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Reconstruction-Free Quantum Sensing of Arbitrary Waveforms
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We present a protocol for directly detecting time-dependent magnetic field waveforms with a quantum
two-level system. Our method is based on a differential refocusing of segments of the waveform using spin
echoes. The sequence can be repeated to increase the sensitivity to small signals. The frequency bandwidth
is intrinsically limited by the duration of the refocusing pulses. We demonstrate detection of arbitrary
waveforms with approximately 20 ns time resolution and approximately 4 μT/

√
Hz field sensitivity using

the electronic spin of a single nitrogen-vacancy center in diamond.

DOI: 10.1103/PhysRevApplied.12.054028

I. INTRODUCTION

Well-controlled two-level quantum systems with long
coherence times have proven useful for precision sensing
[1,2] of various physical quantities including temperature
[3], pressure [4], and electric [5] and magnetic [6,7] fields.
By devising suitable coherent control sequences, such
as dynamical decoupling [8], quantum sensing has been
extended to time-varying signals. In particular, coherent
control schemes have allowed the recording of frequency
spectra [9–11] and lock-in measurements of harmonic test
signals [12].

A more general task is the recording of arbitrary wave-
form signals, as an analogy to the oscilloscope in elec-
tronic testing and measurement. In this case, conventional
dynamical decoupling sequences are no longer the method
of choice, as the sensor output is nontrivially connected
to the input waveform signal, requiring alternative sens-
ing approaches. For slowly varying signals, the transi-
tion frequency of the sensor can be tracked in real time
[13], permitting detection of arbitrary waveforms in a
single shot. By using a large ensemble of quantum sen-
sors, detection bandwidths of up to approximately 1 MHz
have been demonstrated [14,15], with applications in MRI-
tomograph stabilization [14], neural signaling [16,17], and
magnetoencephalography [18].

For rapidly changing signals, the waveform can no
longer be tracked and a general waveform cannot be
recorded in a single shot. However, if a waveform is repet-
itive or retriggerable, multiple passages of the waveform
can be combined to reconstruct the full waveform sig-
nal. This method, known as equivalent-time sampling, is
routinely implemented in digital oscilloscopes to capture
signals at effective sampling rates that are much higher
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than the rate of analog-to-digital conversion. In quantum
sensing, one possibility is to record a series of time-
resolved spectra that cover the duration of the waveform
[19]. This method, however, is limited to strong signals
because the spectral resolution scales inversely with the
time resolution. Other approaches include pulsed Ram-
sey detection [20], Walsh dynamical decoupling [21,22],
and Haar wavelet sampling [23], discussed below. These
methods use coherent control of the sensor to achieve com-
petitive sensitivities but require some form of waveform
reconstruction.

In this work, we experimentally demonstrate a simple
quantum sensing sequence for directly recording time-
dependent magnetic fields, with no need for signal recon-
struction. Our method uses a spin echo to differentially
detect short segments of the waveform and achieves simul-
taneous high magnetic field sensitivity and high time res-
olution. The only constraints are that the waveform can
be triggered twice within the coherence time of the sensor
and that the signal amplitude remains within the excitation
bandwidth of qubit control pulses. Possible applications
include the in situ calibration of miniature radio-frequency
transmitters [19,24], activity mapping in integrated circuits
[25], detection of pulsed photocurrents [26], and magnetic
switching in thin films [27].

