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Summary

Natural products (NPs) offer an almost inexhaustible source of inspiration for the
discovery of new drug-like molecules. Natural products and NP-related molecules
represent a major fraction of approved small-molecule drugs. However, complex or-
ganic syntheses and limited supply often provide insufficient quantities for in-depth
structure-activity relationship studies and further drug development. To overcome
these obstacles, synthesis-driven concepts have utilized natural products as templates
to design structurally simplified small molecules while retaining biological activity. A
considerable synthetic effort and knowledge about activity-related structural features
are necessary to obtain such mimetic structures.
Computational methods, in particular de novo design concepts, have been developed
to design synthetically accessible small molecules with desirable biological activities.
These methods utilize various molecular representations (descriptors) encoding pre-
defined structural features. Together with similarity metrics, molecular descriptors
have been employed to computationally evaluate the molecular similarity of virtual
compounds to known bioactive templates. De novo design and in silico similarity as-
sessment represents a powerful computational approach to identify novel bioactive
molecules.
Although these computational concepts coupled with drug-like reference compounds
have shown promising results, only few studies have employed natural products as
templates in computational de novo design. Therefore, in this thesis we attempted at
generating synthetically feasible bioactive natural product mimetics by computational
de novo design.
In our first study, we applied the reaction-based molecule assembly method DOGS
(Design Of Genuine Structures) to generate bioactive new chemical entities (NCEs)
from the natural product galanthamine. We assessed the two-dimensional topological
pharmacophore similarity to their template by the CATS descriptor (Chemically Ad-
vanced Template Search). Thereafter, we predicted potential targets with the software
SPiDER (Self-organizing map–based Prediction of Drug Equivalence Relationships).
Six simplified mimetic structures were obtained with an one-step reaction. Their ac-
tivity on known and computationally predicted molecular targets was characterized in
vitro. Two inhibitors of acetylcholinesterase were identified, the known primary target
of galanthamine. The designed compounds possessed further potent activities against
several molecular targets from various protein families. This behavior was further cor-
roborated by computationally predicting their target promiscuity.
In a further application we utilized the aforementioned de novo design concept to gen-
erate mimetic structures of the marine natural product (±)-marinopyrrole A. We em-
ployed this anticancer agent as the template of the software DOGS, and evaluated
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the pharmacophore similarity of the designs to their reference structure. Five mimet-
ics were synthesized following the computationally proposed synthetic routes. The
bioactivity of these compounds was assessed against predicted and known molecular
targets. The mimetics shared similar activity profiles with their natural product tem-
plate and showed comparable potencies on these targets. In certain cases, the mimetics
exceeded the activity of their parent structure. These findings corroborated the under-
lying principle of our design approach that similar structures possess similar bioactiv-
ities. The observed bioactivities showed that the mimetics have inherited the target
spectrum of their template structure.
In order to extend our design workflow with a three-dimensional similarity assess-
ment, we employed the concept of fractal dimensionality to capture the shape of a
molecule. Fractal dimensionality, as a novel numerical description of the surface of a
3D molecular conformation, has been applied to estimate the shape similarity between
two molecules. In a prospective application, a set of de novo designs mimicking the
natural product (-)-englerin A were ranked according to their similarity in shape to the
natural product. Two compounds were selected which were similar in shape and com-
putationally predicted as active for the transient receptor potential (TRP) ion channels,
the known cellular targets of (-)-englerin A. Synthesis of the two mimetics and sub-
sequent cell-based intracellular calcium level measurements and electrophysiological
whole-cell experiments of TRPC4 and TRPM8 channels revealed potent inhibitory ef-
fects of one of the computer-generated compounds.
Finally, we handed the structure generation over to artificial intelligence by incorpo-
rating a generative deep learning model as novel de novo design method. In our first
proof-of-principle study, we applied such a model to generate new drug-like molecules
with desired bioactivities. In a two step procedure, a recurrent neural network (RNN)
was first trained on the string representations (SMILES) of known bioactive molecules
to capture their constitution. Second, this model was re-trained on a small set of ac-
tive molecules sharing a similar molecular target set enabling us to generate a target-
focused compound library. As fine-tuning set, we selected 25 known modulators
of the retinoid X receptors (RXR) and/or peroxisome proliferator-activated receptors
(PPARs). After sampling from the generative model, computational target prediction
with SPiDER and similarity assessment were employed to rank the generated designs.
We picked five high-ranked compounds for synthesis and in vitro characterization.
Four designs possessed nano- to micromolar potencies on the intended molecular tar-
gets.
After this proof-of-principle study, we utilized a deep learning model to design nat-
ural product mimetics. We reused our model trained on drug-like compounds and
fine-tuned it on six natural products with known agonistic effects on RXRs. Sampled
designs were computationally ranked by the same two-step procedure leading to four
natural product mimetics, which were then synthesized and characterized in vitro. Two
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compounds showed micromolar activity on at least one RXR subtype. The results of
both studies revealed that the model learned essential structural features from a set of
bioactive molecules.
In summary, the results of this thesis highlight the capabilities of reaction-based molecule
assembly and generative deep learning for de novo design of bioactive natural product
mimetics. Coupled with in silico similarity assessment and computational target pre-
diction, both de novo methods proved to be useful for identifying synthetically acces-
sible small molecules with desired biological activities. However, generating synthet-
ically feasible compounds and identifying bioactive compounds with computational
tools in prospective applications are remaining challenges of both de novo drug design
methods. Despite these limitations, the combination of computational de novo design
and natural products in a knowledge-driven approach holds promise for future natural
product-inspired drug discovery.
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Zusammenfassung

Naturstoffe sind eine nahezu unerschöpfliche Inspirationsquelle für die Entdeckung
neuartiger Wirkstoffe. Ein grosser Teil der zugelassenen Wirkstoffe hat seinen Ur-
sprung in Naturstoffen und naturstoffähnlichen Molekülen. Dennoch führen kom-
plexe chemische Synthesen und eingeschränkte Versorgung durch Extraktion dazu,
dass nicht genügend Material dieser Stoffe zur Verfügung steht, um umfangreiche
Struktur-Wirkungsbeziehnung studien durchzuführen. Um diese Hürden zu meis-
tern, sind verschiedene synthetische Methoden entwickelt worden, die Naturstoffe als
Vorlagen nutzen, um strukturell vereinfachte Moleküle unter Beibehaltung ihrer ge-
wünschten biologischen Aktivität zu entwerfen. Für solche Konzepte ist jedoch ein
nicht zu unterschätzender synthetischer Aufwand nötig. Ausserdem ist es notwendig,
dass aktivitätsrelevante strukturelle Elemente zuvor bekannt sind.
Unterschiedliche computerbasierte Methoden, insbesondere de novo Designkonzepte,
sind entwickelt worden, um synthetisch zugängliche Moleküle mit wünschenswerten
Bioaktivitäten zu konstruieren. Verschiedene molekulare Deskriptoren sind entwickelt
worden, um die strukturellen Eigenschaften von Substanzen zu beschreiben. Zusam-
men mit Ähnlichkeitsmetriken, werden diese Deskriptoren benutzt, um virtuell er-
zeugte de novo Designs anhand ihrer Ähnlichkeit zur Vorlage auszuwählen.
Obwohl diese computergestützten Designmethoden mit wirkstoffähnlichen Struktu-
ren als Vorlage bereits erste vielversprechende Resultate geliefert haben, sind erst we-
nige Studien bekannt, die Naturstoffe als Vorlagen verwendeten. Das Ziel meiner
Arbeit war es, synthetisch zugängliche und biologisch aktive Naturstoffmimetika mit
Hilfe von computerbasiertem de novo Design zu entwerfen.
In einer ersten Studie verwendeten wir die de novo Design Software DOGS (Design
Of Genuine Structures), welche Moleküle auf Grundlage von implementierten Reak-
tionen virtuell zusammensetzt. Diese Software erlaubte es uns, Mimetika des Natur-
stoffs Galanthamin zu erzeugen. Um die Ähnlichkeit dieser Mimetika zu ihrer Vorlage
zu berechnen, nutzten wir den Pharmacophor-basierten Deskriptor CATS (Chemically
Advanced Template Search). Ausserdem verwendeten wir die Software SPiDER (Self-
organizing map–based Prediction of Drug Equivalence Relationships) um mittels com-
putergestützten Target-Vorhersagen potentiell aktive Moleküle auszuwählen. Sechs
vereinfachte Strukturen wurden in einer einstufigen Synthese hergestellt und ansch-
liessend auf ihre Aktivität in unterschiedlichen in vitro Untersuchungen getestet. Wir
identifizierten zwei schwach aktive Inhibitoren der Acetylcholinesterase, eines der be-
kannten Haupttargets von Galanthamine selbst. Die vom Computer erzeugten Mole-
küle besassen noch weitere Aktivitäten gegenüber diversen Proteinen aus verschiede-
nen Proteinfamilien.
In einer zweiten Anwendung dieses Designkonzepts generierten wir Mimetika des
marinen Naturstoffes (±)-Marinopyrrol A. Diese antikanzerogene Substanz wurde als
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Vorlage für DOGS verwendet und die vom Computer erzeugten Strukturen wurden
wie zuvor anhand ihrer Ähnlichkeit zur Vorlage sortiert. Fünf Moleküle konnten auf
Grundlage der vorhergesagten virtuellen Synthese hergestellt werden. Die Bioaktivi-
tät dieser Substanzen wurde im Bezug auf bereits bekannte und vorhergesagte Targets
gemessen. Die Mimetika zeigten ähnliche Aktivitätsprofile wie ihre Vorlage in einem
vergleichbaren Aktivitätsbereich. In einigen Fällen übertrafen die gemessenen Akti-
vitäten der Mimetika die des Naturstoffes. Diese Beobachtungen untermauerten das
zugrundeliegende Prinzip dieses Designkonzept, welches besagt, dass ähnliche Struk-
turen ähnliche Aktivitäten besitzen. Ausserdem zeigten die Resultate, dass die Mime-
tika das Targetspektrum ihrer Vorlage erbten.
Um in unserem Designprozess die Ähnlichkeit von Molekülen im dreidimensiona-
len Raum zu einzubauen, verwendeten wir das Konzept der fraktalen Dimension als
neuartigen Deskriptor, welcher die dreidimensionale Form eines Moleküls beschreibt.
Der auf fraktaler Dimension basierte Deskriptor ist eine numerische Beschreibung der
Oberfläche eines Objekts und drückt aus, wie dieses Objekt den Raum um sich ausfüllt.
Wir verwendeten diesen Deskriptor in einer prospektiven Studie, um Moleküle aus
einer Bibliothek von computer-generierten Mimetika des Naturstoffes (-)-Englerin A
anhand ihrer dreidimensionalen Ähnlichkeit auszuwählen. Ausserdem wurden mit-
tels Target-Vorhersagen von SPiDER die Strukturen priorisiert, die als aktiv für die
Transient Receptor Potential (TRP) Ionenkanäle vorhergesagt wurden. Zwei Moleküle
wurden hergestellt und ihre Effekte auf TRPC4 und TPM8 wurden in elektrophysiolo-
gischen Experimenten getestet. Es zeigte sich, dass ein Molekül hemmende Wirkungen
gegenüber diesen beiden Targets besitzt.
In zwei weiteren Studien benutzten wir Modelle aus dem Bereich der künstlichen In-
telligenz zur Erzeugung von de novo Strukturen. In einer ersten Machbarkeitsstudie
nutzten wir ein solches Modell, welches zuerst die Konstitution von wirkstoffähnli-
chen Molekülen lernte. Danach wurde das Modell auf einer Auswahl von Molekü-
len, welche ein gemeinsames Target besitzen, trainiert. Dieses sogenannte "Transfer
Lernen" ermöglichte es uns, eine target-fokussierte Bibliothek von de novo Designs zu
erzeugen. Wir verwendeten 25 Moleküle mit bekannten agonistischen Effekten auf
Retinoid X Rezeptoren (RXRs) und/oder Peroxisomen-Proliferator-aktivierte Rezep-
toren (PPARs). Die vom Modell generierten Strukturen wurden anhand ihrer Target-
Vorhersagen und molekularen Ähnlichkeit zu bekannten Modulatoren ausgewählt.
Fünf Moleküle wurden synthetisiert, wobei vier Designs nennenswerte Aktivitäten ge-
genüber den zwei Targets aufwiesen.
In einer Folgestudie nutzten wir das gleiche Modell, um Naturstoffmimetika zu ge-
nerieren. Das bereits auf wirkstoff-ähnlichen Molekülen trainierte Modell wurde auf
sechs Naturstoffen erneut trainiert. Diese sechs Naturstoffe wurden auf Grund ihres
gemeinsamen Targets ausgewählt. Nach dem Design der Moleküle wurden diese wie
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zuvor ausgewählt. Vier Naturstoffmimetika wurden hergestellt und zwei dieser Mo-
leküle konnten als Agonisten von mindestens einem RXR Subtyp identifiziert werden.
Die Resultate dieser beiden Studien zeigten, dass das verwendete Modell die relevan-
ten strukturellen Eigenschaften von aktiven Molekülen gelernt hat und darauf aufbau-
end neue bioaktive Moleküle erzeugen konnte.
Die Resultate dieser Arbeit haben die Möglichkeiten von computer-gestütztem de novo
Design gezeigt. Durch ein reaktionsbasiertes Konzept und eine Methode aus dem
Bereich der künstlichen Intelligenz, zusammen mit der Beurteilung von molekula-
rer Ähnlichkeit und computer-basierter Target-Vorhersage, war es möglich, neue syn-
thetisch leichter zugängliche und bioaktive Substanzen zu erzeugen. Die Erzeugung
von synthetisch zugänglichen Molekülen und die Identifizierung deren Bioaktivitäten
mittels computerbasierten Methoden stellt vor allem in prospektiven Anwendungen
weiterhin eine Herausforderung dar. Dennoch besitzt der Ansatz, computerbasierte
Konzepte mit Naturstoffen zu kombinieren, das Potential, ein fester Bestandteil von
zukünftigem naturstoff-inspirierten Wirkfstoffdesign zu werden.
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1 Introduction
Natural products (NPs) provide an almost unlimited repository of inspirations for
new drug-like molecules.[1–3] Various strategies to harness the full potential of nat-
ural products have been developed in the history of humankind. Both extraction
from natural sources and synthesis of bioactive natural products have enabled the dis-
covery of novel natural product-based drugs. Besides these two strategies, several
synthetic and computational methods have been applied to obtain natural product-
inspired bioactive molecules by simplifying natural product structures with retaining
necessary structural features relevant for their bioactivity. These simplification strate-
gies further aim to overcome synthetic difficulties, improve unfavorable properties and
design mimetic structures of natural products with comparable or better biological ac-
tivities.[4] The discovery of rosuvastatin (1), a drug for treating high levels of choles-
terol,[5] represents an example, in which a drug molecule resembles two natural prod-
ucts, more precisely the natural products mevastatin (2) and lovastatin (3) (Figure 1.1).
In case of natural products with unknown targets, most of the structural simplifica-
tion methods"mainly include step by step dissection of the complex structure, the elimination
of redundant chiral centers, the reduction of the number of rings, and scaffold hopping", as
depicted by Wang and co-workers.[4] Especially the concept of "scaffold hopping", de-
scribed as the "identification of isofunctional molecular structures with significantly different
molecular backbones",[6] enables the development of simplified natural product mimet-
ics by computer-assisted drug discovery.
This introductory chapter covers concepts and examples from the fields of natural
product-inspired drug discovery and computer-assisted drug design (CADD). Various
concepts combining natural products and computational methods, which aim to cap-
ture relevant features and design bioactive new chemical entities (NCEs) from natural
product templates, will be highlighted.
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Figure 1.1: Structures of the drug rosuvastatin (1) and the structurally related natural
products mevastatin(2) and lovastatin(3).
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1.1 Natural Products in Drug Discovery

