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Abstract

Single photons and single electrons can be confined spatially in a solid-state device

by using a millimeter-sized superconducting microwave resonator for the photons and

nanoscale electrodes to form quantum dots for the electrons. The confined electrons

realize a quantum mechanical two-level system (qubit), whose dipole interaction with

single photons in the resonator is studied in the field of hybrid circuit quantum electro-

dynamics (hybrid circuit QED). These studies aim at investigating fundamental physics

of quantum dots and light-matter interaction. They also work towards the realization

of a scalable quantum dot based device for quantum information processing, where

circuit QED is the main platform for state-of-the-art quantum information devices with

superconducting qubits.

So far, hybrid circuit QED studies were mainly focused on charge states in double

quantum dots. In this thesis we explore hybrid circuit QED with a focus on spin states

in gallium arsenide quantum dots, motivated by the potentially longer coherence time

of qubits based on quantum dot spin states instead of charge states. These experiments

are performed at millikelvin temperatures using an experimental setup that was in

large parts designed in this work. We also advance the hybrid circuit QED device

technology by developing a resonator that is magnetic field resilient and has a high

characteristic impedance of the order of one kiloohm. This increases the qubit-photon

coupling strength and allows for experiments in a magnetic field.

In our first experiment we investigate spin states in a two-electron double quantum

dot. There, the resonator acts as a spin-selective probe since it only couples with the

spin-singlet states, which form a charge qubit, but is insensitive to the spin-triplet

states. By probing the magnetic-field-dependent resonator transmission, we extract

information about the singlet-triplet energy spectrum. In the presence of a double

quantum dot voltage bias, we investigate a phenomenon called spin-blockade, which

is based on a fundamental symmetry requirement for quantum states of electrons.

While the qubit decoherence rate exceeds the qubit-photon coupling strength in the



first experiment, the situation is reversed in our second study. There, we report strong

coupling between single microwave photons and a three-electron spin-qubit, called

resonant exchange (RX) qubit. We resolve the vacuum Rabi mode splitting, which is

the experimental signature of strong coupling, with a coupling strength of 31MHz

and a qubit decoherence rate of 20 MHz. We tune both quantities electrostatically and

obtain a minimal decoherence rate of 10 MHz for 23MHz of coupling strength.

The demonstration of strong spin-photon interaction is an important step towards

long-range qubit-qubit interaction that involves spin qubits, which is realized in our

third experiment. There, we implement a coherent link that controllably couples a RX

qubit and a superconducting transmon qubit on the same device over a distance that is

several orders of magnitude longer than the physical size of the spin qubit. We realize

the link with a frequency-tunable high impedance resonator that is built of an array of

superconducting quantum interference devices. The resonator couples strongly to both

qubits, since the coupling rates of 52MHz and 180MHz extracted from the vacuum

Rabi mode splitting exceed the corresponding decoherence rates of 11 MHz and 1 MHz

for the RX qubit and the transmon, respectively. We spectroscopically observe coherent

qubit-qubit interaction in the resonant and dispersive regime, where the interaction

is mediated by real or virtual resonator photons, respectively. For the latter coupling

scheme, we resolve an exchange splitting of 32 MHz.

iv



Zusammenfassung

Einzelne Elektronen und einzelne Photonen lassen sich in einem festkörperbasier-

ten Mikrochip räumlich begrenzen, indem ein millimetergrosser supraleitender Mikro-

wellenresonator für die Photonen verwendet wird und nanometergrosse Elektroden

einen Quantenpunkt für die Elektronen bilden. Die räumlich begrenzten Elektronen

bilden ein quantenmechanisches Zwei-Zustands-System (Qubit) aus, dessen Dipol-

wechselwirkung mit einzelnen Photonen im Resonator auf dem Gebiet der hybriden

Schaltkreis-Quantenelektrodynamik (hybride Schaltkreis-QED) erforscht wird. Diese

wissenschaftlichen Untersuchungen verfolgen das Ziel, grundlegende physikalische

Zusammenhänge von Quantenpunkten und der Wechselwirkung von Licht mit Mate-

rie zu erforschen. Auch arbeiten sie an der Realisierung eines aus Quantenpunkten

bestehenden skalierbaren Systems für die Quanteninformationsverarbeitung, wobei

Schaltkreis-QED die Plattform der Wahl für hochmoderne, aus supraleitenden Quan-

tenbits bestehende Quanteninformationssysteme darstellt.

Der Fokus bisheriger Forschung auf dem Gebiet der hybriden Schaltkreis-QED lag

auf Ladungszuständen in Doppelquantenpunkten. Motiviert durch die potenziell län-

geren Kohärenzzeiten von Qubits, die auf Spinzuständen in Quantenpunkten basieren,

im Vergleich zu solchen die Ladungszustände verwenden, widmen wir uns in der vor-

liegenden Doktorarbeit der hybriden Schaltkreis-QED und richten den Fokus auf Spin-

zustände in galliumarsenid basierten Quantenpunkten. Unsere Experimente werden

im Millikelvin-Temperaturbereich in einem Messaufbau durchgeführt, der zu grossen

Teilen während dieser Doktorarbeit entwickelt wurde. Durch die Entwicklung eines

im Magnetfeld kompatiblen Hochimpedanz-Resonators, der eine charakteristische Im-

pedanz in der Grössenordnung von einem Kiloohm aufweist, bringen wir zudem die

Chip-Technologie von hybriden Schaltkreis-QED Systemen weiter voran.

In unserem ersten Experiment untersuchen wir Spinzustände von zwei Elektronen

in einem Doppelquantenpunkt. Der Resonator agiert dabei als ein auf Spin sensitiver

Detektor, da er ausschliesslich an Spin-Singulett-Zustände, welche ein Ladungsqubit



bilden, jedoch nicht an Spin-Triplett-Zustände koppelt. Durch Messung der magnet-

feldabhängigen Transmission durch den Resonator können wir Rückschlüsse auf das

Energiespektrum der Singulett-Triplett Zustände ziehen. Bei angelegter Spannung an

den Doppelquantenpunkt beobachten wir ein als Spin-Blockade bekanntes Phänomen,

welches auf grundlegenden quantenphysikalischen Symmetrieeigenschaften von Elek-

tronen beruht.

Während in unserem ersten Experiment die Dekohärenzrate des Qubits die Kopp-

lungsstärke an das Photon übersteigt, ist die Situation in unserem zweiten Experiment

umgekehrt. Dort zeigen wir starke Kopplung zwischen einzelnen Mikrowellenphoto-

nen und einem aus drei Elektronen bestehenden Spinqubit, welches als resonantes

Austauschwechselwirkungsqubit (RAW Qubit) bezeichnet wird. Wir lösen die Rabi Va-

kuummodenaufspaltung, die experimentelle Signatur der starken Kopplung, mit einer

Kopplungsstärke von 31MHz und einer Dekohärenzrate des Qubits von 20MHz auf.

Wir regeln beide Grössen elektrostatisch und erhalten eine minimale Dekohärenzrate

von 10 MHz bei einer Kopplungsstärke von 23MHz.

Die starke Kopplung zwischen Spinqubit und Photon ist ein wichtiger Schritt in Rich-

tung einer langreichweitigen Kopplung zweier Qubits, die Spinqubits beinhaltet, welche

wir in unserem dritten Experiment realisieren. Dort verwenden wir ein steuerbares

kohärentes Verbindungselement, um ein RAW Qubit und ein supraleitendes Transmon

Qubit auf einem Mikrochip über eine Distanz, welche die physikalische Ausdehnung des

RAW Qubits um mehrere Grössenordnungen übersteigt, zu koppeln. Das Verbindungs-

element besteht aus einem frequenzabstimmbaren Hochimpedanz-Resonator, der aus

einer linearen Kette von supraleitenden Quanteninterferenzeinheiten aufgebaut ist.

Der Resonator koppelt stark an beide Qubits, da die aus der Rabi Modenaufspaltung

extrahierten Kopplungsstärken von 52 MHz und 180 MHz für das RAW Qubit und das

Transmon die dazugehörigen Dekohärenzraten von 11MHz und 1MHz übersteigen.

Wir beobachten spektroskopisch die kohärente Wechselwirkung beider Qubits, welche

entweder durch reelle oder virtuelle Photonen im Resonator vermittelt wird. Für das

virtuelle Kopplungsschema lösen wir eine Austauschaufspaltung von 32 MHz auf.
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Chapter 1

Introduction

Electrons are one of the main constituents of matter. As such, they reveal phenomena

that require a quantum mechanical description. For instance the spin of the electron,

which would in a classical picture correspond to its intrinsic angular momentum, is

found to be quantized. If subject to a magnetic field, only two values with the same

magnitude are measured that correspond to two states with either parallel or anti-

parallel spin alignment with respect to the field. The magnetic field splits both states

energetically thus forming a quantum mechanical two-level system (qubit). Against

classical intuition, the spin can be in a superposition of both states before a measure-

ment. Another example that lacks a classical counterpart is that electrons with the

same spin are always found at different locations (orbitals) since the Pauli exclusion

principle (Pauli, 1940) requires them to be distinct in at least one quantum number.

This principle is the basis of the atomic shell structure and contributes to a difference

in the Coulomb energy between states of electrons with different or the same spin

orientation since the latter requires the electrons to be at distinct positions (orbitals)

(Hanson et al., 2007). The energy difference, called exchange energy, leads to macro-

scopic phenomena such as magnetic ordering (Feynman et al., 1989) and allows to

entangle spins of electrons with overlapping wave functions (Burkard et al., 1999) on

a microscopic level.

These and other examples of quantum mechanical phenomena have motivated

researchers to engineer controllable quantum states from single or multiple electrons

with the prospect of studying fundamental physics (Kouwenhoven et al., 1997) and

utilizing the quantum systems for quantum information processing (Loss et al., 1998,

DiVincenzo et al., 2000). For the latter, the electron spin is especially appealing since it is

not directly affected by electric field fluctuations in its environment thus preserving the
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quantum coherence for relatively long times of the order of microseconds (Kawakami

et al., 2014). Millisecond coherence times can be achieved in materials that allow

for isotopic purification like silicon (Veldhorst et al., 2014), where magnetic noise

produced by the spins of the nuclei, which couple via hyperfine interaction to the spin

of the electron, is drastically reduced. In this context also graphene is promising since

it naturally consists of ≈ 99% nuclear spin-free isotopes.

Investigating quantum effects of single electrons in solid state systems requires to

engineer structures that confine the electrons within a region of space that is compa-

rable to their de Broglie wavelength. Typical structure sizes are of the order of ten

to hundreds of nanometers and can nowadays be readily fabricated to large extent

thanks to the industrial goal to continuously reduce the transistor size (Moore, 1965).

Such nanostructures that confine electrons in all three spatial directions are referred

to as quantum dots. One way to realize them experimentally is to utilize a semicon-

ductor heterostructure that hosts a two-dimensional layer of conducting electrons tens

of nanometers below the surface and to deplete these electrons locally by electrostatic

gating with nanoscale metallic electrodes that are patterned on top of the structure.

This and other implementations of single quantum dots as well as tunnel coupled ar-

rays of quantum dots (Kouwenhoven et al., 1997, Hanson et al., 2007) have widely

been used in electronic transport measurements to investigate classical and quantum

mechanical effects such as Coulomb blockade (Scott-Thomas et al., 1989), electron

tunneling (Wees et al., 1989) or spin blockade (Ono et al., 2002).

A crucial step for quantum information processing with single-electron spin qubits

was to demonstrate coherent control and read-out of single electron spins with oscil-

lating magnetic (Koppens et al., 2006) and electric fields, where the electrical control

relies on spin-charge coupling due to intrinsic (Nowack et al., 2007) or engineered

(Pioro-Ladrière et al., 2008) spin-orbit coupling. The latter coupling mechanism was

used to address two spins in a double quantum dot (DQD) individually and to realize

two-qubit entangling gates that are based on exchange interaction (Veldhorst et al.,

2015, Zajac et al., 2018, Watson et al., 2018). Coherent single-qubit (Petta et al., 2005,

Wu et al., 2014) and two-qubit (Shulman et al., 2012) control was also demonstrated

for a two-electron DQD spin qubit, with a spin-singlet and a spin-triplet state as the

computational basis states. Since the single- and two-electron spin qubits carry a dif-

ferent spin for the ground state compared to the excited state, spin-orbit coupling is

required for qubit control by electrical fields. This is different for a three-electron spin

qubit that was proposed in Ref. DiVincenzo et al., 2000, where both qubit states are

within the same spin subspace and have the same charge distribution but different spin
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arrangements. There, spin-charge coupling is intrinsic due to exchange and enables

control by electric fields only as demonstrated for coherent single-qubit operations in

Refs. Laird et al., 2010, Gaudreau et al., 2012, Medford et al., 2013a,b.

The two-qubit interactions mentioned above were mediated by exchange interac-

tion or electrostatic coupling, both of which are limited to a short range that is of

the order of the size of a quantum dot. While short-range coupling might be suffi-

cient for nearest-neighbor coupling in small one-dimensional (Mills et al., 2019) or

two-dimensional (Mortemousque et al., 2018) arrays of quantum dots, it becomes

technologically more challenging with growing system size and imposes a major ob-

stacle for implementing the estimated number of physical qubits of 106 − 108 that

are potentially required to perform relevant quantum algorithms (Vandersypen et al.,

2017). Possible solutions are intermediate coupling schemes that employ, for instance,

superexchange (Baart et al., 2017) or electronic cavities (Nicolí et al., 2018) to reach

coupling lengths of up to a few micrometers. This length can be boosted by three to

four orders of magnitude using circuit quantum electrodynamics (circuit QED), where

microwave photons confined in superconducting resonators mediate the qubit-qubit

interaction (Majer et al., 2007). Since its invention 15 years ago (Blais et al., 2004,

Wallraff et al., 2004), circuit QED has both been a stimulant for quantum information

experiments with superconducting qubits, where it provides the framework for high

fidelity two-qubit gate operations (DiCarlo et al., 2009, Barends et al., 2014) and quan-

tum non-demolition read-out (Wallraff et al., 2005, Walter et al., 2017), and enabled

fundamental studies for instance of non-classical states of light (Houck et al., 2007),

quantum many-body physics (Roushan et al., 2017) or quantum nonlocality (The BIG

Bell Test Collaboration, 2018). These studies are based on coherent coupling of qubit

and microwave photons by electric-dipole interaction, which is realized in the so-called

strong coupling regime. There, the rate at which excitations are exchanged between

the qubit and the resonator exceeds the photon loss rate in the resonator and the qubit

decoherence rate.

In the weak coupling regime, where the strong coupling condition is not met, ex-

periments with charge (Frey et al., 2012, Toida et al., 2013, Basset et al., 2013, Viennot

et al., 2014, Stockklauser et al., 2015, Deng et al., 2015), spin (Petersson et al., 2012)

and valley (Mi et al., 2017b) states in resonator-coupled quantum dots demonstrated

an approach to study quantum dot physics alternative to transport-related studies.

Coherent effects in such hybrid circuit QED experiments were however fully washed

out due to the large decoherence rates of the quantum dot states that exceeded their

coupling strength to the photons by at least one order of magnitude (Burkard et al.,
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2019). By increasing the coupling strength to hundreds of MHz with high impedance

resonators (Stockklauser et al., 2017) or by lowering the decoherence rate to a few

MHz via a noise reduction in the qubit environment (Mi et al., 2017c, Bruhat et al.,

2018), the strong coupling limit was recently reached for DQD charge qubits, where

quantum information is encoded in the electron charge distribution. Further hybrid

circuit QED experiments demonstrated charge qubit control and read-out (Scarlino

et al., 2019a) via the resonator as well as microwave photon-mediated coupling of two

charge qubits (Woerkom et al., 2018).

While the difference in the charge distribution of the charge qubit states naturally

results in an electric dipole coupling rate to the microwave photons that is of the order

of MHz, direct spin-photon coupling is only possible by magnetic dipole interaction,

which is at maximum only hundreds of Hz (Burkard et al., 2019). This coupling strength

can be enhanced significantly by employing the idea of spin-charge coupling introduced

above. With intrinsic or engineered spin-orbit coupling or exchange interaction, spin-

photon coupling strengths of the order of MHz were estimated for a single-electron

spin qubit in a single (Trif et al., 2008) or a double quantum dot (Cottet et al., 2010,

Hu et al., 2012, Beaudoin et al., 2016, Benito et al., 2017), for a two-electron DQD

spin qubit (Burkard et al., 2006, Jin et al., 2012) as well as for a three-electron spin

qubit in a triple quantum dot (TQD) (Taylor et al., 2013, Russ et al., 2015b, Srinivasa

et al., 2016). Once strong spin-photon coupling can be achieved, qubit-qubit coupling

via the resonator that involves a spin qubit is a next important step for spin qubits in

the context of quantum information processing.

In this thesis we perform three different hybrid circuit QED experiments, which all

have in common that they involve few-electron spin states in laterally defined quan-

tum dots in a semiconductor heterostructure made from gallium arsenide/aluminum

gallium arsenide (GaAs/AlGaAs). These experiments are realized in an experimental

setup presented in chapter 2 that was built up and in large parts newly designed in this

thesis. In chapters 3 and 4 we introduce the physical concepts and the experimental re-

alization of the three different qubits and superconducting microwave resonators that

we employ for the experiments in this thesis. The realized qubits are a two-electron

DQD charge qubit and a three-electron TQD spin qubit as well as a superconducting

transmon qubit. The implemented resonators are a high impedance resonator that

is built of superconducting quantum interference devices (SQUIDs) (Stockklauser et

al., 2017) as well as a 50Ω Al resonator (Frey et al., 2012) and a high impedance

magnetic field resilient niobium titanium nitride (NbTiN) resonator. The design and

fabrication for the latter resonator was developed in this thesis based on similar work
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in Ref. Samkharadze et al., 2016. Its fabrication and characterization are discussed in

detail in chapter 4. In chapter 5 we introduce theoretical descriptions of hybrid circuit

QED as a closed and an open quantum system and discuss the two cases of either

a single qubit or two qubits coupled to the resonator. Since open quantum systems

involve dissipative dynamics, we introduce decoherence models for the qubits with a

focus on the three-electron spin qubit.

In the first experiment in chapter 6, we couple a NbTiN resonator and a DQD two-

electron charge qubit in the weak coupling regime. We characterize this interaction and

investigate singlet-triplet physics in the absence and presence of a DQD bias voltage

by probing the resonator transmission in a variable external magnetic field. Since

the resonator is only sensitive to the singlet state, we can deduce information about

the singlet-triplet energy spectrum for the zero bias measurements and observe spin

blockade previously known from transport studies as well as an unconventional spin

blockade that is triggered by the presence of resonator photons in the finite bias data.

The second experiment in chapter 7 realizes the strong coupling regime between

single microwave photons in the NbTiN resonator and a three-electron spin qubit. We

explain the implementation of this so-called resonant exchange (RX) qubit in a TQD

and present the spectroscopic signature of its interaction with the resonator. We observe

the vacuum Rabi mode splitting, the signature of strong coupling, and demonstrate

the tunability of the qubit-photon coupling strength and decoherence rate.

In chapter 8 we present the results of our third experiment, where the RX qubit is

coupled over a distance of a few hundred micrometers via a SQUID array resonator to a

transmon qubit. We introduce the sample design and characterize both qubits individu-

ally via the resonator, to which both are strongly coupled. We report RX qubit operation

at different working points that are characterized by the ratio of the qubit-photon cou-

pling strength over the qubit decoherence rate. We also demonstrate coherent coupling

of the RX qubit and the transmon via the resonator in the resonant as well as in the

dispersive regime.
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Chapter 2

Experimental setup

In this thesis we study quantum systems that have a separation between their lowest

discrete energy levels of about 6GHz, which corresponds to a temperature of approx-

imately 300mK. To initialize them in their ground state, the experiments need to be

performed at millikelvin temperatures well below 300 mK, which minimizes undesired

thermal excitations. To control and probe the quantum systems, they are connected

by direct current (DC) and microwave (RF) lines to room temperature electronics.

The desired power of the RF signals at the quantum systems is at the level of single

RF photons, which is of the order of 10−17 W. The desired electron temperature is

around 30mK. This is challenging at first glance, since the lines and electronics in-

evitably introduce thermal noise as well as heat load. In addition, thermalization can

be problematic at mK temperatures where the thermal conductivity rapidly decreases

and the thermal resistance at material interfaces becomes relevant (Pobell, 2007). The

engineering challenge has been resolved in many previous works such as for example

recently in Ref. Krinner et al., 2019 and meanwhile also in commercial solutions by

obeying the following design rules: minimize the noise level via well thermalized filters

or attenuators and shield the system from radiative sources while keeping the heat

load sufficiently low in order to not heat up the system. We follow the same rules in

this chapter and present an experimental setup that was built up in the course of this

thesis.

We first provide an overview of the experimental setup in section 2.1 and sub-

sequently discuss its main components in more detail in sections 2.2-2.5. A list of

the commercially available components that are built into the setup can be found in

Appendix D.
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2.1 Overview

We identify four main components of the experimental setup that is illustrated schemat-

ically in Fig. 2.1. The first component is a dilution refrigerator, where a pulse-tube

cooler and a phase transition in a 3He-4He mixture provide sufficient cooling power

to decrease the temperature from room temperature at the refrigerator top plate se-

quentially to about 10mK at its base plate. The radiation shields shown in Fig. 2.1

are thermalized at different temperature stages. They protect lower temperature re-

gions from thermal radiation at higher temperatures. For the experiments presented

in chapters 6 and 7, the refrigerator is equipped with a superconducting magnet (not

shown in Fig. 2.1). The magnet produces a field1 of a few tesla that is approximately

homogeneous within a small volume of ≈ 1 cm3 below the base plate. Further details

about the refrigerator are not discussed in this thesis since it is commercially available

and its working principles can for example be found in Ref. Pobell, 2007.

The second component of the experimental setup is the sample, which is the heart

of our experiments as it contains the quantum systems. The elements for mounting

DC electronics

RF electronics

sample

10 mK

90 mK

700 mK

4 K

70 K

RT

Room temp.

Room temp.
refrigerator

Figure 2.1 Setup overview. Simplified illustration of the main components of
the experimental setup. RF (black) and DC (red) control lines connect the
electronics at room temperature to a sample inside a dilution refrigerator. The
holder for the sample is shown in blue. The temperatures at the different
refrigerator plates are indicated. Note that radiation shields are illustrated as
semi-transparent cylindrical shapes in different colors for better visibility.

1For the experiments in chapters 6 and 7 we use a 5T single-axis and a 6− 1− 1T three-axis magnet,
respectively.
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and shielding the sample were developed in the course of this thesis and are discussed

in detail in section 2.5. The third and fourth components in Fig. 2.1 are the DC and RF

setups that consist of electronics at room temperature as well as of parts at cryogenic

temperatures that connect to the sample. In section 2.4 we provide an overview of the

DC setup and discuss the RF setup in more depth in sections 2.2 and 2.3, since it was

in parts engineered in this thesis. Read-out and control of the measurement equipment

is realized with the commercial software tool Labber.

2.2 Cryogenic RF setup

The coaxial microwave lines inside the refrigerator are shown in Fig. 2.2(a). The refrig-

erator cooling power at the different temperature plates decreases with temperature.

To ensure that the presence of the heat-conducting coaxial cables does not introduce an

excessive heat load into the refrigerator, their outer conductor is thermalized at every

temperature stage. Note that the metallic inner and outer conductors of the coaxial

cables are separated by a dielectric material, which has a different thermal contrac-

tion compared to the metal. Thermalizing the outer conductor therefore likely does

not completely thermalize the inner conductor at cryogenic temperatures (Bianchetti,

2010). Better thermalization of the inner conductor is possible at temperature stages

where attenuators are installed. These elements attenuate the signal together with

thermal noise from higher temperature stages and provide an electrical connection

between the inner and the outer conductor.

In practice, the attenuator and the outer conductor are thermalized with the refriger-

ator by using the copper (Cu) clamps shown in Figs. 2.2(b) and (c), respectively. These

clamps consist of five flexible meander shaped “fingers” [see insets in Figs. 2.2(b)-(c)].
To clamp the attenuator or the outer conductor of the RF lines, a metallic rod is inserted

in the center of the clamp and tightened at both ends [see insets in Figs. 2.2(b)-(c)].
This bents the “fingers” and results in a high contact force that persists at cryogenic

temperatures since the amount of the bent likely exceeds differences in thermal con-

tractions between the interfaced materials. The high contact force is a key ingredient

for good thermalization as it reduces the thermal resistance at the contact interface by

increasing the effective contact area (Pobell, 2007). The thermal resistance is further

reduced by plating the clamps with gold (Au), which prevents oxidization of the Cu

surface. We use brass screws with inserted beryllium copper (BeCu) springs [see green

rectangle in Fig. 2.2(b)] to tighten the clamps to the refrigerator plates. The springs are

compressed by ≈ 1 mm at room temperature to ensure a high contact force also at low
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temperatures. Note that because brass has a larger thermal contraction compared to

the Cu plates of the refrigerator (Pobell, 2007), a brass screw without the spring should

in principle also allow to achieve large contact forces at low temperatures. Note also

that we use vacuum grease (Apiezon N) at the interface of every thermal connection

of a setup component with the refrigerator plates. This was found to increase thermal

conductivity in Ref. Bräm, 2018.

10 mK

90 mK

700 mK

4 K

70 K

293 K

~10 cm

(a) (b)

~1 cm

(c)

~2 cm

(d)

νp [GHz]

S i
 [d

B]

-600 5 10 15 20

-40

-20

0

RF line
attenuator

rod

Figure 2.2 Cryogenic RF setup. (a) Optical micrograph of the opened dilution
refrigerator with the plates at room temperature. The temperatures at different
plates in the operational state are indicated. Microwave lines are installed
within the region highlighted with a red rectangle. (b)-(c) Optical micrograph
and schematic of the clamps that thermalize the attenuators (b) or the outer
conductor (c) of the RF lines with the refrigerator plates. The gray arrows mark
the clamps, which are also schematically illustrated in the insets. A white arrow
indicates an exemplary attenuator, the green rectangle highlights a brass screw
with an inserted BeCu spring. The bend in an exemplary RF line is marked
with a red arrow. (d) S21 (orange), S11 (blue) and S22 (black) as a function of
frequency νp for an exemplary RF line measured at room temperature. The
dashed line is drawn at −21 dB.
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We solder connectors to the RF lines to connect them to the attenuators. To de-

termine the quality of this connection we measure the reflection and transmission

spectrum of the cables as shown in Fig. 2.2(d). We ensure that the return loss is below

the typical return loss of commercially available cables of ≈ 21dB for frequencies of

up to 15GHz. To reduce the force on the solder joint between the RF lines and their

respective connectors due to thermal contraction, we introduce a bend into the lines

[see red arrow in Fig. 2.2(c)].
Three different types of RF lines with different configurations of attenuators and

amplifiers are installed in the refrigerator as depicted in Fig. 2.3. The experiment was

designed for one line each of type A and B and six lines of type C. The RF line A

is attenuated with three 20dB attenuators in addition to about 10dB of distributed

attenuation due to the microwave cables. The high attenuation reduces the noise level

to an average thermal occupation at 5GHz of n̄ ≈ 10−3 (Krinner et al., 2019) and

allows to reach signals at the level of single microwave photons at the sample. The

attenuation is distributed over three temperature plates (20dB each) to ensure that

the dissipated power does not exceed the cooling power at the plates.

Similar to the sample input-signal on line A, the signal coming from the sample

is of the order of 10−17 W. It is directed with line B through a high electron mobility

transistor (HEMT) amplifier that provides an amplification of GHEMT ≈ 33dB and

a noise temperature of THEMT ≈ 2.7K2. We use a superconducting NbTi microwave

line to minimize loss for a signal propagating from the sample to the amplifier. Two

circulators at base temperature and one isolator at 90mK protect the sample with a

total attenuation of ≈ 60dB from thermal noise while only weakly attenuating the

signal from the sample by ≈ 0.5 dB. The usable frequency range of line B is limited by

the 4− 8GHz bandwidth of the circulators since the insertion loss of the circulators

increases significantly outside this frequency band. The working principle of these

circulators relies on the magnetization of a ferrite component, which requires to shield

them from stray fields produced by the superconducting magnet inside the refrigerator.

We therefore use commercial circulators with a magnetic field compatibility of up to

150 mT.

The third type of cryogenic RF lines is line C in Fig. 2.3(a). The purpose of this line

is to achieve a maximum signal level of the order of 100nW at the sample without

exceeding the cooling power of the refrigerator. We therefore use a sequence of 20 dB,

10dB and 3dB attenuators in addition to the intrinsic distributed attenuation of the

2Amplifier specifications for the experiments in chapters 6 and 7. In chapter 8 we use a HEMT with
GHEMT ≈ 39 dB and THEMT ≈ 2.3 K within the frequency range from 4− 8 GHz (see Appendix D).
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microwave line of≈ 10 dB. The signal at line C is routed via a bias tee, which is installed

at the 10 mK stage and allows to apply a DC signal on top of the RF tone (see section

2.5), to the sample.

For the experiments presented in this thesis use the two different configurations

shown in Fig. 2.3(b) to connect RF lines A and B to the sample. The details of the
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Figure 2.3 Cryogenic RF lines. (a) Schematic illustration of the three different
types of RF lines that are installed inside the refrigerator. The damping of
attenuators and the gain of amplifiers is specified. The material of the lines
is either Cu, stainless steel (SS) or NbTi. (b) Transmission (left) or reflection
(right) measurement configuration.
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connection from the base plate to the sample are explained in section 2.5. Configura-

tion 1 realizes a transmission measurement, where the signal from line A is directly

transmitted through the sample to line B, while configuration 2 is used for a reflection

measurement, where the signal from line A is reflected by the sample and directed

with a circulator to line B.

Finally, we comment on the material of the cryogenic RF lines in Fig. 2.3(a). We use

copper (Cu) lines to connect microwave components that are at the same temperature

since these lines provide a low attenuation. Due to their large thermal conductivity, they

are however not suited to connect different temperature stages inside the refrigerator.

We use stainless steel (SS) lines for this purpose. They introduce a substantially smaller

heat load compared to the Cu lines due to their lower thermal conductivity. The NbTi

microwave cable used for line C is superconducting and therefore provides a low

dissipation together with a high thermal isolation.

2.3 Room temperature RF setup

The cryogenic RF setup presented in section 2.2 is connected at room temperature

to the RF setup shown in Fig. 2.4. This room temperature setup was designed in the

group of Prof. Wallraff at ETH Zurich. It was adapted and assembled to be used for the

experiments presented in this thesis. We provide an overview of this setup below and

refer for more details to Ref. Businger, 2015.

Microwave signals are generated at the signal-generation stage outlined in red in

Fig. 2.4. RF tones at two different frequencies νp and νd1 are combined and sent to

line A, while a single tone is applied at frequency νd2 to line C. For both lines, DC

blocks prevent frequency components below 10MHz from reaching the sample. In

addition we use a bandpass filter for line C, since noise on this line is significantly less

attenuated compared to line A [see Fig. 2.3(a)].

The signal coming from the HEMT amplifier via line B [see Fig. 2.3(a)] is amplified

in a room temperature amplification stage that is highlighted in blue in Fig. 2.4. In

principle there are two signals at frequencies νp and νd1 on line B since both tones

are applied to the sample via line A. In the following we are only interested in the

tone at νp. The first amplifier of the amplification stage is an ultra-low noise (ULN)

amplifier with a gain of GULN ≈ 34dB and a noise temperature of TULN ≈ 76K. The

noise temperature Tnoise of this linear array of the HEMT and ULN amplifier is given



14 Chapter 2 Experimental setup

as (Pozar, 2005)

Tnoise = THEMT +
TULN

GULN
. (2.1)

The second term in Eq. (2.1) is negligible since THEMT � TULN/GULN. The noise due to

the HEMT therefore limits the signal to noise in our experiments. The room temperature

amplification stage in Fig. 2.4 also contains a low-noise (LN) amplifier with a gain of

GLN ≈ 30dB and a noise temperature of TLN ≈ 473K3 that is connected to the first

amplifier via a 10dB attenuator in order to suppress standing waves between the

amplifiers. Note that this second amplifier adds the term TLN/(GULNGLN) to Eq. (2.1),

which is again negligible compared to THEMT.
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Figure 2.4 Room temperature RF setup. Schematic illustration of the signal-
generation (red), amplification (blue) and down-conversion (green) stages
that connect at room temperature to the microwave lines A-C [cf. Fig. 2.3(a)].

3This amplifier is used in chapters 6 and 7. In chapter 8 we use an amplfier with GLN ≈ 28dB and
TLN ≈ 149K (see Appendix D).
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The microwave signal at frequency νp can be described by S(t)e2πiνp t , where e2πiνp t

is the carrier signal and S(t) is the complex-valued signal amplitude (Pozar, 2005).

Since we are interested in measuring the amplitude and phase of S(t), the signal is fur-

ther processed after the amplification stage with the down-conversion stage outlined

with a solid green line in Fig. 2.4. There, the signal is down converted in a heterodyne

detection scheme to an intermediate frequency (IF) νIF by mixing it with a local os-

cillator signal that is generated with a signal generator at frequency νLO = νp − νIF.

We use IF frequencies between 25MHz and 30MHz. The IF signal is further ampli-

fied by 28dB and filtered from high-frequency components above 48MHz. In a last

step, we send the signal to one of the two input channels of a high frequency lock-in

amplifier that is discussed below. We use a second down-conversion stage outlined

with a dashed green line in Fig. 2.4 to process a reference tone at νp that was split

off during signal generation and therefore not sent through the refrigerator (see red

region in Fig. 2.4). The down-converted reference signal is connected to the second

input channel of the high frequency lock-in amplifier. Note that both down-conversion

stages are connected to the same local oscillator for a common phase reference and

contain the same microwave components4.

We use the UHFLI from Zurich Instruments as the high frequency lock-in amplifier.

It is a FPGA based device that first digitizes the IF (voltage) signal at both channels

with an analog-to-digital converter (ADC) at a sampling rate of 1.8 GSa/s and a vertical

resolution of 12 bit. The signals are subsequently demodulated inside the UHFLI to DC

and typically averaged for 10 − 100ms in our experiments. As a result of the down

conversion from νp to DC we obtain a time averaged amplitude that is proportional5

to |S(t)| and the phase arg[S(t)] for both signals. For a reflection or transmission mea-

surement configuration [cf. Fig. 2.3(b)] we identify in the following the time averaged

amplitude of the signal from the sample with |S11| or |S21|, respectively. In contrast

to the value of the phase of the individual down-converted signals, their difference

∆φ is insensitive to phase drifts of the signal generator phase over time for fixed νp

as well as to phase jumps that occur when sweeping νp. The UHFLI is also equipped

with a rubidium atomic clock that provides a 10MHz reference signal, which we use

to synchronize the UHFLI with all RF signal generators.

The amplification and down-conversion stages are each assembled on a single

board as shown in Fig. 2.5(a). This modular design allows to compactly mount the

4For the experiment in chapter 8 we use a 20 dB attenuator instead of 10 dB attenuation (used in chapters
6 and 7) at the signal input of the reference down-conversion stage in order to further attenuate the LO
signal that leaks via the mixer (typical isolation ≈ 30 dB) to line A.

5It is not equivalent to |S(t)| due to the gain and attenuation of the signal in the down-conversion board.
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Figure 2.5 Microwave boards. (a) Image of a down-conversion board. The
microwave components are labelled with the corresponding symbols (cf. sym-
bol legend in Fig. 2.4). The red arrow indicates the direction of sight for (b).
(b) Picture of two down-conversion boards (labelled as 1. and 2.) and one
amplification board (marked as 3.) that are mounted in a rack. The board from
(a) is highlighted with a dashed red rectangle. The labels next to the connec-
tors refer to the following: “15V” (connection of amplifiers to a 15V power
supply), “LO” (connection to the local oscillator), “sig. in/out” (connection to
RF signal input/output), “ADC” (connection to the UHFLI).

boards in a rack as depicted in Fig. 2.5(b).

2.4 DC setup

In this section we present the room temperature electronics and the cryogenic wiring

that is used to route DC signals to the refrigerator base plate and to supply the nec-

essary voltages and currents to the HEMT amplifier. This setup was assembled from

components that were developed by the electrical engineer Peter Märki in our research

group. The components that connect the wiring from the base plate to the sample are

discussed in section 2.5.

While the temperature of the refrigerator base plate is at about 10 mK, the electron

temperature of the sample can easily be one order of magnitude higher. This is mainly

because cooling of electrons via their host lattice is strongly reduced at mK tempera-

tures, where the heat flow Q̇ due to electron-phonon coupling scales as Q̇∝ T5
e − T5

ph

(Wennberg et al., 1986), with the electron (phonon) temperature Te (Tph). Sample

electrons are dominantly cooled by electrically connecting them to cold electrons in
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the sample wiring, where more efficient cooling is possible via heat sinks to the re-

frigerator plates (Samkharadze et al., 2011). The setup presented in this section is

therefore designed to reach a low electron temperature in the DC wiring at the base

plate and consequently at the sample by following two approaches. First, heat sinks

are designed to provide good thermal contact between the electrons in the wires and

the refrigerator plates. Second, low-pass filters are installed at room temperature and

at the base plate that allow the DC signal to pass but attenuate the high frequency

components of the thermal noise that would otherwise heat up the electrons.

The DC voltage signals that are applied to the sample are of the order of 1 V. They

are generated at room temperature with low-noise voltage sources6. Subsequently the

signals pass a 1 : 5 voltage divider and a low-pass filter from surface mounted devices

(SMD) with a cutoff frequency of 13 Hz. Note that this filter stage is limited by thermal

noise produced by the filter resistors at room temperature. Another filter stage at base

temperature is presented in section 2.5. Environmental noise that is present due to

electrical equipment or other radiative sources outside the refrigerator is shielded by

integrating the voltage sources and the filter stage into a single device with a RF tight

metallic casing that is shown in Figs. 2.6(a)-(b). External measurement equipment

can be connected to the device via BNC ports. The electrical connection of the voltage

sources to the DC cable inside the refrigerator is also realized within the casing since

it is mounted directly on top of the refrigerator room feedthrough of the DC cable.

The DC cable routes the signals to the base plate of the refrigerator. It is a flat

band cable that consists of 24 signal carrying manganin wires that are capacitively

decoupled from each other by placing a grounded wire between each pairs of wires.

The flat band cable embeds the wires between a top and bottom polyimide layer. More

details about the cable can be found in Ref. Bräm, 2018. We thermalize the flat band

cable with the refrigerator plates by using the BeCu clamp shown in Fig. 2.6(b). The

clamp deforms at room temperature and therefore exerts a high force also at cryogenic

temperatures (Bräm, 2018). The resulting large contact area between the cable and

the plates realizes a good heat sink to efficiently cool the electrons in the cable.

While for most of the DC lines the current is negligibly small due to a large sample

resistance to ground, it is of the order of 1µA for some of the lines. This current

is measured with I/V converters that are also integrated into the device shown in

Figs. 2.6(a)-(b).

We use a separate flat band cable to operate the HEMT amplifier that is installed at

6The root mean square (rms) voltage noise for the bare voltage sources without filters is Vrms ≈ 165 nV
in the range from 0.1− 10 Hz for operation at 8.3 V.
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Figure 2.6 DC setup components. (a)-(b) Optical micrographs of the device
that is mounted on top of the refrigerator and comprises DC voltage sources, a
filter stage, ports for external devices and a connection to the DC cable inside
the refrigerator. The part of the device outlined in red in (a) is opened in
(b). (c) Image of an exemplary flat band cable section that is pressed to a
refrigerator plate with a clamp.

the 4 K stage (cf. section 2.2). The cable connects at room temperature via a low-pass

filter (470µH, 100 nF) inside a breakout box to the power supply of the amplifier that

was designed in Ref. Bianchetti, 2010.

2.5 Sample holder and shielding

In this section we describe the components of the experimental setup that are installed

at the base plate of the refrigerator in order to mount the sample and to connect it to

the RF and DC wiring that was presented in sections 2.2 and 2.4. These components

were designed such that they can be well thermally anchored with the base plate.

This ensures that they do not heat up the RF and DC lines and provide a low phonon

temperature for cooling the sample lattice. The second guideline for the design was

to protect the sample from radiative sources in its environment such as for example



2.5 Sample holder and shielding 19

radiation from higher temperature plates that is likely not perfectly shielded from the

shields mounted to the refrigerator plates as well as environmental electrical noise

that couples via ports from outside to inside of the refrigerator. For the experiment in

chapter 8 the sample is also shielded against external magnetic fields.

The RF and DC lines are directed from the base plate to the sample holder shown

in Fig. 2.7(a) that is mounted with a high contact force to the base plate by using

screws with inserted BeCu springs [cf. Fig. 2.2(b)]. The circulators, which connect one

RF line from the base plate to the sample holder, are also visible in Fig. 2.7(a). The

sample holder is a single workpiece of oxygen-free high thermal conductivity (OFHC)

Cu7. The size of the sample holder is constraint by the dimension of the core of a

superconducting magnet that needs to fit the holder for the experiments that require

an external magnetic field. Another design constraint for the holder is that the sample

needs to be mounted parallel and in the homogeneous region of this magnetic field,

(a)

(b),
(c)

base plate

sample
holder

radiation
shield

(b) (c) (d)

(c)

~2 cm~5 cm ~2 cm

circulator

mesh PCB
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PCB
“

“
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Figure2.7 Sample holder. (a) Optical micrograph of the components mounted
at the bottom of the refrigerator base plate. Some components are labelled
and described in the text. (b)-(c) Image of the front (b) and the back (c) of
the area outlined with a white rectangle in (a) after removing the radiation
shield. The arrow in (b) indicates the direction of sight for (c). The rectangles
highlight regions that are discussed in the text. (d) Similar image section as
in (c) with the “lid” removed. A schematic illustration of the “lid” and the PCB
cross section once they are tightened together with a screw (not shown) is
depicted in the inset.

7This sample holder material was used for the experiments in chapter 8. For the experiments in chapters
6 and 7 we used an electrolytic-tough-pitch (ETP) Cu sample holder with the identical design. The OFHC Cu
holder has the potential advantage of reduced magnetic noise from molecular oxygen (Müller et al., 2017b)
that is present in ETP Cu. We do not have experimental evidence of this advantage, which could be due to
the insensitivity of our experiments to the sample holder material.
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which is directed along the axis of the holder.

In the following we explain layer by layer the components that shield and thermalize

the sample. If magnetic field shielding is required, two cylindrical cryoperm8 shields

are installed around the sample (not shown in Fig. 2.7). The radiation shield shown

in Fig. 2.7(a) is installed for every experiment. It has a cylindrical shape and is closed

at one end. To efficiently screen radiation from outside the shield at its open end, a

good electrical connection between the sample holder and the shield is necessary that

persists at cryogenic temperatures. We realize this connection with a flexible metallic

mesh [see Fig. 2.7(b)] that is compressed in order to slide the radiation shield on

top of the sample holder. RF and DC lines connect to the sample holder in the region

inside the shield outlined with dashed rectangles in Fig. 2.7(b). In the rear view of this

region in Fig. 2.7(c), a BeCu “lid” is visible, which thermalizes a printed circuit board

(PCB) with the sample holder [see Fig. 2.7(d)]. Note that the sample is mounted on

the PCB as discussed below. The “lid” is designed to yield a large contact force at two

edges of the PCB since it is bent by tightening it with screws to the sample holder [see

Fig. 2.7(d) inset].
In Fig. 2.7(c) a coil9 is visible that is fixed to the “lid”. This coil is used in chapter 8

to apply magnetic fields of the order of 1 mT to the sample. The coil material as well as

its connection from the base plate to the 4 K plate is superconducting NbTi to prevent

excessive heat load. To reduce magnetic field fluctuations, the coil line is filtered with

a 7.8kHz lumped element low-pass filter at 4K, where it connects via a manganin

flat band cable (see section 2.4) to another low-pass filter with a cutoff frequency of

50 mHz inside a breakout box at room temperature.

The final connection of the DC and RF lines to the sample is realized on the PCB

shown in Fig. 2.8(a). The front and backside of the PCB has an Au-plated10 Cu met-

allization. The DC lines are connected to a socket in the upper part of the PCB and

filtered with SMD low-pass filters (15nF, 10kΩ) with a cutoff frequency of 7.6kHz.

The space between the socket and the filter stage could be used in future PCB designs

for additional SMD or on-chip filtering. The RF lines connect via SMP microwave sock-

ets to 50Ω planar RF lines on the PCB. These planar lines are coplanar waveguide

transmission lines that will be introduced in chapter 4. The dielectric constant and the

thickness of the PCB is similar to the sample such that their transmission line geome-

tries are comparable. We keep the front and backside of the PCB on the same potential

8Material with a high magnetic permeability at cryogenic temperatures.
9It is 12mm in diameter and has 4000 turns.