II. THEORY

To motivate our measurement protocol, we first inspect
the interferometric Ramsey method, which has been a stan-
dard method for early quantum sensing of waveforms [20].
In a Ramsey experiment, a superposition state, prepared
by a first π/2 pulse, evolves during a sensing time t and
acquires a phase factor φ(t) that is proportional to the
transition frequency ω0 between the ground and excited
states [see Fig. 1(b)].
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FIG. 1. Schemes for equivalent-time waveform sampling by a
quantum sensor. (a) A schematic of a repetitive arbitrary wave-
form B(t). t is the time relative to the preceding trigger and trep is
the repetition time. The dots indicate the waveform sampling and
ts is the sampling time. (b) Standard integrative Ramsey detection
of the waveform. The acquired sensor phase is proportional to the
integral of the waveform between 0 and t. Signals are detected
by stepping t in increments of ts. Microwave pulses are shown in
dark blue. The labels indicate the pulse angles and subscripts the
pulse phases. Laser arm and readout pulses are shown in green.
(c) Small-interval Ramsey detection of the waveform. (d) Differ-
ential echo detection of the waveform by spin echoes discussed
in this work. tint is the differential integration time and tπ is the π -
pulse duration. The differential protocol can be repeated k times
to linearly increase the accumulated phase.

For a spin sensor, where ω0 is proportional to the com-
ponent of the magnetic field along the spin’s quantization
axis, the acquired phase is as follows:

φ(t) =
∫ t

0
γeB(t′) dt′. (1)

Here, B(t) is the time-dependent magnetic field that we
aim to measure and γe is the gyromagnetic ratio of the
spin. To extract the phase, φ(t) is typically converted into
a population difference p(t) by a second π/2 pulse,

p(t) = 1
2
{1 + sin[φ(t)]} φ�1≈ 1

2
[1 + φ(t)], (2)

followed by a projective readout of the sensor and sig-
nal averaging [2]. By measuring p(t) as a function of t,
one thus effectively measures the integral of the magnetic
field in the interval [0, t]. Using a numerical derivative,
the magnetic field can subsequently be reconstructed [20].

However, this reconstruction greatly increases noise due to
the derivative [28] and often requires phase unwrapping.

A more direct method that avoids numerical process-
ing is the sampling of the waveform in small intervals,
tint, and building up the waveform by stepping t. The sim-
plest approach is to use a Ramsey sequence with a very
short integration time tint [Fig. 1(c)]. In this case, the sensor
phase φ(t) encodes the field in the time interval [t, t + tint],

φ(t) =
∫ t+tint

t
γeB(t′) dt′ ≈ γeB(t)tint, (3)

without the need for numerical postprocessing. Due to the
short tint, one can often take advantage of the linear approx-
imation (sin φ ≈ φ) in Eq. (2). The short tint, however,
impairs sensitivity because φ ∝ tint.

To maintain adequate sensitivity even for short tint,
we introduce a detection protocol that accumulates phase
from several consecutive waveform passages. Our scheme
requires that the repetition time is short, trep � T2, where
T2 is the sensor’s coherence time, which is often the
case for fast-waveform signals. Our protocol is shown in
Fig. 1(d): By inserting two π pulses at times t and t + tint
relative to two consecutive waveform triggers, we selec-
tively acquire phase from the time interval [t, t + tint] while
canceling the remaining phase accumulation. A similar
scheme of partial phase cancellation has been implemented
with digital Walsh filters [22] and Haar functions [23] via a
sequence of π rotations. The linear recombination of sen-
sor outputs in such waveform sampling, however, is prone
to the introduction of errors, especially for rapidly vary-
ing signals the detection of which requires many π pulses
[21]. In our scheme, the π rotations effectively act as an
in situ derivative to the phase integral [Eq. (1)], bypassing
the need for a later numerical differentiation or reconstruc-
tion. To further amplify the signal, the basic two-π -pulse
block can be repeated k times to accumulate phase from 2k
waveform passages, up to a limit set by 2ktrep � T2. The
amplified signal is (in a linear approximation)

p(t) = 0.5 + 2kγeB(t)tint, (4)

and when converted to magnetic field units,

B(t) = p(t) − 0.5
2kγetint

. (5)

