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Abstract

Uncertainty quantification is an inseparable part of risk assessment in dam engineering.

Many probabilistic methods have been developed to deal with random nature of the input

parameters or the system itself. In this paper, the polynomial chaos expansion (PCE) is

adopted as an effective technique for uncertainty quantification of variety of dam engineering

problems (specially with small data sets). Four different case studies are investigated with

increasing complexities in which the static and dynamic responses are sought to predict.

The limit state functions in the form of implicit and explicit are studied. Uncertainties are

propagated in material properties and modeling. Depending on the problem at hand, a

validation set from several thousands to couple of hundreds are used. Overall, it is found

that the PCE is an effective technique to deal with uncertainty quantification in concrete

dams.

Keywords: Polynomial Chaos Expansion – Probabilistic – Seismic – Epistemic Uncer-

tainty – Uncertainty Quantification

1 Introduction

Prediction and classification is regularly used these days in dam engineering problems. Most

of the efforts are concentrated on compiling and post-processing the measured data during

the dam lifetime to predict the feature trend (Salazar et al., 2015). However, there are other

groups which use the results of numerical simulations (e.g. finite element (FE) method) as an

input to develop surrogate meta-models. Studies in this group are very limited with specific

case studies. This paper will focus on the second group.
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Dam engineering problems were always one of the most complex ones in the field of civil

engineering (Hariri-Ardebili, 2018). Not only because of their special geometry, but also

interaction of different material phases (e.g. solid-fluid), followed by large amount of material

which increases the probability of heterogeneity, and finally, different nature of applied loads

(e.g. thermal, dynamic, and hydrologic). Although such a coupled system requires detailed

numerical procedure to solve the state equations, multiple uncertainty sources remain in

the problem which should be properly quantified. Therefore, uncertainty quantification in

dam engineering gained proper attention in the last decade. Most of the applications are

still in the level of simulation-based approach in which a large number of FE analyses are

performed to be used in reliability assessment. A large number of numerical simulations

makes this technique ineffective for most of the real-world dam engineering problems.

Thus, the idea is to adopt some of the machine learning and meta-modeling techniques

to reduce the computational effort while maintaining the accuracy (as much as possible).

Section 1.1 provides nearly all the existing applications of soft computing in concrete dam

engineering. Variety of methods such as response surface meta-model, neural network (NN),

genetic algorithm, support vector machine, etc. were employed. This paper is going to

explore the application of polynomial chaos expansion (PCE) in different dam engineering

problems. The PCE is an effective method to replace a complex deterministic model with its

meta-model (usually expressed in a simple analytical form). The probability density function

(PDF) of the system’s response (or quantity of interests - QoIs) can then be computed by

performing a crude Monte Carlo simulation (MCS) on the meta-model.

1.1 Literature Review

This section reviews the literature on the application of machine learning and meta-modeling

on concrete dams. Chen et al. (2010) implemented an improved response surface meta-

model on linear dam-foundation system to evaluate the sliding probability. Karimi et al.

(2010) proposed a NN model for system identification of gravity dams coupled with a hybrid

boundary element-FE analysis to estimate the dynamic characteristics of the dam without

reservoir. Fan et al. (2010) performed the reliability analysis by combining the response

surface meta-model and finite step method to fit the explicit performance function. Then,

the failure path and functionality failure mode were computed. Gu et al. (2010) proposed a

least squares support vector machine procedure in the context of back analysis to identify

the complex mechanical properties of dams. A complex nonlinear relationship between the

relative values of hydraulic components of dam displacements and mechanical parameters is

established.

Gaspar et al. (2014) proposed a probabilistic thermal model to propagate uncertainties

on some RCC’s physical properties where a thermo-chemo-mechanical model was used to

describe the dam behavior. Cheng et al. (2015) adopted a kernel principal component analysis
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to eliminate the impact of environmental variables and structural health monitoring under

varying conditions. Su et al. (2016) proposed a criterion for optimal selection of back analysis

parameters based on the indices from sensitivity analysis. The uniform design method was

combined with a NN and support vector machine to build the mapping relationship between

multiple material parameters and location-based structural responses.

Rezaiee-Pajand and Tavakoli (2015) used a combined genetic algorithm and FE for crack

detection in concrete gravity dams. This method identifies the location and magnitude

of cracks in dams by minimizing the difference between the analytical responses and the

measured ones. Cao et al. (2017) applied fuzzy random events for stability assessment of

high arch dam abutments. The associated risk ratios were proposed based on the credibility

theory and calculated using the MCS and fuzzy random post-processing. Hariri-Ardebili

(2018) proposed a series of design of experiments (DOEs) for reliability analysis of gravity

dams. For a single problem in hand, more than 10 different DOEs were used and the accuracy

and computational times were compared.

Hariri-Ardebili and Pourkamali-Anaraki (2018a,b) showed the application of several ma-

chine learning techniques in multi-hazard analysis of gravity dams. Both the simplified

and the nonlinear damage models were employed. Seismic, hydrologic, and aging hazards

were studied separately. They reported that machine learning techniques are useful when

they are combined by FE simulations. More recently, the probabilistic response of concrete

dams under hybrid uncertainties (i.e. material and modeling as epistemic and ground mo-

tion record-to-record variability as aleatory) is addressed by Hariri-Ardebili and Xu (2019);

Hariri-Ardebili and Pourkamali-Anaraki (2019). The former one replaces a finite number of

fractional moments by a continuous probability density function, and an improved bivariate

dimension reduction method. The latter one is based on matrix completion technique to

estimate the missing FE simulations using hidden information in the uncertain variables and

clustering techniques.

So far, none of the above mentioned papers address the application of PCE for meta-

modeling of a dam engineering problem. The pioneer work belongs to Ghanem et al. (2007)

where an embankment (and not concrete) dam is treated using stochastic finite element anal-

ysis, an intensive method involving PCE. The elastic and shear moduli of the material are

modeled as stochastic processes with relatively low correlation length. First, the dimension-

ality of the problem is reduced through a Karhunen-Loève method, and then the spectral

stochastic FEM including a high-dimensional polynomial in Gaussian independent variables

is solved. The attained solution from coarse mesh is used to define a new basis for solving the

fine mesh problem. Guo et al. (2018) are also studied stability of an embankment dam using

sparse PCE. Three soil properties, including dry density, cohesion and friction angle were

assumed random variables. Both the finite difference and the limit equilibrium method were

used for the safety factor evaluation of the dam. The failure probability distribution under
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normal exploitation conditions and seismic loading were presented. A PCE-based global sen-

sitivity analysis was also performed to investigate the contribution of each random variable.

Finally, De Falco et al. (2018) proposed a procedure for the model parameters calibration in

a Bayesian context. The technique is based on replacing the initial model with a proxy one

obtained through generalized PCE. It reduces the computational burden and also provides

a global model error. Both a single monolith and a 3D model are studied. They used only

the displacement response for the sake of simplicity.

1.2 Objectives and Structure

This paper aims to investigate the application of PCE in different aspects of design and

analysis of concrete dams. To the best of the authors’ knowledge (and considering a com-

prehensive literature survey; See Section 1.1), this is the first paper which addresses the

uncertainty quantification in concrete dams in the context of PCE. The main objective

of this paper is to answer the following questions: 1) How to properly employ the PCE

meta-models in practical dam engineering problems?, 2) How to interpret the results from

meta-modeling?, 3) How to use the PCE for uncertainty quantification?, and 4) What are

the main advantages and potential limitations of the PCE in dam engineering applications?