10Nickel-free plating (immersion silver/immersion gold) to prevent magnetic stray fields.
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(refrigerator ground) by connecting them with multiple metallized holes (vias). The

large number of vias suppresses parasitic standing waves on the PCB. DC and RF sig-

nals can be superimposed with SMD bias tees that contain a 10 kΩ resistor and a 10 nF

capacitor. The DC and RF lines on the PBC are wire bonded with Al wires to the corre-

sponding contacts on the sample as shown in Fig. 2.8(c). The PCB lines and the sample

contacts are in the same plane to reduce the reflection of microwave signals. This is

realized by inserting the sample into a region where the front metallization and the

dielectric of the PCB are removed. We use polymethyl methacrylate (PMMA) to glue

the sample to the PCB. Before wire bonding, all DC lines on the PCB are shorted to the

PCB ground using a conducting wire. This reduces the risk of electrostatic discharge

that can occur due to small metallic structures that are present on the sample. The

wire is fixed at the back of the DC socket as shown in Fig. 2.8(b). It is removed after

installing the PCB in the refrigerator and connecting it to the (at that time grounded)

refrigerator DC lines.

Low-pass SMD �lters

DC socket

RF sockets

Bias tees

(b)(a)

(c)

Legend

sample

conducting
wire

1 cm

1 cm

1 mm

Figure 2.8 PCB and sample. (a) Optical micrograph of the PCB. Different
components are highlighted and discussed in the text. Note that two out of
four bias tees are assembled. (b) Image of a section of the back of the PCB.
The pins of the DC socket are shorted to the PCB ground with a conducting
wire. (c) Picture of a bonded sample.
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2.6 Conclusion and outlook

In this chapter we presented an experimental setup that allows to probe quantum

systems at the level of single electrons and single microwave photons. While some setup

components were newly designed in this thesis, such as the thermalization components

for the RF lines as well as the shielding, holder and circuit board for the sample, others

were adapted from prior work. The experiments in chapters 6-8 demonstrate the setup

functionality.

In the following we list some modifications of the experimental setup that could be

implemented, if required, for the usage in future experiments. Noise on the DC line can

possibly be further reduced by integrating Thermocoax cables into the DC wiring at the

base temperature. These cables provide large attenuation at MHz to THz frequencies

(Zorin, 1995, Baer et al., 2015). An improvement of the signal to noise ratio of the

microwave read-out would be possible by employing for example a Josephson para-

metric dimer (Eichler et al., 2014) or a Josephson traveling-wave parametric amplifier

(Macklin et al., 2015). Such an amplifier would be installed as a first amplification

stage close to the sample and provide near-quantum-limited amplification before a

second amplification at 4K by a HEMT amplifier.



Chapter 3

Solid-state qubits

A variety of physical implementations of a qubit in a condensed matter system are

proposed, under basic investigation or already integrated into a few-qubit quantum

architecture (Acín et al., 2018). They are required to provide a scalable system that

allows precise control on time scales that are fast compared to the loss of quantum in-

formation due to incoherent interaction with the environment (DiVincenzo, 2000). The

qubit implementations can be sorted into two categories. Those in the first category use

the microscopic building blocks of the condensed matter system, i.e. single electrons,

holes and nuclei. There, a two-level system is either intrinsic due to the atomic excita-

tion spectrum of impurity atoms (Awschalom et al., 2013) or it is artificially induced

by spatial confinement of electrons or holes (Kouwenhoven et al., 1997, Hanson et al.,

2008). In the second category, qubits are encoded into macroscopic quantum states

that condense into the same phases such as superconducting or topological phases

(Devoret et al., 2005, Sarma et al., 2015).

In this chapter we introduce the three different solid-state qubits that are imple-

mented in this thesis in chapters 6-8. In the first two sections 3.1 and 3.2 we focus on

two microscopic qubit systems, where the logical qubit states are either encoded in the

charge distribution (charge qubit) (Hayashi et al., 2003) or the spin degree of freedom

(spin qubit) (Loss et al., 1998, DiVincenzo et al., 2000) of single or few electrons in

quantum dots. In section 3.3 we give a brief overview of the superconducting transmon

qubit (Koch et al., 2007) - a macroscopic solid-state qubit.
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3.1 Double quantum dot charge qubit

We introduce electrostatically-defined quantum dots as well as basic properties of DQDs

in subsections 3.1.1 and 3.1.2, respectively. In subsection 3.1.3 we restrict our consid-

eration to two electrons in a DQD and discuss the charge states, which form a charge

qubit, as well as the spin states. We also introduce the spin-blockade phenomenon that

is known from transport experiments (Ono et al., 2002, Johnson et al., 2005a).

3.1.1 Electrostatically defined GaAs/AlGaAs quantum dots

To implement qubits that are formed by single electrons within a solid-state system,

precise control over the system at the level of engineering the electron wave function

is required. A suitable material for such a purpose is a GaAs/AlGaAs heterostructure

since it can be grown as a highly pure crystalline structure with atomic scale precision

using molecular beam epitaxy (Manfra, 2014). As schematically depicted in Fig. 3.1(a),

it consists of a sequence of GaAs and AlxGa1−xAs1 layers that are grown on top of a

GaAs wafer that has a thickness of about 500µm.

+++++++
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+++++++++++
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2DEG

(a) (b)
z
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Figure 3.1 Heterostructure and electrostatic depletion. (a) GaAs/AlGaAs het-
erostructure (left) grown on top of a GaAs wafer (not shown). Spatial depen-
dence of the conduction band edge, which is below the Fermi energy (EF) in
the region of the 2DEG. (b) Schematic from (a) without the AlxGa1−xAs layers
such that regions with (green) and without (black) 2DEG are visible. Ohmic
contacts (gray columns) to the source (S) and drain (D) electron reservoirs
are indicated. A SEM image of a gate structure used to form two quantum
dots (white circles) is shown on top of the heterostructure. The gate structure
is explained in detail in Fig. 3.2.

1For the heterostructures used in this thesis, x is in the range from 30− 31%.
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In a region close to the interface of GaAs and AlxGa1−xAs, the conduction band is

below the Fermi energy since both materials have different band gaps. Consequently,

electrons are confined in a potential well in growth direction, where they occupy the

lowest subband. This layer of electrons is however free to move in plane and referred to

as two-dimensional electron gas (2DEG). The electrons stem from a δ−doping layer of

silicon (Si) that is introduced during growth. Within this work we use heterostructures2

with a 2DEG electron density ne ≈ 2× 1011 cm−2 and a mobility µ≈ 3× 106 cm2/Vs.

The Fermi wavelength of the 2DEG electrons,λF =
p

2π/ne ≈ 56 nm, characterizes

the length scale for observing quantum effects in the heterostructure. We achieve lateral

confinement of electrons within the 2DEG on this length scale by applying negative

voltages to metallic gate electrodes that are patterned on top of the heterostructure with

electron beam lithography. The gates couple capacitively to the 2DEG and deplete it

locally. Using the gate design illustrated in Fig. 3.1(b) we thereby form two conducting

islands that are tunnel coupled to two electron reservoirs, marked as source “S” and

drain “D”. The electrons in the reservoirs are directly contacted from the surface with

ohmic contacts (Taylor et al., 1994).

The system is controlled by manipulating the gate voltages Vi indicated in Fig. 3.2(a)

such that the electric fields produced by the gates form a potential landscape that

is similar to the idealized double-well potential in Fig. 3.2(b). There, electrons are

trapped in two potential minima (islands) that have a depth that can be controlled

(b)
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Figure 3.2 Formation of a DQD. (a) False-colored SEM image of an exemplary
metallic gate structure that is used to form a DQD (white circles) and a QPC
by electrostatic depletion with gate voltages Vi . Ohmic contacts to source (S)
and drain (D) electron reservoirs are labelled. (b) Schematic of the idealized
spatial dependence of the electrostatic potential along the line indicated by a
gray arrow in (a).

2These structures were grown by Dr. Reichl in the group of Prof. Wegscheider at ETH Zurich (Reichl,
2014).



26 Chapter 3 Solid-state qubits

with the voltages VL and VR on the so-called plunger gates. The local potential maxima

between the two islands as well as between the individual islands and the reservoirs

form tunnel barriers for the electrons that can be adjusted with the voltages Vt and VrL/R,

respectively. The two islands confine electrons in all three dimensions in a small region

of space, which introduces a discrete energy spectrum as shown in Fig. 3.2(b) that is

similar to the energy spectrum of an atom. These islands can therefore be regarded

as zero-dimensional objects and are referred to as quantum dots. Two energy scales

are relevant for the quantum dot spectrum, for which we calculate order of magnitude

estimates following Ref. Ihn, 2010.

As quantum dots host electrons in a small region of space, electron-electron inter-

action plays an important role. The energy cost to add an electron to a quantum dot

is quantified by the Coulomb charging energy ECD = e2/CΣ, where e is the electron

charge and CΣ the total capacitance of the quantum dot. It characterizes the difference

between the electrostatic energies for adding the N-th and the (N + 1)-th electron

to the quantum dot that already contains (N − 1) and N electrons, respectively. We

estimate ECD ≈ 3.5meV by modeling the quantum dot as a metallic disc with a total

capacitance CΣ = 8ε0εr r, where ε0 is the vacuum permittivity, εr = 12.9 the dielectric

constant of GaAs and r = 50 nm the disk radius. Here we estimate the disk radius from

the gate geometry [see circles in Fig. 3.2(a)] as an upper boundary estimate for the

dot size due to the electrostatic confinement. In order to form a quantum dot with a

well defined number of electrons on it, the tunneling resistance Rt to the reservoirs

has to exceed the resistance quantum h/e2 (≈ 26kΩ). This result is derived using

Heisenberg’s uncertainty relation ECD∆t > h, with the single electron charging time

∆t = RtCΣ. Another condition is that the charging energy is well above the thermal en-

ergy of the electrons. This condition is fulfilled in our experiments that are performed

at electronic temperatures of Te ≈ 50mK because kBTe ≈ 4µeV� ECD.

The second relevant energy scale for the quantum dot spectrum is the single-particle

level spacing, which is the energy separation between the electron orbital eigenstates

within the quantum dot. Assuming a parabolic confinement potential we obtain∆Espl =
ħh2/(4m∗r2)≈ 110µeV, where m∗ = 0.067me and me are the effective and free electron

masses, respectively. Hence, the charging energy dominates the quantum dot spectrum.

However, as ∆Espl� kBTe, excited states of the quantum mechanical energy levels are

not relevant in this work.

In Fig. 3.2(a) we also indicate a quantum point contact (QPC), which is a single

narrow constriction between two electron reservoirs that is formed by electrostatic

gating. Its conductance is sensitive to small changes in the electrostatic potential in its
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vicinity. Consequently, we use it as a detector for changes in the charge occupation of

the quantum dots (Field et al., 1993). For more details on QPCs we refer to Ref. Ihn,

2010.

3.1.2 Properties of a double quantum dot

By placing two quantum dots in close proximity as shown in Fig. 3.2(a), a DQD is

formed. A schematic illustration of a typical DQD energy diagram is depicted in Fig. 3.3.

There, we limit the consideration to a total number of two electrons in the DQD, which

will be relevant below. We describe tunneling between two quantum dots due to an

overlap of their wave functions with the tunneling matrix element t. While interdot

tunneling is a coherent process further discussed in subsection 3.1.3, tunneling be-

tween the DQD and the left (right) electron reservoirs is treated perturbatively as an

incoherent process at rate ΓrL (ΓrR).

The DQD electrochemical potentials µ(NL,NR)(N′L,N′R)
shown in Fig. 3.3 quantify the

energy cost E(NL,NR)− E(N′L, N′R) for the transition (N′L,N′R)→ (NL, NR) that adds or

removes an electron from either of the two quantum dots. Thereby, E(NL, NR) is the

energy of the DQD state with NL (NR) electrons on the left (right) quantum dot. The

electrochemical potentials in the source and drain reservoirs are µs andµdr, respectively.

Their difference is determined by a voltage bias Vsd across the DQD as µdr−µs = −|e|Vsd.

Note that the diagram in Fig. 3.3 is simplified in the following manner. First, we

indicate the electrochemical potentials of the occupation states of the individual quan-

tum dots and omit their hybridization due to interdot tunneling. Second, whether an

electrochemical potential is indicated in the left or right quantum dot depends on from

μdr

(1,1)

ГrL ГrRt/h

(0,2)

(0,1)

μs

μ(0,2)(0,1)=E(0,2)-E(0,1)

μ(1,1)(0,1)=E(1,1)-E(0,1)

μ(0,1)(0,0)=E(0,1)-E(0,0)

E

-|e|Vsd

Figure 3.3 DQD energy diagram. Schematic of electrochemical potentials µi
(horizontal lines) for two-electron charge states with energies E(NL, NR) in a
DQD that is coupled to source and drain reservoirs at finite source-drain bias
Vsd.
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which reservoir an electron can tunnel into the corresponding DQD state. For example,

µ(1,1) = E(1,1) − E(0,1) is depicted in the left dot as it is defined with respect to

E(0,1). Hence, for instance the transition (0,1)→ (1,1) involves tunneling from the

left reservoir into the left dot. Third, the subscript for µ(NL, NR) is typically omitted

in literature and also in this thesis if the reference state (N′L, N′R) is apparent from the

energy diagram.

We configure a DQD using the gate structure in Fig. 3.2(a) and measure the dif-

ferential conductance through the QPC as a function of the plunger gate voltages in

Fig. 3.4(a). As mentioned in the context of Fig. 3.2, the plunger gates tune mainly the

depth of the DQD potential minima and hence the DQD electrochemical potentials.

We observe pronounced changes in the QPC signal in Fig. 3.4(a) as an experimental

signature for a changing number of electrons in the DQD (Field et al., 1993). These

changes are along hexagon-shaped regions, which indicates that within these regions

the DQD charge occupation is stable while electrons are added or removed from the

DQD at their boundaries. The data in Fig. 3.4(a) is therefore referred to as a charge

stability diagram. Along the boundaries that are parallel to the black dashed line in

Fig. 3.4(a), the left dot electrochemical potential is aligned with the left reservoir elec-
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Figure 3.4 Few-electron DQD charge stability diagram and level alignment.
(a) Differential QPC current dIQPC/dVL as a function of right and left plunger
gate voltages VR and VL. Regions with a stable charge configuration (NL, NR)
are indicated. Their boundaries are apparent as changes in the differential
current. The dashed lines as well as the triple points (filled black circles) are
discussed in the text. (b) DQD level alignment at the positions indicated with
numbers in (a).
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trochemical potential [see I. in Fig. 3.4(b)]. Consequently, elastic tunneling between

the reservoir and the left dot is possible. Conversely, the electrochemical potentials of

the right quantum dot and the right reservoir are aligned at the boundaries that are

parallel to the green dashed line in Fig. 3.4(a) [see II. in Fig. 3.4(b)]. The boundaries

are tilted as a results of a cross-capacitance between the plunger gates and their respec-

tive neighboring quantum dot as well as due to an interdot capacitive coupling. If the

DQD electrochemical potentials are not aligned with the reservoirs and higher order

tunneling processes are not relevant3, tunneling between the reservoirs and the DQD

is suppressed such that the DQD charge occupation is stable. By tuning the plunger

gate voltages more negative, the electrochemical potentials in the DQD shift to higher

energy and are emptied if they exceed the electrochemical potential in the leads. This

sequentially empties the DQD. Once no more boundaries are observed by tuning the

plunger gate voltages more negative, the (0, 0) charge configuration is reached. Con-

secutively, a well defined number of electrons can be loaded into the DQD by tuning

the plunger gate voltages more positive and crossing the corresponding number of

boundary lines.

At the corners of the hexagon-shaped regions in the charge stability diagram, both

DQD electrochemical potentials are degenerate and aligned with the electrochemical

potential in the leads [see III. in Fig. 3.4(b)]. These positions are referred to as triple

points, as there three charge states coexist. As a result, elastic electron transport from

the source to the drain is possible. For instance, at the two triple points indicated in

Fig. 3.4(a), the corresponding transport cycles are (0,1)↔ (1,1)↔ (0,2)↔ (0,1)
and (1,1)↔ (0,2)↔ (1,2)↔ (1,1) such that electrons can tunnel from source to

drain and vice versa. If a finite source-drain bias is applied, the transport cycle becomes

directional as discussed in subsection 3.1.4.

Along the line indicated in yellow in Fig. 3.4(a), the DQD charge states (1, 1) and

(0, 2) are decoupled from the reservoirs such that the number of electrons in the DQD

is constant but interdot tunneling is possible [see IV. in Fig. 3.4(b)]. This line exists

between every pair of triple points and is referred to as interdot charge transfer line

since there the states (N + 1,M) and (N,M + 1) with an excess electron in the left

or right quantum dot are degenerate. The charge rearrangement between the dots is

visible in the QPC response in Fig. 3.4(a).

3This is a good approximation in the regime Rt � h/e2 ≈ 26kΩ, where the tunneling resistance Rt
between the quantum dots and their respective reservoir exceeds the resistance quantum h/e2 (Kouwenhoven
et al., 1997).
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3.1.3 Two-electron double quantum dot charge qubit

We now focus on the interdot charge transfer line for two electrons in a DQD that

is visible in the charge stability diagram in Fig. 3.5(a). Note that we restrict the dis-

cussion to charge states in the DQD and discuss the relevance of the electron spin in

subsection 3.1.4. Since the DQD is decoupled from the reservoirs, it can be considered

as a quantum dot molecule (Ihn, 2010) with two relevant levels at energies E(1, 1) and

E(0, 2). We parametrize the energy detuning of these levels with δ ≡ E(1, 1)− E(0, 2).
The dashed lines in Fig. 3.5(b) illustrate that in the absence of interdot tunnel cou-

pling t, depending on the sign of δ either (1,1) or (0,2) is the ground state, while

the states are degenerate at δ = 0. For a finite t, i.e. electron tunneling between the

dots is allowed, this degeneracy is lifted as the charge states hybridize. As a result,

a symmetric ground state |0CQ〉 and an anti-symmetric excited state |1CQ〉 is formed.

These two states, highlighted in color in Fig. 3.5(b), are the basis states of the so-called

charge qubit (Hayashi et al., 2003). The qubit is described by the Hamiltonian

ˆ̃HCQ = −
1
2
(δτ̂z + 2tτ̂x), (3.1)
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Figure3.5 Two-electron charge qubit. (a) Charge stability diagram indicating
the axes for the parameters δ⊥ and δ. The triple points are separated in δ⊥
by δ⊥,TP. Solid (dashed) lines indicate the quantum dot energy levels in the
presence (absence) of interdot tunnel coupling. (b) Energy of the (hybridized)
(1,1) and (0,2) charge states in the absence (presence) of interdot tunnel
coupling t. The charge qubit ground (blue) and excited (green) states are
separated by the qubit energy ECQ.
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where τ̂z = |(0, 2)〉 〈(0,2)| − |(1,1)〉 〈(1, 1)| and τ̂x = |(0, 2)〉 〈(1,1)|+ |(1,1)〉 〈(0, 2)|
are the Pauli operators in the occupation basis {|(0,2)〉 , |(1, 1)〉}. The Hamiltonian can

be transformed into its representation in the ground and excited state eigenbasis giving

ĤCQ = Û0
ˆ̃HCQÛ†

0 =
ECQ

2
σ̂z (3.2)

with σ̂z = |1CQ〉 〈1CQ| − |0CQ〉 〈0CQ|, the qubit energy

ECQ =
Æ

δ2 + (2t)2 (3.3)

and the unitary operator

Û0 = sin(θ/2)σ̂x − cos(θ/2)σ̂z , (3.4)

where the mixing angle θ is defined as cos(θ )≡ −δ/ECQ. Using this definition of the

mixing angle, the qubit states can be written as

|0CQ〉= cos(θ/2) |(1,1)S〉+ sin(θ/2) |(0,2)S〉 and (3.5)

|1CQ〉= sin(θ/2) |(1,1)S〉 − cos(θ/2) |(0,2)S〉 . (3.6)

We deduce from Eq. (3.3) that for a fixed t, the charge qubit energy is minimal at δ = 0.

This detuning point is also referred to as a sweet spot, since ∂ ECQ/∂ δ|δ=0 = 0, such

that the qubit energy is insensitive to fluctuations in δ to first order. This is further

discussed in subsection 5.4.2 in the context of the qubit decoherence.

We parametrize a second energy axis in Fig. 3.5(a) normal to the δ axis with

δ⊥ ≡ 1/2[E(1, 1) + E(0, 2)]− E(0, 1). Hence, the two triple points in Fig. 3.5(a) are at

δ⊥ = δ = 0 and at δ⊥ = −δ⊥,TP, δ = 0. The parameter δ⊥,TP quantifies a combination

of interdot capacitive coupling and tunnel coupling (Ihn, 2010).

The special case of a two-electron charge qubit treated here can be generalized

to any finite number of electrons in the DQD by replacing |(1, 1)〉 and |(0, 2)〉 with

two charge states that have an excess electron either in the left or right quantum dot

(Stockklauser et al., 2017). This generalization is valid as long as other DQD charge or

orbital excited states are well separated in energy from the qubit states and therefore

not relevant.
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3.1.4 Transport spin-blockade

So far, the spin quantum number of the DQD electrons was omitted. Once the orbital

wave functions ΨL in the left and ΨR in the right quantum dot overlap due to finite

tunnel coupling, the states are typically written in terms of two-particle wave functions

with an orbital component and a spin component. We introduce this notation below

by following Ref. Ihn, 2018.

There is 22 = 4 possible spin states for two electrons. For the (1, 1) charge state, we

obtain one spin-singlet state (total spin S= 0) and three spin-triplet states (S= 1) as

listed in Table 3.1. The wave-function representations in Table 3.1 are constructed to

be anti-symmetric under electron exchange, since electrons are fermions (Pauli, 1940).

Thereby, the symbol |ΨLΨR〉 indicates, that electron one (two) is in orbital state ΨL

(ΨR), while |↑↓〉 signifies the that electron one (two) is in the spin-up (spin-down)

state. Typically, the wave functions are written in the occupation number representa-

tion where, for example, |↑,↓〉 = 1p
2
(|ΨLΨR〉 |↑↓〉 − |ΨRΨL〉 |↓↑〉) indicates an electron

(electron one or two) with spin-up in the left dot and an electron (electron one or two)

with spin-down in the right dot.

For the (0, 2) charge state, a spin-triplet state requires the two electrons to occupy

different orbitals as the Pauli exclusion principle states that two fermionic states cannot

have the same quantum numbers. In addition, the orbital wave function of the spin-

triplet state, which is a symmetric spin state, needs to be anti-symmetric, while it has

to be symmetric for the spin-singlet state, which is an anti-symmetric spin state. As

a result, the total wave function is anti-symmetric. The Coulomb interaction leads

to an energy difference between the symmetric and the anti-symmetric orbital wave

functions, which is denoted as exchange energy as it origins from the requirement that

the total wave function has to be anti-symmetric under particle exchange. Due to the

combination of Pauli exclusion and exchange, the spin-triplet state is estimated to be

S Sz wave function representation occ. number repr.

(1,1)S 0 0 1
2 (|ΨLΨR〉+ |ΨRΨL〉)⊗ (|↑↓〉 − |↓↑〉)

1p
2
(|↑,↓〉 − |↓,↑〉)

(1,1)T+ 1 +1 1p
2
(|ΨLΨR〉 − |ΨRΨL〉)⊗ (|↑↑〉 |↑,↑〉

(1,1)T0 1 0 1
2 (|ΨLΨR〉 − |ΨRΨL〉)⊗ (|↑↓〉+ |↓↑〉)

1p
2
(|↑,↓〉+ |↓,↑〉)

(1,1)T− 1 -1 1p
2
(|ΨLΨR〉 − |ΨRΨL〉)⊗ |↓↓〉 |↓,↓〉

Table 3.1 Two-electron wave functions. Two-electron spin-singlet and spin-
triplet states with (1, 1) charge configuration according to Ref. Ihn, 2018.
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about 1 meV� kBTe higher in energy than the spin-singlet state (Hanson et al., 2007)

and omitted in the following.

In total, there are four relevant spin states for (1, 1) and one for (0, 2). The system

Hamiltonian can be written as

ĤST =

〈(0, 2)S| 〈(1,1)S| 〈(1,1)T−| 〈(1, 1)T0| 〈(1, 1)T+|














−δ/2 −t 0 0 0














|(0, 2)S〉
−t δ/2 0 0 0 |(1, 1)S〉
0 0 δ/2+ EZ 0 0 |(1, 1)T−〉
0 0 0 δ/2 0 |(1, 1)T0〉
0 0 0 0 δ/2− EZ |(1, 1)T+〉 .

(3.7)

The Zeeman energy EZ = gµBB leads to an energy splitting of the triplet states that

can be controlled by an external magnetic field B, where g [≈ −0.4 in GaAs (Nowack

et al., 2007)] is the g-factor and µB the Bohr magneton. Spin-singlet and spin-triplet

states are not coupled via tunneling, as tunneling is a spin-conserving process. Figure

3.6 shows the energy dispersion of the eigenstates of the Hamiltonian in Eq. (3.7). The

spin-singlet states, which are the charge qubit states from Fig. 3.5(b), do not anti-cross

with the triplet states. Coupling mechanisms for spin-singlet and spin-triplet states

are spin-orbit and hyperfine interaction. They are neglected in Eq. (3.7) as they are

typically weak in GaAs compared to other energy scales (Stepanenko et al., 2012). A

potential influence of singlet-triplet mixing on experiments presented in this thesis is

E

δ0

(1,1)T0
(1,1)T+

(1,1)T-

EZ

|0CQ

|1CQ

Figure 3.6 Two-electron singlet-triplet spectrum. Energies of the two-
electron spin-singlet (blue, green) and spin-triplet states (gray) as a function
of δ at a finite magnetic field. The triplet states are split by the Zeeman energy
EZ.
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discussed in subsection 6.3.3.

The spin-conservation in electron tunneling can be observed as a current rectifi-

cation in a DQD at finite source-drain bias (Ono et al., 2002). This is illustrated for

a two-electron DQD in Fig. 3.7. For a positive source-drain bias in Fig. 3.7(a), an

electron can only tunnel into the DQD via the right lead and the only accessible state

is (0,2)S. Hence, the transport cycle is (0,1) → (0,2)S→ (1,1)S→ (0,1), which is

permitted as the tunneling processes conserve spin. For negative bias illustrated in

Fig. 3.7(b), an electron enters the DQD from the left lead forming either (1,1)S or

(1,1)T. Note that we assume a small magnetic field EZ � kBTe, such that (1,1)T is

either (1,1)T0, (1,1)T+ or (1,1)T−. If the electron tunnels into the (1,1)S state, the

transport sequence (1,1)S → (0,2)S → (0,1) is permitted as it conserves the spin.

However, transport is blocked if the electron tunnels into a (1, 1)T state, as it can only

transition to (0, 2)S by a spin flip. As the spin-flip tunneling rates are typically orders

of magnitude slower than spin-conserving tunneling rates, this leads to a significant

reduction of the DQD current for negative bias compared to positive bias and is referred

to as spin blockade (Ono et al., 2002, Johnson et al., 2005a). The alternative transport

cycle (0,1)→ (1,1)T→ (0,2)T→ (0,1) is energetically inaccessible as the energy of

the (0, 2)T state is significantly higher than that of the (0, 2)S state. This energy differ-

ence is related to the Pauli exclusion principle (see discussion above). Consequently,

the spin-blockade phenomenon is often referred to as Pauli spin-blockade.

(b)
μs

(1,1)S
(0,2)S

μdr

(1,1)T
μdr

(1,1)S
(0,2)S μs

(1,1)T

(a)

-|e|Vsd

(0,2)T(0,2)T

Figure 3.7 Transport spin-blockade. DQD electron transport cycle for positive
(a) and negative (b) source-drain bias in the presence of a small magnetic
field. Solid and dotted lines indicate the electrochemical potentials for spin-
singlet and spin-triplet states, respectively. Transitions that involve a spin-flip
are marked with a cross. The figure is adapted from Ref. Ihn, 2010.
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3.2 Triple quantum dot spin-qubit (RX qubit)

For the charge qubit discussed in section 3.1, the qubit state is encoded in the charge

distribution and therefore sensitive to charge noise. This is considered to be the main

decoherence mechanism of the qubit (Basset et al., 2013) as further discussed in sub-

section 5.4.2.

The coherence time of a solid-state qubit can be increased by encoding the qubit

state into the spin degree of freedom of a single electron, which is insensitive to electric

field fluctuations (Loss et al., 1998). By applying an external magnetic field, the Zeeman

energy lifts the spin degeneracy, which forms a two-level system with the electron

spin parallel or anti-parallel to the external magnetic field for the qubit ground or

excited state, respectively. Full control of this spin qubit is possible either by oscillating

magnetic fields (Koppens et al., 2006) or by oscillating electric fields that couple to

the spin by modulation of the g-factor of the material, by spin-orbit (Nowack et al.,

2007) or by hyperfine interaction (Laird et al., 2007). Thereby, oscillating electric

fields are generally preferred as among others they can be engineered to act more

locally compared to magnetic fields such that individual spin qubits can be addressed

separately (Pioro-Ladrière et al., 2008). The spin-orbit interaction is either intrinsic

of the material or artificially induced by a micromagnet, which is a small magnetic

structure that causes a magnetic field gradient in the vicinity of the qubit (Tokura et al.,

2006).

One potential disadvantage of the single-electron spin qubit is that its energy is

determined by the Zeeman splitting, which causes dephasing due to magnetic field

fluctuations. By adding a second electron and a second quantum dot, this sensitivity

can be reduced. The logical qubit states of the so-called singlet-triplet qubit are encoded

into the lowest energy singlet state (|0CQ〉 in Fig. 3.6) and the (1,1)T0 state in a two-

electron double quantum dot, both within the Sz = 0 subspace however with different

total spin. While the qubit energy can be controlled electrically via the DQD detuning δ

(Petta et al., 2005), a gradient in the magnetic field across the DQD is necessary to form

a coupling between the qubit states. This can be achieved by dynamically polarizing

the nuclear spins in the qubit host material (Foletti et al., 2009) or with a micromagnet

(Wu et al., 2014). A potential drawback of the singlet-triplet qubit is that it cannot be

controlled by electric fields only.

This is resolved by using a three-electron spin qubit. The concept of this spin qubit is

to span the qubit subspace by states with equal charge distributions and spin quantum

numbers but different spin distributions. This is analogous to charge qubits, where
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the charge distribution (excess electron in the left or the right quantum dot) defines

the qubit states. The three-electron spin qubit states are split energetically due to

exchange interaction. This is in contrast to the single-electron spin qubit, where the

qubit energy is set by an external magnetic field. Different implementations of three

electron spin qubits exist, both in double and triple quantum dots, where for example

the exchange interaction is either always turned on or only on demand by pulsing the

qubit control parameters. A detailed discussion of these different implementations as

well as a discussion about the advantages and disadvantages of the single-electron

and two-electron spin qubits can be found in Ref. Russ et al., 2017. The spin qubit we

implement in this thesis is a three-electron qubit named resonant exchange (RX) qubit.

In subsections 3.2.1-3.2.3 we introduce the RX qubit Hamiltonian and the energy

spectrum as well as the contribution of different spin and charge states to the qubit

states. In subsection 3.2.4 we explain the electrostatic tuning of a TQD into the few-

electron regime.

3.2.1 RX qubit Hamiltonian

We implement the resonant exchange qubit with three electrons in a linear TQD. The

Hubbard model describes the interaction of electrons located on different sites (here

quantum dots) due to Coulomb repulsion. It also considers the kinetic energy of the

electrons as tunneling between different sites as well as spin selection rules, i.e. Pauli

exclusion. The TQD with a single available orbital state per left (L), middle (M) and

right (R) quantum dot is described by the extended Hubbard Hamiltonian (Taylor et al.,

2013, Russ et al., 2015a)

ĤHub =
∑

i∈{L,M,R}

�

ε̃i n̂i +Ui(n̂i − ngi)
2
�

+
∑

i 6= j

Ui j(n̂i − ngi)(n̂ j − ng j)+

∑

i 6= j

∑

σ=↑,↓

t i j(d̂
†
i,σ d̂ j,σ + h.c).

(3.8)

The first and second term quantifies the two energy scales for a single quantum dot

that were already introduced in subsection 3.1.1. This is the single-particle level energy

ε̃i and the Coulomb energy Ui due to electron-electron interaction of electrons on dot

i. Thereby, n̂i =
∑

σ d̂†
i,σ d̂i,σ is the number operator of dot i, d̂i,σ (d̂†

i,σ) annihilates

(creates) an electron with spin σ =↑,↓ in quantum dot i, and ngi is the gate number

that relates to the effective charge engi =
∑

k Ci,k(Vk − Vk,0) induced on dot i by gate

potentials Vk that couple with capacitances Ci,k to dot i, which is occupied with zero
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electrons at Vk,0. The second sum describes the mutual charging energy Ui j between

electrons in dots i and j. The last term describes tunneling between dots i and j with

tunneling amplitude t i j . We consider tunneling between nearest neighbor dots that

also conserves spin, such that we obtain tLM = tML ≡ tL/
p

2, tMR = tRM ≡ tR/
p

2 and

tLR = tRL = 0.

In the following we derive the relevant Hilbert space for the RX qubit by first

introducing the relevant charge configurations and then discussing the relevant spin

states. We implement the qubit in a regime where the relevant charge configurations are

(1, 1, 1), (2, 0, 1) and (1, 0, 2) as illustrated in Fig. 3.8, where (NL,NM,NR) indicates NL

electrons in the left, NM electrons in the middle and NR electrons in the right quantum

dot. We define the asymmetry parameter ε and the detuning parameter ∆ as

ε ≡
1
2
[E(1,0, 2)− E(2,0, 1)]

∆≡ E(1,1, 1)−
1
2
[E(2,0, 1) + E(1, 0,2)],

(3.9)

where E(NL,NM, NR) denotes the energy of the charge state (NL,NM, NR). These param-

eters are defined in the absence of interdot tunnel coupling. Hence they can directly

be expressed in terms of charging energies using the first two sums in Eq. (3.8):

ε =
3
2
(UL −UR) + ngL(

1
2

ULR−UL) +
1
2

ngM(UMR−ULM) + ngR(UR−
1
2

ULR) (3.10)

(2,0,1)

(1,0,2)
(1,1,1)

Δ (<0)

tL/h tR/h

ε
ε

Figure 3.8 RX qubit detuning parameters. Schematic of the TQD, defining
the asymmetry and detuning parameters ε and∆, respectively. The three gray
lines indicate the possible energy levels for the addition of the third electron.
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∆=−
3
2
(UL +UR) +UM +ULM −ULR+UMR+ ngL(UL −ULM +

1
2

ULR)+

ngM(−2UM +
1
2

ULM +
1
2

UMR) + ngR(UR+
1
2

UMR−UMR).
(3.11)

Experimentally, we control ε and ∆ via the plunger gate potentials, which tune the

gate charges ngi . At ∆ = ε = 0, the relevant charge configurations are degenerate.

Note that we operate the qubit in a regime were both ∆ and ε are much smaller than

the interdot and the single-dot charging energies to ensure that other charge states are

not relevant.

Now considering also spin, there are 23 = 8 possible spin configurations for three

spins. For the asymmetric charge configurations (2, 0, 1) and (1, 0, 2), the three triplet

states within the doubly occupied dots do not play a role because they are energetically

not accessible due to the singlet-triplet splitting (see subsection 3.1.4). This leaves us

with two relevant spin configurations for each of the two asymmetric charge configura-

tions. Two of them, with Sz = 1/2 of total spin, are depicted in the top row of Fig. 3.9.

The other two (not shown) are obtained by flipping the spin in the singly occupied dot

giving Sz = −1/2. These spin configurations of the asymmetric charge configurations

couple by tunneling to spin configurations of the (1,1,1) charge configurations as

depicted in the bottom row of Fig. 3.9. Only the displayed spin configurations are rel-

tL tL tR tR

Figure 3.9 RX basis states. Illustration of the three-electron states in the TQD
that form the spin qubit. The states mix via tunnel couplings tL and tR between
the left and middle and the right and middle quantum dots, respectively.
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evant, because tunneling conserves both the total spin and the spin z-component. The

(1,1,1) configurations in Fig. 3.9 couple by exchange interaction between electrons

in neighboring dots: an electron in the middle dot can be exchanged with an electron

with opposite spin in the left (right) dot via tunneling to the asymmetric charge state.

The RX qubit states are formed as a coherent superposition of the five basis states

with Sz = 1/2 depicted in Fig. 3.9. An equivalent set of basis states with Sz = −1/2 ex-

ists, but is not depicted. These different Sz-states can mix by magnetic field fluctuations

in the quantum dots that are produced by the nuclei in the host material. A typical

magnitude of these fluctuations is of the order of a few mT in GaAs (Hanson et al.,

2007). By splitting the different Sz subsets energetically with an external magnetic

field, the mixing can be suppressed. We study this effect theoretically in subsection

5.4.1.1 as well as experimentally in chapters 7 and 8.

The spin and charge configurations depicted in Fig. 3.9 were illustrated in the

absence of interdot tunnel coupling. In order to calculate the RX qubit states, it is useful

to derive their state representations in an angular momentum basis, since electron

tunneling conserves spin. We start with the (1, 1, 1) charge configurations, where the

occupation number representations for all possible states are shown in Table 3.2.

As the three-spin Hilbert space isH3spin =H3/2⊗H1/2⊗H1/2, we obtain one quadruplet

of states with S= 3/2 and two doublets of states each with S= 1/2. Note that the wave-

function representation of the states in Table 3.2 can be constructed from the Slater

determinant of three single-particle wave functions (see Appendix A). The occupation

number representation of the states of the (1, 0, 2) and (2, 0, 1) charge configurations

S Sz occ. number repr.

Q+3/2 3/2 +3/2 |↑,↑,↑〉
Q1/2 3/2 +1/2 1p

3
(|↓,↑,↑〉+ |↑,↓,↑〉+ |↑,↑,↓〉)

Q−1/2 3/2 −1/2 1p
3
(|↓,↓,↑〉+ |↓,↑,↓〉+ |↑,↓,↓〉)

Q−3/2 3/2 −3/2 |↓,↓,↓〉
D1/2 1/2 +1/2 1p

2
(|↑,↑,↓〉 − |↓,↑,↑〉)

D−1/2 1/2 −1/2 1p
2
(|↓,↓,↑〉 − |↑,↓,↓〉)

D′1/2 1/2 +1/2 1p
6
(2 |↑,↓,↑〉 − |↑,↑,↓〉 − |↓,↑,↑〉)

D′−1/2 1/2 −1/2 1p
6
(2 |↓,↑,↓〉 − |↓,↓,↑〉 − |↑,↓,↓〉)

Table 3.2 (1,1,1) wave functions. Occupation number representation of
(1,1,1) charge states with total spin S and spin z-component Sz (Russ et al.,
2017).
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S Sz occ. number repr.

DL,1/2 1/2 +1/2 |↑↓, 0,↑〉
DL,−1/2 1/2 −1/2 |↑↓, 0,↓〉
DR,1/2 1/2 +1/2 |↑, 0,↑↓〉
DR,−1/2 1/2 −1/2 |↓, 0,↑↓〉

Table 3.3 (2, 0, 1) and (1, 0, 2) wave functions. Occupation number represen-
tation of (2, 0,1) and (1,0, 2) charge states for given S and Sz .

in the angular momentum basis with a spin-singlet in the doubly occupied dot are

indicated in Table 3.3. We obtain two doublets with either two electrons in the left or

the right quantum dot.

We now identify the five states {D1/2, D′1/2,Q1/2,DL,1/2, DR,1/2} with Sz = 1/2 from

Tables 3.2 and 3.3 as the angular momentum basis of the RX qubit Hilbert space. We

use the following definitions and write the basis states in terms of the creation and

annihilation operators from Eq. (3.8):

|0̃RX〉 ≡ D′1/2 =
1
p

6
(2d†

L,↑d
†
M,↓d

†
R,↑ − d†

L,↑d
†
M,↑d

†
R,↓ − d†

L,↓d
†
M,↑d

†
R,↑)|vac〉

|1̃RX〉 ≡ D1/2 =
1
p

2
(d†

L,↑d
†
M,↑d

†
R,↓ − d†

L,↓d
†
M,↑d

†
R,↑)|vac〉

|2̃RX〉 ≡ DL,1/2 = d†
L,↑d

†
L,↓d

†
R,↑|vac〉

|3̃RX〉 ≡ DR,1/2 = d†
L,↑d

†
R,↑d

†
R,↓|vac〉

|4̃RX〉 ≡ Q1/2 = 1/
p

3(d†
L,↓d

†
M,↑d

†
R,↑ + d†

L,↑d
†
M,↓d

†
R,↑ + d†

L,↑d
†
M,↑d

†
R,↓)|vac〉,

(3.12)

where |vac〉 denotes the fermionic vacuum state. Coupling between these states by

tunneling is described by the last term in the Hubbard Hamiltonian in Eq. (3.8). By

evaluating these tunneling Matrix elements and using the definitions of ∆ and ε from

Eqns. (3.10)-(3.11), we can rewrite the Hubbard Hamiltonian from Eq. (3.8) as

ĤHub =

〈0̃RX| 〈1̃RX| 〈2̃RX| 〈3̃RX| 〈4̃RX|














0 0 −
p

3
2 tR

p
3

2 tL 0














|0̃RX〉
0 0 1

2 tR
1
2 tL 0 |1̃RX〉

−
p

3
2 tR

1
2 tR −ε −∆ 0 0 |2̃RX〉p

3
2 tL

1
2 tL 0 ε −∆ 0 |3̃RX〉

0 0 0 0 0 |4̃RX〉 ,

(3.13)
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where the energies of the states are defined with respect to E(1,1,1), i.e. E(2,0,1)−
E(1, 1, 1) = −ε−∆ and E(1, 0, 2)−E(1, 1, 1) = −∆+ε. As expected, the state |4̃RX〉with

S= 3/2 does not couple via tunneling with the other four states, each with S= 1/2.

We refer to |4̃RX〉 as the leakage state. By numerically diagonalizing Eq. (3.13) and

omitting all but the lowest two energy states, we obtain the RX qubit Hamiltonian

ĤRX =
1
2

ERXσ̂z , (3.14)

where ERX is the RX qubit energy and σ̂z = |1RX〉 〈1RX| − |0RX〉 〈0RX| is a Pauli operator

in the basis of the RX qubit ground and excited states |0RX〉 and |1RX〉, respectively.

The qubit states, written as a linear combination of the basis states |k̃RX〉 defined in

Eq. (3.12), are

|0RX〉=
3
∑

k=0

c(0RX)
k |k̃RX〉 and |1RX〉=

3
∑

k=0

c(1RX)
k |k̃RX〉 (3.15)

with
∑3

k=0 c(0RX/1RX)
k = 1.

3.2.2 RX qubit energy spectrum

We plot the eigenenergies of the Hamiltonian in Eq. (3.13) as a function of ε at ∆= 0

and as a function of ∆ at ε = 0 in Fig. 3.10(a) and Fig. 3.10(b), respectively. The

eigenenergy of |4̃RX〉 is a constant as the state does not couple to any of the other states

as is was discussed above. It therefore corresponds to the energy of the (1, 1, 1) states

for tL = tR = 0. The RX qubit states are the two lowest energy states in Figs. 3.10(a)-

(b). Their energy difference, i.e. the RX qubit energy ERX, is shown in Figs. 3.10(c)-(d).

It increases with increasing charge asymmetry parameter |ε| in analogy to the charge

qubit energy in Eq. (3.3), where δ quantified the charge asymmetry. By increasing |∆|,
ERX in Fig. 3.9(d) decreases. For positive ∆ at ε = 0, E(1,1,1) > E(1,0,2), E(2,0,1)
such that the middle quantum dot effectively acts as a tunnel barrier for an excess

electron either in the left or the right quantum dot. By increasing ∆, the barrier height

increases, which decreases the left-right tunnel coupling and hence the qubit energy

analogous to a charge qubit, where ECQ decreases with decreasing t. The decrease of

ERX with increasing negative ∆ is due to the decreasing exchange interaction between

the (1,1, 1) states proportional to t2/∆, which is discussed below.

For symmetric tunnel couplings, the RX qubit exhibits a first order sweet spot in ε

and ∆ at ε =∆= 0. This is a double sweet spot (DSS), as both ∂ ERX/∂∆|ε=0 = 0 and
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∂ ERX/∂ ε|∆=0 = 0. Furthermore, as ∂ 2ERX/∂∆
2|ε=0 < 0 and ∂ 2ERX/∂ ε

2|∆=0 > 0, the

DSS is a saddle point in energy. Its position is shifted for asymmetric tunnel couplings

as indicated by the dashed lines in Figs. 3.10(c)-(d) and discussed in detail in Ref. Russ

et al., 2015a.