III. EXPERIMENTAL METHODS

We experimentally demonstrate arbitrary waveform
sampling using the electronic spin of a single nitrogen-
vacancy (N-V) center in a diamond single crystal. The
N-V spin is initialized and read out using approximately
2-μs-long green-laser pulses and a single-photon-counting
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module [6]. Microwave control pulses are generated by an
arbitrary waveform generator (AWG), amplified to reach
Rabi frequencies of approximately 25 MHz and applied to
the N-V center via a coplanar waveguide (CPW) structure
[7]. Magnetic test waveforms are generated by a second
function generator operated in burst mode and triggered by
the AWG. The test signals are delivered to the N-V center
either by injecting them into the common CPW using a
bias-T [29] or by an auxiliary nearby microcoil [19,30].
The setup is operated in a magnetic bias field of 43 mT
(aligned with the N-V crystal direction) to isolate the {ms =
0, ms = −1} manifold of the S = 1 N-V spin and to achieve
preferential alignment of the intrinsic nitrogen nuclear spin
(here, the spin 1/2 of the 15N isotope) [31]. The latter is not
required for our scheme but helps in reducing microwave
pulse errors.

IV. RESULTS

We begin our study by recording a simple, 270-ns-long
square waveform (Fig. 2). We record the waveform using
both the standard integrative Ramsey scheme [Fig. 1(b)]
and our differential-sampling technique [Fig. 1(d)]. For
the Ramsey scheme, we reconstruct the magnetic wave-
form by a numerical differentiation of the raw signal [black
data in Fig. 2(a)] via the central difference quotient of
the smoothed signal [32]. The reconstructed waveform is
shown in blue. For our differential-detection scheme, we
directly plot the signal output without any further data
processing [Fig. 2(b)]. Clearly, the differential-sampling
method is able to faithfully reproduce the square pulse and
is not affected by the noise amplification of the Ramsey
scheme.

A. Time resolution

To characterize the time resolution of the method, we
record the rising edge of the pulse with fine sampling ts =
4 ns [Fig. 2(c)]. We find a 10–90% step response time of
τ ∼ 20 ns. As detailed in Appendix A, the response time
is approximately given by the following:

τ ≈ 2
π

√
tπ 2 + π

2
tint

2, (6)

since the finite pulse duration and the integration time
act as moving average filters. While tint can be deliber-
ately adjusted, tπ is determined by the Rabi frequency
of the system and sets a hard limit to the response
time.

In Fig. 2(d), we show the corresponding transfer func-
tion G(ω) of the sensor, i.e., the Fourier transform of the
unit impulse response obtained from the step response. In
our experiments, where tint = tπ , the unit impulse response
of the sensor is approximately given by a Hann function
with characteristic length 2tπ (see Appendix A). The Bode

(a)

(b)

(c) (d)

f
–3 dB

∼ 25 MHz

5 × Δ

FIG. 2. Pulse detection and time resolution. (a) The sen-
sor response to a square-wave magnetic signal (dashed curve)
recorded using the standard integrative Ramsey method [pro-
tocol of Fig. 1(b)]. The raw data are shown in black and the
reconstructed waveform is shown in blue. The waveform is
reconstructed by applying a four-point moving average to the
raw data and calculating the difference �p between adjacent
points. The dwell time is ts = 8 ns and the total averaging time is
1 h. (b) The sensor response (raw signal) to the same waveform
signal recorded using the differential-spin-echo technique [pro-
tocol of Fig. 1(d) using k = 2]. The total averaging time is 15
min. The π -pulse and integration lengths are tint = tπ = 20 ns.
(c) High-resolution sampling (ts = 4 ns) of the rising edge of the
square-pulse waveform. The blue points are measured data. The
dashed black line is the expected step response for π -pulse and
integration lengths of tint = tπ = 20 ns. (d) The magnitude plot
of the corresponding sensor transfer function. The blue dots are
the data and the black dashed curve is the Fourier transform of
a Hann window of duration 2tπ = 40 ns. The red curve addi-
tionally takes the finite response time of the test signal circuit
(approximately 8 ns) into account.

plot indicates a −3 dB sensor bandwidth f−3 dB ≈ 25 MHz,
with good agreement between theory and experiments.
According to Eq. (6), the fastest response time allowed by
our Rabi frequency is τ ∼ 16 ns (a bandwidth of approxi-
mately 40 MHz), obtained for tint → 0. Since the sensitiv-
ity scales with tint, this limit cannot be reached in practice.
The choice of tint = tπ provides the fastest response before
the sensitivity becomes unduly compromised.