To properly respond to these questions, four different case studies are discussed, which

covers a wide range of dam engineering problems. The novelties of this paper rely on devel-

oping several frameworks for the application of PCE in: 1) problems with implicit or explicit

limit state (LS) functions, 2) simplified analytical models vs. advanced FE analyses, 3) static

vs. dynamic simulations, 4) problems with discrete vs. continuous responses, 5) 2D vs. 3D

problems, and finally, 6) the vibrational response of dams and heath monitoring. These fea-

tures cover nearly all the aspects in material and modeling uncertainty; however, the ground

motion record-to-record variability (Hariri-Ardebili and Saouma, 2016), and macro-level con-

crete heterogeneity (Hariri-Ardebili et al., 2019) are not discussed in this paper (due to page

limit).

A brief review of PCE is provided in Section 2 for those readers who are less familiar with

this concept. The detailed description of four case studies including material and loading is

then given in Section 3. Finally, the results are discussed in Section 4, and the conclusions

in Section 5.

2 Polynomial Chaos Expansions

2.1 Constructing the Polynomial Basis

Let us consider a system in which its computational model can be represented by M and

is a function of M input parameters. Due to uncertainty, there parameters are modeled by

a M dimensional X = {X1, X2, ..., XM}. The components are assumed to be statistically
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independent, with marginal probability density functions fXi , i = 1, ...,M . The resulting

joint distribution is denoted by fX . Thus, the scalar QoI resulted from this system is also a

random variable, denoted Y =M (X). Knowing that the response random variable Y has

a finite variance, E
[
Y 2
]
<∞, it can be represented as a PCE (Ghanem and Spanos, 2003):

Y =
∑

α∈NM

yαΨα (X) (1)

where Ψα (X) are the multi-variate polynomials orthonormal with respect to fX , yα ∈ R

are the expansion coefficients to be determined, and α ∈ NM are multi-indices that identify

the components of the multi-variate polynomials.

The multi-variate polynomials are assembled as the tensor product of their univariate

counterparts (Sudret, 2008):

Ψα (x) =
M∏

i=1

φ(i)αi
(xi) (2)

where φ
(i)
αi is the univariate orthogonal polynomial in the ith variable of degree αi where

orthogonality is meant with respect to the probability density function fXi of this ith variable.

A list of commonly-used classical univariate polynomial families can be found in Xiu and

Karniadakis (2002). To be used in the context of real-world problems, the summation in

Equation 1 should be limited to a finite sum:

Y PCE =MPCE (X) =
∑

α∈A
yαΨα (X) (3)

whereA is the truncation set of multi-indices of cardinality P . There are two main truncation

schemes, i.e. standard (Fajraoui et al., 2017) and hyperbolic (Blatman and Sudret, 2011).

The former one is based on selecting all polynomials in M input random variables of total

degree not exceeding p:

AM,p =
{
α ∈ NM : |α| ≤ p

}
cardAM,p ≡ P =

(
M + p

p

)
=

(M + p) !

p! M !
(4)

The hyperbolic truncation is, in fact, a modification to the standard version, and uses

the parametric q-norm to define the truncation:

AM,p,q =
{
α ∈ AM,p : ‖α‖q ≤ p

}
, ‖α‖q =

(
M∑

i=1

αqi

)1/q

(5)

For q=1, the hyperbolic truncation corresponds to the standard one. For q < 1, hyper-

bolic truncation includes all univariate polynomials up to degree p, yet for less polynomials

that depend on many parameters. Figure 1 illustrates a set of 2D hyperbolic truncation with

varying p and q. As seen, decreasing the value of q decreases the number of mixed order

polynomials in the expansion.
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Figure 1: Illustration of the hyperbolic truncation set with varying p (3 to 5) and q (0.5 to 1.0)

2.2 Computing the Expansion Coefficients

The expansion coefficients might be computed either using intrusive or non-intrusive ap-

proaches. The former one is originally proposed in the context of the stochastic finite ele-

ment method (Ghanem and Spanos, 1991) to discretize the constitutive equations both in

the physical and the random spaces. The latter one relies on post-processing of the outputs

from multiple simulations, so-called DOE (Cavazzuti, 2012), of the existing numerical model.

There are multiple strategies to compute the expansion coefficients non-intrusively, among

them the least-square minimization is well-established (Berveiller et al., 2006). Least-squares

minimization adapts the candidate polynomial basis one after the other and computes the

corresponding PCE. The least angle regression (LAR) leads to sparse PCE, where polyno-

mials are selected from a candidate truncation scheme, only the polynomials that have the

largest impact on the model response are retained (while the other coefficients are set to

zero).

Based on Equations 1 and 3, one can write the infinite series as a sum of its truncated

set and a residual:

M (X) =MPCE (X) + εP =
P−1∑

j=0

yiΨj (X) ≡ yTΨ (X) + εP (6)

where εP is the truncation error, and superscript T means transpose.

The LAR method consists in finding a set of coefficients y which minimizes the mean

square error including a penalty term of the form λ ‖y‖1 as (Efron et al., 2004):

ŷ = arg min
y∈RP

E
[(
yTΨ (X)−M (X)

)2]
+ λ ‖y‖1 (7)

where ‖ŷ‖1 =
∑
α∈A |yα| is the regularization term that forces the minimization to favor

sparse solutions. The LAR algorithm can be summarized in the following iterative procedure

(Blatman and Sudret, 2011):

1. Initialization the parameters: yα = 0 ; ∀α ∈ A; candidate set of Ψα, active set of Ø,

and set the residuals equal to the vector of observations y.

2. Find the vector Ψαj which is most correlated with the current residual.
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3. Move yα from zero towards their least-square value until their regressors Ψαj are equally

correlated to the residual as some other regressor in the candidate set.

4. Compute the so-called leave-one-out error, ErrjLOO for the current iteration (will be

explained later), update all the active coefficients, and move Ψαj
from candidate set

to the active set.

5. Continue this step until the size of the active step becomes min (N − 1, P ).

The residual error, εP , in Equation 6 can be further computed using two techniques

(Marelli and Sudret, 2015):

� Normalized empirical error (NEE) is an estimator of the generalized error based on the

response of meta-model to the DOE points:

ErrNEE =

∑N
i=1

(
M
(
x(i)

)
−MPCE

(
x(i)

))2
∑N
i=1

(
M
(
x(i)

)
− 1

N

∑N
i=1M

(
x(i)

))2 (8)

� Leave-one-out (LOO) cross validation technique is intended to overcome the over-fitting

limitation of NEE using cross validation technique. First, a single DOE point is left

out at a time, and then, a polynomial chaos expansion MPCE\i is constructed using

the remaining points (Blatman and Sudret, 2010). Subsequently, the error is computed

as follows after some algebra simplifications:

ErrLOO =

∑N
i=1

(
M(x(i))−MPCE(x(i))
1−diag(A(ATA)−1AT )

)2

∑N
i=1

(
M
(
x(i)

)
− 1

N

∑N
i=1M

(
x(i)

))2 (9)

where A is the information matrix of size N ×P , which contains evaluations of all base

polynomials at all points of the DOE, namely Aij = Ψj(x
(i)).

Over-fitting is a concept that stems from machine/statistical learning. When a model

(e.g., NN, PCE, etc.) is built to approximate an input/output relationship from data (either

a given data set in the usual machine learning setting, or the experimental designed selected

by the analyst in the context of PCE), there must be a trade-off between the number of data

points and the “complexity” of the fitted model. The latter can be seen as the number of

parameters to compute (in our case, the number of PCE coefficients), which depends on the

highest polynomial degree. If one tries to fit a large number of coefficients with a limited

number of data points, one obtains a model that has little error on the data points used for

its construction (possibly zero, think about an interpolating Lagrange polynomial), while it

can have large errors for new input points. In other words, the model is over-fitted on the

data points and has no predictive capabilities for other points.