Note that for the derivation of the RX qubit states we did not consider the (1, 1, 1)
states with S= 3/2 (Qx/y in Table 3.2) since for the choice of external magnetic field

and interdot tunnel coupling used for most of the experiments in this thesis, they are

all energetically well above the qubit excited state energy4. For large magnetic fields

B ≥ 1T the state with S = Sz = 3/2 is energetically close to the qubit states and
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Figure 3.10 RX qubit spectrum. (a)-(b) Eigenenergies E/t of the Hamiltonian
in Eq. (3.13) for tL = tR = t as a function of ε/t at ∆ = 0 in (a) and as a
function of ∆/t for ε = 0 in (b). Dashed lines in (a)-(b) indicate the energy
of the charge states (2, 0, 1) and (1, 0, 2) for tL = tR = 0. The dash-dotted line
shows the energy of the (1, 1, 1) charge state for tL = tR = 0, which coincides
with the energy of the |4̃RX〉 state. The RX qubit states |0RX〉 (blue) and |1RX〉
(green) are highlighted. (c)-(d) RX qubit energy ERX as a function of ε/tL in
(c) and ∆/tL in (d) for symmetric (solid line) and asymmetric (dashed line)
tunnel couplings.

4For tL = tR = t and B = 0, the S = 3/2 states are ≈ ERX above the qubit excited state energy at
ε =∆= 0 [see dash-dotted and green line in Figs. 3.10(a)-(b)].
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eventually becomes the ground state of the system by further increasing B as discussed

in section 7.7.

3.2.3 RX qubit state composition

The RX qubit states are a superposition of the states {|0̃RX〉 , |1̃RX〉} and {|2̃RX〉 , |3̃RX〉}
defined in Eq. (3.12) with symmetric (1, 1, 1) and asymmetric (2, 0, 1), (1, 0, 2) charge

configurations, respectively. To quantify this state composition, we use Eq. (3.15) to

define for each of the qubit states |0RX〉 and |1RX〉 the parameter P(1,1,1)(kRX) with k ∈
{0,1} to be the sum of the occupation probabilities of the (1,1, 1) basis states:

P(1,1,1)(kRX) =
�

ckRX
0

�2
+
�

ckRX
1

�2
(3.16)

In analogy, we define the occupation probabilities of the asymmetric charge states:

P(2,0,1)(kRX) =
�

ckRX
2

�2
, (3.17)

P(1,0,2)(kRX) =
�

ckRX
3

�2
(3.18)

These quantities depend on ∆ as depicted in Fig. 3.11 for symmetric tunnel couplings

at ε = 0. We choose ε = 0 since the qubit is implemented in this thesis at the sweet

spot in ε.
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Figure 3.11 RX spin and charge character. Probabilities P(1,1,1) (solid lines),
P(2,0,1) and P(1,0,2) (dashed lines), as defined in the text, for |0RX〉 (blue) and
|1RX〉 (green) as a function of ∆/t. The plot is obtained for tL = tR = t and
ε = 0.
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In the limit∆�−tL,R the qubit states are of spin character, as they have predominantly

the same (1, 1, 1) charge configurations, P(1,1,1)� P(2,0,1), P(1,0,2) (see Fig. 3.11). Since

both qubit states have the same total spin and spin z-component of 1/2, the qubit energy

is not determined by an external magnetic field but rather by the exchange interaction

between the |0RX〉 and |1RX〉 spin states via virtual tunneling to the asymmetric charge

states (Taylor et al., 2013). In this regime, the qubit is minimally influenced by charge

noise, but also has a small electrical dipole moment as discussed in subsection 5.1.2.

In the other extreme where ∆ � tL,R, the occupation probabilities in Fig. 3.11 are

dominated by the (2, 0, 1) and (1, 0, 2) charge configurations. The RX qubit states are

therefore of charge character and the qubit can be interpreted as a charge qubit with

an excess electron either in the right or left quantum dot and the middle quantum dot

acting as a tunnel barrier that is tunable with ∆. Such a qubit has a strong electric

dipole moment (see subsection 5.1.2) and is susceptible to charge noise. For the most

experiments presented in this thesis, we operate the RX qubit in the intermediate

regime |∆|® tL,R.

In this paragraph we derive an approximate expression for the RX qubit Hamil-

tonian in the regime ∆ � −tL,R, ε ≈ 0, where its spin character becomes apparent.

There, the contribution of (1, 0, 2) and (2, 0, 1) to the qubit states can be treated pertur-

batively by applying a Schrieffer-Wolff transformation (Bravyi et al., 2011) to the RX

qubit Hamiltonian from Eq. (3.13). We obtain a Heisenberg Hamiltonian (Russ et al.,

2015a)

ĤHeis = JLŜL · ŜM + JRŜM · ŜR, (3.19)

where JL = t2
L/(−∆−ε) and JR = t2

R/(−∆+ε) are the exchange energies and Ŝi are the

left (L), middle (M) and right (R) quantum dot spin operators. In terms of the basis

states |0̃RX〉 and |1̃RX〉 from Eq. (3.12) the Heisenberg Hamiltonian in Eq. (3.19) can

be expressed as (Russ et al., 2015a)

Ĥ′Heis =
J
2
σ̂z −

p
3

2
jσ̂x , (3.20)

with the Pauli operators σ̂z = |1̃RX〉 〈1̃RX|−|0̃RX〉 〈0̃RX|, σ̂x = |0̃RX〉 〈1̃RX|+ |1̃RX〉 〈0̃RX| and

the exchange energies J = (JL + JR)/2 and j = (JL − JR)/2. By transforming Eq. (3.20)

to its eigenbasis, we obtain an expression for the general RX qubit Hamiltonian from

Eq. (3.14), which is valid in the regime ∆�−tL,R, ε ≈ 0 as
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ĤRX ≈
1
2

ERX
˜̂σz, (3.21)

with ERX =
p

J2 + 3 j2 and ˜̂σz defined in the eigenbasis of Eq. (3.20). For j = 0, ˜̂σz

is given by the Pauli matrix σ̂z from Eq. (3.20). Hence for j = 0 the logical RX qubit

states are |0RX〉= |0̃RX〉 and |1RX〉= |1̃RX〉.

3.2.4 Few-electron triple quantum dot

We use the depletion gate technique introduced in subsection 3.1.1 to define a TQD.

The gate electrode voltages Vi indicated in Fig. 3.12(a) tune the TQD potential land-

scape shown in Fig. 3.12(b).

The gate design is adapted from Refs. Medford et al., 2013a,b, where in contrast to

other linear TQD designs in GaAs (Schröer et al., 2007, Gaudreau et al., 2009, Granger

et al., 2010, Takakura et al., 2010) a single gate [horizontal gate in Fig. 3.12(a)] is

used to define a potential barrier in one spatial direction. We observe that the presence

of this barrier allows a high level of control over the interdot tunnel couplings by either

tuning the interdot gate potentials VtL,tR or the reservoir gate voltages VrL,rR, where the

latter are found to be most effective for reaching large interdot tunnel couplings tL,R

of the order of 10GHz.

We detect the TQD charge occupation with a QPC. By tuning the TQD plunger gates,

the charge occupation changes as shown in the charge stability diagram in Fig. 3.13(a)
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Figure 3.12 Formation of a TQD. (a) False-colored SEM picture of an exem-
plary gate structure to form a TQD (dashed circles) and a QPC by applying
negative voltages Vi to the colored gate electrodes. Reservoirs for electrons
are indicated as S and D. The corresponding idealized potential landscape in
(b) that traps electrons spatially in three minima can be controlled with the
voltages from (a).
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as a function of the left and the right plunger gate voltages VL and VR, respectively. If

the middle quantum dot is empty, we observe charge transition lines with two different

slopes in the charge stability diagram. These lines correspond to charge transitions

between either the left or the right quantum dot and their respective reservoir. We

reach the (0, 0, 0) charge regime and sequentially load single electrons to the left and

right quantum dots by increasing VL and VR. By tuning the middle plunger gate voltage

VM more positive, we observe a charge transition line with a third slope in Fig. 3.13(b),

which corresponds to loading the first electron into the middle quantum dot. Among

the few electron charge configurations in Fig. 3.13(c) we identify (1,1,1), (2,0,1)
and (1,0,2). This demonstrates, that the TQD can be tuned to the relevant charge

configurations for the RX qubit. In section 7.2 we further discuss the gate tuning that is

necessary to implement the RX qubit in the desired parameter regime ε ≈ 0, |∆|® tL,R

with a qubit energy of the order of a few GHz.

VL [mV]

V R
  [m

V
]

-75-125

-100

-50-100
-125

dIQPC/dVL [nA/V]
5-5 0 10

(a)

(0,0,0)

(1,1,1)

(1,0,2)

-75

VL [mV]
-100 -50-75-125

V R
  [m

V
]

-65

-85

-45

-100

(c)

VL [mV]

(2,0,1)

(1,0,0) (2,0,0)
(2,1,0)

(1,0,1)

(1,1,2)

(0,0,1)
(2,1,1)

(2,1,2)

(0,1,2)

(0,0,0) (1,0,0) (2,0,0)

(0,0,1)

(0,0,2)

(1,0,1) (2,0,1)

(1,0,2)(2,0,2)

(0,0,0) (1,0,0) (2,0,0)

(0,0,1)

(0,0,2)

10-10 0
dIQPC/dVL [nA/V]dIQPC/dVL [nA/V]

5-5 0 10
(b)

-50

-80 -60

Figure 3.13 TQD charge stability diagrams. Differential QPC current as a func-
tion of VL and VR. Regions with a stable charge occupation are labelled. Ex-
emplary charge transition lines between the reservoirs and the left, middle or
right quantum dots are marked as dashed gray, green or black lines, respec-
tively. (a) VM = −60mV (b) VM = −40mV. (c) Magnified view of the region
marked with a black square in (b).
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3.3 Superconducting qubit

The solid-state qubits discussed so far were built by localizing single electrons in quan-

tum dots. This implementation allows control at the level of the electron wave function

and minimizes the interaction with other degrees of freedom in the qubit environment

that could cause qubit decoherence. For charge carriers in superconductors, i.e. Cooper

pairs, the isolation from decohering degrees of freedom is to a large extent inherent

as Cooper pairs are well separated in energy from dissipative channels by the super-

conducting gap (Clarke et al., 2008). In addition, a microscopic level of control, as

with quantum dots, is not required since all Copper pairs occupy the same macroscopic

state. The basic idea behind the superconducting qubit used in this thesis, which is a

transmon qubit (Koch et al., 2007), is to form a tunnel barrier between two supercon-

ductors by using an insulating material and to encode the quantum information into

states with excess Copper pairs on either side of the barrier (Nakamura et al., 1999).

This can be considered analogous to a DQD charge qubit, where electrons are used

instead of Cooper pairs and a DQD tunnel barrier replaces the insulator.

In subsection 3.3.1 we introduce both the tunnel barrier for Cooper pairs, known as

Josephson junction, as well as a superconducting loop connecting two Josephson junc-

tions by following in parts Ref. Stockklauser, 2017. Consecutively we briefly introduce

the transmon qubit in subsection 3.3.2. More details about the physics of Josephson

junctions devices can for example be found in Refs. Tinkham, 1996, Gross, 2006. Basic

theoretical introductions to the transmon and superconducting qubits in general are

provided for instance in Refs. Devoret et al., 2005, Clarke et al., 2008, Girvin, 2014.

3.3.1 Superconducting quantum interference device

A tunnel barrier for Cooper pairs can be realized by sandwiching a thin insulating

material between two superconductors as illustrated in Fig. 3.14(a). For a sufficiently

thin barrier (typically a few nm) the wave functions of the states in both supercon-

ductors overlap such that Cooper pairs can coherently tunnel across the barrier. The

barrier is referred to as Josephson junction and its working principle is based on the

two Josephson equations (Tinkham, 1996)

I = Ic sin(φ) and φ̇ = 2eV/ħh, (3.22)

where I is the supercurrent (current carried by Cooper pairs) across the junction, Ic is

the maximum supercurrent of the junction, φ is a gauge-invariant difference between
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the phases of the superconducting states in both superconductors and V is a voltage

difference applied across the junction. Using Faraday’s law V = −Lİ, the Josephson

equations imply that the junction has an inductance

LJ =
LJ,0

cos(φ)
(3.23)

with LJ,0 = Φ0/(2πIc), where Φ0 = h/(2e) is the flux quantum. By rewriting Eq. (3.23)

with Eq. (3.22) as

LJ = Φ0/
�

2π
q

I2
c − I2

�

(3.24)

we find that the Josephson inductance is nonlinear. LJ is referred to as kinetic induc-

tance (Devoret et al., 2005) as the energy

E=

∫

VId t = −EJ cos(φ), (3.25)

stored in this inductance is the kinetic energy of Cooper pairs tunneling across the

junction. The term EJ = IcΦ0/(2π) is called Josephson energy.

A superconducting loop connecting two Josephson junctions forms a supercon-

ducting quantum interference device (SQUID) illustrated in Fig. 3.14(b). The phase

differences across both junctions are linked due to the flux quantization in a supercon-

ducting loop, which originates from the requirement that the wave function needs to

be single valued. For two identical junctions and by neglecting the inductance of the

ΦTisolator
sc (b)(a)

~nm CJLJ=

Figure 3.14 Josephson junction and SQUID. (a) Two superconductors (sc) are
separated by a few nm thick insulating layer. This forms a Josephson junction
that is symbolized as a crossed square, which corresponds to a Josephson
inductance LJ in parallel to a capacitance CJ. (b) Superconducting loop that
contains two Josephson junctions (SQUID). ΦT denotes an external magnetic
flux.
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loop, the maximum supercurrent through the SQUID is given as (Gross, 2006)

I(SQ)
c = 2Ic|cos (πΦT/Φ0)|, (3.26)

which is tunable with an applied flux ΦT = AB⊥, where A is the area enclosed by the

SQUID loop and B⊥ is the magnitude of the perpendicular magnetic field through the

loop. Following the derivation for a single Josephson junction above, this results in a

flux-tunable SQUID inductance

L(SQ)
J = L(SQ)

J,max| cos(πΦT/Φ0)|−1 (3.27)

and Josephson energy

E(SQ)
J = E(SQ)

J,max| cos(πΦT/Φ0)| (3.28)

with L(SQ)
J,max = LJ/2 and E(SQ)

J,max = 2EJ.

3.3.2 Transmon qubit

A linear inductor in parallel to a capacitor realizes a harmonic oscillator with degener-

ate transition frequencies (see subsection 4.1.1). Due to its non-linear inductance, a

Josephson junction can be used to build an anharmonic oscillator, where this degener-

acy is lifted to form an effective dissipationless two-level system in a superconducting

state called superconducting qubit (Shnirman et al., 1997).

The circuit diagram of the superconducting qubit used in this thesis is depicted

in Fig. 3.15(a). It consists of a SQUID that connects a superconducting island via

Josephson junctions to a reservoir. The SQUID is connected in parallel to a shunt

capacitor with capacitance CB. Another capacitor Cg connects to a voltage Vg, with

which Cooper pairs can be induced on the island. The system Hamiltonian can be

written as (Koch et al., 2007)

ˆ̃HT = 4E(T)C (n̂− ng)
2 − E(SQ)

J cos(φ̂), (3.29)

where E(T)C = e2/[2(C(SQ)
J +CB +Cg)] is the Coulomb charging energy for transferring

a single electron to the island and C(SQ)
J is the total capacitance of the junctions. The

operators n̂ and φ̂ are canonical conjugate variables that represent the number of

excess Cooper pairs on the island as well as the superconductor phase differenceφ. The

dispersion of the three lowest energy eigenstates of Eq. (3.29) are shown in Fig. 3.15(b)
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for two different ratios of E(SQ)
J /E(T)C . The logical qubit states |0T〉 and |1T〉 are defined

as the ground and first excited states of the system with energies E0 and E1, respectively.

By increasing ESQ
J /E

(T)
C the energy spectrum in Fig. 3.15(b) becomes flat, which reduces

the effect of charge noise acting on the qubit via ng. In this regime, the qubit is referred

to as transmon and the qubit energy is approximately given as (Koch et al., 2007)

ET ≡ E1 − E0 ≈
Ç

8E(T)C E(SQ)
J − E(T)C . (3.30)

With increasing E(SQ)
J /E(T)C , the absolute anharmonicity E12 − E01 ≈ E(T)C and hence the

two-level character of the qubit decreases, since E01 ≡ E1 − E0 and E12 ≡ E2 − E1 are

the energies for the transitions |0T〉 → |1T〉 and |1T〉 → |2T〉, respectively. In this thesis

we use a transmon in the regime 50 ® E(SQ)
J /E(T)C ® 80. In the basis of its eigenstates

|kT〉, Eq. (3.29) becomes

ĤT =
N
∑

k=0

EkÂk,k, (3.31)

where we introduced the operator Âk,l = |kT〉 〈lT|.
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Figure 3.15 Transmon schematic and energy spectrum. (a) Circuit model of
a transmon qubit. (b) Energies Ek of the eigenstates |kT〉 of Eq. (3.29) as
a function of the offset charge ng calculated according to Ref. Koch et al.,

2007 for different E(SQ)
J /E(T)C in the top and bottom panel. The energies are

normalized by the |0T〉 → |1T〉 transition energy E01 and offset such that the
minimum of E0 is at Ek/E01 = 0. The transmon qubit energy ET corresponds
to E01(Koch et al., 2007).
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Superconducting microwave resonators

In the course of this thesis we study the interaction of the qubits introduced in chapter

3 with single microwave photons. Thereby, the photons are stored in the quantum

system presented in this chapter. It is a superconducting on-chip microwave resonator,

that exhibits a harmonic energy spectrum with single quanta of the electromagnetic

field (photons) as the excitations. Once resonator and qubits are coupled, this spectrum

can become anharmonic as we will discuss chapter 5.

In section 4.1 we introduce theoretical concepts that allow to describe the three

different types of superconducting microwave resonators used in this thesis. The first

resonator is an Al coplanar waveguide transmission line resonator, which has a charac-

teristic impedance of 50Ω. Among others, the characteristic impedance determines the

magnitude of the voltage fluctuations in the resonator ground state, i.e. the vacuum

state. This magnitude can be increased in order to enhance the qubit-photon coupling

strength, which is discussed in chapter 5. Another potential benefit of a high impedance

resonator is its smaller size compared to a 50Ω resonator with the same resonance

frequency. We present two different resonators, where a high characteristic impedance

(> 1 kΩ) is either achieved by using the high distributed kinetic inductance of a thin and

narrow superconducting NbTiN wire or by employing the high local kinetic inductance

of an array of SQUIDs. The 50Ω and SQUID array resonators are based on the designs

in Refs. Göppl et al., 2008, Frey, 2013 and Ref. Stockklauser, 2017, respectively. They

are briefly overviewed in section 4.2 and subsection 4.3.2. For the NbTiN resonator,

which was developed in this thesis based on similar work in Ref. Samkharadze et al.,

2016, the fabrication and characterization is explained in detail in subsection 4.3.1.

This resonator is resilient to external magnetic fields of the order of a tesla, which is

in contrast to the other two resonators.
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4.1 Theoretical concepts

The three different types of resonator that are used for the experiments in this the-

sis can be described as transmission line resonators. In subsection 4.1.1 we explain

basic theoretical concepts of transmission lines and present a quantum mechanical

description of transmission line resonators. We then introduce the quantum mechan-

ical input-output theory framework in subsection 4.1.2, which we subsequently use

in subsection 4.1.3 to derive equations for the resonator spectra and photon numbers.

We thereby also discuss the resonator decay rates and quality factors that are related

to internal and external loss channels.

4.1.1 Transmission line resonator

Transmission lines are electrical structures that support the propagation of electromag-

netic waves. For the microwave frequencies from 4 to 8 GHz that are used in this thesis,

the wavelength of the propagating waves is of the order of centimeters (in vacuum).

Transmission lines can, for instance, be realized in a coplanar waveguide (CPW) geom-

etry that is shown in Fig. 4.1(a). It consists of a center conductor of width w separated

by a distance s from two extended ground planes. This metallic structure of thickness

(a)

h

(b)

Cldx Cldx

Lldx Lldx

H

GND

GND

in outl

x

(c) (d)
in l

Figure 4.1 Transmission line. (a) Illustration of a coplanar waveguide (dark
gray) consisting of a metallic center conductor and extended ground planes
(GND) on top of a substrate (light gray). The cross-sectional cut framed with
a blue rectangle is depicted on the bottom right corner. There, the transverse
electric and magnetic fields of the electromagnetic wave in the CPW are shown
qualitatively as solid and dashed lines, respectively (Wolff, 2006). (b) Lumped
element circuit for a section of length d x from (a). The inductance and capac-
itance per unit length are Ll and Cl, respectively. (c)-(d) Schematic illustration
of a λ/4 resonator in (c) and a λ/2 resonator in (d). The voltage profile of
the fundamental resonance mode is indicated.
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h is patterned on top of a substrate of thickness H. In this thesis, H ≈ 500µm and

w, s and h are of the order of micrometers. To minimize resistive losses, we pattern

the transmission line from a superconducting material. The spatial dependence of

voltages and currents along such a lossless transmission line can be modelled with a

lumped-element representation of an infinitesimal transmission line section of length

d x as shown in Fig. 4.1(b). This section consists of an inductance per unit length Ll in

parallel to a capacitance to unit length Cl to ground (Pozar, 2005).

We follow Refs. Girvin, 2014, Laloy, 2010 to derive the wave equation for the

transmission line. We start by defining the variable

Φ(x , t) =

∫ t

−∞
dτV(x ,τ), (4.1)

where V(x , t) = ∂tΦ(x , t) is the position- and time-dependent voltage on the transmis-

sion line. The voltage drop over a section of length d x is therefore − d x∂x∂tΦ(x , t).
By employing Faraday’s law we find that the magnetic flux through Ll is − d x∂xΦ(x , t).
This determines the position- and time-dependent current I(x , t) as

I(x , t)Ll d x = − d x∂xΦ(x , t). (4.2)

With this relation we can write the system Lagrangian as

L =
∫

d x
�

Cl

2
(∂tΦ)

2 −
1

2Ll
(∂xΦ)

2
�

, (4.3)

where the two terms in the equation represent the charging energy for Cl and the

magnetic energy stored in Ll. The Euler-Lagrange equation leads to the wave equation

v2
ph∂

2
x Φ− ∂

2
t Φ= 0, (4.4)

where vph = 1/
p

LlCl is the phase velocity of the transmission line waves. The charac-

teristic impedance of the transmission line is defined as

Z≡
√

√Ll

Cl
, (4.5)

which is the ratio of voltage and current amplitudes for waves propagating in the same

direction.

By leaving one end of a transmission line open or shorting it to ground, we can
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impose spatial boundary conditions on the voltage and current waves and form a

resonator as we will show below. Electromagnetic radiation can be coupled into an

open end by coupling this end capacitively to another transmission line, which is in

this context referred to as a port [see Figs. 4.1(c)-(d)].
In the following we consider a transmission line of length l with two open ends as

depicted in Fig. 4.1(c). We neglect the capacitive influence of the coupled ports and

follow in parts Refs. Girvin, 2014, Stockklauser et al., 2017 to introduce the quantum

mechanical description of this system. The current needs to vanish at the open ends

of the transmission line at x = 0 and x = l. This implies ∂xΦ(x , t)|x=0,t = 0 and

∂xΦ(x , t)|x=l,t = 0. The solution of Eq. (4.4) can therefore be written in terms of

spatial normal modes with wave number kn = nπ/l as

Φ(x , t) =
∞
∑

n=0

ξn(t) cos(kn x), (4.6)

where ξn(t) are time-dependent functions describing the magnitude of mode n. By

substituting Eq. (4.6) into Eq. (4.4), the Lagrangian becomes

L =
∞
∑

n=0

�

C
2
(∂tξn)

2 −
1
2L
ξ2

n

�

, (4.7)

where every summation term can be identified as the Lagrangian for a lumped element

circuit consisting of an inductor L = 2lLl/(n2π2) in parallel to a capacitor C = Cll/2.

The momentum conjugate to ξn is the charge

qn = C∂tξn (4.8)

with which we obtain the system Hamiltonian from the Lagrangian in Eq. (4.7) as

H=
∞
∑

n=0

�

q2
n

2C
+
ξ2

n

2L

�

. (4.9)

We now promote the classical conjugate quantities qn and ξn to quantum mechanical

operators, which obey the canonical commutation relation

[q̂n, ξ̂n] = −iħh (4.10)

and are related to the annihilation and creation operators ân and â†
n as
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ξ̂n =

√

√ħhZr

nπ
(ân + â†

n) (4.11)

and

q̂n = −i

√

√ħhnπ
4Zr
(ân − â†

n), (4.12)

where

Zr ≡
Æ

Ll/Cl (4.13)

is the characteristic impedance of the transmission line segment of length l. With this

definition, the Hamiltonian from Eq. (4.9) becomes the quantum mechanical operator

Ĥ=
∞
∑

n=1

ħhωr,n

�

â†
nân +

1
2

�

, (4.14)

which is a sum over the Hamiltonian of harmonic oscillators. Here, the harmonic

oscillators represent resonances in the transmission line at resonance frequencies

ωr,n = πn/(l
p

LlCl). (4.15)

The operators ân and â†
n annihilate and create photon excitations in the transmission

line at frequency ωr,n. The transmission line therefore acts as a resonator with a de-

generate excitation spectrum for every mode n as â†
nân in Eq. (4.14) is the photon

number operator. The mode n is the n-th harmonic and corresponds to a standing

electromagnetic wave in the transmission line, which has voltage maxima at the ends

and n voltage nodes. If only the fundamental (1st harmonic) is relevant, we omit the

index n and write the Hamiltonian in Eq. (4.14) as

Ĥr = ħhωr

�

â†â+
1
2

�

. (4.16)

The transmission line resonator with two open ends is referred to as λ/2 resonator, as

λ/2= l for the fundamental mode [see Fig. 4.1(c)].

For a transmission line with one open end and one end shorted to ground, above

derivation yields the Hamiltonian from Eq. (4.14) with the mode frequencies ωr,n =
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(2n − 1)π/(2l
p

LlCl). Such a transmission line structure is shown in Fig. 4.1(d). It

forms a λ/4 resonator with a voltage node and anti-node at the shorted and open ends,

respectively. The higher order modes are odd multipliers of λ/4.

To quantify the voltage at the anti-node for a transmission line resonator, we first

express the wave equation solution from Eq. (4.4) in terms of operators as

Φ̂(x) =
∞
∑

n=0

ξ̂n cos(kn x). (4.17)

By inserting Eq. (4.17) into Eq. (4.1) and using (4.8) and (4.12), the voltage operator

becomes

V̂(x) =
∞
∑

n=1

V̂n(x) = ∂t Φ̂(x) = −i
∞
∑

n=1

√

√

√
ħhωr,n

Cll
cos(kn x)(ân − â†

n). (4.18)

This implies that the root mean square of the voltage vacuum fluctuations at the voltage

anti-node in the resonator are

VZPF,n ≡
q

〈0| |V̂(x = 0)|2 |0〉=

√

√

√
ħhωr,n

Cll
=

√

√ħhZr

πn
ωr,n, (4.19)

where we used Eqns. (4.13) and (4.15) to rewrite the expression. For the fundamental

resonator mode, we again omit the index n and define VZPF ≡ VZPF,1. Note that Eq. (4.19)

equally holds for λ/2 and λ/4 resonators.

4.1.2 Input-Output formulation for cavities

In this section we follow in parts Refs. Walls et al., 2008, Laloy, 2010, Girvin, 2014

to introduce a theoretical description of a dissipative quantum system that consists

of a cavity interacting with external fields. This theory is referred to as input-output

theory and was initially derived in the context of optical cavities (Collett et al., 1984).

It is used to calculate the spectral response of the resonators in sections 4.2-4.3 and is

generalized in chapter 5 to the situation where a qubit interacts with the cavity mode.

We consider a single-port cavity shown in Fig. 4.2 that contains a single mode and

is described by the Hamiltonian Ĥcav. The mode is coupled via a partially transmitting
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κ

bin

bout

Figure 4.2 Cavity input-output model. Schematic illustration of a single-sided
cavity that is coupled to input (in) and output (out) fields represented by the
operators b̂in,out at coupling rate κ.

mirror to an external field. We model the external field with the Hamiltonian

Ĥbath = ħh
∫ ∞

−∞
dωωb̂†(ω)b̂(ω), (4.20)

which describes a bath of harmonic oscillators at angular frequencies ω, where b̂†(ω)
[b̂(ω)] is the corresponding creation (annihilation) operator and [b̂(ω1), b̂†(ω2)] =
δ(ω1 − ω2) ensures that the oscillators are independent. The interaction between

the cavity mode and the bath is modeled as a dissipative process at coupling rate κ.

Using rotating wave approximation (RWA), it is formally described by the interaction

Hamiltonian

Ĥint = iħh
s

κ

2π

∫ ∞

−∞
dω[b̂(ω)â† − â b̂†(ω)], (4.21)

where the cavity mode creation and annihilation operators are â† and â, respectively.

Above Hamiltonians define the total system Hamiltonian as

Ĥsys = Ĥcav + Ĥbath + Ĥint. (4.22)

We can now write the Heisenberg equation of motion for the bath operator b̂(ω)

∂t b̂(t,ω) =
i
ħh
[Ĥsys, b̂(ω)] = −iωb̂(ω) +

s

κ

2π
â (4.23)

as well as for the cavity mode operator â:

∂t â(t) =
i
ħh
[Ĥcav, â]−

s

κ

2π

∫ ∞

−∞
dωb̂(t,ω). (4.24)
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Equation (4.23) can be solved as

b̂(t,ω) = e−iω(t−t0) b̂0(ω) +
s

κ

2π

∫ t

t0

d t ′e−iω(t−t ′)â(t ′) (4.25)

by assuming that at time t0 < t, which is before cavity and bath interact, the bath is

described by b̂0(ω) = b̂(t = t0,ω). The first term in Eq. (4.25) corresponds to the free

time evolution of the bath modes and the second term quantifies cavity modes that are

radiated into the bath. By inserting Eq. (4.25) into Eq. (4.24) one can derive the time

evolution of the intra-cavity field as

∂t â =
i
ħh
[Ĥcav, â]−

κ

2
â+
p
κb̂in(t), (4.26)

where the operator

b̂in(t)≡ −
1
p

2π

∫ ∞

−∞
dωe−iω(t−t0) b̂0(ω) (4.27)

represents the cavity input field, i.e. a field from the bath that propagates towards the

cavity. Equation (4.26) can be interpreted as the equation of motion for a damped

cavity mode that is driven by the cavity input field.

The Heisenberg equation of motion (4.23) for the bath operator can equivalently be

solved with the boundary condition b̂1(ω) = b̂(t = t1,ω), where t1 > t is a time after

the interaction. One obtains

∂t â =
i
ħh
[Ĥcav, â] +

κ

2
â−
p
κb̂out(t), (4.28)

where

b̂out(t)≡
1
p

2π

∫ ∞

−∞
dωe−iω(t−t1) b̂1(ω) (4.29)

describes the field propagating away from the cavity after the interaction. We combine

Eqns. (4.26) and (4.28) to relate input- and output fields as

b̂in(t) + b̂out(t) =
p
κâ(t). (4.30)

The main results of above derivation in Eq. (4.26) and (4.30) can be generalized to the

coupling of the cavity mode at rate κi to multiple fields that are described by b̂in,i(t)
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and b̂out,i(t). There, we obtain

∂t â =
i
ħh
[Ĥcav, â]−

�

∑

i

κi

2

�

â+
∑

i

p

κi b̂in,i(t),

b̂in,i(t) + b̂out,i(t) =
p

κi â(t) ∀i.

(4.31)

4.1.3 Resonator spectrum and photon number

We use the input-output theory framework presented in subsection 4.1.2 to calculate

the spectroscopic response of the transmission line resonators that are relevant in this

thesis. We denote dissipative interaction of the resonator mode with the external field

at its ports as external resonator decay rate κext, while dissipation that is not related

to this external field as internal resonator decay rate κint. The origin of the latter is

among others due to loss mechanisms in the resonator material and the substrate. We

treat internal photon loss in the input-output theory formalism as an additional port

with b̂in,int = 0 (Laloy, 2010).

We start with the derivation of the spectrum of the λ/4 resonator depicted in

Fig. 4.3(a). Using the resonator Hamiltonian in Eq. (4.16), the input-output theory

relations in Eq. (4.31) read as

∂t â = −iωrâ−
κext +κint

2
â+

p

κext b̂in,1(t), (4.32)

b̂in,1(t) + b̂out,1(t) =
p

κextâ(t). (4.33)

This system of equations can be solved by Fourier transformation, where ∂t â(t) →

κext,1

bin,1

bout,1

(a)

κext

bin,1

bout,1

(b)

κext,2
bout,2

κintκint

Figure 4.3 Resonator models. Schematic illustration of a λ/4 and λ/2 res-
onator in (a) and (b), respectively. The field operators b̂in,out and resonator
decay rates κext,int are discussed in the text.
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−iωâ(ω). Hence, we arrive at the spectroscopic resonator response

b̂out,1(ω)

b̂in,1(ω)
=
(κext −κint) + 2i(ω−ωr)
(κext +κint)− 2i(ω−ωr)

, (4.34)

which is probed in experiment with a classical coherent drive at frequencyω=ωp. We

therefore replace the quantum operators b̂in/out,1 with the complex valued quantities

bin,1 and bout,1 that represent the complex amplitude of a coherent state. The ratio

bout,1/bout,1 is equivalent to the experimentally determined reflection coefficient S11

and we obtain by rewriting Eq. (4.34)

S11(ωp)≡
bout,1

bin,1
=

κext

κr/2− i(ωp −ωr)
− 1, (4.35)

where κr ≡ κint +κext defines the total resonator decay rate.

For κext > κint a resonator is considered overcoupled as photons are lost at a higher

rate through the ports compared to internal loss mechanisms. It is undercoupled in

the reversed situation, i.e. κext < κint. The situation κext = κint is referred to as critical

coupling. The decay rate κext is a design parameter, which depends among others on

the capacitance Cc between the resonator and its ports. For a single-port resonator one

can derive (Castellanos-Beltran, 2002)

κext =
4
π
ω3

r C2
c ZrZport, (4.36)

where Zport the characteristic impedance of the capacitively coupled port. Resonators

are often also characterized in terms of the internal, external and loaded quality factors

defined as Qint ≡ωr/κint, Qext ≡ωr/κext and Qld ≡ωr/κr.

Since the resonator is coupled to a classical coherent tone at its port, it is in a

coherent state |α〉, which has a Poissonian photon number distribution with average

n̄= 〈α| â†â |α〉= |α|2 (Girvin, 2014) that is given as (Laloy, 2010)

n̄=
4κext

ħhωr(κint + κext)2
Pin, (4.37)

where Pin is the power of the resonator input tone.

Next, we derive the spectrum of the λ/2 resonator shown in Fig. 4.3(b) that is

symmetrically coupled (κext,1 = κext,2 ≡ κext/2) and probed in transmission from port

1 to 2. We extend the calculation from above to two ports and set b̂in,2 = 0 to obtain
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the complex transmitted amplitude

S21(ωp)≡
bout,2

bin,1
=

κext

κr − 2i(ωp −ωr)
. (4.38)

Hence, the transmitted power

|S21|2(ωp) =
(κext/2)2

(ωp −ωr)2 + (κr/2)2
, (4.39)

has a Lorentzian lineshape with a full width at half maximum (FWHM) κr. Again, κext

depends on the resonator design. One can derive (Castellanos-Beltran, 2002)

κext =
2
π
ω3

r C2
c ZrZport. (4.40)

The averaged number of photons becomes in this case (Laloy, 2010)

n̄=
2κext

ħhωr(κint +κext)2
Pin. (4.41)

4.2 Al coplanar waveguide λ/2 resonator (50Ω)

In this section we provide a short introduction to the design and the characterization of

an Al coplanar waveguideλ/2 resonator that is employed for the experiments presented

in chapter 8. This resonator is adapted from prior work in Refs. Göppl et al., 2008,

Göppl, 2009, Frey, 2013, where we refer to for more details.

4.2.1 Resonator design

The resonator in Fig. 4.4 is a CPW type λ/2 resonator. The geometry parameters

w = 10µm and s = 7.1µm that were defined in Fig. 4.1(a), are chosen such that

we obtain Zr =
p

Ll/Cl ≈ 50Ω, where we used Ll = 445nH/m and Cl = 174pF/m

according to Ref. Mc Mahill, 2009. From the resonator length l = 10.34 mm we estimate

νr = 5.50 GHz with Eq. (4.15).

The resonator is fabricated as a h≈ 200 nm thick film of Al on top of a GaAs/AlGaAs

heterostructure. Fabrication details can be found in Appendix C.2. Before depositing

the resonator, the 2DEG is removed in the surrounding area by wet etching the top part

of the heterostructure. Otherwise it would act as a resistive shunt to ground that induces

a significant resonator loss (Frey, 2013) since the distance of the center conductor to
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port
500 μm(a) (b)

port

GND

GND

Figure 4.4 50Ω resonator schematic and picture. (a) Schematic illustration
of a coplanar waveguide λ/2 resonator that is capacitively coupled to a mi-
crowave port on one side and a qubit on the other side. (b) False-colored
optical micrograph of the resonator from (a) that is fabricated from Al (dark
gray) on top of GaAs (white).

the 2DEG of ≈ 90nm is much smaller than its distance s to the ground planes. The

resonator is at one end coupled with a finger capacitor to a 50Ω transmission line. At

the other open end the resonator couples capacitively to a qubit, which is omitted in

this section but discussed in detail in chapter 8.

4.2.2 Resonator characterization

To fit to the in-phase Ĩ and quadrature Q̃ components of the measured resonator re-

flectance spectrum in Fig. 4.5(a), we consider the bare resonator reflectance S11 ≡ Ĩ+iQ̃

νp[GHz]
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Figure 4.5 50Ω resonator characterization. (a) Theory fit to the data (points)
in the Ĩ− Q̃ plane using S11,meas in Eq. (4.42). (b)-(c) Data and theory curve
calculated from (a) using the equality S11 ≡ |S11|ei∆Φ.
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given for a single-port resonator in Eq. (4.35) as well as the influence of the experi-

mental setup. The fit function is therefore of the form (Frey, 2013)

S11,meas(νp) = (a+ b ·δx)S11(νp)e
i(v·δx+Θ) + (̃I0 + iQ̃0), (4.42)

with δx = (νp − νr)/νr. The fit parameters a, b, v and Θ account for the attenuation

and phase change of the reflected signal due to the microwave lines of the setup and

Ĩ0 + iQ̃0 is a frequency-independent offset.

From the fit in Fig. 4.5(a) we extract that the resonator is overcoupled, because

κint/2π = 3.0MHz (Qint ≈ 1880) and κext/2π = 3.8MHz (Qext ≈ 1480). The reso-

nance frequency νr = 5.63 GHz is in good agreement with above theoretical estimate.

4.3 High impedance resonators (> 1 kΩ)

The magnitude of the vacuum voltage fluctuations VZPF of a transmission line resonator

is according to Eq. (4.19) proportional toωr

p

Zr. It can therefore be enhanced using a

high impedance resonator, i.e. a resonator with Zr� 50Ω. Here we use the approach

to enhance Zr =
p

Ll/Cl by increasing the resonator inductance per unit length Ll,

which is the sum of the magnetic inductance Ll,mag and the kinetic inductance per unit

length Ll,kin:

Ll = Ll,mag + Ll,kin (4.43)

While the magnetic (geometric) inductance can be associated with the magnetic energy

stored in a conductor in the presence of a current, the kinetic inductance origins from

the energy stored in the motion of the charge carriers. Although Ll,mag depends on the

resonator geometry, it cannot be increased significantly. For the resonator in section

4.2 we estimate Ll,geom ≈ 1pH/µm (Mc Mahill, 2009), which is on the same order

of magnitude for a submicron width w of the center conductor. In contrast to the

magnetic inductance, the kinetic inductance allows to increase Ll significantly. While

Ll,kin is negligible for a normal conductor compared to the magnetic inductance since

electron transport is dominated by scattering, it can become the dominant contribution

in a superconductor.

In particular the high kinetic inductance of submicron sized thin wires of a:InO

(Dupré et al., 2017), AlOx (Rotzinger et al., 2017, Zhang et al., 2019), NbN (Niepce

et al., 2019), NbTiN (Samkharadze et al., 2016) and TiN (Coumou et al., 2013) have
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been used to build high impedance microwave resonators with Zr� 1 kΩ and Qint of

the order of 104 at the level of single photons. A superconducting wire of width w,

length l and superconducting gap ∆sc has the kinetic inductance (Annunziata et al.,

2010)

Ll,kin =
R�ħh
πw∆sc

1

tanh( ∆sc
2kBT )

, (4.44)

which becomes large for a disordered superconductor due to its high normal state

sheet resistance per square R�. Note that for the h≈ 200 nm thick CPW Al resonator in

section 4.2 disorder is small and Ll,kin is negligible (Göppl et al., 2008). In subsection

4.3.1 we present a high impedance λ/2 CPW resonator fabricated with a narrow center

conductor from a thin film of NbTiN.

Another method to engineer a high kinetic inductance in superconductors relies on

the use of the Josephson inductance of a Josephson junction, which provides a local

(almost point-like) kinetic inductance of the order of 1 nH/µm2 (Devoret et al., 2005).

An array of Josephson junctions can be used to build a high impedance microwave

resonator (Masluk et al., 2012). If SQUIDs are used instead of Josephson junctions, the

inductance per unit length and consequently the resonance frequency is tunable via

an external magnetic flux (Altimiras et al., 2013, Stockklauser et al., 2017) threading

the SQUIDs. The single-photon quality factor and characteristic impedance for these

resonators are comparable to the values quoted above for the narrow and thin wire

resonators. We introduce this resonator type in subsection 4.3.2.

4.3.1 NbTiN coplanar waveguide λ/2 resonator

In subsections 4.3.1.1 and 4.3.1.2 we present the design and fabrication of a high

impedance NbTiN resonator that is used for the experiments in chapters 6-7. In sub-

section 4.3.1.3 we characterize test resonator structures with different geometries at

different temperatures. We also compare the measurements with a simulation model.

Finally we discuss the resonator magnetic field resilience in subsection 4.3.1.4.

4.3.1.1 Resonator design

A schematic and an optical micrograph of the resonator is shown in Fig. 4.6. It is a

λ/2 resonator in a CPW geometry that is patterned as a h≈ 15 nm thick film of NbTiN

on top of a commercially available GaAs substrate. Note that if a 2DEG is required

on the chip, the GaAs is replaced by the heterostructure, which has to be etched in
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(b) (c)

in outin λ/2 out

(a)

out

200 nm 50 μm

Figure 4.6 NbTiN test resonator design. (a) λ/2 coplanar-waveguide type
resonator that couples capacitively to input (in) and output (out) transmission
lines. (b) False-colored optical micrograph of the resonator from (a), which is
patterned as a NbTiN layer (dark gray) on top of GaAs (light gray). (c) Zoom
into the region outlined with a black square in (b).

the resonator region as it was discussed in section 4.2. The center conductor of the

resonator has a width that is of the order of hundreds of nanometers in order to provide

a high kinetic inductance (see subsection 4.3). The resonator length is of the order

of l ≈ 1mm and is separated by s ≈ 25µm from the resonator ground planes. This

distance is larger by a factor of ≈ 3.5 compared to the 50Ω resonator in section 4.2,

which also contributes to an increase of Zr∝ 1/
p

Cl since Cl is reduced. As indicated in

Fig. 4.6(c), we use a t-shaped capacitor geometry to couple the resonator capacitively

to input and output transmission lines that are designed as Zport ≈ 50Ω.

4.3.1.2 Resonator fabrication

For details about the fabrication process we refer to Appendix C.3. We sputter NbTiN

from a NbTi target in an argon(Ar)/nitrogen(N) atmosphere on top of GaAs. We then

pattern the resonator structure using electron beam lithography (EBL) with a positive

resist. As shown in Fig. 4.7(a) the developed resist covers the resonator center con-

ductor, the transmission lines as well as the ground planes. Since the center conductor

is of submicron width and millimeter length, we expose the resist using a 100keV

EBL system with automatic proximity correction and a laser-interferometer controlled

stage. In the next step, we remove the NbTiN in the regions that are not covered by

the resist using reactive ion etching (RIE) with a sulfur hexafluoride (SF6) plasma.