The bitter tasting natural product quinine (4, Figure 1.2) is not only recognized as a fla-
vor component in tonic water, it is also well-known in medicine as antimalarial drug.
Although quinine was isolated in 1820 [7] and synthesized by Woodward and Doering
in 1945,[8] it is still being investigated by researchers. Quite recently, scientists had
identified a common binding target of quinine which will help to fully understand the
mode of actions of this old natural antimalarial agent.[9] This latest example showcases
that natural products are still an essential part of current research in the field of drug
discovery and development dealing with the identification of novel drug candidates.
From the beginning of human history, mankind has explored nature’s substances to
treat all types of diseases. Relying on inherited knowledge from ancestors, the applica-
tion of traditional medicine was common practice until the 19th century.[10] The oldest
strategy to isolate naturally occurring medicinal substances was based on extraction.
This traditional strategy included almost exclusively plant extracts in various forms,
e.g. tinctures, soups or infusions. But most of the "ancient" drugs could not fulfill
the modern definition of a drug including isolation and characterization of its chem-
ical structure and its interactions with living organisms.[11] Morphine (5, Figure 1.2)
is considered as one of the first isolated bioactive compound from a plant extract. In
the early 1800s, Friedrich Sertürner isolated morphine as one pharmacologically active
substance from the opium poppy Papaver somniferum.[12, 13] A few decades later, the
German chemist Georg Merck discovered papaverine (6), another active compound in
opium poppy extracts.[14] Further natural product drugs like atropin (7), codeine(8) or
salicin(9) were isolated during the 19th century (Figure 1.2).[15] Due to major techni-
cal advances during the past decades, isolating pharmacologically active compounds
from natural sources remains a prevalent part in the era of modern drug discovery.[16]
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Figure 1.2: Several natural products isolated in the 19th century.
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Apart from isolating active ingredients from plant extracts, chemical syntheses of nat-
ural products has become another common strategy to discover new drugs. Acetyl-
salicylic acid, an acetylated form of the natural product salicylic acid, was among the
first synthesized natural product-derived drugs. In 1853, Charles Frederic Gerhardt
synthesized acetylsalicylic acid,[17] and a few years later, Karl Kraut was able to ob-
tain acetylsalicylic acid in a purer form.[18] At the end of the 19th century, the German
company Bayer began to produce acetylsalicylic acid and marketed the natural prod-
uct derivative under the trademark Aspirin©.[19] Since these first successful synthetic
achievements, natural product synthesis has grown into a powerful tool in drug dis-
covery, and is still nowadays one of the most important sources of natural-product
drugs.[20, 21]
A third major category to harness natural products in drug discovery includes numer-
ous simplification strategies.[4] Many synthesis-driven approaches have been utilized
to overcome various challenges of natural products as drug molecules, like their lim-
ited supply from extraction and synthesis, insufficient structural properties or unfavor-
able pharmacological profiles. In many cases, the simplified natural product-inspired
molecules comprise parts of their parent natural product or they contain relevant struc-
tural elements of the natural product pharmacophore.
To evaluate the importance of natural products in drug discovery, Newman and Cragg
have investigates the origins of approved drugs from 1981 to 2014.[22] In their report,
they analyzed all therapeutic agents, approved by the Food and Drug Administration
(FDA) of the United States of America, to classify the different originating sources of
these drugs. Newman and Cragg took into account all approved small-molecule drugs
in this time period (N = 1211), over 396 drugs (33%) are natural products, natural prod-
uct derivatives or botanical defined mixtures. Further 395 approved molecules (32%)
consist of either natural product pharmacophores or resemble the natural ligand of a
protein. The remaining 420 drugs (35%) are solely synthetic compounds originating
for example from high-throughput screening (HTS) campaigns. The proportion of nat-
ural products or NP-related drugs increases if only anticancer agents are taken into
account. From over 136 approved anticancer drugs, 113 out of 136 drugs (83%) are
natural products, derivatives or mimetics thereof. Only 23 compounds (17%) belong
to the category of synthetic drug molecules.

Natural Product, NP-Derivatives and NP-Mimetics as Drugs

To exemplify the three different categories, in particular natural products, NP-deriva-
tives and NP-mimetics, illustrative examples of each category are mentioned.[22] The
anticancer natural product paclitaxel (10), trade-marketed as Taxol©, has been ap-
proved in 1993 by FDA. Paclitaxel enhances tubulin polymerization and stabilizes mi-
crotubules against depolymerization resulting in an overall microtubules stabilization
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Figure 1.3: Examples of approved natural-product drugs. (Left) The natural product
paclitaxel (10) has been approved in 1993 as chemotherapeutic agents. (Right) The
plant-derived natural product ingenol mebutate (11), approved in 2012, is used to
treat actinic keratosis.

(Figure 1.3, left).[23] In 2012, the natural-product drug ingenol mebutate (11) has been
approved as a gel formulation for the treatment of actinic keratosis, a pre-cancerous
area of skin (Figure 1.3, right).[24] Although the exact mechanism of action is unknown,
it has been suggested that ingenol mebutate interacts with several protein kinase C
(PKC) subtypes[25] leading to an activation of the related signaling pathway and fi-
nally inducing cell death.[26]
The proteosome inhibiting natural product epoxomicin (12)[27] served as starting point
for the development of Carfilzomib (13), a selective proteosome inhibitor as well, repre-
senting an example from the category of natural product-derived drugs (Figure 1.4).[28]
A third class of NP-related drugs are synthetic compounds mimicking a natural prod-
uct or a natural substrate, whereas 334 out of 1211 approved drugs (28%) fall into
this category.[22] As an example, natural occurring ligand 9-cis-retinoic acid (14, Fig-
ure 1.5), a form of vitamin A, activating the nuclear hormone receptors retinoid X re-
ceptor (RXR) and retinoic acid receptor (RAR)[29] has been exploited as template for
the development of bexarotene (15, Figure 1.5), a selective RXR agonist with antineo-
plastic activity.[30] To capture the potencies and important features of bioactive natural
products, further strategies have been developed in natural-product research. Crane
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Figure 1.4: (Left) The proteosome inhibiting natural product epoxomicin (12) and
(right) its FDA approved derivative carfilzomib (13).
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and Gademann published a collection of case studies highlighting complex natural
products which had been reduced to natural product fragments mimicking parts of
their natural product template structure, while maintaining or increasing the phar-
macological activity.[31] One such instance is (+)-migrastatin (16, Figure 1.6), a nat-
ural product which inhibits cell migration in cancer cells .[32] Besides the total syn-
thesis of (+)-migrastatin,[33] the Danishefsky group investigated the activity of fur-
ther natural product analogs (17 and 18) and identified natural product fragments
with increased potencies compared to its template natural product (Figure 1.6).[34–36]
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 9-cis-Retinoic acid (14)

Figure 1.5: (Top) The natural ligand 9-cis-
retinoic acid (14) has served as template for the
mimetic bexarotene (15) (bottom).

The underlying concept exploited has
been coined "diverted total synthesis"
(DTS), introduced by Danishefsky.[37]
This strategy of "molecular editing" al-
lows the exploration of natural product
analogs, starting from a synthetically ad-
vanced intermediate and transforming
this intermediate into analogs with dif-
ferent complexity levels compared to the
original natural product. This synthetic
principle offers possibilities to make nat-
ural product analogs which are often in-
accessible from the natural product itself
because of missing synthetically feasible
transformations. Mimicking natural products with chemical synthesis can also be
achieved with designing functional rather then structural analogs. The main goal is to
obtain isofunctional structures containing pharmacophoric features of their template
structures. The so-called "function-oriented synthesis" (FOS) approach comprises of
the design of NCEs with a focus on their function combined with synthetically eco-
nomic methods.[38, 39] Wender et al. applied this synthetic strategy to design novel
inhibitors of PKC by harnessing pharmacophoric features of phorbol esters, a set of
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Figure 1.6: (Left) Originating from (+)-Migrastatin (16), a cell migration inhibitor
isolated from Streptomyces plantensis bacteria, more potent analogs (17, middle) and
18, right) have been identified by reducing the original structural complexity.
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natural carcinogenic agents.[40] The inclusion of the functional information gained
from the natural ligand of PKC, diacylglycerol (DAG), resulted in the identification
of new PKC modulators with competitive inhibition of phorbol ester binding. The
Wender group investigated further natural products modulating PKC, in particular
the marine natural product bryostatin 1 (19, Figure 1.7).[41] After publication of struc-
tural information about bryostatin 1,[42] analogs have been designed computationally
by applying a similar protocol as before.[43] Bryostatin 1 and DAG were analyzed to
identify shared pharmacophoric features. The first generation analog 20 (Figure 1.7)
had comparable activity and could be obtained in less than 30 steps,[44] a shorter syn-
thetic route than the first total synthesis of bryostatin 1 by Keck et al. which required 59
steps.[45] Further bryostatin analogs (21 and 22, Figure 1.7) were optimized for func-
tion (2nd generation analog 21) and synthetic step-economy (3rd generation analog
22).[41] Recently, Wu and Dockendorff utilized FOS and computational methods to
mimic the antifungal natural agent sordarin with the goal to obtain accessible novel
scaffolds which can be easly modified to improve their molecular properties.[46]
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tional analog structures of the first ( 20, top right), second (21, bottom left) and the third
generation (22, bottom right).
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Even though not all described application studies revealed isofunctinal natural prod-
uct mimetics, function-oriented synthesis as drug design strategy has the potential to
mimic complex natural products by synthetically accessible chemical entities with sim-
ilar or even superior functionalities. Therefore, natural products cannot be considered
solely as biologically interesting and often complex structures, but can also be seen as
sources of inspiration for making new isofunctional chemical entities. Furthermore,
the basic principle of FOS as described by Wender et al.[38] states that "the function of a
biologically active lead structure can be recapitulated, tuned, or greatly enhanced with simpler
scaffolds designed for ease of synthesis" which can also be applied to the generation of nat-
ural product-inspired libraries. These collections had become an important source for
selecting and finding new bioactive compounds in early drug discovery.[47]

Synthetic Compound Collections

Screening large libraries of synthetic compounds are an essential part of identifying
novel active compounds in medicinal chemistry. These high-throughput screenings
(HTS) are among the most important sources of novel clinical candidates.[48] Both
pharmaceutical companies and initiatives at the interface of academia and industry
rely on HTS campaigns for small molecule lead discovery.[49–52] Nevertheless, HTS
results have met only mixed success in the past decades.[53] The success of these lead
discovery platforms depends strongly on the quality of the screened libraries.[54] Im-
portant library features are collection size and individual compound quality like pu-
rity and drug-likeness.[55] Furthermore, screened compounds should have appropri-
ate physicochemical properties[56] and ought to have a certain molecular diversity.[57]

Molecular Properties and Structural Diversity of Screening Libraries

In a computational analysis from 2001, Lee and Schneider compared these synthetic
screening libraries to marketed drugs and natural products regarding their molecular
properties and diversity.[58] The purely synthetic compound collection studied had a
lower number of chiral centers along with an enriched ratio of aromatic atoms to ring
atoms in comparison to marketed drugs and natural products. The analysis led to the
assumption that trade drugs and natural products have a larger complexity and di-
versity than synthetic screening libraries. Additional chemoinformatic analyses came
to similar conclusions.[59–61] In particular, molecules with larger complexity showed
on average a higher bioactivity than less complex molecules.[62] However, Selzer et al.
pointed out that too complex structures had an increased probability of pharmacoki-
netic problem and therefore "complexity must be balanced with other molecular prop-
erties". Almost ten years later, Stratton et al. examined structural and physicochemical
characteristics of drugs which had either a natural or solely synthetic origin.[63] Their
work confirmed the previous results. Moreover, their analysis indicated that drugs
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emerged from a natural product pharmacophore already revealed desirable molec-
ular features like lower hydrophobicity and a larger content of chiral centers. Al-
though many natural products possess suitable physicochemical properties, several
approved and orally bioavailable natural product drugs violated common rules,[64]
like "Lipsinki’s rules-of-five" (Ro5)[56] and "Veber’s rules"[65] that guided and biased
small-molecule drug discovery programs over the last two decades.[66–68] This led to
the conclusion that natural products were considered exceptions of these rules. Never-
theless, an analysis of the all entries from the Dictionary of Natural Products (DNP) re-
vealed that 60% of the 126,140 unique natural products had did not violate the Ro5.[69]
An explanation of these observations was given by Ganesan, as he indicated that "Lip-
inski did not look at all compounds in medicinal chemistry programs".[64] Consequently,
those criteria should not be viewed as strict rules but rather as guidelines for drug dis-
covery programs, in particular in connection with natural products.
To further assess the impact of molecular complexity on the successful outcomes of
clinical trials, Lovering et al. analyzed the properties of molecules from all stages in the
drug discovery and development process (lead compounds, clinical candidates and
approved drugs).[70] In this often-cited and frequently debated study it was demon-
strated that the complexity of a molecule expressed as the fraction of sp3-hybrdized
carbon atoms (Fsp3) and the amount of chiral carbon centers can be correlated to a suc-
cessful drug development. Additionally, the saturation of drug compounds (Fsp3 and
number chiral carbon atoms) could be associated with their solubility, an experimental
property which can be linked to the successful transition from lead structure to ap-
proved drug. In 2013, Lovering reported that an increased molecular complexity can
be related to a reduction in promiscuity and toxicity in terms of associated cytochrome
P450 (CYP) isozymes inhibtion.[71]
Focusing on their structural complexity, screening libraries, drugs or natural products
can be described and analyzed in terms of molecular scaffolds. A well-established scaf-
fold definition was given by Bemis and Murcko in 1996.[72] They devided a molecule
into four structural elements: ring systems, linker atoms, atoms connecting ring sys-
tems, side chain atoms, which are all non-ring and non-linker atoms, and frameworks.
A framework was defined "as the union of ring systems and linkers in a molecule".[72]
This approach was considered as one of the first concepts "to classify the crude shapes
of molecules in terms of their cyclic frameworks" or scaffolds as declared by Brown.[73]
Grabowski et al. evaluated the complexity and molecular diversity in terms of molecu-
lar scaffolds and frameworks of natural products and drug-like molecules.[74, 75] The
results confirmed previous findings that natural products consist of a remarkable struc-
tural diversity together with desirable physicochemical properties and provide a large
number of distinct novel scaffolds which were not present in the investigated synthetic
libraries. Out of the large variety of natural product scaffolds, several molecular frame-
works obtained from natural products were labeled as "privileged scaffolds",[76, 77] a
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term that was coined by Evans in 1988.[78] These "privileged structures are capable of
providing useful ligands for more than one receptor" as Evans phrased it. These privileged
scaffolds plus promising novel natural product-derived scaffolds [79] can be utilized
to bias existing synthetic screening libraries towards new emerging target classes.[80]
A representative set of privileged scaffolds derived from natural products but also
found in drugs is shown in Figure 1.8.[76, 81] These include nitrogen-containing het-
erocycles like indoles (23), quinolines (24) and isoquinolines (25) or heterocycles with
nitrogen and oxygen as benzoxazole (26). Coumarins (27), chalcones (28), chromones
(29) and benzofurans (30) are common scaffolds of the oxygen-containing heterocycle
family. Beyond these examples, several different NP-derived scaffolds have been in-
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Figure 1.8: Representative set of privileged scaffolds occuring in natural products
and drugs.

vestigated as suitable basis of identifying novel lead and drug structures. In 2015, a col-
lection of various case studies using privileged scaffolds for drug discovery was pub-
lished in "Privileged Scaffolds in Medicinal Chemistry: Design, Synthesis, Evaluation".[82]
Notably, Cragg and Newman summarized instances of natural product-derived scaf-
folds in which these scaffolds served as root of the development of bioactive lead com-
pounds.[83] In conclusion, natural products possess outstanding features like sufficient
molecular complexity and diversity as well as desirable physicochemical properties.
Moreover, numerous natural product scaffolds have been categorized as privileged
scaffolds. Due to these beneficial characteristics of natural products, natural products
have provided powerful starting points for generating natural product, NP-derived
and NP-inspired screening libraries.

Libraries of Pure Natural Products

Recent developments in separation and analysis methods as well as advanced organic
synthesis strategies enabled the generation of natural product-based compound collec-
tions in the past decades.[47]
For example, the technical innovations in separating, isolating and elucidating of nat-
ural product structures from natural extracts led to a re-emergence of agents from nat-
ural source in drug discovery.[16] Just recently, a natural product screening library,
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the so-called Canvass library, was composed for HTS against diverse target assays.[84]
With contributions from academic and industrial laboratories, the natural products of
this library consisted of molecular and structural features similar to drug molecules.
The report mentioned highlights the initial efforts to extensively evaluate the potential
bioactive natural products in an automated fashion. In 2018, the Kirchmair group sum-
marized known and readily obtainable natural product libraries and analyzed their
chemical properties.[85] They reported a high structural diversity of the available nat-
ural products and that these compounds covered biologically relevant areas in chem-
ical space. Besides the facts that these screening libraries of pure natural products are
suitable for HTS campaigns and populate desired areas in chemical space, the isolation
and identification of natural products in sufficient amounts of material is challenging.

