t). This

is shown in Fig. 5.9(a) as a heat map of the bi-dimensional (τ, µ)−parameter

space. We argue that a higher value of 〈L〉, i.e. a better exploration of the

knowledge space, corresponds to a higher systemic performance, because, as

already discussed in Section 5.1.1, firms are proven to innovate more when

they come in contact with more technological opportunities.

At the same time, using 〈L〉 as performance indicator does not give us detailed

insights because, as Fig. 5.9(a) shows, higher approach rates µ always lead to
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larger distances traveled in knowledge space, for any alliance duration τ . This

motivates us to propose a more refined performance indicator, C, that also

takes into account the number of active collaborations, kact
i (t), that cause

firms to move in knowledge space at a given time t. I.e. in our model kact
i (t) is

the degree of agent i at time t. We remind that not all collaborations are active

at a given time; some are terminated and become inactive after a characteristic

time τ . As firms engaged in alliances incur in costs, we consider that C should

decrease with increasing number of active collaborations:

C =

∫ Tmax

t=0

∑N
i=1 |ẋi(t)|∑N
i=1 k

act
i (t)

dt =
1

2

∫ Tmax

t=0

∑N
i=1 |ẋi(t)|
Mact(t)

dt (5.7)

C is called collaboration efficiency because it considers how much output, i.e.

movement in knowledge space, the system achieves for a given input, covering

e.g. the costs to maintain collaboration links. The ratio of the two sums in

Eq. (5.7) gives the total distance traveled per active collaboration during a

given time step dt. This ratio is then integrated over the duration Tmax of the

simulation, to obtain the overall collaboration performance C of the network.

The sum of all agents’ degrees,
∑
i k

act
i (t) = 2 ·Mact(t), gives us twice the total

number of active links, Mact(t), in the network at time t because every link

connects two agents. By plugging this into Eq. (5.7), we obtain the second

expression for the collaboration efficiency. It means that, given equal total

knowledge distances
∑N
i Li(t), an R&D network with less alliances would

explore the knowledge space more efficiently.

We use Eq. (5.7) to compute the collaboration efficiency C for every network

generated during the simulations. C is then averaged over 100 simulations for

every combination of parameters. The results are shown in the heat map of

Fig. 5.9(b) for simulations using the 35 dimensional knowledge space, where we

plot the collaboration efficiency C against the two parameters characterizing

the knowledge exchange, exchange rate µ and alliance duration τ . Comparing

this to Fig. 5.9(a), we find again that µ has a strong impact, i.e. the larger the

knowledge exchange rate, the better the performance. However, the influence

of τ has reversed. Now, performance increases with shorter alliance durations,

which is understandable because we take the costs of alliances into account.
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Figure 5.10: Collaboration efficiency C dependent on the knowledge ex-
change rate µ for a fixed alliance duration of τ = 700 days. The knowl-
edge of the agents was embedded in the 35 dimensional space defined by the
ISI-OST-INPI classification scheme.

The larger τ , the more alliances exist concurrently and have to be maintained.

This causes the overall performance to drop.

To further investigate the strong impact of µ, we plot in Fig. 5.10 for a fixed al-

liance duration τ =700 days how the collaboration efficiency C changes with the

knowledge exchange rate. We find that there is a linear relation between these

two quantities (similar for other values of τ , not shown). This is agreement

with the definition of C, Eq. (5.7), where the leading term of the numerator

is linear in µ. Non-linear terms of the order O(µ2) play a less important role

since µ is small. Hence, for a better comparison of the collaboration efficiency

across different values of τ , we rescale C as Ĉ = C/µ. In addition, to obtain

a dimensionless quantity that varies between 0 and 1, we normalize Ĉ by its

maximum value obtained for a given set of parameters µ, τ , i.e.

Ĉn =
Ĉ

maxµ,τ Ĉ
=

C/µ
maxµ,τ (C/µ)

(5.8)

In Fig.5.9(c), we show Ĉn for all combinations of the knowledge exchange

parameters. We confirm, even after normalization, the tendency that the

performance increases with smaller values of τ , i.e., for the range of parameters
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considered the best value of τ is 700 days. But for the knowledge exchange

rate, we obtain a more detailed and heterogeneous dependency. Given τ =700

days, the optimal value of µ is now at 5× 10−7 days−1.

In conclusion, we find that the highest efficiency in knowledge exchange is ob-

tained for medium exchange rates and short alliance durations. These results

are found by means of computer simulations of our model. In order to transfer

such insights to firms in real R&D networks, some restrictions apply.

It is understandable that a shorter collaboration is more beneficial because it

implies, as already mentioned, that in a given time interval a smaller number of

concurrent alliances exist. A reduced number of collaborations, on the other

hand, allows a firm to move efficiently along one or a few directions in the

knowledge space.

In order to keep the performance of exploring the knowledge space high, firms

have to compensate shorter alliance durations by larger knowledge exchange

rates. While this is feasible in our model, it may not hold under practical

circumstances because firms have limits of how much new knowledge they can

absorb at a given time. So, there are upper limits for the knowledge exchange

rate µ.

On the other hand, it is obvious that there is a lower bound for an optimal

alliance duration τ . Firms have to get to know each other, and have to es-

tablish procedures of collaborations which takes time. Hence, organizational

and management arguments suggest that τ cannot simply approach zero, also

because the knowledge exchange rate cannot simply be increased to arbitrary

large values.

Such arguments apply when choosing realistic ranges of parameters τ and

µ in our model. Thus, via the choice of parameters our model takes these

limitations into account. In addition, it is useful to understand the impact of

these model parameters on the systemic performance in knowledge exploration.

As we have shown, there is a nonlinear, and non-trivial, relation between

knowledge exchange rate µ and alliance duration τ . With an increasing alliance

duration, more links become active at the same time, thus forcing firms to cope

with the effect of multiple partnerships. This results in a reduced motion, i.e.

a reduced collective exploration, in the knowledge space. In other words,
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the density of the collaboration network increases with τ and, after a certain

threshold, the addition of a new link has a negative marginal effect on the

overall exploration of the knowledge space.

5.6 Conclusions

This chapter aims at a quantitative understanding of knowledge exchange in

R&D networks. “Quantitative” means, (i) we propose a model that reflects

the two tightly connected processes of forming R&D alliances and knowledge

exchange, (ii) we analyze large-scale data sets capturing R&D alliances and

knowledge bases of firms to calibrate the model parameters, (iii) we perform

extensive computer simulations to analyze the performance of knowledge ex-

change in R&D network. Instead of repeating our findings, in this section we

highlight a few points for further discussion.

Partner selection and network formation We have proposed an agent-

based model that consists of two interlinked phases: (1) the formation of the

R&D network, which is called the exploration phase because agents explore

the social capital of potential partners, and (2) the exchange of knowledge

on the formed network, which is called the exploitation phase because agents

utilize the collaboration with partners to move in knowledge space.

The calibration of our model against real data was performed through a two-

step procedure. By means of an alliance data set, we have estimated a set of

link probabilities that allow us to reproduce the topology of the R&D collab-

oration network. Subsequently, through a second data set on firm patents, we

have estimated parameters for the knowledge exchange between firms and the

duration of R&D alliances.

For the formation of the R&D network, we found that firms exhibit a strong

tendency to connect to network incumbents. Precisely, 65% of the collabora-

tions initiated by incumbents, as well as a surprising 90% of the collaborations

initiated by newcomers, are addressed to another incumbent. In this regard,

the validation of our model brings additional support to the theory of the
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importance of existing network structures in the formation of new R&D col-

laborations [see 165, 181].

Dynamics of knowledge exchange Because the model part related to

the network formation was already investigated by Tomasello et al. [224], in

this chapter we mainly focus on modeling knowledge exchange as a motion

of agents in a predefined knowledge space. The knowledge base of agents is

estimated by the patent portfolio of firms. Therefore, the dimensionality of

the knowledge space is given by the patent classifications for which we use

two different schemes, (a) IPC and (b) ISI-OST-INPI. With respect to our

model, their difference is mainly in the number of dimensions, (a) 8 and (b)

35. Thus, we can also address the question how an expansion of the number

of dimensions of the knowledge space affects the results of our model.

Firms are characterized by a position in this knowledge space, which changes

over time as they obtain new patents. As at the focus of this chapter there are

R&D collaborations, the model does not assume that firms can change their

position by independent R&D activities. But we have indirectly covered this by

the fact that, in our model, each time a new alliance starts agents get assigned

a new position if they are not already involved in existing alliances. Differently

from the model introduced by Tomasello et al. [226], where the motion of every

agent was driven by only one partner at every time step, in the present model

the agents are subject to a motion resulting from interactions with multiple

partners. As we have already discussed in Sect. 5.3.2, our dynamics assumes

that knowledge exchange causes agents to approach each other in knowledge

space, not just in one dimension but in all dimensions. This takes into account

the effect of knowledge spillovers that go beyond the exchange of very specific

knowledge.

Analyzing empirically the impact of R&D collaborations on firms’ knowledge

positions, we found that small changes in knowledge distances are dominat-

ing the dynamics in knowledge space (see Fig. 5.8). I.e., real firms do not

significantly change their knowledge positions as a consequence of their col-

laborations. This supports our conclusion that most alliances exert only a

weak influence on the knowledge positions of firms. However, we also find
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that some (non-negligible) alliances are able to cause a strong movement in

knowledge space.

Interplay between network formation and knowledge exchange It is

an interesting observation that the empirical distribution of distance changes is

rather symmetric with respect to zero; although we note that positive changes

are more prominently seen in the ISI-OST-INPI classification scheme (see

Fig. 5.8). This means that, in the period elapsed during a specific R&D

alliance, firms not only approach each other in knowledge space (negative dis-

tance changes) but also move farther away (positive distance changes).

This finding can be also reproduced by our agent-based model, which is re-

markable because there we assume only that agents approach each other. How-

ever, the model of knowledge exchange considers the combined impact of all

interactions on the knowledge position of an agent. Our model can reproduce

both negative and positive distance changes because they result not only from

the knowledge dynamics, but also from the network dynamics. This means

that, while being engaged in one alliance, agents start to form new alliances

with other partners which can drive them away from their current partners.

Hence, it is the complex interplay between network formation and knowledge

exchange that at the end can explain the collective exploration of the knowl-

edge space.

Pre- and post-alliance distance distributions For the calibration of our

knowledge exchange dynamics, special attention was given to the knowledge

distances between firms at two points in time, at the moment of alliance for-

mation (which is known) and at the moment of alliance termination (which is

not known). Hence, the alliance duration τ is considered as one free parameter

of our model.

We emphasize that in our model proximity in knowledge space is not a precon-

dition for agents to form alliances. Consequently, distances can be quite large,

which is in line with the empirical fact that the distribution of pre-alliance

distances is clearly left-skewed (see Fig. 5.2). On the other hand, we have also

shown that the most frequent pre-alliance distance between firms are shorter
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than the one expected at random (see Fig. 5.4). The most probable value (i.e.

the maximum of the distribution) is clearly different from zero and could be

interpreted as an optimal distance in knowledge space for firms to engage in

an alliance.

In our model, we have taken the distribution of pre-alliance distances as an

input, i.e. we have sampled the knowledge positions of agents that are not

engaged in an alliance at that time from this distribution. Agents that are

in an alliance at that time, however, keep the knowledge position simulated

by the model. The combined procedure of sampling knowledge positions has

two advantages: first, we retain information about the similarity of collab-

orating firms in the knowledge space. For example, if firms from the same

industrial sector were more likely to have an alliance, this would be captured

in the pre-alliance distance distribution (e.g. smaller alliance distances are

more probable) and considered in our model. Second, by using the empirical

knowledge vectors, we also keep information about the technological areas in

which firms usually file patents. Thus, we partially account for the size of firm

portfolios of patents.

Regarding the distribution of post-alliance distances, we have shown that it

is not really different from the distribution of pre-alliance distances, which

reflects the fact that most changes in knowledge positions are rather small.

This finding holds for both patent classification schemes, i.e. it is robust

against the number of dimensions of the knowledge space. It is also robust

against the assumed alliance duration (see Fig. 5.7).

So, if firms do not move much in knowledge space, why is their position impor-

tant? Firms rather use the available information about knowledge positions

of their partners to establish new collaborations. Therefore, a firm’s position

in knowledge space is more a determinant than a consequence of its R&D

alliances.

In our model, we have used the distribution of post-alliance distances to com-

pare the outcome of our simulations with their empirical counterpart. Using

optimized parameters for the simulated network formation, we vary the pa-

rameters for knowledge exchange to find the best match between the empirical

and the simulation post-alliance distance distribution (see Fig. 5.6). As the re-
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sult, we obtain the values µ = 1×10−7, .., 5×10−7 for the knowledge exchange

rate and τ = 700 for the alliance duration. µ has a relatively low value, which

is in line with the fact that most firms do not move much in knowledge space,

while τ indicates a characteristic duration of around two years (700 days).

The latter finding is consistent with our previous theoretical assumptions and

a number of previous studies [see 99, 163]. We note that these optimal param-

eters for knowledge exchange are obtained from a procedure that compares

simulation and empirics. In the following, we discuss that we have derived the

same optimal parameters from a pure simulation approach, using assumptions

about performance.

Performance of knowledge exchange In this chapter, we are not only

interested in the dynamics of knowledge exchange in R&D networks, but also

in the performance. The latter we define as a systemic property, i.e. we do not

discuss the performance of individual firms, but the collective performance of

the whole R&D network in efficiently exploring the knowledge space.

The dynamics assumed for knowledge exchange would suggest that higher

knowledge exchange rates µ and longer alliance durations τ are always better

for exploration. This, however, implies that firms cope with many concur-

rent alliances at the same time and have an infinite capacity of absorbing

new knowledge. A more realistic scenario has to take into account that al-

liances are also costly, i.e. establishing and maintaining concurrent alliances

is constrained by capacities. To capture these influences, we have proposed

the (normalized) collaboration efficiency Ĉn, Eqs. (5.7), (5.8), as a new perfor-

mance measure. Analyzing how Ĉn depends on the parameters for knowledge

exchange µ and τ , we find that the collaboration efficiency is maximized for

values µ = 5× 10−7 and τ = 700 (see Fig. 5.9c), which match the above given

optimized parameters from Fig. 5.6. Because this result was found by com-

paring only simulations, we regard this as an independent way to confirm the

parameters found by comparing the empirical and the simulated distribution

of post-alliance distances. This means that, using our approach, it is possible

to obtain a configuration that is both realistic and optimized with respect to

the collaboration performance.
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When discussing these findings, we already pointed out that in real-world ap-

plications the parameters µ and τ are rather determined by the firm’s abilities

to quickly establish a collaboration and to absorb new knowledge fast. Hence,

organizational and managerial constraints apply, which should be considered

for choosing values for these parameters.

Nevertheless, with our model we are able to point toward policies aimed at

system optimization. Effective policies to obtain an improved collaboration

network would incentivize short R&D alliances and higher knowledge exchange

rates. Practically, it would be impossible to directly enforce shorter alliance

durations or faster learning rates. But measures could include, for instance,

rewards for co-patenting activities if these are carried out as early as possible

after the establishment of an R&D alliance. The goal would be to stimulate

companies to explore other knowledge positions with new partners while lim-

iting the duration of a single alliance and to avoid having too many active

collaborations at the same time.

In conclusion, we argue that our model can successfully reproduce both network-

related and knowledge-related features of a real inter-organizational R&D net-

work. At the same time, our data-driven approach provides a unique method

to estimate the systemic performance of R&D collaborations. We note that

our model is extendable to other collaboration systems, beyond the domain

of R&D networks, provided that the agents can be unequivocally positioned

in a knowledge space. Our approach thus contributes to a comprehensive

understanding of the effects of knowledge exchange in dynamically evolving

collaboration networks.



Chapter 6

Scientists’ knowledge distance and

knowledge exchange

Summary

We analyze a large publication data set to study to which extent knowledge

is exchanged between scientists using collaborations. We start by defining

a knowledge space using a real-world classification scheme for publications.

In this space, we assign knowledge positions to scientists depending on their

publications. Then, we analyze how scientists knowledge positions change over

time, i.e., how scientists move in the knowledge space depending on newly co-

authored publications. Also, we analyze scientists’ productivity with respect

to the knowledge of their set of collaborators. Finally, we reconstruct the

aggregated collaboration network between scientists and identify a relation

between scientists’ distances on the network and in the knowledge space.1

1This chapter contains unpublished work. Recently, we have discovered that our defini-
tion of the knowledge space was used by [103] to model the evolution of scientists’ interest
publishing in the APS data. Additionally, Jia et al. [103] have chosen the cosine distance to
measure knowledge distances in this space, just like we do. At the same time, the methods
and focus of this chapter have significant differences compared to [103]. In particular, from
the method perspective, we do not normalize the size scientists’ knowledge positions, and
hence, we do not re-scale the knowledge space. In Sect. 6.3, we discuss why we do not have
to normalize in our study. Moreover, in [103], the authors have a different focus compared
to us. They mainly concentrate on changes in scientists’ positions in the knowledge space
between the beginning and the end of their careers. We provide an extensive analysis of the

145
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6.1 Introduction

Globalization is leading to an increase of collaborations in many areas of human

activity, ranging from economics to science [85, 142]. In the previous chapter,

we have analyzed collaborations in economics, and now we turn our attention

to science. In this domain, the increase of collaborations is quantitatively

captured by an increasing number of publications co-authored by teams of

scientists [70, 125, 256]. By working together, scientists combine their different

knowledge and strengths in order to produce new results. These results are

then reported in co-authored scientific publications that encode new knowledge

jointly produced. This is mainly possible thanks to a co-ordination process that

involves communication and knowledge sharing between scientists. Hence, the

analysis of co-authorship activities provides not only an understating of how

knowledge is jointly produced but also of how it is exchanged.

Many works have analyzed scientists’ co-authorship activities and have mainly

focused on the formation of individual collaborations and on how a network

structure emerges from these. Examples include the pioneering network anal-

ysis of Newman [143, 145, 149] that have characterized scientist collaboration

networks, and the models for team assembly of scientists proposed by Guimera

et al. [81] and Tomasello et al. [227]. However, less attention has been devoted

to the role of knowledge in the formation of collaborations and on how these

collaborations then affect the knowledge of the collaborating scientists. A

notable exception is [219] where the authors have proposed a model for the

evolution of scientific disciplines depending on scientists’ co-authorship activ-

ities. Regardless of all these advances, the questions of how collaborations

influence the knowledge of individual scientists and how collaborations are

dependent on scientists’ knowledge are still open.

In this chapter, we provide an extensive empirical analysis of scientists’ col-

laborations and of the feedback between these collaborations and scientists’

knowledge. To do this, we start by embedding scientists in a knowledge space

depending on their co-authored publications listed in the APS corpus (see

feedback between scientists’ positions and collaborations instead. All the work presented in
this Chapter was developed independently of [103].
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Chap. 2). The knowledge space is defined using the PACS classification scheme

that is used to classify these publications. In this space, we introduce and jus-

tify a knowledge distance capturing how similar or dissimilar scientists are

depending on their knowledge. Then, we use the introduced knowledge space

to study scientists’ collaborations at three different levels.

First, we provide an analysis at the micro-level where the units of analysis are

pairs of scientists. By this, we extend the analysis of Chap. 5 to the scien-

tific domain. Also, we introduce two new measures: one capturing scientists’

effort in reducing the knowledge distance with their collaborators and one

quantifying knowledge exchange between scientists that have co-authored a

publication.

Second, we explore collaborations and knowledge at the meso-level. By re-

ferring at groups of scientists co-authoring publications as teams, we study

the composition of teams with respect to the knowledge of their members.

Moreover, we investigate how the productivity of scientists is dependent on

the knowledge of their set of collaborators.

Third, we move our attention on a macro-level and analyze the entire scientists’

collaboration network. This network is reconstructed by aggregating all the

co-authorship activities listed in our data. We characterize the reconstructed

network by computing standard network measures and verify that our network

is similar to other collaboration networks studied in previous works. Then, we

analyze how scientists’ distances on the network are related to their distances

in the knowledge space.

The remaining of the chapter is divided as follows. In Sect. 6.2, we shortly de-

scribe the data used. In Sect. 6.3, we define a knowledge space using the PACS

classification scheme, knowledge positions of scientists, and knowledge dis-

tances. Then, we analyze scientists’ collaborations at a micro-level in Sect. 6.4,

at a meso-level in Sect. 6.5, and at a macro-level in Sect. 6.6. Finally, we con-

clude this chapter with Sect. 6.7 where we discuss our findings.
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6.2 Data

We determine the knowledge space and knowledge positions of scientists using

the APS data set. This contains more than 460 000 publications coming from

1893 to 2009 (116 years). For each publication, we have various information,

including its list of authors, PACS codes, DOI, and publishing date. From

the DOI, we obtain disambiguated scientists’ information using the procedure

described in Chap. 2. Note that we have the PACS codes only for papers

published after 1975, i.e., from the year PACS was introduced. Hence, we

discard older publications.

We also discard publications with more than 40 co-authors. Recall that we

consider co-authoring activities as collaboration events that allow the exchange

of knowledge. In other words, we assume that all the scientists co-authoring

a publication have been interacting with each other. With increasing group

size, the probability that these interactions have really occurred decreases. As

an example, consider large physics experiments, like LIGO, whose results are

published in papers co-authored by hundreds of scientists. However, probably

only specific sub-groups of scientists worked together. For this reason, we re-

move publications co-authored by too large groups. Note that it is essential to

remove these publications from the analysis. Each collaboration of size m pro-

vides m(m− 1)/2 pairwise interactions at scientist level. So 9 900 papers with

only two co-authors (for which it is reasonable to assume a close collaboration

among the co-authors) give the same number of pairwise interactions as two

papers with 100 authors. This means that any statistics computed using pair-

wise interactions would be extremely dependent on publications co-authored

by large groups. For this reason, we remove these publications.