In the regions that were not covered by the resist during etching we observe an

undesired irregular structure in the SEM image in Fig. 4.7(b), which was absent before

the RIE processing steps. This structure cannot be removed by cleaning with organic

solvents or water or by modifying the RIE process parameters such as changing the

power, the gas pressure or adding Ar to the plasma. We therefore further investigate
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1μm

NbTiN

(a) (b)

20μm

out

Figure 4.7 NbTiN resonator during processing. (a) Optical micrograph of a
resonator region similar to Fig. 4.6 (c) after the reactive ion etching. NbTiN
on a GaAs substrate is covered with resist (blue). (b) SEM image of the area
marked with a black rectangle in (a).

the topography of this structure to find out whether it is etched into the bare GaAs or

whether it is a material deposited on top of GaAs. If the latter was not superconducting,

it would be a potential loss channel for the resonator photons.

We prepattern test samples with a photolithography mask such that the samples

contain two different regions: NbTiN sputtered on GaAs and bare GaAs. Subsequently

we etch these samples while protecting them partially with a resist layer. In the pro-

tected region, which is for y < 0 in Fig. 4.8(a), we measure with an atomic force

microscope (AFM) a film height of h≈ 15 nm for NbTiN. In the etched (former NbTiN

and bare GaAs) regions, the height signal is constant. In a magnified AFM image in

Fig. 4.8(b) the undesired irregular structure is visible in both the former GaAs and

NbTiN regions. We extract from the height profile [panel on the right in Fig. 4.8(b)],
that this structure is both below and above the GaAs reference level (see y < 0). This

suggests, that during the RIE step both etching of GaAs as well as redeposition of an

unknown material compound on the GaAs surface occurs. This compound may con-

tain elements from the SF6 plasma as well as from GaAs and NbTiN. It likely contains

elements from NbTiN, since we do not observe the irregular structure in a separate

experiment, where we use the RIE process to etch a bare GaAs sample (without NbTiN).

Further investigation for example with x-ray photoelectron spectroscopy is necessary to

identify the material composition of the irregular structure. This could help to develop

an etching or cleaning process for this structure.
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Figure 4.8 AFM of RIE etched NbTiN on GaAs. AFM measurement of the
height h(x , y) of a NbTiN structure on top of GaAs after etching. The structure
was protected by a resist layer for y < 0 and etched for y > 0. The borders of
the (former) NbTiN region that was exposed during the etching process are
indicated by white dashed lines. Height data outside the color scale is shown
in gray. (a) The top panel indicates cuts at y as depicted with horizontal lines
in the bottom panel. (b) Magnified view of the area outlined with a red square
in (a). The height profile in the panel on the right was measured along the
vertical blue line.

4.3.1.3 Resonator characterization

In this section we present measurements of test resonators with different geometry

parameters w and l that were fabricated in independent fabrication rounds. The reso-

nance frequency is according to Eqns. (4.15) and (4.43) given as

νr =
1

2l
Æ

Lkin,�Cl/w
, (4.45)

where we omitted the negligible contribution of the magnetic inductance and Lkin,� =
Ll,kinw is the kinetic inductance per square. Most of the measurements in this section

are carried out in a dipstick setup at T ≈ 5K. This measurement temperature is a

significant fraction of the critical temperature of the NbTiN film of Tc ≈ 9K1. As we

will show below, the internal quality factor is likely limited by resistive losses due to

1We determined Tc for one NbTiN film in a 4-point measurement with a Physical Property Measurement
System.
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thermally excited quasi particles (Schuster, 2007). We nevertheless use the dipstick

setup, which has a short cooling cycle compared to a dilution refrigerator, since the

goal of the measurements presented in this section is a basic characterization of NbTiN

test resonators and the reproducibility of their fabrication process in order to design a

resonator with a desired resonance frequency νr and characteristic impedance Zr.

The dipstick setup is equipped with a pair of RF lines without attenuation or ampli-

fication stages. We therefore use a resonator input power Pin ≈ −75dBm to measure

the resonator transmission |S21|2 with a vector network analyzer. This input power

is far above the single photon level (Göppl et al., 2008). We estimate an averaged

number of photons n̄ ≈ 106 with Eq. (4.41), which would in principle result in an

enhanced quality factor compared to measurements at the single photon level, where

the quality factor can be limited by parasitic two-level systems (TLSs) (Gao et al., 2008,

O’Connell et al., 2008). This power dependence is however not relevant for the dip-

stick measurements, where the internal quality factor is likely limited by temperature.

An exemplary resonator transmission spectrum for two different temperatures in the

dipstick is shown in Fig. 4.9(a). Note that the transmission is corrected for the bare

setup transmission in the absence of the resonator.

We observe the fundamental resonance as well as the second harmonic. By increasing

T, the resonances shift to lower frequencies since Ll,kin increases with T according to

Eq. (4.44). From a fit of Eq. (4.39) to the spectrum of the fundamental resonance in

Fig. 4.9(b) we extract the resonator parameters νr, Qint and Qld that are shown for

various test resonators in Table 4.10. The table indicates that Qint � 103 for all test

resonators measured in the dipstick setup.

To investigate the influence of temperature on Qint, we measure one resonator that

was previously measured in the dipstick in Fig. 4.9(a)-(b) also in a dilution refrigerator

setup (Stockklauser, 2017) at T ≈ 10 mK. This setup is similar to the one presented in

chapter 2 and allows to probe the resonator transmission at the single photon level.

The corresponding fundamental resonance in Fig. 4.9(c) is narrower compared to the

higher temperature resonance of the same resonator in Fig. 4.9(b), where we obtained

Qint(4.8K) ≈ 720 (see Table 4.10). Since the setup related transmission offset is not

known for the dilution refrigerator setup, a Lorentzian fit to the resonance in Fig. 4.9(c)

only allows to directly extract Qld(10mK) ≈ 890 and νr = 2.96GHz. We calculate

Qint(10mK) = [1/Qld − 1/Qint]−1(10mK) by converting Qext(4.8K) ≈ 1310 obtained

from the Fig. 4.9(b) fit to Qext(10 mK)≈ 1230 using Qext∝ 1/(
p

Lkin,�ν
2
r ) according

to Eqns. (4.40) and (4.45). Note that we explain the extraction of Lkin,� below. We
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Figure 4.9 Test resonator spectral response. Frequency spectrum of NbTiN
test resonator sample 1 (see Table 4.10). (a) Transmitted power |S21|2 as a
function of probe frequency νp for two different temperatures. (b) Fundamen-
tal resonance from (a) with Lorentzian fit (dashed line). (c) Spectrum around
the fundamental resonance frequency measured in a dilution refrigerator with
a base plate temperature of 10mK. The frequency range for νp is the same
as in (b). We indicate |S21+setup|2, which is the transmitted power that is not
corrected for an (unknown) offset due to the experimental setup.

obtain2 Qint(10 mK)≈ 3220� Qint(4.8 K)≈ 720. This supports our claim, that Qint is

limited by temperature for the dipstick measurement.

# s # fab l [µm] w [nm] T [K] νr [GHz] Qld Qint Lkin,� [pH] Zr [kΩ]

1 1 2105 350 4.8 2.75 470 720 40 1.3
1 1 2105 350 0.01 2.96 890 3220 34 1.2
2 1 1710 350 5.7 3.28 310 410 42 1.3
3 2 1206 590 5.0 5.47 240 330 47 1.1
4 2 1206 366 5.2 4.37 220 340 47 1.4
5 3 1124 145 4.7 3.06 350 580 49 2.3
6 4 1124 60 4.8 1.96 470 620 47 3.5

Figure 4.10 Test resonators parameter table. Resonator parameters νr, Qint
and Qext are extracted from measurements, Lkin,� and Zr are obtained from
simulations (see text). The table indicates parameters for multiple samples
(s) and fabrication (fab) rounds measured in a dipstick (T ≈ 5 K) and dilution
refrigerator (T ≈ 10 mK) setup.

2If we assume an error for the calibration of the dipstick setup transmission of ±1dB, we calculate
2200® Qint ® 3700.



70 Chapter 4 Superconducting microwave resonators

The maximal Qint ≈ 3220 in Table 4.10 is well below 104, which was instead

reported for 50Ω Al CPW resonators fabricated on GaAs in Ref. Frey, 2013. There,

Qint ≈ 104 was found as an upper limit and attributed to the piezoelectricity of GaAs,

which causes resonator losses by phonon excitations. Although a systematic study of

Qint(10mK) for multiple NbTiN resonators would be necessary for a fully conclusive

statement that Qint � 104 for the NbTiN resonators, we would like to discuss possi-

ble origins for the reduced Qint in the case of NbTiN compared to Al resonators. One

potential source of dissipation is the irregular structure of an unknown material com-

pound that was discussed in subsection 4.3.1.2. In addition, the material quality of the

NbTiN film can have a notable influence on Qint (Burnett et al., 2017). Since the film is

sputtered in a system which is used for various different materials, including magnetic

materials, impurities in the film can cause local non-superconducting regions in the

resonator center conductor or in the ground planes that lead to dissipation. Note that

in principle high quality NbTiN films can be fabricated that allow for Qint � 104 as

demonstrated in Ref. Samkharadze et al., 2016 for high impedance NbTiN resonators

with a similar geometry as in this thesis.

We perform microwave simulations with Sonnet to reproduce the measured νr for

the test resonators in Table 4.10 by adjusting Lkin,� for every resonator. We observe a

maximum deviation of Lkin,� between the fabrication rounds of about 20%, which we

suspect to be mainly due to a physical difference in the NbTiN films. While reproducibil-

ity is challenging for thin disordered films (Kroll et al., 2018), recent experiments in

our group with a sputtering system dedicated for Nb and NbTiN indicate a significant

increase in the reproducibility of Lkin,�.

Finally, we discuss the characteristic impedance Zr of the resonators, which is cal-

culated in Table 4.10 as Zr = 2νrLkin,�l/w using Eqns. (4.13) and (4.45). The NbTiN

test resonators in the table are high impedance with a maximum Zr ≈ 3.5kΩ for

w≈ 60 nm. Note that Zr is temperature dependent since Lkin,� depends on ∆sc accord-

ing to Eq. (4.44). We use the approximation (Sigrist, 2016)

∆sc(T)≈∆sc(0) tanh
�

1.74
Æ

(Tc − T)/T
�

(4.46)

with ∆sc(0) = 1.76kBTc to obtain Lkin,�(50mK)/Lkin,�(4.8K) = 0.84. This ratio is

equivalent to the resonance frequency ratio [νr(4.8K)/νr(50mK)]2 [see Eq. (4.45)],
for which we calculate 0.86 for sample 1 in Table 4.10 in good agreement with the

theoretical value of 0.84. The resonator impedance therefore decreases for the mea-

surement in a dilution refrigerator compared to the dipstick measurement by about
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10%.

Above characterization measurements demonstrate that we can fabricate high

impedance NbTiN resonators with Lkin,� and Zr comparable to values for similar res-

onators reported in literature (Samkharadze et al., 2016, 2018). In addition, the repro-

ducibility of the fabrication allows to sufficiently target Zr and vr with the resonator

design.

4.3.1.4 Resonator magnetic field dependence

In this section we discuss the dependence of the resonance frequency and quality factor

of a NbTiN resonator on a parallel external magnetic field. The data presented in this

section is obtained for the resonator that is employed for the experiments in chapter

6. The resonator design is similar to the design of the test resonators above. The mea-

surements were performed with a single axis magnet at T ≈ 10 mK in the setup from

chapter 2. At zero magnetic field, we measure a resonance frequency νr = 8.33GHz

and a loaded quality factor Qld ≈ 80 (κr/(2π) = 101MHz). Possible explanations

for the significant reduction of Qld compared to the test resonator characterization

measurements in subsection 4.3.1.3 are discussed in subsection 6.1.1.

By applying a magnetic field to a type-II superconductor such as NbTiN, regions

of normal conductance that are surrounded by a supercurrent are induced3. If free

to move, these vortices cause dissipation at microwave frequencies. The generation

of vortices is suppressed for parallel field alignment if the extent of the film in the

direction of the field is much smaller than the penetration length λ (Kuit et al., 2008,

Samkharadze et al., 2016, Kroll et al., 2018). This situation applies to the center con-

ductor of the NbTiN resonator, which has a width of w ≈ 300nm. Since R� is not

known for the NbTiN film, we use λ =
p

ħhR�h/[πµ0∆sc(0)] (Kroll et al., 2018) to-

gether with Eq. (4.44) to obtain the penetration length λ ≈
Æ

Lkin,�h/µ0 ≈ 730nm,

with the estimated Lkin,� ≈ 45pH/�, the film thickness h ≈ 15nm and the vacuum

permeability µ0.

By ramping a magnetic field B that is applied approximately parallel to the sample

from 0 to 2T, we observe a reduction of Qld by about 35% in Fig. 4.11(a). While

the resonance can still clearly be resolved at B = 2T, better magnetic field resilience

has been reported for thin film NbTiN resonators in Refs. Samkharadze et al., 2016,

Kroll et al., 2018. We suspect that the decrease of Qld in Fig. 4.11(a) has two origins.

3Note that also films of type-I superconductors support vortex nucleation. This requires that the coher-
ence length of the bulk material exceeds the film thickness and that the magnetic field is applied perpendicular
to the film (Song et al., 2009).
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Figure 4.11 Resonator magnetic field dependence. Dependence of the loaded
quality factor Qld in (a) and the relative resonance frequency shift ∆νr (see
text) in (b) on a parallel external magnetic field B.

First, dissipation can be induced by vortices that are generated in the resonator ground

planes. Second, the magnetic field is likely not aligned perfectly parallel with respect

to the resonator since a single axis magnet is used. By increasing the distance to the

ground planes (Samkharadze et al., 2016), by engineering artificial pinning sites in the

ground planes (Kroll et al., 2018) or by using a three-axis magnet to achieve a better

B-field alignment, we expect the magnetic field resilience to improve.

We also measure the relative resonance frequency shift ∆νr ≡ [νr(B) − νr(B =
0)]/νr(B = 0) as a function of parallel magnetic field in Fig. 4.11(b). Since quasi-

particles are induced in a magnetic field, the Cooper pair density nc is reduced with

increasing B. This leads to an enhancement of Lkin,�∝ 1/nc (Meservey et al., 1969)

and therefore to a reduction of νr∝ 1/
p

Lkin,� with increasing B. The magnetic field

dependence can be modelled with ∆νr = −
π
48 h2e2D/(ħhkBTc)B2 (Samkharadze et al.,

2016), where e is the elementary charge and D the quasiparticle diffusion constant (Day

et al., 2003). We observe good agreement of this model with the data in Fig. 4.11(b)

for D ≈ 0.3cm2s−1, which is similar to previously reported values in Refs. Semenov

et al., 2006, Samkharadze et al., 2016, Kroll et al., 2018.

4.3.2 Al SQUID array λ/4 resonator

In this section we provide a brief introduction to the high impedance SQUID array

resonator that is used for the experiments presented in chapter 8. For more details we

refer to Ref. Stockklauser, 2017, where the design, characterization and theoretical

background of a SQUID array resonator with very similar parameters is discussed.
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4.3.2.1 Resonator design

The resonator is illustrated in Fig. 4.12. It is fabricated with a 30keV EBL system by

using a bilayer resist and depositing 35nm and 110nm of Al in a shadow evapora-

tion process. Fabrication details are given in Appendix C.2. The resonator consists of

a linear array of 34 SQUIDs that is shunted to ground at one end and capacitively

coupled to a read-out port at the other open end. Note that the SQUID array is also

capacitively coupled to two qubits at the open end, which will be relevant in chapter 8.

The resonator can be modeled as a distributed element λ/4 resonator as demonstrated

in Ref. Stockklauser, 2017. Due to the nonlinear current dependence of the Josephson

inductance [see Eq. (3.24)], the resonator exhibits a dependence on the SQUID array

current, i.e. on the number of photons in the resonator. For the resonator operation in

this thesis with an average photon number n̄� 1, the SQUID array Hamiltonian for

the fundamental mode can be approximated by the single mode harmonic oscillator

Hamiltonian in Eq. (4.16) (Stockklauser, 2017).

To estimate the SQUID array characteristic impedance, we model the resonator as a

distributed element with total in-line inductance Lll and capacitance Cll to ground per

unit length. We obtain Lll ≈ 30 nH from the room temperature resistance of a SQUID

array resonator with the same fabrication process parameters and extract Cll = 16 fF

from an electrostatic simulation. This results in Zr =
p

Ll/Cl ≈ 1.37kΩ, which is a

rough estimate for the minimum characteristic impedance. Note that the inductance of

a SQUID [see Eq. (3.27)] and consequently Zr increases in the presence of an external

magnetic flux.

We estimate the SQUID array resonance frequency νr by modeling it close to res-

onance as lumped element resonator with inductance L = 8lLl/π
2 and capacitance

C = Cll/2 (valid for a λ/4 resonator)(Castellanos-Beltran, 2002). We now consider

(b)

50 μm

λ/4

(a)

port

GND
port

Figure 4.12 SQUID array resonator. Schematic illustration (a) and false-
colored optical micrograph (b) of a SQUID array resonator that is connected
to ground (GND) at one end and capacitively coupled to a port at the other
end. The regions marked in black will be relevant in chapter 8.
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the capacitive coupling of the SQUID array to the probe line as well as to the qubits,

which gives rise to an extra localized capacitance Cexc ≈ 11.1 fF that adds up to C in the

lumped element model. The resonance frequency can therefore be approximated as

νr ≈ 1/[2π
p

L(C+Cexc)]≈ 7.38 GHz. This is an estimate for the maximum resonance

frequency of the SQUID array resonator, since the SQUID inductance increases and

hence νr decreases by applying an external magnetic flux.

4.3.2.2 Resonator characterization

We measure the SQUID array resonator reflectance spectrum in Fig. 4.13(a) as a func-

tion of an external magnetic flux Φcr and observe for every value of flux a minimum

in |S11| once the probe frequency νp is on resonance with the SQUID array resonator

(νp = νr). The resonance frequency changes as a function of magnetic flux and reaches

a maximum at νp ≈ 6.5GHz in reasonable agreement with above rough theoreti-

cal estimate. Note that νr can be further decreased below νr ≈ 5.7GHz observed in

Fig. 4.13(a) by increasing the flux range (see chapter 8).

Since we operate the SQUID array resonator in regime where only the funda-

mental mode is relevant, its reflectance spectrum is identical to the single-port cav-

ity spectrum derived in subsection 4.1.2. Analog to the 50Ω Al resonator we use

Eq. (4.42), which also considers the experimental setup, to fit to the SQUID array res-

onator S11 reflectance spectrum. The comparison for the amplitude and phase of S11

in Fig. 4.13(c) is best fit for νr = 5.894GHz, κext/(2π) = 2.4MHz (Qext ≈ 2460) and

κint/(2π) = 4.6 MHz (Qext ≈ 1280).
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Figure 4.13 SQUID array resonator reflectance spectrum. (a) Reflected ampli-
tude |S11| as a function of global magnetic flux Φcr normalized by the SQUID
array flux periodicity Φ0,cr. (b) Amplitude and phase response of the resonator
(green) with theory fit (black) at the position indicated with a dashed line in
(a).
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4.4 Conclusion and outlook

We presented three different types of superconducting microwave resonators in this

chapter. The 50Ω Al coplanar waveguide resonator as well as the high impedance

SQUID array resonator were adapted from prior work. The NbTiN resonator, for which

the design and fabrication was developed in this work, was found to provide a quality

factor of the order of 103 at mK temperatures and a magnetic field resilience in a parallel

field of up to 2T. The quality factor is potentially limited by fabrication residues as

well as by the material quality of the NbTiN film. While the latter issue is already

addressed in ongoing work with a new sputter system, further optimization of the

fabrication process is necessary. The magnetic field resilience can possibly be improved

by designing vortex pinning sites (Kroll et al., 2018) and by optimizing the magnetic

field alignment with respect to the sample.
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Chapter 5

Hybrid circuit quantum
electrodynamics

The interaction between the quantized electromagnetic field and charged matter quan-

tum systems, presented in chapter 3, is described with quantum electrodynamics (Walls

et al., 2008). In cavity quantum electrodynamics (cavity QED) this interaction is real-

ized by positioning the quantum system inside a cavity. There, the cavity confines the

electromagnetic field at the level of single photons and restricts the number of allowed

modes. Cavity QED experiments were pioneered with atoms and photons in either the

microwave (Raimond et al., 2001) or the optical (Mabuchi et al., 2002) domain.

The magnitude of the interaction in cavity QED is characterized by the coupling rate

between light and matter. If this rate exceeds the rate of the decoherence mechanisms

in both sub-systems, the system is in the strong coupling regime. As a result, a coherent

light-matter state is formed once qubit and cavity are on resonance (Thompson et al.,

1992). Even in the dispersive regime, the cavity experiences a frequency shift that

depends on the state of the atoms (Blais et al., 2004). The strong coupling regime is

therefore appealing not only for the study of quantum effects at a fundamental level

but also in the context of quantum information processing (Mabuchi et al., 2002).

In this thesis we use a solid state analog of cavity QED, which combines the quantum

systems presented in chapters 3 and 4. The corresponding chip design is shown for the

case of a double-sided superconducting transmission line resonator and a single qubit

in Fig. 5.1. The qubit is ideally placed at the anti-node of the voltage standing mode in

the resonator in order to maximize the electric dipole coupling strength between the

resonator vacuum fluctuations and the qubit states. This design was proposed (Blais

et al., 2004) and first experimentally realized (Wallraff et al., 2004) using supercon-
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ducting circuits as the qubit (superconducting qubit), where it is referred to as circuit

QED architecture. In case qubits other than superconducting qubits are employed, the

term hybrid circuit QED is commonly used (Burkard et al., 2019).

In the first part of this chapter we present the theoretical framework of hybrid circuit

QED that is necessary to understand the experiments in chapters 6-8. We thereby start

in section 5.1 by deriving the corresponding interaction Hamiltonians for the three

different types of solid state qubits used in this thesis. We then introduce in section 5.2

two Hamiltonians that describe the system in Fig. 5.1 in the absence of decoherence in

the case of one or two qubits coupled to the same resonator. While the first situation

applies to the experiments in chapters 6 and 7, the latter case will be relevant in chapter

8.

In the second part of this chapter we provide in section 5.3 a brief introduction

into theoretical models that include dissipative interactions with the environment.

For resonator photons, this interaction consists of an engineered coupling rate to the

resonator ports and an internal photon loss rate. For the qubits, the random fluctuations

of the environment result in qubit decoherence, i.e. a randomization of the phase

relation between the qubit states (Burkard, 2001). Decoherence mechanisms for the

three different qubits used in this work are discussed in section 5.4 with a focus on the

RX qubit.

gq

γ2,q

OutputGround

Ground

Input
κint

Figure 5.1 Circuit QED architecture. Schematic illustration of an exemplary
chip design that is used for circuit QED experiments (Blais et al., 2004). A
qubit (green) couples at rate gq to the voltage fluctuations (yellow) at one end
of a superconducting transmission line resonator (gray), which has extended
ground planes. Dissipation is indicated as a qubit decoherence rate γ2,q and a
cavity decay rate κint. Input and output transmission lines connect the system
to the external circuitry.
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5.1 Qubit-resonator coupling

In this section we first derive a general Hamiltonian for the electric dipole interaction

between a qubit and the vacuum fluctuations of the resonator electric field. Subse-

quently we treat the specific case of a charge qubit, a RX qubit and a transmon.

The interaction between the qubit electric dipole moment and the cavity electric

field is described by (Srinivasa et al., 2016)

Ĥq,int = −d̂ · Ê (5.1)

with the dipole operator d̂ and the cavity electric field operator Ê= EZPF(â+ â†). The

magnitude of the electric field |EZPF| at the qubit is proportional to the voltage vacuum

fluctuations VZPF of the fundamental mode in the resonator. The electric field can drive

the transition between the qubit ground state |0q〉 and excited state |1q〉 at a rate given

by the coupling strength (Girvin, 2014)

gq ≡ 1/ħh 〈0q| d̂ · EZPF |1q〉 . (5.2)

We use Eq. (5.2) to write the Hamiltonian in Eq. (5.1) as

Ĥq,int = ħhgq(â+ â†)σ̂x , (5.3)

with σ̂x = |0q〉 〈1q|+ |1q〉 〈0q|. Since the qubit frequencies by far exceed the coupling

strengths in our experiments (ωq� gq), we perform a rotating wave approximation

(RWA) that simplifies Eq. (5.3) to

Ĥq,int = ħhgq(âσ̂+ + â†σ̂−) (5.4)

with the qubit raising operator σ̂+ = (σ̂x + iσ̂y) and the lowering operator σ̂− =
(σ̂x − iσ̂y). In the following subsections we derive an interaction Hamiltonian of this

form for the charge qubit and the RX qubit as well as for the transmon.

Note that we introduced high impedance resonators in section 4.3 as they have

strong voltage vacuum fluctuations VZPF∝
p

Zr and, consequently, a high qubit-photon

coupling strength. This implication is quantified in Eq. (5.2), where gq∝ |EZPF|.
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5.1.1 Double quantum dot charge qubit-resonator coupling

We realize a coupling of charge qubit and resonator photons by electrically connecting

the left plunger gate to the resonator as depicted in Fig. 5.2. The resonator voltage

fluctuations therefore couple via the detuning parameter to the qubit. This coupling is

described by the Hamiltonian (Srinivasa et al., 2016)

ˆ̃Hint,CQ = ħhg(0)CQ(â+ â†)(n̂L − n̂R), (5.5)

with the left and right quantum dot number operators n̂L and n̂R, respectively. By

rewriting Eq. (5.5) in the charge qubit eigenbasis {|0CQ〉 , |1CQ〉} and performing a

RWA we obtain the interaction Hamiltonian in the form (Stockklauser, 2017)

Ĥint,CQ = ħhg(0)CQ sin(θ )(â†σ̂− + âσ̂+). (5.6)

We now relate the charge qubit coupling strength g(0)CQ to the electrostatics of the DQD

by following Ref. Koski, 2019. Among others this gives experimental access to the

coupling strength by choosing a certain DQD gate design. We consider the DQD and

its gate lines as capacitively coupled metallic objects. The electrostatic energy of the

DQD can then be written as (Wiel et al., 2002)

EDQD(nL, nR) = UL(nL − ngL)
2 +UR(nR− ngR)

2 +ULR(nL − ngL)(nR− ngR), (5.7)

where UL(R) is the left (right) dot charging energy and ULR describes the interdot

charging energy. In analogy to the electrostatic terms in the Hubbard Hamiltonian

in Eq. (3.8), ngL(R) is the gate number that quantifies the charge induced on the left

(right) quantum dot by capacitive coupling to the gate potentials. We can therefore

S D
CrL

LPG

VL+VZPF

CrR

CmCΣL
CΣR

Figure 5.2 Charge qubit-resonator coupling. Schematic illustration of the cou-
pling of the resonator zero-point voltage fluctuations VZPF via the left plunger
gate (blue) to the DQD. Note that only capacitances that are relevant for the
derivation in the text are labelled.
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express the qubit detuning parameter as

δ = EDQD(nL + 1, nR− 1)− EDQD(nL, nR). (5.8)

The charging energies relate to the capacitances of the system via the equality

�

UL ULR/2

ULR/2 UR

�

=
e2

2

�

CΣL
−Cm

−Cm CΣR

�−1

, (5.9)

where Cm is the interdot capacitance and CΣL(R) the total left (right) dot capacitance,

which includes the respective dot capacitances to the reservoirs and the gates as well

as Cm. We solve Eq. (5.9) and obtain UL(R) = e2CΣR(L)
/[2(CΣL

CΣR
−C2

m)] as well as ULR =
e2Cm/(CΣL

CΣR
−C2

m). A voltage V on the left plunger gate couples via the capacitances

CrL(R) (see Fig. 5.2) to ngL(R). We write this capacitive coupling as

ngL(R) = −CrL(R)V/|e|. (5.10)

The influence of the resonator voltage fluctuations on δ is therefore given as

∆δ(VZPF)≡ δ(V = VZPF)−δ(V = 0). (5.11)

We calculate this quantity for the ideal case of equal quantum dots (CΣ = CΣL(R)
) by

inserting Eqns. (5.7)-(5.10) into Eq. (5.11). We obtain

∆δ(VZPF) =
CrL −CrR

CΣ +Cm
eVZPF = αδeVZPF, (5.12)

where αδ is the left plunger gate lever arm on the detuning. Finally, we express the

coupling strength in terms of the capacitances:

g(0)CQ =
e
ħh
αδVZPF =

e
ħh

CrL −CrR

CΣ +Cm
VZPF. (5.13)

We extract that the coupling strength is maximal for CΣ = CrL + Cm and CrR = 0, in

which case αδ = 1/(1+ 2Cm/CrL).
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5.1.2 RX qubit-resonator coupling

The RX qubit couples capacitively to the resonator in the same manner as the DQD

charge qubit by extending the left plunger gate to the resonator. This is schematically

illustrated in Fig. 5.3. The interaction Hamiltonian between the RX qubit and the

resonator photons can be expressed as

ˆ̃Hint,RX = ħhg(0)c,RX(n̂L − n̂R+υn̂M)(â+ â†), (5.14)

where n̂L, n̂M and n̂R are the left, middle and right quantum dot number operators,

respectively. The term g(0)c,RX is the bare charge-photon coupling strength discussed

below and the parameter υ accounts for cross capacitance-effects, i.e. tuning the left

dot plunger gate potential affects both the left-right dot charge asymmetry ε as well

as the middle dot detuning ∆. Note that the Hamiltonian in Eq. (5.14) is equivalent

to the interaction Hamiltonian

ˆ̃H∗int,RX = 2ħhg(0)c,RX(n̂L +αn̂M)(â+ â†) (5.15)

quoted in Ref. Landig et al., 2018 by omitting an irrelevant energy offset g(0)c,RX1 and

using the definition α≡ (υ+ 1)/2.

For υ = 0, Eq. (5.14) takes the same form as the DQD charge qubit Hamiltonian

in Eq. (5.5) since the resonator only tunes ε. This motivates to express Eq. (5.14) in

terms of the lever arms αε and α∆ that quantify the left plunger gate coupling to ε and

∆:

ˆ̃Hint,RX = eVZPFαε(n̂L − n̂R+
α∆
αε

n̂M)(â+ â†). (5.16)

S D
CrL

LPG

VL+VZPF

CrM

CLMCΣL CΣM
CMR CΣR

CrR

CLR

Figure5.3 RX qubit-resonator coupling. Illustration of the capacitive coupling
of VZPF via the left plunger gate (blue) to the DQD. Relevant capacitances for
the derivation in the text are indicated.
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By comparing Eqns. (5.14) and (5.16) we find υ = α∆/αε and therefore α = (α∆ +
αε)/(2αε) since α = (ν + 1)/2. We determine α∆ and αε experimentally with the

measurements presented in section 7.2 and obtain α= 0.4.

In the following we relate the RX qubit interaction Hamiltonian to the TQD capaci-

tances, i.e. we express α∆ and αε in terms of the capacitances. We thereby follow the

same approach as for the DQD charge qubit in subsection 5.1.1. The TQD electrostatic

energy is given according to the Hubbard Hamiltonian from Eq. (3.8) as

E(nL, nM, nR) =
∑

i∈{L,M,R}

Ui(n̂i − ngi)
2 +

∑

i 6= j

Ui j(n̂i − ngi)(n̂q − ng j). (5.17)

The charging energies are defined via the capacitance matrix as







UL ULM/2 ULR/2

ULM/2 UM UMR/2

ULR/2 UMR/2 UR/2






=

e2

2







CΣL
−CLM −CLR

−CLM CΣM
−CMR

−CLR −CMR CΣR







−1

, (5.18)

where CΣi
is the total capacitance of dot i and Ci j is the mutual capacitance of dots i

and j. By applying a voltage V to the left plunger gate in Fig. 5.3, the capacitive effect

on dot i ∈ {L,M, R} is

ngi = −CriV/|e| (5.19)

with the resonator (left plunger) gate capacitance Cri to dot i. The resonator voltage

vacuum fluctuations on the left plunger gate therefore affect ∆ and ε as

∆ε(VZPF) = ε(V = VZPF)− ε(V = 0) = αεeVZPF (5.20)

and

∆[∆(VZPF)] =∆(V = VZPF)−∆(V = 0) = α∆eVZPF. (5.21)

We can now express the lever arms α∆ and αε as a function of the TQD capacitances by

using Eqns. (5.17)-(5.21) as well as the definitions of the qubit detuning parameters

ε = 1/2[E(1,0,2) − E(2,0,1)] and ∆ = E(1,1,1) − 1/2[E(1,0,2) + E(2,0,1)] from

Eq. (3.9). For the case of identical quantum dots that are symmetrically coupled, we

define Cm ≡ CLM = CMR and CΣ ≡ CΣL
= CΣR

. In this situation the mutual capacitance of

the middle quantum dot with the left and right dots is the same such that we can write
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CΣM
= CΣ + Cm. In addition we neglect the mutual left-right dot coupling (CLR = 0)

and arrive at the analytic expressions

αε =
CrL −CrR

CΣ
(5.22)

and

α∆ =
2CrM −CrR−CrL

2(2Cm +CΣ)
. (5.23)

To gain a qualitative understanding for Eqns. (5.22)-(5.23) we consider two limiting

cases. First, if the left plunger gate couples equally to the left and right quantum dots,

CrL = CrR, the left-right detuning lever arm αε is zero. Second, in case the left plunger

gate coupling to the middle quantum dot is equal to the mean of its couplings to the

left and right dots [CrM = (CrL +CrR)/2], we obtain α∆ = 0.

We now return to the interaction Hamiltonian from Eq. (5.14), apply a RWA and

express it in the RX qubit eigenbasis {|0RX〉 , |1RX〉} such that it takes the form

Ĥint,RX = ħhgRX(â
†σ̂− + âσ̂+) (5.24)

with the spin-photon coupling strength

gRX =
�

c(1RX)
2 c(0RX)∗

2 −
υ+ 1

2
(c(1RX)

3 c(0RX)∗
3 + c(1RX)

2 c(0RX)∗
2 )

�

g(0)c,RX. (5.25)

The coefficients c(0RX/1RX)
2/3 were defined in Eq. (3.15). They quantify the contribution

of the basis states with asymmetric charge configuration (1,0,2) and (2,0,1) to the

qubit states.

Next, we investigate the dependence gRX(∆), since the qubit parameter ∆ is mostly

tuned in our experiments. For a symmetric RX qubit tunnel coupling configuration

(tL = tR = t) and at the sweet spot ε = 0 (see subsection 3.2.2) the coupling strength

in Eq. (5.25) be expressed analytically as

gRX =
p

3t2

[(2t2 +∆2 −∆
p

2t2 +∆2)(6t2 +∆2 −∆
p

6t2 +∆2)]1/2
g(0)c,RX. (5.26)

The analytic result is illustrated for t/h= 9 GHz as the solid line in Fig. 5.4. We observe

an increase of gRX with ∆. For maximum tunnel coupling asymmetries in this work

of about 20%, the analytic equation is a good approximation for the numerical result.
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The latter is shown as the solid line in Fig. 5.4 and was evaluated at the sweet spot in

ε which is a function of ∆ due to the tunnel coupling asymmetry.

In the regime where ∆� tL,R, Eq. (5.26) reduces to (Landig et al., 2018)

gRX =

�

1−
t2

∆2

�

g(0)c,RX +O (t
4/∆4) (5.27)

with a maximal coupling strength g(0)c,RX, which we refer to as charge-photon coupling

strength because the qubit states are mainly composed of the asymmetric charge con-

figurations (1,0,2) and (2,0,1) (see discussion in subsection 3.2.3). Such a charge

qubit between the left and right quantum dots has a strong electric dipole moment

which makes it susceptible to charge noise as discussed in subsection 5.4.1.2. The

quadratic term (∝ t2/∆2) in Eq. (5.27) is due to the mixing, mediated by exchange

interaction, of the charge-qubit states with the spin-qubit states defined in the (1, 1, 1)
charge subspace. By decreasing ∆, this mixing and hence the electric dipole moment

decreases. We mainly operate the qubit in the regime |∆|® tL,R, where we take a linear

expansion of Eq. (5.26) to obtain

gRX =

�

1
2
+
p

2
24
(3+

p
3)
∆

t

�

g(0)c,RX +O (∆
2/t2). (5.28)
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Figure 5.4 ∆-dependent RX qubit coupling strength. RX qubit coupling
strength gRX normalized by the charge coupling strength g(0)c,RX as a func-
tion of ∆/t∗, where t∗/h = 9GHz. The solid line is the numerical result for
tL/h = 10GHz and tR/h = 8GHz by evaluating Eq. (5.25) at the sweet spot
in ε, where ∂ ERX/∂ ε = 0. The dashed line shows the analytic result using
Eq. (5.26) with t/h = 9GHz. The maximum difference of analytical and nu-
merical calculation is 4% of g(0)c,RX.
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Finally, in the limit ∆�−tL,R, the electric dipole moment of the qubit and hence gRX

eventually vanishes as the qubit states have the same (1,1,1) charge configuration

and are minimally influenced by charge noise (see discussion in subsection 3.2.3). In

this regime, Eq. (5.26) takes the form

gRX =
p

3
2

� t
∆

�2
g(0)c,RX +O (t

4/∆4). (5.29)

5.1.3 Transmon-resonator coupling

A transmon can be coupled to a resonator via a capacitive coupling as illustrated in

Fig. 5.5. This coupling mechanism is described by the Hamiltonian (Koch et al., 2007)

ˆ̃Hint,T = 2
Cg

CΣ
eVZPFn̂(â+ â†), (5.30)

with the total capacitance CΣ = C(SQ)
J +Cg+CB. In the basis of the transmon states |kT〉

and by considering coupling of nearest-neighbor states we obtain (Koch et al., 2007)

Ĥint,T =
N
∑

k=0

gT,k(|kT〉 〈(k+ 1)T|+ |(k+ 1)T〉 〈kT|)(â+ â†) (5.31)

with gT,k ≈
p

k+ 1gT. The quantity gT = 2
Cg

CΣ
eVZPF 〈0T| n̂ |1T〉 is the coupling strength

between the two lowest levels of the transmon and the resonator. It depends via the

Matrix element 〈0T| n̂ |1T〉 on E(SQ)
J and therefore on ΦT. We define it for zero transmon

flux as g(0)T ≡ gT(ΦT = 0). In the two-level approximation and considering RWA,

Eq. (5.31) reduces to

Ĥint,T = gT(â
†σ̂− + âσ̂+). (5.32)

Vg+VZPF

Cg

ΦT

CJ    LJ

CB

(SQ) (SQ)

Figure 5.5 Schematic illustration of transmon-resonator coupling. The res-
onator voltage vacuum fluctuations VZPF couple capacitively to the transmon
(highlighted with a red rectangle) via the capacitance Cg.
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5.2 Idealized hybrid circuit QED Hamiltonians

In this section we present the Hamiltonians that model the single and two qubit hybrid

circuit QED system as a closed quantum system. We discuss the eigenstates of the

Hamiltonians for resonant and dispersive qubit-photon interaction. For the latter case

we introduce a spectroscopy technique that is frequently used for the experiments in

chapters 7 and 8. For a more detailed discussion of the theory presented in this section

we refer to Refs. Blais et al., 2004, 2007.

5.2.1 Jaynes-Cummings model

The coupled quantum system of a single qubit and a single resonator mode is described

by the Jaynes-Cummmings Hamiltonian (Walls et al., 2008)

ĤJC = ħhωr(â
†â+

1
2
) +
ħhωq

2
σ̂z +ħhgq(âσ̂+ + â†σ̂−), (5.33)

where the first and second terms are the Hamiltonians of the resonator and the qubit

that were introduced in chapters 4 and 3, respectively. The third term is the interaction

Hamiltonian from Eq. (5.4).

The energy spectrum of the Jaynes-Cummings Hamiltonian for resonant qubit-

resonator interaction (ωr =ωq) is depicted in Fig. 5.6(a). The qubit ground (|0q〉) and

excited (|1q〉) states hybridize with the resonator eigenstates |nr〉 to form the dressed

states

|Ψ±,n〉res,2 = (|nr, 0q〉 ± |(n− 1)r, 1q〉)/
p

2, (5.34)

where the subscript of |Ψ±,n〉res,2 indicates the resonant interaction of two quantum

systems. The states |Ψ±,n〉res,2 are separated in energy by 2gq
p

n+ 1. Since the energy

separation depends on the number n of excitations in the system, this realizes an

anharmonic energy spectrum. In this thesis we are limited to the single-photon limit,

such that the relevant states are |±〉res,2 ≡ |Ψ±,1〉res,2 = (|1r, 0q〉 ± |0r, 1q〉)/
p

2, which

are formed by an equal superposition of a single excitation in either the resonator or

the qubit. The states separation 2gq is referred to as vacuum Rabi mode splitting. It

determines the rate at which the excitation is coherently exchanged between the qubit

and the resonator. If this rate exceeds the cavity decay rate κr and the qubit decoherence

rate γ2,q, the system is in the strong coupling limit and the vacuum Rabi mode splitting

can be resolved spectroscopically. While κr was discussed in chapter 4, we consider
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qubit decoherence in this chapter in section 5.4. A more specific requirement for the

observation of the vacuum Rabi mode splitting is 2gq > κr/2+ γ2,q.

If qubit and resonator are detuned by |∆qr| ≡ |ωq −ωr| � gq, the dispersive limit

is realized. In this regime, the Jaynes-Cummings Hamiltonian can be approximated by

the Hamiltonian (Schuster, 2007)

ĤJC,disp = ħh(ωr +χσ̂z)(â
†â+

1
2
) +
ħhωq

2
σ̂z , (5.35)

where χ ≡ g2
q/∆qr is the dispersive shift. The spectrum of this Hamiltonian is shown in

Fig. 5.6(b). We extract from the figure that the resonator resonance frequency is shifted

by −χ or +χ if the qubit is in the ground or excited state, respectively. This qubit-state-

dependent resonator shift, which relates to the first σ̂z term in Eq. (5.35), is used in

chapters 2 and 4 to experimentally determine the qubit energy spectroscopically if

qubit and resonator are detuned.

The idea of this so-called two-tone spectroscopy measurement (Schuster et al.,

2005) is to apply a first tone at frequency ωp in order to probe the resonator trans-

mission (or reflection) on resonance with the dispersively shifted resonator frequency

ωr − χ. In addition, a second tone at frequency ωd is applied either directly to the

|0q

ωr ωq

2gq

|ψ+,2

2√2gq|2r

(a) (b)

|1r

∆qr

|1q

|0r

|1r

|0r
|1r

|0r

|2r

|0q |1q

ωq

|1r

|0r

ωr-χ

ωr+χ

resonant: ωq=ωr dispersive:
 
|∆qr|=ωq-ωr>> gq

res,2

|ψ-,2 res,2

|+
res,2

res,2 ωr

Figure 5.6 Jaynes-Cummings ladder. The dashed lines are the resonator pho-
ton number eigenstates |nr〉 for a mode frequency ωr and the qubit in the
ground (left) or excited (right) state, where ωq is the qubit transition fre-
quency. The solid lines represent the eigenstates of the Jaynes-Cummings
Hamiltonian. The resonant and dispersive situations are depicted in (a) and
(b), respectively.
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qubit or via the resonator. This second tone is often referred to as drive tone or spec-

troscopy tone. If drive tone and qubit are on resonance (ωd =ωq), the drive saturates

the qubit transition such that the qubit is in a mixed state. The expectation value of

σ̂z in Eq. (5.35) is therefore zero and the resonator resonance shifts back to its bare

(uncoupled) value ωr. This frequency shift is detected as a probe tone response, i.e. a

change in the transmitted (or reflected) probe signal, since the probe at ωp =ωr −χ
is no longer on resonance with the resonator.

The probe tone response has a Lorentzian lineshape with a half width at half maxi-

mum (HWHM) δνq that depends on the drive tone generator power Pgen,d as (Schuster

et al., 2005)

δνq =
q

[γ2,q/(2π)]2 +ηPgen,d, (5.36)

where η is a constant. By measuring δνq for multiple Pgen,d and performing a linear fit

to δν2
q(Pgen,d), one can extract γ2,q experimentally from the extrapolation of the fit to

zero drive power.

The Hamiltonian in Eq. (5.35) can equivalently be written as (Schuster, 2007)

ĤJC,disp = ħhωr

�

â†â+
1
2

�

+
ħh
2

�

ωq +χ
�

2â†â+ 1
��

σ̂z , (5.37)

where the qubit experiences a vacuum-induced Lamb shift χ as well as an ac Stark

shift 2χn, i.e. a photon number n dependent frequency shift. We use the time averaged

ac Stark shift 2χ n̄, where n̄=



â†â
�

is the averaged number of resonator photons, to

determine the average number of photons in the resonator in chapter 7.

