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Abstract

Automated vehicles are widely expected to bring about various benefits for (urban)
transportation, e.g. by increasing road capacities and reducing generalized cost of travel.
However, the latter may induce additional demand for road transportation, possibly
counteracting gains in accessibility. Hence, the net impact of vehicle automation on road
network performance is still unclear. This research uses the macroscopic fundamental
diagram (MFD) to address this question for different levels of road capacity increases
and modal splits between private and shared (i.e. public) transportation. To this end,
various scenarios are tested in a simulation model for the morning peak hour for Zurich,
Switzerland, as a case study, for which current demand levels for car and public transport
are used. Yet, the results can be generalized to different city types. The analysis indicates
that for car-oriented cities, vehicle automation will likely bring substantial benefits in
network performance, while for public transport oriented cities, substantial gains in road
capacity of 40% or more will be required to make up for the potentially substantial mode
shift from public transport towards (pooled) cars. Moreover, results show that up to 75%
mode share of ride-sharing trips will be required to achieve a system-optimal state.

Keywords
self-driving vehicles, automated vehicles, macroscopic fundamental diagram, MFD, con-
gestion, capacity
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1 Introduction

Vehicle automation is widely expected to bring about large benefits for urban transporta-
tion, for example by making roads safer (Fagnant and Kockelman, 2015), by reducing costs
of travel (Bösch et al., 2018) and by potentially allowing a more sustainable transport
system (Wadud et al., 2016). Through operation as shared and/or pooled services, existing
infrastructure and resources could be used even more efficiently (Cervero, 2017). However,
such benefits may also induce changes in travel demand, potentially counteracting the
expected positive impacts (Meyer et al., 2017; Metz, 2008). At the same time, it is unclear
how automation technology will impact urban road capacities (Le Vine et al., 2015).
Hence, the question arises, how the obvious benefits can be harnessed, while staying within
the physical capacity limits of the urban transport network.

Since the mechanisms of traffic flow are generally understood (Daganzo, 1994; Nagel
and Schreckenberg, 1992), the above question can be broken down into assessing the
respective parameter changes due to automation. In particular for road and intersection
capacity, various such assessments already exist (Tientrakool et al., 2011; Le Vine et al.,
2015; Friedrich, 2016). Yet, these factors alone do not allow to estimate the effects of
automation on the possible productivity of existing urban infrastructures (i.e. the number
of completed trips in a network (Daganzo, 2007)), since characteristics of demand may
also change. The theory of the macroscopic fundamental diagram (MFD) provides a
link between physical limits and productivity of urban networks (Daganzo, 2007; Loder
et al., 2019a) and thus allows to analyze the impact of vehicle automation on network
performance. The MFD abstracts urban road networks into a bathtub-like (Arnott, 2013)
reservoir with inflow, internal flow and outflow, where the two latter flows depend on the
vehicle accumulation inside the reservoir.

In general, vehicle automation can be expected to affect network performance in two ways:
It may increase road capacity through smoother driving and a shorter minimum headway.
However, since automated vehicles are largely expected to operate as (pooled) taxis, they
will also be moving bottlenecks (when stopping to allow passengers to board or alight)
and induce higher vehicle miles travelled (VMT) through detours (if rides are pooled)
and empty travel. Hence, the net impact will depend on the relative strength of the two
effects.

This paper presents a first discussion on how automation of vehicles and their operation
as individual or pooled service can improve the productivity of urban transport networks.
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We consider only two road surface modes: private automated taxis and pooled automated
taxis1. For each mode, corresponding MFDs are defined for the downtown area of Zurich,
Switzerland, which are then used to simulate a typical morning commute in a simplified
model which does however not capture complex reservoir dynamics (Mariotte et al., 2017;
Aghamohammadi and Laval, 2018). Scenarios with varying market shares of the different
services are considered.

The remainder of the paper is organized as follows. In Section 2, earlier research on
vehicle automation is discussed. Section 3 introduces the MFD and the relevant parameter
changes to adapt it to (shared-) autonomous operations. Thereafter, we introduce in
Section 4 the model used in this paper before showing the scenario analysis in Section 7.
The results are discussed in Section 8, while Section 9 shows the practical implications of
this research.