Additionally, we also discard scientists that have either authored only on pub-

lication or only single-author publications. For the former type of scientists,

we cannot analyze their evolution of time, while for the latter, we have no

information about their collaborators.

After the above filtering procedure, the final sample used for this analysis con-

tains 109 845 scientists authoring 299 052 publications. We represent scientists

and collaboration using a network perspective. By this, we reconstruct the
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collaboration network among scientists publishing in APS journals. The net-

work is undirected and unweighted, and it has 109 845 nodes and 1 232 539

distinct links.

6.3 Preliminaries

6.3.1 The knowledge space

To represent the knowledge of a scientist, we use the publications that he/she

has co-authored. We do this by embedding scientists in a knowledge space

defined using a real classification scheme of publications: the Physics and As-

tronomy Classification Scheme (PACS). The PACS contains codes that are

assigned to publications listed in the APS data. The PACS codes are made

of pairs of two digits number and succeed by two characters: upper or lower

case letters or ”+” or ”-” symbol. For example, a PACS code is 13.30.Er. The

first digit of the first pair of digits (”1”) represents the main category: ”1”

stands for The Physics of Elementary Particles and Fields. The first

and second digit together still define broad sub-categories: ”13” is General

theory of fields and particles. The second pair of digits and the com-

bination of characters represent a much more narrow and specialized classifi-

cation: ”11.30.Er” is Charge conjugation, parity, time reversal, and

other discrete symmetries. 2

To define the dimensions of the knowledge space, we have three options: to

use only the first digits of the PACS codes, use the first pair of digits or use

the full codes. Using only the first digits would imply that we have only

ten different types of topics. This would give to much of a coarse-grained

view of the different types of knowledge contained in the publications. While

using the full codes would give an extremely sparse representation. We argue

that by keeping the first two digits, we can capture enough differences while

retaining enough statistics. By using the first two digits, we obtain a total

2The full description of the different available PACS codes are in https://publishing.

aip.org/publishing/pacs/pacs-2010-regular-edition.

https://publishing.aip.org/publishing/pacs/pacs-2010-regular-edition
https://publishing.aip.org/publishing/pacs/pacs-2010-regular-edition
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First digit PACS name # of Second digits

00 General 7

10 The Physics of Elementary Particles and Fields 4

20 Nuclear Physics 8

30 Atomic and Molecular Physics 7

40
Electromagnetism, Optics, Acoustics, Heat Transfer,

Classical Mechanics, and Fluid Dynamics 7

50 Physics of Gases, Plasmas, and Electric Discharges 2

60
Condensed Matter: Structural, Mechanical

and Thermal Properties 8

70
Condensed Matter: Electronic Structure, Electrical,

Magnetic, and Optical Properties 9

80
Interdisciplinary Physics

and Related Areas of Science and Technology 7

90 Geophysics, Astronomy, and Astrophysics 8

TOTAL 67

Table 6.1: First digit of the PACS codes with their name and their number
of distinct second digit codes.

of 67 different topics that will represent the 67 different dimensions of the

knowledge space (see Table 6.1).

Note that the PACS is not constant over time, but we do not consider this

in our study. We argue that to include the time evolution is rather a compli-

cation than of any help. PACS has been continuously evolving between 1985

to 2010 [158]. To consider the evolution of PACS codes would cause compli-

cations in the classification of the publications and the determination of the

knowledge space, while bringing unclear benefits. Only for some particular

cases, changes in the classifications scheme are relevant, such as when a PACS

code is removed. For example, PACS code 22 was removed in the last version

of the classification. Since we have only two papers with such code, we have

discarded them from our analysis and this PACS code 22 is not considered as

a dimension in the knowledge space. For most codes, the classification scheme

did not undergo profound changes, especially at the second digit level. There-

fore we discard the time evolution of the PACS. For an interesting study on

the evolution of the PACS using a network perspective, see [158].
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PACS 02

PACS 05

PACS 89

Figure 6.1: Knowledge vectors of two papers, vP1 and vP2 , authored by the
same author A1 before time t. The knowledge vector of the author vA1,t is
equal to the sum of the knowledge vectors of the two papers.

6.3.2 Knowledge positions of scientists

Each scientist is placed in the knowledge space depending on its publications.

Recall that this comes from the convention that publications are artifacts that

encode explicit knowledge (see Chap. 1). Hence, we start by assigning to each

publication a knowledge vector depending on its PACS codes. For example, if

a publication α has three PACS codes 02.10.Ab, 03.65.Aa and 03.65.Ca, we

assign a knowledge vector vα = (0, 1, 2, ...): each component of vα is equal to

the number of PACS codes assigned to the publication α and related to that

component (see Fig. 6.1). Note that the knowledge vectors of publications are

vectors of integers.

After defining knowledge vectors of publications, we define scientists knowl-

edge positions as the sum of the knowledge vectors of the publications that
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he/she has authored alone or in collaboration. In other words, a scientist i has

published a set Si(t) of papers until time t, i.e. Si(t) = {pα, pβ , . . . }, and for

each paper, pα, we have assigned a knowledge vector vα. Then, the knowledge

position of scientist i at time t is

vi,t =
∑

pγ∈Si(t)

vγ (6.1)

Scientists trajectories. By looking at scientists’ positions at different times,

we reconstruct their trajectories in the knowledge space. The first feature of

such trajectories is that they occur on a multidimensional lattice as changes of

positions depend on publications’ knowledge vectors that contain only integers

number. Also, trajectories always move away from the origin of the knowledge

space. In such a space, a scientist can quickly move away from the origin if

he/she authors publications always with similar PACS code. While, if he/she

continuously authors publications with different PACS codes, he/she explores

more dimensions of the space and stays closer to the origin. We call the for-

mer an exploration “in-depth” of the knowledge space, while the latter an

exploration “in-breath”. The difference between “in-depth” and “in-breath”

exploration can be captured by computing the euclidean distances between

scientists’ positions and the origin after a given number of publications. In

other words, by computing the euclidean length of their trajectories.

In Fig. 6.2, we report the empirical distribution of lengths after publishing 2,

10, 20 and 50 papers. We find that the distributions are quite broad and have

an increasing median of 3.46, 14.73, 28.27, and 67.01. This corresponds to

having half of the scientists authoring publications in at least 3, 6, 9 and 14

PACS (respectively after 2, 10, 20 and 50 publications). From this, we find

that scientists tend to focus on specific topics at the begging of their careers,

but then over time, they increasingly diversify their production. In order

to quantitatively address this point, we compare the lengths of the empirical

trajectories with the one generated with a null model. The null model is based

on a random walk process in the knowledge space. Each scientist is replaced

with a random walker, and the random walker obtains the publication list

of the scientist. At each time step, the random walker takes a publication
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(a)

(b)

Figure 6.2: Distribution of euclidean norms of the empirical knowledge
positions (a) and of the random ones (b) after 2 (blue), 10 (orange), 20 (green),
50 (red) publications.

from her list and performs a number of jumps equal to the number of PACS

codes present on the publication. By this, we simulate trajectories for which

we can compute the lengths. We find that the random walkers explore many

more dimensions and hence, move much more slowly away from the origin

compared to the real scientists. The medians for the simulated distributions

of trajectories are 2.45, 6.16, 10.0 and 20.76, corresponding to having half of

the random walkers exploring at least 5, 23, 38 and 59 dimensions, respectively

after 2, 10, 20 and 50 publications. Additionally, most of the random walkers

have trajectories with similar lengths, while the distributions of trajectories’

lengths for the real scientists are much broader.
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To summarize, we find that scientist explore the knowledge space in an ex-

ceptionally non-random way with respect to two aspects: 1) each scientist has

some preferred directions, i.e., topics; 2) the movement behaviors of scien-

tists in the knowledge space are much more heterogeneous compared to what

would be expected from a random walk process. To further study scientists’

trajectories in the knowledge space and to capture the above aspects, we could

consider using reinforced random walks [47]. In this type of random walk, the

dynamic depends on the previous history, and they have been successfully ap-

plied to model directed motions of humans and animals [93, 209]. Thus, we

could try to reproduce scientists’ trajectories by correctly tuning the impor-

tance of previously explored dimensions of the knowledge space. Even though

such a modeling perspective is interesting, it deviates from the focus of this

chapter, which is studying knowledge exchange occurring during co-authorship

activities of scientific publications. For this reason, we leave as future research

to verify how scientists trajectories could be modeled using reinforced random

walks.

6.3.3 The knowledge distance

In order to measure if two scientists have similar or dissimilar knowledge, we

introduce a knowledge distance in the knowledge space. We choose to use the

cosine distance:

dcos(v1, v2) = 1− v1 · v2

|v1||v2|
. (6.2)

where v1 and v2 are vectors identifying knowledge positions of two scientists.

This measure varies between 0 (scientists have similar knowledge) and 1 (sci-

entists have dissimilar knowledge). Precisely, dcos = 0 when two scientists

have parallel vectors. This happens if and only if both scientists published in

the same PACS in the same proportion and hence, they have knowledge on

the same topics in the same proportion. If two scientists have half of their

publications containing the same PACS codes in the same proportion, then

their cosine distance is 1 −
√

2/2 ≈ 0.3 and corresponds to an angle of 45

degree between their knowledge positions v1 and v2. For angles smaller than
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Figure 6.3: Distance matrix among nine established scientists publishing in
APS. A red color indicates that two scientists are similar, while a blue color
indicates that they are dissimilar.

45 degrees, scientists have similar knowledge as they share at least half of their

knowledge. For bigger angles, scientists have dissimilar knowledge.

A case study. To provide a better intuition of what knowledge distance

captures, we make a case study. We have selected nine established scientists

publishing in APS journals in different sectors for whom we can judge how sim-

ilar and dissimilar they are from our personal experience. The set of authors

are A. L. Barabási, Frank Schweitzer, M. E. J. Newman, Tilman Esslinger,

Immanuel Bloch, Edward Witten, Julian Talbot, Pascal Viot, Giorgio Parisi.

In Fig 6.3, we report their knowledge distances in 2010 as a distance matrix.

Each cell represents the similarity between two scientists, and the colors go

from red (similar) to blue (dissimilar). In the top left corner, we have a simi-

larity between A. L. Barabási, Frank Schweitzer, and M. E. J. Newman. These

scientists research on complex systems and network theory, and they are cor-
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rectly mapped to have similar knowledge (dcos ≈ 0.3). Two among these three

scientists are measured to have similar knowledge to Julian Talbot and Pascal

Viot that are working on statistical physics. Given the fact that complex sys-

tems and statistical physics are two overlapping topics, our measure correctly

estimates the similarity between them. From our measure, we also find that

Edward Witten is dissimilar from all the others, and this matches the fact

that he is one of the top scientists working on string theory. To our knowl-

edge, none of the others are working on this topic 3. Last, but not least, we

look at Tilman Esslinger and Immanuel Bloch that are two renowned scientists

working on remarkably similar topics: cold atoms and optical lattices. Our

measure captures their similarity as their knowledge distance is almost equal

to zero (dcos . 0.1). Note also that cold atoms and optical lattice physics are

topics that do not overlap with the ones of the other scientists in our sample.

Thus, Tilman Esslinger and Immanuel Bloch have dissimilar knowledge to the

other scientists (dcos > 0.8).

In Chap. 5, we have used the Euclidean distance dE , and hence, one could

argue to use this measure again, instead of the cosine distance. However, with

dE , we would be capturing two difference in scientists knowledge at the same

time: 1) differences in the number of published papers and 2) differences in

the type of knowledge. For example, consider two scientists, i and j, that

always publish in one single PACS, but one has 1 paper, while the other 6

papers. If we assume that each paper only has one PACS, then knowledge

distance between i and j is dE(vi, vj) = 5 and it only comes from the different

number of published papers. This knowledge distance could been obtained

also by two scientists k and l that published 3 and 4 papers in different PACS,

dE(vk, vl) =
√

32 + 42 = 5). This time, the knowledge distance is capturing

that the authors are publishing on different topics. Since we only focus on

detecting differences in the type of knowledge, i.e., the second scenario and

not the first one, we have to fix this ambiguity.

3The only exception is Giorgio Parisi whose primary research focus is spin glasses (sta-
tistical Mechanics), but he also had some significant contribution in QCD and string theory.
Our measure partially captures this as Giorgio Parisi is the less dissimilar scientists from
Edward Witten.
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Note that the ambiguity arises from the fact that now the knowledge positions

of scientists are not normalized, while in Chap. 5 firms’ knowledge positions

were normalized. However, this time, we do not normalize the vectors of

knowledge positions as the lengths of these vectors are an exciting feature of

our data (see in Sect. 6.3.2). So, we have decided to use the cosine distance

(see Eq. (6.2)). This is almost equivalent to use the Euclidean distance on

normalized vectors. Precisely, the cosine distance between two vectors, v1

and v2, is proportional to the square of the euclidean distance between their

respective versors (i.e., their normalized vectors, v̂i = vi/|vi| with i = 1, 2 ):

dcos(v1, v2) = 1− v̂1 · v̂2 =
1

2

(∑
i

(v̂1)2
i +

∑
i

(v̂2)2
i

)
−
∑
i

(v̂1)i(v̂2)i

=
1

2

(∑
i

(v̂1)2
i + (v̂2)2

i − 2(v̂1)i(v̂2)i

)
=

1

2
d2
E(v̂1, v̂2)

where v̂j = vj/|vj |, i.e. a versor, (v̂j)i is th i-th component of the knowledge

versors vj and we have used that 1 =
∑
i(v̂l)

2
i . Thus, when comparing authors

using the cosine distance, we are actually using an equivalent measure to the

one used in the previous chapter. 4

After introducing the knowledge space, scientists’ knowledge positions and

how to calculate distances, we have the right tools to quantify the volutions

of scientists’ knowledge. In the next two sections, we analyze the interplay

between scientists’ knowledge positions and their collaboration patterns. The

analysis is split into three parts. First, we analyze pairwise interactions, i.e.,

similarities and differences between pairs of collaborating scientists. Second,

we focus on teams, meaning that we analyze how groups of scientists have sim-

ilar or dissimilar knowledge when co-authoring the same publications. Third,

we look at the entire collaboration network.

4There is only one small difference between these two measures in our case. We have
normalized the knowledge vectors of firms using an L1 norm and not the Euclidean, L2. By
using the L1 norm, it was easier to interpret the meaning of the component of the knowledge
vector of a firm. They are the fraction of patents filed in a specific IPC code.
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(a) (b) (c)

Figure 6.4: Distributions of pre-collaboration distances before every single
collaboration (a), before collaborations among distinct scientist pairs (b) and
among random pairs of scientists (c). For this last distribution, we look at
distances in five different years 1990, 1995, 2000, 2005, 2010.

6.4 Knowledge distance and knowledge exchange:

A micro-level analysis

We study the effect of collaborations on scientists’ knowledge positions. Sim-

ilar to the Chap. 5, we start to do this by investigating three different quanti-

ties: pre-collaboration distances, post-collaboration distances and knowledge

shifts (see Sect. 6.4.1). Then, we study how collaborations influence scientists’

knowledge exchange and their approach (or distancing) in the knowledge space

(see Sect. 6.4.2).

6.4.1 Distribution of knowledge distances

Pre-collaboration distance. We start by looking at the distribution of

knowledge distances between pairs of authors before they decide to collabo-

rate. This distribution tells us how similar or dissimilar co-authors are. In

other words, what type of co-authors are usually preferred. In Fig. 6.4(a), we

report such distribution. We find that there are two noticeable picks: one at

little knowledge distances and one at high knowledge distance. This means

that authors usually prefer authors who are similar or dissimilar. The pick

at small knowledge distances can be understood from repeated collaborations,

and indeed, if we consider only the first time two authors have collaborated

then, this peak becomes quite smaller (Fig. 6.4(b)). While the second pick

at dcos = 1 shows that often authors prefer to collaborate with extremely dif-
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(a) (b)

Figure 6.5: Distributions of post-collaboration distances among distinct
scientist pairs. In particular, in (a) the knowledge vectors of the scientists
are constructed using their full publication list. While in (b), we discard the
knowledge coming from the paper that they have just co-authored. We look at
post-collaboration distances after five different time windows of length equal
to 1, 2, 4, 7, and 10 years.

ferent authors. Recall that a cosine distance equal to 1 means that the two

authors have orthogonal knowledge vectors, i.e., they have never published in

the same PACS. One could argue that this effect is dependent on missing infor-

mation, i.e., that many authors have only authored one paper and we do not

have enough information to assign them precise knowledge positions. However,

when correcting for this, meaning that we consider only pre-collaboration dis-

tances among scientists with at least two publications, we still have the pick

(not shown). Moreover, note that the distribution of pre-collaboration dis-

tances obtained cannot be expected at random. By computing the knowledge

distances between random pairs of scientists, we obtain the expected distribu-

tion of knowledge distances (under a random null model). In Fig. 6.4(c), we

report this distribution and find that most scientists listed in our data have

orthogonal knowledge among each other. This clearly shows that knowledge

positions of scientists and their decision with whom to collaborate are coupled

events. We find that the mean and median of the three distribution are 0.34

and 0.24 when considering every pre-collaboration distance (Fig. 6.4(a)), 0.43

and 0.37 when considering only the first co-authored publications (Fig. 6.6(b)),

∼ 0.90 and 1.0 when considering random pairs of scientists (Fig. 6.4(c).



6.4. MICRO-LEVEL ANALYSIS 160

(a) (b) (c)

Figure 6.6: Distributions of knowledge shifts among distinct scientist pairs.
In particular, in (a) the knowledge vectors of the scientists are constructed
using their full publication list. While in (b), we discard the knowledge coming
from the paper that they have just co-authored. We look at post-collaboration
distances after five different time windows of length equal to 1, 2, 4, 7 and 10
years. In (c), we plot the distribution of knowledge shifts of random pairs of
scientists.

Post-collaboration distances. The post-collaboration distances are com-

puted between scientists co-authoring a publication. In Fig. 6.5(a), we report

the post-collaboration distances computed by comparing knowledge positions

of scientists after 1, 2, 4, 7, and 10 years from their first collaborations. We find

that from the mean and median of the post-collaboration distances are 0.32

and 0.25 that are quite smaller compared to mean (0.43) and median (0.37)

of the pre-collaboration distances reported in Fig. 6.6(b). Part of this drop

is given from the fact by construction post-collaboration distances of length

1 are not allowed. Indeed, after co-authoring a paper, two authors cannot

have distances equal to one, i.e., orthogonal vectors in the knowledge space.

To correct for this, in Fig. 6.5(b), we report the post-collaboration distances

computed by comparing scientists’ knowledge positions from which we have

removed their first common publication. We see that this distribution has a

pick at 1. Note also that this distribution is more similar to the empirical pre-

collaboration distributions (see Fig. 6.4(b)), but its mean and median (∼ 0.39

and ∼ 0.33) are still smaller compared to the pre-collaboration distributions.

Last, to check that distributions of post-collaboration (Fig. 6.5(a) and (b))

could not be expected at random, we can compare them to Fig. 6.4(c) From a

visual comparison, it is clear that these are really different distributions.
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Knowledge shifts. We now consider the change in the knowledge distance

between two scientists after co-authoring a publication, i.e., after collaborating.

We name this quantity knowledge shift as in Chap. 5. If we observe a negative

knowledge shift between two scientists, we learn that their knowledge distance

is decreasing and hence, their knowledge is becoming more similar. While

if their knowledge shift is positive, then their knowledge is becoming more

dissimilar. In Fig. 6.6(a), we report the knowledge shift distributions computed

after 1, 2, 4, 7, and 10 years. In addition, we report the same distributions

computed by excluding the first paper that two scientists have co-authored

together in Fig. 6.6(b). Also, we compute the knowledge shifts coming from

random pairs of authors and report this third distribution in Fig. 6.6(c). We

find that the knowledge shifts tend to be centered in zero for all distributions,

but the right-hand side of the distribution is heavier for the no-random pairs,

i.e., Fig. 6.6(a) and (b). This means that most scientists move closer to each

other in the knowledge space after collaborating, but there are also rare cases

where they move away from each other.

6.4.2 Knowledge effort and knowledge exchange

In the previous section, we have analyzed the relative changes in knowledge

positions between pairs of scientists. We further extend our analysis by intro-

ducing two new measures. The first measure quantifies how much a scientist

is moving towards or away from his/her collaborators in the knowledge space.

We name this first quantity knowledge effort as it captures scientists’ effort to

decrease or increase his/her distance from his/her collaborators. The second

measure that we introduce quantifies knowledge exchange.

Knowledge effort. We have observed that most pairs of scientists move

closer to each other after their first collaborations (see Fig. 6.6). Then, we

ask: Who makes an effort to decrease the knowledge distance? Is it a joint

effort or one scientist move more than the other? To answer these questions,

we break down the knowledge shifts in four contributions to identify the dif-

ferent efforts that scientists make. Recall that the pre-collaboration distance

between two scientists with knowledge vectors, v1 and v2, is the cosine dis-
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tance: dcos(v1, v2) = 1− v1·v2
|v1||v2| . After a certain time ∆t, the scientists might

have published new papers and have new knowledge vectors, v′1 = v1 +∆1 and

v′2 = v2 + ∆2. Their post-collaboration distance is:

dcos(v
′
1, v
′
2) = 1− v′1 · v′2

|v′1||v′2|
= 1− v1 · v2 + v1 ·∆2 + v2 ·∆1 + ∆1 ·∆2

|v′1||v′2|
(6.3)

By taking the difference dcos(v
′
1, v
′
2) − dcos(v1, v2), we obtain the knowledge

shift between the two scientists:

∆1,2 =
v1 · v2

|v1||v2|
− v1 · v2 + v1 ·∆2 + v2 ·∆1 + ∆1 ·∆2

|v′1||v′2|
= c1+c2+c3+c4 . (6.4)

where

c1 = − v1·∆2

|v′1||v′2|
≤ 0, directed effort done by the scientist-2 to become more

similar to scientist-1

c2 = − ∆1·v2
|v′1||v′2|

≤ 0, directed effort done by the scientist-1 to become more

similar to scientist-2

c3 = − ∆1·∆2

|v′1||v′2|
≤ 0, common effort done by both scientists to become more

similar to each other

c4 = v1·v2
|v1||v2| −

v1·v2
|v′1||v′2|

> 0 as |v′i| ≥ |vi| > 0∀i

Note that the first three terms are always smaller than or equal to zero and

they decrease the knowledge shift, while the fourth term can only increase

it. We name c1 and c2 the directed efforts of scientists as they are quantify

whether scientist-2 moves towards scientist-1 or viceversa. Then, we name c3
the common effort. Two scientists decrease their knowledge distance (∆ <

0) if and only if their directed and common efforts balance and overtake c4
(|c1 + c1 + c1| > c4) .