054028-3



J. ZOPES and C.L. DEGEN PHYS. REV. APPLIED 12, 054028 (2019)

(a) (b) (c)

p ar
b

. u
n

it
s)

p

(r
ad

)

H
z1/

2

FIG. 3. Increased sensitivity by integrating 2k waveform passages. (a) The sensor output p(t) for k = 1, 2, 4, and 8 repetitions of
the two-π -pulse unit [see Fig. 1(c)], for a sine waveform of amplitude 10 μT and frequency f = 8 MHz. The integration time and
π -pulse duration are tint = tπ = 20 ns and the repetition time is trep = 344 ns. (b) The peak output signal �pmax as a function of k
(colored squares). The gray dashed line shows a linear scaling that would be expected in the absence of sensor decoherence. The black
dash-dotted line takes decoherence into account (T2 = 14 μs). (c) The minimum detectable magnetic field Bmin per unit time as defined
by Eq. (7) (black curve). The colored dots represent the data from (a). The dashed, dash-dotted, and dotted curves are explained in the
text. The best experimental sensitivity is approximately 4 μT/

√
Hz for k = 8.

B. Enhanced sensitivity by repetitive phase
accumulation

In a next step, we investigate the signal gain possible
by accumulating phase from 2k consecutive waveform
passages. Figure 3(a) plots the sensor response from a
weak sinusoidal test signal recorded with k = 1, 2, 4, and
8. Clearly, a much larger oscilloscope response results for
higher k values. To estimate the signal gain, we plot the
peak sensor signal �pmax [indicated in (a)] as a function of
k [see Fig. 3(b)]. At small k values, the increase of �pmax
is proportional to k, as expected, while at larger k, decoher-
ence of the sensor attenuates the signal. By correcting for
sensor decoherence, we can recover the almost exact linear
scaling of the signal phase �φmax with k [the dashed line
in (b)].

To quantify the overall sensitivity in the presence of
decoherence and sensor readout overhead, we calculate a
minimum detectable field Bmin, defined as the input field
that gives a unity signal-to-noise ratio for a 1-s integration
time. Bmin for the differential-echo sequence is given by the
following:

Bmin,Diff =
√

tm + 2ktrep exp(2ktrep/T2)

γeC2ktint
, (7)

where tm = 3 μs is the arm and readout duration [see
Fig. 1(b)], T2 ∼ 14 μs is the coherence time, and C ∼ 0.02
is a dimensionless number that quantifies the quantum-
readout efficiency [2]. In Fig. 3(c), we plot Bmin as a
function of k. We find that Bmin ∝ k−1 for short durations
ktrep < tm, that is, the benefit of repeating the sequence
is largest for small k and high repetition rates (dotted
curve). Once ktrep > tm, the scaling reduces to Bmin ∝ k−0.5

because the linear phase accumulation now competes with
standard signal averaging (dashed curve). For large val-
ues of ktrep that exceed the sensor coherence time T2, the

efficiency of the method rapidly deteriorates (dash-dotted
curve). The optimum k is approximately k ≈ T2/(4trep).

The sensitivity of our differential-echo method [Eq. (7)]
can be compared to that of the Walsh, Haar and the Ram-
sey methods [Eqs. (B3) and (B4), Appendix B]. We find
that for short waveform durations trep, our method pro-
vides superior sensitivity compared to the Walsh and Haar
scheme, due to the large repetition factor k (see Fig. 5). For
long waveforms with low k and large N , the Walsh and
Haar schemes tend to outperform our method due to their
multiplexing advantage. In both regimes, the differential-
echo and Walsh and Haar schemes provide a much higher
sensitivity compared to the Ramsey scheme.