2 Impacts of vehicle automation and sharing

Automated driving technology (full automation (level 5) as defined by SAE International
(2014)) will likely trigger substantial disruptions in both transport demand and supply.
By driving production costs of taxi services down to a level comparable with public bus
services (Bösch et al., 2018), such automated taxis will likely become a relevant mode of
transportation, potentially substituting formal line-based public transport services, at least
in lower-density environments. Also private vehicles will become more attractive when
automated (Daziano et al., 2017) as they may provide features of a personal chauffeur
and errand boy.

Assuming a static demand, earlier research has shown that switching all car travel to
automated taxis would allow to slash required fleet sizes by up to 90% (Bösch et al.,
2016). In addition, it was found that 15% of New York’s current taxi fleet would be
sufficient to serve all taxi trips, if rides were shared by multiple passengers (pooled taxis)
(Alonso-Mora et al., 2017). But through empty travel in an automated taxi scheme,
total VMT would increase by 10% (Fagnant and Kockelman, 2014), whereas for pooled
trips, detours are required to cover the origins and destinations of all passengers (3.5
min in the study by Alonso-Mora et al. (2017)). Yet, the assumption of a static demand
is unrealistic. Not only will cheap automated taxis change the accessibility landscape

1The latter category may also include buses if defined as such.
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and thus land-use patterns, they will also attract new user groups for road transport
(Meyer et al., 2017), thus substantially changing origin-destination relations and increasing
demand. In addition, increasing urbanization in the future will add more pressure to
urban transportation systems (Schafer and Victor, 2000).

Vehicle automation will also have profound impacts on traffic flow characteristics: Faster
reaction times of sensors will allow shorter headways and thus an increased road capacity.
Benefits can be increased further by vehicle-to-vehicle communications allowing smoother
driving and even shorter headways (Tientrakool et al., 2011; Friedrich, 2016). As a result,
also stability of traffic flow will be higher (Talebpour and Mahmassani, 2016). However,
such analyses have mostly been done for highway traffic so far (Fountoulakis et al., 2017)
and only rarely took into account legal standards of care, which may however limit the
possible capacity gains (Le Vine et al., 2017). For urban road networks, capacity is mostly
determined by intersection capacities (Transportation Research Board, 2016). However,
there is no agreement on the impacts of vehicle automation yet. While Fajardo et al.
(2011) and Li et al. (2014) predict increases in throughput of up to 20%, Le Vine et al.
(2015) even find a decrease in capacity, when restricting lateral accelerations to a level
considered comfortable for passengers. In a highly integrated regime, removal of traffic
lights may allow even more efficient operations (Kamal et al., 2015), at the expense of
cyclists and pedestrians.

A further way to increase road capacity may be achieved by vehicle right-sizing, i.e. by
designing smaller, purpose-built vehicles. Also, policies such as speed limits may be
adjusted in the light of increased traffic safety.

Since automated vehicles will likely be used like today’s taxis, they will drop off passengers
as close to their destination as possible (and the same for pick-up), thus blocking a lane
during this dwell time unless dedicated infrastructure will be provided. This is similar
to buses, where the impact on performance has already been intensely studied (Eichler
and Daganzo, 2006; Nagai et al., 2005; Castrillon and Laval, 2018). For ride-hailing
services, earlier research suggests that this effect (along with empty VMT) already causes
substantial losses in network speeds (Schaller, 2017). However, the resulting impact might
be different if automated vehicles were in play.

This research aims to combine insights on trip characteristics and traffic flow parameters in
a future regime of automated taxis to study their impact on transport network performance
using the macroscopic fundamental diagram (MFD). The focus of this study lies on full
vehicle automation (level 5 (SAE International, 2014)), acknowledging that a potential

5



implementation of fully connected vehicles may allow further capacity benefits (Tientrakool
et al., 2011) in the distant future.

3 The MFD and vehicle automation

The underlying idea of the MFD is to think of urban networks as a bathtub or reservoir
(Daganzo, 2007; Arnott, 2013). All microscopic or local between-vehicle interactions
affecting network performance are not explicitly considered anymore, but implicitly
accounted for in the relationship between reservoir accumulation and reservoir outflow,
the MFD (Geroliminis and Daganzo, 2008). The MFD shape depends only on road
network structure, signal settings, route choice and the fundamental diagram (Daganzo
and Geroliminis, 2008; Laval and Castrillón, 2015; Leclercq and Geroliminis, 2013). We
assume that the effects of vehicle automation can be expressed in four basic parameters
of the fundamental diagram: free-flow speed, saturation flow, jam density and backward
wave speed.