In Fig. 6.7, we report the cumulative distribution of directed efforts, c1 and c2,

and of common efforts, c3, after 1, 4, and 10 years. We find that for scientists’

pairs experiencing negative knowledge shifts, both the directed and common ef-

forts are more negative. We quantify this by doing a Kolmogorov-Smirnov-test

between the distribution of efforts for negative and positive knowledge shifts.
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(a)

(b)

(c)

Figure 6.7: Cumulative distribution function of the directed knowledge
efforts (left) and the common knowledge efforts (right) after 1 (a), 4 (b), and
10 years(c). In each plot, we present the distributions for scientist pairs with
positive (blue) and negative (orange) knowledge shifts. In other words, in blue,
we have pairs of scientists that become more different from each other after
their first collaboration, while in orange, we have pairs of scientists becoming
more similar.
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Figure 6.8: Scatter plots of the relative contributions of the efforts to the
knowledge shift after 1 year. We use red circles when ∆ > 0 (scatter plot on
the left) and blue triangles when ∆ ≤ 0 (scatter plot on the right).

We find that for all the cases we cannot reject the null hypothesis that the dis-

tributions are different with a confidence bound of 1%. This finding means that

the distributions of directed and common efforts for negative knowledge shifts

are different from the distributions of efforts for positive knowledge shifts.

In addition, note that the difference between the distributions in Fig. 6.7(left)

become more similar over time, i.e., the orange and blue curves get closer to

each other. This implies that the directed efforts for positive and negative

knowledge shifts become more similar over time. While common efforts stay

more negative only for the scientists having a negative knowledge shift. Thus,

just after collaborating, two scientists decrease their knowledge distance as

at least one of them makes an effort to decrease the gap. Then, over the

years, knowledge distances are decreased as both scientists publish papers in

the same PACS (i.e., on the same topics).

To further compare the contributions of directed and common efforts (c1, c2
and c3) to knowledge shifts, (∆), we use a 3D scatter plot in Fig. 6.8. In this

figure, each point has co-ordinates (−c1/δ,−c2/δ,−c3/δ) where δ = |∆ − c4|.
We use red circles when ∆ > 0, i.e. for scientists moving away from each other

(Fig. 6.8 (left) and Fig. 6.9 (left)), and blue triangle when ∆ < 0, i.e. for
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Figure 6.9: Scatter plots of the relative contributions of the efforts to the
knowledge shift after 10year. We use red circles when ∆ > 0 (scatter plot on
the left) and blue triangles when ∆ ≤ 0 (scatter plot on the right).

scientists approaching each other (Fig. 6.8 (right) and Fig. 6.9 (right)). From

these figures, we see that the top tip of the triangular surface is quite empty

(Fig. 6.8) and over time it gets more filled (Fig. 6.9) for both negative and

positive knowledge shift. By this, we find that just after collaborating, the

more significant contribution to decrease knowledge distances comes from the

directed efforts of one of the two scientists. Only after many years, common

efforts become more important in decreasing knowledge distances.

Knowledge exchange. To quantify the knowledge exchange between two

scientists, we calculate how much changes in the knowledge position of a sci-

entist is aligned to the knowledge of the other scientist. When collaborating,

scientists have access to knowledge that they might have previously not had.

If a scientist re-applies this new knowledge to produce new publications, then

we argue that some knowledge has been exchanged.

Using the same notation introduced to define knowledge effort, we define v1

and v2 to be the knowledge positions of two scientists at time t, and ∆1 and
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∆2 to be their change is knowledge positions after a time ∆t. Now, we split

the change in position of scientist-1 into two terms:

∆1 = ∆1,// + ∆1,⊥ (6.5)

where ∆1,// = (∆1 · v1|v1| )
v1
|v1| and ∆1,⊥ = ∆1−∆1,//. We name ∆// the aligned

change (in position) as it is the change in position of scientist aligned to his/her

previous knowledge While ∆⊥ is the change in position of scientist perpendicu-

lar to his/her previous knowledge and we name ∆1,⊥ the perpendicular change

(in position).

Assuming that scientist-1 and scientist-2 have collaborated at time t, we define

the knowledge exchange from scientist-2 to scientist-1 (after a time ∆t) the

perpendicular change in position of scientist-1, ∆1,⊥, aligned to the knowledge

of scientist-2 v2 (at collaboration time):

know.-ex.2→1 = ∆1,⊥ ·
v2

|v2|
(6.6)

Note that if scientist-1 publishes one new paper with new knowledge (e.g.,

∆⊥ = (1, 0, . . . , 0)) that is similar to the knowledge of one of its collaborator

(e.g., v2 = (1, 0, . . . , 0) ), then know.-ex.2→1 = ∆1,⊥ · v2|v2| = 1. Hence, when

know.-ex.2→1 is number bigger than one, we have a good overlap between

the new knowledge produced by scientist-1 and the knowledge of scientist-

2. This indicates a high knowledge exchange. If ∆⊥ = (1, 0, . . . , 0) and

v2 = (1, 1, . . . , 0), then we have that only one dimension of the new knowl-

edge of scientist 1 is aligned to the knowledge position scientist 2. In this case,

know.-ex.2→1 =
√

2 ≈ 0.707 and hence, we argue that for know.-ex.2→1 ∈
[
√

2, 1] we have a relative high knowledge exchange. While for know.-ex.2→1 ∈
[0,
√

2), we have low knowledge exchange from scientist-2 to scientist-1.

Likewise, the knowledge exchange from scientist-1 to scientist-2 (after a time

∆t) is the perpendicular change in position of scientist-2, ∆2,⊥, aligned to the

knowledge of scientist-1 v1 (at collaboration time):

know.-ex.1→2 = ∆2,⊥ ·
v1

|v1|
(6.7)
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(a)

(b)

(c)

Figure 6.10: Distributions of knowledge exchange among distinct scientist
pairs. In particular, in (a) the knowledge vectors of the authors are constructed
using their full publication list. While in (b), we discard the knowledge coming
from the paper that they have just co-authored. We look at collaboration
distances after five different time windows of length equal 1, 2, 4, 7, and 10
years. In (c) we plot the distribution of knowledge exchange among 5000
random pairs of scientists.
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In Fig. 6.10(a), we report the distributions of knowledge exchanges know.-ex.i→j .

We find that the values of such quantities are quite large, and the mean and

median are: 0.73 and 0.32 after 1 year, 0.97 and 0.40 after 2 years, 1.36 and

0.51 after 4 years, 1.79 and 0.59 after 7 years, 2.08 and 0.63 after 10 years.

To see whether this strong knowledge exchange depends on the first paper

that two scientists co-author together, we recompute knowledge exchanges re-

moving this type of paper. In Fig. 6.10(b), we report the distributions of

recomputed knowledge exchanges know.-ex.i→j . We find that the values of

such quantity are quite smaller and now rarely different from zero as for only

about 40% of scientists pairs we have know.-ex.i→j 6= 0: Now the mean is 0.29,

0.54, 0.94, 1.37 and 2.66 respectively after 1, 2, 4, 7, 10 years. This indicates

that there is a small quantifiable knowledge exchange among 40% of scientist

pairs if we correct for the first paper co-authored together.

As robustness check of the above result, we verify whether the observed values

of knowledge exchange can be expected at random. To do this, we randomly

pair scientists and compute the distribution of knowledge exchange between

them (Fig. 6.10(c)). We obtain a mean of 0.04, 0.08, 0.15, 0.25, and 0.36

respectively after 1, 2, 4, 7, and 10 years, and the medians are always equal

to zero. Additionally, we find that know.-ex.i→j 6= 0 for less than 20% of the

random pairs. Hence, the values of knowledge exchange expected at random

are much smaller compared to the empirical ones and much more often equal to

zero. Therefore, the observed distributions of knowledge exchange (Fig. 6.10(a)

and (b))could not been obtained at random and are statistically significant.

6.5 Knowledge in teams and productivity: A

meso-level analysis

After analyzing knowledge distances and exchange between pairs of scientists,

we now look at the role of knowledge inside groups of scientists co-authoring

publications. We refer to such groups as teams because we assume that co-

authoring scientists collaborate and share the common goal of publishing the

paper.
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Figure 6.11: Frequencies of team size. The maximum size is 40 as we
discard publications that are co-authored by more than 40 scientists.

By analyzing teams, we move our analysis of collaborations from the micro-

level to the meso-level. At this level, we have to keep in mind two essential

aspects. The first one is that collaborations do not have a homogenous struc-

ture. With this, we mean that each team is composed of a different number of

scientists that have diverse knowledge. The second aspect to keep in mind is

that every scientist can work in different teams over the years. Hence, scien-

tists’ knowledge and productivity might be dependent on the teams in which

they work. We analyze these two aspects in Sect. 6.5.1 and 6.5.2.

6.5.1 Team composition

In Fig. 6.11, we report the frequencies of team sizes. We find that even though

most publications have less than ten co-authors, there are still thousands of

publications co-authored by larger teams. Recall that the larger collaboration

size is 40 as we have discarded larger collaborations (see Sect. 6.2). Also, note

that the scale of the y-axis is in log scale.

In Sect. 6.4.1, we have found that most scientists collaborate with other sci-

entists with similar and overlapping knowledge. This was captured by having

the majority of pre-collaboration distances smaller than 1 (see Fig. 6.4(a)).

At the same time, a considerable large fraction of pairwise collaborations is
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(a)

(b)

Figure 6.12: (a) Number of links established between scientists with over-
lapping (x-axis) and orthogonal (y-axis) knowledge. (b) Fraction of links per
collaboration established between scientists with overlapping (blue) and or-
thogonal (green) knowledge in function of the collaboration size. In orange,
we report the fraction of links per collaboration where for one the two scien-
tists were a newcomer. We also report error bars, except for the fraction of
newcomer to keep the graph more readable.

established between scientists without overlapping knowledge, i.e. by having

pre-collaboration distances equal to 1. Inside a team, we find that both these

two types of pre-collaboration distances are present. We report this in 6.12(a)

using a scatter plot. Each point is a team, and its x and y-coordinates are
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the number of pairwise interactions in the team between scientists with and

without overlapping knowledge.

From Fig. 6.12(a), we also find another interesting phenomenon. With in-

creasing team size, fewer and fewer teams are composed of scientists with-

out overlapping knowledge. We argue that this arises from two facts. First,

when a team is bigger, there is a smaller probability (at random) not to have

at least two scientists sharing some knowledge. Second, in larger teams co-

ordination efforts increase as more scientists have to communicate their work

with each other. Assuming that communication between scientists is more

efficient among scientists sharing similar knowledge, we can understand why

it is highly un-probable that large teams are composed only by scientists with

very dissimilar knowledge (dcos = 1).

To further characterize teams, we plot the average fraction of links (per team)

established between scientists with overlapping (dcos < 1) and not overlapping

knowledge (dcos = 1) in Fig. 6.12(b). We find that independently of the

team size, about 67% of the links are established between authors with pre-

collaboration distances smaller than 1. Only 3% of the links are between

scientists with pre-collaboration distances equal to 1. The remaining 30%

are links involving “newcomers”, that are scientists for which we have not

yet assigned a knowledge position. Note that in Chap. 5 we have named

newcomers firms that have not yet participated in alliances. Similarly, here we

call newcomers those scientists that are co-authoring a publication for their

first time.

We have observed that there are different types of pre-collaboration distances

inside a team independently of its size. Now we investigate how this affects

the average pre-collaboration distances inside a team. In Fig. 6.13, we report

the average pre-collaboration distance in function of the team size. We find

that the average knowledge distances among co-authors are almost constant

until the team size reaches 10. After 10, it starts decreasing. We argue that

this phenomenon matches the idea that to have different types of knowledge

inside a team is beneficial, however only until a certain point. Each scientist

has a limited amount of energy that he/she can use to bridge the knowledge

differences with its collaborators. More collaborators he/she has in a team,
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Figure 6.13: Average pre-collaboration distance in function of the collabora-
tion size. The error bars represent the standard deviations among the average
pre-collaboration distances at fixed collaboration size.

less energy on average he/she can use for each of them. However, given the

big error bars, a detailed statistical analysis is necessary to verify the above

statement. We leave such an analysis for future work.

6.5.2 Productivity and knowledge breath

The main scope of scientific co-authorship is the production of knowledge arti-

facts, i.e. publications. As we noted in Sect. 6.3.2, scientists can either publish

papers in the same PACS(s) or publish papers in many different ones. These

two types of behaviors can be interpreted as two different strategies for being

productive. To study these strategies, we estimate scientists’ productivity us-

ing two quantities. The first is the total number of publications co-authored

by a scientist. While the second is the knowledge breath of a scientist.

We define the knowledge breath of a scientist, kbreathi,t , as the change in position

of a scientist after ∆t years. We quantify this by computing kbreathi,t (∆t) =

dcos(vi,t, vi+∆t). This captures scientists’ exploration of the knowledge space

by addressing new topics. Indeed kbreathi,t (∆t) = 0 when scientist-i co-authors

publications always in the same PACS (i.e., in the same dimension) during the
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(a)

(b)

Figure 6.14: (a) Average number of publications and (b) its relative error
in function of the pre-collaboration distances.

time window ∆t. While kbreathi,t (∆t) 6= 0 if he/she co-authors publications in

different PACS.

In Fig. 6.14, we report the average number of publications per scientist as a

function of the average pre-collaboration distances with their collaborators.

We find that the more productive scientists are the ones collaborating with

other scientists at an average pre-collaboration distance of about 0.35. In

Fig. 6.15, we report the average knowledge breath of scientists as a function of

the average pre-knowledge distances of their collaborators. We find that the

knowledge breath has an inverted ”U” shape after 1, 2, 4, 7, and 10 years from

the collaboration. In particular, the maximum average knowledge breath is
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(a)

(b)

Figure 6.15: (a) Knowledge breath and (b) its relative error in function of
the pre-collaboration distances.

observed for scientists collaborating with other scientists at an average knowl-

edge distance of about 0.60.

To summarize, we find that scientists maximize their productivity and knowl-

edge breath when choosing collaborators at two different pre-collaboration

distances. Scientists involved in more collaborations have their collabora-

tors at an average pre-collaboration distance of 0.35. While scientists with

a higher knowledge breath, they collaborate with scientists at an average pre-

collaboration distance of 0.60.
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(a) (b)

Figure 6.16: Distribution of degree (a) and neighbor connectivity (b).

6.6 The collaboration network and knowledge

distances: A macro-level analysis

To complete our analysis of scientists’ collaborations, we switch our attention

to the entire collaboration network. As discussed in Sect. 6.2, this network is

composed of 109 845 nodes, representing scientists, and 1 232 539 links, rep-

resenting their collaborations. In order to understand the characteristics of

this network, we start by calculating standard measures common in network

analysis. This includes the degree distribution P (d) where d is the number of

collaborators of a given scientist. In Fig. 6.16(a), we report the degree distri-

bution and find that it is broad with a median of six and an average degree

of 12.85. This means that most of the scientists over the years collaborate

with other six scientists. Note that Newman [147] also computed the average

number of collaborators using co-authorship activities in different disciplines.

He obtained slightly less than four for theoretical disciplines and above 15 for

experimental disciplines. In our data, we have groups working on both the-

oretical and experimental disciplines and hence, it is reasonable to obtain an

average value between the ones obtained by Newman [147].

In Fig 6.16(b), we report the neighbor connectivity that measures to what

extent scientists are linked to other scientists with a similar degree. We find

that scientists with a lower degree tend to prefer to co-author publications

with scientists with a higher degree. With increasing scientists’ degrees, this
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(a) (b)

Figure 6.17: Distribution of shortest distances between 1mio random pairs
of scientists (a) and between the observed pairs of scientists before they col-
laborate (b). For (b), we consider only the first time a pair of scientists col-
laborate, i.e., we do not consider repeated interactions. This is why there are
no network distances equal to 1.

tendency becomes less strong. Overall, we find that the collaboration network

has a positive assortativity coefficient, r = 0.125. Such value is in close with

the ones reported for various collaboration networks re-constructed using co-

authorship activities in [148].

In Fig. 6.17(a), we report the distribution of shortest distances between 1mio

random pairs of scientists on the collaboration network. We find that shortest

lengths are peaked around five and less than 10% of the pairs are disconnected.

This means that five steps are necessary to move from one random scientist

to another. This is in line with the results reported by [145]. Additionally,

in Fig. 6.17(b), we plot the distribution of shortest distances between pairs of

scientists before they collaborate. We find that most of the collaborations are

established among scientists that have a small distance on the collaboration

network. Only extremely rarely, collaborations are established between far-

away authors. This result is also in line with our previous findings reported

in [227].

In Fig. 6.18(a), we report the knowledge distances as a function of the short-

est distances between every pairs of scientists on the time-aggregated network.

The x-coordinate of each point represent the shortest distance between pairs

of scientists before they collaborate. While the y-coordinate is the average
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(a) (b)

Figure 6.18: Pre-collaboration distances in the knowledge space as a func-
tion of the pre-collaboration distances on the collaboration network. (a) We
consider all the collaboration listed in our data set. For (b), we consider only
the first time a pair of scientists collaborate, i.e., we do not consider repeated
interactions. This is why there are no network distances equal to 1.

pre-collaboration distance between pairs of scientists at a given network dis-

tances. We find that scientists’ distances in the knowledge space increase with

increasing network distance. Note that scientists five steps away from each

other (the most frequent distance) are usually at a knowledge distance close

to one. This confirms our previous result that most of the authors have a high

knowledge distance (see Fig. 6.4(c)).

Also, Fig. 6.18(b), we plot the knowledge distances as a function of the shortest

distances between pairs of scientists before they collaborate. We find that for

scientists close in the collaboration network have similar knowledge (〈dcos〉 ≈
0.3). The average knowledge distance increases to a maximal value of around

0.6 for scientists at network distance between five and seven. This shows that

scientists not only prefer collaborators close in the collaboration network but

among them, they prefer the ones that are closer in the knowledge space.

6.7 Conclusion

We have performed an extensive analysis of scientists’ collaborations and how

these influence scientists’ knowledge. Our analysis was divided into three parts:

a micro-level analysis where the units of analysis are scientists pairs, a meso-
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level analysis where the units of analysis were teams, and a macro-level analysis

where we considered the full collaboration networks. Instead of repeating

the different results, we now conclude by making a connection to our results

obtained in Chap. 5 and in other previous works.

6.7.1 Comparing firms and scientists

We now aim to provide a comparison between firms and scientists. On the one

hand, one can argue that firms and scientists are different actors embedded in

extremely different environments, namely the economic and academic domain.

Hence, we should not compare them. On the other hand, we are interested in

analyzing scientists and firms with respect to one specific aspect: the possible

knowledge exchange triggered by collaborations. Indeed, to analyze this aspect

in both the economic and academic domains, we have used remarkably similar

data sets and methodologies.

We have used IPC and PACS, two classification schemes, respectively for

patents and publications, to construct a knowledge space. To embed firms

and scientists in their respective knowledge spaces, we have used patent and

publication data, i.e., knowledge artifact data. We have introduced two dis-

tance measures: one to quantify differences in firms’ knowledge positions, and

a second one to quantify differences in scientists’ knowledge positions. As

discussed in the Sect. 6.3.3, these distances are almost equivalent. For both

domains, we have computed the empirical distributions of pre-collaboration,

post-collaboration distances, and knowledge shifts. Recall that we have named

these distributions pre-alliance, post-alliance, and knowledge shift distribu-

tions in the economic domain (see Chap. 5). By all this, we have analyzed

using the same methods the interplay between knowledge and collaborations

in the economic and academic domains. Hence, our methodology allows us to

have a direct and reasonable comparison across domains.

Pre-collaboration distances. This distribution in the academic domain is

bimodal: it is picked at zero and 1. Its counterpart in the economic domain

has only one pick at a particular distance. Thus, we argue that this reflects

two different behaviors. Firms prefer to collaborate with other firms that have



6.7. CONCLUSION 179

a different knowledge base, but not too different otherwise the communication

would become too difficult. While a scientist has to more extreme behaviors:

either exploiting his/her own expertise by working with other experts from

his/her fields, or exploring different fields by collaborating with experts with

a different knowledge base. On the one hand, it is surprising to find such

extremely different behaviors from the economic and the academic domain,

especially after showing their collaboration patterns could be explained using

the same modeling approach [227]. On the other hand, we have to recall that

scientists and firms are indeed extremely different actors. In addition, they

have different reasons not only to collaborate but also to publish/file knowledge

artifacts. Hence, the detected difference in the pre-collaboration distances is

a valuable source of information.

Post-collaboration distance. In the economic domain, the distribution of

pre-alliance distances is extremely similar to the post-alliance one. In the

academic domain, these two distributions are profoundly different. The dis-

tribution of post-collaboration distances cannot contain knowledge distances

equal to 1, i.e., two collaborators cannot have orthogonal knowledge vectors.