5.2.2 Tavis-Cummings model

We now extend above discussion to the case of two qubits j = {1, 2} with states |0/1q j
〉

and transition frequencies ωq j
. The qubits are coupled with coupling strengths gq j

to

the same resonator mode. Similar to Eq. (5.33) the Hamiltonian of the system can be

expressed as

ĤTC = ħhωr

�

â†â+
1
2

�

+
∑

j=1,2

ħhωqj

2
σ̂z j
+
∑

j=1,2

ħhgq j
(âσ̂+ j

+ â†σ̂− j
), (5.38)

where σ̂+ j
and σ̂− j

are the raising and lowering operators of qubit j, respectively. The

Hamiltonian in Eq. (5.38) is referred to as Tavis-Cummings Hamiltonian (Tavis et al.,
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1968). We now restrict the discussion to a single excitation in the system, which is

relevant for our experiments.

If both qubits and the resonator are on resonance (ωr = ωq1
= ωq2

), which is

depicted schematically in Fig. 5.7 (a), we can write Eq. (5.38) as (Woerkom et al.,

2018)

ĤTC =

|0q1
0q2

1r〉 |1q1
0q2

0r〉 |0q1
1q2

0r〉






0 ħhgq1
0







|0q1
0q2

1r〉
ħhgq1

0 ħhgq2
|1q1

0q2
0r〉

0 ħhgq2
0 |0q1

1q2
0r〉

, (5.39)

where we omitted the energy offset ħhωr and assumed that both qubits are coupled to

the same phase of the resonator voltage mode, which is the case in our experiments

in chapter 8. The eigenstates of Eq. (5.39) read as

|0〉res,3 =
1

gq12

(gq1
|0q1

1q2
0r〉 − gq2

|1q1
0q2

0r〉),

|−〉res,3 =
1

p
2gq12

(gq2
|0q1

1q2
0r〉+ gq1

|1q1
0q2

0r〉 − gq12
|0q1

0q2
1r〉)

|+〉res,3 =
1

p
2gq12

(gq2
|0q1

1q2
0r〉+ gq1

|1q1
0q2

0r〉+ gq12 |0q1
0q2

1r〉),

(5.40)

where gq12
=
q

g2
q1
+ g2

q2
is the collective coupling strength that is enhanced for two

qubits by a factor of
p

2 compared to the single qubit case discussed above since

gq12
=
p

2gq1
for equal qubit-resonator couplings (gq1

= gq2
). As shown in Fig. 5.7(b),

the two states |±〉res,3 are split in energy by 2gq12. They can be excited by the resonator,

while the state |±〉res,3 only contains the vacuum state |0r〉 [see Eq. (5.40)] and is

|0q10q21r

ωq1
ωq2 |- res,3

|+
res,3

|0
res,3 2gq12

uncoupled coupled(a) (b)

ωr

|1q10q20r |0q11q20r

|0q10q20r

Figure 5.7 Tavis-Cummings Hamiltonian energy diagram. The system con-
tains a single excitation. Energy diagram of the uncoupled and coupled states
in (a) and (b), respectively. The state that is dark for the resonator is shown
in gray.
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therefore dark for the resonator.

If both qubits are detuned by |∆rqj
| ≡ |ωr−ωqj

| � gqj
from the resonator, they can

interact via virtual microwave photon excitations in the resonator. In this regime, the

Tavis-Cummings Hamiltonian from Eq. (5.38) is approximately given by the dispersive

Hamiltonian (Blais et al., 2007)

ĤTC,disp =ħh(ωr +χq1σ̂z1
+χq2σ̂z2

)â†â+
∑

j=1,2

ħhωqj

2
σ̂z j
+

ħhJ(σ̂+1
σ̂−2
+ σ̂−1

σ̂+2
)

. (5.41)

We infer from the first term that the resonator resonance frequency depends on the

state of both qubits via the expression χqj
σ̂z j

. Among others, this state-dependent shift

of the bare resonator resonance by χqj
≡ g2

qj
/∆rqj

allows two-tone spectroscopy that

was introduced in subsection 5.2.1. The quantity J ≡ gq1
gq2
(1/∆rq1

+ 1/∆rq2
)/2 in

Eq. (5.41) is referred to as exchange coupling strength since it determines the rate at

which both qubits exchange excitations via virtual photons in the resonator.

If the dressed frequencies ω̃q j
≡ωq j

+χ j of both qubits are on resonance (ω̃q1
=

ω̃q2
), the Hamiltonian in Eq. (5.41) can be written after subtracting the energy offset

ħhωr as (Woerkom et al., 2018)

ĤTC,disp =
|0q0

1q1
〉 |1q0

0q1
〉

�

0 ħhJ
�

|0q0
1q1
〉

ħhJ 0 |1q0
0q1
〉

. (5.42)

The eigenstates |±〉disp,3 = 1/
p

2(|0q0
1q1
〉 ± |1q0

0q1
〉) of the Hamiltonian are entangled

two-qubit states, i.e. states that cannot be written as product of states. Both states are

separated in energy by the exchange splitting 2J = 2gq1
gq2
/∆r with ∆r ≡ωr −ωqj

1.

1This definition of the detuning parameter ∆r neglects the shift χq j
, which is a reasonable assumption

in the dispersive regime since |∆rq j
| ≥ 10gq j

leads to a relative error χq j
/|∆rq j

| ≈ 1%.
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5.3 Hybrid circuit QED description with dissipation

The Jaynes-Cummings and Tavis-Cummings Hamiltonians that were considered so far

in this chapter describe a closed quantum system. This is an idealized model since it

does not take the dissipative interaction of the quantum system with its environment

into account. In subsections 5.3.1 and 5.3.2 we present two approaches to include

dissipation in the theoretical description by considering an open quantum system.

5.3.1 Quantummaster equation

This section is mostly based on the theory developed by Clemens Müller, which is used

to describe our two-qubit experiments presented in chapter 8. A dissipative quantum

system can be modeled by describing the time evolution of its density matrix ρ with a

quantum master equation that reads as (Walls et al., 2008)

ρ̇ = −
i
ħh
�

Ĥsys,ρ
�

+
∑

k

L̂kρ, (5.43)

where Ĥsys is the total Hamiltonian of the system and L̂kρ describes different dissi-

pative channels. In our case, the total Hamiltonian consists of the Hamiltonian of the

closed resonator-qubit quantum system as well as of a Hamiltonian that considers the

coupling of the resonator with its probe tone, i.e. the reflection or transmission of the

probe signal. The latter is taken into account through the scattering Lindblad Hamilto-

nian (SLH) cascaded quantum systems approach (Combes et al., 2017, Müller et al.,

2017a, Woerkom et al., 2018). An introduction to this formalism is beyond the scope

of this experimental thesis and we refer the interested reader to Ref. Combes et al.,

2017. Qualitatively speaking, the probe tone is added to the quantum master equation

via the input-output theory formalism presented in subsection 4.1.2. In essence, one

obtains

Ĥsys = ĤTC + Ĥp, (5.44)

where ĤTC is the Tavis-Cummings Hamiltonian from subsection 5.2.2 and Hp is probe

tone Hamiltonian that reads in the rotating frame at the probe frequency as

Ĥp =
ħh
2i

s

κext

2

∑

m∈{L,R}

(bin,mâ† − b∗in,mâ), (5.45)
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where we assumed a two-port resonator which can be probed from the left (L) or right

(R) side with a classical coherent tone of amplitude bin,m. Note the similarity between

this Hamiltonian and the Hamiltonian in Eq. (4.21) that described the interaction of

the cavity mode with a bath of harmonic oscillators. The probe tone also contributes

the dissipative term

L̂SLHρ = D̂[b̂out,R]ρ + D̂[b̂out,L]ρ (5.46)

to the master equation (5.43), as it describes the decay of the resonator mode into the

probe field. Note that the relation (Combes et al., 2017)

b̂out,m =
s

κext

2
â+ bin,m1 (5.47)

for the operator b̂out,m is similar to the corresponding input-output theory relation

in Eq. (4.30)2. Note also that the operator D̂[Ô ] = ÔρÔ† − (Ô†Ôρ + ρÔ†Ô)/2 in

Eq. (5.46) is the Lindblad superoperator.

The internal resonator decay adds the additional dissipative term

L̂rρ = κintD̂[â]ρ, (5.48)

to the quantum master equation (5.43). The last contribution to dissipation in the

master equation describes the qubit interaction with its environment. Using Born-

Markov approximation one obtains

L̂qρ = γ1,qD̂[σ̂−q
]ρ +

1
2
γϕ,qD̂[σ̂zq

]ρ, (5.49)

where γ1,q is the qubit relaxation rate and γϕ,q the qubit pure dephasing rate. To

gain some intuition about this result we note that the relaxation term couples to the

dissipator of the qubit annihilation operator σ̂−q
, while the dephasing rate is contained

in the term that describes the coupling of the environment to the qubit energy via

the Pauli operator σ̂zq
. The relaxation and pure dephasing rates add up to the qubit

decoherence rate γ2,q as

γ2,q =
γ1,q

2
+ γϕ,q. (5.50)

2The different sign for the second term on the right hand side in Eq. (5.47) compared to Eq. (4.30) is
due to a different sign convention in Ref. Combes et al., 2017 compared to Ref. Walls et al., 2008, where
the latter was followed in subsection 4.1.2.
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Note that we take relaxation and dephasing into account either phenomenologically

or with a noise model as discussed in section 5.4.

We can now calculate the amplitude of the field reflected from the resonator as

bout,m = Tr
�

b̂out,mρ
	

, (5.51)

where ρ is the solution of the total master equation, including the drive and the decay

terms.

For the spectroscopy experiments conducted in this thesis, we are only interested

in the steady state of the system and therefore solve the master equation (5.43) with

the constraint ρ̇ = 0. Note that if the resonator is measured in reflection, we obtain

S11 = bout,m/bin,m from Eq. (5.51) as discussed for a single-port cavity in subsection

4.1.2.

5.3.2 Input-Output theory

Another approach to describe a dissipative quantum system theoretically is given by

input-output theory. This approach can be used equivalently to the quantum master

equation to describe a hybrid circuit QED system if the resonator probe tone is weak

such that it does not introduce additional excitations into the system (Mi, 2018).

In this section we follow Refs. Petersson et al., 2012, Burkard et al., 2016 to derive

the transmission through a two-port resonator that is coupled to a single qubit. The

system Hamiltonian is given by the Jaynes-Cummings Hamiltonian from Eq. (5.33),

which can be transformed into a frame rotating at the probe tone frequency ωp such

that we obtain

Ĥsys = ħh∆rpâ†â+
ħh∆qp

2
σ̂z +ħhgq(âσ̂+ + â†σ̂−), (5.52)

where ∆rp ≡ ωr − ωp and ∆qp ≡ ωq − ωp are the resonator–probe-tone and the

qubit–probe-tone detunings, respectively. As for the input-output calculation for a bare

resonator in subsection 4.1.2, the next step is to write down the Heisenberg equations

of motion for the operators â and σ−:

˙̂a =
i
ħh
[Ĥsys + Ĥdiss, â] and ˙̂σ− =

i
ħh
[Ĥsys + Ĥdiss, σ̂−]. (5.53)

Thereby, Ĥdiss captures the dissipative channels that result in the qubit decoherence

rate γ2,q as well as the internal and external resonator decay rates rates κint and κ1,2 =
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κext/2. For a single input field described by âin,1, the equations of motion become

˙̂a = −i∆rpâ− i gqσ̂− −
κr

2
â+

p

κ1âin,1,

˙̂σ− = −i∆qpσ̂− − i gq(p|0q〉 − p|1q〉)â− γ2,qσ̂−

. (5.54)

The thermal occupation probabilities p|0(1)q〉 of the qubit ground (excited) state are

given as

p|0(1)q〉 = 1/
∑

j

e(E|0(1)q〉−E j)/(kBT), (5.55)

where Ej describes the energy of every state of the quantum system, which forms the

qubit, that can be thermally occupied at temperature T. For kBT� Eq, the ground state

occupation p|0q〉 dominates.

If we neglect the quantum fluctuations at the resonator port that is not probed

(âin,2 = 0), we obtain with Eq. (4.31) âout,2 =
p
κ2â and can calculate the resonator

transmission S21, where we replace the field operators as in subsection 4.1.2 with the

corresponding coherent states amplitudes:

S21 =
−i
p
κ1κ2

∆rp − i κr
2 + gqχe

. (5.56)

The term

χe =
gq(p|0q〉 − p|1q〉)

−∆qp + iγ2,q
, (5.57)

can be identified as the electric susceptibility of the qubit, which modifies the resonator

transmission compared to the uncoupled situation. We note that for equal ground and

excited state occupation probabilities the susceptibility vanishes, since the incoherent

interaction of the qubit with the thermal bath results in a fully mixed state ρ = 1
21

with vanishing coherence.
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5.4 Qubit decoherence

There are multiple dissipative channels for the qubit coherence that have a different

physical origin. They are characterized by their respective noise spectra. While high-

frequency noise at the qubit energy causes relaxation, low-frequency noise tunes the

qubit energy, which leads to dephasing. Note that if the fluctuations in the latter case

occur on a time scale that is long compared to the relaxation rate but short compared

to the measurement time, they are still observed as an ensemble dephasing (Schuster,

2007).

In this section we focus on the relevant dissipative channels for the RX qubit,

where we introduce corresponding noise models in subsection 5.4.1, since the RX qubit

coherence is studied in chapters 7 and 8. The charge qubit and transmon decoherence

is discussed in less depth in subsection 5.4.2. In subsection 5.4.3 we explain the effect

of two qubit decoherence mechanisms that are related to noise in the resonator and

therefore generally apply to a coupled qubit-resonator system.

5.4.1 RX qubit decoherence

In chapters 7 and 8 we study the dependence of the RX qubit decoherence rate on ∆

at the sweet spot in ε. The dominant decoherence mechanisms are magnetic noise in

the qubit host material as well as charge noise. In this section we present models for

both mechanisms. For a more general discussion of decoherence in three-electron spin

qubits we refer to Refs. Mehl et al., 2013, Russ et al., 2017.

5.4.1.1 Magnetic noise

In the following we first discuss the physical origin and basic properties of magnetic-

noise-induced decoherence. Subsequently we report the corresponding noise model

developed by José Carlos Abadillo-Uriel and presented in Ref. Landig et al., 2019a.

Basic concepts

The RX qubit is implemented in the S= Sz = 1/2 subspace of the full three-electron

Hilbert space. If a magnetic noise source couples equally to all three electrons, it leaves

the qubit states unaffected. The RX qubit is therefore referred to as decoherence free

subspace (DFS) qubit. While the DFS protects the qubit against fluctuations in the

global magnetic field, the qubit is still affected by local magnetic field noise. Local

magnetic fields are present in the quantum dots due to the spin of the nuclei in the
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GaAs host material. These fields are unavoidable since the stable isotopes of Ga (69Ga

and 71Ga) and the naturally occurring isotope of As (75As) do not have an even number

of neutrons and protons and consequently possess a finite magnetic moment. The inter-

action of an electron in a quantum dot with its nuclear spin environment is described

by the hyperfine Hamiltonian (Hanson et al., 2007)

ĤHF = gµBB̂N · Ŝ, (5.58)

with the electron spin operator and g-factor Ŝ and g, respectively. The operator B̂N

describes the magnetic field produced by N nuclei in the quantum dot. This field is

referred to as Overhauser field and can be expressed as (Russ et al., 2017)

B̂N =
1

gµB

N
∑

k=1

Ak Îk, (5.59)

where Îk denotes the nuclear spin operator. The hyperfine interaction constant Ak in

Eq. (5.59) is proportional to the probability density of the electron wave function at

the location of the nucleus (Slichter, 1990). The Hamiltonian in Eq. (5.58) therefore

describes contact interaction, which gives the dominant contribution for the coupling

between and electron and a nucleus for 2DEG electrons in GaAs (Coish et al., 2009),

since the conduction band of GaAs is s-type.

While for fully polarized nuclear spins the Overhauser field is |〈B̂N,max〉| ≈ 5T

(Hanson et al., 2007), the spins are practically unpolarized in our experiments due to

the small Zeeman splitting of the nuclear spin levels. In thermal equilibrium at 30 mK

we obtain |〈B̂N〉| ≈ 13mT (Hanson et al., 2007, Coish et al., 2009) for the maximum

external magnetic field of 200 mT that is used to operate the RX qubit in this thesis. The

nuclear spins are therefore randomly oriented and we can treat the Overhauser field as

a classical magnetic field that has a magnitude and a direction described by a Gaussian

probability distribution with standard deviation σHF = 1/
p

N|〈B̂N,max〉| (Merkulov et

al., 2002). For a typical number of nuclei of N ≈ 106 that interact with an electron in

a quantum dot, we calculate σHF ≈ 5 mT.

If the Overhauser field was constant in time, it would influence the electron in a

predictable manner (Hanson et al., 2007). The field however is time dependent, such

that the phase of the electron becomes randomized. For a single electron spin, this

pure dephasing time can be calculated as (Hanson et al., 2007)

T∗2,HF =
p

2ħh/(gµBσHF)≈ 8 ns (5.60)
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by averaging the free time-evolution of the electron over different Overhauser magnetic

field realizations (ensemble average), which are given by the Gaussian probability

distribution. Since the time scale of the nuclear field fluctuations are slow compared

to the electron dynamics, the electron spin coherence can be prolonged by using, for

example, spin-echo techniques that refocus the electron spin on time scales that are fast

compared to the temporal changes in the Overhauser field (Bluhm et al., 2011). For

the time averaged measurements presented in this thesis the picture of the ensemble

average applies. Note that in the presence of an external magnetic field, magnetic field

fluctuations parallel and perpendicular to the quantization axis are distinguished. For

magnetic fields larger than about 100 mT, the contribution of the latter in the direction

of the (tilted) spin quantization axis is negligible (Hanson et al., 2007) however they

can cause spin-flip processes for smaller magnetic fields.

Quantitative noise model

Above discussion was restricted to one electron in a single quantum dot. In the fol-

lowing we present a model for hyperfine-induced decoherence for the RX qubit as a

function of the external magnetic field, which can be divided into two different chan-

nels: decoherence within the Sz = 1/2 subspace of the qubit, associated with magnetic

field fluctuations parallel to the quantization axis, and leakage towards the Sz = −1/2

subspace, associated with magnetic field fluctuations perpendicular to the external

field direction.

First, we follow Refs. Hung et al., 2014, Fei et al., 2015 to analyze the effects of

decoherence within the Sz = 1/2 subspace, which, as we show below, is the leading

source of magnetically-induced decoherence. We define the local differences in the

magnetic field along the quantization axis due to the hyperfine interaction in the left

(L), middle (M) and right (R) quantum dot as δBl ≡ Bz
L − Bz

M and δBr ≡ Bz
M − Bz

R.

In these terms, the Hamiltonian due to magnetic field fluctuations reads in the basis

{|0̃RX〉 , |1̃RX〉 , |2̃RX〉 , |3̃RX〉 , |4̃RX〉} defined in Eq. (3.12) as

ĤδBz
=

1
2

gµB

















2
3 (δBl −δBr)

1p
3
(δBl +δBr) 0 0 −

p
2

3 (δBl −δBr)
1p
3
(δBl +δBr) 0 0 0

q

2
3 (δBl +δBr)

0 0 −δBr 0 0

0 0 0 −δBl 0

−
p

2
3 (δBl −δBr)

q

2
3 (δBl +δBr) 0 0 1

3 (δBl −δBr)

















.

(5.61)

The Hamiltonian couples the different spin configurations of the (1, 1, 1) states |0̃RX〉,
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|1̃RX〉 and |4̃RX〉. We assume that the magnetic field fluctuations in all three dots follow

the Gaussian probability distribution

P(δBl ,δBr) =
1

2πσ2
HF

e−(δB2
l +δB2

r )/(2σ
2
HF). (5.62)

To calculate the dephasing rate due to the hyperfine interaction γHF
ϕ,RX we assume that

the Overhauser field is quasistatic compared to the qubit dynamics. The time evolution

of the density matrix is therefore given as

ρ̇ = −
i
ħh
[ ˆ̃HHub +

ˆ̃HδBz
,ρ], (5.63)

where the tilde in ˆ̃HHub and ˆ̃HδBz
indicates that we have performed a transformation

to the basis that diagonalizes the unperturbed Hubbard Hamiltonian ĤHub, as defined

in Eq. (3.13) at the relevant RX qubit working point. To evaluate the decay of the

coherence, we assume the following initial state

|ψ0〉=
1
p

2
(|0〉+ |1〉). (5.64)

We now assume that the noise due to fluctuating hyperfine fields δBl and δBr is un-

correlated. It is therefore possible to average the value of the coherence using the

probability distribution given in Eq. (5.62). Hence, we obtain for the average value of

the density matrix:

〈ρ(t)〉=
∫

d(δBl)d(δBr)
2πσ2

HF

ρ(t,δBl ,δBr)e
−(δB2

l +δB2
r )/2σ

2
HF (5.65)

The value of γHF
ϕ,RX is then determined by Gaussian decay of the coherence term in the

density matrix:

|〈ρ01〉|=
1
2

e−
�

γHF
ϕ,RX t

�2

. (5.66)

Below, we first derive an analytical formula for the decoherence rate under the as-

sumption that it mainly arises due to pure dephasing within the qubit subspace. For

simplicity, we also assume symmetric tunnel couplings tL = tR = t. Later, we show how

the numerical results based on Eq. (5.65) validate the assumptions made.

For a given working point we can approximate the qubit dynamics using the two-state

Hamiltonian

Ĥ=
ħhωRX

2
σ̂z +

�

hl(∆, t)δBl + hr(∆, t)δBr

�

σ̂z , (5.67)
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where hl,r are the prefactors of δBl and δBr in the basis that diagonalizes ĤHub [see

Eq. (3.13)], after projecting onto the qubit subspace. These prefactors can be calculated

analytically at the sweet spot in ε (ε = 0) for a given ∆ and t, giving hl = −hr with

hl =
gµB

24

�

− 4+∆
� 3
p

2t2 +∆2
+

1
p

6t2 +∆2

��

. (5.68)

Inserting the two-level Hamiltonian Eq. (5.67) in Eq. (5.63), and applying Eqs. (5.64)-

(5.66) we get

γHF
ϕ,RX =

q

h2
l + h2

rσHF
p

2ħh
, (5.69)

which gives with Eq. (5.68) the analytic expression

γHF
ϕ,RX =

|g|µBσHF

24ħh

�

4−∆
� 3
p
∆2 + 2t2

+
1

p
∆2 + 6t2

��

. (5.70)

The resulting dependence of γHF
ϕ,RX on ∆ is shown in Fig. 5.8(a) for σHF = 5mT as

estimated above. By decreasing ∆, the contribution of the (1,1,1) states to the RX
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Figure5.8 Hyperfine-induced RX qubit decoherence. The graphs are obtained
for σHF = 5mT and g = −0.4. (a) Analytic solutions (t/h = 9GHz in black)
and numerical calculations (tR/h = tL/h = 9GHz in blue, tL/h = 9.91GHz
and tR/h= 8.26 GHz in green) of γHF

ϕ,RX as a function of∆. Inset: Contribution

γHF,⊥
ϕ,RX to decoherence from the field fluctuations perpendicular to the spin

quantization axis for tR/h = tL/h = 9GHz. b Perpendicular contribution to
decoherence as a function of the external magnetic field for tR/h = tL/h =
9 GHz and ∆/h= −10GHz.
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qubit states increases (see subsection 3.2.3) and consequently the hyperfine-induced

decoherence rate is enhanced. In the limit∆→−∞, we obtain γHF
ϕ,RX = gµBσHF/(3ħh),

which translates into a similar dephasing time T∗2,HF = 1/γHF
ϕ,RX = 17ns compared to

the estimate for a single electron spin in Eq. (5.60).

We also numerically evaluate the integral in Eq. (5.65) for the full five-dimensional

basis set, following the procedure described in Ref. Fei et al., 2015, allowing us to also

obtain results for asymmetric tunnel couplings. Numerical and analytical result of γHF
ϕ,RX

for tL/h = tR/h = 9GHz as a function of ∆ are identical as shown by the blue and

black lines in Fig. 5.8(a). The green line in Fig. 5.8(a) indicates the numerical result

of γHF
ϕ,RX for a tunnel coupling asymmetry |(tL − tR)|/tL ≈ 20%. It agrees in the regime

∆/h ≤ −7.5GHz within ≈ 5% with the analytical calculation for an averaged tunnel

coupling (t/h= (tL + tR)/2h≈ 9.1 GHz), which overlaps within the resolution of the

plot with the black line in Fig. 5.8(a) that is shown for t/h= 9.0GHz. Note that this

small relative error of analytical and numerical results for asymmetric tunnel couplings

motivates to use the analytical formula to fit to decoherence data in chapters 7 and 8.

Next, we consider the hyperfine fields that are perpendicular to the spin quanti-

zation axis, which mix states from the qubit subspace (Sz = 1/2) with states from

the opposite spin subspace (S′z = −1/2). This form of leakage is expected to be the

dominating decoherence channel when the global magnetic field is suppressed (Hung

et al., 2014). However, since the cavity response does not depend on the spin subspace

where the qubit is defined, the impact of this mechanism on the qubit linewidth is

non-trivial. For instance, the resonator mediates the interaction between qubit states,

but there is no coupling between the pair of states with Sz = +1/2 and the pair of

states with Sz = −1/2. This means that if there was a magnetic-noise-induced error

that transforms the qubit state from |0RX〉
+ to |0RX〉

−, where the superscript ± indicates

the spin subspace, the cavity response and the interactions mediated by the resonator

would be unaffected. A hyperfine-induced bit-flip from |0RX〉
± to |1RX〉

∓ however would

have an impact on the cavity response linewidth.

To analyze this bit-flip decoherence mechanism we consider the contribution of

the in-plane components of the magnetic field noise (δBx ,δBy). We then follow the

same numerical procedure used to study fluctuations of the Bz field in Ref. Fei et al.,

2015. However, we only consider the interaction terms that mix states with S′z = Sz±1.

The estimated contribution γHF,⊥
ϕ,RX of the perpendicular Overhauser fields to the qubit

decoherence is shown in the inset in Fig. 5.8(a) for B = 0 and as a function of Bz

at ∆/h = −10GHz in Fig. 5.8(b). It is negligible at B = 0, where |0RX〉
± and |1RX〉

∓

are split by the qubit energy. The decoherence rate γHF,⊥
ϕ,RX however becomes significant
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once the states |0RX〉
− and |1RX〉

+ are close in energy at around Bz = 700mT and can

consequently be mixed by the hyperfine fields.

5.4.1.2 Charge noise

Charge noise is due to electric field fluctuations from uncontrolled degrees of freedom

that couple to the RX qubit. It is either externally introduced via the TQD gate electrodes

or intrinsic of the qubit host material. The latter typically has a 1/ f spectral density

(Dial et al., 2013), which can be attributed to an ensemble of two-level fluctuators with

a Lorentzian spectrum (Paladino et al., 2014) that couple to the qubit. Possible expla-

nations for the physical origin of this charge noise in GaAs heterostructures include

trapping of charges during cooldown due to leakage from the gate electrodes to the

2DEG (Buizert et al., 2008) as well as charged trap sites induced during fabrication

(Hitachi et al., 2013). The dominant low frequency components of the 1/ f charge

noise couple via the RX qubit charge asymmetry parameter ε and the detuning param-

eter ∆ to the qubit energy and hence dephase the qubit. While first order dephasing

is suppressed at the sweet spot in ε, where ∂ ERX/∂ ε = 0 (Russ et al., 2015a), second

order charge noise that couples to the curvature of the qubit dispersion can still have

a significant contribution to dephasing depending on the noise magnitude (Russ et al.,

2015a).

The second source of charge noise are the TQD gate lines, that introduce thermal

noise to the RX qubit. Note that significant contribution to this noise could be related

to evanescent electromagnetic waves in the near field of the gates that reach the qubit

(Volokitin et al., 2007), which is referred to as evanescent-wave Johnson noise. The

thermal-noise spectral density can be derived by considering that the gate lines rep-

resent an impedance Z for the qubit, which is a source of voltage noise with spectral

density (Callen et al., 1951, Clerk et al., 2010)

SV(ω) = 2ℜ[Z(ω)]
ħhω

1− e−ħhω/(kBT)
(5.71)

that is derived from a quantum treatment of thermal noise3. For ħhω> kBT, the spec-

3The quantum mechanical derivation considers the vacuum fluctuations, which is in contrast to the
Johnson-Nyquist equation for thermal noise, where SV,JN(ω) = 2ℜ[Z(ω)]ħhω/(exp[ħhω/(kBT)]−1) (Nyquist,
1928) is obtained. While SV,JN decreases with ω, SV shows an increase, which was observed experimentally
for Josephson junctions in Ref. Koch et al., 1981. A discussion about this different behavior can for example
be found in Ref. Kish et al., 2016. In the classical limit kBT� ħhω, both derivations yield the same white noise
spectrum SV = SV,JN = 2ℜ[Z(ω)]kBT [note that SV,JN(ω) + SV,JN(−ω) = 4ℜ[Z(ω)]kBT is the engineering
convention (Clerk et al., 2010)].
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trum is approximately linear in ω and called ohmic4. The high frequency components

of the thermal noise couple via the electric dipole moment to the qubit and lead to

relaxation (Langsjoen et al., 2012, Poudel et al., 2013). The low frequency contribution

is smaller but can still dephase the qubit (Premakumar et al., 2018).

Another intrinsic source of charge noise are phonons, which couple to the qubit

electric dipole moment (Russ et al., 2017) causing relaxation. We identify two dominant

mechanisms in GaAs (Gasser et al., 2009). First, acoustic phonons couple to the qubit

via a deformation potential that is a result of phonon-induced strain, which modifies the

electronic structure in the host material. Second, GaAs is piezoelectric and therefore

acoustic phonons induce electric fields that lead to qubit-phonon coupling. A theoretical

model for phonon-induced relaxation for the RX qubit is presented in Ref. Taylor et al.,

2013. It is however not applicable to our experiments, since the model is restricted

to the regime ∆� −tL,R, where the Schrieffer-Wolff transformation (see subsection

3.2.3) is valid.

It is likely that all three above-mentioned charge noise sources have a notable con-

tribution to the RX qubit decoherence. To distinguish their contribution, time-resolved

experiments could be performed. These experiments allow to extract relaxation and

dephasing rates as a function of the qubit energy and consequently to map out the

underlying noise spectrum (Dial et al., 2013). Such an analysis is not possible in our

experiments where we measure time-averaged decoherence rates. Instead we use the

approach to describe the qubit decoherence due to charge noise with the least possible

number of free parameters while still finding reasonable agreement with our experi-

mental observations. We therefore consider relaxation induced by ohmic noise, which

we model as

γth
1,RX = β ωRX

�

�

�

�

�

gRX

g(0)c,RX

�

�

�

�

�

2

, (5.72)

where β is a fit parameter that encodes the noise spectral power and the absolute

magnitude of its coupling to the RX qubit and ωRX is the level splitting of the RX

qubit. The factor (|gRX|/|g
(0)
c,RX|)

2 ensures the proper scaling with∆ for the charge noise

coupling.

4A noise spectrum S(ω)∝ ωs is referred to as ohmic for s = 1, sub-ohmic for s < 1 (e.g. 1/ f noise)
and super-ohmic for s > 1 (Shnirman et al., 2002).
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5.4.2 Charge qubit and transmon decoherence

Since the logical qubit states of a charge qubit have a different charge distribution, the

qubit is prone to charge noise, which has the same physical origin as for the RX qubit

(see subsection 5.4.1.2). In contrast to the RX qubit, it is however not influenced by

magnetic field fluctuations. By working at the sweet spot (δ = 0), dephasing due to

low-frequency charge noise is reduced. Recently, the decoherence rates for GaAs charge

qubits has been decreased by three orders of magnitude (Scarlino et al., 2019b,a) down

to a few MHz compared to earlier experiments (Frey et al., 2012, Basset et al., 2013)

by engineering the DQD electrostatics such that the qubit electric dipole moment is

reduced (Scarlino et al., 2019a). Similar decoherence rates have been reported for

Si/SiGe charge qubits and were attributed to the gate design, to low intrinsic charge

noise due to a high quality host material (Mi et al., 2017c) as well as to a reduction

of externally induced noise by on-chip filtering the quantum dot gate lines (Mi et al.,

2017a). In contrast to the RX qubit, the charge qubit decoherence is in this thesis not

subject to intensive studies. We therefore follow earlier work with charge qubits in

GaAs in Refs. Frey et al., 2012, Stockklauser et al., 2017, Woerkom et al., 2018 and

use a charge noise model with a white spectrum. There, the relaxation and dephasing

rates are determined as (Frey, 2013)

γ1,CQ = γ
(b)
ϕ,CQ sin(θ )2 + γ(b)1,CQ cos(θ )2 (5.73)

γϕ,CQ = γ
(b)
ϕ,CQ cos(θ )2 + γ(b)1,CQ sin(θ )2. (5.74)

They depend on the qubit mixing angle θ that was defined in subsection 3.1.3 as well

as on the bare relaxation and dephasing rates γ(b)1,CQ and γ(b)ϕ,CQ, respectively. The charge

qubit decoherence rate is then given as γ2,CQ = γ1,CQ/2+ γϕ,CQ.

While the decoherence rate of the charge and RX qubit is of the order of MHz, two

to three orders of magnitude lower rates are routinely achieved for transmon qubits

(Andersen et al., 2019). This is likely related to the significantly lower susceptibility of

the transmon to charge noise (see subsection 3.3.2) and to the inherent decoherence

protection by the superconducting gap (Clarke et al., 2008). One of the possibly limiting

decoherence mechanisms for state-of-the-art transmons is parasitic coupling to two-

level defects (Müller et al., 2017b) that reside for example in the oxide of the Josephson

junctions or at interfaces of dielectrics (Wang et al., 2015). The coherence of the

transmon used in this thesis is limited by Purcell decay through the coupled resonator

and is taken into account phenomenologically.
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5.4.3 Resonator-related decoherencemechanisms

5.4.3.1 Measurement-induced dephasing

While the ac Stark shift introduced in subsection 5.2.1 can be used to measure the

averaged number of photons in the resonator and to calibrate the resonator probe line

attenuation, it also introduces a decoherence mechanism. Since the resonator photons

are in a coherent state, there are fluctuations (shot noise) in the number of photons,

which translate via the ac Stark shift into fluctuations of the qubit transition frequency

that dephase the qubit. This so-called measurement-induced dephasing (MID) occurs

at a rate (Gambetta et al., 2006)

ΓMID =
2n̄κrχ

2

κ2/4+χ2 +∆2
rp

, (5.75)

where ∆rp ≡ νr − νp is the detuning of the probe tone from the resonator resonance

and the definition of the other quantities can be found in subsection 5.2.1. For κ�
χ one recovers the result ΓMID = 8n̄χ2/κr that is typically quoted in literature (see

e.g. Ref. Schuster et al., 2005).

5.4.3.2 Purcell decay

The presence of the resonator has another effect on the qubit coherence. Its vacuum

fluctuations stimulate qubit relaxation if the qubit and the resonator are on resonance.

This phenomenon is named Purcell effect (Purcell et al., 1946) and leads to qubit

relaxation at rate (Sete et al., 2014)

ΓP =
κr

2
−
p

2
2

r

−A+
q

A2 + (κ∆qr)2 (5.76)

with A ≡ ∆2
qr + 4g2

q − κ
2
r /4. If qubit and resonator are detuned (|∆qr| > 0), Purcell

decay can be suppressed. In the limit of large qubit resonator detuning |∆qr| � gq,κr,

we obtain ΓP = κr g
2
q/∆

2
qr, which is typically used in the context of circuit QED (Sete

et al., 2014).
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Chapter 6

Microwave detection of two-electron
double quantum dot spin states

Single electrons confined in quantum dots reveal quantum effects at a fundamental

level (Kastner, 1992). The electron wave function can be engineered to investigate

phenomena due to the Pauli exclusion principle, like exchange interaction (Tarucha

et al., 1996) or spin blockade (see subsection 3.1.4). To deduce information about

such phenomena, one can couple the system to electron reservoirs and measure the

resulting current (Nowack et al., 2007) or utilize a charge sensor to infer information

about the charge state of the system (Elzerman et al., 2003, Barthel et al., 2010). An

alternative approach is to probe the photon transmission through a microwave cavity

coupling weakly to the electronic states in the quantum dots (Childress et al., 2004,

Burkard et al., 2016). This approach has been used to study charge related phenomena

(Frey et al., 2012, Petersson et al., 2012, Delbecq et al., 2011, Toida et al., 2013, Deng

et al., 2015) and valley physics (Mi et al., 2017b) in quantum dots.

In this chapter we present experiments where we use such a setup with a magnetic

field resilient resonator to investigate singlet-triplet spin physics in a DQD with the

resonator only. We utilize the fact, that in contrast to the spin-triplet states, spin-singlet

states have a finite electric susceptibility and therefore couple to microwave photons

(Zheng et al., 2019, Petersson et al., 2012). We then apply an external magnetic field

to detect the transition from a spin-singlet to a spin-triplet ground state. In previous

experiments, where low-frequency resonant circuits were used (Schroer et al., 2012,

House et al., 2015, Betz et al., 2015), this transition was observed in the dispersive

regime only. We tune the qubit energy above or below the resonator energy and perform

both resonant and dispersive spectroscopy. Subsequently, we map the two-electron
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singlet-triplet crossover at finite magnetic field with resonant spectroscopy without the

need of pulsed gate operations (Petta et al., 2005).

We also present experiments where we apply a source-drain bias and measure the

resonator response of the non-equilibrium steady state. With this method, we detect

the spin blockade previously observed in transport experiments (Ono et al., 2002,

Johnson et al., 2005a) and discover an unconventional spin blockade that involves the

absorption of resonator photons.

This chapter is structured as follows: In sections 6.1 and 6.2 we discuss experimen-

tal details and basic characterization measurements, respectively. Subsequently we

present results for zero and finite bias measurements in sections 6.3-6.4 and compare

the latter to a rate-equation model. In most parts of this chapter we closely follow our

letter:

Cavity-Detected Spin Blockade in a Few-Electron Double Quantum Dot

A. J. Landig, J. V. Koski, P. Scarlino, C. Reichl, W. Wegscheider, A. Wallraff, K. Ensslin,

and T.Ihn, PRL 122, 213601 (2019)

6.1 Experimental details

In this section we introduce the sample and provide a summary of the sample fabri-

cation. We also discuss the degradation of the resonator quality factor compared to

experiments in subsection 4.3.1.3.

6.1.1 Sample

The experiments are performed in the setup presented in chapter 2 with the sample

shown in Fig. 6.1. We define a DQD by local electrostatic depletion of the 2DEG in a

GaAs/AlGaAs heterostructure with Au gate electrodes. The gate electrodes are designed

to be in close proximity in order to prevent regions of floating 2DEG between gate

lines, which were found to cause instabilities in the DQD electrostatic potential. A

source-drain bias Vsd can be applied to the DQD. The voltages VL and VR control the

charge occupation of the DQD, which is detected with a QPC. VT is used to tune the

interdot tunnel coupling.

One of the gate electrodes [orange in Fig.6.1(a)] is electrically connected close to

one end of a λ/2 CPW resonator with a resonance frequency νr = 8.33GHz, a total

linewidth κr/2π = 101MHz (Qld ≈ 80) and an estimated characteristic impedance

Zr ≈ 1.3kΩ. A DC voltage can be applied to this gate line via a DC bias line that

https://doi.org/10.1103/PhysRevLett.122.213601
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200 nm

QPC
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Vsd

VRVT

in out

100μm

(b)(a) ~1 mm
S

S D

D

Figure 6.1 Sample. (a) False-colored scanning electron micrograph of the
DQD region. A DQD (circles) is formed with the gate lines marked in color.
One of the gate lines (orange) extends to the microwave resonator. Source (S)
and drain (D) ohmic contacts are marked. A voltage Vsd can be applied over
the DQD. (b) False-colored optical micrograph indicating NbTiN (dark blue),
bare GaAs (light blue) and Au (yellow). The resonator (in) and output (out)
ports are labelled. The position of the DQD and the region for DC bias of the
resonator are marked with a red and green rectangle, respectively.

electrically connects to the resonator center conductor at half the resonator length

(Frey, 2013) [see green rectangle in Fig. 6.1(b)]. The resonator is fabricated from

a h ≈ 15nm thick and w ≈ 300nm wide film of NbTiN, which makes it resilient to

parallel magnetic fields of up to B= 2 T (see subsection 4.3.1.4). For the experiments

presented in this work, the number of photons in the resonator is about one.

6.1.2 Resonator quality factor

The zero magnetic field quality factor Qld ≈ 80 found in subsection 6.1.1 is one order

of magnitude lower compared to the value obtained for NbTiN test resonators with a

similar resonator design in subsection 4.3.1.3. In the following we discuss two possible

explanations for this significant reduction.

First, since the resonator extends to the DQD region, parasitic capacitive coupling

between the resonator and the DC gate lines can lead to additional photon loss via

these lines. This loss mechanism can be reduced, for example, by engineering low-pass

filters for the gate lines (Mi et al., 2017a).

Second, the reduced Qld may be related to the voltage bias line that was not present

for the NbTiN test resonators. This line is fabricated as a ≈ 3.1 mm long and ≈ 300 nm

wide meander of a Ti(3nm)/Au(25nm) film, which provides a high impedance en-

vironment for the resonator photons due to the large resistance per unit length of

Rl ≈ 5.5MΩ/m. To minimize the loss of resonator photons via the bias line, it would
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ideally be connected to the minimum impedance point of the resonator (Chen et al.,

2011), which is the position of the node of the resonator voltage mode. For the funda-

mental mode of a symmetrically coupled λ/2 resonator, this voltage node is at half the

resonator length. Since the resonator line that extends to the DQD [see Fig. 6.1(b)] can

modify the voltage mode profile, the location of the voltage node is potentially offset

from the ideal position. Consequently, the resonator impedance at the connection point

to the bias line, which is at half the resonator length for the sample in Fig. 6.1(b), would

not be minimal. This would increases the photon loss via the bias line. To mitigate this

effect in the future, simulations of the resonator voltage profile could be performed,

where the design of the DQD fine gates is probably relevant since they couple capac-

itively to the resonator. Alternative experimental approaches are to symmetrize the

system by coupling the resonator to a second DQD at the opposite end of the resonator

or to increase the bias line impedance via its geometry or by the choice of a material

with a larger specific resistivity such as platinum (Van Woerkom et al., 2017).

A significant reduction of Qint due to the bias line was not reported for a 50Ω

resonator in Ref. Frey, 2013. We suspect that the positioning of the bias line is more

critical for high impedance resonators compared to 50Ω resonators, since the voltage

fluctuations in the latter are smaller.

6.1.3 Sample fabrication

The sample fabrication starts by patterning a global marker structure with a 100keV

EBL system on top of the heterostructure. All subsequent steps are aligned with respect

to these markers. Consecutively, we define a mesa structure for the DQD and its source

and drain leads by photolitography and wet etching. The etching depth of ≈ 80 nm ex-

ceeds the depth of the Si dopant layer to ensure that the 2DEG is removed in the etched

areas. In the following processing step, we contact the remaining 2DEG electrically by

patterning ohmic contacts at the edges of the mesa with photolithography, followed

by evaporating layers of germanium (Ge), Au and nickel (Ni), which are subsequently

annealed. We then use photolithography to define the macroscopic gate line structure

as well as several pads that will serve as electrical connections between NbTiN and

EBL defined Au structures. Subsequently we evaporate Ti(5 nm)/Au(55 nm), where Ti

serves as an adhesion layer. Next, the NbTiN regions are sputtered on top of a pho-

tolithographically defined structure. We then partially remove the NbTiN with RIE in

regions that are patterned with the 100 keV EBL system in order to define the resonator

structure. In the last step, we evaporate the DQD fine gates as a Ti(3 nm)/Au(25 nm)
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layer on an EBL defined structure. Note that for this last step we use a 30keV EBL

system that provides a sufficient precision within a write field size of 200× 200µm2.

For more details about the fabrication process we refer to Appendix C.1.

6.2 Basic characterization

We set Vsd = 0, B = 0 and tune the DQD into a regime where the relevant charge

states are (0, 1), (0, 2), (1, 1) and (1, 2). As introduced in subsection 3.1.3, the tunnel

coupled (0,2) and (1,1) charge states with singlet spin configuration form a charge

qubit. The qubit energy Eq =
p

δ2 + (2t)2 can be tuned electrostatically: the voltages

VL and VR control the bare energy detuning δ = E(1, 1)−E(0, 2) of the (0, 2) and (1, 1)
charge states, and the voltage VT in Fig. 6.1(a) determines the tunnel coupling t. For

2t ≤ hνr, the qubit and resonator energies intersect at the resonant detuning values

δ± = ±
p

(hνr)2 − (2t)2 [see top panel in Fig. 6.2(a)].