One classical way to avoid this in machine learning (e.g., NN) is to split the data into

a training and a validation sets: the model is fitted using only the points in the training

7



set and the error is judged on the validation set. In the case of surrogate modeling and in

particular PCE, one is interested in small data sets (i.e., small experimental designs) and

it is of interest to avoid setting apart validation points. This is achieved by so-called LOO

cross validation, Equation 9. More details can be found in Friedman et al. (2001).

3 Application in Dam Engineering Problems

Four examples of concrete dams with different complexities are explained in this section.

They are: 1) analytical model of a gravity dam, 2) simplified finite element analysis of a

gravity dam, 3) detailed coupled analysis of an arch dam-foundation-reservoir system, and

4) frequency analysis of an arch dam with stage construction. Each of these problems includes

different features and complexities and seek different QoIs related to the concrete dam safety

assessment. Figure 2 summarizes all these problems with a representative plot including the

loading and sample results.
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Drain
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Figure 2: Model description of four case studies in this paper including geometry, loads, and
sample QoIs; (a) analytical gravity dam; (b) 2D simplified finite element gravity dam model
for seismic analysis; (c) 3D reservoir-foundation-arch-dam for both seismic analysis and free
vibration
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3.1 Analytical Gravity Dam Model

This case study is, in fact, a classical reliability analysis of a gravity dam based on limit

equilibrium method. In this technique, the dam is assumed to be a rigid body and the loads

are applied statically. Internal stresses are not computed, and only the magnitude and the

moment arm of the resultant loads are important. The applied loads are: 1) self-weight W ,

2) static uplift pressure U , 3) hydrostatic (based on normal or flood water levels) pressure

Phyd, 4) silt pressure Psilt, 5) ice pressure Pice, 6) wind load Pwind, and 7) surface wave

load Pwave. The uplift pressure is updated (as a function g(.)) based on the crack length

Lcr, drain location Ld, the head water, Hw, and tail water, Htw, pressures. Figure 2 (a)

illustrates all the effective loads as well as the dam dimensions.

In this showcase, the LS function is presented explicitly and the material properties and

the static loads are all assumed to be random variables. Table 1 presents the parameters

considered in this analytical model and their probability density functions. All the random

variables in this table (and also Tables 2 and 3) have physical meaning. Therefore, they can

not exceed a certain threshold for any practical problem. The last column provides potential

lower and upper bound limits for each random variable (which are based on either literature

review or engineering judgment). Although different LS functions can be defined for the

sliding and overturning of the dam, a global LS is used in this example which accounts for

the sliding at the dam-foundation interface as:

Z = R− S =


W − g (Lcr,Ld,Hw,Htw)︸ ︷︷ ︸

U


 . tanϕ+ c.A− (Phyd+Psilt+Pice+Pwind+Pwave)︸ ︷︷ ︸

T

(10)

where R and S are average resistance (i.e., capacity) and stress (i.e., applied load or demand),

T is shear force, ϕ and c are angle of friction and cohesion respectively, and Aeff is the

effective area of rupture.

The LS function is programmed in MATLAB (2016). If capacity exceeds demand, Z > 0,

the system is in a safe state. If demand exceeds capacity, Z < 0, the system is in a failure

state.

3.2 Simplified Gravity Dam Finite Element Model

This second example deals with simplified seismic analysis of a gravity dam. Koyna Dam is

used as case study. Its height is 103.0 m, and the thickness at the base and the crest are 70.2

m and 14.8 m, respectively for the central non-overflow monoliths. Figure 2 (b) shows the

cross section of the dam including a relatively coarse mesh. The finite element code EAGD

(Fenves and Chopra, 1984) is used to perform dynamic analyses.

In the simplified finite element method, three different sub-structures are used for the

dam, water and foundation. They are idealized independently, and are only coupled through
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Table 1: Parameters considered for the analytical LS function example based on limit equilibrium
method; adopted from (Hariri-Ardebili and Pourkamali-Anaraki, 2018b)

Parameter Symbol Unit Model Quantity Bound

Width at the base B1 m - 70.0 -
Width at the crest B2 m - 5.6 -
Height of the dam H1 m - 100.0 -
Height of the neck H2 m - 6.0 -
Location of drainage Ld m - 10.5 -
Pre-existing crack at the base Lcr m Uniform U(0.0, 28.0) -
Pre-existing crack at the neck Ln

cr m Uniform U(0.0, 1.0) -
Height of the water Hw m Lognormal LN(82.8, 22.1) (40.0, 120.0)
Height of the silt layer Hs m Normal N(10.0, 6.0) (1.0, 30.0)
Height of the surface wave Hsw m Normal N(1.0, 0.5) (0.1, 2.0)
Concrete mass density ρc kg/m3 Normal N(2400, 100) (2200, 2600)
Water mass density ρw kg/m3 - 1000 -
Silt mass density ρs kg/m3 Normal N(1850, 50) (1750, 2000)
Rock-concrete cohesion crc MPa Lognormal LN(0.62, 0.17) (0.2, 2.0)
Rock-concrete friction angle φrc deg. Normal N(30.0, 7.0) (15.0, 45.0)
Concrete-concrete cohesion ccc MPa Lognormal LN(0.71, 0.13) (0.5, 2.0)
Concrete-concrete friction angle φcc deg. Normal N(34.0, 6.0) (20.0, 45.0)
Drain efficiency effD - Uniform U(0.01, 0.99) -
Silt internal friction angle φs deg. Normal N(30.0, 8.0) (15.0, 45.0)
Wind pressure Pwind Pa Uniform U(100, 150) -
Ice pressure Pice Pa Normal N(300, 150) (100, 1500)
Ice thickness tice m Normal N(0.4, 0.3) (0.01, 1.0)

the interaction forces and appropriate compatibility conditions. In this simplified method,

the coupled equations of motion are written in frequency domain. While the dam is modeled

as a 2D finite element system, the water is idealized by a fluid domain of constant depth and

infinite length. The foundation rock is also idealized as a homogeneous, isotropic, viscoelastic

half-plane. The dam-foundation interaction effects are included by adding the dynamic

stiffness matrix for the rock region in the equations of motion. The stiffness matrix is

frequency-dependent, and is defined with respect to the degree of freedom of the nodal

points at the dam base.

In this case study, the applied loads are: dam self-weight, hydrostatic pressure (reservoir

is assumed 89% filled), bottom sediment (wave reflection coefficient for the reservoir bottom

materials is assumed to be 0.75), and the (horizontal component of) ground motion excitation

(Loma Prieta earthquake of 1989 at San Francisco 1295 Shafter station with 6.9 magnitude).

Note that this is a relatively low intensity excitation (representative for majority of the

recorded motions in PEER (2017)) to keep the dam (stress) response in linear domain. The

free-field ground acceleration is applied to the system and it is assumed to be identical

at all points on the base of the dam. Figure 2 (b) also shows the envelope of maximum

first principal stresses within the dam body (for the reference model), as well as the four

vibrational modes.

In this example, the material properties and the vibration characteristics for the concrete

and rock are assumed to be uncertain, see the properties of the random variables in Table 2.