Recall that we observe a collaboration among two scientists when they co-

author a paper and hence, both their future knowledge vector will share the

knowledge of co-authored paper. Sharing this common knowledge makes sci-

entists’ knowledge distance smaller than 1. However, when correcting for this,

i.e., we compute the knowledge vectors of two collaborators discarding their

first joint publication, we find that the distributions of post-collaboration dis-

tances and pre-collaborations distances are actually similar. To summarize,

for both domains, we find that the knowledge position of the authors is slowly

changing.

Knowledge shift. For both the domains, we find that the distributions

of knowledge shifts are centered in 0 and take negative and positive values.

However, for the academic domain, the negative side of the distribution is much

heavier. This observation is robust also when calculating post-collaboration

distance among scientists without considering the first joint publication. We

argue that this difference arises from the fact that for scientists publishing work
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on a new topic is more accessible. In other words, for a scientist to acquire

and produce knowledge on a topic in which he/she is not an expert is easier

compared for firms. Additionally, in the economic literature co-patenting is

also seen “as a second-best option that, if possible, should be avoided” [86].

Also for this reason, we can argue that the negative knowledge shifts are harder

to detect in the economic domain compared to the academic one.

Note that we used similar types of data to calculate the pre- and post- col-

laboration distances in the two domains, but they have some differences. For

the economic domain, we used two separated data sets to calculate knowledge

positions and analyze collaboration patterns. While in the academic domain,

we infer collaborations and knowledge using the same data. This implies that

scientists after a collaboration cannot have a maximal distance anymore. We

have corrected for this by studying the post-collaboration distances between

scientists discarding the (first) co-authored publications.

To embed firms and scientists in a knowledge space, we used real classification

schemes PACS and IPC. The main difference between PACS codes compared

to the IPC is that scientists assign PACS codes to their work, while patent

reviewers assign IPC coded to firms’ patents. This means that the assignment

of each code is decentralized and dependent on each scientist. At the same

time, the APS journals are peer-reviewed and hence, all publications with their

PACS codes are controlled.

As future research, we leave the validation of the knowledge effort and ex-

change measures, and their application in the economic domain. These mea-

sures quantified how scientists move close or away from each other and how

much knowledge is transferred after a collaboration. We have shown that this

measure gives results that cannot be expected at random and hence, provide

a good starting point for quantifying the influence co-authorship activities of

scientists’ knowledge. However, they still need to be validated against other

data sets or via scrutiny of experts. Additionally, their application in the

economic domain is still open.
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6.7.2 Knowledge distances as a proxy for communities

In Sect. 6.5.1, we have obtained that the teams are composed by scientists

with both overlapping (dcos < 1) and not overlapping knowledge (dcos = 1).

In particular, when representing a team with a fully connected clique, 67%

of links are between scientists with overlapping knowledge, 3% of links are

between scientists not overlapping knowledge, and the remaining 30% of links

involve a newcomer (i.e., a scientist publishing his first paper). Note that it is

quite striking to find such extreme differences in the preferences to be stable

over team sizes, ranging from 2 to 40.

The obtained fractions of links match previous results about scientists’ pref-

erences in choosing collaborators [227]. In this other work, we have used the

agent-based model for network formation described in Sect. 5.3.1 to reproduce

scientists’ collaboration networks. We have found that scientists choose col-

laborators belonging to their community with a high probability (pLs ≈ 0.62)

to a different community with a really low probability (pLd ≈ 0.05), and to

newcomers with a probability of pLn ≈ 0.33 5. Note that in [227], communities

are implicitly defined through shared practices and/or behaviors and are as-

signed by our ABM. Hence, they are created without any information about

scientists’ positions in the knowledge space. By this, we have an un-expected

match between the empirical analysis presented in this section and our ABM.

We argue that the match found arises from the fact that knowledge distances

are a good proxy for communities that are strong determinants of collabora-

tions. By this, we mean that the community of a scientist defined in [227]

contains scientists at a dcos < 1. While scientists at dcos = 1 belong to dif-

ferent communities. Hence, we can use our measure of knowledge distances to

define communities that we can then use in our ABM to determine teams of

possible collaborators. This idea is also supported by the obtained relations

between knowledge and path distances on the collaboration network. In par-

ticular, we have found that scientists choose collaborators that are not only

5The value reported in the present has been obtained by taking the average of the values
of pLs reported in Table 2 of [227]. When calculating the average we have discarded only the
values coming from the co-authorship network for general relativity and gravitation (PACS
04). For this PACS, the label propagation model of Tomasello et al. [227] was unable to
generate a network matching the empirical ones.
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close on the collaborations networks, but also at a small knowledge distance

(〈dcos〉 ≈ 0.3).

Even though the above mentioned procedure for defining communities is promis-

ing, we foresee a possible problem. We expect to find that the distribution of

the number of scientists at dcos < 1 to have a higher average compared to the

distribution of community sizes found in [227]. This should occur because the

number of possible PACS (i.e., of knowledge dimensions) is fixed and hence,

over the years even really different scientists can get a dcos < 1. We leave the

proof of this for future research.



Chapter 7

Modelling scientists’ collaborations

using knowledge differences

Summary

We propose an agent-based model to reproduce scientists’ co-authorship activi-

ties using only scientists’ positions in the knowledge space. Both co-authorship

activities and knowledge positions of scientists are obtained using the APS data

and the methodology described in the previous chapter. In our model, agents

represent scientists, are assigned with a knowledge position and are randomly

activated to initiate a collaboration (i.e., a co-authorship activity). When an

agent is initiating a collaboration, we use the empirical distribution of pre-

collaboration distances to choose the additional collaborators. After selecting

these, we form the collaboration between the selected agents and the agent ini-

tiating the collaboration. Our simple model reproduces the non-linear trend

of scientists’ productivity (i.e., the number of co-authored publications per

scientist) as a function of the average pre-knowledge distances. Limitations

and extensions of the model are discussed.1

1This chapter contains unpublished work.
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7.1 Introduction

Science is done more and more in collaboration and less in isolation. The

clearest evidence of this phenomenon can be seen in the increasing number

of co-authored publications by scientists. Understanding what brings scien-

tists together for their co-authorship activities is still ongoing research and

focus of this chapter. Most previous works have either reproduced these activ-

ities considering the underlying social network linking scientists [13, 227, 242]

or studied their effect on scientists’ productivity and careers [122, 161, 162].

Here, instead, we propose a model that reproduces co-authorship activities by

focusing on the different, but complementary expertise of scientists.

A successful perspective used to analyze and reproduce co-authorship activ-

ities is based on network analysis [13, 15, 145, 242]. Petersen [161] analyze

scientists’ ego-network to determine the role of repeated co-authorship ac-

tivities in the impact of scientists’ careers. Ramasco et al. [180] provides a

self-organizing model to reproduce the collaboration network represented as

a bipartite network. Other works instead focused on the interplay between

co-authorship activities and the citation network [26, 140, 141]. Addition-

ally, Tomasello et al. [227] and Sun et al. [219] provide agent-based models

for reproducing the collaboration network across scientific fields and the evo-

lution of these fields, respectively. With the exception of [26, 219], all these

works neglect the different expertise of scientists when analyzing or defining

the determinants behind co-authorship activities.

Different expertise is known to help in producing novel work. In everyday life,

this phenomenon goes under the expression that “two heads are better than

one”. This has been shown to be true in many different scenarios ranging

from cognitive experiments involving people Bahrami et al. [12] to real-world

alliances among firms Baum et al. [17], Nooteboom et al. [154]. Despite the

clear evidence about the importance of this phenomenon, it is often discarded

when modeling co-authorship activities among scientists. This chapter aims

to fill this research gap by studying and modeling these activities using the

different expertise of scientists.
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We determine the expertise of scientists by embedding them in a knowledge

space and by assigning knowledge positions. To do this, we follow the same

procedure as discussed in the previous chapter (see Chap. 6). We restrict our

analysis to scientists publishing papers in physics, and we use the APS data

(see Chap. 2 and Chap. 6). With this data and the methodology previously

introduced, we quantify scientists’ expertise and determine their differences.

In the model that we are about to propose, these differences will be the deter-

minants of co-authorship activities. In other words, we aim to show that the

knowledge positions of scientists are determinants of their collaborations.

The remainder of the chapter is divided into four sections. In Sect. 7.2 we

further clarify the aim of our model and in Sect. 7.3 we describe it. In Sect. 7.4

we compare the model with the empirical data by performing a parametric

and non-parametric analysis. Finally, in Sect. 7.5, we discuss the results of

our model, its limitations, and its possible extensions.

7.2 Aim of the model

In Chap. 5, we have found that knowledge positions of firms are rather deter-

minants than consequences of their collaborations. We now want to verify if a

similar statement holds in science. By using bibliographic data to determine

co-authorship between scientists, we have only information about successful

collaborations. With successful collaborations, we mean those collaborations

that resulted in a paper accepted in a peer-review journal. Hence, we aim

to verify whether knowledge positions of scientists are determinants or conse-

quences of their successful collaborations.

We assume successful collaborations indicate the productivity of scientists.

Indeed, the main scope of co-authorship activities is to publish papers. This

means that we can quantify scientists’ productivity (when collaborating) by

looking at the number of their successful collaborations, i.e., of their published

papers. In Fig. 6.14 of the previous chapter, we have shown how the produc-

tivity of scientists depends on their average knowledge distance from their

collaborators. We have found that on average scientists’ productivity starts at

around three papers for an average knowledge distance equal to 0. It increases
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to a maximum at around 12 papers for an average knowledge distance equal to

0.3. Then, it monotonously decreases to two papers for an average knowledge

distance between 0.3 and 1.

We propose a new agent-based model that reproduces scientists’ productivity

as a function of the pre-collaboration distances. In other words, our model

will take the empirical pre-collaboration distances as input and will try to

reproduce scientists’ productivity, i.e., the successful collaborations.

One could argue that we could simply use the label-model used in Chap. 5 able

to simulate collaborations and knowledge exchange. Indeed, with this model,

we have also reproduced different collaboration networks in science [227]. On

the other hand, in this model, agents decide about their partners depending

on label attributes representing the membership to circles of influence. While

now we aim at studying only the role of knowledge in determining scientists’

collaborations. This is the reason why we develop a new model instead of using

the previous one. Additionally, we are not interested in studying changes in the

knowledge positions of scientists. Thus, our new model will neglect possible

knowledge exchange occurring among collaborating scientists.

What we propose to do is quite challenging. Indeed, it is clear that the suc-

cess of a collaboration is not only dependent on the knowledge differences

between scientists. Other important factors can be included: the recognition

of scientists in their community, cultural differences between scientists, etc.

At the same time, if our model can reproduce scientists’ productivity, we will

indirectly verify that the pre-collaboration distances are proper explanatory

variables for predicting co-authorship activities. By this, we would show that

knowledge positions can be assumed to be determinants of collaborations.

7.3 Description of the model and simulation

procedure

Our agent-based model simulates collaborations occurring from a starting year

t until t+ ∆t where ∆t = 2 years. In other words, we consider collaborations

occurring during time windows of two years. We choose this value as scientists’
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productivity is stable during such time windows (see Figs. E.2 and E.1) and

to limit the computational efforts needed for the simulations.

In our simulation, we restrict our attention to 11 non-overlapping time windows

between 1984 to 2006. Note that we discard time windows before 1984 as we

have less than 1000 established scientists in each of them. While we have

discarded the most recent time windows from 2006 to 2010 as the empirical

distances matrix Dik becomes big (> 15 GB). This requires the code to be

executed on a cluster with dedicated RAM, and hence, we leave this for future

research. At the same time, we firmly believe that the results should not be

notably different in these last time windows.

7.3.1 The model

Agents represent established scientists, i.e., scientists that have already partic-

ipated in collaborations in previous years. This means that we do not consider

newcomers, i.e., scientists that co-author their first publication in the time

window under analysis. We assign two features to agents: knowledge position

and activity. Knowledge positions represent the expertise of the agents. These

positions are taken from empirical knowledge positions of real scientists using

the methodology described in Chap. 6. Agents’ activities represent scientists’

propensity to initiate collaborations. We extract these from empirical data by

counting the number of publications that each scientist has co-authored.

The model can be divided in three parts: Initialization, Iteration and

Termination. The central part of the model is in the Iteration where we

simulate scientists’ collaborations. This can be divided into four steps: Col-

laboration size sampling, Agent activation, Selection of Collaborators, and

Collaboration formation. While the Initialization and Termination of the

model are more technical parts. Before discussing these technical parts, we

describe the core of the model, i.e., the Iteration.

Collaboration size sampling. We sample without replacement the size m

of one collaboration from the empirical distribution of collaboration sizes. Note

that m is the number of established scientists present in the collaboration.
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Agent activation. After selecting the size of the collaboration m, we draw

an established agent to initiate the collaboration. Each agent is drawn with a

probability proportional to her activity. In other words, an agent i is picked

to initiate a collaboration with a probability qi = ai/
∑
k ak, where ai is her

activity. Recall that agents’ activities represent the heterogenous propensities

of real scientists to initiate collaborations.

Selection of Collaborators. Once we have selected the initiator and the

size m of the collaboration, we select the other m − 1 collaborators. These

are chosen depending on their knowledge distances from the initiator. We

sample with replacement m − 1 distances from the empirical distribution of

pre-collaboration distances, and we choose m−1 agents at (about) the sampled

distances from the initiator.

Collaboration formation. Once we have selected all the collaborators, we

create the collaboration. This means that all the collaborators have now a

new publication. The information about agents’ new publication is used to

compute their productivity and their average distance from their collabora-

tors. To understand how we compute these quantities is necessary to under-

stand the more technical parts of the model, i.e., the Initialization and the

Termination. These are described in the next section, where we describe the

simulation procedure.

7.3.2 Simulation procedure

Simulation Initialization. Given a starting year t, we create N agents

representing the N established scientists collaborating between t and t + ∆t.

We initialize the N agents by assigning empirical knowledge positions (com-

puted up to year t) and empirical activities (computed between t+ ∆t). Also,

we initialize three vectors of length N with all zeros. The first vector P will

contain the productivity of the agents, i.e., their number of publications. The

second vector L will contain the number of collaborators (with repetition) for

each agent. The third vector C will contain the average distance of an agent

from her collaborators.
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Simulation Iteration and update. After initializing the agents and cre-

ating the P, L and C vectors, we simulate the collaborations using the four

steps described in Sect. 7.3.1. This means that we iteratively sample a col-

laboration size m, activate an agent i, choose her collaborators C, and create

the collaboration. When we create the collaboration, we update the three

vectors P, L and C. First, we update the components of the productivity

vector relative to the collaborating agents, ∀i ∈ C Pi ← Pi + 1. Second,

we update the number of collaboration links of each collaborating agent by

(m − 1), ∀i ∈ C Li ← Li + (m − 1). Third, we update the aggregate knowl-

edge distance of each agent by adding her distances from her collaborators,

∀i, j ∈ C Ci ← Ci +Dij where Dij is the knowledge distance between i and j.

Simulation Termination. We keep sampling without replacement from the

empirical distribution of collaboration sizes until we have sampled all the col-

laborations. Once we have finished simulating the collaborations, we store

for each agent her productivity and the average knowledge distance from her

collaborators.

For each time window with different starting year t, we simulate 20 times

scientist collaborations with our model. We summarize the model using a

pseudo-code in Algorithm 1 and provide its input and output in Table 7.1.

7.4 Results

Our model aims to show that scientists’ knowledge positions are determinants

of collaborations. We do this by showing that the pre-collaboration distances,

i.e., differences in knowledge positions, can be used to reproduce the produc-

tivity of a scientist pi in function of her average knowledge distance 〈∆xij〉Ni
from her collaborators Ni. In Figure 7.1(a), we compare the distribution of

pi coming from simulation and from the empirical data for the time window

starting in 1988 and ending in 1990. From this plot, we note that the empiri-

cal data and simulated one overlap quite a lot. However, it is not possible to

determine how much the model is consistent with the observation. To analyze

the similarity and differences between the simulated and empirical data, we
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Table 7.1: Summary of the input and the output of the model.

Data: M , A, E, D
Initialization: N ←− len(A), rindices ∈ RN , P ∈ RN , L ∈ RN ,
C ∈ RN ;

rindices ←− (1, 2, . . . , N), P ←− ~0, L ←− ~0, C ←− ~0;
while M 6= ∅ do

rindices ←− random shuffle rindices;
for i ∈ rindices do

p←− x ∈ U [0 : 1];
if p < Ai then

m←− sample m from M ; . Agent-i is actived

C ←− {i} ; . Create set of collaborators

for l = 1 to m− 1 do
d←− sample d from E;
j ←− arg mink∈N/c |d−Dik|;
C ←− C ∪ {j} ; . Add j to set of collaborators

end
for l ∈ C do
Pl ←− Pl + 1; . Update productivity,

Ll ←− Ll + (m− 1); . Update number of links and

for l′ 6= l ∈ C do
Cl ←− Dll‘; . Update distances from

collaborators

l′ + +;

end

end

end
M ←−M/m

end

end
Save output : store P and C/L

Algorithm 1: Pseudocode. The input data are the lists containing
the collaboration sizes M , the activities of the agents A, the pre-
collaboration distances E and the matrix containing the empirical dis-
tances between the agents D.



7.4. RESULTS 191

(a)

(b)

Figure 7.1: The empirical and simulated distributions of scientists’ produc-
tivity in function of the average knowledge distance from their collaborators
in orange and blue, respectively. In (a), we provide this as scatter plot where
each point represent a scientist. In (b), we provide the fit of the data using
Eq. (7.1).

follow two approaches. First, we perform a parametric fit. This allows to

gain insight into common or different trends between simulated and observed

productivity. Second, we perform a non-parametric analysis to compare the

obtained distributions of data points. In particular, we use the non-parametric

test for multivariate distributions introduced by [14].
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7.4.1 Parametric analysis

In order to perform a parametric analysis of scientists’ productivity, we pro-

pose a fitting function. To obtain this, we now specify the productivity pi, of

an individual scientist i given her collaborators Ni. Because we focus on the

impact of knowledge in collaborations, we consider the knowledge distances

∆xij as the only influence that is reflected in pi. Specifically, we omit effects

resulting from the shared workload to write a publication or from the prestige

of the co-authors. In other words, our central assumption is that the produc-

tivity pi is dependent only on one types of variables: the knowledge distances

between the focal scientist i and her collaborators Ni.

We propose the following fitting function for the productivity:

pi = a+ b 〈∆xij〉Ni + c 〈∆xij〉2Ni + d 〈∆xij〉3Ni (7.1)

where Ni are the collaborators of i, ∆xij is the pre-collaboration distance

between scientists i and j, 〈·〉Ni is the average taken considering the Ni col-

laborators, a, b, c and d are the parameters that need to be fitted. To interpret

the different terms in the proposed fitting function pi, we have to consider that

pre-collaboration (knowledge) distances give rise to both benefits and costs.

Benefits and costs. We expect a and b to be positive as the sum a +

b 〈∆xij〉Ni quantifies scientists’ benefits from collaborations. In particular, the

first benefit term a reflects the empirical finding that a scientist i co-authors

papers also with collaborators at a knowledge distance ∆xij = 0. The sec-

ond benefit term b 〈∆xij〉Ni is linear in the knowledge distance, and it mimics

the linear relation between cognitive distance and novelty [154]. Indeed, by

using the words of [154], “When people with different knowledge and perspec-

tives interact, they stimulate and help each other to stretch their knowledge for

the purpose of bridging and connecting diverse knowledge”. At the same time,

knowledge differences also determine a cost in collaborations. If knowledge dif-

ferences become too big, then communication between scientists also becomes

very difficult. Indeed, it needs a lot of effort before one can understand all the

comments, ideas, and contributions of someone with a completely different
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scientific background, even if this person is a renowned scientist. To capture

this, in Eq. (7.1) we have a third quadratic term c 〈∆xij〉2Ni that overcomes

the linear benefit after an optimal knowledge distance. We expect c to be

negative as it is a cost, and it should decrease productivity.

In Eq. (7.1), we have also added a final cubic term (d 〈∆xij〉3Ni) for two rea-

sons. First, there is no reason for imposing the productivity to be symmetric

with respect to the knowledge distance. Second, the minimum value that pro-

ductivity can assume is 1, and hence, we need a positive cubic term that allows

compensating the quadratic term. For this reason, we expect d > 0.

In Fig. 7.1(b), we report the simulated and empirical productivity fitted us-

ing Eq. (7.1) for the time window starting in 1988 and ending in 1990. We

perform the fit using the curve fit function in the scipy package2. Again

from a visual inspection, we see that the simulation well matches the empirical

data. Precisely the fitted productivity functions, coming from simulations and

empirical data, have the same non-linear trend.

Typically, a model provides an expectation that it is compared with several

empirical observations. While in our case, we have one observed productivity

function (for each time window) and obtain (slightly) different productivity

functions from each simulation of our model. For this reason, we have to

determine the average simulated parameters and confidence bounds of our

model. With these, we can check if the empirical observation is compatible

with our model.

To obtain average simulated parameters and confidence bound for each time

window, we perform 20 simulations. On each simulation, we fit the productiv-

ity function given in Eq. (7.1) and obtain the four parameters, a, b, c and d.

We then compute the average of the obtained parameters across simulations.

Similarly, we can obtain confidence bounds on these parameters by computing

their empirical errors across simulations. By assuming that the fitted pa-

rameters are normally distributed, we can assume that 95% of the simulated

parameters are contained in two standard deviations from their average.

2This function solves non-linear least squares problem https://scipy.org/. We use the
default algorithm, which is the Levenberg–Marquardt algorithm [118, 131]

https://scipy.org/
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Parameters Empirical Simulated

offset, a 1.321 0.980 ± 0.035

benefits, b 9.15 8.54 ± 0.44

costs, c -17.3 -12.3 ± 1.2

saturation, d 7.99 9.64 ± 0.83

Table 7.2: Fitted parameters for the productivity function between 1988
and 1990. From right to left, the parameters coming from fitting the empiri-
cal and simulated data. The empirical parameters are the averages obtained
from fitting each simulation, separately. We also report their standard error
(multiplied by two). For all parameters, we truncate the digits at the second
significant digit of the standard errors coming from the simulated data.