C. Detection of a complex waveform

We complete our study by demonstrating the detec-
tion of a complex test waveform (Fig. 4). The waveform
contains the sum of several Fourier components with the
analytical expression for B(t) given in the figure caption.
In Fig. 4(a), we show the experimentally measured wave-
form (light blue points) together with the input waveform
(dashed black line) in the same plot. The experimental
waveform consists of N = 280 data points sampled at a
ts = 4 ns horizontal resolution. Clearly, the experimental
waveform agrees very well with the applied input. The
experimental data are plotted without any data process-
ing, demonstrating that our differential-sampling method
directly reproduces the waveform signal. Figure 4(b) fur-
ther presents the corresponding power spectra of the
input waveform (black dashed line) and the recorded sen-
sor output (light blue points). Although the signal lies
within the analog bandwidth of the sensor (approximately
25 MHz), some attenuation is observed at higher fre-
quencies. If desired, inverse-filtering techniques could be
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FIG. 4. An example of arbitrary waveform detection. (a)
The input waveform (dashed line) and the recorded waveform
data (blue dots) for a complex waveform given by B(t) =
B sin2 (ωt/2) [sin (12ωt) cos (ωt) sin2 (ωt)], with B = 81.87 μT
and ω = 2π × 1 MHz. The waveform is sampled using N = 280
data points and ts = 4 ns. Further parameters are tint = tπ =
20 ns, trep = 1400 ns, and k = 4. The total experimental time
is 60 h, corresponding to approximately 1.44 × 1010 waveform
triggers. The baseline noise is σ ≈ 530 nT rms. (b) The normal-
ized power spectra of the input waveform (black dashed line)
and the detected waveform (light blue connected points). Fourier
components at higher frequencies are slightly attenuated due to
the limited bandwidth of the sensing sequence.

applied to compensate the high-frequency roll-off of the
sensor.

Before concluding, we point out a few limitations and
possible remedies of the differential-waveform sampling
technique. First, our scheme is only applicable to wave-
forms that can be triggered twice within the sensor’s T2
time. To extend T2 and allow for long repetition times,
dynamical decoupling pulses could be added during the
phase accumulation time of our protocol. As long as these
pulses are identical during each waveform passage, they
do not interfere with the differential-echo formation. While
the effectiveness of dynamical decoupling depends on the
specific experimental situation, T2 improvements of 2–3
orders of magnitude have been demonstrated in several
qubit systems [33–35]. Second, the maximum peak-to-
peak signal amplitude is limited by the excitation band-
width of π pulses to (γetπ)−1, here approximately 2 mT.
Only relatively weak fields can therefore be detected with
our method. To cover strong signals, time-resolved spec-
troscopy techniques are available [19]. Third, when accu-
mulating signal over many passages k, the phase may
exceed the sensor’s linear range [see Eq. (1)]. In this sit-
uation, the relative phase of the second π/2 pulse could be
cycled [36] to recover a linear response.

V. OUTLOOK

In summary, we experimentally demonstrate a quantum
sensing technique for direct detection of arbitrary wave-
forms in the time domain using equivalent time sampling.
Our method does not require waveform reconstruction,
allowing, for example, for the sampling of arbitrary seg-
ments from a longer waveform. Using a diamond N-V cen-
ter as the sensor, we demonstrate a Rabi-frequency-limited
time resolution of approximately 20 ns and a competi-
tive magnetic sensitivity of approximately 4 μT/