NP-derived and NP-inspired Compound Libraries

Another strategy to build natural product-derived or natural product-inspired libraries
counts on advanced organic synthesis concepts. Several synthetic approaches have
been developed to construct synthesizable compound collections with favorable nat-
ural product-like features. Apart from the already described methods of diverted to-
tal synthesis (DTS) and function-oriented synthesis (FOS), diversity-oriented synthesis
(DOS)[86] as well as biology-oriented synthesis (BIOS)[87] are further considerable li-
brary design methods.
Diversity-oriented synthesis aims to generate synthetic libraries with large molecular
complexity and diversity from simple starting materials in a forward synthetic direc-
tion.[88] This is opposed to the more traditional approach of target-oriented synthe-
sis starting from a target structure, e.g. a natural product, which will be dissected
into fragments by retrosynthetic analysis until simple and available fragments are
reached.[86] Linking DOS and natural products has the advantage to generate a huge
variety of novel NP analogs and explore large, poorly covered areas in chemical
space.[89] In one of the first studies applying DOS to design NP-inspired libraries, Tan
et al. generated a compound library related to the the natural product shikimic acid
(31, Figure 1.9),[90] a starting material of the synthesis of oseltamivir (Tamiflu).[91]
The core fragments 32 and 33 of this library were immobilized on solid support to take
advantage of a split-and-pool synthesis strategy[92] to increase the amount of diverse
products. Based on these core fragments, over two million distinct encoded chemical
entities could be obtained by using different terminal alkynes (R1), carboxylic acids
(R2) and amines (R3) (Figure 1.9). A similar approach was applied to create a NP
library with prostaglandin E1 (34) as leading natural product (Figure 1.10, left).[93]
Over 26 prostaglandin E1 analogs were synthesized in parallel within four steps con-
taining the NP core fragment 35 (Figure 1.10, left) aiming to find active modulators
of prostaglandin EP2, EP3 receptors. In 2000, Nicolaou and co-workers constructed
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Figure 1.9: Shikimic acid (31) served as starting point to build a large synthetic
compound collection from the shown core fragments (32,33) with different terminal
alkynes (R1), carboxylic acids (R2) and amines (R3).

extensive NP-like libraries founded on a privileged scaffold, for example present in
the natural HIV protease inhibitor calanolide A (36, Figure 1.10, middle)[94]: The 2,2-
dimethyl-2H-benzopyran scaffold (37, Figure 1.10, middle).[95–97] Repeat application
of the split-and-pool synthesis strategy resulted in a collection of over 10,000 NP-like
compounds. In a further study, Oguri et al. designed a NP-like library inspired by the
natural antimalarial agent artemisinin (38, Figure 1.10, right),[98] which has been dis-
covered in the early 1970s by the Chinese scientist and Nobel laureate Youyou Tu.[99]
The generated compounds consisted of the NP-like elaborated core 39 (Figure 1.10,
right) and led to the identification of NCEs with confirmed antitrypanosomal activi-
ties, also exhibited by artemisinin itself.
In 2006, the Waldmann group introduced the concept of biology-oriented synthesis
(BIOS) as "an efficient approach to the discovery of new compound classes for medicinal chem-
istry and chemical biology research".[100] The underlying principle (Figure 1.11) is grounded
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around the core fragment 35. (Middle) The natural HIV reverse transcriptase inhibitor
calanolide A (36) is one example containing the privileged scaffold 2,2-dimethyl-2H-
benzopyran (37), which served as core for a NP library. (Right) The natural anti-
malarial agent artemisinin (38) was the source of inspiration for a NP-like compound
collection with the library core 39.
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on the assumption that structural features of proteins and natural products have been
conserved during evolution leading to preserved amounts of protein folds[101] and
a limited number of natural product scaffolds.[102, 103] In contrast to this structural
conservatism, variability within the amino acid sequences and the substitution pat-
terns of natural products ensured a sufficient degree of diversity with the conserved
structures. This unique combination of characteristics can be utilized to identify NCEs
with NP-inspired scaffolds which may encode the interactions with conversed protein
binding sites. A necessary requirement of BIOS is the identification and analysis of
natural product scaffolds.[103]

N

N

H

H

Proteins Natural Product Modulators

Figure 1.11: Proteins and natural products consist of con-
served structural features of their folds and scaffolds. But
both show a high degree of diversity in amino acid sequence
and scaffold substituent patterns. Reprinted and adapted
with permission from ref. [103]

For this purpose, Koch et al.
extracted the scaffolds of all
natural products from the
Dictionary of Natural Prod-
ucts and classified them
structurally to map the nat-
ural product chemical space.
[104] The classification prin-
ciple "Structural Classifica-
tion of Natural Products"
(SCONP) organizes extracted
scaffolds in a tree-like struc-
ture and highlights connections between different hierarchical levels (Figure 1.12). The
observation that not every scaffold branch can be reduced to a single ring structure, led
to an extension of this concept by introducing "gap-filling" virtual scaffolds to achieve
completion of all tree branches.[105] Varin et al. extended the scaffold tree algorithm to
consider up to ten branches per hierarchical level and therefore generating a scaffold
network with more information about scaffold relationships and potential scaffold "ac-
tivity islands".[106] In the initial BIOS study, Nören-Müller et al. investigated synthetic
compound collections derived or inspired by natural products and assessed their in-
hibitory effects on certain tyrosine phosphatases. They identified novel inhibitors of
selected tyrosine phosphatases from the family of yohimbane alkaloids, inter alia, the
natural product yohimbine (40).[100] Based on the scaffold of yohimbine (41), the ap-
plication of SCONP revealed an assignment of this scaffold to the indole branch of
the SCONP scaffold tree. Therefore, the indole-based structure 42 was employed to
build a NP-inspired compound collection yielding in the discovery of a novel selective
phosphatase inhibitor. Over et al. demonstrated that natural product-derived frag-
ments are a valuable source of novel bioactive fragments for fagment-based drug dis-
covery (FBDD).[107] They incorporated the extracted fragments and validated them
in line with principles of fragment-based drug discovery.[108–110] They were able to
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Figure 1.12: Tree-like representation of the different hierarchical levels (SCONP)
of natural product scaffolds from the Dictionary of Natural Products. The scaffolds
are broadly categorized into nitrogen- (N-heterocycles), oxygen- (O-heterocycles) and
solely carbon-containing ring systems (carbocycles). Reprinted with permission from
ref. [104]

find novel p38αMAP kinase modulators and phosphatase inhibitors with novel chemo-
types. They concluded that exploiting NP-derived fragments to generate NP-inspired
libraries may help "to overcome limitations in the use of natural products in drug discovery
due to lack of accessibility and synthetic tractability".[107] Recently, the Waldmann group
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Figure 1.13: The natural tyrosine phosphatase inhibitor yohimbine 40 and its scaf-
fold 41 served as starting point of a NP-inspired compound library with the indole
core structure 42.
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combined the previous concepts of biology-oriented synthesis and natural product-
derived fragments and obtained the so-called "pseudo natural products" crhomopy-
nones with inhibitory effects on the two glucose transporters GLUT-1 and -3.[111] They
described the associated limitations of both strategies, such as identified NPs covering
only a small area in the total NP-like chemical space.[112] and focusing on known NP-
derived scaffolds narrows down the search of less-explored biologically-relevant areas
in chemical space.[113] They proposed the concept of "pseudo natural products" by
merging NP-derived fragments into unprecedented structures following a de novo de-
sign approach. This molecular de novo design approach can be described as the design
of "novel molecular structures with desired pharmacological properties from scratch",
as outlined by Schneider and Fechner in 2005.[114] For selecting and designing these
pseudo natural products, Karageorgis et al. followed a set of design guidelines.[111]
First, they aimed to combine NP-derived fragments to create a novel three-dimensional
scaffold which can be synthesized and diversified with manageable synthetic efforts.
Second, the selected fragments should contain complementary heteroatoms (nitrogen
and oxygen) to ensure sufficient structural diversity and adequate differences to the
parent natural products. Finally, they proposed that fragments from natural products
with diverse bioactivities as well as unrelated biosynthesis pathways "will encode dif-
ferent structural parameters for binding to proteins".[111] These guidelines led on the one
hand to the selection of natural products, for example the anticancer agent catechin
(43)[115] and the psychoactive natural agent Δ1-THC (44),[116] with a chromane frag-
ment (45), which is closely related to the privileged benzopyran scaffold, as mentioned
before.[76] On the other hand, the natural antibiotics THAN1057A/B (46) [117] and
the antiproliferative natural products aplicyanins A-F (47)[118] shared the nitrogen-
containing tetrahydropyrimidinone fragment (48). Both fragments (45 and 48) were
fused into the chromopynones (49),a new pseudo natural product class. Based on this
novel scaffold, a NP-inspired library of over 44 compounds was synthesized and its
bioactivities were subsequently evaluated in several cell-based assays. The activity as-
sessment revealed that 18 out of 44 compound had inhibitory effects on the glucose up-
take and selectively targeted glucose transporters GLUT-1 and GLUT-3, upregulated
targets in many cancer types.[119] The results of this proof-of-principle study showed
for the first time that natural product-inspired libraries can be generated by combining
the concepts of biology-oriented synthesis and fragment-based drug discovery. The
outcome of these investigations can be considered as the next step towards the de-
sign of NP-inspired collections of NCEs by harnessing of the full potential of natural
products.
Finally, natural products play still an important role in drug discovery today. Both their
unique structural features as well as their beneficial physicochemical properties turn
natural products into a highly valuable resource of novel drug-like compounds. Not
only natural products themselves, but also their derivatives, mimetics and NP-inspired
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icyanins A-F (47) are representatives containing a tetrahydropyrimidinone core (48).
The two NP fragments 45 and 48 are merged into the "pseudo natural product" chro-
mopynone 49.

libraries are an endless source of inspiration for lead and structures in medicine. How-
ever, the supply of natural products from their natural origins is often limited and
the syntheses of these agents and their related compounds are still challenging. The
upcoming integration of chemoinformatic tools like molecular property calculation,
pharmacophore comparison and scaffold analysis led to powerful advances in natural
product-based drug discovery during the last years, in particular in the design of NP-
like libraries. The combination of natural products, organic synthesis and chemoin-
formatics offers a great opportunity to promote and implement innovative strategies
in a multi-disciplinary approach for future drug discovery. To this extent, the poten-
tial of computational methods in drug discovery will be elaborated in more detail in
section 1.2.
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1.2 Computer-Assisted Drug Design

The use of computational methods to support the identification of a novel lead or
drug structure is increasingly common in modern drug discovery projects. Already
in 2004, Jorgensen pointed out that the systematic use of wide-ranging computational tools
to facilitate and enhance the drug discovery process has become an crucial part of success-
ful drug discovery programs.[120] These tools include commonplace software such
as chemical-drawing suits, two- and three-dimensional visualization tools as well as
database management programs. Several computational methods have been devel-
oped to advance the identification of bioactive compounds and their transition into
clinical drug candidates at each stage of the drug discovery process.[121] Physico-
chemical property calculation, energy minimization of molecular structures, predic-
tion of potential interactions between ligand and protein, and absorption, distribution,
metabolism, excretion and toxicity (ADMET) modeling are just some well-established
examples of computer-based approaches in modern drug discovery.[122] Among these
in silico approaches, gathered under the umbrella term computer-assisted drug design
(CADD), several methods have been described to generate or identify new drug-like
compounds. Here, various screening approaches and molecular design strategies will
be discussed. Moreover, this section will highlight examples, where these computa-
tional concepts have employed natural products as templates to screen virtual libraries,
and for the generation of novel bioactive small molecules. One of the foundations of
CADD, especially the representation of molecular structures and the assessment of
molecular similarity are explained in the next section.

Molecular Descriptors and Molecular Similarity

A central aspect in identifying and designing novel chemical entities is the relationship
between chemical structures and their experimentally-determined properties.[123] This
relationship between chemical structure and function, e.g. pharmacological activity is
shown in a simplified schema in Figure 1.15. In one direction, molecular structures can
be linked to one or more biological functions. Quantitative structure-activity relation-
ship (QSAR) models have been developed to extract rules and correlations from these
links and can be applied subsequently to predict the biological functions of novel com-
pounds. Already in 1962, Hansch et al. postulated the basis concepts of QSAR mod-
eling.[124] In their seminal work, they found that the biological activity of phenoxy-
acetic acid derivatives can be correlated with slight changes in their structures. Since
then, QSAR modeling have been well established in medicinal chemistry as a power-
ful means to analyze and predict bioactivities of new compounds, especially in lead
optimization.[125] In the opposite direction, the connection of a biological function
to chemical structure(s), has been described as an "inverse" QSAR approach[126, 127]
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and solutions of this "inverse" QSAR are closely related to molecular de novo design
approaches aiming to generate novel chemical entities based on mapping functions
(Figure 1.15).[128]

Figure 1.15: Simplistic representation of the relation-
ships between structural chemical space S and func-
tional biological space F. Ligands in S and protein tar-
gets in F are shown as black dots. Quantative structure
activity relationship (QSAR) models correlate structure
with activity (left to right) while de novo design links
activity to structures (right to left). Certain molecules
like s* can bind several targets ("promiscuous binders"),
and some targets, e.g. f *, have multiple associated lig-
ands ("promiscuous targets"). Reprinted with permission
from ref. [128]

Generally, the representation of
data can have a large influ-
ence of the efficacy of compu-
tational methods. Therefore, a
requirement to utilize compu-
tational methods in drug de-
sign is an appropriate represen-
tation of molecular structures,
and their desired biological ac-
tivities. The common visualiza-
tion of molecules with balls and
sticks contains adequate infor-
mation to get an intuitive de-
scription of the molecular ar-
chitecture. However, these vi-
sualizations are generally insuf-
ficient to adequately describe
the relationship between molec-
ular structures and their corre-
sponding functional characteris-
tics.[123] For this purpose, more than thousand different types of molecular descrip-
tors have been developed and applied to model certain properties of chemical struc-
tures.[129]

Molecular Descriptors

One definition of a molecular descriptor was given by Todeschini and Consonni: "The
molecular descriptor is the final result of a logical and mathematical procedure which transforms
chemical information encoded within a symbolic representation of a molecule into a useful num-
ber or the result of some standardized experiment."[130] Based on this definition, molecular
descriptors can be classified as descriptions of experimental values, like the determina-
tion of physicochemical properties, or as theoretical descriptions of different kinds of
molecular representations.[129] The first category consists of results from experimen-
tal measurements like solubility (e.g. LogP), or molar refractivity. Second, theoretical
molecular descriptors can be separated according to complexity, also known as de-
scriptor "dimensionality".[131, 132] The different levels of descriptor dimensionality
are examplified for ibuprofen (50) in Figure 1.16. Molecular descriptors with dimen-
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Figure 1.16: The two-dimensional structure of ibuprofen (50) shown with differ-
ent levels of descriptor complexity, also known as "dimensionality" of a descriptor.
Reprinted and adapted with permission from ref. [131]

sionality "0" are obtained from the simplest representation of a molecule: the chemical
formula. These descriptors purely rely on atom types and numbers, and do not con-
sider connectivity or different bond types. Prominent examples are molecular weight
and certain atom counts (e.g. number carbon atoms). One-dimensional (1D) descrip-
tors take into account the presence or absence of certain substructures in a molecular
representation. These descriptors are often encoded binary representations (e.g. fin-
gerprints) or as occurrence frequencies. The 2D descriptors contain information about
connections between atoms and their bond types. The resulting higher complexity can
be used to describe molecules as graphs, in which vertices represent atoms and edges
display bonds. This representation allows for the incorporation of topological proper-
ties of a molecule together with the associated chemical features of the atoms.
An even higher level of descriptor complexity can be achieved by considering a mole-
cule as a geometrical object. The introduction of spatial coordinates, e.g. obtained
from crytsal structures or computer-based conformation generation and optimization,
increases the information content of a particular presentation.[132] These types of de-
scriptors are widely used in medicinal chemistry and drug discovery.[133] However,
there are still certain issues when considering three-dimensional structures of molecules.
On one hand, the generation of three-dimensional molecular conformations depends
on the computational methods employed to calculate these structures,[134–136] result-
ing in multiple energetically-favorable conformers for particularly flexible molecules.
These ensembles of similar conformers have been utilized in a clustered format to
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identify bioactive compounds.[137, 138] On the other hand, the energetically most fa-
vorable conformation of a molecule can be different to its bioactive conformational
state.[139] Keeping these aspects in mind, the application of 3D-based descriptors in
drug discovery is a trade-off between the limitations and benefits of these content-rich
representations which requires case-by-case analysis.[140]
A four-dimensional descriptor includes information about molecular interactions with
active site(s) of protein(s) with the goal of quantifying and characterizing their poten-
tial bioactivities.[132] To highlight molecular presentations with different complexity
levels, the following paragraph comprises examples of several molecular descriptors.