Using results of earlier research and own assumptions, estimates for the respective param-
eter changes were obtained. In essence, it is assumed that the free-flow speed uf is only
slightly increased because of the general political trend to limit or lower speeds within
cities (c.f. Kockelman et al. (2017)). Saturation flow is increased by 40% and 78% as
suggested by Friedrich (2016) (Talebpour and Mahmassani (2016) even expect increases
of 100% on specific roadway settings). With only minor changes in vehicles sizes, the jam
density Kjam is expected to increase only marginally (c.f. Kockelman et al. (2017)). Due
to better reaction times, the backward wave speed w could also improve as the reaction
time decreases. However, too fast reaction times could trigger motion sickness. Here, the
backward wave speed w is derived from the above variables using

w =
qsat

Kjam − Kcrit
(1)

where

Kcrit =
qsat

uf
, qsat = s · G/C. (2)
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Table 1 – Comparison of trapezoidal MFD parameters

Unit Conventional car Full automation Source

Free-flow speed uf [km/h] 25 - 30 30 - 35 Kockelman et al. (2017)
Jam density Kjam [veh/lane-km] 130 - 160 140 - 170 Kockelman et al. (2017)
Saturation flow s [veh/h-lane] 1 500 - 1 700 2 650 - 3 050 Friedrich (2016)

Green time ratio G/C [-] 0.4 0.4 own assumption
Wave speed w [km/h] 5.0 - 5.7 9.0 - 10.1 follows from Kjam, s and uf
Capacity Q [veh/h-lane] 600 - 680 1 060 - 1 220 follows from s and G/C

The resulting MFD parameters are presented in Table 1, where they are also compared
to current MFD parameters for the city of Zurich (Loder et al., 2017). The table also
contains assumptions on two relevant network attributes: Green time ratio and capacity.
In an urban setting, the former is assumed unchanged to still be able to accommodate
pedestrians and cyclists (Millard-Ball, 2018). Furthermore, we assume that network
structure (extent of the network and routing) will likely remain unchanged, so that the
realized capacity Q typically follows from the product of saturation flow and average green
time ratio (Daganzo and Geroliminis, 2008).

It is assumed that the parameters defined in Table 1 are valid for both individual automated
taxis and pooled taxis, with the exception of the speed value: Pooled vehicles usually
have to stop at a distance d for boarding and alighting passengers where the vehicle stops
for time τ . Hence, the average commercial free flow speed speed of pooled vehicles is
adjusted to

vshared =
d

d/uf + τ
. (3)

In this research, the MFD is simplified to a trapezoidal shape (Daganzo et al., 2017) as
given by:

q (k ) = min
(
uf k ; Q;

(
Kjam − k

)
w
)

. (4)

To obtain a smooth and concave shape of Equation 4, we use the smooth approximation
proposed by Ambühl et al. (2018). Figure 1 presents the resulting trapezoidal shape of
the MFD for conventional cars (black line) and automated cars (orange line) using the
average of parameters from Table 1. Thus, the figure summarizes the effects of vehicle
automation on the MFD.

In application contexts, the MFD faces several important caveats such as heterogeneity in
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Figure 1 – A typical MFD for urban traffic with conventional car vehicles (black) and
automated vehicles (yellow).

the distribution of traffic (Ji and Geroliminis, 2012; Saeedmanesh and Geroliminis, 2016)
or accounting for the dynamic effects of loading and unloading the network (Gayah and
Daganzo, 2011; Daganzo et al., 2011), both of which lead to an inaccurate and biased
MFD estimates. In this analysis, however, we do not address these effects as we want to
understand traffic performance in an optimal case for long-term planning purposes.

4 Methodology

We investigate the influence of vehicle automation and shared ride systems on the perfor-
mance of urban road networks using a simulation of a simplified MFD-based bathtub-model
(Arnott, 2013; Mariotte et al., 2017). In the present analysis, we model the morning peak
for two main reasons. First, the morning peak usually demands the full capacity of the
network. Second, it has the pleasant boundary constraint of an empty network at the
beginning of the analysis horizon.

In general, the simulation calculates traffic states minute-by-minute from 6 am to 10 am
for an assumed exogenous and static travel demand. Mode choice is not modeled explicitly
as we want to understand how the performance of the system varies when the demand is
distributed by experimental design over private automated taxis and pooled automated
taxis. Thus, a fixed modal split between private (ψ) and pooled (1− ψ) automated taxis
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is defined.