Note that given the high dispersion of the data it is not worth to look at the

error of the estimated parameters directly from the fit. These errors are small

even though the fitted model cannot explain the variance of the data, and

they should not be used. In Table 7.2, we report the parameters estimated

from simulated and empirical data for the time window starting in 1988 and

ending in 1990. We verify that the fitted productivity from simulations and

empirical data have a similar trend as they have similar parameters. They

both have a positive offset a matching the fact that there collaborations among

scientists with identical knowledge. Additionally, we find that the quadratic

terms are negative (c < 0), i.e., they are costs, while the linear terms are

positive (b > 0), i.e., they are benefits. Last, but not least, we find that at

large values of knowledge distance both empirical and simulated data have

positive cubic terms (d > 0) to balance the negative quadratic terms.

Even though our simulated productivity well matches the non-linear trend of

the empirical one, we also find differences. The most significant difference

between the two curves is at small knowledge distances. In our simulation, we

obtain fewer scientists that are productive with collaborators at 〈∆x〉 < 0.2.

We provide an explanation of this in the Sect. 7.5. Moreover, we find that

the fitted parameters obtained from the empirical data are not contained in

two standard errors coming from the simulations (see Table 7.2). This hints

at us that there might be statistically significant deviations between data and

simulations. To verify this, we perform a statistical test in the next section.
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Observed statistic Critical value (α = 95%) H0 (p-value)

37.238 2.459 REJECTED (< 10−5)

Table 7.3: Results of the Cramer test coming from comparing the empirical
and the simulated distribution of (productivity, average collaboration distances)
pairs.

7.4.2 Non-parametric analysis

We perform a non-parametric statistical test to understand how well our sim-

ulations reproduce the observed data. To do this, we consider simulations

and empirical data as bi-dimensional distributions of random vectors. Each

random vector represents a scientist where the first variate is her productivity,

while the second variate her average knowledge distance. To compare the bi-

dimensional distributions of empirical and simulated random vectors, we use

the multivariate two-sample test of Baringhaus and Franz [14], also known as

the Cramer test.

The Cramer test is based on a simple idea. Given two samples of points

{ ~Xi} and {~Yi} of size m and n, we can compute three average distances: i)

the average distance between points in the first sample 〈d〉x, ii) the average

distance between points in the second sample 〈d〉y, and iii) the average distance

between points across the two samples 〈d〉(x,y). Then 1
2 (〈d〉x + 〈d〉y) ≥ 〈d〉(x,y)

where the equality holds when both samples of points belong to the same

distribution [138]. To use this idea, the Cramer test computes the Cramer

statistic that is Tmn = mn
m+n (2 〈d〉(x,y) − 〈d〉x − 〈d〉y)) and we compare this to

a critical threshold Tα. The critical values Tα is the upper α-quantile coming

from the empirical distributions of distances, and it allows to reject or accept

the following hypothesis with a confidence bound α:

H0: The two samples of points belong to the same distributions.

H1: The two samples of points belong to different distributions.

When Tmn < Tα, we can reject H1 with confidence α (and can accept H0), i.e.

with probability α the two sample of points belong to the same distributions.

While, when Tmn ≥ Tα, we cannot reject H1 with confidence α (and cannot
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accept H0), i.e. with probability α the two sample of points belong to different

distributions.

In Table 7.3, we report the results from the test. We use the implementation

of the test provide in the R package cramer. Note that given the large sample

size, we used the eigenvalue estimation, instead of the Monte-Carlo bootstrap

method of the package. We find that we cannot reject H1, i.e., the hypothesis

that the empirical and simulated data come from different distributions with

95% of confidence. This means that even though we find a good match in

the parametric analysis, the distributions are still statistically different from

each other. We believe the most significant mismatch is in two differences

between the empirical and the simulated of the data. First, in the empirical

data, all scientists have at least participated in one collaboration, while in the

simulations, an agent has productivity equal to zero if she is never sampled.

Second, the empirical data contains some outliers, i.e., scientists with much

higher productivity, that are not reproduced in the simulations. We further

discuss the limitation of our model in Sect. 7.5.

Note that the information reported in Table 7.3 comes from on single simu-

lation of collaborations for the time window starting in 1988 and ending in

1990. When comparing all the simulations with the empirical data, we al-

ways have to reject the hypothesis that simulations and empirical data come

from different distributions with 95% of confidence. This means that with

probability p = 0.05, the test is giving a wrong result, i.e., with probability

0.05, the test rejected H0 even though it was correct. On 20 trials, the prob-

ability that the test fails more than two times is
∑20
i=3

(
20
i

)
pi(1 − p)20−i =

1−
∑2
i=0

(
20
i

)
pi(1−p)20−i = 0.075. This means that with a probability higher

than 0.9, the test will give correct results for 18 out of the 20 trials. In

other words, with a probability higher than 0.9 the test correctly rejects H0

18/20 ≈ 90% of the time. By this, we can say that our model has statistically

significant deviations from the empirical data.
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7.5 Discussion and outlooks

We have developed an agent-based model that allows capturing the productiv-

ity of scientists as a function of their positions in a knowledge space. Our model

is an activity-driven model [160], meaning that agents’ propensity to initiate

a collaboration is drawn from empirical data. Additionally, we use empirical

information on the number and the size of collaborations to determine how

many and how large the simulated collaborations should be, like in [224, 233].

The novel aspect of our model is that we use knowledge positions of agents

to determine their collaborators. To do this, we assign agents with knowledge

positions using scientists’ empirical knowledge positions, computed in Chap. 6.

From a parametric analysis, we find that our simulations reproduce the func-

tional form of the observed scientists’ productivity. Precisely, we have proposed

a scientist’s productivity function based on knowledge distances between sci-

entists that allows us to fit the observed productivity function (see Eq. (7.1)).

This is a cubic function with four parameters weighting constant and linear

benefits, quadratic costs, and a cubic saturation in the knowledge distances.

We find that the fitted parameters from simulated and empirical data are close

and reproduce the same non-linear trend for the productivity function.

From a non-parametric analysis, we find that the simulated distribution of

(productivity, average collaboration distances) pairs are statistically different

from the empirical one. We obtain this result by comparing the bi-dimensional

distributions using the Cramer test, a non-parametric test [14]. We argue that

the statistical difference is due to two main factors. First, the empirical data

contains some extremely productive scientists not reproduced in the simula-

tions (see Fig. 7.1). We believe that the higher productivity of these scientists

is not dependent on their knowledge positions. Indeed other factors, like the

visibility of the scientists [13] or the availability of findings [126], could be im-

portant determinants for collaborations. Recall that we have discarded these

factors in order to focus only on the role of knowledge in determining col-

laborations. Second, the empirical distribution contains a higher number of

scientists that have smaller average distances compared to the simulated one

(again, see Fig. 7.1). This occurs as in our model, we sample an initiator and
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pick the remaining collaborators by only considering their distance from the

sampled initiator. This implies that with high probability, the picked collab-

orators have a significant knowledge distance among them. Recall that when

checking the knowledge distance among random pairs of scientists, we have

obtained a distribution of knowledge distances with one prominent peak at

high knowledge distance (see Fig. 6.4(c)).

To solve the above problems, we consider two possible extensions to our model.

To reproduce the presence of scientists with extremely high productivity, we

could introduce a bias when picking collaborators. We should favor those that

have already been participating in many collaborations. Such an approach

has shown to be successful in the activity-driven model of Tomasello et al.

[224], also used in Chap. 5. While to obtain more scientists with smaller aver-

age distances from their collaborators, we could define a collaboration fitness

that considers the knowledge distances among all collaborators. We could

compute and assign such fitness to each simulated collaboration by modifying

the productivity function defined in the parametric analysis. Then a collab-

oration is created if its fitness is higher than a given threshold. Note that a

similar approach was used to successfully reproduce the size distribution of

collaborations in R&D alliances by Tomasello et al. [222].

We have performed some exploratory work on both the extensions mentioned

above. We have found that the challenge on these extensions is balancing be-

tween the effect of the utility function of favoring a specific knowledge distance

and the high dispersion of the (observed) data. Further research needs to be

done to determine the effectiveness of the proposed extensions.

Finally, let us comment on the similarities and the differences between this

model and the one presented in Chap. 5. Both models reproduce collaboration

activities and take the number and the size of collaborations as input. How-

ever, the considered collaborations occur in really different domains: science

and industry. Both models are activity-driven, meaning that agents are as-

signed with an activity attribute that captures their propensity to start collab-

orations. Moreover, in both models, we assign knowledge positions to agents

as second attributes. However in Chap. 5, knowledge positions change over

time, and they do not play a role when choosing the collaborators. Instead,
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in this chapter, knowledge positions are constant attributes of the agents, and

they are the only determinant of the collaborations.

Note that the main determinant of the collaborations in Chap. 5 were the

(constant) label attributes assigned to agents. These labels capture the mem-

bership of the agents to well-defined circles of influence [224]. Interestingly

enough, the label approach used in Chap. 5 was also successfully used to re-

produce the co-authorship activities among scientists [227]. This motivates us

to link labels and knowledge positions of the agents (see Sect. 6.7). At the

same time, it is not trivial how to create this link, and more research on this

possible connection is still needed.

To conclude, in the present chapter, we have developed a simple, yet efficient

agent-based model able to reproduce the productivity of scientists as a func-

tion of their knowledge positions. By proposing a theoretical productivity

function, we verified that the model reproduces the functional form of the ob-

served productivity, but not all its details. With a non-parametric analysis, we

have identified a statistical incongruence between the simulated and observed

scientists’ productivity. We have argued about the origin of the incongruence,

and we have proposed a more refined agent-based model to cure for the iden-

tified incongruence. By all this, we shed new light on the role of different

knowledge among scientists in determining their co-authorship activities.



Chapter 8

Scientists’ mobility:

An empirical analysis

Summary

This chapter makes two essential contributions to understand the mobility pat-

terns of scientists. First, by combining two large-scale data sets, we are able

to reveal the geographical career trajectories of scientists. Each trajectory con-

tains, on the individual level, information about the cities and the time spent

there. A statistical analysis gives empirical insights into (i) the geographical

distance scientists move in order to obtain a new affiliation and (ii) scientists’

age when moving. From the individual career trajectory, we further recon-

struct the world mobility network of scientists, where nodes represent cities

and links in- and outflow of scientists. We analyze the topological properties

of this network with respect to degree, local clustering coefficient, path length,

and neighbor connectivity. The second important contribution is an analysis of

the temporal correlations of scientists’ career trajectories. This analysis is per-

formed at the country, and by this, we verify whether international corridors

favor the mobility of scientists. Moreover, we perform the analysis of temporal

correlation at the affiliation level, and hence, we test whether it is adequate to

model scientists movements across institutes using a network perspective.1

1Based on [231]
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8.1 Introduction

So far, we have quantified knowledge and proxied its exchange among sci-

entists and firms in terms of patents and scientific publications. These are

knowledge artifacts capturing one dimension of knowledge, namely explicit

knowledge [96, 151, 166]. However, knowledge has also another dimension,

often called either tacit or implicit knowledge. To study and quantify this

other dimension of knowledge is difficult by definition as it is the knowledge

that cannot be encoded, and humans can exchange only via shared practice

[96, 151, 166].

In this chapter, we address the problem of studying tacit knowledge by ana-

lyzing scientists’ career trajectories. Indeed, scientists diffuse explicit knowl-

edge by publishing their research and tacit knowledge by physically moving

across different locations. Thus, by studying scientists’ career trajectories, we

can indirectly study the diffusion patterns of tacit knowledge. We provide

an empirical analysis of scientists’ career trajectories at three different levels:

country, city, and affiliation level.

In Sect. 8.2, we analyze the geographical properties and timing of scientists’

movements at the city level. To do this, we use the largest open-access bib-

liographic data set on life sciences, MEDLINE to reconstruct the geographical

trajectories of scientists (see Chap. 2 for details). Then, by taking a net-

work perspective, we reconstruct the global mobility network of scientists. On

this, we compute the distributions of four network measures to determine the

geographical properties of scientists’ career trajectories.

In Sect. 8.3, we perform an analysis of the temporal correlations of scientists’

career trajectories at the country and affiliation level. To do this temporal

analysis while retaining a network perspective, we use the mathematical notion

of paths and multi-order graphical models [201]. At the country level, we

investigate whether there are shared international corridors in the movements

of scientists. At the affiliation level, we analyze whether scientists’ careers are

dependent only on their current working institutions or also on the previous

ones.
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Figure 8.1: (a) Distribution of movement distances of scientists. (b) Distri-
bution of movements dependent on the (academic) age of scientists.

We conclude with Sect. 8.4 by summarizing and interpreting our empirical

findings. Note that the main contribution of this chapter is two-folded. First,

we provide an analysis of scientists’ career trajectories at the country, city, and

affiliation levels. This analysis allows us to develop a broad understanding of

the properties of these trajectories. Second, our analysis uses state-of-the-art

network-analytic methods to study temporal aspects while retaining a network

perspective. By this, we are able to uncover new patterns of scientists’ career

trajectories.

8.2 Individual and global mobility of scientists

By using the MEDLINE data and the method presented in Sect. 2.1.1F, we re-

construct the career trajectories of individual scientists at the city level. Using

these trajectories, we analyze the geographical properties of the movements of

individual scientists. Then, by taking a network perspective, we analyze the

global mobility of scientists as a system.

8.2.1 Statistics of geographical career trajectories

The information about the sequence of cities a scientist was based during

her career allows us to analyze the distance she moved when changing her
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affiliation. We use the Haversine formula to compute the geodesic distance

between the geo-locations of the respective cities, measured in kilometers. The

distribution obtained from 62 465 scientists moving between 2000 and 2008 is

shown in Figure 8.1(a). We note that it is a left-skew distribution with a

median of 1 000 km, i.e., most scientists find a new affiliation in cities within

a radius of 1 000 km around their current affiliation. However, movements of

more than 6 000 km toward distant cities are also quite frequent.

The data also allows us to relate the frequency of such moves to the age of

scientists. Because the physical age of scientists is not recorded, we have to

rely on their academic age, tai , also measured in years. tai = 0 when the scien-

tist publishes her first paper, according to our database (which is probably a

physical age of about 25 years). The frequency of any recorded move irrespec-

tive of the distance over the academic age ta is shown in Figure 8.1(b). Again,

it is a left-skew distribution with a median of 7 years. The properties fo this

distribution the known fact that the mobility of scientists drastically decreases

with age [35, 237]. However, we find frequent moves even at the (physical) age

of retirement.

8.2.2 Reconstructing the mobility network of scientists

While the career trajectories and their statistics refer to individual scientists,

we can also analyze the network that results from aggregating all of the career

trajectories of a given year. This second analysis moves the discussion of

movements between cities to the macro level. For each year, we calculate the

number of scientists NK(t) in a given city K from their publications, taking

unique geo-located authors into account. We further calculate for each year t

the number of scientists ∆NK←L(t) moving into city K from another city L,

i.e. the inflow, and the number of scientists ∆NL←K(t) moving out of city K

to another city L, i.e. the outflow.

Figure 8.2(a,b) show the respective distributions for the aggregated inflow

∆N in
K (t) =

∑
L ∆NK←L(t) of scientists into city K and the aggregated outflow

∆Nout
K (t) =

∑
L ∆NL←K of scientists out of city K. The aggregate inflow and

the outflow are computed during three different time windows centered in 2000,

2002 and 2004, meaning that each city is considered three times (once for every



8.2. INDIVIDUAL AND GLOBAL MOBILITY OF SCIENTISTS 204

(a)

0.00

0.25

0.50

0.75

1.00

10 1000
Scientists' outflow

P
D

F

(b)

0.00

0.25

0.50

0.75

1.00

10 1000
Scientists' inflow

P
D

F

Figure 8.2: Distributions of (a) inflow of scientists into any city, (b) outflow
of scientists from any city. The x-axis is in log-scale.

time window). Again, we note the left-skew distribution for both quantities,

which indicates the heterogeneous contribution of cities to the global movement

of scientists.

For any given pair (K,L) of cities we can then calculate the total flow of scien-

tists between these two cities. This is the total number of scientists exchanged

between K and L, ∆NL←K + ∆NK←L. The total flow allows us to visualize

the mobility network of scientists a the world level, as it is shown in Figure 8.3.

The links are undirected, but weighted according to the total flow.

Fitness of a city. The calculated inflow and outflow already makes clear

that cities are very different with respect to their attractiveness for scientists.

Obviously, a small number of cities are more attractive, which can be explained

to a large extent by the reputation of the academic institutions hosted there.

Hence, it makes sense to assign to each city K ∈ M a fitness value FK(t)

reflecting the quality of their academic institutions. This fitness value is not

precisely known, but can be estimated from available data, for example taking

different university rankings into account. We will not describe in detail how

we measure the city fitness, suffice it to say that we measure it through a ci-

tation weighted output metric (see Chap. 2 for details). We assume that such

a measure reflects the scientific attractiveness that scientists associate with

cities. The actual values are not relevant since we are primarily interested in
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Figure 8.3: The mobility network of scientists in between 1990 and 2008.
The link width and the color indicate the magnitude of the total flow between
any two cities. For visualization purpose, the total flows have been aggregated
at country level and logarithmically scaled.

the ranking of cities resulting from this measure, i.e., in the fitness relative

to the others. We note that city fitness can change over time. For an exten-

sive empirical investigation about city fitness and its interplay with scientists’

career trajectories, see [237].

8.2.3 Topological properties of the mobility network

In order to further characterize the mobility network utilizing topological prop-

erties, we aggregate the mobility networks for the period of time 2000-2008.

On this aggregated network, we calculate standard measures that are common

in network analysis. These measures include the degree distribution P (d),

where d is the number of cities scientists in a given city either move to or

come from. Already Figure 8.3 indicates that this is a very broad distribution.

Some cities act as hubs and have a large degree. However, most cities only

have a small degree. This result is confirmed by the degree distribution shown

in Figure 8.4(a).

The distribution of path lengths, shown in Figure 8.4(b), measures how many

steps are needed to reach, on the network, any city from a given starting
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point. The small number of hops indicates that the network is very dense in

a topological sense, not necessarily in a geographical one.

The local clustering coefficient, on the other hand, measures whether three

neighboring cities (with respect to their network distance) form closed trian-

gles, i.e., whether there is an exchange of scientists between them. Figure 8.4(c)

shows the distributions of these values, and we find that most cities have a

small local clustering coefficient.

The neighbor connectivity measures to what extent cities with a certain de-

gree are connected to other cities with a similar degree. Figure 8.4(d) shows a

non-monotonous dependency. Cities with a low degree tend to show an assor-

tative pattern, i.e., they are connected to cities that have a similar number of

neighbors. Cities with a high degree, which are characterized as hubs above,

are rather connected to cities with a lower degree, i.e., they are disassortative.

This gives us already on the topological level important information about the

origin of scientists coming to the hubs and the destination of scientists leaving

the hubs. Obviously, they do not hop between hubs - which would have been

indicated by a clearly assortative pattern for hubs.

8.3 Memory effects in scientists’ mobility

We now turn our attention to a different aspect of our data. We study whether

career trajectories of scientists contain temporal correlations. We start our

analysis at the country level, and hence, career trajectories are sequences of

countries where scientists move in order to work. Temporal correlations in

these sequences would indicate the presence of international corridors (made

by more than two countries) that channel scientist movements.

On the one hand, we expect that analyzing scientist trajectories at the country

level should give reliable results. By aggregating data at the country level, we

have a quite high number of trajectories between many sequences of countries,

and hence, we obtain better statistics. On the other hand, aggregating and

projecting sequential data might distort the modeling of the data and destroy

its temporal properties (see Chap 4 and [204]). For this reason, as the second

step of our analysis of temporal correlations, we analyze career trajectories of
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Figure 8.4: Distributions of (a) degrees, (b) path lengths and (c) local
clustering coefficients. In (d) we plot the the average degree of neighbors of a
node with degree k in function of k.

scientists at affiliation level. By affiliation level, we mean that scientists’ career

trajectories are sequences of research institutions (affiliations) where they have

published a paper. With this, we analyze scientists’ careers at a much more

fine-grained level compared to the city or country level.

For our analysis at the country and affiliation level, we adopt a path perspective

similar to the one used in Chap. 4. In other words, we use the multi-order

graphical model developed by Scholtes [201] to model the career trajectories,

and then, we will look for the optimal order.
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# of countries # of links (unique) # of trajectories [ Min, Max ]

215 6 913 3 740 187 [1, 32]

Table 8.1: Key statistics of the career trajectories at the country level.

# of universities # of links (unique) # of trajectories [ Min, Max ]

81 6 340 2 312 376 [1, 42]

Table 8.2: Key statistics of the career trajectories at the affiliation level.

8.3.1 Temporal correlations at country level

We restrict our attention to 3 740 187 individual scientist trajectories across 215

countries between 1990 and 2009. The longest trajectory is of length 32, and

89% of the trajectories have length 1, meaning that we observe most scientists

moving only once. This points out that the repeated long term movements are

relatively rare, but still many in absolute terms (411 258).

The most frequent trajectories of length one are the ones between UK and

USA (30 406), Japan and USA (28 013), USA and UK(26 660). This result is

directly dependent on the fact that the USA is actually the largest country

made of many states, and for this reason, we always observe in the most

frequent trajectories. If we consider only those trajectories not coming or

going to the USA, we find that the most frequent trajectories of length one

are across the UK and Australia (6 386), Germany and the UK (6 015), and

the UK and Germany (5 441).