Examples of Molecular Descriptors

Among the 1D molecular descriptors, fingerprints have become the standard repre-
sentations for similarity calculations in computational drug discovery.[141] Two fre-
quently employed fingerprints are the molecular access system structural key finger-
print (MACCS)[142] and radial fingerprints like the extended connectivity fingerprints
(ECFPs)[143] or Morgan fingerprints.[144] MACCS keys, a 166 dimensional finger-
print, include a set of 166 structural fragments which results in a "1" (on bit) at the
position of the corresponding fragment if it is present in a compound structure, and
in "0" otherwise. Radial fingerprints as ECFPs considering circular atom neighbor-
hoods and representing the presence of certain substructures.[143] In the beginning,
the ECFP calculation assigns an integer identifier to each non-hydrogen atom in the
query compound. The circular neighborhood of each atom is then iteratively inves-
tigated with an increasing diameter, which is a freely selectable parameter and com-
monly set to 4, corresponding to a topological radius of 2, as depicted in Figure 1.17.
This leads to a list of existing substructures together with associated integer identifiers
which can be mapped ("hashed") to a binary string representation of fixed-length. In
Figure 1.17, all unique derived substructures of a template molecule are shown and
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pounds with different diameters for extended connectivity fingerprints. Bonds to
neighboring atoms outside the considered diameter (*) are drawn as dashed lines.
Illustration adapted from ChemAxon documentation.
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classified after considering the circular neighborhoods with different bond distances
indicated as the diameters 0, 2 and 4. Each substructure receives an integer identifier
which can be "hashed" into a binary bit string (only "0" and "1") with a pre-defined
lengths (e.g. 1024 bit) the so-called folding.[143] Recently, the Keiser group the de-
veloped a three-dimensional fingerprint (E3FP) as an extension of ECFP fingerprints
with three-dimensional information.[145] Their fingerprint representation encoded in-
formation about the 3D characteristics of molecules without requiring prior computa-
tional alignments. They identified and confirmed experimentally novel drug-to-target
binding predictions which were inaccessible with the equivalent 2D fingerprint.
2D Descriptors are suitable to describe the topology of molecular graphs and the cor-
relation of certain features within these graphs. For instance, Schneider et al. intro-
duced a two-dimensional topological descriptor called CATS (chemically advanced
template search) which includes pre-defined feature types for each pharmacophore
which are assigned to each atom.[6] These different feature types (hydrogen-bond
donor, hydrogen-bond acceptor , positively charged, negatively charged, lipophilic)
represent the pharmacophoric characteristics of a molecule. A pharmacophore is "an
ensemble of steric and electronic features that is necessary to ensure the optimal supramolecular
interactions with a specific biological target structure and to trigger (or to block) its biological
response", as defined by Wermuth et al.[146] The CATS descriptor performs a pairwise
pharmacophore assignment within edge distances of 1 to 10 following the shortest path
between two vertices in the molecular graph. The sum of the individual feature pair
counts was employed to scale the final descriptor values.[6] The concept of the CATS
descriptor was revisited and extended by Reutlinger et al. in 2013.[147] In the reported
CATS2 descriptor they distinguished between "lipophilic" and "aromatic" atom types,
whereas the original CATS descriptor did not differentiate between these two atom
types. A simplistic representation of the CATS2 descriptor calculation is shown in Fig-
ure 1.18. It has to be mentioned that not all vertices of a molecular graph have been
assigned with an pharmacophoric feature type. The coarse-grained atom-typing and
feature pair correlation within the CATS2 descriptors led to certain level of "fuzziness"
of the CATS2 descriptor,[147] whereby "fuzziness of a molecular representation defines the
degree to which compounds are considered as similar" as Klenner and co-workers described
it.[148] These less specific atom-typing schemes are suitable for the identification of
new bioactive structures with novel chemotypes.[149]
An early example of a three-dimensional descriptor was reported by the Gasteiger and
co-workers.[150, 151] In their 3D molecular descriptor called "Molecule Representation
of Structures based on Electron Diffraction" (3D-MoRSE) molecules were encoded by a
fixed number of values which were derived from the three-dimensional coordinates of
the molecule. They were able to successfully differentiate between dopamine D1 and
D2 agonists utilizing their 3D-MoRSE code. A common way to evaluate 3D similarity
of molecules is by means of rapid overlay of chemical structures (ROCS) software, as
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Step 1

Step 3Step 4

Step 2

Figure 1.18: Schematic overview of the calculation of the CATS2 descriptor. First,
a 2D molecular representation is reduced to a molecular graph (Step 1). Second, the
pharmacophoric features are assigned to the related vertices (Step 2, A = hydrogen-
bond acceptor, D = hydrogen-bond donor, L = lipophilic, R = aromatic). In a third
step, atom feature pairs over bond distances from 1 to 10 are counted and summed up
(Step 3) and finally they are scaled by the sum of the individual feature pair λ (Step 4).
Reprinted and adapted with permission from ref. [147].

developed by OpenEye.[152] To compare 3D molecular shapes, this approach tries to
find the maximum overlap between the conformers of two molecules by treating each
compound as a mixed Gaussian model, allowing for partial, non-hard matching, which
allowed for partial matches and the integration of colour, i.e. electrostatic, information.
In one of the first applications of ROCS, Rush et al. identified weak inhibitors of bacte-
rial protein-protein interactions with novel scaffolds.[152] Furthermore, Hawkins and
co-workers proposed that ROCS as a shape-based ligand-centric concept can be con-
sidered as an alternative to receptor-focused approaches like molecular docking.[153]
However, ROCS needs a computationally expensive conformer alignment which ren-
ders the applicability to larger datasets more difficult. An alternative approach to as-
sess shape similarity is emphasized in section 4.3, in which this novel 3D similarity
calculation has been utilized to select computationally designed mimetics of the com-
plex natural product (-)-englerin A. One example of a 4D descriptor is the compara-
tive molecular field analysis (CoMFA) introduced by Cramer et al. in 1988.[137] This
analysis relies on grid-based representations which place active molecules into a three-
dimensional grid of equally distributed grid points. By scanning each grid point in
terms of steric and electrostatic interactions with embedded molecules, a map of fa-
vorable and unfavorable interactions can be generated from these scans. Such a map
can be utilized subsequently to predict potential interactions of novel compounds.
Molecular descriptors encode the content information of molecular structures in differ-
ent levels of complexity. The reference work from Todeschini and Consonni collates in-
formation on more than 3,300 available molecular descriptors from various types.[129]
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All these molecular descriptors have their own limitations and benefits and no descrip-
tor is applicable in every case. Therefore a careful descriptor selection is necessary for
each individual study. The most prominent application of descriptors is in capturing
structural features relevant for the bioactivity of molecules. Of particular note is the
comparison of a template structure with query compounds, as it is an essential de novo
molecular design. The comparisons can be performed under several similarity metrics.
The concept of molecular similarity and chosen similarity metrics will be introduced
and certain conceptual aspects will be discussed.

Molecular Similarity

The term molecular similarity is defined as a "measure of the coincidence or overlap between
the structural and physicochemical profiles of compounds" as described by the "Glossary
of Terms used in Medicinal Chemistry".[154] The concept of molecular similarity has
been widely exploited in medicinal chemistry and computational drug discovery.[141,
155, 156] It relies on the basic assumption that structural similarity correlates with sim-
ilar biological activity.[157] To assess this correlation and determine molecular simi-
larity between to chemical structures, a suitable molecular representation (molecular
descriptors) has to be chosen which encodes relevant features of a molecule.[156] Ad-
ditionally, weighing molecular features in different ways induces a bias towards cer-
tain characteristics. Finally, similarity metrics (or similarity coefficients) translate the
descriptor information of compared molecules into a similarity value, usually rang-
ing from "0" to "1", where "1" indicates fully identical molecular representations. The
general principle of similarity encompasses numerous diverse approaches to describe
similarity from various perspectives. In a similar manner to the variation in conceptual
complexity seen in the molecular descriptors, similarity-determining approaches vary
in their theoretical basis and ready-interpretability.[156] On the level of chemical for-
mulas and connectivities in molecular structures, chemical similarity deals mainly with
physicochemical property comparisons (e.g. molecular weight, solubility, dipole mo-
ments, etc.), and molecular similarity outlines generally structural features like topolo-
gies, scaffolds or common substructure motifs in compounds. Another important as-
pect of similarity assessment is the distinction between a global or local similarity.[156]
A global perspective focuses on the entire molecular structure, whereas a local similar-
ity takes only parts of the molecules into account. The previously mentioned structural
fingerprints are examples of global similarity methods. In contrast, pharmacophore-
based methods process information from a small fraction of the total molecule and are
examples of assessing local similarity.[158]
Many similarity metrics have been developed to translate similarity into numerical
values.[159] The Tanimoto coefficient (Tc) is one of the most commonly applied simi-
larity metrics in drug discovery.[160, 161] The Tanimoto coefficient of two compounds
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(A and B) is defined by
Tc(A,B) =

c

a+ b− c
(1.1)

where a and b represents the number of on-bits("1") of compound A and B, respec-
tively. The variable c is the number of shared on-bits of A and B and consequently Tc
quantifies the ratio of common features ofA andB to the total amount of features from
both compounds corrected by the common features. The Tanimoto coefficient can be
implemented easily and the calculations are fast which explains the large popularity
of the tanimoto coefficient in drug discovery.[156]
Calculating the Euclidean distance between two molecular descriptors is an alterna-
tive method to measure their similarity. For example, the topological pharmacophore
similarity, as described by the CATS descriptor,[6, 147] can be assessed by calculation
of the Euclidean distance D between vector representations (CATS/CATS2 descriptor)
of two molecules A and B:

D(A,B) =

√√√√ p∑
i=1

(vAi − vBi )2 (1.2)

where vAi and vBi are the CATS description vectors and p is the number of numerical
elements contained in each molecular vector (CATS is a 150 and CATS2 a 210 dimen-
sional vector).[6, 147]

Despite a long history, and a widespread acceptance and usage in medicinal chemistry,
the assessment of similarity still remains a challenging task. Several thousand molec-
ular descriptors can be combined with many similarity metrics to solve this task, and
each combination has its own benefits and drawbacks. Additionally, computed simi-
larity can deviate from the intuitive human notion of similarity, such as in the visual
judgement of dissimilar objects.[156] Nevertheless, molecular descriptors and similar-
ity concepts are at the core of two active research areas in computational drug discov-
ery, namely virtual screening and de novo molecular design. Together with these two
technologies, in silico target prediction, whose foundation is built on these concepts,
enables the identification of as-yet unknown macromolecular targets of compounds
of interest. In the following sections, the basic concepts of these methods will be dis-
cussed and examples of their applications to natural products will be highlighted.
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Virtual Screening

Complementary to traditional library screening approaches like high-throughput
screenings (HTS), virtual screening (VS) is a computational method "capable of automat-
ically evaluating very large libraries of compounds" as Walters, Stahl and Murcko wrote
in their review from 1998.[162] This process is meant to filter the large chemical space
with its almost inconceivably-large number of potential chemical structures to find
a much more manageable subset.[163, 164] To perform this library filtering proce-
dures, compounds have to be selected either by computationally predicting their bind-
ing to a macromolecular target or calculating similarities to already known active lig-
and(s).[165, 166] Because of that two general types of virtual screening can be distin-
guished. On the one hand, structure-based approaches which require prior knowledge
about ligand-protein interactions in the binding site(s) of the target of interest, and
there ligand-based methods which build on molecular similarity assessments between
library compounds and known active ligands. Natural products undertake an impor-
tant role in virtual screening studies, either as screening compounds or as reference
ligands.[167] Guided by a 3D pharmacophore model derived from interactions be-
tween the natural product galanthamine and the enzyme acetylcholinesterase (AChE),
Rollinger et al. discovered two natural products with inhibitory effects on AChE in a
structure-based virtual screening of over 110,000 natural products.[168] In 2014, Liu
and co-workers performed molecular docking techniques to discover novel inhibitors
of the transcription factor family STAT (signal transducer and activator of transcrip-
tion).[169] They virtually screened a library of over 90,000 natural products and nat-
ural product-like molecules which furnished 14 bioactive compounds, of which one
structure showed considerable activity and selectivity. The basis of ligand-based vir-
tual screening (LBVS) is the assessment of molecular similarity between query and
reference compounds.[170] The assumption that similar molecular structures possess
similar activities[171, 172] can be utilized to select compounds from virtual libraries
which are similar to known active molecule(s) without any further prerequisite infor-
mation about ligand-protein interactions. Many reported examples have confirmed the
"similar property principle"[157] leading to selections of novel active structures.[173] In
particular, natural products or endogenous ligands serve as valuable reference struc-
tures in ligand-based virtual screening studies.[167] In 2017, Karhu and co-workers
employed a similarity screen between a set of 19 antichlamydial reference natural
products and a natural product library to identify novel natural products with an-
tichlamydial activities.[174] Their 2D similarity search resulted in 53 virtual hits. Six
compounds showed considerable inhibitory effects in combination with novel chemo-
types and one of the active natural products had an IC50 value of 0.3 µM. Recently,
Grisoni et al. identified novel natural product-inspired inhibitors of cyclooxygenase-
2 in a prospective LBVS by utilizing topological matrix-based descriptors.[175] These
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Matrix-based descriptors were derived from several descriptor metrics encoding the
topological and chemical information of a molecule. Their implementation in a prospec-
tive LBVS of natural product-derivatives led to the finding of four bioactive molecules
out of 22 experimentally tested compounds.
Over the last decade, virtual screening has evolved as a screening technology comple-
mentary to widely used high-throughput screenings. The essentially infinite size of
virtual chemical space along with cost-efficient computational methods have turned
virtual screening into a powerful and common approach in identifying novel bioac-
tive structures. Moreover, virtual screening benefits from the current availability of
large databases, in particular natural product libraries,[85] which can be searched to
discover bioactive NCEs with novel chemotypes.

De Novo Molecular Design

From the ever-expanding collection of computational methods in drug discovery, sev-
eral tools can be utilized to deal with the design and generation of new drug-like
molecules.[121] This field of CADD, often described as computer-based molecular
"de novo design, was introduced in the 1990s as an instrument to generate novel molecu-
lar structures with desired pharmacological properties from scratch", as Schneider and Fech-
ner depicted it in 2005.[114] As with virtual screening approaches, molecular de novo
design can be defined as either structure/receptor-driven or ligand-guided design
strategies.[114] These two distinct principles differ in how they gather essential in-
formation about the interactions between receptor and ligand. These "primary target
constraints"[114] can be retrieved either from interaction spots within the binding site
of a receptor structure (receptor-based) or from assessing similarity to molecular lig-
and structures which interact with the target(s) of interest. Over the past few decades,
several different receptor- and ligand-scoring methods have been developed to com-
putationally assess the quality of NCEs. De novo design methods are further defined in
terms of their structure generation principles (structure sampling).[114, 123, 176] Here-
inafter, selected de novo design software with different scoring and sampling concepts
will be described. Moreover, the potential of combining state-of-the-art de novo design
tools with natural products to design novel bioactive natural product mimetics will be
addressed.
In the early days of computational de novo design, the main methods employed were
those belonging to the sub-family of structural approaches.[123] As mentioned pre-
viously, these methods require a 3D structure model of a target protein in order to
evaluate potential interactions between the newly designed entity and the binding
site. One of the first instances of a receptor-based de novo design program was the
software HSITE developed in 1989.[177, 178] The software considered potential hy-
drogen bond interaction sites of the receptor which then guided the 2D rule-based
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automated de novo design by fitting and clipping the molecular skeletons of new lig-
ands. One year later, an extension of this method included also the 3D information of
molecules.[179] In his seminal work, Böhm developed the software tool LUDI which
included two of the most established generation methods in de novo design, namely
linking or growing molecular fragments into novel ligand structures.[180] LUDI con-
sisted of an empirical scoring function which derived from a weighted sum of all in-
dividual ligand-receptor interactions. The software took into account hydrogen-bond,
electrostatic and hydrophobic interactions. To obtain weights for each single interac-
tion, a regression analysis of free-energy contributions from known receptor-ligand
complexes was performed. This dependence on known structures with determined
binding affinities, limits the applicability of these scoring functions to certain ligand
and receptor types.[114] However, in one of the first successful prospective applica-
tions of de novo design, Babine et al. generated novel bioactive compounds with the
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Figure 1.19: Overview of two widely used molecule construction methods in de novo
design. a) In a fragment linking approach, relevant fragments are placed into the
binding pocket considering potential interaction sites (green = hydrogen-bond donor,
red = hydrogen-bond acceptor, blue = hydrophobic interactions) within the receptor
which have been derived from a 3D protein structure. Subsequently, the two frag-
ments are linked together (magenta). b) Fragment-growing starts with placing a first
fragment into the binding site followed by an extension of the molecular structure of
this start fragment with other fragments (magenta) to gather more interactions with
the receptor. Reprinted and adapted with permissions from ref. [114].
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software LUDI.[181] They designed micromolar inhibitors of the FK506-binding pro-
tein (FKBP12) with a fragment linking method (Figure 1.19a). The outcome and success
of both generation strategies strongly depends on the quality of the underlying frag-
ment libraries. The selected fragment set influences on one side the complexity of gen-
erated de novo designs, and by the same token it determines the synthesizability of the
computationally generated compounds. An example from Brancale et al. highlighted
the importance of selecting an appropriate fragment library (Figure 1.20).[182]
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Figure 1.20: Various sets of fragments
lead to de novo designs 51 and 52 with dif-
ferent complexity and synthetic feasibility.
52 was modified to a potent hepatitis C
virus helicase inhibitor (53). Reprinted and
adapted with permissions from ref. [114]

They utilized the receptor-based software
LigBuilder[183] to construct de novo designs
from two different sets of fragments to find
novel hepatitis C virus (HCV) helicase in-
hibitors. The derived design structures 51
and 52 had a huge difference in terms of
complexity and synthetic feasibility. The sec-
ond less complex design was further con-
verted into a potent synthetically accessible
inhibitor 53 with activity in the nanomolar
range. Receptor-based de novo design con-
cepts are reliant on structural information
about the target protein and its binding site,
and these methods are limited to cases in
which this information is given. Because of
this limitation, ligand-based tools have be-
come very popular over the last two decades.
The prerequisite of ligand-based de novo de-
sign is the identification of one or more bioac-
tive ligands which serve as template to design
similar molecular structures. Most ligand-
based de novo design tools employ topologi-
cal graph-based representations of molecules
to generate novel structures.[114] The early software tools searched novel compounds
with the help of evolutionary algorithms.[114] These algorithms iteratively optimize
designs created temporarily in silico to increase their individual scores, and, after a
certain number of design iterations, resulting in a candidate with a high score. For
instance, Schneider and co-workers implemented the software TOPAS (topological as-
signing system), a ligand-based de novo design tool, based on an evolutionary algo-
rithm, for finding novel similar structures.[184] In a retrospective application, they
showed that starting from randomly assembled molecules (e.g. 54) TOPAS was capa-
ble of modifying the intermediate structures (e.g. 55) into a final molecule (56) with a
high similarity to the original reference compound (57). (Figure 1.21).
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Figure 1.21: The optimization of an initial
randomly assembled molecule 54 into designs
with increasing similarity (55 and 56) to the ref-
erence compound imatinib ((57)) by the soft-
ware TOPAS. TOPAS is based on an evolution-
ary algorithm to obtain compounds of higher
similarity in an iterative process.