In the simulation, we expect zero interaction costs between private and pooled automated
taxis. This means they do not create any negative externalities to vehicles of the other
mode, but only within each class of automated taxi, because we assume that each mode
runs on dedicated infrastructure, i.e. designated lanes. This kind of lane separation
already exists in form of dedicated bus lanes or HOV lanes on motorways. The share of
the network for private taxis is η and 1− η for pooled taxis. As emphasized before, we
want to understand the optimal traffic outcome that can be possible or an upper bound of
the performance. However, in reality, substantial interactions would have to be expected
(at least at intersections), and thus decrease performance.

Consequently, the two main experimental variables of the model are the division of demand
among private and pooled taxis, ψ, as well as the division of infrastructure among private
and pooled taxis, η. The two assumptions of static and exogenous demand as well as zero
interaction costs mean that each mode is modelled in its own reservoir and MFD.

Mathematically, we define the speed as a function of the number of vehicles N within
each reservoir by Eqn. 5, a recently introduced functional form for the MFD (Ambühl
et al., 2018). Here, uf , Q, w , and Kjam are as defined in Table 1, while λ is a smoothing
parameter set to be around 0.02 for conventional vehicles. For automated vehicles, λ is
assumed 75% lower due to lower expected losses through vehicle interactions. Finally,
L is the total length of infrastructure. As the following two equations hold for private
and pooled automated taxis in the same way, we omit for readability the corresponding
indices.

v (N) = −λ ln

(
exp

(
−uf (N/L)

λ

)
+ exp

(
−Q
λ

)
+ exp

(
−
(
Kjam − (N/L)

)
w

λ

))
/(N/L) (5)

With known speed v (N) and trip length l we can now determine the travel time T by Eqn.
6.

T =
l

v (N)
(6)
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In each interval t , the network - or reservoir - experiences an inflow of vehicles of qin and
outflow of vehicles qout . When vehicles enter or leave the network, the accumulation of
vehicles N changes and as given by Eqn. 5 the network average space-mean speed in the
MFD also changes. We define the accumulation of vehicles N as the number of cars which
have not yet finished their trip after driving for a distance l.

In the simulation, we assign all vehicles entering at interval t the network average speed
v (N) based on the current accumulation of vehicles at time t when they enter the network.
The vehicles stay in the reservoir at this constant speed until they finished their trip.
Although this assumption might be rather simplistic, we consider information loss to
be marginal as demand is changing only slowly. Furthermore, if using the precise speed
information in each simulation step, the simulation also has to account for the fact that the
information of speed change cannot travel faster than the vehicles and is not instantaneous.
This is a non-trivial task (Mariotte et al., 2017).

Lastly, we assume that private automated taxis are only occupied by one passenger, while
pooled automated taxis can carry more passengers, on average ρ persons per vehicle. In
the simulation, we consider that the number of vehicles is not restricted, i.e. all passengers
will be assigned to vehicles. However, we define that passengers miss their trip once the
network is at grid lock, i.e. Kjam, preventing them from entering the network.

5 Case study: Zürich

We analyze the effects for the city center of Zurich, Switzerland, as shown in Figure 2.
The city of Zurich has 425 000 inhabitants (1.3million in the metropolitan area). With
360 000 jobs located in the city, there is a substantial inflow of commuters each morning.
Zurich residents frequently travel on active modes (i.e. walk or bike), 32% of the trips are
done using public transportation, 25% using private cars. Overall, 24% of the settlement
area are devoted to transportation infrastructure. For the given perimeter, we define the
traffic model parameters as given in Table 2. Data on the transportation network as well
as current travel demand data was available from the official macroscopic assignment
model of the Canton of Zurich (Vrtic et al., 2015).

As discussed above, vehicle automation and the corresponding new service types will also
affect demand characteristics (Eqn. 3). Dwell time τ was measured at the passenger
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Figure 2 – Study area.

drop-off area at Zurich airport. For ride-hailing or taxi vehicles dropping off passengers
without heavy luggage, average time between arrival of the vehicle and continuation of the
drive was 30 seconds. Hence, total dwell time per passenger is τ = 1min (30 s boarding
plus 30 s alighting). The average trip distance li was obtained from the Swiss national
household travel survey (Swiss Federal Statistical Office (BFS) and Swiss Federal Office
for Spatial Development (ARE), 2012), which indicates an average of 3.4 km for car trips
within the city of Zurich (Bösch et al., 2018). For pooled trips an additional dwell time
of 1min is assumed (two pick-up or drop-off activities). Given an acceptable additional
travel time of 3.5min (Alonso-Mora et al., 2017), the remaining 2.5min of travel time
translate into a 25% higher trip distance for pooled trips (at 20 km/h average network
speed). For pooled trips, vehicle occupancy ρ was assumed 2.6 passengers (in accordance
with Bösch et al. (2018)).