Monte Carlo simulation is performed using Latin Hypercube Sampling (LHS) (McKay et al.,
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1979; Olsson and Sandberg, 2002) with Nsim = 1,000 dynamic analyses. No correlation is

assumed among the random variables. QoIs are extracted in terms of the displacement and

principal stresses. The results of these 1,000 simulations are later used in PCE meta-models.

Note that in this example, only the epistemic uncertainty is investigated (since it is due to

limited data and knowledge), and the seismic load (i.e., aleatory uncertainty) is assumed

unchanged for all the simulations.

Table 2: Material properties for the gravity dam; adopted from (Hariri-Ardebili and Boodagh,
2018)

Quantity Symbol Unit Model Quantity Bound

Concrete modulus of elasticity Ec MPa Normal N(23, 950, 2, 395) (19,100 28,800)
Concrete Poisson’s ratio νc - - 0.2 -
Concrete mass density ρc kg/m3 Normal N(2, 470, 247) (2,160 2,790)
Concrete hysteretic damping ηc - Normal N(0.06, 0.02) (0.02 0.10)
Foundation modulus of elasticity Ef MPa Normal N(21, 550, 2, 155) (17,700 25,400)
Foundation Poisson’s ratio νf - - 0.33 -
Foundation mass density ρf kg/m3 Normal N(2, 680, 268) (2,320 3,040)
Foundation hysteretic damping ηf - Normal N(0.05, 0.02) (0.02 0.08)

3.3 Coupled Arch Dam-Reservoir-Foundation Model

Two previous examples included 2D analysis of gravity dams. This third example addresses

the seismic analysis of a 3D arch dam-reservoir-foundation coupled system. Karaj Dam

is selected as the case study. This dam offers a symmetric double curvature; its crest is

390.0 m long and it extends a height of 168.0 m above the foundation. The dam structure

and foundation medium have been modeled using 20-node isoparametric elements. The

radius of the foundation region, which was modeled in a semi-spherical shape, was set at

330 m, with the center of the semi-spherical body located at the middle of the dam body

crest. The foundation is assumed to be massless. The reservoir was simulated using 8-

node isoparametric fluid elements extending roughly twice the dam height in the upstream

direction.

Fluid-structure interaction is modeled based on Eulerian-Lagrangian approach. In this

technique, the unknown variables are the displacements (in the solid domain) and the pres-

sures (in the fluid domain). It is assumed that the water is linearly compressible and its

viscosity is neglected (Liaw and Chopra, 1974; Bouaanani and Lu, 2009). The coupled sys-

tem boundary conditions are summarized in Equation 11, and are solved using a staggered

solution.





52P (x, y, z) = 1
c20
P̈ (x, y, z, t) Pressure wave equation

∂P (x,y,z,t)
∂n = −ρwasn(x, y, z, t) Dam-reservoir interface

∂P (0,t)
∂n = −ρwan(t) + (1−αw)

c0(1+αw)
∂P (0,t)
∂t Foundation-reservoir interface

∂P
∂n = − 1

c0
∂P
∂t Reservoir far-end boundary

P (x, y, z, t) = 0 Reservoir free surface

(11)
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where P is the hydrodynamic pressure, c0 the pressure wave velocity in water, ρw water

density, an normal acceleration, s represents the dam face, and αw is the wave reflection

coefficient at the reservoir bottom and sides.

The finite element model of the dam-reservoir-foundation system is shown in Figure 2

(c). Only three material properties are assumed to be uncertain, see Table 3, and the

coupled system is excited using a three component ground motion record. Manjil ground

motion recorded at the Abbar station during Manjil-Iran earthquake on 20 June 1990 was

used frequently to analyze this dam (Mirzabozorg et al., 2010). The mass and stiffness

proportional damping is applied on the structure whose damping ratio for the fundamental

mode has been selected to be 5%. The pressure wave propagation velocity and density of

water equal 1,436 m/s and 1,000 kg/m3, respectively. Since the problem at hand is linear

elastic, none of the vertical joints are modeled. Also, the damage response of mass concrete

is neglected. This is to simplify the model for probabilistic simulations. A detailed nonlinear

analysis of arch dam with nearly all nonlinearity and interaction sources can be found in

Hariri-Ardebili and Kianoush (2014).

Multiple transient analyses are performed on the coupled system with different sample

sizes and techniques. QoIs are extracted in term of displacement time histories and principals

stresses.

Table 3: Material properties for the arch dam (Hariri-Ardebili and Kianoush, 2014)

Quantity Symbol Unit Model Quantity Bound

Concrete modulus of elasticity Ec MPa Normal N(30, 000, 4, 500) (20,000 40,000)
Concrete Poisson’s ratio νc - - 0.17 -
Concrete mass density ρc kg/m3 Normal N(2, 400, 120) (2,150 2,600)
Foundation modulus of elasticity Ef MPa Normal N(30, 000, 6, 000) (20,000 40,000)
Foundation Poisson’s ratio νf - - 0.15 -

3.4 Layered Arch Dams Vibration Characteristics

The final case study deals with frequency analysis of the previous arch dam. As oppose to the

third example, the concrete is not considered homogeneous anymore, and different values of

moduli of elasticity is assumed for various layers. The source of this material variation can be

attributed to: 1) staged construction process of arch dams in which different concrete batches

might be used with different cement and aggregate sources, mixing process, and the in-situ

vibration process; and/or 2) different degradation rate (e.g., alkali aggregate reaction) for

different zones as a combination of non-homogeneous temperature and moisture distribution

(Saouma, V., 2014).

Overall, six stages of construction are assumed and the random modulus of elasticity

is assigned based on a uniform distribution in the range of (17.5, 32.5) GPa. All the other

material properties are kept constant. QoIs are extracted in the form of vibration frequencies,

participation factors and effective masses in six (translational and rotational) directions, and
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the mode shapes. The dam with varying layers, as well as several sample mode shapes are

shown in Figure 2 (c).

4 Results

This section presents the detailed results of the PCE-based uncertainty quantification on the

dam engineering problems with different complexities. According to the general framework of

uncertainty quantification introduced by Sudret (2007), for every type of uncertainty analysis

up to three ingredients can be identified, See Figure 3:

� Step A: A computational model (in this paper different dam engineering problems)

used to compute several QoIs to the analyst. This model is (in majority of cases) a

black-box map of the form Y = M (X) that, provides a set of responses Y for every

combination of input parameters X.

� Step B: A model of the uncertainty in the input parameters, X, due to aleatory and/or

epistemic nature of variability. It is usually presented in the form of probabilistic

models.

� Step C: An uncertainty analysis that aims at combining the epistemic/aleatory un-

certainties with the computational model, to quantify some property in the stochastic

system (e.g., mean, variance). The PCE meta-model, MPCE , is used as a tool for

uncertainty analysis in this paper.

Computational modelRandom variables Moments

Failure probability 

Response PDF

STEP “A” STEP “C”STEP “B”

Quantification of various 
uncertainty sources 

Model(s) of the system
Assessment criteria 

Uncertainty propagation

Iteration 
(Sensitivity analysis)

Figure 3: The general uncertainty quantification framework; adopted from (Marelli and Sudret,
2014)

The overall goal in this section is to answer two important questions: 1) Can the PCE

meta-model be used for uncertainty quantification of dam engineering problems?; if yes, 2)

How much computational time/cost is saved through employing the PCE method?