In a prospective study, Schneider et al.
designed NCEs with TOPAS starting
from a known potassium ion channel
blocker.[185] They identified two new
compounds with comparable bioactivity
to their template structure. Still, the activ-
ity of the design was around two orders
of magnitude less active then the tem-
plate.
During the last 15 years, several de novo
design software tools have been pub-
lished which took further design con-
straints into account. In order to as-
sess a design compound’s bioactivity, it
first must be synthesized. Therefore,
constraints to ensure synthesizability of
de novo designs have been recognized as
important and necessary prerequisites of
successful de novo design.[114] For in-
stance, the aforementioned TOPAS soft-
ware used a small set of pre-defined vir-
tual retro-synthetic reactions to generate
the building blocks, which were assem-
bled in a forward virtual reaction to pro-
duce the design compound.[184] Vinkers
et al. developed a de novo design soft-
ware called "SYNOPSIS", which was built
on a database of commercially available
building blocks and a virtual reaction li-
brary of over 70 different organic reac-
tions.[186] In the end, the software pro-
posed a synthetic route of each generated

design molecule based on the incorporated reactions. Similarly, Hartenfeller et al. im-
plemented the de novo design tool DOGS (desgin of genuine structures) as a reaction-
driven strategy to virtually assemble NCEs from a given template structure.[187] Based
on 83 implemented reactions and a commercially available building block library of
25,144 entries, DOGS constructs de novo designs with a virtual synthesis approach and
calculates the similarities between each computational entity and the respective tem-
plate molecule by using the iterative similarity optimal assignment kernel (ISOAK)
method (Figure 1.22).[188, 189] This algorithm relies on a graph representation of
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Figure 1.22: Schematic representation of the de novo design software DOGS (design
of genuine structures). The tool employs a single ligand as reference structure and
constructs de novo designs by an iterative virtual synthesis based on 83 implemented
reaction and pre-defined 25,000 building blocks.

molecules with atoms as graph vertices and bonds as edges. The algorithm aims to
"optimally assigns the vertices between graphs based on pairwise vertex similarity" as de-
scribed by Rupp et al.[189] The implemented parameter α, ranging from 0 to 1, can
be used to regulate the influence of the graph neighborhood. Low α values lead to a
direct and vertex-based graph similarity, while high α values results in an increased
impact of the neighbor vertices (neighborhood-based).[190] This adaptable parameter
can be defined by the user to either generate more structural analogs of the template
molecule with smaller α values, or to design compounds that are structurally more
distinct compared to their template. To generate structurally more distinct molecules
while maintaining a certain degree of molecular similarity is associated with the con-
cept of "scaffold-hopping",[176] a term which can be described as the identification of
isofunctional molecular structures with significantly different molecular backbones.[6] For the
calculation of similarity, molecules are represented as either molecular or reduced
graphs. The algorithm starts by evaluating a set of promising start building blocks.
From the fragment with the highest score, the software detects all feasible reaction
steps which are applicable, followed by a scoring of each individual reaction. In a sec-
ond step, reaction suitable building blocks for the top-ranked reactions are assessed
and the reaction product with the highest score is considered as the intermediate for
the next design cycle. To avoid construction of overly large molecules, the molecu-
lar mass of a final virtual product has to lie within pre-defined boundaries which are
related to the template molecular mass. As a second stop criterion, the number of
virtually performed reaction steps is limited to an user-defined value. In a proof-of-
principle study, Spänkuch and co-workers applied the de novo design tool DOGS to
generate novel inhibitors of the inactive human Polo-like kinase 1.[191] Employing the
previously identified nanonmolar inhibitor 58 as template,[192] DOGS created over
218 virtual compounds from 100 promising fragments. Out of the top-ranked designs,
they synthesized from 59 via intermediate 60 the selected original DOGS design 61
in two steps (Figure 1.23). They confirmed that 61 inhibited the inactive state of the
human Polo-like kinase 1 in a similar degree to the template structure 58. Several fur-
ther studies have documented that the de novo design tool DOGS produces valuable
active compounds as starting points for future drug discovery projects addressing a
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Figure 1.23: Inhibitor 58 of the inactive human Polo-like kinase 1 served as the tem-
plate for the de novo design of novel chemical entities with the software tool DOGS
(design of genuine structures). Starting from 59, intermediate 60 was obtained from
a reductive amination of 59 with 2-pyridinecarboxaldehyde. The second reaction, a
O-arylation under Mitsunobu conditions yielded the original design 61.[191]

broad range of diseases.[193–195] In all of these studies, synthetic drug-like molecules
served as the reference compound in these de novo design studies. In 2016, the Schnei-
der group extended the de novo design principle to natural products.[196] They se-
lected the anticancer sesquiterpene (-)-englerin A (62),[197] a known activator of the
transient receptor potential canonical channel C4/C5 (TRPC4/5),[198, 199] as a natu-
ral product template. The 903 designs generated from DOGS we further ranked ac-
cording to their topological pharmacophore similarity using the previously described
CATS descriptor.[147] Two virtual products (63 and 64) out of the 50 top-ranked de-
signs were selected and further investigated. To ease the synthesis, the two designs 63
and 64 were manually simplified to the mimetics 65 and 66, which were synthesized
within two and three reaction steps, respectively (Figure 1.24). Both mimetics showed
inhibitory effects on the transient receptor potential melastatin 8 channel (TRPM8), a
known off-target of (-)-englerin a.[199] Mimetic 66 inhibited TRPM8 in a concentration
range comparable to the activity of the parental natural product. However, it showed
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de novo design tool DOGS. After assessing their topological pharmacophore similarity,
the two chosen designs 63 and 64 have been simplified to the synthetically-accessible
mimetic structures 65 and 66.
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no activation of the TRPC4/5 ion channels, the main target of (-)-englerin a (unpub-
lished data). Moreover, 66 was inactive in a screen against 60 human cancer cell lines
(NCI-60).[200] Nevertheless, this study represented one of the first combinations of
natural products and computational de novo designs in which synthetically-accessible
and bioactive NCEs mimicking a structurally-complex natural product were produced.
Recently, Merk and co-workers integrated virtual screening and de novo design into a
workflow which aimed to identify novel bioactive natural products from a large nat-
ural product database. Natural products selected from a virtual screen served as tem-
plates for the de novo design of mimetic compounds.[201] Three novel natural products
with agonistic activity on the nuclear hormone receptor retinoid X receptor (RXR) were
discovered from virtual screening. Together with two already known RXR active nat-
ural products, these five natural products served as the templates for five independent
de novo design runs with DOGS. De novo designs were ranked computationally and
selected according to their individual ranks and synthesizability. Eight structure were
synthesized and characterized in vitro, resulting in the identification of NCEs with po-
tencies in the low micromolar range.
The last two studies emphasize the huge potential of automated de novo design
methodologies in finding small molecules mimicking bioactive natural products.
These tools provide access to synthetically feasible structures which contain impor-
tant inherited pharmacophoric features of the parent natural product. The introduced
de novo concept has been applied to natural products in further studies as depicted in
section 4.1, 4.2 and 4.3.
Assessing the feasibility of proposed synthetic pathways requires a certain level of hu-
man intervention and expertise. However, the rapidly-emerging trend towards the
automation of many processes in drug discovery will help to overcome some of the
challenges and limitations encountered in past attempts to make these systems useful
in a practical, commonplace manner.[202]
An example where recent developments in the last years led to a more computation-
ally automated process, is the research field of in silico target prediction.[203] In the
following section, the underlining concepts and different methods of computational
target prediction will be introduced. Selected examples will highlight the utility of tar-
get prediction efforts in the development of de novo design concepts in the context of
natural products.
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Computational Target Prediction

In silico target prediction, virtual screening and computational de novo design share a
common foundation: All three tools rely on the similarity principle stating that struc-
turally similar molecules have similar biological effects.[171] The two previous sec-
tions described the utility of molecular similarity to identify and design novel bioactive
molecules. However, in silico target prediction directly relates molecular structure to
biological effects and therefore considers both structural similarity and estimated simi-
larity in terms of bioactivity.[203] As with virtual screening and de novo design, in silico
target prediction methods can be broken down into two main categories: ligand-based
and receptor-based target prediction. Underlying concepts, developed tools and appli-
cations of both categories have been extensively summarized in the last few years.[203–
206] Here, ligand-based target prediction will be discussed in more detail with a focus
on its applicability to natural products and natural product mimetics.
The central assumption that similar ligands binds the same or similar targets requires a
ligand description which captures important features of the structure-activity relation-
ship and a metric that can accurately distinguishes between different bioactive ligands.
Both requisites also apply for virtual screening, and suitable de novo design methods,
and have been pre-discussed at length in section 1.2. Keeping in mind that multiple
descriptors together with several similarity metrics can be applied in an almost end-
less number of combinations, many target prediction tools have been developed which
utilize one of these approaches.[203] For instance, the Shoichet group implemented the
in silico target prediction tool SEA (similarity ensemble approach) which predicts po-
tential macromolecular targets from a 2D-fingerprint representation and a Tanimoto
similarity calculation.[207] Known bioactive ligands and their related annotated tar-
gets were extracted from several databases (inter alia ChEMBL)[208] and integrated as
reference structures. In a case study from the same group, Laggner et al. employed
computational target prediction to identify the potential targets of 586 compounds,
which showed activity in zebrafish behavior assays.[209] 11 out of 20 tested com-
pounds displayed activity against predicted targets with potency values between 1 and
10,000 nM. They further specified that the predictions from SEA do not explicitly con-
sider potency in their similarity assessment and therefore the predictions only indicate
the likelihood of a possible ligand-target interaction at an appropriate concentration. In
2014, Gfeller and co-workers released the SwissTargetPrediction software implemented
as a free webserver tool.[210] The prediction tool combines 2D and 3D ligand prop-
erties and uses a curated subset of ChEMBL as its reference database.[208] The soft-
ware further allows for the target prediction of five different organisms, human ,mice,
rat, cow and horse. Another ligand-based target prediction software is SPiDER (self-
organizing map based prediction of drug equivalence relationships), as developed by
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Reker and co-workers.[211] In this prediction method, molecular structures were rep-
resented in two different ways, by means of the topological pharmacophore descriptor
CATS,[147] and by a collection of physicochemical descriptors which were part of the
Molecular Operating Environment (MOE) software. Both types of representation were
applied to describe query molecules and reference structures obtained from the man-
ually annotated data set COBRA (collection of bioactive reference analogs).[212] The
reference ligands were clustered and projected onto a 2D map using a self-organizing
map algorithm, a variant of artificial neural networks which reduces the high dimen-
sional space of the reference ligands to a two-dimensional map.[213] Each query com-
pound is projected onto this map, assigned to exactly one cluster, preserving topolog-
ical characteristics of the relationships between molecules in that higher-dimensional
space. Only the targets of reference ligands from this cluster are counted. The Eu-
clidean distance were calculated between all reference compounds in this cluster and
the query molecule and transformed into probability values (p values). Additionally,
a background distribution as false-positive estimation is computed by considering the
Euclidean distances between all pairs of reference compounds which were annotated
to not bind to the identical target. Averaging all probability values provides a good
estimation of the likelihood of a significant target assignment. In a prospective ap-
plication, Reker et al. predicted the macromolecular targets of the anticancer natu-
ral product archazolid A.[214] They manually fragmented the complex macrolide into
four segments (natural product-derived fragments) and predicted potential targets for
each segment and the original natural product. They observed a high number of pre-
dicted proteins related to arachidonic acid pathway. They then screened archazolid A
against eight predicted targets and measured in vitro effects on four out of eight in-
vestigated targets. They concluded that computational ligand-based target prediction
is capable of identifying novel targets for natural products or natural product-derived
fragments without any explicit information about protein structure and binding site.
The SPiDER prediction tool has been applied in further studies to predict targets of
natural products and natural product-related compounds.[196, 201, 215, 216]
These results substantiate the fact that in silico target prediction offers an efficient way
to select potential protein targets for further experimental characterizations. Together
with virtual screening and de novo design methods, target prediction plays an impor-
tant role in the development of a fully computer-assisted and automated design-make-
test cycle.[202] The prediction tools discussed above are knowledge-driven methods,
meaning that they depend strongly on already discovered bioactive ligands combined
with information about their related targets. These tools have the advantage that they
do not rely on information about the protein structures, relevant binding pockets and
related potential interaction points. What might seems like a disadvantage of these
tools at first glance can be of great benefit in future drug discovery, in particular in the
field of natural product-inspired drug discovery with technical advances in areas like
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high-throughput assays and metabolomics.[16]
Novel technologies from the field of artificial intelligence (AI) and machine learning
(ML) have entered the field of drug discovery and medicinal chemistry. Some of these
methods, which have been applied over the last 50 years, turned into standard tools in
certain areas.[217] Other concepts like deep learning or generative models are rather
new in drug discovery.[218] In the closing section of the introduction, some machine
learning concepts will be highlighted which can applied in the de novo design of drug-
like molecules.

Artificial Intelligence in De Novo Design

In the last few years, artificial intelligence (AI) and machine learning (ML) experience a
renaissance in drug discovery. Although some of the currently applied machine learn-
ing tools have been developed already in the 1960s,[219] the impressive growth of
accessible computational power and the remarkable increase of available data have
caused a growing interest in these technologies.[220] In computer science, AI is com-
monly described as a rational agent which acts "so as to achieve the best outcome or, when
there is uncertainty, the best expected outcome", as indicated by Russell and Norvig.[221]
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Figure 1.25: Simplified representation of an
artificial neuron. The different input values
are individually weighted (w1 - w3) indicating
their specific importance. These weighted in-
puts are summed up (Σ), translated via an acti-
vation function (g) to an output value and this
output is transmitted to the next neuron.

In other words, algorithms which uti-
lizing AI have the objective to find the
best solution for a certain task based on
knowledge about known solutions. ML
is a field in artificial intelligence that
employing statistical methods for pat-
tern recognition for all kinds of data.[222]
The identified patterns form the basis
of further predictions of previously un-
seen data. A widely used class of
ML algorithms are artificial neural net-
works (ANNs) which are computational
networks mimicking simplified version
of information processing within the
brain.[223] As the name implies, these
networks consist of artificial neurons which are a simplified mathematical description
of a biological neuron (Figure 1.25).[224]
This concept dates back to 1943, when McCulloch and Pitts reported that the activity
of nerve cells in the human nervous system can be described by a simplistic mathemat-
ical model.[225] Such an artificial neuron receives input values which have individual
weights (e.g. w1 - w3) representing the importance of each input. These weighted in-
puts are summed up (Σ) and then sent to an activation function (g) which translates
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the sum into an output.[224] This activation function is in analogy to the "firing" rate
of action potentials in biological neurons.[226] The derived output is further transmit-
ted to the next neuron(s), where the output values of the previous neurons become
the new input values. This simplest neural network, a so-called "perceptron", consists
of only a single neuron. It was mentioned the first time by Rosenblatt in 1957.[227]
The combination of several neurons, at least three, is called a multilayer perceptron or
feed-forward neural network. The neurons of these networks are grouped into layers.
Each layer can be described according to its function in such a network (Figure 1.26).

Input layer Hidden layer Output layer

Figure 1.26: In a feed-forward neural
network neurons are organized in layers,
whereof each layer fulfills a certain func-
tion. The input layer sends the machine-
readable input values to the hidden layer,
which transforms and translates these data
to the output layer that produces the pre-
dicted output values.