As we model the morning peak for Zurich, we obtain the exogenous departure rate
distribution from the Swiss national household travel survey 2015 for Zurich from 6 am
to 10 am (Swiss Federal Statistical Office (BFS) and Swiss Federal Office for Spatial
Development (ARE), 2012). We find that the departure rate distributions fit gamma
distributions, which scaled to the totals for car and public transport from the Cantonal
traffic assignment model Vrtic et al. (2015), is presented in Figure 3. The total inflow is
qin = 35 100 vehicles and 69 800 public transport trips (7am to 8am). Scaled up to the

2AV numbers in this table assuming 80% capacity increase. Values are adapted for the other cases
correspondingly.

3It is assumed that 65% of the infrastructure is actually available for traffic (compare Miller (1970)).

11



Table 2 – Summary of parameters used in the model. Details on the impact of vehicle
automation are presented in Table 1.

Parameter Unit Conventional vehicles Private AV Pooled AV

Free-flow speed km h-1 27.5 32.5 28.8
Jam density vehicles lane-km-1 145 155 155
Backward wave speed 1 km h-1 5.3 9.5 9.9
Capacity 2 vehicles h-1 lane-1 640 1140 910

λ (-) 0.025 0.020 0.020

Trip length km 3.40 3.40 4.25
Additional dwell time s - - 60

Infrastructure length 3 lane-km 396 (road network) + 50 (bus/tram lanes)

Figure 3 – Total departures and per means of transportation (based on Vrtic et al. (2015)
and Swiss Federal Statistical Office (BFS) and Swiss Federal Office for Spatial Development
(ARE) (2012)).
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whole morning commute (6 am to 9 am) and also including outbound traffic, this results
in a total travel demand of qtot = 240 100 trips.

To validate the model calibration, we show in Figure 4 the model results for the current
situation for conventional cars. The model results match closely the observed patterns
from empirical observations in Zurich (Loder et al., 2017). We do not show the model
results for the public transport system because the decrease in commercial speeds and
thus congestion is negligible.
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Figure 4 – The morning commute for conventional private vehicles for the calibrated
model.
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In detail, we find in Figure 4(a) that no car driver misses his or her trip and that the
largest accumulation of vehicles is observed between 7 am and 8 am. We further see that
the speeds in Figure 4(b) drop substantially and are close to 10 km/h. Recall that this
is the average space-mean speed. The MFDs in Figures 4(c) and 4(d) clearly show that
these traffic conditions are indeed in the congested regime. As a consequence, shifting
some of the demand to other departure times or modes of transportation would allow the
road network to operate at capacity, benefiting all car drivers.
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6 Scenario analysis

The impacts of vehicle automation will likely be different for different types of cities. To
capture part of this variance, two cases are studied:

• Case 1: all trips currently made by private cars will be covered either by private
automated taxis or pooled automated taxis (i.e. taxis with ride-sharing). They are
routed on the available car network (infrastructure) only. This case represents cities,
which already have a very high share of car traffic (like many U.S. cities).
• Case 2: all street-bound public transport trips (i.e. buses and trams) will also be

done by private automated taxis or pooled automated taxis. Available infrastructure
includes both the car network as well as lanes currently dedicated to buses or trams.
This case acknowledges that given the substantially reduced prices of (pooled)
taxi services (Bösch et al., 2018), they will likely attract public transport users.
By assuming a 100% mode shift, it represents an extreme case for a city with a
highly-developed public transport system (like Zurich and many European cities).

Additional demand by new user groups or induced demand by lower generalized cost of
travel are neglected in both cases (compare Meyer et al. (2017)). In this sense, together
with omitting between-mode interactions on the roads, the results of this analysis can be
regarded as best-case scenarios or upper bound estimate to traffic performance. Therefore,
the actual future network performance may likely be worse.