The answer for the first question will be achieved by comparing the PCE estimated QoIs

with those obtained from analytical/FE methods. On the other hand, the computational cost

is directly estimated by the minimum number of simulations that the PCE method needs to
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build a surrogate meta-model with a desired accuracy. It means that efficiency of the PCE is

evaluated as NDOE

Nsim
. In the following sections, the number of initial simulations, Nsim, used

in conventional probabilistic analyses is first provided. Next, different PCE meta-models

are built using fraction of the initial simulations, NDOE . Although it is intuitive that more

NDOE yields to a better meta-model, the optimal value is introduced for the problems in

hand. These values can be used as a guide for similar cases.

In all the examples (case studies), generalized PCEs are used in the software UQLab

(Marelli and Sudret, 2014), i.e., orthogonal polynomials are selected for each variable accord-

ing to the corresponding input distribution. For standard distributions, analytical polyno-

mials from the Wiener-Askey scheme are used (e.g., Legendre for uniform variables, Hermite

for Gaussian variables) (Xiu and Karniadakis, 2002). When truncated distributions are used,

the related orthogonal polynomials are computed numerically using the Stieltjes procedure.

Multivariate polynomials are obtained by tensor product. All the calculations have been

carried out with the open-source software UQLab, which allows for easy reproducibility. All

the finite element models are also available upon the request.

4.1 Analytical Gravity Dam Model

This section presents the results of PCE on the analytical model with explicit LS function.

According to Equation 10, the LS might take the positive (safe) and negative (failed) values.

Although a simple case study, this method is usually used for preliminary assessment of

geo-structures. Using more than ten random variables in Table 1, 1,000 simulations are

generated based on LHS method and used as reference.

First, a sensitivity analysis is performed based on both traditional methods (i.e. linear

input/output correlation and standard regression analysis) and the Sobol indices, Figure 4.

All these methods give remarkably consistent results. This shows that the most influencing

parameters are base crack length, head water level, cohesion and friction angle at the base,

and drain efficiency.

PCE models are developed based on LAR method with q set to 0.75 (Equation 5).

Please note that all the random variables are used in the meta-modeling regardless of their

importance in sensitivity analysis. Different DOEs (with 50 to 400 points) are used to

evaluate the sensitivity and accuracy of the prediction. Figure 5 shows a sample prediction

(in the first row) and corresponding expansion coefficients (the second row). Four initial (and

deterministic) DOE values are considered, i.e. 50, 100, 200 and 400. Obviously, increasing

the initial sample size, increases the accuracy of PCE model. Also it increases the number

of expansion coefficients required for the meta-modeling.

In Figures 5(a) to 5(c) (and in general, in all the similar plots in this paper), the es-

timated QoIs is shown in vertical axis, Y PCE , while the analytical (or FEM) results are

in horizontal axis, Y Analytical (or Y FEM ). In this first example, Y equals to Z (Equation
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(a) Linear input/output correla-
tion

(b) Standard regression correla-
tion

(c) Sobol indices

Figure 4: Example 1; Sensitivity analysis

10). In Figures 5(e) to 5(g), the expansion coefficients, yα, are shown in a logarithmic form.

Since the coefficients might be positive or negative, a “black dot” (inside the circle) is used

to distinguish the positive ones. Results are also categorized by color and size for different

degrees, p. All the degrees up to three are shown separately, while the higher order ones are

collected under p > 3. Note that not all the α have value. For example, there are only 16

coefficients in Figure 5(e).

The moments of the PCE meta-models are encoded in its coefficients because of the

orthonormality of the polynomial basis. The mean and variance of a PCE can be computed

as:

µPCE = E
[
MPCE (X)

]
= y0 ; V arPCE = E

[(
MPCE (X)− µPCE

)2]
=

∑

α∈A,α 6=0

y2α

(12)

where y0 is the coefficient of the constant basis Ψ1, and variance is the summation of all the

square of the coefficients for non-constant basis elements.

Since deterministic DOE values, used in Figure 5, cannot quantify the uncertainty in

meta-modeling (due to the random sampling of the experimental design), a probabilistic

version (with 100 replications) is presented in Figure 6. This figure, in fact, summarizes

the mean and standard deviation (STD) of different metrics related to the meta-model as a

function of NDOE . The following observations can be drawn:

� Mean value is stable after NDOE = 100, Figure 6(a). There is a large STD for the

meta-models with NDOE = 50.

� Variance of the meta-model output is increased by increasing the NDOE , but its STD

yields to a small value, Figure 6(b).
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Figure 5: Example 1; PCE meta-model; LAR technique; Reference model NLHS = 1000; NDOE

is variable; meta-modeling is based on Z

� The mean and STD of the number of non-zero coefficients is also increased by NDOE ,

Figure 6(c). In average, a meta-model based on 200 DOE points has three times more

expansion coefficients than the one based on 50 DOE points.

� Both the LOO and NEE residual errors decrease with increasing NDOE , Figures 6(d)

and 6(e). STD of the meta-model predictions with NDOE equal or greater than 200 is

practically zero. This means that the obtained results do not depend anymore on the

sampling of the DOE when its size is greater than 200.

Results are further expanded from a reliability point of view. For the analytical problem in

Example 1, it is possible to use some of the classical structural reliability analysis techniques

(e.g. first-order reliability (FORM), second-order reliability method (SORM)) to obtain the

failure probability, Pf , under the current load condition. First, a crude MCS with 1,000,000

simulations is performed to find a stable Pf for the problem, Figure 7(a). This plot also

presents the confidence intervals. According to crude MCS, Pf is equal to 0.1333. FORM

and SORM provide a failure probability of 0.1596 (∼20% overestimation) and 0.1149 (∼14%

underestimation), respectively.
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Figure 6: Example 1; Uncertainty quantification of PCE meta-model based on 100 replications
of the analyses; NDOE is variable; meta-modeling is based on Z

Evolution of the LS functions for different initial DOE values are shown in Figures 7(b)

and 7(c). As seen, the smaller DOE values lead to dispersion of the curves. Evaluation of

these curves at Z = 0 provides the failure probability of the model. The variation of Pf

is shown in Figure 7(d), along with the reference one from MCS. Each curve is obtained

by plotting a vertical line at Z = 0 (for example, the dashed blue line in Figures 7(b) and

7(c)), and compute the CDF of all the crossing points. Ideally, the CDFs from PCE should

predict the crude MCS at their median (CDF = 0.5). In other words, they should cross the

yellow point in Figure 7(d). Nearly all the PCE meta-models tend to underestimate the Pf

(meaning that cumulative Pf curves resulted from PCE are un-symmetry with respect to

crude MCS). The model based on 50 DOE points, predicts the Pf to be 12.0% (while the

PMCS
f = 13.3%). Increasing the number of DOE points, makes the curves symmetry, and

the median of PPCEf yields to PMCS
f .

Next, it is important to quantify the relation between performance of the PCE meta-

model and the failure probability. Since the current example yields to Pf of 13.3%, 21 other

models are generated with different failure probabilities. This is possible by changing width

of the base, and also the initial crack length at the dam-foundation interface. For each

of 21 models, the failure probability is computed 50 times, each time using 1,000 samples.

Therefore, a matrix of 50× 21 is developed for PAnalyticalf as seen in Figure 8(a). According

to this plot, the failure probability varies from 30% to about 0.1% (with most of the cases

categorized as small failure probability models).
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Figure 7: Example 1; Reliability assessment of PCE meta-model; NDOE is variable; meta-
modeling is based on Pf

The mean and standard deviation of failure probability is computed for each model based

on analytical calculations. In addition, the PCE meta-model is used with different number

of initial DOEs to estimate Pf . Finally, the ratio of mean and STD of the PCE meta-

models with respect to the analytical one is plotted in Figures 8(b) and 8(c) as a function of

PAnalyticalf and NDOE . As seen, the performance of the system degrades for smaller failure

probabilities. For a system with Pf = 10%, the PCE meta-models are 90-98% accurate

(depending on the DOE size). This range becomes 70-85% for a system with only 0.5%

probability of failure (i.e., only 5 failed simulations out of 1,000). This implies that a larger

DOE needs to be used for the rare events. Finally, Figure 8(c) shows that the standard

deviation of system is more stable for a larger DOE size, and it is not practically affected by

Pf .