√
Hz for

waveforms in the megahertz range.
Looking ahead, our scheme will be useful for investi-

gating the spatiotemporal dynamics of photocurrent gen-
eration [26] or magnetic polarization switching [27]. In
the experiment by Zhou and coworkers [26], the decay
of photocurrent and interplay with temperature gradients
in response to a local laser stimulus was investigated.
Here, our scheme will allow the resolution of dynam-
ics with much higher sensitivity and time resolution. The
study of Baumgartner et al. [27] investigated the current-
induced switching of Pt/Co/AlOx magnetic dots, which
hold promise for nonvolatile memory and logic units. Here,
our technique provides an alternative to x-ray spectroscopy
in synchrotron facilities. Since diamond magnetometry
is also applicable to antiferromagnets [37–39], a broad
range of magnetic switching and domain-wall propaga-
tion dynamics can potentially be studied. Although these
dynamics are typically fast (approximately nanoseconds
for ferromagnets), below the response time of our current
experiment (approximately 20 ns), our scheme could still
time tag the fast rising edge of the switching. The time res-
olution will be further improved by the use of miniaturized
coplanar waveguides, which have been shown to sup-
port Rabi frequencies of 200 − 500 MHz for N-V centers
[40,41], corresponding to τ ∼ 1 − 2.5 ns.
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APPENDIX A: TRANSFER FUNCTION AND
RESPONSE TIME

We derive the expression for the rise time τ [Eq. (6) in
the main text] and the transfer function shown by a dashed
line in Fig. 2(d). According to Eq. (2) of the main text,
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the probability function p of the sensor in the small-signal
limit φ � 1 is given as follows:

p ≈ 1
2
(1 + φ).

The total phase accumulated over one cycle of the
differential-echo sequence is given by the following:

φ(t) =
∫ 2trep

0
γeB(t′)M (t, t′) dt′, (A1)

where trep is the repetition time of the waveform and
M (t, t′) is the modulation function [2] of the sensing
sequence, defined below. Because the waveform function
is repetitive, B(t′ + trep) = B(t′), we can rewrite Eq. (A1)
as follows:

φ(t) =
∫ trep

0
γeB(t′)

[
M1(t, t′) + M2(t, t′)

]
dt′, (A2)

where M1(t, t′) and M2(t, t′) are the modulation functions
of the two differential-spin-echo segments, both of which
have a duration of trep. In the case of ideal short π pulses,
the modulation functions are given by step functions:

M1(t, t′) =
{

+1 : t′ ≤ t,
−1 : t′ > t;

(A3)

M2(t, t′) =
{

−1 : t′ ≤ t + tint,
+1 : t′ > t + tint.

(A4)

In the case of finite pulse durations, the modulation func-
tions are no longer abrupt step functions but, rather, are
described by the Rabi nutation formula, where the value
of M is proportional to the z projection of the qubit. For
square π pulses of duration tπ , the modulation functions
are given by the following:

M1(t′) =

⎧⎪⎪⎨
⎪⎪⎩

−1 : t′ ≤ t − tπ/2,

+ sin
(

[t′ − t]
tπ/π

)
: t − tπ/2 < t′ ≤ t + tπ/2,

+1 : t′ > t + tπ/2;
(A5)

M2(t′) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 : t′ ≤ t + tint − tπ
2

,

− sin
(

[t′ − t − tint]
tπ/π

)
: t + tint − tπ

2
< t′ ≤ t + tint + tπ

2
,

−1 : t′ > t + tint + tπ
2

.

(A6)

For the general case where tint 
= tπ , we estimate the
response time τ through a set of numerical simulations of
Eqs. (A1)–(A6). We compute the acquired sensor phase
for varying tint and tπ for a ideal step-input waveform and
determine the response time of the sensor output for each
pair (tπ , tint). We find that the response time approximately

follows Eq. (6) in the main text:

τ ≈ 2
π

√
tπ 2 + π

2
tint

2.