When considering trajectories of length two, the most frequent ones are be-

tween (Japan, USA, Japan) (14 362), (USA, UK, USA)(11 416), and (UK,

USA, UK)(10 759). Again, the USA is always present, and we argue this de-

pends on the fact that the USA is the largest country in the data. If we

consider only those trajectories of length two that do not go through the USA,

we find that the most frequent ones are (UK, Australia, UK)(2 027), (France,

UK, France)(2 101), and (Germany, UK, Germany)(2 108). The origin and

end of these trajectories are in the same country, and hence, this suggests the

presence of a“go back home” phenomenon. In other words, scientists often go

back to their (academic) country of origin after working in a different one.
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In order to identify temporal correlation in our trajectories, we use the test

developed by Scholtes [201] to detect the optimal order for multi-order graph-

ical models. By using Pathpy implementation of this test, we find Kopt = 1 to

represent scientists’ career trajectories at the country level. This means that

there are no statistically significant memory effects in the career trajectories

to motivate the use of higher-order network models. In other words, we obtain

Kopt = 1 because the number of empirical trajectories of length 2 or higher is

too low compared to the degrees of freedom necessary to represent the data

as a second-order network. Note that by analyzing the temporal correlation

at the city level, we also find Kopt = 1.

8.3.2 Temporal correlations at affiliation level

For the analysis at affiliation level, we use the MAG data set (see Chap.2),

instead of the MEDLINE data used in the previous sections. Note that we had to

use MEDLINE data as scientists needed to be geo-localized at either city or coun-

try level. While now we are not interested anymore in scientists’ geographical

locations, but only in their affiliations. For this reason, we prefer the MAG

data set that contains scientists publishing in more disciplines compared to

ones listed in MEDLINE.

We restrict our analysis to the top 100 universities in computer science reported

in [38]. To do this, we matched the names of the universities using basic string

processing and obtained 2 312 376 scientists trajectories of scientists moving

across 81 universities. For more details about the universities under analysis,

see Appendix D.

By focusing on a specific set of universities, we have to consider two facts when

interpreting our results. First, the analysis of temporal correlation will be valid

only for the subset of universities analyzed. Second, by analyzing a subset of

top universities, we are focusing our attention on a particular sub-population

of scientists. We are focussing on scientists that have a career in more visible

and established institutions. On the one hand, this is a second limitation as

we have a biased sample of scientists. On the other hand, we obtain insight

into the faculty hiring system of top universities. By this, we will complement

and extend the network analysis that Clauset et al. [38] have performed.
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Among the top analyzed universities, the most frequent trajectories of length

one are between Washington University in St. Louis and the University of

Washington, between Kyoto University and the University of Tokyo, and be-

tween Tsinghua University and Peking University. So a large number of sci-

entists’ movements of length one are occurring at the national level, and we

find this to be true also when looking at longer trajectories. For example,

among the most frequent trajectories of length two, we find trajectories like

(Washington University in St. Louis, University of Washington, Washington

University in St. Louis), (University of Tokyo, Kyoto University, University

of Tokyo). All this hints us that by looking at scientists’ career trajectories

at the country level, one discards extremely frequent movements that could

contain temporal correlations. To check for this, we the test of [201] provided

in Pathpy and find Kopt = 2. This means that there are statistical significant

memory effects in the data to justify the use of a multi-order graphical model

of order two. We discuss this result in the next section.

8.4 Conclusions

This chapter contains important results from an empirical point of view. We

have analyzed career trajectories of scientists at the country, city, and affilia-

tion level by using two large scale bibliographic data sets: MEDLINE [228, 229]

and MAG16 [213]. For the analysis at the city and country level, we have used

the MEDLINE dataset as it provides geo-localized information on scientists work-

ing in life sciences. While for the analysis at affiliation level, we use the MAG

as it covers a broader range of disciplines compared to MEDLINE data.

When analyzing scientists’ career trajectories at city level, we have started

by computing the distributions of the number of scientists moving to and

from cities. We have found that both distributions are broad and show large

variations in the attractiveness of different cities from scientists’ perspective.

Then, we have reconstructed the global mobility network of scientists. On

this network, we have calculated the distributions of four quantities: degree,

shortest path length, local clustering coefficients, and neighbor connectivity.

We have found that the degree distribution is extremely broad, showing that
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few cities act as hubs, while the majority have a small degree. This result

confirms that city attractiveness for scientists varies a lot. On the contrary, the

shortest path length distribution is narrow and peaked at 3, showing that the

network is very dense in a topological sense. The local clustering coefficients

distribution is peaked at low values telling us that most cities are not connected

with closed triangles. Hence, scientists often move to (away from) hubs from

(to) smaller cities, but these smaller cities are not connected. At the same

time, from the distribution of neighbor connectivity, we have found a clear

disassortative preference for nodes with high degrees. This indicates that hubs

are not well connected with each other.

When analyzing scientists’ career trajectories at the country and affiliation

level, we have determined whether there are temporal correlations in the se-

quences of countries or institutions where scientists move to work. By perform-

ing our temporal analysis at two different levels, we have studied two different

aspects of scientists’ career trajectories. At the country level, we find no sta-

tistically significant temporal correlations in the sequences of countries. This

indicates that there are no international corridors that channel the scientists’

circulation. By this, we also find that a network perspective is sufficient to

analyze the scientists’ career trajectories across countries.

At affiliation level, we have analyzed scientists’ career trajectories across 80

top universities and found temporal correlations in their careers. These tem-

poral correlations mean that scientists work in universities following specific

sequences during their careers. On the one hand, we complement the findings

of Clauset et al. [38], which determined the hierarchical social structure of

universities using a network perspective. On the other hand, we find that a

network perspective is an incomplete representation of scientists’ career trajec-

tories. To correctly represent these trajectories, we should use a second-order

network at the university level. This result might have implications when using

network measures to determine the hierarchical social structure of universities

or in general, to create university rankings. We leave the analysis of such

implications for future research.

In the present chapter, we have performed an extensive analysis of scientists’

career trajectories at three different levels. By analyzing these trajectories at
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the city level, we have observed a skewed distribution in city attractiveness

from scientists’ point of view. Additionally, by taking a network perspective,

we have found heterogeneous patterns for scientists’ movements between less

and more attractive cities. While by analyzing career trajectories at the affili-

ation and country level, we have demonstrated, respectively, the presence and

absence of systemic temporal correlations. To conclude, with our analysis we

have obtained a solid understanding of the mobility patterns of scientists.



Chapter 9

Scientists’ mobility:

A data-driven model

Summary

Building on the empirical findings of the previous chapter, we now propose an

agent-based model that reproduces these findings on both the scientist and the

network level. The model considers that agents have a fitness attribute and

considers potential new locations if they allow increasing this fitness. Loca-

tions, on the other hand, rank agents against their fitness and consider them

only if they still have a capacity for them. This leads to a matching problem

which is solved algorithmically. Using empirical data to calibrate our model

and to determine its initial conditions, we are able to validate the model against

the measured distributions. By validating our model, we interpret the model

assumptions as micro-based decision rules that explain the observed mobility

patterns of scientists.1

1Based on [231]

213



9.1. INTRODUCTION 214

9.1 Introduction

High-skill labor mobility is a crucial economic and political issue of our time.

Modern economies rely on high skill labor to keep their competitive advan-

tage [11, 19, 20]. For this reason, attracting and retaining scientists is becom-

ing a central concern for migration policy [29]. In this work, we investigate

the mobility of scientists by studying several forces that arguably drive their

relocation choice. We propose an agent-based model that we calibrate and

validate against real data. With this data-driven approach, we test if a set of

minimal decision rules can explain observed mobility patterns of scientists.

Scientists are highly mobile individuals, a fact that has been true in the past

and is becoming ever more important [71]. There is an expanding literature on

the mobility of scientists. Many works have been focusing on the relationship

between movements and scientific impact [55, 62, 196]. Other works analyzed

scientist mobility across countries to determine the effects of policy [44] and

to investigate aspects of the brain circulation phenomenon [3, 21, 195, 238].

Most works address scientist mobility at an aggregated level, i.e., they focus on

bilateral flows between countries. At the same time, the need to understand the

basic forces at scientist level underlying academic mobility has been highlighted

by Appelt et al. [8], Fortunato et al. [59]. This need has been approached both

empirically [63, 72, 239] and theoretically Mahroum [128]. Empirical works

are traditionally based on survey data that provide only a small coverage of

the global mobility of scientists and usually aggregated at the country level;

while theoretical works are rarely validated against data.

In order to go beyond speculation in what drives the global academic mobility,

we have reconstructed the global mobility network of scientists in Chap. 8.

For doing this, we used the approach of Verginer and Riccaboni [238] that al-

lows extracting geographical career trajectories of scientists using bibliographic

data. In particular, we used the MEDLINE database, the largest open-access

bibliographic database in the life sciences (see Sect. 8.2). Now, after recon-

structing the mobility network, we propose an agent-based model to reproduce

this network and other scientist-level properties. The model is explained in

Sect. 9.2, while its calibration and validation procedure are respectively pre-
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sented in Sect. 9.3 and Sect. 9.4, and they follow the data-driven approach

of Tomasello et al. [224, 227], Vaccario et al. [233]. Finally, in Sect. 9.5, we

further discuss the results from our simulations, analyze the limitation of the

model, and provide some outlooks.

9.2 Overview of the agent-based model

In this section, we propose and define a model, which can reproduce the charac-

teristic properties of the empirical mobility network discussed in Chap. 8. Pre-

cisely, we want to reproduce features both at scientist and network level. These

are, on the scientists’ level, (1) the distribution of move distances, Fig. 8.1(a)

and (2) the “age at move” distributions, Fig. 8.1(b). Moreover, at the network

level, we want to reproduce we want to reproduce (3) the distributions of the

topological features shown in Fig. 8.4, i.e., local clustering coefficients, path

lengths, degrees and degrees of neighbors.

We note that this is quite an ambitious goal since our model needs to correctly

reproduce several very different system dimensions (i.e., scientists (micro), in-

tercity (macro)). If the model is able to reproduce the described distributions,

we have a strong indication that the interaction rules governing scientists and

city interactions, capture a relevant aspect of the real mobility of scientists.

The information available to the model during fitting does not imply the more

complex validation measures. If we find that the simulated results agree with

the empirical validation metrics, it means that the interaction rules are the

reason for the observed patterns and good validation results.

We decide to develop an agent-based model because we want to model the

mobility of scientists, as opposed to a system dynamics model in which we

would merely reproduce the flows between different cities, on the aggregated

level. This implies that macroscopic features describing the system or network

level, such as the topological properties already discussed, have to be emergent

properties arising from the agent dynamics.
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9.2.1 Agents and Locations

Our model is composed of two entities, agents and locations. Agents repre-

sent scientists. Each agent i is characterized by three properties that change

over time: its position, ri(t), its fitness, fi(t), and its years of activity yi(t).

Time is measured in discrete simulation steps, each representing one year.

When we start our simulations at time t = 0, which is chosen as the year

2000 below, we cannot assume that all agents also start to become active only

then. Instead, agents have already been publishing before, which is included in

yi(t). An agent that published its first paper in 1995 will have a yi(2000) = 5

in this case. This becomes of importance when measuring the fitness of agents,

fi(t = 0), as determined below.

Locations represent cities and host agents. In agreement with the dataset, we

have M = 5, 485 different locations. Each location K is characterized by three

properties that can also partly change over time: its position RK defined in

real geographical space by means of longitude and latitude, its fitness, FK(t)

(see Sect. 8.2.2), and the number of agents it hosts, NK(t) (see Sect. 8.2.2).

Note that we take RK and Nk(t) from the available empirical data.For the

fitness of a location, however, we do not take accumulated ranking values of

institutions into account. Instead, we choose a different proxy for fitness, which

is more consistent with our model: the fitness FK(t) is equal to the average

fitness of all agents hosted in location K. This relates the problem back to

defining the fitness of agents. But at the same time, it is in line with the

ranking of academic institutions, which in essence is also determined by the

fitness, or quality, of the scientists working there. In our model, we assume

that the FK(t) are public information, just as the rankings are.

For the position ri(t) of an agent, we assume that at each time step the agent

can be found in one of the available locations. So ri(t) = RK where K is

location of agent i is based at time t.

9.2.2 Model dynamics

Movement preferences. Our main modeling assumption is that agents

prefer to work in locations that provide a higher fitness than the one where
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they are currently based. These locations, however, can be very distant from

the current place, which incurs higher relocation costs. Therefore, agents

do not only take the fitness FK(t) of locations into account, but also the

geodesic distance ∆i,K(t) between the current location of i and any other lo-

cation K. They combine this information in a re-scaled fitness score F̃i,K(t) =

FK(t)/(∆i,K(t))b for each location K. b is a model parameter, used to weigh

the impact of spatial distances. The bigger b, the more important any spatial

distance becomes.

By ranking the values F̃i,K(t) from high to low, each agent then obtains an

individual ranking that reflects its preferences where to move next. Agents

in L will consider only those locations where FK(t) > FL(t), i.e., where the

average fitness of scientists is larger than the average fitness of scientists in their

city. Agents’ preferences can be summarized in a ranking vector ~Vi where its

K-component, (~Vi)K , represents the preference for location-K and it can be

written as

(~Vi)K = Θ (FK(t)− FL(t))
FK(t)

(∆i,K(t))b
(9.1)

Movement decisions. Agents only come up with a ranked list of possible

locations they would consider to move to (and we can assume that they send

applications to the academic institutions in these locations). However, agents

do not decide where to move. This decision, whether or not to accept the

agent, is taken at the location.

A location K will accept new agents only if its capacity allows so, which is

defined by NK(t), the number of scientists empirically observed at a given

location. External factors, such as the growth of academic institutions, are

implicitly considered in the observed change of NK(t). As we found out, the

NK(t) are rather stable over time. This implies that, after some transient

periods in our simulations, locations have the capacity to accept incoming

agents only if agents at K have been accepted somewhere else and move there.

Because, dependent on the individual ranking of agents, some locations ob-

tain more applications than the capacity allows them to accept, each loca-

tion ranks the qualified agents according to their fitness fi(t). Available slots

are filled starting from agents with higher fitness values until the capacity
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NK(t) is reached. Precisely, if fi(t) > FK(t), location K considers agent i

with probability p = 1 because this allows location K to increase its fitness

FK(t). If fi(t) ≤ FK(t), location K considers agent i only with a probability

p = (fi(t)/FK)s where s is our second model parameter. Note that for a high

value of s, locations become more selective. We express the probability of a

location-K to consider an agent-i as a piecewise function of the fitness of the

agent and of the location:

p(K, i) =

{
1 fi(t) > FK(t)

(fi(t)/FK(t))s otherwise
(9.2)

For s → ∞, p(K, i) → θ(fi(t) − FK(t)), i.e. a location considers an agent if

and only if its fitness is higher compared to the average fitness of the agents

currently hosted in the location. While for s→ inf, p(K, i)→ 1, i.e. a location

considers all agents independently of their fitness. In Fig. 9.1, we visualize the

basic rules of our model.

Matching problem. In our model agents rank locations, while locations

rank agents. To match locations and agents, we have to solve a matching prob-

lem similar to the stable marriage problem. However, our problem is slightly

different as a location can accept more than one agent until the capacity NK(t)

is reached. To solve this matching problem, we use the established NRMP-

algorithm developed by the National Resident Matching Program (NRMP) for

matching medical students to U.S. training programs. After the matching is

completed, only the agents that have been matched to a location will move.

If an agent i has moved to a new location K, we update its position vector,

ri(t+ 1) = RK , and keep its fitness constant, fi(t+ 1) = fi(t).

Fitness dynamics. We have to decide what happens to all those agents

that are not accepted at a new location. Here, we consider that the agent

stays at its current location, i.e. ri(t + 1) = ri(t), and uses the time step to

further improve its fitness, fi(t). For this, we assume a stochastic dynamics,

precisely an additive stochastic process with a variance proportional to the

fitness of the current location. This implies that it is not guaranteed that
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Figure 9.1: The agents (a1, a2, a3 and a4) are all hosted in three locations,
A, B or C, that represent respectively London, Paris and Berlin. Each location
has a maximum number of available positions illustrated by some small slots,
NA = 2, NB = 4 and NC = 3. In this image, agents a1 and a2 compute the
rescaled fitness of the available locations (A and C) and rank these locations
accordingly. Here, we have assumed that A and C have the same fitness
(FA(t) = FC(t)), but A is closer to B than C is (∆i,A < ∆i,C for i = 1, 2). For
this reason both a1 and a2 express a preference for A over C. Since location
A has NA = 2 and one position is already taken, A must decide to host either
a1 or a2. Location A will decide depending on the fitness of a1 and a2.

agents will increase their fitness when not moving. At the end of each time

step, we update the fitness of locations, FK(t), by averaging over the fitness

fi(t) of all those agents that are currently based there.

9.2.3 A data-driven model

We use the empirical data not only as an input to our model, but also for

calibrating and validating it. As input, we take six observed quantities: three at

the city level and three at the scientist level, to determine the initial conditions

of our model. As the starting year t = 0, we take 2000.
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From each city we take its geographical position and the number of scientists

in year 2000. We assign these quantities to locations to characterize their RK
and NK(t = 0). The initial fitness value of a location, FK(t = 0), is determined

by averaging over the fitness values of those agents based in the given city in

2000.

From each scientist, we take its geographical position (in a given city), its

academic impact and the years of activity already passed until 2000. We

assign these quantities to agents to characterize their ri(t = 0), fi(t = 0)

and yi(t = 0). The academic impact is proxied by the papers that a scientist

has co-authored during the last two years of activity. Precisely, we assign to

each paper a score equal to the impact factor of the journal2 where it was

published divided by the number of co-authors. Then, for each scientist, we

sum the scores of the papers he/she has co-authored between 1998 and 2000.

This defines the starting fitness of agents, i.e. fi(t = 0).

We then run the agent-based model using parallel updates of all agents per

time step, taking as evolving quantities only the values of NK(t) into account.

To do so, we still have to determine the two free parameters of our model,

b, which weighs the impact of spatial distances for the individual rankings of

agents, and s, which weighs the flexibility of locations to still accept agents

with a fitness less than the fitness of the location. Determining b and s is done

during the model calibration.

9.3 The calibration procedure

To calibrate the model, we use two empirical distributions: the inflow and the

outflow distributions shown in Fig. 9.2(a,b). Note that for this manuscript, we

calibrate our model considering only cities and scientists present in three coun-

tries: France, Germany, and the United Kingdom. To determine the model

parameters b, s from that, we use an established approach in agent-based

modeling [233], machine learning [22, 116, 182], and computer simulations in

2The Journal impact scores are taken from Scimago, see 2 for details.
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Figure 9.2: Distributions of (a) inflow of scientists into any city, (b) outflow
of scientists from any city. (red) indicates the empirical distributions, (blue)
the (optimally) simulated distributions obtained from the calibration of our
agent-based model.

general [114]. It combines two elements: (a) a grid search and (b) a perfor-

mance score.

The grid search consist of an exploration of the (low dimensional) parameter

space through computer simulations. For b the values {0.005, 0.01, 0.05, 0.1,

0.5, 1.0, 5.0} are considered, for s the values {0.05, 0.1, 0.5, 1.0, 5.0, 1.0

,10.0}. Recall that for b → 0, distances do not play a role when computing

the re-scaled fitness scores F̃i,K(t). Already for b = 0.005, we obtain re-scaled

scores with differences smaller than 5% even if the distances have differences

of three orders of magnitude. While for b → ∞, distances are the dominant

factors in F̃i,K(t), but already for b = 5 this is the case: Given an agent i in

a location L and other two locations K and K ′ such that FK(t) = 100FK′(t)

and ∆i,K = 3∆i,K′ , then F̃i,K(t) < F̃i,K′(t) for b = 5. This means that the

city with 100 lower fitness (but one third) closer is preferred already when

b = 5. Also note that for s = 0.05, an agent with almost fitness close to 0.01

would still be accepted with a probability of almost 80% by a location with

average fitness equal to 1. While for s = 10.0, an agent with fitness close to

0.8 would be accepted with a probability smaller than 10% by a location with

average fitness equal to 1. Thus, we can assume that the chosen parameter

space encloses almost the full space of events that we can model.
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Figure 9.3: The heat-map shows the results of the grid-search on the two
parameters s and b. The color of each cell corresponds to a p for a given
(b, s) pair as described in Eq. (9.3). The optimal parameter pair (bopt, sopt) is
(0.5, 0.5).

For each parameter combination, we simulate our agent-based model and ob-

tain two distributions for the inflow and outflow, as shown in Fig. 9.2(a,b).

We now have to determine the optimal combination of (b, s) that matches the

empirical distributions best. For this, we use a performance score based on

the Kolmogorov-Smirnov(KS) statistic [108]. Precisely, for each combination

of parameters (b, s), we compute the KS-statistic between the empirical and

simulated distributions of inflow, D1(b, s), and of outflow D2(b, s). We then

define the performance score as 1/(D1(b, s) × D2(b, s)), such that the opti-

mal combination (bopt, sopt) maximizes this score. We can write this with the

following equation:

popt = (bopt, sopt) =

(
arg max

b,s

1

N

N∑
k

D1(b, s)×D2(b, s)

)−1

(9.3)

where N is the number of simulations, D1(b, s) is the Kolmogorov-Smirnov

statistic between the empirical and simulated distributions of city outflow.

D2(b, s) is the Kolmogorov-Smirnov statistic between the empirical and simu-

lated distributions of city inflow.

In Fig. 9.3, we report a heat-map showing the exploration of the parameter

space. For each combination of parameters, 10 simulations are run. We find

as optimal parameters popt = (sopt, bopt) = (0.5, 0.5). This means that both
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Figure 9.4: (a) Distribution of movement distances of scientists. (b) Dis-
tribution of movements dependent on the (academic) age of scientists. (red)
indicates the empirical distributions, (blue) the distributions that are obtained
from our agent-based simulations. The distributions are obtained from the fre-
quencies using the default smoothing of ggplot2 in r.

selectiveness and distances better reproduce the empirical data when they give

a sub-linear contribution. The comparison between the empirical and the sim-

ulated distributions is shown in Fig. 9.2 (a,b). The close match demonstrates

that our model is correctly calibrated. Some smaller differences are discussed

in Sect. 9.5.