By probing the resonator transmission |S21|2 at the bare resonance frequency νr as a
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Figure 6.2 Charge qubit dispersion and resonator response. (a) Bare charge
qubit energy Eq (blue) and resonator energy hνr (black) as a function of δ for
2t < hνr (top) and 2t > hνr (bottom). (b) Resonator transmission |S21|2 on
resonance as a function of VL and VR at B= 0 and Vsd = 0 normalized by the
background value |S(0)21 |

2 . The interdot tunnel coupling is t/h= 3.4 GHz (2t <
hνr) for the main figure and t/h= 4.5 GHz (2t > hνr) for the inset. Changing
voltages along the dashed green line or the dashed red line independently
tunes δ⊥ or δ, respectively. The two triple points are each marked with a
black dot.
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function of VL and VR, we observe two lines with reduced transmission at δ = δ± in the

main panel in Fig. 6.2(b). They are due to electric dipole interaction of the resonator

electric field with the charge qubit in the DQD, causing a shift of the resonator resonance

frequency (Childress et al., 2004). Note that the measurement in Fig. 6.2(b) is identical

to the measurement in Fig. 3.5(a), where the QPC response was indicated instead of

the resonator transmission. For 2t > hνr, the resonator interacts dispersively with the

qubit [bottom panel in Fig. 6.2(a)], evident as a single line with reduced transmission

at δ = 0 in the inset of Fig. 6.2(b). In the following we refer to the reduced transmission

as the “resonator response”. As expected, the resonator response in Fig. 6.2(b) is visible

once the charge qubit is isolated from the reservoirs. This is for −δ⊥,TP < δ < 0, where

δ⊥ = 0.5[E(1, 1)+E(0, 2)]−E(0, 1) ranges between the triple points. Here, we extract

δ⊥,TP ' 510µeV (123GHz).

To characterize the coupled qubit-resonator system, we measure in Fig. 6.3 the in-

phase Ĩ and quadrature Q̃ components of the complex resonator transmission amplitude

S21 = Ĩ + iQ̃ for multiple tunnel gate voltages VT along the δ-axis marked in red in

Fig. 6.2(b), i.e. for δ⊥ ' −δ⊥,TP/2. Note that the x-axes in Fig. 6.3 are converted

into energy with the lever arm αδ = 0.046± 0.005, which was extracted from charge

stability diagram measurements. The parameters Ĩ and Q̃ in Fig. 6.3 are calculated

from the raw data as follows. We measure the amplitude V̂ and phase difference

∆φ of the microwave signal transmitted through the resonator with the heterodyne

detection setup presented in chapter 2. We then define Ĩ ≡ ℜ[V̂/V̂0 · ei(∆φ−∆φ0)] and

Q̃ ≡ ℑ[V̂/V̂0 · ei(∆φ−∆φ0)], where V̂0 is the background signal measured at δ� 0 and

∆φ0 is a setup related phase offset.

To describe the experimental data in Fig. 6.3 theoretically, we use the input-output

model derived in subsection 5.3.2 together with the white-noise decoherence model

from subsection 5.4.2. The theoretical transmission amplitude S21 relates to the ex-

perimentally measured quantities in Fig. 6.3 according to Ĩ = ℜ[|S21|/S
(0)
21 · e

i arg(S21)]
and Q̃ = ℑ[|S21|/S

(0)
21 · e

i arg(S21)], where S(0)21 = |S21(g
(0)
CQ → 0)| is obtained for zero qubit-

resonator coupling. We perform a simultaneous fit to thirteen Ĩ and Q̃ datasets (in

parts shown in Fig. 6.3), which are obtained for different VT. Free parameters that

are the same for all datasets are γ(b)1,CQ, γ(b)ϕ,CQ (defined in subsection 5.4.2) and Te. The

coupling strength g(0)CQ and the tunnel coupling t are additional free parameters, which

can, however, vary for the datasets: GCQ ≡ {g
(0)
CQ,1, g(0)CQ,2, ..., g(0)CQ,13}, T̃ = {t1, t2, ..., t13}.

We obtain γ(b)1,CQ/2π ' 84MHz, γ(b)ϕ,CQ/2π ' 315MHz, Te ' 60mK, the tunnel cou-

plings as specified in Fig. 6.3 and an averaged coupling strength g(0)CQ/2π= 28±2 MHz

with the error being the standard deviation of the fitted values in GCQ. For all qubit
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configurations analyzed in this work beyond the thirteen mentioned above, we per-

form a simultaneous fit to Ĩ and Q̃ with the free parameters t and g(0)CQ , where we use
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Figure 6.3 Qubit parameter extraction. In-phase Ĩ (blue) and quadrature Q̃
(orange) components of complex resonator transmission amplitude probed
on resonance as a function of δ. The corresponding tunnel gate voltages VT
and extracted tunnel couplings t are indicated. The solid lines are a fit to an
input-output theory model.
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the constraint g(0)CQ/2π ∈ [26,30]MHz. Since g(0)CQ � γ2,CQ,κr, the resonator acts as a

weakly coupled probe that does not influence the DQD states coherently (Koski et al.,

2018).

6.3 Zero bias measurements

In this section we present measurements performed at zero source-drain bias. We

report the experimental signature of the system transitioning from a spin-singlet to a

spin-triplet state as a function of magnetic field in subsection 6.3.1 and subsequently

use this signature in subsection 6.3.2 to map the singlet-triplet intersection point. We

also discuss singlet-triplet mixing and the influence of the magnetic field on tunnel

coupling in subsections 6.3.3 and 6.3.4, respectively.

6.3.1 Resonator spin blockade

We probe the resonator at νp ' νr as a function of δ and B for δ⊥ ' −δTP/2 and

Vsd = 0. Note that the dependence νr(B) (see subsection 4.3.1.4) was approximately

accounted for, since |νr(B)− νp(B)| ≤ κr(B)/10 within the magnetic field range from

0 to 1.8 T, which is relevant for our experiments. In Figure 6.4(a) we show the exper-

imental result for dispersive interaction (2t > hνr). Like in the inset of Fig. 6.2(b),

we observe a single dip in the transmission at δ = 0 for B = 0. The dip vanishes

along a slanted line at B ' 1T in Fig. 6.4(a). For resonant interaction (2t < hνr) in

Fig. 6.4(b), the two transmission dips at B = 0 [cf. Fig. 6.2(b)] vanish at different

magnetic fields. The simulations in Figs. 6.4(b)-(c) obtained from the transmission

amplitude in Eq. (5.56) together with the thermal state occupation in Eq. (5.55) are in

good qualitative agreement with the corresponding experimental results in Figs. 6.4(a)-

(b). We use the values for the parameters g(0)CQ , γ(b)1,CQ, γ(b)ϕ,CQ and Te obtained from the fits

in section 6.2 as well as the g-factor g = −0.4 (Nowack et al., 2007) for the calculation.

We also take the magnetic field dependence of the resonator linewidth κr(B) and the

resonance frequency νr(B) into account (see subsection 4.3.1.4). Note that the small

jumps of the transmission minima in Fig. 6.4(a)-(b) with δ as a function of B are due

to sample instabilities and therefore not captured by the simulations.

We explain the observation in Figs. 6.4(a)-(b) qualitatively by considering the spin

character of the two electron DQD states. The relevant spin-singlet states (0, 2)S and

(1, 1)S as well as the spin-triplet states (1, 1)T0, (1, 1)T+ and (1, 1)T− were in introduced

in subsection 3.1.4. In Fig. 6.4(e) and Fig. 6.4(f) we show the singlet-triplet energy
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spectrum as a function of δ for 2t > hνr and for 2t < hνr , respectively. The resonator

weakly probes the ground state of the system at the detuning values δ = δ± and δ = 0

for 2t < hνr and 2t ≥ hνr, respectively. For B = 0, the ground state of the system is
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Figure 6.4 Zero bias magnetic field dependence. Left (right) column: 2t >
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is the bare resonator transmission for a given B. The data obtained from a cut
at the orange dashed lines is shown in Fig. 6.5. (c)-(d) Input-output theory
calculation for the parameters in (a)-(b). (e)-(f) Singlet-triplet energy spec-
trum as a function of δ for B = 300mT. The dashed line indicates the qubit
ground state energy offset by the resonator energy.
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the qubit ground state |0CQ〉. When increasing the magnetic field, (1, 1)T+ is lowered

in energy with respect to |0CQ〉 by the Zeeman energy EZ and eventually becomes the

ground state at δ = 0 and at δ = δ±. As (1, 1)T+ has no electrical dipole moment, the

resonator response at δ = 0 in Fig. 6.4(a) and at δ = δ± in Fig. 6.4(b) vanishes. In

the following we call this phenomenon “spin blockade of the resonator response” in

analogy to the spin-blockade phenomenon in electron transport (Ono et al., 2002).

6.3.2 Singlet-triplet intersection point

Figures 6.5(a)-(b) show cuts of the data in Figs. 6.4(a)-(b) at B= 300 mT. The transmis-

sion as a function of δ has a Lorentzian lineshape with either a single dip of amplitude

A2
0 at δ = 0 for 2t ≥ hνr in Fig. 6.5(a) or two dips of amplitudes A2

± at δ = δ± for

2t < hνr in Fig. 6.5(b). Note that the δ−position of the minima is a free fitting param-

eter to account for the sample instabilities discussed in the context of Fig. 6.4(a)-(b).

The magnetic field dependence of A2
0 and A2

± is depicted in Fig. 6.6(a). We use a

Fermi Golden rule approach to describe the observed behavior theoretically, since the

resonator acts as a weak probe for singlet state transitions. In this picture, the Fermi

Golden rule determines the rate at which a photon in the resonator and qubit interact

as

Γph−|0CQ〉 =
2π
ħh
| 〈1CQ| Ĥint,CQ |0CQ〉 |2p|0CQ〉 =

2π
ħh

�

g(0)CQ

�2
sin(θ )2p|0CQ〉 (6.1)

with the electric dipole interaction Hamiltonian Ĥint,CQ from Eq. (5.6) and the ground

state occupation probability p|0CQ〉. If the qubit is in the ground state, it can be excited

by absorbing a photon from the resonator. We can model this process with a classical

1
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Figure 6.5 Extraction of response amplitude. (a) Cut of the data in Fig. 6.4(a)
at B = 300mT. A2

0 is extracted from a Lorentzian fit (solid line). (b) Cut of
Fig. 6.4(b) at B= 300 mT with two Lorentzian fits (solid line) of amplitudes
A2
± at δ ≈ δ±.
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Figure 6.6 Singlet-triplet intersection fields. (a) A2
0(B) (blue), A2

+(B) (green)
and A2

−(B) (red) with standard errors and theory fits (solid lines). (b) B0(t)
and B±(t) compared to theory (solid line). The data points extracted from
the fits in (a) are marked in color. The error bars in t account for the δ lever
arm error. For B0,+ we show the standard errors of the fits as in (a), for B−
maximum error estimates from repeated measurements.

rate equation. The resonator can have one or zero photons with probabilities p1 or

p0, respectively. In addition to resonator-qubit interaction, the number of photons in

the resonator decreases at rate κint by decay in the resonator. In steady state, the rate

equation is

ṗ1 = ΓP p0 − (Γph−|0CQ〉 +κint)p1 = 0, (6.2)

where ΓP is the rate at which the resonator probe tone feeds photons into the resonator.

With p0 = 1− p1, we arrive at

p1 =
ΓP

Γph−|0CQ〉 + ΓP +κint
. (6.3)

The transmission of a two-port coupled resonator is given as

|S21|2∝
κext

2
p1 =

ΓPκext/2
Γph−|0CQ〉 + ΓP +κint

. (6.4)

For Γph−|0CQ〉� κint, ΓP, we finally obtain with Eqns. (6.1) and (6.4)

|S21|2∝ 1−Cp|0CQ〉, (6.5)
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where C is a constant. We now express the occupation probability of |0CQ〉 in thermal

equilibrium from Eq. (5.55) as

p|0CQ〉(Bδ) = 1/
�

1+ e
−gµBBδ

kBTe + e
−gµB(Bδ−B)

kBTe + e
−gµB(Bδ+B)

kBTe

�

,

where Bδ is the |0CQ〉− (1, 1)T+ intersection field at δ, i.e. for B> Bδ, (1, 1)T+ is lower

in energy than |0CQ〉 at δ. From a fit of C · p|0CQ〉 to the data in Fig. 6.6(a) we extract B+
at δ+ and B− at δ− for resonant interaction (top panel) and B0 at δ = 0 for dispersive

interaction (bottom panel). The constant C as well as B0 and B± are free parameters.

Fixed parameters are g = −0.4, the electron temperature Te ' 60 mK (1.3 GHz) and t

obtained from the input-output theory fit at B= 0 discussed in the context of Fig. 6.3.

A summary of the analysis for multiple t is shown in Fig. 6.6(b). We obtain three

branches for the three |0CQ〉 − (1, 1)T+ intersection fields B+, B− and B0. The values of

gµBB± are a direct spectroscopic measurement of the |0CQ〉−(1, 1)T+ intersection point.

The theory curve in Fig. 6.6(b) is calculated from the singlet-triplet energy spectrum.

There is a good agreement between this model and the experimental data over a large

range of t.

6.3.3 Influence of singlet-triplet mixing

In this section we discuss the observation of a non-monotonic decrease of A2
− with

magnetic field, which we relate to singlet-triplet mixing. The observation is shown in

two exemplary datasets for different tunnel couplings in Fig. 6.7(a). With increasing

magnetic field we observe a dip in A2
− (red arrow) followed by a peak (orange arrow).

Note that this behavior is also observed for A2
−(B) in the top panel in Fig. 6.6(a). Since

our fit function A−(B) = C · p|0CQ〉(B) is monotonically decreasing with B it deviates

from the experimentally observed structure [see black line in Fig. 6.7(a)]. This leads

to a systematic error for B− that is obtained from the fits [see Fig. 6.6(b)].

The extracted dip and peak positions for various tunnel couplings are indicated

in Fig. 6.7(b). The theory curve for B−, i.e. the |0CQ〉 − (1,1)T+ intersection field at

negative resonant detuning δ−, overlaps with the experimental peak positions. Hence,

the observed structure could be related to |0CQ〉 − (1, 1)T+ mixing [see black circle in

inset of Fig. 6.7(a)]. We suspect that the hybridization results in a reduced charge noise

sensitivity of the qubit, since (1, 1)T+ has equal charge distributions. As a consequence,

the qubit coherence is increased and we observe an enhanced signal in the resonator

response (peak in A2
−).
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Figure 6.7 Signature of singlet-triplet mixing. (a) Magnetic field dependence
of A2

− (points) with fit (solid line) for t/h = 3.2GHz in green and t/h =
3.7 GHz in blue. Inset: Singlet-triplet spectrum for t/h= 3.7 GHz and B= B−
as a function of detuning δ as solid (dashed) lines in the presence (absence)
of singlet-triplet mixing. The point where |0CQ〉 and (1, 1)T+ form an avoided
crossing is marked with a circle. (b) Positions of peak and dip structures in
A−(B)2 as a function of tunnel coupling t.

6.3.4 Magnetic-field-dependent tunnel coupling

In this section we discuss a feature observed in the data in Fig. 6.4(a), which is a split-

ting of the transmission dip in two at B' 1T. We attribute this effect to a dependence

of the tunnel coupling on the magnetic field. As the magnetic field increases, the wave

functions tend to localize, decreasing the tunnel coupling. The visibility of this effect is

pronounced in Fig. 6.4(a), where 2t = 8.4GHz ¦ νr = 8.33GHz at B= 0. In Fig. 6.8

we simulate the resonator response as in Fig. 6.4(c), however with a magnetic-field-

dependent tunnel coupling t(B)/h= t(B= 0)/h−0.1 GHz/T× B. The simulation result

qualitatively agrees with the experimental observation of split peaks in Fig. 6.4(a).

6.4 Finite bias measurements

We investigate the coupled DQD-resonator system for t/h = 3.7GHz (2t < hνr) at

B = 800mT in the presence of positive and negative source-drain bias with |Vsd| =
300µV by measuring the resonant resonator transmission. Note that the DC current

through the DQD is below the limit that can be detected with our setup (' 1 pA). The

dominant energy scales for the measurements are δ⊥,TP and eVsd since δ⊥,TP > eVsd�
hνr > 2t > EZ > kBTe.

This section is structured as follows: We present experiments at positive and negative
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Figure 6.8 Simulation with t(B). Input-output theory simulation of the res-
onator transmission identical to Fig. 6.4(c) except for the tunnel coupling
dependence t(B)/h= 4.2GHz− 0.1GHz/T× B.

bias voltage in subsections 6.4.1 and 6.4.2, respectively. These measurements are sub-

sequently described theoretically in subsection 6.4.3. In subsection 6.4.4 we compare

experiment with simulation.

6.4.1 Positive source-drain bias

We measure the resonant resonator transmission as a function of δ⊥ and δ for Vsd =
300µV in Fig. 6.9. The bias window is relevant where transport through the DQD that

involves the (0, 1) (region A) and (1, 2) (region C) charge states occurs. At δ = 0, the

extent of the bias window in δ⊥ is eVsd. We observe a resonator response in Fig. 6.9 at

δ = δ± like in the thermal case [cf. Fig. 6.2(b)]. However, the response is suppressed

in certain intervals of δ⊥. While most properties of the signal are immediately evident

from the corresponding energy diagrams, we highlight several regimes in Fig. 6.9 and

schematically illustrate the tunneling processes leading to the observations in these

regions in Figs. 6.10-6.11. Unless stated otherwise we omit the hybridization of the

(0,2) and (1,1) charge states as well as the Zeeman splitting of (0,1) and (1,2) for

the qualitative discussion below, but consider them in the simulations.

We first discuss region B in Fig. 6.9. There, the DQD has a two-electron ground

state and the bias is irrelevant. Hence, the zero bias situation discussed in section 6.3

applies: we observe a resonator response at δ+ and spin blockade of the resonator

response at δ− (cf. Fig. 6.4(b) for B¦ 0.5 T).
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The spin blockade of the resonator response is lifted in the region outlined in green

in Fig. 6.9 by increasing δ⊥ such that (0,1) is within the bias window (region A).

At δ⊥ ' −|eVsd/2| + hνr/2 (green star in Fig. 6.9), the electrochemical potential of

(1, 1)T+ is aligned with µdr as indicated in Fig. 6.10(a). Hence, the tunneling sequence

(1, 1)T+→ (0, 1)→ (0, 2)S is possible [1.-2. in Fig. 6.10(a)], which leaves the system

in (0,2)S that can make a transition to (1,1)S by photon emission into the resonator

or by phonon emission into the substrate [3. in Fig. 6.10(a)]. When increasing δ⊥, the

DQD electrochemical potentials indicated in Fig. 6.10(a) rise. The above tunneling

sequence is possible until δ⊥ ' |eVsd/2| − hνr/2, where the electrochemical potential

of (0, 2)S is on resonance with µs (upper edge of green region in Fig. 6.9). For larger

δ⊥, (0, 1)→ (0, 2)S is suppressed and the (0, 1) state becomes the ground state of the

system, which does not interact with the resonator.

For symmetric tunneling rates ΓrL to the left and ΓrR to the right reservoir, both

region A and region C in Fig. 6.9 would have the same resonator response, as transport

cycles of electrons that involve (0,1) (region A) are symmetric to transport cycles of

holes that involve (1, 2) (region C). We have chosen asymmetric rates ΓrR� ΓrL for our

measurements such that ΓrL is comparable to the spin-flip rate Γsf. This allows us to

quantify the ratio Γsf/ΓrL in subsection 6.4.4. For positive bias, where electrons enter

the DQD from the right lead [cf. Fig. 6.10(a)], the asymmetry leads to a dominant

population of the (1,2) charge state in region C, which does not interact with the
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Figure 6.9 Positive bias data. Normalized resonator transmission at νp ' νr
as a function of δ/δ+ and δ⊥ for B= 800 mT, t/h= 3.7 GHz and Vsd = 300µV.
The dots indicate the zero bias triple points.
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Figure 6.10 DQD diagrams for positive bias. Energy level diagrams with the
source (µs), drain (µdr) and DQD state electrochemical potentials at δ⊥ indi-
cated by the corresponding star in Fig. 6.9. The DQD states electrochemical
potentials are shown with respect to (0, 1).

resonator.

Next we consider the region atδ+ marked in red in Fig. 6.9, where the spin blockade

of the resonator response is lifted. At δ⊥ = |eVsd/2|+ hνr/2 labelled with a red star in

Fig. 6.9,µ[(0, 2)S] = µs such that the transition (0, 1)→ (0, 2)S is possible by tunneling

into the DQD from the right lead [1. in Fig. 6.10(b)]. As a next step, the absorption of

a resonator photon leaves the DQD in (1, 1)S [2. in Fig. 6.10(b)]. Hence, a resonator

response is visible. The tunneling cycle is completed, because an electron can tunnel

from the DQD to the left lead, resulting in a (0, 1) charge state [3. in Fig. 6.10(b)]. By

decreasing δ⊥, above tunneling cycle is possible until (1,1)S is resonant with µdr at

δ⊥ = −|eVsd/2| − hνr/2 [lower boundary of red rectangle in Fig. 6.9]. For smaller δ⊥,

(0,1) is outside the bias window and a resonator response is visible due to thermal

occupation of the DQD states.

By further decreasing δ⊥, the resonator response vanishes in the region indicated

in black in Fig. 6.9 due to the spin blockade usually considered in transport experi-

ments, which is however here triggered by the absorption of a resonator photon. At

δ⊥ ' −δ⊥,TP + |eVsd/2| + hνr/2 marked with a black star in Fig. 6.9 and shown in

Fig. 6.11(a), an electron can enter the DQD from the right lead and occupy (1,2)
because µ[(1,2)11S] = µs [2. in Fig. 6.11(a)]. This tunneling process is triggered by

absorption of a resonator photon which excites the (0,2)S to (1,1)S transition [1. in

Fig. 6.11(a)]. In a subsequent step, an electron can tunnel out to the right lead and leave

the system in (1, 1)T+ [3. in Fig. 6.11(a)]. Consequently, the system is spin blocked in

(1,1)T+, as it can only make a transition to (0,2)S by a spin-flip [4. in Fig. 6.11(a)].
Since (1,1)T+ is higher in energy than (0,2)S, this corresponds to the transport spin

blockade situation. We refer to this spin blockade as unconventional spin blockade,
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Figure 6.11 Positive bias DQD diagrams. DQD energy level diagrams at δ⊥
marked by the corresponding star in Fig. 6.9. The DQD states electrochemical
potentials are shown with respect to (0, 1) for the two electron states and with
respect to state x for the three-electron states (1, 2)x . Transitions involving a
spin-flip are marked with a cross.

because it occurs due to the presence of resonator photons.

For smallerδ⊥, tunneling into (1, 1)T+ is possible untilµ[(1, 2)11T+] = µs. This level

alignment occurs at the lower boundary of the black rectangle in Fig. 6.9, which is

equivalent to the position of the brown star in the same figure. At this δ⊥, the transport

spin blockade is lifted, since (1,1)T+ → (1,2) [1. in Fig. 6.11(b)] is possible. In a

subsequent tunneling process the resonator sensitive state (0, 2)S can be occupied by

tunneling out to the left lead [2. in Fig. 6.11(b)].
We continue the discussion forδ⊥ below the lower boundary of the brown rectangle

in Fig. 6.9, where the resonator response is absent due to asymmetric tunnel couplings

to the reservoirs. At the lower boundary of the brown rectangle, µ[(1, 2)02S] = µs. Con-

sequently, (0, 2)S can make a transition to (1, 2) via the low right reservoir barrier due

to the hybridization of (0, 2) and (1, 1). Since also µ[(1, 2)11S]< µs [see Fig. 6.11(b)],
both resonator sensitive states (1, 1)S and (0, 2)S can make a transition to the resonator

insensitive state (1, 2). The state (1, 2) is mainly occupied due to asymmetric tunneling

rates ΓrL � ΓrR to the leads: tunneling out of (1,2) is only possible via the left lead,

which occurs at a low rate ΓrL compared to tunneling into (1, 2) via the right reservoir

barrier at rate ΓrR.
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6.4.2 Negative source-drain bias

Figure 6.12 shows the resonant resonator transmission for negative bias Vsd = −300µV

as a function of δ⊥ and δ. We observe a similar resonator response as for positive bias

(see Fig. 6.9) and highlight certain regions in δ⊥, where the corresponding tunneling

processes are illustrated in Figs. 6.13-6.14 and explained qualitatively below. In analogy

to the positive bias measurement, the bias window is relevant in Fig. 6.12 in regions A

and C and not relevant in region B, where the resonator response is present (absent)

at δ+ (δ−) as in Fig. 6.9.

We first explain the absence of a resonator response in region A in Fig. 6.12, which is

due to the asymmetric tunneling barriers ΓrR� ΓrL to the leads discussed in subsection

6.4.1, where for the same reason the response was absent in region C in Fig. 6.9. In

region A, (0,1) is within the bias window. For negative bias as in Fig. 6.12, where

electrons leave the DQD to the right lead (cf. Fig. 6.13), the asymmetry leads to a

dominant occupation of the resonator insensitive (0,1) state.

Next, we discuss the absence of a resonator response due to resonator spin blockade

in region C at δ− marked with a gray rectangle in Fig. 6.12. Within region B, the DQD

states are thermally occupied and we observe spin blockade of the resonator response

at δ−, where (1,1)T+ is the ground state. By decreasing δ⊥ to lie within the region

δ/δ+
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(1,2)

(0,1)

(0,2)(1,1)

}

1

0.96

0.92

|eVsd|

|eVsd|

δ  

0 A

B

C

|S21|2

|S21 |2(0)

-δ ,TP

Vsd=-300 μV,  B=800 mT

Figure 6.12 Negative bias data. Normalized resonant resonator transmission
as a function of δ/δ+ and δ⊥ for Vsd = −300µV, B = 800mT and t/h =
3.7 GHz. The triple points are indicated as dots.
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Figure6.13 DQD diagrams for negative bias. Energy level diagram of the DQD
at δ⊥ indicated with a corresponding star in Fig. 6.12. The electrochemical
potentials of the DQD states are depicted with respect to (0,1) for the two-
electron states and with respect to the state x for the three-electron states
(1,2)x . A cross marks transitions that involve a spin-flip.

marked with a gray rectangle, transitions that involve (1, 2) are within the bias window

[see Fig. 6.13(a)]. However, the transition (1,1)T+ → (1,2) is not possible since the

tunneling process would require an electron to tunnel into the DQD from the right

reservoir, which is not possible as a first order process for negative bias. Consequently,

we also observe spin blockade of the resonator response in the region marked in gray

in Fig. 6.12 because (1,1)T+ is occupied.

We now continue the discussion with the region marked with an orange rectangle

in Fig. 6.12, where we observe the signature of transport spin blockade in the resonator

response. In this region, transport through the DQD that involves (1, 2) is possible. At

δ⊥ ' −δ⊥,TP + |eVsd/2| (orange star), the transition (0,2)S→ (1,2) is resonant with

µdr, i.e. µdr = µ[(1,2)02S]. Hence, an electron can enter the DQD from the left lead

[1. in Fig. 6.13(b)]. Since µ[(1, 2)11T+]≥ µs, (1, 2) can make a transition to (1, 1)T+ by

tunneling out to the right reservoir [2. in Fig. 6.13(b)]. As a result, the system is spin

blocked in (1,1)T+, which realizes the transport spin blockade situation as (1,1)T+ is

higher in energy than (0, 2)S. Consequently, we observe a reduced resonator response,

which is however nonzero as ΓrL is comparable to the spin-flip rate Γsf. Therefore,

the spin-flip processes (1,1)T+→ (0,2)S [3. in Fig. 6.13(b)] and the tunneling cycle

(0,2)S→ (1,2)→ (1,1)T+ [1.-2. in Fig. 6.13(b)] have similar event frequencies and

(1,1)T+ and (0,2)S are occupied with similar probabilities. For symmetric reservoir

barriers, the transport spin blockade would also be visible in region A, where (0, 1) is

within the bias window (see simulation in subsection 6.4.4).
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In the region outlined in magenta in Fig. 6.12, the resonator response is further

suppressed compared to the orange region because the occupation of (1, 1)T+ is further

increased due to the presence of an additional tunneling sequence that involves the

absorption of a resonator photon. At δ⊥ ' −δ⊥,TP − |eVsd/2|+ hνr/2, indicated with

a magenta star in Fig. 6.12, µ[(1,2)11S] = µs such that (1,2) can be occupied by an

electron tunneling into the DQD via the low right reservoir barrier [2. in Fig. 6.14(a)].
This process involves a prior absorption of a resonator photon to excite (0, 2)S to (1, 1)S
[1. in Fig. 6.14(a)]. In a next step, the transition (1, 2)→ (1, 1)T+ [3. in Fig. 6.14(a)]
is possible, as µ[(1, 2)11T+]> µs. Consequently, (1, 1)T+ can be occupied via two tun-

neling sequences. It is (1, 1)S→ (1, 2)→ (1, 1)T+ as well as (0, 2)S→ (1, 2)→ (1, 1)T+
that was explained for the orange region in the previous paragraph. This increases the

occupation probability of (1, 1)T+ and leads to a further suppression of the resonator

response in the region outlined in magenta in Fig. 6.12, compared to the orange region

in the same figure.

We now discuss the region indicated in blue in Fig. 6.12, where the transport spin

blockade is lifted. At the lower boundary of the magenta region, which is equivalent

to the upper boundary of the blue region [blue star in Fig. 6.12], µ[(1,2)11T+] is on

resonance with the right reservoir (µs). Hence, the transport spin blockade is lifted:

(1, 1)T+ can transition into (1, 2) in a first step [1. in Fig. 6.14(b)] and (0, 2)S is occupied

in a second tunneling event by an electron leaving the DQD to the right reservoir [2. in

Fig. 6.14(b)]. Note that hybridization of (1, 1)S and (0, 2)S is necessary for the latter

process to occur. Otherwise, (0,2) and (1,2) would only be coupled via tunneling in

from the left but not via tunneling out to the right reservoir.
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Figure 6.14 Negative bias DQD energy diagrams. DQD energy level diagrams
referring to the δ⊥ positions marked with a star in Fig. 6.12. The notation is
otherwise the same as in Fig. 6.13.
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6.4.3 Rate-equationmodel

To describe the observations in subsections 6.4.1 and 6.4.2 theoretically, we set up a

rate-equation model for electron transport through the DQD. We consider the charge

configurations (0, 1), (0, 2), (1, 1) and (1, 2) that were relevant in these sections as well

as spin to arrive at the basis states

{(0,↑), (0,↓), (↑,↑), (↓,↓),

(1, 1)T0, |0CQ〉 , |1CQ〉 , (↑, 2), (↓, 2)}
(6.6)

that are relevant for our model, where (↑, 2) and (↓, 2) are states with a singlet in the

right quantum dot. The basis state’s energies are parametrized according to

E(0,↑) = −δ⊥ −
1
2

EZ,

E(0,↓) = −δ⊥ +
1
2

EZ,

E(↑,↑) = δ/2− EZ,

E(↓,↓) = δ/2+ EZ,

ET0
= δ/2,

E|0CQ〉 = −
Æ

t2 + (δ/2)2,

E|1CQ〉 =
Æ

t2 + (δ/2)2,

E(↑,2) = δ⊥,TP +δ⊥ −
1
2

EZ,

E(↓,2) = δ⊥,TP +δ⊥ +
1
2

EZ.

(6.7)

The rate equation for transitions between the DQD states i can generally be written as

(Ihn, 2010)

dpi

d t
=
∑

i′
(Wi′→i pi′ −Wi→i′pi) (6.8)

with the steady state condition dpi/d t = 0 for all states i. The term pi in Eq. (6.8) is

the occupation probability of state i. The transition rates from state i′ to i are

Wi′→i =Γ
i′ i
rL,0 fL(∆E−i′ i) + Γ

i′ i
rR,0 fR(∆E+i′ i)+

(Γ i′ i
sf,0 + Γ

i′ i
rel,0)e

−∆Ei′ i/kBT + Γ i′ i
exc,0.

(6.9)
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The first two terms in Eq. (6.9) describe transitions involving the left (right) reservoir

with Fermi distribution fL ( fR). The term ∆E±i′ i = Ei −E′i ± eVsd/2 quantifies the energy

cost for the transition from state i′ with energy E′i to state i with energy Ei at symmetric

bias voltage Vsd. The coupling rates Γ i′ i
rL,0 (Γ i′ i

rR,0) to the left (right) reservoirs depend on

the respective bare reservoir tunneling rate ΓrL (ΓrR). For example, (1, 1)T0 couples at

rate Γ T0,(0,↑)
rL,0 = ΓrL/2 with (0,↑) via the left reservoir, due to the fact that it has with

equal probability an up or down spin electron in the left dot.

Overall we obtain in the basis of Eq. (6.6) for tunneling to the left reservoir

ΓrL,0 = ΓrL


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(6.10)

with ζ ≡ θ/2 and the mixing angle cos(θ) = −δ/ECQ that was defined in subsection

3.1.3. For tunneling processes that involve the right reservoir we arrive at

ΓrR,0 = ΓrR
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(6.11)

Spin-flip processes from state i′ to i are phenomenologically accounted for in Eq. (6.9)

by the term Γ i′ i
sf,0e−∆Ei′ i/kBT, where ∆Ei′ i = 0 for Ei < E′i and ∆Ei′ i = Ei − E′i otherwise.

Hence, spin-flips are exponentially suppressed if Ei > E′i . The bare spin-flip rate Γsf is



6.4 Finite bias measurements 129

related to Γ i′ i
sf,0 via

Γsf,0 = Γsf
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The term Γ i′ i
rel,0e−∆Ei′ i/kBT in Eq. (6.9) considers qubit relaxation from |1CQ〉 to |0CQ〉 at

rate Γ
|1CQ〉,|0CQ〉
rel,0 ≡ γ(b)1,CQ/2π= 84 MHz. Similarly to the spin-flip process discussed above,

∆Ei′ i = 0 for Ei < E′i and ∆Ei′ i = Ei − E′i otherwise.

The last term in Eq. (6.9) describes |0CQ〉 to |1CQ〉 excitation via absorption of a

resonator photon. The corresponding rate Γexc ≡ Γ
|0CQ〉,|1CQ〉
exc,0 depends on the number of

photons in the resonator and is a free parameter in our simulations.

We solve Eq. (6.8) in steady state with the constraint
∑

i pi = 1 for the qubit ground

(excited) state occupation probability p|0CQ〉 (p|1CQ〉). This result is used to simulate the

resonator transmission with the input-output theory result from Eq. (5.56).

6.4.4 Simulation results

Using the rate-equation model derived in the previous subsection we simulate the

resonator response for the experimental parameters of the positive and negative bias

measurements that were shown in Fig. 6.9 and Fig. 6.12, respectively. The free param-

eters for the simulation are ΓrL, ΓrR, Γsf and Γexc. For the parameters g(0)CQ , γ(b)1,CQ, γ(b)ϕ,CQ,

δ⊥,TP and Te the values extracted in section 6.2 are used.

The simulation results depicted in Fig. 6.15 are in good agreement with the cor-

responding experimental observations in Figs. 6.9 and Figs. 6.12. We thereby choose

ΓrR/ΓrL ≥ 100 for the simulations such that the simulated resonator response is absent

in region C for positive bias in agreement with the experimental result in Fig. 6.9. The

ratio Γsf/ΓrL ' 1 is determined by the experimental magnitude of the resonator response

in the transport spin blockade situation for negative bias [orange region in Fig. 6.12].
We can therefore quantitatively estimate the tunneling rates as typical spin-flip rates
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for our experimental parameters are of the order of MHz (Danon, 2013). The remain-

ing free parameter Γexc in the simulations mainly influences the simulated resonator

response in the two regions outlined in black in Fig. 6.9 and in magenta in Fig. 6.12

where |0CQ〉 to |1CQ〉 excitations due to resonator photons trigger the spin blockade.

We set Γexc = 5 MHz in all simulations to qualitatively reproduce the response in these

two regions.

It was pointed out in subsections 6.4.1 and 6.4.2 that the resonator response is

absent in region C in Fig. 6.9 and region A in Fig. 6.12 due to asymmetric reservoir

couplings ΓrL � ΓrR. This claim is supported by the simulation results for symmetric

reservoir couplings ΓrL = ΓrR = 100MHz in the insets of Fig. 6.15. Both simulation

results are symmetric in δ⊥.

In the following we discuss the two regions highlighted with rectangles in Fig. 6.15,

where experiment and simulation deviate. First, the positions of the upper and lower

boundary of the region marked with a green rectangle in Fig. 6.15(a) and Fig. 6.9 are

not in agreement. At δ⊥ ' |eVsd/2|+ hνr/2, marked with a green star in Fig. 6.15(a),

a resonator response is visible in the simulation. At this value of δ⊥, (1, 1)S is resonant
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Figure 6.15 Positive and negative bias simulation. Rate equation simulation
of the resonator transmission as a function of δ and δ⊥ for Vsd = 300µV in
(a) and Vsd = −300µV in (b). The simulation parameters for both panels are
B = 800mT, ΓrR = 100MHz, ΓrL = 1MHz, Γsf = 1.3MHz, Γexc = 5.0MHz,
t/h = 3.7GHz, and δ⊥,TP = 510µeV. Inset: simulation parameters as in the
main panels except for symmetric reservoir couplings ΓrL = ΓrR = 100MHz.
The axes and plot ranges of the insets are identical to the main figures.
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(1,1)S

(0,2)S
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μs

μdr

(1,1)T+

hνr
δ 

Figure 6.16 Negative bias DQD diagram. DQD energy level diagram with elec-
trochemical potentials depicted with respect to (0, 1). The diagram indicates
tunneling processes at δ⊥ marked with a green star in Fig. 6.15(a).

with the right reservoir as shown in Fig. 6.16. Due to the hybridization of (1, 1)S and

(0,2)S, the transition (0,1)→ (1,1) is possible by tunneling into the DQD from the

right reservoir and a resonator sensitive state is occupied. By decreasing δ⊥, a resonator

response starts being visible at δ⊥ < |eVsd/2| in the experiment in Fig. 6.9. A possible

explanation for this discrepancy of experiment and simulation is an interdependence

of δ⊥ and δ in the experiment. Consequently, the resonator response at δ− is shifted

in δ⊥ with respect to the signal at δ+. Our claim is supported by the fact, that the total

length in δ⊥ of the blue regions is approximately the same in experiment (Fig. 6.9)

and simulation [Fig. 6.15(a)]. Second, a resonator response is present in the region

outlined in yellow in the simulation in Fig. 6.15(b) but absent in the experiment in

Fig. 6.12. A possible origin of this discrepancy is higher order tunneling processes

via the low barrier to the right reservoir. Such processes are not considered in our

theoretical model.

Finally, we present simulation results for different ratios of the slow tunneling rate

ΓrL and the spin-flip rate Γsf for negative source-drain bias. In the region marked in

orange in Fig. 6.12 a reduced resonator signal was observed due to transport spin

blockade. The signal is finite, as the spin-flip rate is comparable to the left reservoir

tunneling rate. It was argued in subsection 6.4.2, that the magnitude of the finite

response depends for asymmetric couplings ΓrL � ΓrR on the ratio Γsf/ΓrL: there is

a weak (strong) resonator response for Γsf/ΓrL � 1 (Γsf/ΓrL � 1). Fig. 6.17 shows

the simulation result for different values of Γsf/ΓrL. The orange region from Fig. 6.12

is indicated in Fig. 6.17 with the same color. We observe that for Γsf/ΓrL = 10 in

Fig. 6.17(b) compared to Γsf/ΓrL = 1.3 in Fig. 6.17(a), the magnitude of the resonator

response in the orange region increases. This observation is due to the rate of the spin-
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Figure 6.17 Influence of spin-flip rate on simulation. (a) Simulation re-
sult identical to the inset of Fig. 6.15(b): ΓrR = 100MHz, ΓrL = 1MHz,
Γsf = 1.3 MHz, t/h= 3.7 GHz, δ⊥,TP = 510µV, Γexc = 5.0 MHz. (b) Simulation
parameters as in (a) except for Γsf = 13 MHz. The region marked in orange in
(a) and (b) is identical to the region with the same color in Fig. 6.12.

flip process (1, 1)T+→ (0, 2)S dominating over the rate of (0, 2)S→ (1, 2)→ (1, 1)T+,

such that the occupation of (1,1)T+ is reduced.

6.5 Conclusion and outlook

In this chapter we have studied spin physics in a few electron DQD using a weakly

coupled microwave resonator as a probe in the resonant and dispersive regime. We ob-

served spin blockade of the resonator response and mapped out the two-electron singlet-

triplet crossover in continuous wave experiments without pulsed gate operations. In

finite bias measurements we observed the conventional transport spin blockade as

well as an unconventional spin blockade triggered by resonator photons. Signatures in

the finite bias data gave direct access to relevant qubit parameters that are not easily

accessible in transport experiments in the few electron regime: the symmetry of the

reservoir tunneling barriers and their ratio to the spin-flip rate.

The experiments presented in this work can be implemented in any other material

system to investigate spin-dependent material properties like spin-orbit coupling, spin

relaxation rates or the g-factor. By increasing the qubit-photon coupling strength to



6.5 Conclusion and outlook 133

the strong coupling limit, fast read-out of spin states has been demonstrated after

the submission of this work in Ref. Zheng et al., 2019, which is a requirement for a

spin qubit based quantum processor. Future work could also focus on studying the

spin physics of more complex quantum states in multi quantum dot systems such as

two dimensional arrays of quantum dots (Mortemousque et al., 2018) that provide a

promising route towards a scalable spin qubit device.
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Chapter 7

Coherent spin-photon coupling using a
resonant exchange qubit

The ability to transmit quantum information over long distances is desirable for quan-

tum information processors (DiVincenzo, 2000). Circuit QED provides a well-established

platform to connect distant qubits (Majer et al., 2007). Strong coupling has been re-

alized with superconducting qubits (Wallraff et al., 2004) and recently, the coherence

properties of charge qubits in semiconductor quantum dots have improved sufficiently

to achieve strong coupling (Bruhat et al., 2018, Mi et al., 2017c, Stockklauser et al.,

2017). Even better coherence is expected by transferring the quantum information

from electron charge to spin (Hanson et al., 2007, Zwanenburg et al., 2013). This

approach comes with a major challenge as the coupling of photons to spins is several

orders of magnitude weaker than the coupling to charge (Schoelkopf et al., 2008). The

challenge can be resolved by introducing an electric dipole moment to the spin states.

For single-electron spin qubits, spin and charge are coupled by using materials with

strong spin-orbit interaction (Petersson et al., 2012), devices with ferromagnetic leads

(Viennot et al., 2015), or a magnetic field gradient generated by an on-chip micromag-

net (Pioro-Ladrière et al., 2008, Hu et al., 2012, Beaudoin et al., 2016). A different

approach is realized with the resonant exchange (RX) qubit (Medford et al., 2013a,b,

Gaudreau et al., 2012, Taylor et al., 2013, Russ et al., 2015a), where spin exchange

interaction couples two states with an equal three-electron charge distribution and

equal total spin, but different spin arrangement. This interaction also gives rise to an

electrical dipole moment that enables coherent qubit-photon coupling.

In this chapter we demonstrate strong coupling between single microwave photons

in a NbTiN high impedance resonator and a RX qubit hosted in GaAs by using hybrid
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circuit QED (Srinivasa et al., 2016, Russ et al., 2015b). We resolve the vacuum Rabi

mode splitting with a coupling strength of gRX/2π≈ 31 MHz and a qubit decoherence

of γ2,RX/2π≈ 20 MHz. We tune the decoherence electrostatically and obtain a minimal

γ2,RX/2π ≈ 10MHz for gRX/2π ≈ 23MHz. The dependence of the qubit-photon cou-

pling strength on the tunable electric dipole moment of the qubit is measured directly

using the ac Stark effect. Our demonstration of strong spin-photon interaction is an

important step towards coherent long-distance coupling of spin qubits. It is one of

three independent works that were published around the same time. In the other two

studies in Refs. Mi et al., 2018, Samkharadze et al., 2018 strong spin-photon coupling

was demonstrated for a double quantum dot single-electron spin qubit in Si.

The structure of this chapter is as follows: We present details of the sample in

section 7.1 before we explain the electrostatic tuning of the TQD into the RX regime in

section 7.2. We then discuss the experimental signature of qubit-photon interaction in

the resonator and report the observation of the vacuum Rabi mode splitting in sections

7.3 and 7.4, respectively. In sections 7.5-7.6 we characterize the electrostatic tunability

of the qubit decoherence and extract the qubit–photon coupling strength from the ac

Stark shift. Finally, we study the RX qubit in large magnetic fields that are of the order

of a few tesla in section 7.7.