An input layer transmits the machine-
readable input values to the next layer, the
so-called hidden layer. The input values,
along with the corresponding weights, are
then transformed into the activation values
of each hidden layer neuron. These activa-
tion values then serve as the inputs for the
output which produces the final output val-
ues.[123] In contrast to a feed-forward net-
work, which only consist of connections to
the next layer (Figure 1.27, left), a recurrent
neural network (RNN) allows links between
neurons of the same layer (Figure 1.27, mid-
dle). Neural networks with multiple hid-
den layers are described as "deep" neural net-
works (Figure 1.27, right), which form the ba-
sis of "deep learning" and its successful appli-
cations in various fields.[228]
Within those network architectures the acti-
vation function plays an essential role in finding solutions to a given task. In 1969, Min-
sky and Papert proved that perceptrons with linear activation functions can only solve
tasks which are linearly separable.[229] Roughly twenty years later, Cybenko showed
that by using nonlinear activation functions, one can approximate any continuously
valued function.[230] The introduction of nonlinear activation functions (e.g. sigmoid
or tanh functions) extended the scope of these feed-forward artificial networks, espe-
cially in the area of chemistry and drug design.[231–233] Similar to virtual screening,
de novo design and target prediction (section 1.2), ANNs and other machine learning
methods require machine-readable representations of input data, for example molecu-
lar structures and biological activity. The selection of relevant features (feature selec-
tion) from these representations is a crucial step in solving tasks with machine learning
algorithms.[234] In an early example from 1994, Tetko and co-workers trained a neural
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Feed-Forward Neural Network Recurrent  Neural Network Deep Recurrent Neural Network

Figure 1.27: Schematic overview of different neural networks. Within each schema,
every plane represents a layer colored according to its function (red = input layer, blue
= hidden layer, green = output layer). All connections between (black) and within
(red) of these layers are indicated by arrows. (left) A feed-forward network allows
only connections to the next layers, whereas recurrent neural networks also contain
links within neurons of the same layer (middle). (right) Neural networks with more
than one hidden layer are called "deep" neural networks independent of the allowed
connections.

network on a set of molecules with known inhibitory effects on the human immun-
odeficiency virus type 1 (HVI-1) reverse transcriptase. transcriptase. The model was
trained to predict the bioactivities of a control set, with known activity values, and
a set of new molecules, with unknown biological effects.[235] They confirmed that a
molecule predicted "active" showed inhibitory effects on the HIV reverse transcriptase.
Further QSAR modeling studies have been conducted in medicinal chemistry apply-
ing ANNs.[219]
In the last few years deep learning models have increased their popularity in drug dis-
covery.[218, 220, 236, 237] In 2015, Ma et al. demonstrated that a deep learning model
can be prospectively applied to predict bioactivity and ADMET properties.[238] In par-
ticular with large data sets, these deep learning methods outperformed other, more
conventional, machine learning algorithms. Despite these advancements in QSAR
modeling,[218] the generation of novel bioactive compounds by de novo based deep-
learning, still remained unresolved until 2017. In their seminal work, Segler and co-
workers developed a generative RNN model that had been trained on the string rep-
resentations of molecules called SMILES (simplified molecular-input line-entry sys-
tem).[239] This line notation of molecule encodes information about atom and bond
types, branching points and ring system, as well as stereochemistry.[240] The model
generate a probability distribution of the SMILES string characters. By sampling from
this distribution, the model was able to generate entirely new molecules represented
as SMILES strings. These generative RNNs have been applied before in various ar-
eas, for example in natural language processing.[241] In natural language processing,
RNNs are used to generate text by predicting the next word in a sentence while consid-
ering the information from the previous words. In 1997, Hochreiter and Schmidhuber
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G GO GOC(c1ccccc1)=OOC(c1ccccc1)=O

Benzoic acid (67)

SMILES string:

GOC(c1ccccc1)=OE

GOC ...

GO GOC GOC(

O

OH

Figure 1.28: The structure of benzoic acid (67) and its SMILES (simplified molecular-
input line-entry system) representation are shown (left). This string representation
contains information about atom and bond types, branching points and ring systems,
and stereochemistry. This SMILES string serves as input sequence of the LSTM-based
RNN, which comprises an input layer (red), two hidden layers (blue) and an output
layer (green). The pre-defined characters "G" and "E" indicate the beginning and the
end of a given sequence. In a sequential manner, the network learns the probability of
the next character in a given SMILES strings. The previous output character becomes
the next input sequence as indicated by the orange dashed lines.

introduced a certain RNN architecture, the so-called long short-term memory (LSTM)
cells.[242] These LSTM-based models are suitable to processing and predicting from se-
quences as for example in natural language processing.[243] Similar to words in a sen-
tence, the SMILES string of a molecule is also represented by a sequence of characters.
Segler et al. utilized such a LSTM-based network to generate novel molecules.[239] An
example is depicted in Figure 1.28. The SMILES representation of benzoic acid (67)
"OC(c1ccccc1)=O" serves as an input sequence for a LSTM recurrent neural network
which learns the probability of the next character while considering information about
the previous ones. This "remembering" of former characters in a string is a necessary
requirement for SMILES generation. For example, parentheses indicate ring systems,
and in the example of benzoic acid (67), the two parentheses are separated by several
characters. Therefore, the model has to "remember" that at some point in the genera-
tion process a second parenthesis is needed to obtain a valid SMILES representation.
The entire process of generating novel compounds with LSTM-based models can be
separated into two steps. First, the model is trained on a large data set of molecules
in order to learn the probability distribution of an appearing SMILES character given
a set of previous characters. During this learning procedure, the error between the
predicted and true output values is calculated. The weights within the network are
gradually updated to decrease the estimated error by iterating multiple times over all
training examples. After several iterations of minimizing this error, the model gener-
ates new compounds by sampling step-wise the characters of a SMILES string accord-
ing to the learned probability distribution over all characters. This sampling ensures
that the model not only memorizes structures from the training set, but also produces
molecules which are not part of this set. A simplified overview of these two steps is
shown in Figure 1.29. Recently, Gupta and co-workers demonstrated that this type of



38 Chapter 1. Introduction

C1CCCCC1

OC(c1ccccc1)=O

OC1CCCC1

CN1CCN(C(C)C)CC1

C1CCCCC1

OC(c1ccccc1)=O

OC1CCCC1

CN1CCN(C(C)C)CC1

OC(C)C(O)=O
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1. Training 2. Sampling
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Figure 1.29: Visualization of the two-step design process to generate de novo designs
by a generative deep learning model. The generative model comprises of an input
layer (red), two hidden layers (blue), and an output layer (green). (Left) In a first step
(1. Training), the model learns in an iterative procedure the probability distribution of
all SMILES characters of a given training set. On the basis of this learned probabilities,
the model is capable of sampling (2. Sampling) from this distribution and generating
SMILES strings of molecular structures.

generative model is capable of creating sets of drug-like designs with a high proportion
of valid SMILES representations.[244] They trained the model with over 500,000 highly
active compounds extracted from ChEMBL.[208] They showed that sampled molecules
possessed similar physicochemical properties compared to the training molecules from
ChEMBl without explicitly specifying these properties during the training process.
They further introduced a "fine-tuning" procedure which means that an already trained
model is re-trained on a smaller dataset (fine-tuning set) to create a target-focused com-
pound library with similar properties to the fine-tuning set This fine-tuning step, also
called "transfer learning", enables a model to solve a new but still related task based on
the information gathered previously.[245] An additional feature of their method is that
it provides the possibility to define a structure as the starting point of the sampling
process. This means that the model can generate new structures from this common
starting fragment. Based on the promising theoretical results of the studies described
above,[239, 244] two prospective applications have been conducted using generative
deep learning models for de novo design of bioactive molecules (section 4.4).[246, 247]
Besides the established screening techniques like high-throughput screening and vir-
tual screening, these generative deep learning models as alternative knowledge-driven
tools have the potential to identify novel pharmacologically active compounds in early
drug discovery.
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2 Aims of this Thesis
Natural products are one of the most inspiring sources for identifying novel bioac-
tive molecules in drug discovery. Several limitations like synthetic difficulties, unfa-
vorable physicochemical properties or insufficient potencies, render the development
of potential drug candidates from natural products a challenging task. As computer-
assisted drug design and in particular computational de novo design methods have ma-
tured over the past decades, they play an increasing role in discovering novel bioactive
molecules.
Although these design approaches have been successfully applied to design active
compounds from drug-like reference molecules, the combination of computational
de novo design strategies deducting natural products as reference structures has not
been thoroughly examined so far. Despite my first preliminary results,[196] a more
comprehensive exploitation of computational de novo design relying on natural prod-
ucts as templates is still pending. To explore the potential of this combination, the fol-
lowing working hypothesis has been proposed: computer-assisted drug design meth-
ods can facilitate the design of novel bioactive chemical entities mimicking natural
products (I) by employing reaction-driven computational de novo design and (II) by
prospectively applying generative deep learning models .
With regard to (I), this thesis tests the working hypothesis by:

• Constructing virtual molecular structures with a reaction-driven and ligand-based
de novo design tool using bioactive natural products as template structures;

• Picking computational designs by molecular similarity assessment between the
virtual products and their template structures with two- and three-dimensional
descriptors;

• Employing in silico target prediction to further prioritize designs that obtained
predictions matching the known targets of the template, and to explore novel
molecular targets of the template and its mimetic compounds;

• Synthesizing these computationally designed natural product mimetics and char-
acterization of their in vitro biological activities on identified and predicted tar-
gets.
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In the context of the stated hypothesis, the suitability of generative deep learning mod-
els as design methods (II) to construct novel bioactive natural product mimetics is ver-
ified. This part of the thesis claims to:

• Identify novel bioactive small molecules designed by a generative deep learn-
ing model which has been trained on molecular structures of drug-like synthetic
compounds;

• Experimentally confirm computationally designed natural product mimetics.

Via the approaches (I) and (II) this thesis generally aims to apply computational de novo
design methods to identify bioactive new chemical entities mimicking natural prod-
ucts.
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3 Materials and Methods
Relevant experimental and computational methods for all studies are summarized in
this chapter.

3.1 Laboratory Methods

Chemical Synthesis

Nomenclature

Chemical structures were converted into their corresponding IUPAC name using the
software ACD/ChemSketch (v2018.1.1).

Reagents

All reagents were purchased in the highest available purity from several suppliers
(ABCR, Acros Organics, Alfa Aesar, Apollo, Aldrich-Fine Chemicals, Fluorochem, Tokyo
Chemical Industry) and were used without further purifications.

Sovlents

Absolute and anhydrous solvents for reactions were purchased from commercial sup-
pliers and used without further purification. Solvents of technical grade were used for
extractions and flash chromatography.

Reactions

All reactions were carried out in oven-dried glassware (110◦C). Reactions under air-
and water-free conditions were performed under a nitrogen or argon atmosphere.

Microwave-asssisted Reactions

The microwave-assisted reactions were performed on a Biotage Initiator Classic 2.5
(Biotage AB, Uppsala, Sweden) with a robot Eight vial rack.

Solvent Evaporation

Solvent evaporations in vacuo were performed at 10-850 mbar at 40-60◦C.
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Yields

Yields were reported for spectroscopically and chromatographically pure compounds
after drying under high vacuum (<10−2 mbar).

Purification Methods

Flash chromatography (FC)

Purifications by flash chromatography or plug filtrations were carried out with silica
gel from SiliCycle (40-63 µm, (230-400 mesh), SiliCycle Inc., Quebec, Canada).

Thin-Layer chromatography (TLC)

Thin-layer chromatography (TLC) was used to monitor reactions by using Merck silica
gel (SiO2) 60 F254 plates. UV light (254 nm or 366 nm) or staining with a potassium
permanganate solution (3 g of KMnO4, 20 g of K2CO3 and 0.25 g of NaOH in 400 mL
H2O) was used to visualize TLC spots.

Analytical Methods

Thin-Layer chromatography mass spectrometry (TLC-MS)

Mass spectra of TLC spots were recorded on an Advion Expressions compact mass
spectrometer (CMS) (Advion, Ithaka, NY, USA) connected with an Advion Plate Ex-
press TLC plate reader (Advion) using electron spray ionization (ESI).

Analytical High-Performance Liquid Chromatography

The purity of compounds for biological evaluations were determined either on a VWR
Hitachi LaChrom Elite 2000Series HPLC (VWR Internationonal, Lutterworth, Leices-
tershire, United Kingdom) equipped with a Nucleodur C18 Htec analytical column
(150mm x 3mm ,5µm, 110 Å) (Macherey & Nagel, Dueren, Germany) or on a Shimadzu
LCMS-2020 with a Nucleodur C18 HTec analytical column (150×3 mm, 5 µm, 110 Å).
Products were eluted with different linear gradients of acetonitrile (+ 0.1% formic acid)
in double-destilled water (+ 0.1% formic acid) over 16 or 25 min with a flow rate of 0.5
ml/min. All compounds had a purity of higher than 95%.

1H and 13C nuclear magnetic resonance spectroscopy (NMR)

Nuclear magnetic resonance (NMR) spectra were recorded on a Bruker AV 400 or on
a Bruker AV 500 spectrometer (Bruker Corporation, Billerica, MA, USA). Chemical
shifts (δ) are given in ppm relative to tetramethylsilane (TMS). The multiplicity of each
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proton signal is indicated (s = singlet, d = duplet, t = triplet, m = multiplet, and com-
binations thereof) and the corresponding coupling constants (J) are reported in Hertz
(Hz).

High-resolution mass spectra (HR-MS)

High-resolution mass spectra (HR-MS) was performed by the MS service of the Labo-
ratorium für Organische Chemie ETH Zürich. High resolution electrospray-ionization
(HR-ESI) spectra were measured on a Bruker maXis -ESI-Qq-TOF-MS spectrometer
(Bruker Corporation, Billerica, MA, USA). High resolution matrix-assisted laser de-
sorption/ionization (HR-MALDI) spectra were measured on a Bruker solariX 94 spec-
trometer (Bruker).

Optical Rotation

Optical rotation [α] was measured on an MCP 300 Polarimeter (Anton Paar, Radnor,
PA, USA) equipped with Anton Paar 100 mm cuvette (CL.0.01, 3 mm, Ni Alloy, 320157-
35). The specific rotation (20◦C, λ = 589 nm) is reported as [α]20D at a concentraction (c)
[g/100 ml] in the solvent referred.

Melting point (MP)

Melting points (MP) were measured on a Büchi Melting Point M 560 and were reported
in degree Celsius.

X-Ray Structure Analysis

X-ray structures were determined by the ETHZ Small Molecule Crystallography Cen-
ter.

Dynamic Light Scattering

Dynamic light scattering (DLS) was performed on a 90Plus Particle Size Analyzer
(Brookhaven Instruments Corp., Holtsville, NV, USA) to determine aggregation po-
tential of molecules. Particle sizes were measured at 25◦C with default settings for
water. The dust filter parameter was set to 50. A stock solution of test compound was
prepared in DMSO at a concentration of 5 mM. This stock solution was diluted with
double-distilled water to a concentration of 500 µM before measurement.The solution
was further diluted up to a concentration, where no aggregation was observed over a
time period of 60 min.
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3.2 Computational Methods

Data Processing, Data Analysis and Data Visualization

Data was processed and analyzed with Microsoft Excel for Mac (version 16.16.2), with
the KNIME analytics platform (version 3.2.1)[248] or in Python (version 3.6) [249] with
the packages pandas (version 0.23.4)[250], numpy (version 1.15.2),(REF) matplotlib
(version 2.2.3)[251], seaborn (version 0.9.0),[252] scikit-learn (version 0.20.0)[253] man-
aged with the Anaconda Software Distribution (version 4.5.11, www.anaconda.com)
and written and executed in PyCharm Community (version 2017 and 2018.1) or in
Jupyter Notebooks (version 1.0.0).[254] Molecular data was processed and analyzed
with the Molecular Operating Enviroment (MOE) software (v2016.08, Chemical Com-
puting Group, Montreal, Canada) and with DataWarrior (v4.7.1).[255] Bioactivity was
visualized in Prism (version 7, GraphPad Software, San Diego, USA). Dynamic light
scattering analysis was done in the BIC particle size software (version 5.28, Brookhaven
Instuments Corporation, USA). Figures for publications were designed in Adobe Illus-
trator CS6 (v16.0.0) and the open-source software Inkspace (0.90).

Molecular Property Calculations and Scaffold Analysis

Molecular properties were calculated using RDKit in Python (version 3.6) or RDKiT
nodes in KNIME. Scaffolds were extracted as molecular scaffolds or as graph frame-
works (ignoring atom and bond types) as described by Bermis and Murcko.[72] The
scaffold extraction was executed in RDKit in Python (version 3.6) or RDKiT nodes
in KNIME. Synthesizability scores[256] and the natural product likeness indices[257]
were calculated with the scripts in Python (v 3.6) provided by RDKiT.