5 10 15 20

Dam model #

10

20

30

40

50

L
o
o
p
#

0

10

20

30

P
A
n
a
ly
ti
ca
l

f
[%

]

(a) Full FE results

10
0

10
1

PAnalytical
f [%]

0.6

0.7

0.8

0.9

1

m
ea
n
(P

P
C
E

f
/
P

A
n
a
ly
ti
ca
l

f
)

DOE = 50
DOE = 100
DOE = 200
DOE = 400

(b) mean; ratio of PCE to FEM

10
0

10
1

PAnalytical
f [%]

1

1.5

2

2.5

S
T
D

(P
P
C
E

f
/
P

A
n
a
ly
ti
ca
l

f
)

DOE = 50
DOE = 100
DOE = 200
DOE = 400

(c) STD; ratio of PCE to FEM

Figure 8: Example 1; Performance of the PCE meta-model under uncertain Pf and variable
NDOE ; meta-modeling is based on Pf

Sampling is the main issue in the material uncertainty quantification. In all the previ-

ous analyses, the LHS (Iman and Conover, 1982) was used for sampling. It is an efficient

space filling sampling method which is categorized under pseudo-random sequences. These

sequences are not truly random, because they are completely determined by an initial value,

called the pseudo-random number generator’s seed (Hariri-Ardebili and Pourkamali-Anaraki,

2019). Therefore, if two LHS-based (small) seeds are used for meta-modeling, they may lead
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to slightly different results. The alternative solution is to adopt a quasi-random sequence.

They are generated based on a completely deterministic low-discrepancy process and have

no inherent statistical properties. Two famous sequences are Halton (Halton, 1964) (which

is defined by bases of prime numbers. Each dimension requires a unique prime number as

a base), and Sobol (Sobol’, 1967) (which benefits the base of two to construct finer uniform

partitions of the unit interval and then reordering the coordinates in each dimension. It

looks almost like a grid in lower dimensions, but forms a lower discrepancy pattern at higher

dimensions) (Hariri-Ardebili and Pourkamali-Anaraki, 2019).
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Figure 9: Example 1; PCE meta-model; LAR technique; NLHS = 1, 000; Nsampling = 100;
q = 0.75; methods: 1=MCS, 2=LHS, 3=Sobol, 4=Halton; meta-modeling is based on Z

Figure 9 illustrates the variation of the major parameters for a case with q = 0.75,

Nsampling = 1000, and NDOE = 100. Four sampling methods are compared, i.e. crude MCS,

LHS, Sobol, and Halton. Since two latter methods are quasi-random techniques, they do

not generate any dispersion in the statistical analyses. The predicted mean value from all

four techniques is practically identical. The behavior of MCS and LHS is very close. For

the small batch of DOE their variations are similar. On the other hand, Halton and Sobol

show a bit different response. They both reduce the NnZ and increase the residual errors.

Again, from practical point of view, one may prefer to use those low-discrepancy sequences

because they do not generate a relatively large variation in the metrics. This may give extra

confidence in decision-making.

4.2 Simplified Gravity Dam Finite Element Model

In this second example, a series of probabilistic seismic analyses are performed on a simplified

model of gravity dam including epistemic uncertainties (due to lack of knowledge about exact

material properties). A total of Nsim = 1, 000 time history analyses are performed, and used

as reference model. Results are extracted in terms of the displacement and stress (both

principal and normal/shear) time histories for all the nodes, and elements. Among many

QoIs, the horizontal crest displacement, and vertical stress at the heel are the most important

ones, since they provide the global state of the dam.
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Similar to the previous example, the first step is to provide a general overview of the

predicted results and the expansion coefficients. They are shown in Figure 20 for different

sizes of the initial DOEs ranging from 50 to 200. Y represents the displacement in mm.

Again, the LAR method is used with q=0.75 in all cases. One major difference between

Figures 20 and 5 (second row) is that in the latter one (i.e. with explicit LS) the degree of

available (or contributing) expansion coefficients increase by the increase in NDOE . This is

not the case in the former one (i.e. implicit LS), and degree 3 and higher ones exist on all

DOE sizes.

Again, a statistical method is used to quantify the meta-models with different DOE

values, Figure 10. One hundred samples are taken for each NDOE , and the mean and STD

of different metrics are evaluated. Two QoIs are used (i.e. displacement and stress) to

contrast suitability of various outputs during surrogating. The following observations can be

drawn:

� Mean value is nearly stable after NDOE = 100, Figure 10(a). The STD of its variation

is also reduced for both displacement and stress QoIs. There is no meaningful difference

between the two QoIs.

� Variance of the meta-model is increased by increasing the NDOE , while its STD yields

a small value, Figure 10(b). The rate of increase is lower for the stress response.

� Although not surprising, the mean and STD of the non-zero coefficients is also increased

by NDOE , Figure 10(c).

� Both the LOO and NEE residual errors decrease with increasing NDOE , Figures 10(d)

and 10(e). For smaller NDOE values, the stress QoI leads to higher error; however,

both the QoIs yield to nearly same value at NDOE = 400, i.e. less than 1% error,

which is more than sufficient for an engineering purpose.

So far, all the meta-models were based on scalar QoI at an index point (i.e. crest or

heel). It is important to evaluate the sensitivity of the PCE meta-models to the location

of the response. Figure 11 illustrates some of the metrics along the height, H, of the dam.

Since displacement and stress response have similar trend, this figure focuses only on the

displacement QoI.

Figures 11(a) to 11(d) provide the metrics for the case with NDOE = 50 (as pilot case in

this series). Observations can be summarized as follows:

� The mean value of the displacement increases with the height coordinate, Figure 11(a).

This is consistent with the physics of the problem. STD is negligible compared to

mean.

� According to Figure 11(b), the variance also increases by H. One can divide this curve

into two linear parts: H ∈ [0, 65] and H ∈ [65, 103]. The former belongs to the main

body (which increases slowly), and the latter presents the slender neck area (with a

sharp increase). STD increases continuously by height.
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Figure 10: Example 2; Uncertainty quantification of PCE meta-model; NDOE is variable; black
line: crest displacement in [mm]; red line: heel vertical stress in [MPa]; Note: the red curves are
shifted a bit right to avoid overlapping with black ones

� The LOO residual error is shown in Figure 11(c) (NEE is similar and thus is skipped).

Again, it seems that the behavior of main body and neck is different. The ErrLOO

increases up to height of 60-70 m, then it shows a reduction.

� Finally, Figure 11(d) shows that the number of non-zero expansion coefficients fluctu-

ates between 14-19. There is a uniform pattern along the height.

Next, the impact of NDOE is evaluated along the upstream face of dam. For µ and V ar

only the STD values are shown (as there is no meaningful change in mean). For ErrLOO and

NnZ the mean value is plotted (as there are large changes). According to Figures 11(e) and

11(f), the STDµ and STDV ar is reduced by increasing NDOE . Transition from 100 to 200

samples is negligible (not shown here). Moreover, there is a jump from 25 to 50 samples in

the meanErrLOO
, Figure 11(g). Finally, the meanNnZ is nearly uniform for different NDOE

values, Figure 11(h).