The content of this chapter follows in most parts our article:

Coherent spin-photon coupling using a resonant exchange qubit

A. J. Landig, J. V. Koski, P. Scarlino, U.C. Mendes, A. Blais, C. Reichl, W. Wegscheider,

A. Wallraff, K. Ensslin and T. Ihn, Nature 560 (2018)

7.1 Sample

Figure 7.1 shows optical and scanning electron micrographs of our hybrid quantum

device. It was fabricated with the techniques explained in subsection 6.1.3 and mounted

in the experimental setup presented in chapter 2. Electrons are trapped in a TQD

structure (see three dashed circles) by electrostatic confinement created by Au gates

[Fig. 7.1(c)] on top of a GaAs/AlGaAs heterostructure. The electrostatic potentials of

the left, middle and right quantum dots are tuned with the respective plunger gate

voltages VL, VM and VR. A QPC acts as a charge sensor that allows us to determine the

TQD charge configuration. We configure a RX qubit in the TQD as discussed in detail

in section 7.2.

To couple the qubit to microwave photons, the plunger gate of the left quantum dot

https://doi.org/10.1038/s41586-018-0365-y
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extends to the superconducting microwave resonator as shown in Fig. 7.1(b). The left

plunger gate is also DC-biased via a resistive Au line, which is connected to the middle of

the resonator center conductor. The coupling strength gRX between qubit and resonator

photons is proportional to the square root of the characteristic impedance
p

Zr of the

resonator [see Eq. (4.13)]. It is enhanced by fabricating the resonator with a thin

(∼ 15 nm) and narrow (∼ 300 nm) center conductor from the high kinetic-inductance

material NbTiN (Samkharadze et al., 2016). We estimate Zr =
p

Ll/Cl ∼ 1.3 kΩ, with

the resonator inductance (capacitance) Ll ∼ 150µH/m (Cl ∼ 90 pF/m) per unit length,

resulting in a coupling strength enhancement by a factor of 5 compared to a standard

to
resonator DC+RF

DC bias
gate L

in out

~300 nm

30 μm

STQD

SQPC

D

D

QPC
200 nm

L M R

30 μm

(a)

(b) (c)

in

Figure 7.1 Hybrid quantum device. (a) Optical micrograph of the device show-
ing the resonator that is capacitively coupled to the input (in) and output (out)
transmission lines. The region for DC bias that connects to the center of the
resonator is indicated in black. (b) Magnified image of the region outlined in
green in (a). The width of the resonator center conductor is indicated and the
resonator extension to the TQD (blue rectangle) is visible. (c) False-colored
scanning electron micrograph of the TQD gate structure defined by electron
beam lithography. The two white gates are kept at zero voltage in our ex-
periments. The gate highlighted in orange is electrically connected to the
resonator. The approximate positions of the left, middle and right quantum
dots are indicated by dashed white circles. Their corresponding plunger gates
are labelled as (L), (M) and (R). The right plunger gate is biased with DC
and microwave signals. The TQD and the QPC have separate ohmic source
contacts (STQD and SQPC) and a common drain contact (D).
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impedance-matched Zr = 50Ω resonator. Our choice of material and design allows us

to operate the resonator in the presence of an external magnetic field applied parallel

to the resonator plane (Samkharadze et al., 2016). In the experiments described here,

we apply a magnetic field of B= 200 mT.

From the resonator transmission spectrum we determine its resonance frequency

νr = 4.38GHz and linewidth κr/2π = 47.1MHz (Qld ≈ 93) at an average resonator

photon occupation of less than one. For a discussion of possible reasons for the compa-

rably low quality factor we refer to subsection 6.1.2. Note that one important difference

in the design of the resonator used in this chapter compared to the resonator in chapter

6 is the smaller distance of the resonator extension, which connects to the dot [see

Fig. 7.1(b)], with respect to the resonator end (≈ 37µm instead of ≈ 105µm). This

enhances the amplitude of the voltage fluctuations that couple to the qubit.

7.2 TQD tuning into the RX regime

The spin qubit is formed by tuning the TQD into the three-electron regime. Figure 7.2(a)

shows the charge stability diagram of the TQD, as measured by the charge detector.

This data set is similar to Fig. 3.13(a), however with larger interdot tunnel couplings.
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Figure 7.2 QPC and resonator signal in left-right basis. (a)-(b) TQD charge
stability diagram in the few-electron regime as a function of left and right
plunger gate voltages with VrL = −610mV, VrR = −611mV, VM = −53.7mV
in (a) and VrL = −629mV, VrR = −631mV, VM = −56.2mV in (b). The black
rectangle in (a) outlines the measurement region in (b)-(c). (c) Relative phase
of the signal transmitted through the resonator (phase response) by probing
it on resonance within the same parameter range as in (b).
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To realize the desired RX working point ε ≈ 0 and |∆| ® tL,R with tL,R/h ≈ 8GHz,

we tune (2, 0, 1), (1, 0, 2) and (1, 1, 1) close to their degeneracy point by adjusting the

middle plunger gate potential VM. We also increase the tunnel couplings by tuning the

left and right reservoir gate potentials VrL and VrR (see Fig. 3.12) more negative. As

a result, we observe a phase shift in the transmitted resonator signal in Fig. 7.2(c),

which is due to the interaction of the resonator with the RX qubit as discussed below.

For the measurements in Fig. 7.2, VL and VR were swept independently. In order

to measure in the basis of the RX qubit parameters ε = 1
2 [E(1,0,2)− E(2,0,1)] and

∆= E(1, 1, 1)− 1
2 [E(2, 0, 1)+E(1, 0, 2)], which were defined in subsection 3.2.1, com-

binations of all three plunger gate potentials need to be tuned along the measurement

axes. To realize this basis change, we first measure the TQD charge stability diagram

as a function of VL−VR and VL+VR in Fig. 7.3(a). The resulting QPC response is rotated

with respect to the measurement in Fig. 7.2(a). The position of the (1,1,1) region

in Fig. 7.3(a) depends on the middle plunger gate voltage VM (not shown). By ana-

lyzing this position as a function of VM, we define the voltage detunings ε′ and ∆′,

which independently tune the left-right dot detuning and the detuning of the middle

dot with respect to the left and right quantum dots, respectively. These voltage de-
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Figure 7.3 Change of measurement basis. (a) Differential QPC current as a
function of combinations of left and right plunger gate voltages. Voffs,x and
Voffs,y are voltage offsets, x̂ is the quantity on the x-axis. (b) Resonator phase
response on resonance as a function of the parameters ∆′ and ε′ that are
defined in the text.
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tunings are related to the plunger gate voltages as follows: VL = VL,offs + (∆′ + ε′)/2,

VM = VM,offs−2/3∆′,VR = VR,offs+(∆′−ε′)/2, where Vi,offs is a voltage offset on plunger

gate i. By probing the resonator transmission on resonance in this new measurement

basis, we observe the phase shift shown in Fig. 7.3(b). This observation is explained

by the dependence of the RX qubit energy ERX on ε′ and ∆′ (see subsection 3.2.2).

We observe a phase shift whenever the qubit and the resonator approach a resonance

ERX = hνr. When the resonance is crossed, the phase changes sign. We discuss this

signature of the RX qubit in the resonator phase signal in more detail in the following

section.

7.3 Qubit-resonator interaction

We concluded in the previous section that the resonator acts as a probe of the RX qubit

energy spectrum at the resonator energy. The theoretically expected lines of constant

qubit energy as a function of detuning ∆ and asymmetry ε for symmetric tunnel cou-

plings (t = tL = tR) are indicated in Fig. 7.4(a). Among others we observe the DSS,

which is a saddle point in energy, at ε =∆= 0. The measurement in Fig. 7.3(b) there-

fore reproduces one of the theoretically expected energy contours shown in Fig. 7.4(a).

We map the voltage axes∆′ and ε′ from Fig. 7.3(b) to their corresponding energy axes

∆ and ε as shown in Fig. 7.4(a) with the analysis explained in the following paragraph.

First, we extract the zero-phase positions {ε′r,∆
′
r} in Fig. 7.3(b), where the reso-

nance condition ERX(∆′r+∆
′
r,offs,α∆,ε′r+ε

′
r,offs,αε, tL, tR) = hνr applies. The parameters

∆′r,offs and ε′r,offs are voltage offsets, αε and α∆ are lever arms that relate the resonant

energy detunings∆r and εr to the resonant voltage detunings according to∆r = α∆e∆′r
and εr = αεeε′r. By numerically diagonalizing the RX qubit Hamiltonian [see Eq. (3.13)],
we solve above resonance condition for the function ε′r(∆

′
r,∆

′
r,offs,α∆,ε′r,offs,αε, tL, tR,νr),

which we fit to the {ε′r,∆
′
r} data set. For fitting to a single dataset we choose∆′r,offs, α∆,

ε′r,offs, αε, tL and tR as free parameters. Figure 7.4(b) shows the result of this analysis

for the dataset from Fig. 7.3(b).

We map different energy contour lines by changing the tunnel coupling. This is

realized experimentally by changing the electrical potential of the gate lines between

the plunger gates [see Fig. 7.1(c)]. We obtain the magnitude of both tunnel barriers

for Figs. 7.4(b)-(d) with a fit to the resonance positions of the phase response data (see

previous paragraph). A simultaneous fit to the three datasets in Fig. 7.4(b)-(d) reduces

the number of free parameters, since we assume that the lever arms αε and α∆ are

the same for all datasets. We obtain an excellent agreement between theoretical and
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Figure 7.4 (a) Contour plot of the normalized qubit energy ERX/t for sym-
metric tunnel coupling t as a function of detuning parameters ε/t and ∆/t.
The energy contours as probed in (b)-(d) are labelled. DSS marks the posi-
tion of the double sweet spot. The energetically favored three-electron charge
configurations are indicated. (b)-(d) Resonator phase response measured on
resonance for different tunnel coupling configurations tL and tR. The dashed
lines indicate a fit to the theory model. Note that since the tunnel coupling is
asymmetric in (d), the resonator response is shifted and tilted with respect to
the contour labelled as (d) in (a).
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measured resonance conditions as indicated by the dashed black line in Fig. 7.4(b)-(d).

The tunability of the resonator-qubit resonance position via the tunnel coupling allows

us to observe qubit-photon interaction at the DSS in Fig. 7.4(c). Note that, as observed

in Fig. 7.4(d), the DSS is shifted for asymmetric barriers (Russ et al., 2015a).

7.4 Vacuum Rabi mode splitting

To further characterize the strength of the resonator-qubit interaction, we tune the

qubit to a similar tunnel coupling configuration as in Fig. 7.4(c), such that qubit and

resonator are resonant at the DSS. We measure the resonator transmission spectra as

a function of ε at the single sweet spot in ∆ in Fig. 7.5(a) and as a function of ∆ at

the single sweet spot in ε in Fig. 7.5(b). Both transmission spectra show a clear anti-
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Figure 7.5 Vacuum Rabi mode splitting. (a) Resonator transmission |S21|2

normalized by the maximum transmission on resonance |S(0)21 |
2 as a func-

tion of probe frequency νp and ε for ∆/h = 0.23GHz, tL/h = 8.25GHz and
tR/h = 8.64GHz. (b) Normalized resonator transmission as a function of
νp and detuning ∆ for asymmetry ε/h = −1.03GHz and tunnel couplings
tL/h= 9.04 GHz and tR/h= 7.99 GHz. The insets in (a) and (b) illustrate the
measurement configuration. The dashed lines in (a) and (b) are the eigenener-
gies of the coupled qubit-resonator system. (c) Normalized resonator transmis-
sion as a function of νp for uncoupled (blue) and coupled (red) configuration
at ∆/h = −1.44GHz showing a strong spin-photon coupling vacuum Rabi
mode splitting. The standard deviation of repeated measurements is indicated
as a shaded region. The solid black lines are a fit to an input-output theory
model (Collett et al., 1984).
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crossing of qubit and resonator over a large range of detuning∆ and asymmetry ε. This

anti-crossing is apparent from the cut at constant ∆ in Fig. 7.5(c), where we observe

two distinct peaks in the transmission spectrum (red data points). This observation

is in clear contrast to the resonator transmission spectrum in the situation where RX

qubit and resonator are detuned energetically. In this case, we observe a single peak in

the resonator spectrum as indicated by the blue data points in Fig. 7.5(c). The splitting

of the resonator resonance into two well separated peaks, known as the vacuum Rabi

mode splitting (see subsection 5.2.1), is the characteristic fingerprint of strong coherent

hybridization of a single microwave photon in the resonator and the spin qubit in the

TQD. From a fit of the vacuum Rabi splitting to input-output theory, we extract the qubit-

photon coupling strength gRX/2π= (31.4± 0.3)MHz and the qubit decoherence rate

γ2,RX/2π= (19.6± 0.5)MHz. As a result, our quantum device operates in the strong

coupling regime, which is supported by the fact that the approximate peak separation

is larger than the peaks width, i.e. 2gRX > κr/2+ γ2,RX. Note that the extracted spin-

photon coupling strength corresponds to a charge-photon coupling strength g(0)c,RX/2π=
71 MHz (see subsection 5.1.2). At the RX qubit working point where the vacuum Rabi

mode splitting was measured, the composition of the RX qubit states is dominated

by states with (1, 1, 1) charge configuration (P(1,1,1) > P(2,0,1) + P(1,0,2)) (see subsection

3.2.3). A majority of the quantum information is therefore stored in the spin degree

of freedom.

The transmission spectra in Fig. 7.5(a)-(b) also show that the DSS of the qubit is

a saddle point in energy: in Fig. 7.5(a) we observe an energy minimum of the qubit

around ε ≈ 0, in Fig. 7.5(b) the qubit energy has a maximum around ∆≈ 0.

7.5 RX qubit decoherence

To further characterize the spin qubit, we now consider the shift of the resonator

frequency due to resonator-qubit coupling in the dispersive regime, where the qubit-

resonator detuning is much larger than the qubit-photon coupling strength (Schuster

et al., 2005). We perform the two-tone spectroscopy method that was introduced in

subsection 5.2.1 by applying a probe tone at frequency νp = νr to the resonator and a

spectroscopy tone at frequency νdRX to the right plunger gate, indicated in Fig. 7.1(c).

By sweeping both the detuning ∆ and the spectroscopy frequency νdRX, we trace the

spectroscopic qubit signal in the resonator phase signal in Fig. 7.6(a). It resembles the

∆-dependence of the qubit energy observed in Fig. 7.5(b) and calculated in Fig. 7.4(a),

and shows good agreement with theory (dashed line). Note that for the measurement
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in Fig. 7.6(a), ε is set to the energy minimum of the qubit (single sweet spot).

As explained in subsection 5.2.1, the qubit decoherence γ2,RX/2π is equal to the

HWHM δνRX of the spectroscopic dip in the phase signal [right panel of Fig. 7.6(a)] in

the limit of zero drive power (Pgen,dRX → 0). For finite drive power, such as in Fig. 7.6(a),

the spectroscopic signal is power broadened. We define the HWHM δνRX as the average
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Figure 7.6 Two-tone spectroscopy. (a) Phase response of the resonator probed
on resonance as a function of spectroscopy frequency νdRX and detuning ∆
around the DSS for tunnel couplings tL/h = 8.10GHz and tR/h = 7.86GHz,
a drive generator power of Pgen,dRX = 0.75nW and a resonator photon oc-
cupation of less than one. The theoretically expected position of the phase
response minima is indicated by a dashed line. In the panel on the right, a
Lorentzian with a HWHM δνRX (black line) is fit to a cut of the phase re-
sponse (brown points). The panel on the top shows δνRX, which is the av-
erage of δνRX over five subsequent cuts along ∆ with its standard error. (b)
Dependence of δν2

RX (with standard errors) on drive generator power Pgen,dRX
measured at∆/h= −8.03 GHz and at the single sweet spot in asymmetry ε for
tL/h = 8.74GHz and tR/h = 8.12GHz. The solid line is a fit to the expected
linear dependence.
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of δνRX for five subsequent cuts along the ∆-direction in Fig. 7.6(a) and observe an

increase of δνRX with increasing ∆, as illustrated in the top panel in Fig. 7.6(a).

To disentangle the effects of power broadening and qubit decoherence on δνRX, we

extract γ2,RX in Fig. 7.7(a) by measuring δνRX as a function of the power of the spec-

troscopy tone [see Fig. 7.6(b)] for different∆ and three different sets of tunnel coupling

configurations. Note that we estimate Purcell decay with Eq. (5.76) and measurement-

induced dephasing with Eq. (5.75) to be at least one order of magnitude smaller than

γ2,RX/2π in Fig. 7.7(a). For a high admixture of asymmetric charge states, we measure

a maximum decoherence rate γ2,RX/2π∼ 30 MHz. For a more (1, 1, 1)-like character of

the spin qubit, we extract a minimum decoherence rate γ2,RX/2π≈ 10 MHz, which cor-

responds to a dephasing time T?2 = 1/γ2,RX = 16ns. This measurement demonstrates

that storing the quantum information in the spin degree of freedom increases the qubit

coherence.

We model the RX qubit decoherence as γ2,RX ≡ γth
1,RX/2+ γ

HF
ϕ,RX, where the first and

second terms are relaxation due to ohmic charge noise and Overhauser field induced

dephasing, respectively. Both noise contributions were introduced in subsection 5.4.1.

Theory and experiment in Fig. 7.7(a) are in good agreement for a standard deviation of

the Overhauser fields of σHF = 3.51 mT, which agrees with previously reported values
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field σB = 3.51 mT. (b) Ratio of RX qubit coupling strength as extracted from
theory over decoherence rate for the data points from (a).
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for a resonant exchange qubit (Malinowski et al., 2017) and other spin qubits in GaAs

(Petta et al., 2005, Johnson et al., 2005b, Koppens et al., 2005, 2006, Koppens et al.,

2008). Our measurement in Fig. 7.7(a) therefore suggests that the RX qubit coherence

is limited by hyperfine interaction in the GaAs host material.

While γ2,RX increases with ∆ in Fig. 7.7(a), the qubit-photon coupling strength

increases since the contribution of (1,0,2) and (2,0,1) charge configurations to the

qubit states and therefore the qubit electric dipole moment is enhanced. This suggests

the existence of an optimal working point for the qubit, where the ratio gRX/γ2,RX is

maximal. We use the theory model for gRX from subsection 5.1.2 to calculate this ratio

for the data set in Fig. 7.7(a). We find in Fig. 7.7(b) that gRX/γ2,RX is enhanced in the

spin dominated regime with a maximum of ≈ 2.2 at ∆/h ≈ −6GHz, which is about

40% larger compared to the averaged value of 1.6 obtained for a dominant charge

character of the qubit (∆> 0).

7.6 RX qubit-photon coupling strength

In above section we assumed the validity of the theoretical prediction for the depen-

dence of gRX on ∆ that was derived in subsection 5.1.2. In this section we extract this

dependence from experiment by measuring the ac Stark shift. We also show that the

average photon number in the resonator is well below one for the measurement of the

Rabi splitting.

In the dispersive regime, the qubit frequency νRX shifts as a function of the aver-

age number of photons n̄ in the resonator, which linearly depends on the resonator

generator power Pgen,r. In addition, there is a Lamb shift of the qubit frequency due to

the coupling to vacuum fluctuations. This results in the dressed qubit frequency [see

Eq. (5.37)]

ν̃RX = νRX + (2n̄+ 1)(gRX/2π)
2/(νRX − νr). (7.1)

In Fig. 7.8(a), we observe the frequency shift due to the ac Stark shift in the spec-

troscopic qubit signal measured at ∆/h = −6.02GHz and ε/h = −0.26GHz. We fit a

function of the form

ν̃RX(Pgen,p) = aPgen,p + b (7.2)

to the resonator generator power Pgen,p dependent positions ν̃RX of the dressed qubit.



7.6 RX qubit-photon coupling strength 147

Note that we extract ν̃RX as the minimum of a Lorentzian fit to the phase response

at constant Pgen,p in Fig. 7.8(a). Using Eqns. (7.1) and (7.2) we obtain the bare qubit

frequency as

νRX =
1
2

�

b−
Æ

−4(gRX/2π)2 + (b− νr)2 + νr

�

, (7.3)

which allows to determine the photon number calibration factor

αn̄ ≡ n/Pgen,r = a(νRX − νr)/(2(gRX/2π)
2) (7.4)

for a known coupling strength gRX. To determine the coupling strength, we measure

the resonator frequency shift as a function of ε [as in Fig. 7.5(a)] at the RX qubit

operation point (∆/h= −6.02 GHz) that was used for the ac Stark shift measurement in
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Figure 7.8 ac Stark shift. (a) Phase response as a function of spectroscopy
frequency νdRX and resonator probe generator power Pgen,p. The resonator
power is converted to the average number of photons in the resonator n̄. The
generator of the drive gate is set to a power of Pgen,dRX = 0.25 nW, the resonator
is probed on resonance. The qubit parameters are tunnel couplings tL/h =
8.74GHz and tR/h = 8.12GHz, detuning ∆/h = −6.02GHz and asymmetry
ε/h = −0.26GHz. The position of the phase response minima are indicated
with a dashed line. (b) Spin-qubit photon coupling strength gRX with errors
from the photon number calibration as a function of ∆ (points) compared to
the theory prediction (line) for ε close to the single sweet spot.
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Fig. 7.8(a). We then obtain gRX from the theory model which agrees with the frequency

shift measurement.

We measure the ac Stark shift as in Fig. 7.8(a) for a second RX qubit configuration

where {tL/h = 8.10GHz, tR/h = 7.86GHz, ∆/h = −0.07GHz, ε/h = −0.1GHz} and

perform the above analysis for this second data set. We extract the photon number

calibration for both measurements independently and obtain an averaged value αn̄ =
(2.6± 0.4)× 10−3 photons/nW. The vacuum Rabi splitting shown in Fig. 7.5(c) was

recorded for Pgen,p = 100 nW. We can therefore reliably claim that for this measurement

the average number of photons in the resonator is on the order of ∼ 0.3. This confirms

that we indeed achieved a strong hybridization of the spin qubit with single microwave

photons.

With the known calibration factor αn̄, the ac Stark shift gives direct access to the

qubit-photon coupling strength since we obtain with Eqns. (7.1) and (7.2)

gRX/2π=
Æ

−a(a− 2αn̄ b+ 2ανr)/2αn̄. (7.5)

By measuring the ac Stark shift as a function of ∆ we extract an increases of gRX with

increasing ∆ in Fig. 7.8(b). This increase in coupling strength, however, comes at the

cost of an increase in qubit decoherence [see Fig. 7.7(a)]. The theoretically predicted

coupling strength shown as a solid line in Fig. 7.8(b) agrees with our experimental

observation.

7.7 Role of the Sz = 3/2 state

In this paragraph we discuss the influence of the Sz = 3/2 state on the resonator

response as observed in Figs. 7.4(b)-(d) at external magnetic fields B ≥ 1T. For the

experiments presented so far in this chapter, an external magnetic field of B= 200 mT

was applied. For this choice of magnetic field, the state with Sz = 3/2 is more than

h × 1GHz higher in energy than the qubit states. When introducing B, the energy

difference between the qubit states (Sz = 1/2) and the Sz = 3/2 state is changed by

the Zeeman splitting EZ = gµBB.

In Fig. 7.9 we probe the resonator on resonance and sweep ∆ and ε as for the

measurements in Figs. 7.4(b)-(d)1. As we increase the external magnetic field from

1T to 2.5T in Fig. 7.9(a)-(d), the phase response signal in the resonator vanishes for

1The measurements in Figs. 7.4(b)-(d) were performed with a second sample, which has the same
design as the first sample that was used for the experiments in the previous sections of this chapter. Both
samples were processed at the same time and show similar qubit, resonator and qubit-resonator parameters.
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negative ∆. This is expected when the Sz = 3/2 state, which does not couple to the

resonator, becomes the ground state. The intersection of the Sz = 3/2 state with the

qubit ground state is commonly used to read out the state of the RX qubit with RF

reflectometry (Medford et al., 2013a,b, Malinowski et al., 2017). The thermal window
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Figure 7.9 Resonator response for B≥ 1 T. (a)-(d) Resonator phase response
probed on resonance as a function of ∆ and ε for different external magnetic
fields B. The two dashed lines indicate the intersections E3/2 = E|0RX〉 + kBT
(bottom) and E3/2 = E|0RX〉−kBT (top), where E3/2 is the Sz = 3/2 state energy,
kBT the thermal energy for 30mK and E|0RX〉 the qubit ground state energy.
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for this intersection point is indicated by two dashed lines in Fig. 7.9(a)-(d). Within

this window, the thermal occupation of the qubit ground state and the Sz = 3/2 state

is expected to change significantly. The theory curves are calculated from the qubit

energy spectrum and are in agreement with the experiment. Note that the change

in the tunnel couplings tL,R in Fig. 7.9(a)-(d) is due to the magnetic field since the

electrostatic configuration of the qubit is unchanged.

7.8 Conclusion and outlook

The experiments presented in this chapter demonstrate the coherent coupling of a res-

onant exchange qubit to single microwave photons using hybrid circuit QED. The TQD

spin-qubit arises from exchange interaction, which couples spin and charge indepen-

dent of the host material. Other spin-qubit implementations are restricted to materials

with strong spin-orbit interaction (Petersson et al., 2012) or require additional compo-

nents such as ferromagnets (Viennot et al., 2015, Mi et al., 2018, Samkharadze et al.,

2018) for the spin-charge hybridization. Furthermore, the TQD spin-qubit is versatile

as all its parameters can be controlled electrostatically. For these reasons, it is possible

to move our architecture to material systems with minimal hyperfine interaction, such

as graphene (Trauzettel et al., 2007) or isotopically purified Si (Zwanenburg et al.,

2013) without the necessity to deposit ferromagnetic materials, which is generally

undesirable in the presence of a superconductor. By doing so, we expect the qubit

coherence to improve by at least one order of magnitude.
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Coherent long-distance
spin-qubit–transmon coupling

A future quantum processor will benefit from the advantages of different qubit im-

plementations (Acín et al., 2018). Two prominent workhorses of solid state qubit

implementations are spin- and superconducting qubits. While spin qubits have a high

anharmonicity, a small footprint (Hanson et al., 2007) and promise long coherence

times (Veldhorst et al., 2014, Yoneda et al., 2018, Russ et al., 2018), superconducting

qubits allow fast and high fidelity read-out and control (Barends et al., 2014, Wal-

ter et al., 2017). A coherent link, which couples both qubit systems controllably over

distances exceeding the physical size of the qubit, typically hundreds of nanometers,

by several orders of magnitude is required to create an integrated scalable quantum

device. An architecture to provide such a long-distance link is circuit QED, where

long-distance coupling (Majer et al., 2007, Sillanpää et al., 2007) enables two-qubit

gate operations (DiCarlo et al., 2009). Recently, coherent qubit-photon coupling was

demonstrated for spin qubits (Mi et al., 2018, Samkharadze et al., 2018, Landig et al.,

2018) in few electron quantum dots. However, coupling a spin qubit to another distant

qubit has not yet been shown. One major challenge for an interface between spin and

superconducting qubits is that spin qubits typically require large magnetic fields (Loss

et al., 1998, Petta et al., 2005), to which superconductors are not resilient (Luthi et al.,

2018).

We overcome this challenge by using a resonant exchange qubit. The qubit is im-

plemented in a GaAs triple quantum dot at zero magnetic field without reducing its

coherence compared to the measurements at finite magnetic field presented in chapter

7. The quantum link is realized with a frequency-tunable high impedance SQUID array
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resonator (Stockklauser et al., 2017), which couples the RX and the superconducting

qubit coherently over a distance of a few hundred micrometers. We tune the RX qubit

coupling strength to the resonator and its decoherence rate electrically and find that

their ratio is comparable to previously reported values for spin qubits in Si (Mi et al.,

2018, Samkharadze et al., 2018). We demonstrate coherent coupling between the two

qubits first by resonant and then by virtual photon exchange in the high impedance res-

onator. For the latter coupling mechanism we tune the RX qubit into different regimes,

where the qubit states have either a dominant spin or charge character.

The structure of this chapter is as follows: In sections 8.1 and 8.2 we present

the sample and characterize both qubits as well as their individual interaction with

the SQUID array resonator before we demonstrate resonant qubit-qubit interaction in

section 8.3. Subsequently we characterize the RX qubit in section 8.4 at various working

points in terms of the ratio of qubit-photon coupling strength over decoherence rate.

Finally, we demonstrate virtual-photon-mediated RX qubit-transmon interaction in

section 8.5 at four of these operation points.

The content of this chapter is closely related to our following preprint:

Coherent long-distance spin-qubit–transmon coupling

A. J. Landig, J. V. Koski, P. Scarlino, C. Müller, J. C. Abadillo-Uriel, B. Kratochwil, C.

Reichl, W. Wegscheider, S. N. Coppersmith, Mark Friesen, A. Wallraff, T. Ihn,

and K. Ensslin, arXiv: 1903.04022 (2019)

8.1 Experimental details

8.1.1 Sample

Figure 8.1 shows a schematic illustration and an optical micrograph of our sample.

The microwave read-out scheme is also depicted in the figure. The sample design is

similar to Ref. Scarlino et al., 2019b, where a semiconductor charge qubit was used

instead of a spin qubit. The experiments are performed in the setup from chapter 2.

In the following we describe the four quantum systems of the sample. The super-

conducting qubit we use is a transmon (see subsection 3.3.2) as its Josephson energy

exceeds the charging energy by about two orders of magnitude (see characterization in

subsection 8.2.2). As shown in Fig. 8.1(b) and Fig. 8.2(a) and introduced in subsection

3.3.2, the transmon consists of an Al SQUID grounded on one side and connected in

parallel to a shunt capacitor. We tune the transition frequency νT between the trans-

mon ground |0T〉 and first excited state |1T〉 by changing the flux ΦT through the SQUID

http://arxiv.org/abs/1903.04022
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loop with an on-chip flux line.

The transmon and the RX qubit are capacitively coupled to the same end of a

SQUID array resonator, which we denote as coupling resonator in the following, with

electric dipole coupling strengths gT and gRX, respectively. The other end of the coupling

resonator is connected to DC ground. The resonator was introduced and characterized

in section 4.3.2. Its resonance frequency νcr can be tuned from ≈ 4− 6.8GHz within

the detection bandwidth of our measurement setup with a magnetic flux Φcr produced

by a coil mounted close to the sample (see section 2.5). The resonator characteristic

gRX

ΦT

νp,νd

gT

grr

νdRX

νrr

νT

νRX
TransmonS D

~200 μm

Φcr ...

νcr

I+iQ

νcr

νT

νrr

100 μm

νdRX

I+iQ (b)(a) νp,νd
~ ~ ~ ~

RX

Figure 8.1 Sample. (a) Schematic of sample and measurement scheme. Mi-
crowave signals at frequencies νp (probe) and νd (drive) are routed with cir-
culators as indicated by arrows. The reflected signal Ĩ+ iQ̃ at νp is measured.
The sample (dashed line) contains four quantum systems with transition fre-
quencies νi: a coupling resonator that consists of an array of SQUID loops
(νcr, orange), a RX qubit (νRX, red), a transmon (νT, green) and a read-out
resonator (νrr, gray). Empty black double-rectangles indicate electron tunnel
barriers separating the three quantum dots (red circles) as well as the source
(S) and drain (D) electron reservoirs. A drive tone at frequency νdRX can be
applied to one of the dots. Crossed squares denote the Josephson junctions
of SQUIDs. Yellow arrows indicate the coupling between the quantum sys-
tems with coupling strengths gi . Φcr and ΦT denote coupling resonator and
transmon flux, respectively. (b) Optical micrograph of the relevant part of
the sample (dashed region) that was schematically shown in (a). The mea-
surement schematic is identical to (a). The micrograph is false colored with
the same color code as in (a): SQUID array (coupling) resonator in orange
with corresponding drive and probe port in yellow, transmon in green, one
end of the 50Ω (read-out) resonator in gray. GaAs in highlighted in black and
grounded Al in white. The position of the TQD is outlined with a red rectangle.
The dotted region is discussed in subsection 8.1.2.



154 Chapter 8 Coherent long-distance spin-qubit–transmon coupling

impedance Zcr ≈ 1.37kΩ (for νcr ≈ 6.8GHz1) enhances its coupling strength to both

qubits compared to a 50Ω resonator. The transmon flux ΦT has a negligible effect on

νcr.

Figure 8.1 indicates that the transmon is also capacitively coupled to a 50Ω λ/2

coplanar waveguide resonator. Throughout this article, we refer to this resonator as the

read-out resonator, because it allows us to independently probe the transmon without

populating the coupling resonator with photons. The read-out resonator is shown to

the full extent in Fig. 8.2(c). Its design and characterization was discussed in section

4.2. It has a bare resonance frequency νrr = 5.62GHz and a total photon decay rate

κrr/2π= 5.3 MHz.

Coupling and read-out resonators are capacitively coupled to 50Ω transmission

lines that are shown in Fig. 8.1(b) and Fig. 8.2(c), respectively. The microwave wiring

in Fig. 8.1 indicates that these transmission lines are used to read-out both resonators

by measuring the reflection of a multiplexed probe tone at frequency νp. In addition, we

can apply a drive tone at frequency νd that couples to both qubits via the resonators.

10 μm

SQUID

�ux lineI

one end of 
read-out
resonator

QPC
400 nm

S D

DC+νdRX coupl. res.(b)(a)

(c) 500 μm

read-
out line

Figure 8.2 Sample details. (a) False-colored optical image of the transmon
SQUID and parts of the transmon capacitor (green). The flux line with current I
is marked. (b) Scanning electron micrograph of the TQD (red circles) and QPC
region of the sample. Unused gate lines are grayed out. The gate line extending
to the SQUID array resonator is highlighted in blue. (c) Optical micrograph
of the 50Ω resonator and its microwave read-out line. The location of the
sample region shown in Fig. 8.1(b) is outlined with a black rectangle.

1Note that Zcr∝ 1/νcr.
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The probe tone power is kept sufficiently low for the estimated average number of

photons in both resonators to be less than one.

At a distance of a few hundred micrometers from the transmon, we form a TQD in

a GaAs/AlGaAs heterostructure by local depletion with Al top gate electrodes shown in

Fig. 8.2(b). One of the electrodes extends to the coupling resonator to enable electric

dipole interaction between photons and TQD states. Another electrode allows us to

apply RF signals at frequency νdRX. We use a QPC charge detector to help tune the

TQD to the three-electron regime. Note that a DC voltage cannot be applied to the

gate that extends to the resonator, since our SQUID array resonator design does not

include a bias line. In order to still tune the quantum dot that is below the resonator gate

[right quantum dot in Fig. 8.2(b)] to the few-electron regime, the gate design had to be

adapted compared to the design used for the experiments in chapter 7 [see Fig. 7.1(c)],
where DC bias via the NbTiN resonator was possible. As shown in Fig. 8.2(b), we use

an additional gate line that is opposite to the resonator gate as a plunger gate.

We configure a RX qubit in the TQD (see section 3.2) using the method explained in

section 7.2. For the experiments in chapter 7, the RX qubit was defined by states with

S = 1/2, Sz = 1/2 that were split energetically from an equivalent set of states with

S = 1/2, Sz = −1/2 by more than the thermal energy in the presence of an external

magnetic field of 200 mT. For the measurements in this chapter, both sets of states are

thermally occupied since the maximum external magnetic field given by Φcr is of the

order of 1 mT. This however does not influence the resonator-qubit interaction, which

is identical for a RX qubit defined in the Sz = 1/2 or the Sz = −1/2 spin subspace. We

show in section 8.4 that also the RX coherence as determined by the resonator is not

affected.

8.1.2 Sample fabrication

Here we provide an overview of the sample fabrication, which is described in more

detail in Appendix C.2. The sample fabrication starts by defining the mesa structure,

the ohmic contacts as well as the macroscopic gate lines using the recipes that were

described in subsection 6.1.3. As a next step, we pattern the 50Ω resonator as well as

the macroscopic sample ground structures with photolithography and the evaporation

of a Ti(3nm)/Al(200nm) layer. Subsequently we evaporate Ti(3nm)/Al(27nm) on

an EBL defined structure in order to fabricate the TQD fine gates. Note that in contrast

to subsection 6.1.3 we use Al for the fine gates since this is suspected to reduce the

charge noise compared to Au fine gates (Stockklauser, 2017). Next, the SQUID array
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resonator and the transmon are defined with EBL and shadow evaporation as described

in section 4.3.2. We use another EBL step to ensure good electrical connection between

the EBL- and photolithography-defined Al structures, where we open the resist in large

areas surrounding the overlap regions. An exemplary area is outlined with a dotted

line in Fig. 8.1(b). Finally, we evaporate a layer of Ti(3 nm)/Al(200 nm) within theses

areas.

8.2 Basic characterization

In this section we present spectroscopic measurements that serve as a basic charac-

terization of the qubit and resonator frequencies as well as of their dependence on

experimental control parameters such as magnetic flux and gate voltages.

8.2.1 Flux dependent RF spectrum

In Fig. 8.3 we determine the spectroscopic positions of the coupling resonator, the read-

out resonator and the transmon by measuring |S11| as a function of probe frequency

νp and global flux Φcr. This flux is produced by a coil mounted next to the sample and

therefore affects the resonance frequencies of the SQUID array (coupling) resonator

as well as of the transmon. The response due to the transmon is visible in Fig. 8.3

at around the maximum transmon frequency of νT ≈ 5.4GHz. The transmon has a

faster periodicity in Φcr than the coupling resonator, as the area of the resonator SQUID

loops is smaller compared to the area of the transmon SQUID [see Fig. 8.1(b)]. We

observe about one periodicity of the coupling resonator in Fig. 8.3 with the maximum

frequency at νcr ≈ 6.8 GHz. The 50Ω (read-out) resonator is resonant at νrr ≈ 5.6 GHz.

It is indirectly influenced by Φcr via the dispersively coupled transmon.

8.2.2 Transmon

In Fig. 8.4 we characterize the transmon with the two-tone spectroscopy method that

was introduced in subsection 5.2.1. The probe tone is on resonance with the read-

out resonator (νp = νrr) and the drive tone at frequency νd is swept to probe the

transmon resonance. We detect a spectroscopic response of the transmon in Fig. 8.4

as a peak in |A− A0|, which is centered at νd = νT(ΦT). Here, A (A0) is the complex

amplitude of the reflected microwave signal in the presence (absence) of the drive
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Figure 8.3 Flux dependent microwave response. Spectrum of reflected ampli-
tude |S11| as a function of probe frequency νp and flux Φcr, which is normalized
by the transmon flux periodicity Φ0,T. The RX qubit is detuned energetically.
Exemplary positions of coupling resonator, read-out resonator and transmon
are indicated with arrows.

tone2. We fit a Jaynes-Cummings Hamiltonian of the form presented in subsection

5.2.1 to the spectroscopic positions of the read-out resonator (not shown in Fig. 8.4)

and the transmon. For the latter we include the position of the first (see Fig. 8.4)

|A-A0| 
[arb. u.]

5.0

ν d 
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H
z]

5.4
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ΦT/Φ0

0-0.1-0.2 0.20.1

Transmon

0

0.2

0.4

Figure 8.4 Transmon ΦT-dispersion. Two-tone spectroscopy of the transmon
with the RX qubit energetically far detuned. We plot the complex amplitude
change |A−A0| (see main text) as a function of drive frequency νd and ΦT/Φ0.
The dashed line indicates νT as obtained from theory (see text).

2Note that |A| and |S11| are distinct, since the latter is normalized by the reflected signal in the absence
of the resonator and therefore it is a unitless quantity.
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as well as the second excited state (not shown in Fig. 8.4), which is probed by two

photon transitions (Schuster et al., 2005, Schreier et al., 2008, Fink, 2010). Note that

the coupling resonator is not considered for the fit since it is far detuned in frequency.

We extract the coupling strength g(0)rr /2π ≈ 141MHz (at ΦT = 0) of transmon and

read-out resonator as well as the maximum Josephson energy E(SQ)
J = 18.09 GHz and

the charging energy E(T)C = 0.22 GHz of the transmon. Note that the parameters for all

theory fits in this chapter can be found in Appendix B.3.

8.2.3 RX qubit

We also utilize two-tone spectroscopy to characterize the RX qubit. We apply a resonant

probe tone to the coupling resonator (νp = νcr), a drive tone at νdRX to a TQD gate

electrode and sweep the RX qubit energies with ε and ∆. The resulting resonator

reflection |S11| is shown in Fig. 8.5(a) for two different drive frequencies, which are

well below νcr. In the figure we observe spectroscopic evidence of the RX qubit as

local minima {εres,∆res} in |S11| whenever drive tone and RX qubit are on resonance

(νdRX = νRX). We fit νRX(εres,∆res) calculated from the RX qubit Hamiltonian to these

spectroscopic positions in order to extract tL, tR as well as the lever arms αε and α∆
3.

The fit result is shown as a red dashed line in Fig. 8.5(a). Thereby the quality of the fit

is improved by performing a simultaneous fit to two datasets with different νdRX [see

left and right panels in Fig. 8.5(a)].
We use a single-tone simulation to calculate the theoretical response due to a single

drive tone in Fig. 8.5(b). Simulating two-tone spectroscopy is numerically challenging,

since the Hamiltonian of the system will be explicitly time-dependent and there is no

more steady state. Instead of tackling this problem using time-dependent simulations

we note that for small amplitudes, in the linear response regime, the signal obtained

from two-tone spectroscopy will be proportional to the single frequency response that

we obtain from the quantum master equation that was presented in subsection 5.3.1.

For every simulation of a two-tone measurement in this chapter we introduce this

proportionality constant as an additional free parameter to match experimental two-

tone spectroscopy data and simulation. Consequently, the experimental response due

to the drive tone in Fig. 8.5(a), i.e. the local minima {εr ,∆res} discussed above, is well

reproduced by the theoretical result shown in Fig. 8.5(b).

Four similar RX qubit tunnel coupling configurations are used for the experiments

presented in this chapter. They are determined using the method explained above and

3Details of this analysis method are explained in section 7.2.
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listed in Table 8.1. Different configurations were necessary in order to realize a certain

qubit energy at a desired working point {ε,∆}. Second, when readjusting the tunnel

couplings after the occurrence of a random charge rearrangement in the host material

(electrostatic jump), the identical tunnel coupling configuration that was present before

the charge rearrangement could not be achieved.

Except for the measurements in Fig. 8.5(a), we configure the RX qubit at the energy

minimum in ε (single sweet spot), which is determined with two-tone spectroscopy, in
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Figure 8.5 RX qubit two-tone spectroscopy. (a) Amplitude |S11| of the re-
flected microwave probe tone at νp ≈ νcr = 4.84 GHz as a function of RX qubit
detuning ∆ and asymmetry ε for νdRX = 4.5 GHz and νdRX = 4.15 GHz in the
left and right panels, respectively. The dashed line shows the bare RX qubit en-
ergy contour for νRX = νdRX = 4.5 GHz in the left and νRX = νdRX = 4.15 GHz
in the right panel for the couplings tL/h= 8.52 GHz and tR/h= 8.18 GHz as
extracted from a fit to the spectroscopic response (see text). (b) Single drive
tone simulations of (a). The dashed lines in (a) and (b) are identical.
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RX qubit configuration tL/h [GHz] tR/h [GHz]
1 9.91 8.26
2 9.22 8.73
3 8.52 8.18
4 8.80 8.77

Table 8.1 RX qubit tunnel coupling configurations used in this chapter.
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Figure 8.6 RX qubit∆-dispersion. (b) Two-tone spectroscopy of the RX qubit
(tunnel coupling configuration 3), with the transmon energetically far detuned
for νp ≈ νcr = 4.84GHz as a function of ∆ and νdRX. The dashed line shows
the theoretically expected qubit frequency (see text).

order to protect it from charge noise (that couples to ε) to first order. The two-tone

spectroscopy response of the RX qubit at this sweet spot as a function of∆ is indicated

in Fig. 8.6. This measurement maps the RX qubit∆−dispersion, which agrees well with

the theoretical result obtained from the eigenenergies of a Jaynes-Cummings model.

The model takes the spectroscopic positions of the coupling resonator (not shown in

Fig. 8.6) and the RX qubit into account. Remember from section 3.2, that the RX qubit

has a dominant spin or charge character for ∆ < 0 or ∆ > 0, respectively. This is

indicated in Fig. 8.6.

8.3 Resonant interaction

First, we investigate the resonant interaction between the coupling resonator and

the RX qubit. To start with, both qubits are detuned energetically from the coupling

resonator. Then, we sweep ∆ to cross a resonance between the RX qubit and the res-

onator, while keeping the transmon far detuned. We observe a well resolved avoided

crossing in the |S11| reflectance spectrum shown in Fig. 8.7(a) and extract a spin
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qubit-photon coupling strength of gRX/2π = 52MHz from a fit of a quantum master

equation simulation (see subsection 5.3.1) to the vacuum Rabi mode splitting [black

in Fig. 8.7(c)]. The spin qubit and the coupling resonator photons are strongly coupled

since gRX > κcr,γ2,RX, with the RX qubit decoherence rate γ2,RX/2π= 11 MHz and the

bare coupling resonator linewidth κcr/2π = 4.6MHz. The decoherence rate is deter-

mined independently with power dependent two-tone spectroscopy: we dispersively

detune the coupling resonator with Φcr from the RX qubit and extrapolate the width

of the peak observed in the two-one spectroscopy response (c.f. Fig. 8.6) to zero drive

power (see section 7.5).