De Novo Design by DOGS

De novo designs for a given template structure were generated by the software tool
DOGS (desgin of genuine structures)[187]. Every DOGS run performed started from
200 fragments and nine independent construction runs with nine different α-values,
were performed in the range from 0.1 to 0.9 with a step size of 0.1.

Topological Pharmacophore Similarity Assessment with CATS

To assess pharmacophore similarity between two molecules, depicted as 2D molecular
graphs, we applied the topological pharmacophore descriptor CATS2 (Chemically Ad-
vanced Template Search, Version 2).[147] The Euclidean distance between two CATS
vectors of two different molecules was used as a pharmacophore similarity estimation,
wherein a lower distance indicates a higher degree of similarity. The CATS2 descriptor
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was used as implemented as KNIME node. The Euclidean distance was calculated by
the in-house developed KNIME node DistanceCalculator.

Computational Target Prediction by SPiDER

The software tool SPiDER (Self-organizing map-based PredIction of Drug Equivalence
Relationships)[211, 214] was applied to computationally predict macromolecular pro-
tein targets of a query molecule. The SPiDER software was used as implemented as
KNIME node. Only target predictions with a p value lower than 0.05 were considered
as predicted active.

Generative Deep Learning Models for De Novo Design

A generative recurrent neural network was applied to design new chemical entities as
described by Gupta et al.[244] The model used consists of two LSTM layers[242] each
with a hidden vector size of 256, which are regularized with a dropout function. The
purpose of a dropout regularization is to ignore randomly selected neurons during the
training procedure. This technique leads to a better generalization of the model and
avoids overfitting.[258] Due to the fact that the input sequences were translated by
one-hot encoding into a vectorized format the neural network comprises of a softmax
function as final layer to transform these vectors to values ranging between 0 and 1, in
which all values sum up to 1. This results in a probability distribution for all charac-
ters in the given sequences. To apply a the LSTM model to de novo design, a library of
bioactive known compounds from ChEMBL22[208] with an annotated affinity below
1 µM (541’555 entries) were represented in their SMILES strings and these sequences
were utilized to train the model. As a second step, this trained model was used as a
basis for fine-tuning the neural network with a smaller data set by transfer learning.
During the fine-tuning, the model keeps information from the initial training and tries
to solve a different but related task.[245] Additionally, a pre-defined SMILES string
can be employed as fixed starting fragment during the sequence generation process
("sampling") like in a fragment-based drug discovery approach.[110] The implementa-
tion of the LSTM model was done in Tensorflow (version 1.2)[259] and Keras (version
2.0)[260] in Python (version 3.6).[249] Molecules were converted into SMILES strings
in RDKiT[261] in Python (version 3.6).

3.3 In vitro Biological Assessments

Bioactivity Screening Assays

Selected biological assays were conducted by Eurofins Cerep SA (France) or Eurofins
Panlabs (USA) on a fee-for-service basis. Detailed assay protocols can be found at
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https://www.eurofinsdiscoveryservices.com . Initial screening measurements were
carried out with two replicates at concentrations of 10, 30 or 50 µM. IC50, (Ki) and KB

values were determined by the service provider based on eight different concentrations
with two replicates for each concentration. Log(concentration) response curves (four-
parameter logistic curves) were plotted in Prism (version 7). The inhibition constants
(Ki) were determined according to the Cheng Prusoff equation[262]

Ki =
IC50

1 + ( C
KD

)
, (3.1)

where C is the concentration of the radioligand in the specific assay and KD the affinity
of the radioligand for the receptor. For antagonists, the apparent dissociation constants
(KB) were calculated with the modified Cheng Prusoff equation[262]

KB =
IC50

1 + ( C
EC50.C

)
, (3.2)

where C is the concentration of control activator in the assay and EC50.C its EC50 value.

Cyclooxygenase (COX) Assays

Cyclooxygenase (COX) inhibition assays were performed by the research group of
Prof. Oliver Werz at the Friedrich-Schiller-University Jena, Germany. Andreas Koe-
berle and Oliver Werz designed the experiments, analyzed and interpreted the assay
results. All protocols for experiments with human blood and blood cells were ap-
proved by the ethical commission of the Friedrich-Schiller-University Jena.

Activity assays of isolated cyclooxygenase-1 and -2 (COX-1 and -2)

Purified bovine COX-1 (Cayman Chemicals; 50 units) or human recombinant COX-2
(Cayman Chemicals; 20 units) in 100 mM Tris buffer pH 8, 5 mM glutathione, 5 µM
hemoglobin and 100 µM EDTA were pre-incubated with test compounds for 5 min at
4◦C followed by 1 min at 37◦C. Then, arachidonic acid (AA, 2 µM for COX-2 and 5
µM for COX-1) was added and incubations were continued for another 10 min at 37◦C.
Formation of COX-derived 12(S)-hydroxy-5-cis-8,10-trans-heptadecatrienoic acid (12-
HHT) from AA was analyzed by RP-HPLC as described.[263]

Determination of COX-1 activity in washed platelets

Freshly isolated human platelets (1×108) were pre-incubated with test compounds for
5 min at room temperature. Formation of COX-1-derived 12-HHT was initiated by
addition of exogenous AA (5 µM). After 5 min at 37◦C, 12-HHT was extracted and
separated by RP-HPLC as described.[263]
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Isolation of monocytes from human blood

Monocytes were freshly isolated from human leukocyte concentrates, which were pro-
vided by the Institute for Transfusion Medicine of the University Hospital Jena (Ger-
many) as described.[264] Venous blood was collected in heparinized tubes (16 I.E.
heparin/ml blood) from fasted (12 h) adult (18–65 years) male and female registered
healthy volunteers, with informed consent. These subjects donated blood every 8 to 12
weeks, had no apparent infections, inflammatory conditions, or current allergic reac-
tions (according to prior physical inspection by a clinician) and had not taken antibi-
otics or anti-inflammatory drugs for at least 10 days prior to blood collection. Leuko-
cytes were concentrated by centrifugation of the freshly withdrawn blood (4,000×g/20
min/20◦C) and centrifuged on lymphocyte separation medium (LSM 1077, GE Health-
care, Freiburg, Germany). Monocytes were isolated from the peripheral blood mononu-
clear cell (PBMC) fraction by adherence to culture flasks (Greiner, Nuertingen, Ger-
many) for 1.5 h at 37◦C and 5% CO2 in RPMI 1640 medium (Sigma-Aldrich) containing
FCS (Sigma-Aldrich; 5%), L-glutamine (Sigma-Aldrich; 2 mM) and penicillin/streptomycin
(GE Healthcare; 100 U/ml and 100 µg/ml) (monocyte medium).

Analysis of prostaglandin formation of activated monocytes

Freshly isolated monocytes (5 × 106) were stimulated with lipopolysaccharide (1 µg/ml)
for 24 h at 37 ◦C and 5% CO2. Cells were washed, preincubated with the test com-
pounds for 15 min, and treated with 5 µM AA for 15 min. Then, the reaction was
stopped and COX-derived prostaglandins were extracted as described.[265]

Electrophysiological Experiments

Electrophysiological measurements were carried out in the research group of Dr. Ur-
sula Storch and Prof. Michael Mederos y Schnitzler from the Walther Straub Institute
at the Ludwig-Maximilians-University Munich (Germany). Ursula Storch and Michael
Mederos y Schnitzler designed the electrophysiological experiments, analyzed and in-
terpreted the experimental results. Aaron Treder and Inderjeet Singh performed elec-
trophysiological measurements under the supervision of Ursula Storch and Michael
Mederos y Schnitzler.

Electrophysiology of Transient Receptor Potential Ion Channels

Human embryonic kidney cells (HEK293T, ATCC CRL-3216) were maintained in Earl’s
MEM (Sigma-Aldrich, Taufkirchen, Germany), with 100 units ml-1 penicillin and 100
µg ml-1 streptomycin supplemented with 10% (vol/vol) FCS (Gibco, Thermo Fisher
Scientific, Waltham, MA, USA) and 2 mM glutamine. All cells were held at 37◦C in
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a humified atmosphere with 5% CO2. Cells were seeded into 6-well dishes and tran-
siently transfected at confluency of about 90% using GeneJuice (Merck Millipore, Bil-
lerica, MA, USA) according to the manufacturer’s protocol. Conventional whole-cell
recordings were carried out at room temperature 15 hours after transfection with the
human TRPM8 (NP_076985) in pCAGGSM2-IRES-GFP expression vector or 24 hours
after transfection of the cells with the rat TRPC4 isoform TRPC4-beta1 (NP_001076584)
in pIRES2-eGFP expression vector. The following bath solution containing 140 mM
NaCl, 5 mM CsCl, 1 mM MgCl2, 2 mM CaCl2, 10 mM glucose, 10 mM HEPES (pH
7.4 with NaOH) and resulting in an osmolarity of 295-302 mOsm kg-1 was used. The
pipette solution for TRPM8 measurements contained 130 mM CsCl, 5.792 mM MgCl2,
0.524 mM CaCl2, 10 mM BAPTA (5.5 nM free Ca2+), 1 mM HEDTA (3 mM free Mg2+)
and 10 mM HEPES (pH 7.2 with CsOH), resulting in an osmolality of 296 mOsm kg-1.
The pipette solution for TRPC4 measurements contained 120 mM CsCl, 9.4 mM NaCl,
0.2 mM Na3-GTP, 1 mM MgCl2, 3.949 mM CaCl2, 10 mM BAPTA (100 nM free Ca2+)
and 10 mM HEPES (pH 7.2 with CsOH), resulting in an osmolality of 296 mOsm kg-1.
Patch pipettes made of borosilicate glass (Science Products, Hofheim, Germany) had
resistances of 2.0-2.8 MΩ for the whole-cell measurements. Data were collected with
an EPC10 patch clamp amplifier (HEKA, Lambrecht, Germany) using the Patchmaster
software (HEKA). Current density-voltage relations were obtained from voltage ramps
from –100 to +100 mV with a slope of 0.5 V s-1 applied at a frequency of 2 Hz. Data were
acquired at a frequency of 5 kHz after filtering at 1.67 kHz. For TRPM8 channel acti-
vation, 200 µM (-)-menthol was applied. 0.1, 1 and 10 µM compound concenctrations
were applied in the presence of (-)-menthol. In some measurements (-)-menthol and
applied compound were washed out and a second application of (-)-menthol caused
second TRPM8 current increases. The maximal (-)-menthol-induced outward currents
at +100 mV before application of selected compound were used for analysis. TRPM8-
expressing cells which showed basal activity ≥2 nA/pF at +100 mV were excluded
from further analysis. To determine IC50 value, 0.3, 1, 2, 3, 10, 30 and 100 µM com-
pound concentrations were applied. For TRPC4 channel activation, 50 nM (-)-Englerin
A (Carl Roth, Karlsruhe, Germany) was applied two times. (-)-Englerin A was ap-
plied in the presence of different compound concentrations. The second (-)-Englerin
A-induced current increase was used for normalization. For calculation of IC50, max-
imal (-)-Englerin A-induced outward currents at +100 mV were used. For calculation
of the percentage of maximal outward currents at +100 mV basal currents before ap-
plication of the first stimulus were always subtracted. Dissociation constants (Ki) were
calculated with the modified Cheng Prusoff equation (Ki = IC50[1+(C/EC50.C)]-1, where
C is the concentration of control activator (-)-Englerin A (0.05 µM) in the assay and
EC50.C its EC50 value (0.0112 µM). Electrophysiological data was analyzed using Origin
7.5 software (OriginLab, Northampton, MA, USA). Data are presented as mean ± stan-
dard error of the mean (s.e.m.). For calculation of IC50 value, concentration response
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curve was fitted using Single Hill-equation until no reduction of Chi-square was no-
table.

Nuclear Hormone Receptor Assays

In vitro activity determinations on mentioned nuclear hormone receptors (peroxisome
proliferator-activated receptors (PPARs), liver X receptors (LXRs), farnesoid X receptor
(FXR), retinoid X receptors (RXRs), retinoic acid receptors (RARs), vitamin D receptor
(VDR), constitutive androstane receptor (CAR)) were conducted by Dr. Daniel Merk.
Daniel Merk performed the assays, analyzed and interpreted the experimental results.

Hybrid Reporter Gene Assays

Gal4 hybrid reporter gene assays were conducted as reported previously.[266–268]
pFA-CMV-based constructs comprising the ligand binding domain of the human nu-
clear receptor in question were used as expression plasmids for the chimera recep-
tors. pFR-Luc (Stratagene) served as reporter plasmid and pRL-SV40 (Promega) for
normalization of transfection efficiency and cell growth. The assays were conducted
in 96-well format in HEK293T cells that were cultured as described previously.[266–
268] Transient transfection was carried out using Lipofectamine LTX reagent (Invit-
rogen) according to the manufacturer’s protocol. After transfection and incubation
with test compounds (12–14 h), cells were assayed for luciferase activity using Dual-
Glo™Luciferase Assay System (Promega) according to the manufacturer’s protocol.
Luminescence was measured with an Infinite M200 luminometer (Tecan Deutschland
GmbH). All hybrid assays were validated with reference agonists (PPARα: GW7647;
PPARγ: pioglitazone; PPARδ: L165,041; LXRα/β: T0901317; FXR: GW4064; RXRs:
bexarotene; RARs: tretinoin; VDR: calcitriol; CAR: CITCO) which yielded EC50 values
in agreement with literature. The assays were conducted in duplicates with at least
two independent repeats and for active compounds repeated without hybrid receptor
coding DNA for every test compound at the highest tested concentration to exclude
unspecific effects.





51

4 Results and Discussion

4.1 Automated De Novo Design of Bioactive Natural

Product Mimetics: An Application to Galanthamine

In line with our previous study,[196] a similar design strategy has been applied to the
natural product galanthamine. The design concept includes a ligand-based reaction-
driven de novo design approach with galanthamine as template structure, a compu-
tational pharmacophore similarity evaluation and in silico target prediction to design
and select potential bioactive galanthamine mimetics. A set of mimetic structure con-
taining a natural product-derived scaffolds has been synthesized and their activity has
been characterized in vitro for known targets of galanthamine and computationally
predicted targets.
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Introduction

Natural products are an important source of inspiration for medicinal chemistry.[3]
Drug discovery programs rely on natural products to be directly used as drugs or
as starting points for synthetic druglike compounds.[22] The field of neurodegener-
ative disorders has particularly benefited from natural products as pharmacological
leads.[269] For example, there are several natural-product-inspired acetylcholinesterase
(AChE) inhibitors from natural sources among the prescribed treatments for Alzheimer’s
disease.[270] Among these, galanthamine (68) is a 3,4-fused dihydrobenzofuran alka-
loid from the snowdrop flower Galanthus caucasicus.[271] It is a representative mem-
ber of the Amaryllidaceae alkaloid family.[272] As a dual-acting AChE inhibitor (IC50 =
227±16 nM in human-derived SH-SY5Y neuroblastoma cells)[273] and allosteric mod-
ulator of nicotinic acetylcholine receptors (nAChRs),[274] it possesses neuroprotective
properties, and is used as drug for the treatment of mild to moderate Alzheimer’s dis-
ease.[275] Several total syntheses of galanthamine have been described, motivated in
part by the high costs of its isolation from limited natural sources. In 2001, Guillou and
co-workers established an eight-step total synthetic route to (±)-galanthamine.[276]
Recently, a new catalytic asymmetric total synthesis of the central scaffold has been de-
scribed.[277] In this study, an automated de novo design approach has been applied to
expedite the identification of natural-product-inspired new chemical entities (NCEs).
Six computer-generated galanthamine mimetics were synthesized and evaluated for in
vitro bioactivity against computationally predicted macromolecular targets.
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Methods

All methods applied in this study have been described in the general method section
of this thesis (chapter 3). The following assays were performed by Eurofins Cerep on a
fee-for-service basis (Table 4.1).

Table 4.1: Selected targets for in vitro characterization of galanthamine (68) and its
mimetics 72 - 77.