4.3 Coupled Arch Dam-Reservoir-Foundation Model

In this third example, the seismic response of an arch dam-foundation-reservoir coupled

system is studied subjected to a three-component ground motion. Since this is a detailed

time history analysis, the number of FE simulations are limited. The objective is to evaluate
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Figure 11: Example 2; Variation of PCE metrics along the upstream face of the dam; NDOE is
fixed to 50 in the first row, and is variable for the second row; only crest displacement; Unit =
[mm]

the applicability of the PCE even with small number of initial simulations. Results are

extracted in terms of displacement and principal time histories for all the nodes and the

elements. The following set of simulations are performed:

� LHS-based approach: several batches of 100, 50 and 25 simulations.

� Sobol and Halton samplings: two batches of 50 simulations for each.

Hereafter, the batch with 50 LHS points is assumed to be the pilot model. All others

are evaluated with respect to this batch. Figure 21 provides a general overview of the pre-

dicted results (i.e. maximum absolute crest horizontal displacement as Y ) and the expansion

coefficients. All those four results are based on LHS with different initial samples. Again,

LAR method is used with q=0.75 in all models. Differences of Figure 21 with respect to

Figures 20 and 5 (second row) is that it includes only coefficients 1 to 20 for any sample size.

Moreover, all those coefficients are non-zero and independent of initial NDOE . Obviously,

the meta-model with 25 samples has poor quality, while NDOE = 50 is good for any practical

application (The ErrLOO for the models with NDOE = 50 is in the order of 10−3, while it
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is much bigger for NDOE = 25).

Since the stress distribution in arch dams is the governing factor in safety assessment of

these infra-structures, it is important to evaluate the capability of the PCE in prediction of

spatial QoIs with the body. Figure 12 illustrates the main metrics for the first (S1) and third

(S3) principal stresses within dam body. A coarse mesh is used for this academic example;

however, one can simply refine the element size. Moreover, only half of the dam is shown

due to its symmetry. The following conclusions can be drawn:

� For S1, the higher values of the mean are observed close to the base and also in the

vicinity of the crest. However, for S3, the crest level next to abutment has the highest

(absolute) mean stress value.

� In term of variance, moving upward (along the height) decreases the variance for S1.

In the case of S3, the variance takes higher values at the bottom and crest, while it is

minimum in mid-height.

� The residual errors have, in general, a uniform pattern within the body. There are

some localized area in which the elements’ error is higher than the neighboring ones.

This is limited to one element at the base of dam for S1, and one element next to the

abutment in S3.

(a) S1; Mean (b) S1; Variance (c) S1; LOO residual error

(d) S3; Mean (e) S3; Variance (f) S3; LOO residual error

Figure 12: Example 3; Coupled arch dam; PCE meta-model; LHS-based NDOE = 50; elemental
principal stresses over dam body; Unit = [Pa]

Figure 12 only presented the state of the metrics qualitatively for LHS-based sampling

with NDOE = 50. Figure 13, indeed, expand this model for various initial sample sizes.
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Moreover, in order to refine the search and meta-modeling, the nodal principal stresses

(only S1 in this plot) is used instead of the previous elemental values (which are practically

averaged over all connectivity nodes). The following observations can be reported:

� According to Figure 13(a), the µ value of different sample sizes are very close.

� Variation of variance, Figure 13(b), is pretty complex. Variation of the model with

NDOE = 100 is more uniform. In general, the variance of the model with NDOE = 25

is higher.

� Variation of the LOO residual error along different nodes is nearly uniform, Figure

13(c). In general, decreasing the sample size, increases the error values.
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Figure 13: Example 3; Coupled arch dam; PCE meta-model; LHS-based NDOE is variable;
nodal first principal stresses over dam body; Unit = [Pa]

Figure 14 compares different meta-models all with 50 initial DOE and different sampling

techniques (i.e. LHS, Sobol and Halton). Ignoring the small changes, one may conclude that

there is practically no differences among three techniques for this kind of problems.

Both the results in Figures 13 and 14 are based nodal S1. Similar conclusions were

obtained for S3 (not shown here).
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Figure 14: Example 3; Coupled arch dam; PCE meta-model; different sampling techniques;
NDOE = 50; nodal first principal stresses over dam body; Unit = [Pa]

So far, all the results are based on a scalar value of the maximum/minimum non-

concurrent stress values over the nodes/elements. Figure 15 explores the application of
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the PCE-based meta-modeling on direct time history data. In the present paper, a response

history is treated as a vector of many QoIs acting independent from each other. Since the

duration of the applied ground motion is 40.0 s with the time step of 0.02 s, there exists

2,000 data points in any response history. To develop the meta-model for the time-dependent

QoIs, a loop with 2,000 iterations is written around the core PCE function. The values of

QoIs (i.e., displacements in Figure 15) are predicted at each iteration (which corresponds to

a particular time instance). Once all the time increments are predicted, they are assembled

again in a vector form to build the estimated response history.

The original FEM-based displacement time history (at the center of crest), and the PCE-

based predicted one are shown in Figures 15(a) and 15(b), respectively. Qualitatively, the

meta-modeling seems to be very good. Both the appearance of the time history and its peak

values are preserved. Then, the results are plots next to each other and the time parameter

is ignored, Figure 15(c). As seen, the individual QoIs at various time instance are very close

to the equity line.

The mean and variance of the crest time history predicted by the PCE are shown in

Figures 15(d) and 15(e), respectively. As expected, the general trend of µ is very similar to

trajectory obtained for the mean value of the parameters. Moreover, the peak points of the

variance correspond to the jumps in displacement time history. Finally, the LOO residual

error is illustrated in Figure 15(f). It seems that the error fluctuates around 10−3 with the

boundaries of 10−5 and 10−1. Higher error values correspond to the higher displacement

responses.
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Figure 15: Example 3; Coupled arch dam; PCE meta-model; LHS-based NDOE = 50; time
history of crest displacement; Unit = [mm]

Finally, the PCE-based meta-model is compared with a neural network based model. A

classical NN is adopted with the architecture of Figure 16(a). It contains a scaling layer
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(gray circles), a neural network (dark-blue circles are perceptron neurons), and an un-scaling

layer (red circle). The number of input parameters is three (according to Table 3), and the

output is maximum crest displacement (obtained from time history analyses). Two neural

networks are trained with 50 and 100 initial design of experiments. On the other hand, the

same DOEs are used in the PCE-based meta-model. Finally, the predicted displacements

are compared with the FEM-based ones for both the PCE and NN meta-models.

Although there are different scalar metrics to compare the models (e.g., coefficient of

determination, root mean square error, mean absolute error, etc.), the cumulative error

percentage is used in this paper. It provides the detailed variation of the error parameter

for the meta-models, Figures 16(b) and 16(c). Although both meta-models have satisfactory

performance for the practical/engineering purposes, the PCE is clearly superior to NN. The

error percentage from PCE-based meta-model varies between [-0.5, +0.5]%, while the one

from NN varies between [-4.0, +1.5]% (with a large lower tail). Again, detailed comparison

of PCE with other surrogate models (and not specifically NN) is beyond the scope of this

paper. However, Figure 16 was provided only for the illustrative purposes.
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Figure 16: Example 3; Coupled arch dam; PCE vs. NN meta-models; variable NDOE ; maximum
crest displacement in [mm]

4.4 Layered Arch Dams Vibration Characteristics

This example deals with modal analysis of an arch dam with different layers of concrete and

modulus of elasticity. QoIs, in this section, are: 1) vibration frequencies, 2) participation

factors, and 3) effective masses. Since the dam is a shell-type 3D continuum structure, three

translations and three rotational quantities can be extracted for each mode.