To capture the current uncertainty in both impact on road capacity as well as the
operational implementation of automated vehicles, a number of different scenarios was
analyzed for each case. Scenarios were defined as combinations of three key parameters
(also shown in Table 1):

• Impact of vehicle automation on road capacity. Although first estimates are available
(Friedrich, 2016), there still is substantial uncertainty (Le Vine et al., 2015, 2017).
Hence, three levels (no change, 40% increase (Friedrich, 2016) and 80% increase)
covering the most likely outcomes are considered.
• Share of trips conducted with private automated vehicles (vs. shared automated

taxis) - from 0 to 100%.
• Share of infrastructure devoted to private cars (vs. pooled automated taxis). For

computational reasons, the two modes are assumed to travel on separate infrastruc-
tures. A practical interpretation would be the passing lanes for pooled taxis similar

14



Table 3 – Parameters and their levels

Parameter Levels

γ Capacity impact of automation 0% +40% +80%
ψ Share of demand for private transport 0%, 5%, 10%, ... 100%
η Share of network for private transport 1/3 1/2 2/3

to today’s HOV lanes on highways in the United States.

The dimensions of the different scenarios are summarized in Table 3. All scenarios
were then simulated in the model and analyzed with respect to the resulting network
productivity as measured in lowest space mean speed observed during the morning peak.

7 Results

All scenarios were simulated in the model for both the current car demand (case 1) and
the total road surface transport demand (case 2). The most relevant outcome is the
network speeds. Figure 5 presents the minimum average network speeds for the two modes
between 7 am and 8 am and compares them to today’s average network speeds of cars and
tramways in the city center during that time.

The results indicate that, naturally, maximum speeds are higher for private than for
pooled vehicles (because of the additional dwell times). Moreover, when a higher share of
demand is assigned to private vehicles (taxis), speeds for private vehicles drop and vice
versa. Moreover, changes in the split of the network available for the two modes shift the
curves to the left or the right. In general, the highest minimum speeds for both modes
are achieved when the capacity split equals the split of demand for the two modes.

A key insight from Figure 5 can be taken from a comparison with current car and
tram speeds. For a static car demand (only today’s car trips), almost all scenarios
suggest substantial improvements in network performance (up to doubling of speeds),
partly because of a more efficient use of vehicles (through pooling) and partly through
potential capacity benefits of vehicle automation. However, the outcome is less clear when
considering the full demand (car plus street-bound public transport). Hence, the latter
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Figure 5 – Minimum network speeds for shared taxis (dashed) and private vehicles (solid).
The dotted line provides the current network speeds of trams (13 km/h) as a reference;
dash-dotted is the current speed of private cars during peak hour (11 km/h).

1/3 of Network for Private

0

10

20

30

40

0.00 0.25 0.50 0.75 1.00
Share of Demand for Private Vehicles

M
in

im
um

 N
et

w
or

k 
S

pe
ed

 [k
m

/h
]

Capacity 
Increase

0%
40%
80%

Only Car Demand

(a) 1/3 of network available for private ve-
hicles.

1/3 of Network for Private

0

10

20

30

40

0.00 0.25 0.50 0.75 1.00
Share of Demand for Private Vehicles

M
in

im
um

 N
et

w
or

k 
S

pe
ed

 [k
m

/h
]

Capacity 
Increase

0%
40%
80%

Car + PT Demand

(b) 1/3 of network available for private ve-
hicles.

1/2 of Network for Private

0

10

20

30

40

0.00 0.25 0.50 0.75 1.00
Share of Demand for Private Vehicles

M
in

im
um

 N
et

w
or

k 
S

pe
ed

 [k
m

/h
]

Capacity 
Increase

0%
40%
80%

Only Car Demand

(c) 1/2 of network available for private vehi-
cles.

1/2 of Network for Private

0

10

20

30

40

0.00 0.25 0.50 0.75 1.00
Share of Demand for Private Vehicles

M
in

im
um

 N
et

w
or

k 
S

pe
ed

 [k
m

/h
]

Capacity 
Increase

0%
40%
80%

Car + PT Demand

(d) 1/2 of network available for private ve-
hicles.

2/3 of Network for Private

0

10

20

30

40

0.00 0.25 0.50 0.75 1.00
Share of Demand for Private Vehicles

M
in

im
um

 N
et

w
or

k 
S

pe
ed

 [k
m

/h
]

Capacity 
Increase

0%
40%
80%

Only Car Demand

(e) 2/3 of network available for private vehi-
cles.