For the case where tint = tπ , the transfer function can be computed analytically. The sum M ≡ M1(t, t′) + M2(t, t′) of the
two modulation functions is given by the following:

M (t, t′) =
⎧⎨
⎩

1 + cos
(

π [t′ − t − tπ/2
tπ

)
: t − tπ

2
< t′ ≤ t + 3tπ

2
,

0 : otherwise.
(A7)

The function M (t, t′) is equivalent to a Hann function of characteristic duration 2tπ that is centered at t′ = t + tπ/2. The
transfer function of the sensing sequence is thus given by the Fourier transform of the Hann function.
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APPENDIX B: SENSITIVITY ANALYSIS

We analyze the sensitivity of the differential-echo
sequence and compare it with the sensitivity of the Walsh
method presented in Ref. [22] and the time-resolved Ram-
sey method described by Fig. 2(c). According to Ref.
[23], the Haar wavelet-sensing method provides the same
sensitivity as the Walsh method.

The reconstructed field B(t) at time t using N measured
Walsh coefficients B̂m is given by Ref. [22]:

B(t) =
N−1∑
m=0

B̂mwm(t/trep). (B1)

Here, wm(t/trep) is the mth Walsh function, which oscil-
lates between ±1 in the interval [0, trep]. The minimum
resolvable Walsh coefficient per unit time is given by an
expression analogous to Eq. (7):

B̂min =
√

tm + trep exp(trep/T2)

γeCtrep
. (B2)

Consequently, the minimum resolvable field at time t,
according to error propagation, is given by the following:

Bmin,Walsh =
√√√√N−1∑

m=0

B̂2
min =

√
NB̂min

=
√

N
√

tm + trep exp(trep/T2)

γeCtrep
. (B3)

This expression can be compared to the minimum resolv-
able field for the differential-echo method, Eq. (7):

Bmin,Diff =
√

tm + 2ktrep exp(2ktrep/T2)

γeC2ktint
.

Finally, for the time-resolved Ramsey method [Fig. 1(c)],
the minimum detectable field is given by the following:

Bmin,Ramsey =
√

tm + trep exp(tint/T∗
2)

γeCtint
. (B4)

Note that to build up the full N -point waveform, a total
of N measurements are needed for all methods. For the
differential-echo and Ramsey methods, the waveform is
measured point by point in the time domain. For the Walsh
method, N Walsh coefficients must be measured.

To get an idea of the relative sensitivities of the three
methods, we compare the errors for waveform param-
eters set by N = trep/tint and k = T2/(4trep) and disre-
gard dephasing and decoherence. For the differential-echo
method, we find:

k = 44

rep

k = 22

k = 7

k = 1

FIG. 5. The minimum detectable field per unit time for differ-
ent waveform-sensing methods. We plot the minimum detectable
field as a function of the waveform duration trep. We use param-
eters typical for our experiment, tm = 3 μs, T∗

2 = 1.5 μs, T2 =
14 μs, and tint = 20 ns. For each trep, the number of waveform
samples is set to N = trep/tint and the repetition factor k of the
differential-echo sequence is adjusted for optimum sensitivity
according to Fig. 3(c).

Bmin,Diff ≈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
N

k

[
T2

tm

]1/2

Bmin,Walsh : for trep � tm,

√
N
k

Bmin,Walsh : for trep  tm.

(B5)

For the Ramsey method, we find the following:

Bmin,Ramsey ≈
√

NBmin,Walsh (B6)

We find that the error of the differential-echo sequence is
lowest for small N and large k, i.e., for short waveforms
and long coherence times.

In Fig. 5, we plot the minimum detectable field per unit
time as function of the duration of the waveform trep for
the parameters used in our experiments. We find that for
short waveforms (trep < 400 ns, as in Figs. 2 and 3), the
differential-echo technique provides the highest sensitiv-
ity. For longer waveforms (trep > 1 μs, as in Fig. 4), the
Walsh method is superior in sensitivity. The sensitivity
of the time-resolved Ramsey sequence is inferior to both
sensing methods for the waveform durations considered in
this work.
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