9.4 Results of the agent-based simulations

The calibrated agent-based model has to prove its evidence in that it is able

to reproduce also the whole set of empirical findings that have not been used

during the calibration procedure. If that is the case, the model has been

validated. As already mentioned, we will verify this for two distributions on

the level of scientists and four distributions on the level of the movement

network.

The results of the validation are shown in Fig. 9.4 and 9.5. To allow for a

direct comparison, we plot the empirical data in red and the simulations in

blue. We can report a very good match of all distributions both on the level

of scientists and on the network level. Specifically, on the scientists’ level, we
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Figure 9.5: Distributions of (a) local clustering coefficients, (b) path lengths,
(c) degrees, and (d) degrees of neighbors. (red) indicates the empirical distri-
bution, (blue) the distributions that are obtained from our agent-based simu-
lations. The error bars correspond to the standard deviations of the measures
computed on 10 different realizations of the simulated mobility network.

are able to reproduce the two distributions of movement distances and of age

when moving, see Fig. 9.4(a,b).

On the network level, we are able to reproduce the four distributions of cluster-

ing coefficients, path lengths, degree and neighbor degree, see Fig. 9.5(a,b,c,d).

We emphasize that these results are far from being trivial. As we start with an

agent-based perspective, the results of our simulations refer to career trajec-

tories of individual agents. From these, we have to reconstruct an aggregated

mobility network as described in Sect. 8.2.2. Our simulation results for the

network topology are reported for these simulated networks.

In conclusion, we report that our agent-based model captures the different

features of the empirical data very well, both on the scientists’ and the network

level, without using direct information from these for the calibration.
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9.5 Discussion and outlook

The important contribution of this chapter is an agent-based model that al-

lows us to reproduce the empirical findings discussed in Chap. 8, both on the

level of scientists and the level of cities. In our model, we assume as most

relevant factors geographical distances, academic importance, and selective-

ness of cities. This model uses as input only variables that can be proxied

by the available data. This extends in particular to the notion of academic

importance, denoted as “fitness”, assigned to agents, which is proxied initially

from the available publications. The “fitness” of locations, another ingredient

of the model, can be then obtained by averaging over the fitness of agents at

the particular locations.

The agent-based model further uses only straightforward assumptions as rules

to determine the movement of agents. Agents rank all locations according

to their fitness and their distance to the current location. However, they do

not decide about the movement. The decision is taken by the locations using

information about the fitness of the agents and capacity constraints for the

hiring of new agents. In essence, this poses a matching problem and can be

related to similar problems discussed in the literature.

Our agent-based model only considers two free parameters, which need to be

calibrated against the available data: b weighs the spatial distance between the

current location of an agent and any other location, s weighs the selectiveness

of locations when accepting agents that have a fitness below the average ob-

tained for that location. We find as optimal parameters (sopt, bopt) = (0.5, 0.5).

This means that both selectiveness and distances better reproduce the empir-

ical data when they give a sub-linear contribution.

Using the model calibrated with the optimal parameters, we are able to re-

produce the available empirical data very well. At the same time, there are

minor differences between the simulated and the empirical distributions that

still needs to be quantified. In a nutshell, they are also due to the fact that

the simulations are only done with 22,100 agents, while the data are obtained

from 3.5 million scientists. These discrepancies become noticeable if we plot

the network of scientists’ mobility on the European scale, only, as it is shown
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(a) (b)

Figure 9.6: Empirical and simulated mobility networks for France, Ger-
many and UK. The empirical network (a) depicts the flows between cities,
the thickness of links indicates their magnitude. The map in (b) depicts one
realization of the ABM with optimal parameters.

in Fig. 9.6. We observe that the empirical network in Fig. 9.6 (a) shows more

pronounced hubs than the simulated network shown in Fig. 9.6 (b). Specifi-

cally, in the empirical network, significantly more French cities are linked to

Paris compared to the simulated one.

Finally, we stress that more factors are influencing the relocation choices of

scientists than explicitly covered in our model. For example, quality of life,

better networking opportunities, or higher salaries might be relevant factors

here. The more remarkable is the fact that our model, even at this level of

detail, works considerably well. Going forward, we want to understand how

other factors might explain the empirical core-periphery structure. Account-

ing for this in the simulation might help to recreate more subtle migration

patterns (i.e., a very central Paris). Moreover, we could replace the geographi-

cal distance between locations by travel time between cities, since this is most

likely how humans estimate travel effort. Additionally, we find in Verginer

and Riccaboni [238] that migration is marked by national borders and cultur-

al/language similarity. These findings would be exciting features to reproduce

further. Last, but not least, we have currently centered our analysis around
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France, Germany, and the United Kingdom, but will spend further effort on

the global migration network for future research.

When we started this thesis, we aimed at developing an ABM to reproduce sci-

entists’ career trajectories and also their temporal correlations (RQ7). How-

ever, we have found that such correlations are present at the affiliation level,

but not at the country or city level (see Chap. 8). This fact has brought addi-

tional complexity to the empirical phenomenon of scientists’ mobility and has

partially invalidated the assumption behind RQ7. One could have ignored this

fact and simply developed an ABM to reproduce the (second-order) temporal

correlations at the affiliation level. Instead, we have performed an extensive

analysis to identify the individual and global properties of scientists’ career

trajectories, and then, we have developed an ABM to reproduce them. Now

this model provides a solid foundation to explore the additional microscopic

rules that capture the presence of temporal correlations in scientists’ career

trajectories at the affiliation level and their absence at the country level.

In summary, with our research, we have provided the first agent-based model

reproducing the mobility of scientists. In a data-driven approach, our model

has been calibrated and validated against data, and we have found an ex-

tremely good match between simulations and empirics. With this, we show

that minimal decision rules capture many complex features of the observed

mobility of scientists. In addition, we have quantified the relative importance

between geographical distances and academic attractiveness from the perspec-

tive of a scientist trying to relocate.



Chapter 10

Conclusions

The main purpose of this thesis was to study knowledge in socio-technical

systems. In particular, we have dedicated our attention to two systems,

Academia, and R&D alliances. We have found a strong interplay between

knowledge and the actors of these systems (i.e., scientists and firms). On

the one hand, knowledge is exchanged and created collaboratively by these

actors, and hence, their interactions determine the structure and diffusion of

knowledge. On the other hand, these interactions are also determined by the

knowledge of the actors. Indeed, scientists, as well as firms, decide on their

collaborators depending on the knowledge that these particular collaborators

own.

To quantify the effect of social interactions on knowledge, we have studied

the structure of explicit scientific knowledge, i.e., of knowledge encoded in

scientific publications. By representing these publications and their citations

as a network, researchers have developed citation-based indicators that rank

publications according to their impact. We have developed a statistical test to

see whether these rankings were “fair”, meaning that we check whether these

indicators favor or disfavor papers of a specific age or from specific scientific

fields. Similar to previous works, we have found that none of the existing

indicators were fair and with our new test, we quantitatively asses this.

We argue that there are two reasons why established indicators fail to capture

the impact of publications across scientific fields and time. The first reason

is the well-known cumulative effect of citations, i.e., that older papers have
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more time to attract citations, and hence, they have an advantage compared

to younger ones. Interestingly, we have found that such an effect is stronger for

indicators based on eigenvectors centralities compared to indicators based on

citation count. The second reason is that the distributions of paper citations

from different scientific fields have not only a different first moment (i.e., the

average number of citations) but also different second and higher moments.

This indicates that these distributions have probably different functional forms

and there is no evidence for claiming the existence of a universal distribution

across scientific disciplines. We argue that the differences in the distributions

reflect the presence of different citation norms in different scientific fields. In

other words, social norms in scientific communities influence the structure of

the citation network to the point that all the analyzed citation-based indicators

are inadequate to compare paper impact across fields and time.

To further quantify the effects of social interactions on knowledge, we have

analyzed the mutual exchange of knowledge among collaborating firms and

scientists. To do this, we have considered patents and publications authored

by these actors and assigned them positions in knowledge spaces. The knowl-

edge spaces for firms and scientists were defined using real-world classification

schemes for patents and publications, respectively. In these spaces, we have

introduced a notion of distance capturing knowledge similarity: two actors

have more similar knowledge when they are close in the knowledge space. By

analyzing the distribution of changes in distances between actors, we have

found that both scientists and firms approach each other after collaborating.

Hence, we have found evidence for knowledge exchange.

After analyzing the effect that collaborations among firms and scientists have

on their knowledge, we have analyzed the opposite effect, i.e., we have stud-

ied the role of their knowledge in determining collaborations. In both R&D

alliances and scientific co-authorship activities, we have found that knowledge

has a central role. This was captured mainly by two observations. First, in

both systems the distribution of pre-knowledge distances cannot be expected

at random. This indicates that firms and scientists collaborating decisions

correlate to their differences in knowledge. In the economic domain, we have

found that most alliances are established between firms with different knowl-
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edge, but not too different. While scientists co-author publications mostly

with other scientists with either very similar or different knowledge.

Second, we have used the distribution of pre-knowledge distances to reproduce

collective properties depending on collaborations. By using this distribution

as input for two ABMs, we have reproduced the knowledge exchange between

collaborating firms and the productivity of scientists. Also, for the knowledge

exchange, we have found that this is rather small, meaning that firms do not

move a lot in the knowledge space after collaborating. Hence, knowledge is

rather a determinant than a consequence of R&D collaborations. While by

considering the heterogeneous publishing activity of scientists and the empir-

ical distribution of pre-knowledge distances, we have reproduced scientists’

productivity. Precisely, we have reproduced its non-linear trend as a function

of the knowledge distance between collaborating scientists.

Last, but not least, we have provided a new perspective on how to study the

structure of knowledge and its transfer. Building on advances in data mining

and network analysis, we have used a path abstraction to capture temporal

correlations in citation data and in scientists’ career trajectories. We have

shown that these correlations (i) totally change the ranking of journals com-

puted using PageRank, and (ii) allow to better capture similarities among

journals. Additionally, we have found that temporal correlations are statisti-

cally significant when studying scientists’ careers at the affiliation level, but

not at the city or country level. This indicates that knowledge transfer from

a geographical point of view can be represented using a traditional network

perspective only at the country and city level. While at the affiliation level,

this should not be done. Note that nowadays the decision to hire a scientist

or to fund research projects of scientists often depends on the journals where

scientists publish their works and on their mobility. Hence, our analyses based

on a path abstraction provide relevant insights for decision-makers developing

policies for public and private research.
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10.1 Scientific contributions

For a long time, understanding the structure and evolution of knowledge has

been a central focus only for few disciplines, like philosophy. Nowadays, with

the availability of large data sets on how knowledge is and has been produced,

we need a multidisciplinary effort to address such a topic. On one side, there is

a need for new methods to filter and process this data. This aspect is one of the

main focuses of scholars working in computer science and information science.

One the other side, there is a need for new models to interpret the filtered

and processed data. This second aspect is usually tackled by scholars from

sociology, network science, management, and econophysics. With our study

of knowledge in socio-technical systems, we have developed new methods and

models that contribute to information science, network science, and agent-

based modeling.

10.1.1 Contributions to Information Science

Our primary contribution to information science is the statistical test devel-

oped to quantify biases of rankings. Given an indicator that ranks items, our

test checks whether this indicator is favoring or disfavoring items belonging

to specific categories. Note that our test can simultaneously quantify multiple

biases, and given its analytic formulations, we can also compute the contribu-

tion of each bias to the total one. Furthermore, our test is general as it can

be extended to check for many types of biases. For example, we have used

it to check whether our multidisciplinary indicator was favoring journals be-

longing to specific disciplines. In addition to our test, we have developed two

new indicators of paper impact that are less biased compared to all the other

analyzed indicators. Then, we have defined a new procedure to project the

empirical flow of knowledge from the paper level to the journal level. With this

procedure, we have computed not only new rankings for journal impact but

also created new similarities measures. Note that our methods to quantify bi-

ases, impact, and similarity not only have further application in scientometrics

(e.g., in patent citation analysis), but can also be used to improve information

retrieval algorithms.
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10.1.2 Contributions to Network Science

The network perspective is at the base of the representation and analysis of

many systems. Building on recent advances in data mining and network sci-

ence, we have shown how this perspective fails to represent citations at the

journal level and scientists’ career trajectories. Indeed, when using a network

perspective to analyze citations, we aggregate them and introduce a fictitious

knowledge mixing among papers belonging to the same journal. While in

scientists’ career trajectories, we discard statistically significant temporal cor-

relations in the sequences of institutions where scientists have been working.

To detect and overcome these problems, we have used a newly introduced path

abstraction and higher-order network models. With all this, we contribute to

the understanding of the limitations of network models and how to overcome

them by using higher-order network models.

10.1.3 Contributions to Agent-Based Modelling

We have developed two agent-based models capturing the effect of knowledge

on collaborations in scientific and R&D collaborations. Note that the micro-

scopic rules of the developed models have been chosen depending on previous

empirical findings and theoretical works ranging from psychology, sociology,

and economics. Additionally, differently from most existing ABMs, our models

are data-driven, meaning that we have used data as input as well as for cali-

brating and validating them. By this, we have developed models that are not

just simulations reproducing collaborations, but rather models that allow us

to understand and explain them. Finally, we have created a data-driven ABM

that correctly reproduces the mobility of scientists at the city level. This model

has two parameters determining the influence of distance and selectiveness of

cities in the relocation process of scientists. With only these two parameters,

we have captured the collective movements of scientists that transfer between

cities in Germany, France, and the UK in order to work.
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10.2 Outlooks

To define possible outlooks for this Ph.D. work, we ask the following two ques-

tions: Given the results obtained, what are the next steps to either generalize

or disprove them? And given the difficulties and problems we have faced, what

could have we done differently? The former question has a clear relation to

the possible outlooks of a project, while the latter has a more subtle rela-

tion. By defining the faced difficulties, one can identify the shortcomings of

the used procedure and developed methods. By this, one can propose new

procedures and methods that could overcome the identified shortcomings. In

the following, we address the above posed questions by providing new possible

applications of the developed methods and some methodological outlooks.

Descriptive and Generative models. We have concentrated on genera-

tive models in this thesis. Generative models are quite restrictive and usually

computationally expensive, and hence, they require a parsimonious mindset

when developing them. Indeed, we have excluded the role of many factors in

our analysis based on intuition or results from previous research. This was

time-consuming and could have also influenced us to discard relevant factors.

Instead of doing this, we could have used descriptive models (e.g., models

obtained from linear regressions or random forest classifiers), at the begging

of our analyses to identify the most relevant descriptive variables. Then, we

could have used the identified variables to develop our generative models. With

these, we could have identified the most relevant descriptive variables and then,

could have used them to develop our generative models. In other words, we

could have supported the development of generative models by introducing

a feature selection process based on descriptive models. By applying this

approach, we could confirm or question the choices that we have done, for

example, our decision to use pre-knowledge distances as input for our ABMs.

Also, descriptive models could suggest which other features of the data to add

to improve our models.

Testing for fairness. Given the increasing use of data in governing sci-

ence [94] and society in general (e.g., see the Social Credit System in China),
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quantitative indicators are more and more used in real-world evaluation pro-

cesses. These indicators are often used as they are considered objective and

can avoid bias tendency of evaluators during these processes. However, we

have shown with our statistical test that quantitative indicators (of paper im-

pact) also have biases. Hence, we have to consider the possibility that our test

will be applied to identify less biased indicators to be then used in evaluation

processes. To avoid the miss-interpretation of our test and its missus in such

crucial processes, we stress a couple of points. First, our test was developed

to quantify the different biases of rankings and to show that citation norms

vary in time and across scientific communities, and not to support evaluation

processes. Its application to this different setting still needs to be investigated,

and it should be done carefully. Second, when defining the bias of rankings,

we had to define a null expectation, i.e., how we believe a fair ranking should

be. This null expectation is introducing a subjective component that poses a

limitation of our test and its possible missus. Hence, we strongly suggest that

the null expectation should be clearly stated and justified by any researcher

or evaluator using our test. Additionally, after an indicator is considered to

be fair by our test (or any other), it should not be applied blindly during

an evaluation process. With these two suggestions, we pose our self in line

with [94] where the authors state 10 scientometrics principles of research and

evaluation processes (especially see points 1) and 4) ).

Multi-order Graphical models and Infomap. Even though these two

methods are deeply different in their usage, they also share many similari-

ties. Infomap is a clustering algorithm on networks, while multi-order graph-

ical models represent sequential data using a mixture of higher-order network

models. At the same time, both methods are based on the idea of finding a

parsimonious representation of flows on networks, i.e., they try to compress

sequential data. With these compression processes, we can define an optimal

order that is the maximum (Non-Markov) memory statistically significant in

the analyzed sequential data. Understanding for which data generating pro-

cess Infomap and multi-order graphical models detect the same order is still

an open problem. This problem can also be stated with the following question:

Given that Infomap is detecting communities, when are these communities so
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statistically significant that both Infomap and multi-order graphical models

detect the same order?

Modelling citation and publishing norms. In this thesis, we quantita-

tively showed that the rankings produced by different indicators either favor

or disfavor specific scientific fields. This provides evidence that publishing

and citation norms vary across communities. At the same time, we have not

explained how these norms are different. We find particularly interesting to

study this by first further analyzing differences across communities and then,

to model these using different citation norms. For example, we could check

whether more applied disciplines cite more recent publications compared to

less applied ones. Then, we could use this phenomenon (if present) to model

a stronger bias favoring older papers in less applied disciplines.

Knowledge management in companies. Our methods allow us to quan-

tify the interplay between knowledge and interactions among actors in socio-

technical systems. Given this interplay, we envision the extension of these

methods to support the knowledge management in real companies. For ex-

ample, consider software developer companies and assume that we define a

knowledge space depending on software codes. Then, different developers in a

company can have different positions depending on the code they write, but

they also interact when working on the same project. By monitoring develop-

ers’ positions in the knowledge space and by using these positions to organize

teams correctly, managers could better administrate and govern their compa-

nies. For example, they could avoid the formation of knowledge island or of

teams formed by developers with too overlapping knowledge1. The extension

of our methods to this application needs for new data that it is not easily

available, i.e., a tractable representation of co-edited codes that allows us to

assign knowledge positions to developers. At the same time, such data is be-

coming increasingly available thanks to the development of new data mining

tools, such as the one of Gote et al. [78].

1Note that this is the central research topic of Cristoph Gote, a Ph.D. candidate in the
Chair of Systems Design.
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Scientists mobility. As one objective of this thesis, we had to reproduce

scientists’ career trajectories with an ABM. We have done this by reproducing

their movements at the city level, and we have tested our model only against

data of scientists working in the UK, Germany, and France. However, we

still have not reproduced their movements at affiliation level where we have

found the presence of temporal correlations in their trajectories. In order to

do this, we first want to understand what minimal rules create these temporal

correlations when changing the aggregation level of the data. Then, we have

to map these rules to the real-world case of scientists’ movements in order to

model their careers at different levels. With this model, we would provide a

new unique tool for policymakers to analyze the brain circulation phenomenon

at the affiliation, city, and country level.
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Appendix A

KDD Cup data

We do not distinguish the publications by their type (paper, review, book,

etc.). Further, we also do not differentiate between different types of journals

and take into account all of them: for example, we do not distinguish between

a citation coming (or going) from (or to) a letter or a book. We argue that

it is important to keep various types of journals and publications because dif-

ferent fields adopt not only different citation norms, but also different ways to

communicate their results. For example, computer science researchers com-

monly publish results in conference proceedings, while physics authors tend to

prefer articles or letters. At the same time, we are aware that different types

of publications might have different citation characteristics. However, good

indicators should ideally be able to account for heterogeneity among publica-

tions and citation norms across different communities and produce unbiased

rankings without the need for arbitrary choices about which types of articles

to include in the analysis. In addition, similarly as [249] and differently from

[179], we do not exclude publications which do not receive citations.

The MAG has a field classification scheme with 4 hierarchical levels. The field

assignment is based on an internal algorithm that uses a machine learning

approach [213]. In our work, similarly to [179], we are only interested in

impact metric normalization at the most coarse-grained level. To this aim,

in our analysis, we focus only on the 19 main fields as listed in Table A.1.

Discussing the possible limitations of the classification approach by MAG and
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Field Publication count Mean citation count

Art 233 251 3.90

Biology 5 847 554 9.67

Business 613 827 4.81

Chemistry 6 204 531 7.28

Computer Science 4 080 636 6.13

Economics 2 252 921 5.56

Engineering 3 011 763 5.10

Environmental Science 315 465 12.63

Geography 288 338 6.92

Geology 1 825 707 7.88

History 390 144 5.53

Materials Science 2 063 474 6.12

Mathematics 4 551 453 5.87

Medicine 5 061 990 7.90

Philosophy 787 649 5.05

Physics 6 976 644 5.55

Political Science 144 473 2.51

Psychology 2 861 813 8.23

Sociology 1 784 695 5.39

Total 49 296 327 –

Total (no multiple) 18 193 082 6.42

Table A.1: Main Fields The 19 main fields identified by Microsoft Aca-
demic Graph with their number of publications and average citations. The
second to last row reports the total number of publications considering mul-
tiple times publications that belong to more than one fields, whereas the last
row reports the total number of unique publications and the average citation
count.

the dependence of our results on the adopted classification scheme is a relevant

subject for future research.

We only included in the analysis publications for which the following infor-

mation are available: (1) unique identifier (ID); (2) complete publication date

(yyyy/mm/dd); (3) DOI or journal-id, in order to be able to retrieve the pub-

lication; (4) assignment to at least one of the main 19 fields. We discard from

our analysis publications for which one or more of these four properties are

missing.