2/3 of Network for Private

0

10

20

30

40

0.00 0.25 0.50 0.75 1.00
Share of Demand for Private Vehicles

M
in

im
um

 N
et

w
or

k 
S

pe
ed

 [k
m

/h
]

Capacity 
Increase

0%
40%
80%

Car + PT Demand

(f) 2/3 of network available for private vehi-
cles.

16



case has to be studied in more detail. In fact, Figure 5 indicates that only at an 80%
capacity increase, the road network would be able to cover the whole current travel demand
(assuming zero induced demand) and still improve the level of service. In the more likely
case of a 40% capacity increase through automation, network speeds for both modes would
remain on the level of today’s private cars. Without any capacity increase, minimum
network speeds would plummet to below 5 km/h (65% decrease) with probably substantial
implications on land prices and social welfare. Hence, future network performance will
strongly depend on the capacity gains achievable by vehicle automation.

Yet, for network performance, not only the minimum speeds are important, but also the
evolution of average network speeds throughout the study period. In Figure 6 network
speeds are presented for the case of η = 1/2 and demand share for private vehicles
ψ = {30 %, 50 %}.4 The plots can be compared to the current situation shown in Figure 4.
In the current case without vehicle automation, speeds decrease from 30 km/h at 6.30 am
to 11 km/h around 7.30 am, but recover soon to reach the 27 km/h level soon after 8.00 am.

As shown in the first column in Figure 6, shifting all road-surface transport demand of
today towards (pooled) automated taxis without any capacity gains results in a substantial
loss in network performance. In particular, speeds plummet below current minimum
speeds and take much longer to recover. Since road infrastructure dedicated to public
transport today is also considered available for the two modes in the simulation (in the
form of lane-km), this means that buses and trams cannot be simply replaced by pooled
taxis without increases in road capacity through automation.

In the second column, speed distributions are shown for a 40% capacity gain through
automation. While the results approach the current situation (especially in Figure 6(d)),
minimum speeds are still lower than today and also recovery after the peak hour takes
slightly more time. However, given that the automated modes can be assumed more
comfortable than driving a car or sitting in a bus, this situation may already constitute
a general improvement compared to today. Yet, only with an increase of 80% (third
column), substantial efficiency gains can be expected.

In addition, the simulation results can provide first insights on a favourable modal split
between private automated cars and pooled automated taxis. To this end, the total travel

4In all plots, the full road surface transport demand is analyzed (case 2).
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Figure 6 – Network speeds for pooled taxis (brown) and private taxis (black). The tremor
in the curves can be explained by the discrete simulation steps and the fact that vehicles
may leave the network in platoons.
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Figure 7 – Minimum of total travel times (log) for the different scenarios.
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times were calculated for each scenario. For the purpose of this first analysis, it is assumed
that the system-optimal case corresponds to the case with minimum total travel time. In
reality, disparities in values of time may translate into cases with higher shares of private
modes being system-optimal. The results of this first analysis are presented in Figure 7.

As a first insight, the optimal mode share of private vehicles depends on the capacity
impact of automation: because pooled automated taxis need to stop more often for pick-up
and drop-offs, they benefit less from capacity gains (and hence, speed increases) than
private taxis. In addition, it depends on the share of infrastructure available for this mode.
However, in reality the same road infrastructure will likely be shared between private
automated and pooled automated vehicles.

Hence, most informative is the global minimum of total travel times. When considering
only today’s car demand and no capacity gain through automation, a 60% mode share
of private vehicle trips (vs. 40% shared rides) would be optimal. Assuming an 80%
capacity gain, the optimum would move to 100% private trips. Interestingly, the results
are substantially different for the case of the full road-surface transport demand (car plus
public transport): Here, minimal total travel times are reached at a private vehicle mode
share of 25% - 30% for a 0-40% capacity increase. Only for an 80% capacity increase, a
60% mode share for private trips is travel time optimal.
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8 Discussion

Today’s urban road networks are jointly used by fast-driving cars and slower buses and
trams, which need to stop frequently to allow passengers to board and alight. Due to
this behavior, such public transport vehicles represent moving bottlenecks (Eichler and
Daganzo, 2006; Castrillon and Laval, 2018). In an era of automated vehicles, public
transport services and private cars will likely be complemented and at least partially be
replaced by (pooled) automated taxis. Yet, both kinds of automated taxi services can be
expected to frequently drop off and pick up passengers at the curbside, thus becoming
moving bottlenecks in the network, too. Hence, the nature of mixed traffic with faster
non-stopping vehicles and vehicles frequently stopping at the curbside will not change.
In a way, the results can even be generalized to automated vehicles in private possession
since they can also be expected to perform pick-up and drop-off activities at the curb.
Future research will focus on analytically modeling the vehicle interactions in mixed traffic
with faster non-stopping vehicles and vehicles frequently stopping similar to the approach
for cars and buses by Loder et al. (2019b).