Note that the extracted spin-photon coupling strength corresponds to a charge

coupling strength g(0)c,RX = 186MHz, which is a factor of ≈ 2.6 larger compared to

the experiments presented in chapter 7 (see section 7.4). In the following we discuss

possible reasons for this enhancement. First, the characteristic impedance of the SQUID

array resonator is larger compared to the NbTiN resonator. We estimate Zcr ≈ 2.2kΩ

on resonance (νcr ≈ 4.2 GHz) in Fig. 8.7(a), which enhances g(0)c,RX ∝
p

Zcr by a factor

of ≈ 1.3 compared to the experiments in chapter 7. Second, the TQD is positioned at
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Figure 8.7 Resonant qubit-coupling resonator interaction. The schematics at
the top of the graphs indicate the energy levels of the RX qubit (νRX), coupling
resonator (νcr) and transmon (νT). Theory curves in the absence (presence)
of coupling are shown as dashed black (red) lines. (a) Reflected amplitude
|S11| as a function of RX detuning ∆ and probe frequency νp for RX qubit
tunnel coupling configuration 2. (b) Reflected amplitude |S11| as a function of
relative transmon flux ΦT/Φ0 and νp. The states |±〉res,2 are discussed in the
text. (c) Cuts from panel (a) at ∆/h ≈ −7.6GHz (black) and from panel (b)
at ΦT/Φ0 ≈ 0.3 (green) as marked with arrows in the respective panels. The
black trace is offset in |S11| by 0.1. Theory fits are shown as red dashed lines.
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the end of the SQUID array resonator and therefore at the maximum of the voltage

fluctuations, while there is a spatial offset from this maximum for the experiments in

chapter 7 [see Fig. 7.1(b)]. Third, the design of the TQD fine gates was modified for

the sample used in this chapter in order to enlarge the overlap of the resonator gate

with the underlying quantum dot compared to the device presented in chapter 7. The

increased capacitance between the gate and the dot enhances the resonator lever arm.

Finally, the dependence of the lever arm on the position of the TQD with respect to

the fine gates also possibly contributes to the coupling strength enhancement. Note

that notable differences in the qubit-photon coupling strength were also observed by

modifying the gate design of DQD charge qubit devices in Ref. Stockklauser, 2017.

Next, we characterize the interaction between the transmon and the coupling res-

onator. We tune the transmon through the resonator resonance by sweeping ΦT. For

this measurement the RX qubit is far detuned in energy. We resolve the hybridized

states of the transmon and the resonator photons in the measured |S11| spectrum

in Fig. 8.7(b). They are separated in energy by the vacuum Rabi mode splitting

2gT/2π = 360MHz illustrated in Fig. 8.7(c) in green. We perform power dependent

two-tone spectroscopy to extract the transmon linewidth by probing the read-out res-

onator. We obtain γ2,T/2π= 0.7 MHz, which we estimate to be limited by Purcell decay

(see subsection 5.4.3). Consequently, the strong coupling limit gT > κcr,γ2,T is also

realized for transmon and coupling resonator.

We now demonstrate that the two qubits interact coherently via resonant inter-

action with the coupling resonator. For this purpose, we first tune the transmon and

the coupling resonator into resonance, where the coupled system forms the super-

position states |±〉res,2 = (|1cr, 0T〉 ± |0cr, 1T〉)/
p

2 (see subsection 5.2.1) of a single

excitation in either the resonator or the qubit. Then, we sweep ∆ to tune the RX qubit

through a resonance with both the lower energy state |−〉res,2 and the higher energy

state |+〉res,2. In the |S11| spectrum in Fig. 8.8(a), avoided crossings are visible at both

resonance points. This indicates the coherent interaction of the three quantum sys-

tems, which form the states |−,±〉 ≈ 1
2 (|1cr, 0T, 0RX〉−|0cr, 1T, 0RX〉)±

1p
2
|0cr0T1RX〉 and

|+,±〉 ≈ 1
2 (|1cr, 0T, 0RX〉 + |0cr, 1T, 0RX〉) ±

1p
2
|0cr0T1RX〉. These states are symmetric

or antisymmetric superpositions of the RX qubit state with the transmon-resonator

|±〉res,2 states. Note that the bare qubit energies are on resonance (νRX = νT) at

∆/h ≈ −7.7GHz between the two avoided crossing points observed in Fig. 8.8(a).

There, the states are approximately given by |0〉res,3 and |±〉res,3 that were derived

in subsection 5.2.2. The splitting 2g∓ between |−,±〉 and |+,±〉 is extracted from

the |S11| reflection measurements in Fig. 8.8(c). We obtain 2g+/2π = 84MHz at
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Figure 8.8 Resonant transmon-RX qubit interaction. (a) |S11| as a function
of ∆ and νp for RX qubit tunnel coupling configuration 2. The measurement
is performed while transmon and coupling resonator are tuned on resonance,
where they form the states |±〉res,2 [see green arrow in Fig. 8.7(b)]. The states
|−,±〉 and |+,±〉 are explained in the text. (b) Result of a master equation
simulation for parameters as in (a). The values for |S11| are scaled to the
experimental data range in (a). (c) |S11(νp)| at ∆/h ≈ −9.8GHz and ∆/h ≈
−5.6 GHz as marked with the corresponding colored arrows in panels (a) and
(b). The blue trace is offset in |S11| by 0.2.

∆/h≈ −5.6 GHz and 2g−/2π= 63 MHz at∆/h≈ −9.8 GHz from the fits in Fig. 8.8(c).

The smaller g− compared to g+ is due the decrease of the RX qubit dipole moment

with more negative ∆. The experimental observation in Fig. 8.8(a) is well reproduced

by a quantum master equation simulation (see subsection 5.3.1) shown in Fig. 8.8(b).

8.4 RX optimal working point

While γ2,T is limited by Purcell decay and therefore does not depend on ΦT, γ2,RX

changes with ∆ (see section 7.5). We use power dependent two-tone spectroscopy

via the coupling resonator to measure γ2,RX as a function of ∆. The result is shown

in Fig. 8.9(a). We observe an increase of γ2,RX as the charge character of the qubit is

increased with ∆. This is consistent with Fig. 7.7(a), where however a smaller range

in ∆ was measured. Compared to Fig. 7.7(a), the data in Fig. 8.5(a) also covers the

range |∆| � tL,R.

In this paragraph we discuss the observation in Fig. 8.9(a) for ∆� 0. The data

suggests a lower limit of γ2,RX/2π≈ 6.5 MHz for ∆� 0 similar to the measurements

in section 7.5 that were performed in an external magnetic field of 200 mT. Hence, our
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experiment indicates that the RX qubit can be operated near zero magnetic field without

reducing its optimal coherence. We use the same noise model as in section 7.5 to fit

to the measured decoherence rate. Theory and experiment in Fig. 8.9(a) match for a

widthσHF = 3.48±0.06 mT of the hyperfine field fluctuations, which agrees within the

error range with σHF = 3.51± 0.28 mT as obtained in section 7.5 and is in agreement

with other work on spin in GaAs (Petta et al., 2005, Johnson et al., 2005b, Koppens

et al., 2005, 2006, Koppens et al., 2008). We therefore draw the same conclusion as in

section 7.5, that γ2,RX is limited by hyperfine interaction. The fact that we obtain the

same σHF for both magnetic field values suggests the validity of our hyperfine noise

model presented in subsection 5.4.1.1. Note that this noise model could be checked

further by measuring γ2,RX in the regime where γHF,⊥
ϕ,RX exhibits a maximum [around

700mT in Fig. 5.8(b)].

We now focus on the parameter range ∆> 0 in Fig. 8.9(a). The maximal γ2,RX ≈
20 MHz is smaller compared to γ2,RX ≈ 30 MHz obtained in Fig. 7.7. This difference is

reflected in the smaller charge noise parameter β = 62.9 for the fit of the noise model

to the data in Fig. 8.9(a) compared to β = 129.4 obtained from the fit in Fig. 7.7(a). A

γ 2
,R

X/
2π

 [M
H

z]

5
10
15
20

Δ/h [GHz]
0 10 20-20 -10

g R
X/

γ 2
,R

X 

2

4

6

8

A B C D

25
30

Δ/h [GHz]
0 10 20-20 -10

νRX
νcr νT

E
10
12(a) (b)

Figure 8.9 RX qubit working points. (a) RX qubit decoherence rate γ2,RX as
a function of ∆. The dotted vertical lines specify the four working points
used for the measurements in section 8.5. The corresponding colored data
points were obtained for a coupling resonator-RX qubit detuning of νcr−νRX ≈
(13.7, 8.0, 5.1, 4.4)gRX for∆/h≈ (−9.9,−3.3, 3.4, 10.2)GHz and the RX qubit
tunnel coupling configurations 3 (circle) and 4 (triangle). For the black data
points, νcr − νRX ≥ 9.7 gRX with qubit tunnel coupling configuration 1 (circle)
and 2 (triangle). The dashed red line is a fit of a theory model (see main text)
to the black data points. The error bars indicate the standard error of fits and
an estimated uncertainty of the RX qubit energy of 50 MHz. (b) Ratio of gRX,
as obtained from theory, and γ2,RX as shown in (a). The color and shape code
of the data points is the same as in (a).
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possible explanation for the reduced charge noise for the experiments in this chapter

is the usage of Al fine gates for the TQD compared to Au gate lines that were employed

in chapter 7. This would be in agreement with Ref. Premakumar et al., 2018, where

superconducting gates were predicted to reduce evanescent wave Johnson noise. The

same argument was used to explain an improved charge qubit coherence for Al instead

of Au gates in Ref. Stockklauser, 2017.

The colored data points in Fig. 8.9(a) were measured for a smaller RX qubit-

coupling resonator detuning compared to the black data points (numbers are given in

Fig. 8.9 caption). The smaller detuning is used for the virtual interaction measurements

presented in section 8.5. We observe an increase of γ2,RX for small qubit-resonator de-

tuning compared to large detuning. This increase is about one order of magnitude

larger than our estimated difference of Purcell decay and measurement induced de-

phasing for those different data sets (see Appendix B.3.1). In contrast, for the transmon

that is less sensitive to charge noise, we do not observe this effect. This suggests that

the effect is due to charge noise induced by the coupling resonator.

Next, we investigate whether an optimal working point for the RX qubit exists,

i.e. a ∆-operation point where the ratio gRX/γ2,RX is maximal. While a distinct optimal

point is not discernible for the black data points in Fig. 8.9(b), the averaged value of

gRX/γ2,RX ≈ 9 in the spin dominated regime for −6 < ∆/h < 0GHz is about a factor

of 1.7 larger than values reported so far for Si spin qubits in a circuit QED device

(Samkharadze et al., 2018, Mi et al., 2018). In contrast, for the colored data points

we observe an optimal working point at ∆/h ≈ −3.3GHz since gRX/γ2,RX is reduced

at small qubit-resonator detuning in Fig. 8.9(b) compared to the black data points at

large detuning due to the influence of the coupling resonator on γ2,RX discussed above.

8.5 Virtual-photon-mediated interaction

In this section we investigate RX qubit-transmon interaction mediated by virtual pho-

tons in the coupling resonator at the RX qubit working points marked in color in

Fig. 8.9(a). The two qubits are resonant while the coupling resonator is energetically

detuned, such that the photon excitation is not dominant in the superposed two-qubit

eigenstates. This coupling scheme, illustrated in Fig. 8.10, is typically used for super-

conducting qubits to realize two-qubit operations (DiCarlo et al., 2009).

We measure the virtual coupling at the optimal working point (∆/h≈ −3.3 GHz),

at ∆/h ≈ −9.9GHz and at ∆/h ≈ 10.2GHz, where γ2,RX in Fig. 8.9(a) saturates, as

well as in the intermediate regime at ∆/h ≈ 3.4GHz. While the RX qubit is tuned
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Figure 8.10 Virtual interaction measurement scheme. (a) Bare qubit transi-
tions (black arrows) are coupled by virtual photon excitations (red arrows) in
the detuned coupling resonator (|(0/1)cr〉 are the two lowest photon number
states). The RX qubit is driven at frequency νdRX, the transmon is probed via
the read-out resonator at frequency νrr.

through a resonance with the transmon by changing ∆, they are both detuned by

∆cr ≡ νcr − νT ≈ 3gT from the coupling resonator. To realize this detuning for every

working point, we adjust the qubit and resonator energies with ΦT, tL,R and Φcr.

As illustrated in Fig. 8.10, we drive the RX qubit via a gate line at frequency

νdRX and investigate its coupling to the transmon by probing the dispersively cou-

pled read-out resonator at its resonance frequency (νp = νrr ≈ 5.6GHz). This mea-

surement is shown in Fig. 8.11(a) for the working point at ∆/h ≈ −9.9GHz. For

large transmon-spin qubit detuning (∆/h � −10GHz), the spectroscopic signal of

the transmon is barely visible as the drive mainly excites the bare RX qubit. The

signal increases with ∆ as the RX qubit approaches resonance with the transmon,

such that driving the RX qubit also excites the transmon due to their increasing mu-

tual hybridization. On resonance, we resolve the two hybridized spin qubit-transmon

states |±〉disp,3 ≈ (|0RX, 1T〉± |1RX, 0T〉)/
p

2 (see subsection 5.2.2) by about a linewidth.

These states are separated in energy by the virtual-photon-mediated exchange splitting

2J ≈ 2gRX gT/∆cr. The exchange splitting is enhanced at the other working points in

Figs. 8.11(b)-(d), for which the RX qubit control parameter ∆ and consequently gRX

is larger. The result of a master equation simulation shown in Fig. 8.11(b) agrees well

with the experimental observation.

The influence of the RX qubit decoherence rate γ2,RX on the virtual interaction

measurement is quantified in Fig. 8.12, where we show averaged measurements of

the two-tone spectroscopy signal from Figs. 8.12(a)-(d) at ∆ as indicated by arrows in

the corresponding panels. We also show fits of a master equation model in Fig. 8.12.

The exchange splitting is best resolved at the optimal working point, corresponding
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to the solid green curve in Fig. 8.12, where we obtain 2J/2π ≈ 32MHz from the fit.

Note that it turned out that there was significant power broadening present in the

experiments. This manifested itself in a reduced size of the observed anti-crossing
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Figure 8.11 Virtual-photon-mediated RX qubit-transmon interaction. (a)-(d)
Two-tone spectroscopy at νp = νrr ≈ 5.6GHz as a function of ∆ and drive
frequency νdRX, realizing the measurement scheme in Fig. 8.10. Dashed black
(red) lines indicate transmon and RX qubit energies in the absence (presence)
of coupling. The frame color refers to the RX qubit working points as speci-
fied in Fig. 8.9(a). The inset in (b) shows the result from a master equation
simulation with the same axes as the main graph.
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Figure 8.12 Exchange splittings. Two-tone spectroscopy response from
Figs. 8.11(a)-(d) at ∆ as specified with arrows in the corresponding pan-
els. The cuts are centered around zero by accounting for a frequency offset
νdRX,0 ≡ νdRX−∆νdRX. The dashed lines show the corresponding theory results.

compared to the expected value when applying the parameters obtained in previous

fits (c.f. Fig. 8.7). As our fitting procedure, first adjusting Hamiltonian parameters using

observed peak positions and then fitting the linewidth, cannot account for this kind of

power broadening by itself, we adapted the fits to adjust the observed coupling strength

between the RX qubit and the coupling resonator to account for the observed values

(see Appendix B.3.2 for fit parameter values). Additionally, when subsequently fitting

the linewidths, we had to introduce significant additional broadening to the transmon

linewidth γ2,T, for simplicity setting it equal to the RX linewidth γ2,RX obtained in

Fig. 8.9(a). This combination leads to excellent quantitative agreement of theory and

experiment in Fig. 8.12.

In Fig. 8.11, virtual-photon-mediated transmon-RX qubit interaction was realized

by driving the RX qubit and tuning its energy with∆ into resonance with the transmon.

Alternatively, both qubits can be tuned on resonance by changing the transmon energy

with ΦT. Such a measurement is shown for RX qubit working point B in Fig. 8.13(a).

The anti-crossings in Fig. 8.11(b) and Fig. 8.13(a) are very similar, as it is equivalent

to sweep ∆ or ΦT to tune both qubits on resonance.

In Fig. 8.13(b) we realize another alternative virtual interaction measurement

scheme. There, we apply the drive tone via the resonators and tune both qubits on

resonance by sweeping ∆. In contrast to the previous measurements in this section,

this drive excites the transmon, which we observe spectroscopically in Fig. 8.13(b) if

it is detuned from the RX qubit. The visibility of the spectroscopic signal is reduced

by approaching the two-qubit resonance condition with ∆ since the coherence of

the hybridized transmon-RX qubit system is smaller compared to the bare transmon
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Figure 8.13 Alternative realizations of virtual-photon-mediated RX qubit-
transmon interaction. The dashed lines are the bare RX and transmon energies.
(a) Two-tone response at νp = νrr = 5.63GHz as a function drive frequency
νdRX and normalized transmon flux ΦT/Φ0. The measurement parameters are
identical to Fig. 8.11. (b) Identical to (a) except for sweeping the RX qubit
energy with ∆ and applying the drive tone via the resonator.

coherence. This reduced visibility is in contrast to Fig. 8.11(b), where the coherence of

the hybrid system is improved compared to the bare RX qubit coherence off resonance.

By increasing the drive power for a measurement as in Fig. 8.13(b), we would expect

the visibility on resonance to increase however at the cost of adding power broadening

to the system.

8.6 Conclusion and outlook

In conclusion, we have implemented a coherent long-distance link between a RX qubit

and a transmon. The link either utilizes real or virtual microwave photons for the

qubit-qubit interaction. The RX qubit was operated in both spin and charge dominated

regimes. We found an optimal working point at which the ratio between its resonator

coupling rate and its decoherence rate is maximal and comparable to state-of-the-art

values achieved with spin qubits in Si. We also reported that the coupling resonator

potentially introduces charge noise that can have significant impact on the RX qubit

coherence. The performance of the quantum link in this work is limited by the minimum

decoherence rate of the qubit, which is determined by hyperfine interaction in the GaAs
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host material. Once the spin coherence is enhanced by using hyperfine-free material

systems such as graphene (Trauzettel et al., 2007, Eich et al., 2018) or isotopically

purified Si (Zwanenburg et al., 2013), the spin could be used as a memory that can

be coupled on-demand to the transmon by pulsing the qubit control parameter. As the

coherence properties of the RX qubit are retained at zero magnetic field in contrast to

other spin qubit implementations, the quantum device architecture used in this work is

compatible for realizing a high fidelity transmon–spin-qubit and spin-qubit–spin-qubit

(Srinivasa et al., 2016) interface in a future quantum processor.



Chapter 9

Conclusion and outlook

In this thesis, we have studied different solid-state quantum systems as well as their

interaction with single photons at a fundamental level using hybrid circuit QED tech-

nology. We thereby put the focus on quantum systems that are formed by few-electron

spin states in double or triple quantum dots in a GaAs/AlGaAs heterostructure. The

basis of these studies was set by an experimental setup that connects microwave and

DC electronics at room temperature to the quantum systems that are kept at mK tem-

peratures with the constraints that the microwave signals are at the level of single

microwave photons and sub 100mK electronic temperatures can be achieved. The

setup was assembled and in large parts also developed from scratch in this work.

Another important ingredient for our experiments was to further develop the hybrid

circuit QED sample architecture introduced in earlier studies (Frey et al., 2012, Peters-

son et al., 2012) with two goals. The first goal was to achieve compatibility in large

magnetic fields, motivated by the ability to investigate spin properties of the quantum

systems in a magnetic field. The second goals was to enhance the qubit-photon cou-

pling strength, driven by the intention to reach the strong coupling limit. We realized

both goals by designing and fabricating a coplanar-waveguide type superconducting

NbTiN microwave resonator. The thin and narrow film of the resonator center con-

ductor makes it resilient to parallel magnetic fields and leads to a high characteristic

resonator impedance that in turn enhances the coupling strength. Test resonators were

characterized and reasonable quality factors of the order of 103 as well as a magnetic

field resilience of up to two tesla was demonstrated.

The magnetic field resilience of the resonator was employed in a first experiment

(Landig et al., 2019b) to investigate spin states of few electrons in a DQD, which

was coupled to the resonator in the weak coupling regime. By probing the resonator
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transmission, we could distinguish two-electron spin-singlet from spin-triplet states due

to the vanishing electric susceptibility of the latter. We used this spin selectivity of the

resonator to map the crossover of the two-electron DQD ground state from a spin-singlet

to a spin-triplet state in a magnetic field. We also investigated Pauli spin-blockade

known from transport experiments at finite source-drain bias, where we discovered

an unconventional spin blockade triggered by the absorption of resonator photons.

This first experiment demonstrated the usability of a magnetic-field-compatible hybrid

circuit QED system to investigate DQD spin physics from a different experimental

perspective compared to for example electronic transport related studies. The presented

approach can be a key technology in future experiments to investigate spin-related

properties in other material systems including 2D materials. It can also be further

developed to realize fast spin state read-out (Zheng et al., 2019) or to study spin

in larger quantum dot systems such as for example in a 2D array of quantum dots

(Mortemousque et al., 2018).

In the second experiment (Landig et al., 2018), we focused on the quantum informa-

tion aspect of the hybrid circuit QED system. There, we demonstrated strong coupling

between single microwave photons in a NbTiN high impedance resonator and a spin

qubit that is based on exchange interaction between three electron spins in a TQD.

We resolved the vacuum Rabi mode splitting and demonstrated electrostatic tunability

of the qubit-photon coupling strength as well as of its coherence time. Similar to the

demonstration of strong coupling for superconducting qubits (Wallraff et al., 2004), the

realization of coherent spin-photon interaction in this work and in Refs. Mi et al., 2018,

Samkharadze et al., 2018 will likely trigger a variety of follow-up hybrid circuit QED

experiments involving spin qubits such as long-range qubit-qubit coupling (Srinivasa

et al., 2016, Benito et al., 2019) as well as dispersive single-shot spin qubit read-out

(D’Anjou et al., 2019). These experiments pursue the goal of realizing a large-scale

spin-qubit based quantum processor architecture (Vandersypen et al., 2017). Integrat-

ing the RX qubit into such an architecture can be advantageous compared to using

other quantum dot based spin-qubit systems, which require an external magnetic field

and rely on spin-charge hybridization due to local magnetic stray fields or material

intrinsic spin-orbit interaction in order to realize spin-photon coupling. Spin-charge

hybridization is inherent for the RX qubit and full electrical control is possible without

the necessity of ferromagnetic materials in the vicinity of the qubit.

The coherence performance of the RX qubit is unchanged even at zero magnetic

field (Landig et al., 2019a), which makes it compatible with superconducting qubits. We

used this advantage in our third experiment to coherently couple a transmon and a RX
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qubit on-chip over a distance that exceeds the extent of the spin qubit by three orders of

magnitude. The coupling was realized with a frequency-tunable high impedance SQUID

array resonator (Stockklauser et al., 2017, Scarlino et al., 2019b). We demonstrated

resonant as well as virtual photon-mediated interaction of both qubits. In the latter

case the RX qubit was among others operated at a working point where its coupling to

decoherence ratio is maximal and state of the art for spin qubits in hybrid circuit QED

(Mi et al., 2018, Samkharadze et al., 2018). While we found spectroscopic indication for

qubit-qubit entanglement in our measurements, time-resolved experiments that capture

and control the coherent qubit dynamics will allow to perform state tomography by

dispersive read-out (Blais et al., 2004) and ultimately to implement single and two-

qubit gate operations (Srinivasa et al., 2016, Benito et al., 2019). A characteristic

quantity for such controlled qubit operations is the fidelity of the target state, which is

among others limited by the ratio of the total time required for qubit gate operations

and read-out over the qubit coherence time. In order to eventually reach the fidelities

that are routinely achieved with superconducting qubits (Andersen et al., 2019), the

coherence time of the RX qubit needs to be significantly increased from the value of

about 20ns as measured in our second and third experiment by at least three orders

of magnitude. For an even further prolonged coherence, the spin qubit could serve as

a quantum memory (Xiang et al., 2013).

We concluded from our second and third experiment that the RX qubit coherence

time is limited by hyperfine-induced dephasing and can therefore likely be boosted by

realizing the qubit in a material platform with minimal hyperfine interaction, such as

graphene (Trauzettel et al., 2007) or silicon (Zwanenburg et al., 2013). The residual

isotopes with finite nuclear spin can be further reduced in both materials by isotopic

purification (Becker et al., 1995, Chen et al., 2012), which allowed to achieve coherence

times in the millisecond range for spin qubits in Si quantum dots (Veldhorst et al.,

2014). For graphene, where high quality single electron quantum dots were recently

realized in Ref. Eich et al., 2018, measurements of the spin coherence are still to be

performed. A possible challenge for a graphene- or silicon-based RX qubit could be to

reach sufficient electrostatic control in the TQD in order to realize tunnel couplings

of the order of 10GHz simultaneously between the left and middle and the middle

and right quantum dots. Further complications might arise due to the valley degree of

freedom in silicon based systems (Yang et al., 2013, Russ et al., 2017, Mi et al., 2017c)

as well as in graphene.

Instead of eliminating the hyperfine field in the qubit host material, insensitivity

of a spin qubit to magnetic field noise to first order can be achieved by encoding the
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qubit states in the total spin S= 0 subspace. Such an exchange based qubit has been

proposed with four electrons in a triple (Russ et al., 2018) or quadruple (Sala et al.,

2017) quantum dot, where in the latter case the additional quantum dot is required

due to the absence of a valley splitting in the qubit material system.

Independent of the exact number of electrons or quantum dots that are required

to implement a quantum dot based spin-qubit, the qubit initialization is currently far

more complex compared to other solid-state based qubits such as superconducting

qubits. It requires tuning of multiple gate voltages, which can vary significantly from

qubit to qubit due to fabrication related imprecisions as well due to local differences in

the electrostatic solid-state environment. This inhomogeneity can be a major obstacle

for scalability. Current approaches to tackle this challenge include to employ industrial

CMOS technology for device fabrication (Maurand et al., 2016, Sabbagh et al., 2019)

as well as to use automated gate tuning algorithms (Baart et al., 2016, Botzem et al.,

2018, Kalantre et al., 2019). If this particular challenge can be overcome, as for any

other qubit technologies, there will likely be further unforeseen challenges ahead and

hopefully rich physics to discover on the long path towards a large-scale quantum

information processor.



Appendix A

Three-electron wave-function
representations

The wave-function representation of the three-electron states from Table 3.2 has the

form (Ihn, 2018)

Ψ =
1
p

3!
(|ΨLΨMΨR〉 ⊗ |σ1σ2σ3〉+ |ΨMΨRΨL〉 ⊗ |σ2σ3σ1〉

+ |ΨRΨLΨM〉 ⊗ |σ3σ1σ2〉 − |ΨLΨRΨM〉 ⊗ |σ1σ3σ2〉

− |ΨRΨMΨL〉 ⊗ |σ3σ2σ1〉 − |ΨMΨLΨR〉 ⊗ |σ2σ1σ3〉),

(A.1)

where for example |ΨMΨRΨL〉 indicates that electron one, two and three occupy the

middle, right and left quantum dot orbital states ΨM, ΨR and ΨL, respectively. The

exemplary spin part of the wave function |σ2σ3σ1〉 with σi = {↑,↓} denotes that

electrons one, two and three are in the spin state σ2, σ3 and σ1, respectively. While

Q+3/2 from Table 3.2 is given by the single Slater determinant from Eq. (A.1) for

σ1,2,3 =↑, the wave function representation of other states can be constructed as a

linear superposition of Eq. (A.1).

For the asymmetric charge configurations, the wave-function representation of, for

example, DR,1/2 from Table 3.3 can be written as (Ihn, 2018)

|↑↓, 0,↑〉=
1
p

6
[(|ΨLΨLΨR〉 − |ΨRΨLΨL〉)⊗ |↑↓↑〉

+ (|ΨLΨRΨL〉 − |ΨLΨLΨR〉)⊗ |↓↑↑〉

+ (|ΨRΨLΨL〉 − |ΨLΨRΨL〉)⊗ |↑↑↓〉].

(A.2)
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Appendix B

Appendix for chapter 8

B.1 Additional data

B.1.1 Resonant RX-resonator interaction for multiple∆

In section 7.6 we determined the RX qubit-photon coupling strength gRX by utilizing

the ac Stark shift. In Fig. B.1 we extract gRX from resonant qubit-resonator interaction.

There we set ∆ to the RX qubit working points presented in section 8.4, adjust νcr

with Φcr and tune RX qubit and coupling resonator on resonance by sweeping ε. Note
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Figure B.1 Resonant RX qubit-resonator interaction. Spectrum of |S11| as a
function of coupling resonator probe frequency νp and RX qubit asymmetry
ε for increasing ∆ from the left to the right panel. The transmon is detuned
energetically for this measurement. The RX qubit tunnel couplings and ∆-
positions are identified by the frame colors, which refer to the same colored
working points in Fig. 8.9(a). Note that an offset in ε was added such that the
energy minimum is at ε ≈ 0. The approximate vacuum Rabi mode splitting
is indicated. It is centered around νp − νp,offs = 0, where νp,offs is a frequency
offset that varies for the different panels.
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that the transmon is detuned for this measurement. We observe anti-crossings in the

|S11| reflectance spectra with increasing separation by increasing ∆ from the left to

the right panel. As the separation is ≈ 2gRX, gRX increases with ∆ consistent with the

measurement in section 7.6 and the theoretically expected behavior.

B.2 Additionaldata forvirtual-photon-mediated interaction

In Fig. 8.13(b) we presented two-tone spectroscopy data for virtual-photon mediated

RX qubit-transmon interaction that was measured at one RX qubit working point by

driving the transmon and tuning the RX qubit energy with∆. We use the same measure-

ment scheme [see Fig. B.2(a)] in Figure B.2(b)-(d) to determine the two-tone response
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Figure B.2 Additional data on virtual RX-transmon interaction. The frame
colors refer to the RX qubit working points in Fig. 8.9. (a) Measurement
scheme for (b)-(d) similar to Fig. 8.10. (b)-(d) Two-tone spectroscopy signal
at νp = νrr ' 5.6GHz as a function of νd and ∆.



at the remaining three RX qubit working points. As in Fig. 8.13(b), the spectroscopic

response of the transmon vanishes once the RX qubit is tuned close in energy due to

the larger decoherence rate of the RX qubit compared to the transmon.

B.3 Parameter tables

B.3.1 Experimental parameters for RX qubit decoherence data

In Table B.1 we show relevant experimental parameters of coupling resonator and

RX qubit that were present when measuring γ2,RX in Fig. 8.9 for the qubit working

points for small and large coupling resonator-qubit detuning. As discussed in section

8.4, we observe a significant increase in γ2,RX at ∆> 0 for small detuning. We extract

from Table B.1 that this increase cannot be explained by Purcell decay at rate γP or

measurement-induced-dephasing at rate γMID (see subsection 5.4.3).

B.3.2 Theory fit parameters for experiments in chapter 8

In Tables B.2-B.10 we indicate fixed and free parameters of the theory fits that were

used in chapter 8. Fixed fit parameters are marked with a star. They were either directly

extracted from the experiment (e.g. resonance frequencies) or from previous fits (e.g.

qubit parameters).
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ωrr [GHz] g(0)rr /2π [MHz] E(SQ)
J [GHz] E(T)C [GHz]

5.594± 0.002 141± 3 18.085± 0.282 0.221± 0.004

Table B.2 Fit parameters for theory curve in Fig. 8.4.

RX config∗ 3
g(0)c,RX/2π [MHz]∗ 186

Table B.3 Fit parameters for theory curve in Fig. 8.6.

RX config.∗ 2
κcr,int/2π [MHz]∗ 1.8
κcr,ext/2π [MHz]∗ 2.8

νcr [GHz] 4.229± 0.001
g(0)c,RX/2π [MHz] 186± 2
γ2,RX/2π [MHz] 15± 1

Table B.4 Fit parameters for theory curve in Fig. 8.7(a) and fit to black curve
in Fig. 8.7(c).

E(T)C [GHz]∗ 0.221
E(SQ)

J [GHz]∗ 18.085
γ2,T/2π [MHz]∗ 1.0
κcr,int/2π [MHz]∗ 2.0
κcr,ext/2π [MHz]∗ 2.6

νcr [GHz] 4.175± 0.0003
g(0)T /2π [MHz] 205± 0.3

Table B.5 Fit parameters for theory curve in Fig. 8.7(b) and fit to green curve
in Fig. 8.7(c).



RX config.∗ 2
κcr,int/2π [MHz]∗ 1.8
κcr,ext/2π [MHz]∗ 2.8

E(SQ)
J [GHz]∗ 18.085

E(T)C [GHz]∗ 0.221
γ2,RX/2π [MHz]∗ Fig. 8.9(a) fit
γ2,T/2π [MHz]∗ 1.0
νcr [GHz] 4.209± 0.0002

g(0)c,RX/2π [MHz] 180± 2.0

g(0)T /2π [MHz] 203± 0.2
νT νcr

2g−/2π [MHz]@∆/h= −9.77 GHz 63± 1
2g+/2π [MHz]@∆/h= −5.65 GHz 84± 1

Table B.6 Fit parameters for theory curves in Figs. 8.8(a)-(c).

RX config.∗ 2
σHF [mT] 3.48± 0.06

β 62.9± 0.84

Table B.7 Fit parameters for theory curve in Fig. 8.9(a).

E(SQ)
J [GHz]∗ 18.085

E(T)C [GHz]∗ 0.221

Table B.8 Shared parameters for theory curves in Figs. 8.11 and 8.12.

c) b) remarks
RX config.∗ 3 3

κcr,ext/2π
∗ [MHz] 2.7 2.5

κcr,int/2π
∗ [MHz] 5.4 4.4

νcr [GHz] 4.764± 0.002 4.768± 0.001
νT [GHz] 4.292± 0.002 4.292± 0.002

g(0)c,RX/2π [MHz] 113± 1 115± 1

g(0)T /2π [MHz] 219± 2 219± 2
γ2,RX/2π [MHz] 15.2 9.7 from Fig. 8.9(a) fit
γ2,T/2π [MHz] 15.2 9.7 power broadened
2J/2π [MHz] 51.4 31.9 virtual splitting

Table B.9 Parameters for theory curves in Figs. 8.11(b), (c) and associated
linecuts in Fig. 8.12.



d) a) remarks
RX config.∗ 4 4

κcr,ext/2π
∗ [MHz] 3 3

κcr,int/2π
∗ [MHz] 4 4

νcr [GHz] 4.495± 0.004 4.481± 0.001
νT [GHz] 3.958± 0.002 3.961± 0.002

g(0)c,RX/2π [MHz] 96± 2 101± 3

g(0)T /2π [MHz] 213± 2 212± 2
γ2,RX/2π [MHz] 18.9 7.2 from Fig. 8.9(a) fit
γ2,T/2π [MHz] 18.9 7.2 power broadened
2J/2π [MHz] 49.2 14.9 virtual splitting

Table B.10 Parameters for theory curves in Figs. 8.11(a), (d) and associated
linecuts in Fig. 8.12.





Appendix C

Fabrication recipes

In this chapter we present the recipes for the fabrication of the samples used in chapters

6-8. We thereby provide a detailed list for the fabrication steps of the recipes that are

different compared to earlier work in Ref. Stockklauser, 2017.

C.1 Samples in chapters 6-7

The samples used for the experiments in chapter 6 (sample name “s1701131”, wafer

name “D160513A”) and chapter 7 (sample names “s1705261”, “s1706111”, wafer name

“D160513A”) were fabricated as indicated below.

1. Cleaving and cleaning

• Cleave 1× 1 cm2 from heterostructure wafer.

• Clean 1 min in acetone, 1min in Isopropanol (IPA), blow dry.

2. Global Au markers

• Spin AR-P 617.06 at 2000/2/60 (rpm/ramp [s]/total [s]).

• Bake at 180◦C for 300 s.

• Spin AR-P 672.03 at 6000/6/60.

• Bake at 180◦C for 300 s.

• EBL at Binnig and Rohrer Nanotechnology Center (BRNC) with 100keV

system.

• Develop in Methyl isobutyl ketone (MIBK):IPA (1:2) for 90 s, then rinse in

IPA for 50 s.
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• Electron beam evaporation of Ti(3nm)/Au(200nm) at rate 0.1/0.5nm/s.

3. Mesa fabrication, ohmic contacts, gate lines

• Identical to recipes “Mesa fabrication”, “Ohmic contacts” and “Gate lines”

in Ref. Stockklauser, 2017 Appendix B.

• Remark: “Low vacuum contact” was used with MA6 instead of “vacuum

contact” since the latter was found to easily break the chip if there is resist

residues at the chip edges after edge bead removal.

4. NbTiN sputtering

• Photolithography according to Appendix B.1.1 in Ref. Stockklauser, 2017.

• Use PVD magnetron sputter system with Nb0.8Ti0.2 target and process pa-

rameters P = 100 W, Ar:N2 = 20 : 5 sccm, p = 1mTorr.

Remark: Start process with closed target shutter at p = 5mTorr for 2min.

Subsequently reduce to p = 2mTorr and open target shutter, then reduce

to p = 1mTorr. Ensure stable plasma for 1min before opening substrate

shutter.

• Sputter on marked glass slide to calibrate deposition rate (≈ 2.9 nm/min).

Determine film thickness with Dektak profilometer or atomic force micro-

scope.

• Sputter 15nm NbTiN on sample (≈ 5 : 30min).

• Liftoff in N-Methyl-2-Pyrrolidone (NMP) at 80◦C for 2h. Use pipette to

blow the solvent on the chip. Check whether liftoff is complete (in acetone)

under microscope. Possible solutions for incomplete liftoff:

– Sonication (power level 2 in 40kHz bath) in acetone for 10min with

cleanroom tissue between sample and beaker to dampen sample-beaker

collisions.

– Keep in NMP (at room temperature) for 24 h, redo sonication.

• Rinse in acetone, IPA, blow dry.

5. EBL to define mask for NbTiN etching

• Spin CSAR 62 (AR-P 6200.09) at 1600/2/60.

• Bake at 150◦C for 60 s.

• EBL with BRNC 100keV system.
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• Develop in AR-600-546 for 1 min, then rinse in IPA for 1min.

6. Resonator RIE

• Standard O2 cleaning routine of RIE 76 chamber for 20min.

• Etch sample with process parameters P = 30 W, SF6(12.5 sccm), p = 33 mTorr

for 7 min.

Remark: start gas flow 30 s before the process to ensure correct gas pressure

during etching.

• Strip resist in NMP at 80◦C for 1h.

7. Fine gates, DC bias line

• See “Fine gate structure” in Stockklauser, 2017 Appendix B.2.

8. PCB preparation

• Solder SMD components:

Kemet C0603X103J3GACTU (10 nF) for bias-tee,

Panasonic ERA-3AED103V (10 kΩ) for bias-tee and filter,

Kemet C0603X153J3GACTU (15nF) for filter (line from room tempera-

ture),

Panasonic ERA-3AED103V (50Ω) for filter (line from sample).

• Solder SMP connector Rosenberger 19S141-40ML5-NM.

• Solder DC socket (Preci-Dip 852-10-050-10-001101) and shorten the socket

pins at the backside of the PCB to ≤ 2mm with pliar. Make sure that con-

ducting wire for ESD protection (Laird 8300-0025-44) can still be attached.

• Clean 1 min in IPA, blow dry.

9. Sample cleaving and cleaning

• Clean 1 min in acetone, 1min in IPA, blow dry.

• Spin protection layer PMMA 950K in Anisole pure at 6000/6/45.

• Rotate sample (fixed on spinner table) by hand to remove PMMA with

cotton swab at sample edges.

• Bake at 120◦C for 300 s.

• Cleave sample to a size of 2.25× 8.3mm2. Start with long sample edges,

cut at least 3 times and blow N2 before and after every cleaving step.
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• Remove PMMA in Dimethyl Sulfoxide (DMSO) at 80◦C for 20min.

10. Gluing and bonding

• Clean sample 1min in acetone, 1 min in IPA, blow dry.

• Glue sample to PCB with PMMA 950K in Anisole pure for 300s at 180◦C .

• Fix conducting wire for ESD protection at back of the DC socket.

• Al bonder (general settings: loop 50, pull 34, tail 30). Bond from PCB to

NbTiN if possible. Typical bonder settings:

PCB: 180W/200ms/low

Au: 160W/200 ms/low

NbTiN: 220W/45 ms/low

C.2 Sample in chapter 8

The sample used for the experiment in chapter 6 (sample name “s1808201”, wafer

name “D160729A”) was fabricated as follows:

1. Cleaving

• Follow 1. from Appendix section C.1.

2. Mesa fabrication - SQUID array resonator

• Follow fabrication steps “Mesa fabrication” to “SQUID array” from Ref. Stock-

klauser, 2017 Appendix B.2.

Remark: evaporate Al instead of Au for fine gates: Ti(3nm)/Al(27nm).

3. Bandage EBL (ensure good electrical connection of photolithography and EBL

defined Al layers (see discussion in subsection 8.1.2) with additional EBL defined

Al layer).

• Follow EBL recipe in Appendix B.1.2 of Ref. Stockklauser, 2017.

• Electron beam evaporation of Ti(3nm)/Al(200nm) at rate 0.1/0.5nm/s.

• Liftoff in DMSO at 80◦C for 20 min.

4. PCB, gluing and bonding

• Follow 8.-10. from Appendix C.1. Bond parameters for Al: 240 W/30 ms/low.



C.3 NbTiN resonators in chapter 4 189

C.3 NbTiN resonators in chapter 4

Below we list the fabrication recipe for the NbTiN resonators that were used in the

characterization measurements from section 4.3.1.

1. Cleaving

• Cleave 1× 1 cm2 from bare GaAs wafer.

• Clean 1 min in acetone, 1min in IPA, blow dry.

2. Resonator

• Follow 4.-6. according to Appendix C.1.

3. PCB, gluing and bonding

• Prepare desired PCB.

• Follow 9. and 10. from Appendix C.1. Note that ESD protection is not

necessary.
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Appendix D

Parts list for experimental setup

Here we list components of the experimental setup from chapter 2 that are commer-

cially available. Note that the list may not be complete and some components may no

longer be available. We indicate with “(ch. X)” if different components were used for

the experiments in chapters 6-8.

1. Cryogenic setup

Component Part number Distributor/Manufacturer

Attenuators
2082-6243-20,2082-6242-10,
2082-6240-03 East Coast Microwave

Circulator
(with B-field shield)

RADC-4-8-Cryo-0.02-4K-
S23-1WR-MS-b Raditek

Copper RF line UT-085-TP Rosenberger Micro-Coax
Copper RF line connector 9401-1583-010 East Coast Microwave
Dilution refrigerator DR200 Oxford Instruments

HEMT
CITCRYO04-12A (ch. 6-7)
LNF-LNC4_8C (ch. 8)

Caltech
Low Noise Factory

Isolator
(with B-field shield) CWJ1015KS Pamtech

NbTi RF line NbTiNbTi085A Keycom
NbTi RF line connector 1050611-1 AMP
RF lines room temperature
feed through 34_SMA-50-0-3/111_NE Huber+Suhner

Stainless steel line connector 200-36-20-850, 200-37-20-850 C.W. Swift & Associates, Inc.
Stainless steel RF line UT-085-SS-SS Rosenberger Micro-Coax



2. Room temperature setup

Component Part number Distributor/Manufacturer

Amplifier 0.1− 500MHz ZFL-500LN+ Mini-Circuits
Attenuator x dB BW-SxW2+ Mini-Circuits
DC block Inmet 8039 Richardson RFPD
DC block inner conductor BLK-89-S+ Mini-Circuits

High frequency lock-in
UHFLI with options UHF-DIG,
UHF-RUB Zurich Instruments

LN amplifier
AFS3-00101200-42-LN-HS (ch. 6,7)
AFS3-00101200-18-10P-4-HS (ch. 8) Miteq

LPF DC-48 MHz SLP-50+ Mini-Circuits
Mixer ZMX-8GH Mini-Circuits
Multimeter 34401 Agilent
RF generators 2× SMB100A, SMF100A, SMR40 Rhode&Schwarz
SMA female-female SF-SF50+ Mini-Circuits
SMA male-male 231-502SF Southwest Microwave
SMA right angle
male-female SFR-SM50+ Mini-Circuits

Splitter ZX10-2-98+ Mini-Circuits
ULN amplifier AFS3-04000800-08-10P-4-HS Miteq
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