With this filtering procedure, we obtain N = 18 193 082 unique publications

and E = 109 719 182 citations.
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Appendix B

First moment rescaling

According to [179], the distribution of the cf indicator is log-normal:

F (cf )dcf =
1

σcf
√

2π
e−[log(cf )−µ]2/2σ2

dcf (B.1)

where µ = −σ2/2 and σ is fitted from the data. When Eq. (B.1) is verified,

then also the distributions of citation count, ci, for all the individual fields, i,

are lognormal:

F (ci)dci =
1

σci
√

2π
e−[log(ci)−log(c0)−µ]2/2σ2

dci (B.2)

where c0 is the mean of ci. For lognormal distributions the variance is pro-

portional to the square of the mean and the constant of proportionality is

(eσ
2 − 1). From Eq. (B.2), we see that the citation counts ci are distributed

lognormally with mean eµ+log (c0)+σ2/2 and variance (eσ
2 − 1)e2µ+2log(c0)+σ2

.

Recalling that µ = −σ2/2, we have that the mean is c0, as it is expected,

while the variance becomes (eσ
2 − 1)c20. Thus, when Eq. (B.1) is verified, the

variance of the empirical distribution of the citations for each field has to be

proportional to the square of the mean citation count. Moreover, the constant

of proportionality has to be (eσ
2 − 1) for every field and year.

The analytic result just presented is in line with the Eq. (C.1) given in Ap-

pendix C of [130]. There it is shown that a rescaling procedure based on diving

the original score by their first moment works if the ratio between standard
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deviation and mean is constant. In the case of the relative citation ratio, we

can calculate analytically such constant using the lognormal distribution and

obtain the fitting parameter σ2.

Figure B.1: Distribution of σ2 obtained by calculating the empirical ratio,
r = (eσ

2 − 1), between the variance and the square of the mean citation count
of each field and year.

In Fig. B.1, we report the distribution of σ2 obtained by calculating the empir-

ical ratio between the variance and the square of the mean, r, and by inverting

the relation r = (eσ
2 − 1) for every field and year. If the universality claim

was correct, we would expect a narrow distribution of σ2. By contrast, we find

that σ2 ranges between 0 and 8 across different fields and years. We argue that

the broad range of σ2 is the reason why the first moment rescaling introduced

in [179] does not work in the analyzed dataset.
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Appendix C

The Mahalanobis distance

The Mahalanobis distance (dM) is an established measure in statistics which

generalizes the concept of z-score to multivariate distributions by taking into

account also possible correlations between the random variables [127]. Its

definition reads

dM(~x, ~y) =
√

(~x− ~y)TS−1(~x− ~y) (C.1)

where S−1 is the inverse of the covariance matrix, ~x and ~y are two vectors

containing the random variables. When the covariance matrix is diagonal,

i.e., the random variables are not correlated, than the dM is equivalent to the

square root of the sum of the squares of the z-scores.

In Section 3.5.2, we have used Eq. (3.5), an expression for the dM valid when

the covariance matrix comes from a Multivariate Hypergeometric Distribution

(MHD), i.e., when the elements of the matrix are

Sij = (δij(Ki(N −Ki))− (1− δij)KiKj) γ ∀i, j = 1, . . . , F − 1 (C.2)

where δij is the Kronecker delta, Ki is the number of papers of category i,

N =
∑F
i Ki is the total number of papers, F is the number of paper categories,

γ= n(N−n)
N2(N−1) and n is the number of sampled papers. It is worthy to remember

that even though we have F different categories, we only have F −1 degrees of
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freedom. Here, we derive Eq. (3.5) for the case of a MHD in three dimensions,

i.e., for F = 3. In this case, the covariance matrix is 2× 2:

S = γ

(
K1(N −K1) −K1K2

−K1K2 K2(N −K2)

)
(C.3)

and the inverse of the covariance matrix is

S−1 =
1

γdet(S)

(
K2(N −K2) K1K2

K1K2 K1(N −K1)

)
(C.4)

where det(S) = K1(N −K1)K2(N −K2)− (K1K2)2 denotes the determinant

of the covariance matrix, S. Then, let us consider two random column vectors

extracted from a 3-dimensional MHD, ~x = (x1, x2, x3)T and ~y = (y1, y2, y3)T

such that n =
∑3
i=1 xi =

∑3
i=1 yi where n is the number of sampled papers.

Substituting Eq. (C.4) in Eq. (C.1), we write the square of the dM between ~x

and ~y as

dM(~x, ~y)2 =
1

γ det(S)

(
x1 − y1 x2 − y2

)(
K2(N −K2) +K1K2

+K1K2 K1(N −K1)

)(
x1 − y1

x2 − y2

)

=
1

γ det(S)

{
(x1 − y1)2K2(N −K2) + (x2 − y2)2K1(N −K1)

+ 2(x1 − y1)(x2 − y2)(K1K2))}

=
1

γ det(S)

{
(x1 − y1)2K2(K1 +K3) + (x2 − y2)2K1(K2 +K3)

+ 2(x1 − y1)(x2 − y2)(K1K2)}

=
1

γ det(S)

{
(x1 − y1)2K2K3 + (x2 − y2)2K1K3

+ [(x1 − y1) + (x2 − y2)]
2
K1K2

}
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where we have used N =
∑3
i=1Ki. Recalling that n =

∑3
i=1 xi =

∑3
i=1 yi, we

know that (x1 − y1) + (x2 − y2) = (x3 − y3), so we write

dM(~x, ~y)2 =
1

γ det(S)

{
(x1 − y1)2K2K3 + (x2 − y2)2K1K3 + (x3 − y3)2K1K2

}
(C.5)

Then, by using the relation det(S) = N
∏3
i=1Ki, we have:

dM(~x, ~y)2 =
1

γ

3∑
i=1

(xi − yi)2

NKi
; (C.6)

noticing from Eq. (C.2) that γ = Si,i/(Ki(N −Ki)), we obtain

dM(~x, ~y)2 =

3∑
i=1

(xi − yi)2

Sii

Ki(N −Ki)

NKi
=

3∑
i=1

(xi − yi)2

Sii

(
1− Ki

N

)
(C.7)

Finally, if we choose one of the two vectors to contain the expected values, µi,

we re-obtain Eq. (3.5) since (xi − µi)2/Sii = z2
i . To be precise, the covariance

matrix is not defined for i = 3, however the relation γ = σ2
3/(K3(N − K3))

holds and therefore also the final result.

Using Mathematica or similar softwares, it is easy to prove analytically that

Eq. (3.5) holds for small dimensions. We have verified it until 6 dimensions.

Moreover, we have numerically tested this formula by calculating the dM’s

between the ranking vectors of the indicators and the vector of expected values,

~µ, with two different alternative methods: (1) by using Eq. (C.1), i.e., by

inverting the covariance matrix, and (2) by using the eigenvalue decomposition

of the covariance matrix1. The results of the three methods were all compatible

with each other up to 10 decimal digits. The advantage of using Eq. (3.5) is

that we can calculate the dM between two arbitrary vectors without dealing

1The matrix S is symmetric and it has maximal rank because it is the covariance matrix
of a multivariate distribution. Therefore, we can diagonalize it, S = B−1DB where the
columns of B form an orthonormal basis; we can also write S−1 = B−1D−1B. With this,
we have d2M(~x, ~y) =

∑F−1
i ci/λi, where {λi} are the eigenvalues of S and {ci} are the

coordinates of ~x − ~y in the basis which diagonalizes S, i.e. ci =
∑F−1

k (xk − yk)B−1
ki =∑F−1

k (xk − yk)Bik where the last equality comes from the orthonormality of B which

implies B−1 = BT .
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with any (computationally slow) matrix inversion or diagonalization, and the

number of needed calculations scales linearly with the number of dimensions.

Importantly, Eq. (3.5) allows also to assess the individual contribution of each

dimension (i.e. of each category) to the d2
M. To our best knowledge, we are

the first ones to have derived such explicit formula for dM when the covariance

matrix and the random vectors come from a MHD.
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Appendix D

List of journals and universities



246

Top-100 journals according to Google metrics

In table D.1 we report the top-100 journals according to Google metrics. The

only six journal that we were not able to automatically match between the

journal names reported in MAG17 and this list are: “the lancet oncology”, “nber

working papers”, “ieee conference on computer vision and pattern recognition,

cvpr”, “british medical journal”, “the lancet neurology”, “journal of materials

chemistry a”.
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Journal name

nature

the new england journal of medicine

science

the lancet

chemical society reviews

cell

journal of the american chemical society

advanced materials

pnas

chemical reviews

nature communications

jama

physical review letters

angewandte chemie international edition

nano letters

journal of clinical oncology

nucleic acids research

energy & environmental science

acs nano

nature genetics

arxiv high energy physics - experiment

journal of the american college of cardiology

nature materials

arxiv mesoscale and nanoscale physics

plos one

the lancet oncology

arxiv cosmology and . . .

circulation

arxiv high energy physics - phenomenology

nature medicine

nber working papers

journal of high energy physics

the astrophysical journal

arxiv materials science

ieee conference on cvpr

blood

nature biotechnology

nature nanotechnology

the cochrane database of systematic reviews

accounts of chemical research

nature photonics

nature methods

british medical journal

neuron

physical review d

gastroenterology

renewable and sustainable energy reviews

the american economic review

the journal of clinical investigation

arxiv computer vision and . . .

Journal name

nature reviews genetics

immunity

chemical communications

nature neuroscience

european heart journal

monthly notices of the royal astronomical soc.

advanced functional materials

scientific reports

cancer research

nature reviews immunology

arxiv quantum physics

nature reviews molecular cell biology

science translational medicine

neuroimage

annals of internal medicine

journal of materials chemistry

nature physics

nature reviews cancer

cell stem cell

diabetes care

cancer cell

nanoscale

physical review b

clinical cancer research

hepatology

cell metabolism

molecular cell

ieee transactions on power electronics

journal of financial economics

nature climate change

biomaterials

arxiv high energy physics - theory

obstetrical & gynecological survey

acs applied materials & interfaces

physics letters b

clinical infectious diseases

the lancet neurology

gut

nature immunology

environmental science & technology

journal of hepatology

journal of materials chemistry. a

annals of oncology

european urology

arxiv information theory

the journal of physical chemistry c

nature reviews neuroscience

ieee transactions on industrial electronics

ieee transactions on pattern analysis and . . .

nature chemistry

Table D.1: The top-100 journals according to Google metrics (retrieved on
the 01/06/2018).
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Top-100 universities in Computer Science

In table D.2, we report the top-100 Univ. analyzed by [38]. Out of this

100 Univ., we matched 81 names from MAG16. To match the strings we have

performed only simple preprocessing, i.e. transformed the affiliation name

in lower case and removed punctuation. For example, the strings ”Univ. of

California, Berkeley” was transformed in ”Univ. of california berkeley”. We

have also manually matched the ”Swiss Federal Institute of Technology Zurich”

with ”ETH Zurich”.



249

Univ. name

Australian National Univ.

Boston Univ.

Brown Univ.

California Institute of Technology

Carnegie Mellon Univ.

Columbia Univ.

Cornell Univ.

Delft Univ. of Technology

Duke Univ.

Durham Univ.

ETH Zurich

École Normale Supérieure

École Polytechnique

École Polytechnique Fédérale de Lausanne

Free Univ. of Berlin

Georgia Institute of Technology

Harvard Univ.

Heidelberg Univ.

Hong Kong Univ. of Science and Technology

Humboldt Univ. of Berlin

Imperial College London

Johns Hopkins Univ.

KU Leuven

Karolinska Institute

King’s College London

Kyoto Univ.

LMU Munich

Leiden Univ.

Lomonosov Moscow State Univ.

London Business School

London School of Economics & Political Sc.

Massachusetts Institute of Technology

Mayo Medical School

McGill Univ.

Michigan State Univ.

Monash Univ.

Nanyang Technological Univ.

National Autonomous Univ. of Mexico

National Taiwan Univ.

National Univ. of Singapore

New York Univ.

Northwestern Univ.

Ohio State Univ.

Panthéon-Sorbonne Univ. – Paris 1

Paris-Sorbonne Univ. – Paris 4

Pasteur Institute

Peking Univ.

Pennsylvania State Univ.

Princeton Univ.

Purdue Univ.

Univ. name

RWTH Aachen Univ.

Rutgers, the State Univ. of New Jersey

Saint Petersburg State Univ.

Seoul National Univ.

Stanford Univ.

Technical Univ. of Munich

Texas A&M Univ.

The Univ. of Queensland

Tsinghua Univ.

Univ. College London

Univ. of Amsterdam

Univ. of Bristol

Univ. of British Columbia

Univ. of California, Berkeley

Univ. of California, Davis

Univ. of California, Los Angeles

Univ. of California, San Diego

Univ. of California, San Francisco

Univ. of California, Santa Barbara

Univ. of Cambridge

Univ. of Chicago

Univ. of Copenhagen

Univ. of Edinburgh

Univ. of Helsinki

Univ. of Hong Kong

Univ. of Illinois at Urbana-Champaign

Univ. of Manchester

Univ. of Maryland, College Park

Univ. of Massachusetts

Univ. of Melbourne

Univ. of Michigan

Univ. of Minnesota

Univ. of North Carolina at Chapel Hill

Univ. of Oxford

Univ. of Pennsylvania

Univ. of Pittsburgh

Univ. of Southern California

Univ. of Sydney

Univ. of São Paulo

Univ. of Texas at Austin

Univ. of Tokyo

Univ. of Toronto

Univ. of Warwick

Univ. of Washington

Univ. of Wisconsin-Madison

Uppsala Univ.

Utrecht Univ.

Wageningen Univ. and Research Center

Washington Univ. in St Louis

Yale Univ.

Table D.2: The top-100 Univ. reported by [38]. We list them in alphabetical
order and use an italic font for those universities that we have not matched.
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Appendix E

Stability of scientists’ productivity



251

[1984-1985] [1986-1987]

[1988-1989] [1990-1991]

[1992-1993] [1994-1995]

[1996-1997] [1998-1999]

Figure E.1: Scientists productivity as defined in Chap. 6 between 1984 to
2000 using time windows of length 2. The red line is the fitted productivity
using Eq. (7.1) and the curve fit function of the scipy package.
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[2000-2001] [2002-2003]

[2004-2005] [2006-2007]

Figure E.2: Scientists productivity as defined in Chap. 6 between 2000 to
2006 using time windows of length 2. The red line is the fitted productivity
using Eq. (7.1) and the curve fit function of the scipy package.



List of Figures 253

List of Figures

2.1 The relation between databases used and RQs. . . . . . . . . . 16

2.2 Scatter plot of the citation counts reported in the data released

for the KDD Cup 2016 and from the online version of the MAG

(02/2017). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Illustration of the procedure used to extract scientists’ movements. 23

3.1 Field bias of the analyzed citation-based indicators. Top panels

show histograms of the fraction of top-1% publications for each

field in the ranking by (left to right) citation count and relative

citation count. The black horizontal line is at 0.01, i.e., the

expected value. Bottom panels show for each field the comple-

mentary cumulative distributions for citation count (left) and

relative citation count (right). . . . . . . . . . . . . . . . . . . 51

3.2 Field bias of the analyzed measures based on PageRank. Top

panels show histograms of the fraction of top-1% publications

for each field in the ranking by (left to right): PageRank and

age-rescaled PageRank. The black horizontal line is at 0.01, i.e.,

the expected value. Bottom panels show for each field the com-

plementary cumulative distributions for PageRank (left) and

age-rescaled PageRank (right). . . . . . . . . . . . . . . . . . . 53



List of Figures 254

3.3 Field bias of our normalized indicators. Top panels show his-

tograms of the number of top-1% publications for each field

in the ranking by (left to right): age- and field-rescaled cita-

tion count, and age- and field-rescaled PageRank. The black

horizontal line is at the expected value 0.01. Bottom panels

show the complementary cumulative distributions for age- and

field-rescaled citation count (left), and age- and field-rescaled

PageRank (right). . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.4 Mahalanobis distances, dM, for the analyzed indicators when

considering the 19 main fields. From left to right: citation

count, relative citation count, PageRank, age-rescaled PageR-

ank, age- and field-rescaled citation count and age- and field-

rescaled PageRank. The horizontal red line represents the upper

bound of the 95% confidence interval obtained from the simu-

lations. In the insets, we report the distribution of dM coming

from 1 000 000 simulations of the unbiased sampling process.

Again, the red line represents the upper bound of the 95% con-

fidence interval. . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.5 Mahalanobis distances, dM, for the analyzed indicators when

considering the 760 age-field groups. From left to right: ci-

tation count, relative citation count, PageRank, age-rescaled

PageRank, age- and field-rescaled citation count and age- and

field-rescaled PageRank. The horizontal red line represents the

upper bound of the 95% confidence interval obtained from the

simulations. In the insets, we report the distribution of dM com-

ing from 1 000 000 simulations of the unbiased sampling process.

Again, the red line represents the upper bound of the 95% con-

fidence interval. . . . . . . . . . . . . . . . . . . . . . . . . . . 61



List of Figures 255

3.6 Heat maps showing the bias by field and age of the rankings

by the different indicators. Each cell represents an age-field

group: age groups are represented horizontally, while fields are

represented vertically. The color of the cells shows the bias of

the indicators with respect to that age-field group. White means

that the respective age-field group is fairly represented in the

top 1% of the ranking by the indicator. While we use a color

scale from white to intense red (blue) for age-field group which

are underestimated (overestimated). . . . . . . . . . . . . . . . 62

4.1 The citation projection from the paper to the journal level. In

(a) we illustrate the case where citation links allow for knowl-

edge to flow from journal A to journal C via journal B. This

knowledge flow is correctly captured at the citation network at

the journal level. While in (b), we have the case where citation

links do not allow knowledge to flow from A to C via B and

this is not captured at the citation network at journal level. . . 71

4.2 Summary of the citation projection from a DAG. Given a set

of publications {a1,2 ∈ A, b1,2,3,4 ∈ B, c1,2 ∈ C, d1,2 ∈ D, e1,2 ∈
E} and citations, we can construct a DAG (a). Then, we can

project the citations at the journal level and obtain (b) where

we observe a fictitious knowledge mixing among all the papers

belonging to B. Otherwise, we can project the paths and obtain

(c) where the fictitious knowledge mixing occurs only among

smaller sets of papers sharing the incoming and outgoing citations. 75

4.3 Number of papers per journal. (a) Histogram of the number

of journals with a given number of papers. (b) Percentage of

journals with at least a given number of papers. . . . . . . . . . 76

4.4 Alluvial diagrams on the first order network for Nature Physics

(a) and Plos One (b). . . . . . . . . . . . . . . . . . . . . . . . 79

4.5 Alluvial diagrams on the optimal order network for Nature

physics (a) and Plos One (b). . . . . . . . . . . . . . . . . . . 79



List of Figures 256

4.6 Diffusion process computed using the citation network from any

starting journal ending in Physical Review Letters (a) and Cell

(b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.7 Empirical diffusion process computed from any starting journal

ending in Physical Review Letters (a) and Cell (b). . . . . . . 82

4.8 Correspondence between MDL and statistical test of Pathpy . 84

4.9 Precision of the different similarity measures in function of the

size of the train group. For each training size, we have divided

the journals randomly in train and test 500 times. The reported

precision is the average one. . . . . . . . . . . . . . . . . . . . . 91

4.10 ∆(m1,m2) between all journal pairs where m1 is the bibliographic

coupling Bc and m2 is Jaccard similarity computed using the

infomap clustering on the optimal order network . . . . . . . . 92

4.11 In blue, the distribution of the dM calculated between the rank-

ing vectors coming from the unbiased selection process and the

expected vector ~µ computed using the methodology described

in Chap. 2. In red, we provide the 95% confidence interval of the

distribution. In green, we report the dM between the ranking

vector coming from our multidisciplinary score and ~µ. . . . . . 95

5.1 The R&D network: each node is a firm and its color refers to

the domain where the firm has filed more patents between 1984

and 2009. For figure (a) we used the main 8 IPC-sections to

classify the patents, while for (b) we used the main 5 areas from

ISI-OST-INPI classification scheme. For a discussion about the

colors of the nodes see Sect.5.2.2. We use the layout algorithm

of [64] for both networks. . . . . . . . . . . . . . . . . . . . . . 107

5.2 Empirical knowledge distance between every pair of partnered

firms, as of the day preceding the alliance formation, calculated

in (a) the 8 dimensional knowledge space defined by the IPC

scheme and in (b) the 35 dimensional knowledge space defined

by the ISI-OST-INPI classification scheme. . . . . . . . . . . . 113



List of Figures 257

5.3 A representative example of network evolution in a bi-dimensional

knowledge space. . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.4 Pre-alliance distance distributions from the empirical and a ran-

domized R&D network. In (a) we used the IPC scheme to cal-

culate the firms positions, while in (b) the ISI-OST-INPI scheme.124

5.5 Empirical and simulated pre-alliance knowledge distances. . . . 127

5.6 Goodness score for every point in the parameter space, depicted

by means of a heat-map. . . . . . . . . . . . . . . . . . . . . . . 129

5.7 Empirical knowledge distance between every pair of partnered

firms, computed 1, 3, 5 and 10 years after the date of the alliance

formation. In (a) we have calculated the distance using the 8

dimensional knowledge space defined by the IPC scheme and

in (b) used the 35 dimensional knowledge space defined by the

ISI-OST-INPI classification scheme. . . . . . . . . . . . . . . . 131

5.8 Empirical shifts of knowledge distance. . . . . . . . . . . . . . . 132

5.9 The heat map for the average total distance, 〈L〉, traveled by

the agents is reported in (a). In (b) we report the heat map

for network collaboration efficiency, C, and in (c) the heat map

for its normalized and rescaled version version, Ĉn. For all the
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