This research studies how the rise of (pooled) automated taxis will impact performance
of urban road networks. To do so, it uses a static5 trip-based simulation tool based on
the macroscopic fundamental diagram to study possible future scenarios. To the authors’
best knowledge, this is the first attempt to apply the MFD for prediction of future traffic
states. Although the assumptions for both the model and the future scenarios are based on
earlier research, the approach relies on various simplifications, which should be addressed
once better information becomes available. This concerns not only capacity impacts of
vehicle-automation, but in particular travel demand patterns, which may be substantially
different in the future (Meyer et al., 2017). This also includes potential empty travel, which
was neglected in this approach. Methodologically, the key limitation is the decoupling
of modes. It is hard to imagine entirely separate infrastructures for the different kinds
of automated taxis. As a result, the effective network speeds will likely be lower than
indicated by the results of this paper. Also the solution of the bathtub model used in this
research is not precise (Arnott and Buli, 2018; Mariotte et al., 2017; Aghamohammadi
and Laval, 2018), but only approximated. However, this is not assumed to substantially
bias the results.

Despite above limitations, this first analysis already provides relevant insights: First, it is
shown that assuming only current demand for car-travel, vehicle automation may indeed

5As described above, speeds are constant within a trip.

20



allow substantial increases in network performance (as suggested earlier (Tientrakool
et al., 2011; Friedrich, 2016)). The positive impacts scale with the possible capacity gains
through automation and may be further increased by an uptake of pooled automated
taxis.

However, vehicle automation may not only increase road capacity, but also reduce taxi
fares to a level comparable with public transportation. Moreover, it may allow a more
efficient use of in-vehicle time. Both effects make car travel (individual or pooled) more
attractive and are hence likely to attract current public transport users (Bösch et al.,
2018). For the analysis, the extreme case of all current bus and tram users switching
towards car travel was analyzed. In fact, this may even constitute a conservative estimate
of future demand given that may be substantial demand increases through new user
groups (e.g. children and elderly) or induced demand effects due to higher comfort levels
or changed land-use patterns. The results show that in such a case, substantial capacity
gains of at least 40% (the level expected by Friedrich (2016)) will be required to maintain
the current network performance. If a substantial share of automated vehicles will be
operated in private possession with high shares of empty travel, even larger increases in
capacity will be required.

On a second note, the results show that a large share of pooled taxi trips is required
to achieve a system-optimal state. Yet, it is expected that pooled rides will not be
substantially cheaper than individual rides (Bösch et al., 2018). Moreover, higher privacy
and comfort will likely outweigh the small differences in fares. Moreover, realized capacity
benefits may likely be lower in case mixed traffic of automated and non-automated vehicles
was allowed in the network.

9 Conclusion

The results of this research show that vehicle automation will impact cities differently.
The first case of "only current car demand" can be thought to apply to car-oriented North
American cities, e.g. Los Angeles, CA. In such cases, vehicle-automation will likely bring
substantial benefits in network performance. Moreover, cheaper taxi travel may in the
long-run even reduce space requirements for parking.

The second case (current car + bus/tram demand) applies to transit-oriented cities like
Zurich, Switzerland. In those cities, replacing existing public transport will likely decrease
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productivity of networks, and thus accessibility, with substantial economical ramifications
(Venables, 2007). Yet, given the low expected cost of automated taxi services and the
small fare difference between individual and pooled taxis (Bösch et al., 2018), strong
policy measures will have to be developed to maintain a high level of public transport use.
Without such measures, only capacity gains of 40% or more will allow to maintain the
current level of network performance. However, although such high capacity increases
were predicted by early research (Friedrich, 2016), later studies expect the true impacts
to be much smaller (Le Vine et al., 2015). In reality, required capacity gains may even be
higher due to induced demand and new user groups.
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