Using the LHS techniques, 1,000 samples with random modulus of elasticity are generated,

and the first 30 vibration modes are extracted, Figure 17(a). Evolution of the cumulative

normalized effective masses in translational and rotational directions are also shown in Fig-

ures 17(b) and 17(c). The cumulative normalized masses sum up to one for the first 30

frequencies, and thus, one may truncate the higher order modes. There are two important

points:

� Correlation of different frequencies, Figure 17(d). As seen, there is a certain correlation
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(a) Vibration frequencies (b) Translational modes (c) Rotational modes

(d) Dependency of modes
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Figure 17: Example 4; Layered arch dam; general characteristics of the vibration analysis ob-
tained from the 1,000 points of the DOE

among different modes, and the meta-model should preserve this dependency. For

example, there is a strong correlation between (ω1, ω2) and (ω1, ω4), while it is weak

between (ω1, ω3). It means that the fourth frequency is always increased with an

increase in the first one; and this variation is independent of the material randomness

in six dam layers. On the other hand, the relative variation of the first and third

frequencies highly depends on the material properties.

One should note that for an elastic system with homogeneous material, the correlation

between different modes is always full (i.e., the correlation coefficient is unit) during a

probabilistic analysis. Increasing the inhomogeneity (in the form of orthotropic layered

material or heterogeneous ones), reduces the correlation coefficient between different

modes (Hariri-Ardebili et al., 2019) for any random field simulation. In order to de-

velop an appropriate meta-model, not only the frequency values but also their relative

correlation should be incorporated in PCE-based algorithm.

� Effective direction in each mode, Figure 17(e). Any classical modal analysis yields

different effective masses in six directions for each mode. However, it does not mean

that a particular mode is important in all directions. The relative effective mass can

be used to distinguish the effective direction in each mode. Figure 17(e) shows the

mean (over the 1,000 samples) effective mass for the first 11 modes. It is bounded to

107 to 1013 to focus on the effective modes. For example, Y-trans, X-rot and Z-rot are

three (relatively) important directions for mode one. For the second mode, X-trans

27



and Y-rot are important, and so on. As a general observation, there are only two or

three active directions in each mode. The PCE meta-model will focus on these effective

modes in each direction and will skip the others.
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Figure 18: Example 4; Layered arch dam; NLHS = 1000; NDOE = 200; two QoIs

A batch with 200 initial DOEs is selected using LHS technique, and considered to be

the pilot model. Figures 22 and 23 provides a general overview of the predicted results

(i.e. frequencies in the first 15 modes as Y ) and the expansion coefficients, respectively.

The quality of prediction is very good for the first 11 modes. They have the expansion

coefficients up to 3rd degree. Predicted results for modes 12 to 15 is fairly good, and only

the 2nd degree coefficients exist. Similar to the previous examples, the LAR method is used

with q=0.75 in all meta-models. The major difference of Figure 23 compared to Figures 21,

20 and 5 (second row) is that nearly all the coefficients are non-zero, and there is a uniform

and decaying nature in log(|yα|)−α plot. This means that the resulting PCE are not really

sparse for eigenfrequency analysis.

28



Figure 18 summarizes the results of probabilistic PCE meta-model for different QoIs and

directions. Two sets of results are studied:

� General frequency response, Figures 18(a) to 18(e).

– The mean and variance both increase as a function of frequency. The mean is

quite uniform, while there are some nonlinear variations for the variance.

– The NnZ is constant and equal to 80 for the first 11 modes (without any disper-

sion).

– Both the residual errors have similar and increasing trend, with relatively large

variation and small dispersion.

� Effective mass in X direction, Figures 18(f) to 18(j).

– These results represent all six directions. For other translational and rotational

directions, one may drive similar conclusions.

– The results are shown only for 9 effective modes.

– There is no general observation for mean and variance.

– In general, smaller frequencies have higher NnZ.

– In general, both the residual errors are increased by frequency.

Finally, the impact of the DOE size on the quality of meta-model is investigated in Figure

19. The following observations can be drawn:

� The mean (not shown here) and variance of different sample sizes are practically iden-

tical.

� Increasing the DOE size, increases the number of NnZ coefficient.

� Both the residual errors have an increasing trend. Increasing the DOE size, decreases

the residual errors.
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Figure 19: Example 4; Layered arch dam; NLHS = 1000; NDOE is variable; only frequency
response
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5 Summary

Concrete dams are part of the critical infrastructural systems which provide drinking water,

and can be used for irrigation and/or generate hydro-power electricity. Yet, dams are aging

and many of them were built at the time with limited information about the natural hazards.

Therefore, periodic safety assessment of dams is an essential task to keep the integrity of the

national-wide infrastructural systems. Risk-based safety assessment is an approved method

by International Commission on Large Dams, and many of other national legislation. How-

ever, large portion of the current practice in dam engineering is based on the deterministic

analysis with engineering judgment, or limited probabilistic analyses. Despite the fact that

there are many uncertainties associated with a dam analysis, the complexity of the simula-

tions and the computational burden for the probabilistic analyses are the major inhibitors

for a comprehensive uncertainty quantification.

This paper proposed the application of Polynomial Chaos Expansion as an effective

method in uncertainty quantification of complex infra-structures. Four examples of con-

crete dams with different complexities were investigated: 1) analytical model of a gravity

dam, 2) simplified finite element analysis of a gravity dam, 3) detailed coupled analysis of

an arch dam-foundation-reservoir system, and 4) frequency analysis of an arch dam with

stage construction. These case studies were selected because they had different features and

complexities and seek different QoIs related to the concrete dam safety assessment.

In all examples, a large initial dataset was developed (either from analytical solutions

or the finite element analyses), and the ability of PCE in response prediction was evaluated

with a very small portion of those data. All the detailed results including the comparison

of 1) different sample sizes, 2) response parameters (i.e. QoI), 3) statistical parameters (e.g.

mean, variance, error), 4) sampling methods (e.g. LHS, Halton, Sobol), and 5) location-

based response values (i.e. spatial variability) can be found in the paper. There are not

repeated here again. Overall, it is found that PCE can develop a meta-model with a very

limited number of initial simulations and reduce the computational time considerably. Even

the sample size with 5% of the initial dataset provides acceptable (engineering) results.

Intuitively, by increasing the sample size the prediction error yields to zero. Findings of this

research propose the application of PCE as a useful technique in uncertainty quantification of

dam engineering problems with different material models, seismic ground motions, frequency

analysis, heterogeneity, etc. The application is straightforward, and can be adopted easily

by the practitioners.
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A. PCE-based Meta-model for Example 2
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Figure 20: Example 2; Reference model; PCE meta-model; LAR technique; NLHS = 1000;
NDOE is variable; only for crest displacement
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B. PCE-based Meta-model for Example 3
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Figure 21: Example 3; Coupled arch dam; PCE meta-model; LAR technique; NDOE is variable;
maximum absolute crest displacement
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C. PCE-based Meta-model for Example 4
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Figure 22: Example 4; Layered arch dam; PCE meta-model; LAR technique; NDOE = 200;
quality of frequency prediction
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Figure 23: Example 4; Layered arch dam; PCE meta-model; LAR technique; NDOE = 200;
expansion coefficients
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