Assay Description Number Reference

Acetylcholinesterase Human Enzymatic Assay 0363 [278]
nAChR (alpha7) Human Ion Channel Binding (Antagonist Radi-
oligand) Assay

3010 [279]

nAChR (N muscle-type) Human Ion Channel Binding (Antago-
nist Radioligand) Assay

0936 [280]

M1 Human Acetylcholine (Muscarinic) GPCR Cell Based Ago-
nist & Antagonist Calcium Flux Assay

G029 [281]

5-HT2B Human Serotonin GPCR Cell Based Agonist & Antago-
nist IP1 Assay, JAK1 Human TK Kinase Enzymatic LANCE As-
say [Km ATP]

G183 [282]

JAK2 Human TK Kinase Enzymatic LANCE Assay [Km ATP] 2869 [283]
JAK3 Human TK Kinase Enzymatic LANCE Assay [Km ATP] 2905 [284]
Src Human TK Kinase Enzymatic LANCE Assay [Km ATP] 2907 [285]
ERbeta Human Estrogen NHR Functional Antagonist Coactiva-
tor Assay

311440-1 [286]

Vascular Endothelial Growth Factor (VEGFR1) (Radioligand
Binding) Assay

4051 [287, 288]

Human Cyclooxygenase Enzymatic Assay (COX-1) 4173 [289]
Human Lipoxygenase Enzymatic Assay (5-LOX) 0772 [290]
PDE4A1A Human Phosphodiesterase Enzymatic Assay 4074 [291]
PDE7A1 Human Phosphodiesterase Enzymatic Assay 4078 [291]
PDE3A Human Phosphodiesterase Enzymatic Assay 4072 [291]
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Results and Discussion

We applied the ligand-based tool DOGS (Design Of Genuine Structures)[187] with galan-
thamine (68) as template to generate 1182 de novo designs, of which 395 structures were
unique (33%). These computer-generated molecules were scored with the CATS (Chem-
ically Advanced Template Search)[6, 147] method to determine their topological pharma-
cophore similarity to galanthamine. The five top-ranked designs with a CATS distance
≤1.2 (Euclidean distance of the CATS descriptors between design and galanthamine)
were selected for further analysis (Figure 4.1). Designs I and II are derivatives of the
mycotoxin (-)-altenuene (69) and were therefore omitted. The designs III–V were fur-
ther investigated. Following the phenyl scaffold as the most frequent scaffold of the
de novo designs, the coumarin core was the second most frequent scaffold, accounting
for 11% of the unique designs. 12 compounds (24%) of the 50 top-ranked designs were
based on a coumarin scaffold (Figure 4.2). The tetrahydro-6H-benzo[c]chromen-6-one
core (scaffold 70, Figure 4.3a) occurred in 5% of all the designs, and in 26% of the top-
50. Since coumarins are known for anticholinesterase activity[292] and constitute a
naturally occurring “privileged” structure,[293] scaffold 70 was manually modified to
the coumarin-based core 71 (Figure 4.3a). This structural modification is inconsistent
with the underlying concept of a reaction-driven design tool. Within the de novo design
software DOGS, every virtual product is assembled in an iterative virtual synthesis
based on a set of implemented organic reactions, a pre-defined building block library
and a graph-based topological similarity assessment between reference structure and
every virtual compound.[187] Therefore, every design compound owns theoretically a
certain degree of synthetic feasibility. Nevertheless, the design software does not esti-
mate different reactivities of competing functional groups, nor consider stereoeletronic
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Figure 4.1: Chemical structures of the natural product galanthamine, a potent in-
hibitor of acetylcholinesterase (AChE), and its computer-generated mimetics. The
DOGS software was used to generate new chemical entities, and the CATS descrip-
tor was applied to rank the designs according to their topological pharmacophore
similarity to galanthamine. The five top-ranked mimetics (CATS distance ≤1.2) are
labeled according to their individual rank (I-V). Designs I and II are structurally sim-
ilar to the mycotoxin (-)-altenuene (69).
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Figure 4.2: Most frequently occurring Murcko scaffolds among a) all unique de novo
designs from DOGS, and b) from the fifty top-ranked designs according to their CATS
distance.

effects of the reactants in certain reaction types, for example cycloaddition reactions.
Thus, a manual validation of the synthesizability of each design is essential as long
as the design tool does not include further synthetic accessibility predictions like re-
ported synthesizability descriptors.[256, 294] However, this structural variation sim-
plified the chemical synthesis. One-step microwave-assisted Pechmann reaction[295]
(Figure 4.3b) led to six coumarin-based compounds (72-77, Figure 4.3c). SPiDER (Self-
organizing map–based Prediction of Drug Equivalence Relationships)[211] target pre-
diction software was employed to identify potential macromolecular targets of galan-
thamine and designs 72–77 (Table A.1). Galanthamine was not contained in the train-
ing data of the prediction model. We only considered targets with a high confidence
score (p-value≤0.05). In total, 37 protein target families were predicted for these seven
compounds (68 and 72–77). 80% of the predicted protein targets were enzymes, G-
protein coupled receptors (GPCR) or ion channels (Figure 4.4a). Ten different targets
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Figure 4.3: a) Scaffold 70 from designs III-V was structurally modified to obtain
the simplified coumarin-based core structure 71. b) Reaction scheme of the one-step
Pechmann reaction under microwave conditions. c) Set of six synthesized coumarin-
based mimetics (72-77). Numbers in parentheses give the yields obtained.
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were predicted for at least four of the compounds (Figure 4.4b). A full list of all pre-
dicted target families shared among galanthamine and the mimetics is shown in Ta-
ble A.2. Phosphodiesterases were the only target predicted for galanthamine and all de
novo designs.

a) Target
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Lipoxygenase

Sodium Neurotransmitter Symporter

Acetylcholine Receptor (Muscarinic)

Serotonin Receptor
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Transporters

3%

Kinases

3%

Enzymes
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Others
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Nuclear Recptors
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Ion 
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11%

b)

Figure 4.4: a) Protein classes of predicted targets for galanthamine 68 and mimet-
ics 72-77. b) Most frequently predicted targets and counts of associated compounds
(galanthamine 68 and mimetics 72-77).

Phosphodiesterase E3A inhibition in the single-digit micromolar range was corrobo-
rated in cell-free assays for galanthamine mimetics 72 (IC50 = 2.6±1.4 µM), 74 (IC50

= 2.1±1.2 µM), and 75 (IC50 = 5.9±1.2 µM). Galanthamine was inactive in this as-
say. Notably, none of these designs were considered as AChE inhibitors with a high
confidence, and even for galanthamine, AChE did not obtain the highest SPiDER tar-
get score. Mild AChE inhibition was confirmed for compounds 73 (IC50 = 54±1 µM)
and 75 (IC50 = 16±1 µM). The prediction of the acetylcholine receptor (AChR) fam-
ily as a potential biological target of compounds 73, 75, and 77 is in perfect agree-
ment with the known activities of galanthamine. It was confirmed for 75 (M1 receptor,
IC50 = 15±1 µM, Ki = 1.8 µM), but not for the designs 73 and 77. In contrast to galan-
thamine, which activates the nAChR receptor at concentrations between 0.02-2 µM
(α4/β2 subtype),[296] de novo compound 75 was inactive in the nAChR receptor as-
say. This result does not come as a surprise, because galanthamine acts by an allosteric
mode of action.[296] Compounds 74 and 76 inhibited Janus kinase 2 (JAK2) with IC50

values of 59±1 µM and 13±1 µM, respectively, as predicted by the SPiDER software.
Moreover, compounds 72, 73 and 76 antagonized the predicted serotonin receptor 5-
HT2b with IC50 values in the low micromolar range (1.6±1.2, 2.0±1.4, 1.7±1.2 µM).
Compound 76 was confirmed as a weak antagonist (IC50 = 46±2 µM, Ki = 9.5 µM) of
estrogen receptor beta, as computationally predicted. The most potent activity was
found for compound 76. In contrast to galanthamine, this de novo designed molecule
inhibited cyclooxygenase-1 (COX-1) in the submicromolar range (IC50 = 0.37±1.08 µM,
cell-free assay), which was confirmed by suppressed COX-1 activity in human platelets
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(Figure A.10). Galanthamine and compound 76 did not inhibit isolated human recom-
binant cyclooxygenase-2 (COX-2), and COX-2-derived prostaglandin formation was
neither observed for galanthamine nor for compound 76. The identification of 7 as a
potent and selective COX-1 inhibitor corroborates coumarin as privileged scaffold of
COX inhibitors.[297]

Figure 4.5: Crystal structure (left) and crystal packing
(right) of compound 75.

Because of the rather flat molec-
ular structures of 72–77 (Fig-
ure 3), we measured their ag-
gregation behavior in water by
dynamic light scattering (Fig-
ure A.2 and Figure A.3). No
aggregation was observed for
compound 3 at a concentration
<15 µM, for 73 <500 µM, and
for 75–77 <62 µM. Compound 74 starts to aggregate at concentrations >31 µM. Thus,
the measured JAK2 inhibition of compound 74 could be an artefact caused by un-
specific inhibition by compound aggregates. Because of the ability to bind to targets
from different protein families (receptors, enzymes, kinases) the mimetic compounds
qualify as promiscuous ligands.[298] In fact, their common coumarin core is a privi-
leged scaffold in medicinal chemistry.[76] We estimated the potential target promiscu-
ity of galanthamine and the galanthamine-derived mimetics with a recently developed
computational method.[298] Galanthamine and the structurally related compounds
72–77 displayed high promiscuity scores (>99%). Based on their properties (molec-
ular weight: 216–260 g mol-1, clogP: 1.72–2.34, number of hydrogen-bond donors: 0–2,
number of hydrogen-bond acceptors: 3–4; Table A.3) and their ligand efficiency[299]
(LE = 0.37–0.52), bioactive compounds 72–76 qualify as leadlike.[300]
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Conclusions

Even though the de novo design software DOGS and the pharmacophore similarity
ranking by CATS have previously proven suitable to identify NCEs from a natural
product template,[196] the galanthamine mimetics 72-77 had already been described
and recorded in PubChem[301] (compound (PubChem CID): 78 (5322315), 79 (2274081),
80 (5453495), 81 (20683631), 82 (5397934), 83 (680696)). Among all mimetics, however,
only compounds 72 and 76 have annotated bioactivity data in ChEMBL24[208](CHEMBL
IDs: CHEMBL1486992 (78) and CHEMBL502843 (82)). The identification of coumarin-
based molecules as promiscuous ligands derived from the natural product galanthamine
demonstrates the potential of automated computer-assisted design of natural-product-
inspired bioactive compounds for medicinal and biological chemistry. These com-
pounds could serve as starting points for hit-to-lead optimization. The approach pre-
sented here could serve as a prototype for rapid conversion of structurally intricate
natural products into synthetically accessible mimetics. It thereby extends the scope of
scaffold-centered design methods, like biology-oriented synthesis (BIOS),[102] and has
the additional potential to rediscover known chemical entities with novel bioactivities.
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4.2 Fully Computer-Guided "Design-Make-Test" Cycle:

De Novo Design of Novel Bioactive Marinopyrrole A

Mimetics

A further application of computational de novo design has been conducted to generate
natural product mimetics. In this second study, the marine natural product
(±)-marinopyrrole A has served as template for a computational design strategy as
introduced previously(section 4.1). Several new chemical entities have been obtained
according to their virtually proposed synthetic routes and their bioactivty have been
assessed against predicted molecular targets.
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Introduction

Natural products have been used as medicines for millennia and still are a key source
of novel drugs and lead compounds in modern drug discovery.[1, 22, 302] Due to
strong improvements in collecting and analyzing samples from marine organisms,
marine natural products play an increasing as growing collection of novel bioactive
compounds.[303] Oceans host millions of different species[304]producing secondary
metabolites with an anticipated large structural diversity.[2, 112] Among recently dis-
covered marine natural products, marinopyrroles were identified as potent antibac-
terial agents.[305] A member of this class, (±)-marinopyrrole A (84, Figure 4.6), was
additionally reported to possess anticancer activity by selectively binding to and in-
ducing degradation of myeloid cell leukemia 1 protein (Mcl-1), an anti-apoptotic pro-
tein of the B-cell lymphoma 2 (Bcl-2) family.[306] However, the putative selectivity of
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Figure 4.6: Structure of the marine
natural product (±)-marinopyrrole A
(84).

marinopyrrole A for Mcl-1 dependent cell lines
is debatable[307, 308] based on recent results
suggesting that marinopyrrole A inhibits protein
translation leading to a decrease of Mcl-1 pro-
teins.[309] In 2017, further molecular targets of
marinopyrrole A were computationally predicted
and confirmed biochemical assays.[310] We have
now employed marinopyrrole A as template for
computer-assisted de novo design. After in silico
similarity comparison and virtual target predic-
tion, computational designs were synthesized and
characterized for their biological activity in vitro.
This full design-make-test cycle successfully pro-
duced bioactive mimetics of the complex natural
product marinopyrrole A.
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Methods

All methods applied in this study are described in the general method section of this
thesis (chapter 3). The following assays were performed by Eurofins Cerep on a fee-
for-service basis (Table 4.2).

Table 4.2: Selected targets for in vitro characterization of marinopyrrole A (84) and
its mimetics 85 - 87.

Assay Description Number Reference

Cyclooxygenase 1 (COX-1) Human Cyclooxygenase
Enzymatic Assay

4173 [289]

EP1 Human Prostanoid GPCR Cell Based Antagonist
Calcium Flux Assay

2054 [311]

EP2 Human Prostanoid GPCR Cell Based Antagonist
Calcium Flux Assay

1957 [312]

EP3 Human Prostanoid GPCR Cell Based Antagonist
Impedance Assay

2578 [313]

EP4 Human Prostanoid GPCR Cell Based Antagonist
cAMP Assay

1872 [312]

CDK1 /CyclinB Human CMGC Kinase Enzymatic
LANCE Assay [Km ATP]

2875 [314]

CDK2 /CyclinA Human CMGC Kinase Enzymatic
LANCE Assay [Km ATP]

2908 [314]

CDK4 /CyclinD1 Human CMGC Kinase Enzymatic
LANCE Assay [Km ATP]

2876 [315]

SAPK2A (p38alpha) Human CMGC Kinase Enzy-
matic LANCE Assay [Km ATP]

2881 [316]

ERK2 (MAPK1) Human CMGC Kinase Enzymatic
LANCE Assay [Km ATP]

2878 [317]

JNK3 Human CMGC Kinase Enzymatic LANCE As-
say [Km ATP]

2916 [318]

GSK3beta Human CMGC Kinase Enzymatic LANCE
Assay [Km ATP]

2879 [319]

IKKalpha Human Other Protein Kinase Enzymatic
LANCE Assay [Km ATP]

2937 [320]

IKKbeta Human Other Protein Kinase Enzymatic
LANCE Assay [Km ATP]

2938 [320]

IKKepsilon Human Other Protein Kinase Enzymatic
LANCE Assay [Km ATP]

2587 [321]

Continued on next page
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Table 4.2 – Continued from previous page
Assay Description Number Reference

IRAK4 Human TKL Kinase Enzymatic LANCE Assay
[Km ATP]

2933 [322]

PKCmu (PKD1) Human CAMK Kinase Enzymatic
HTRF Assay [Km ATP]

2204 [323]

ROCK2 Human AGC Kinase Enzymatic LANCE As-
say [Km ATP]

2884 [324]

CB1 Human Cannabinoid GPCR Cell Based Agonist
cAMP Assay

1744 [325]

CB1 Human Cannabinoid GPCR Cell Based Antago-
nist cAMP Assay

1745 [325]

CB2 Human Cannabinoid GPCR Cell Based Agonist
cAMP Assay

1746 [325]

CB2 Human Cannabinoid GPCR Cell Based Antago-
nist cAMP Assay

1747 [325]

CRF1 Human Corticotropin-Releasing Factor GPCR
Cell Based Antagonist cAMP Assay

505 [326]

CCK2 (CCKB) Human Cholecystokinin GPCR Cell
Based Antagonist cAMP Assay

1879 [327]

Human Glucocorticoid NHR Binding (Agonist Radi-
oligand) Assay

469 [328]

OX1 Human Orexin GPCR Cell Based Antagonist Cal-
cium Flux Assay

2235 [329]

OX2 Human Orexin GPCR Cell Based Antagonist Cal-
cium Flux Assay

2350 [330]
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Results and Discussion

For its attractive pharmacological activity and intricate molecular architecture, we ap-
plied the natural product (±)-marinopyrrole A (84) as template for ligand based de novo
design using the tool “Design Of Genuine Structures” (DOGS).[187][14] This software
is a virtual rule-based de novo design tool that constructs mimetics of a given template
by fusing building blocks from a catalogue according to pre-coded reaction rules. The
virtual products of such a reaction run are then evaluated for similarity to the given
template and either saved as design or used as starting molecule for another construc-
tion run step until design with converging similarity to the template are retrieved.
Similarity can be assessed in DOGS with two implemented molecular representations
(molecular graph and reduced graph). We conducted three design runs with each
molecular representation employing marinopyrrole A as template structure, which
yielded a total set of 2300 in silico structures containing 802 unique molecular entities.

Molecular Graph

Reduced Graph

Euclidean Distance

Figure 4.7: Distribution of CATS distances, a mea-
sure of pharmacophore similarity, from 802 unique
de novo designed compounds. 405 designs (50.5 %)
were generated by utilizing a molecular graph rep-
resentation (blue). The remaining 397 in silico struc-
tures (49.5 %) were designed with reduced graph
mode (orange). Designs from molecular graph
mode had a median CATS distance of 2.07, whereas
the compounds from a reduced graph representa-
tion had a median CATS distance of 2.20.

With 405 designs (50.5%) resulted
from the molecular graph represen-
tation and 397 structures (49.5%)
from the reduced graph representa-
tion, both implemented scoring ap-
proaches were well balanced. All
unique de novo designs were then
further ranked according to their
topological pharmacophore similar-
ity (CATS distance)[6, 147] to the
template marinopyrrole A. The de-
signs resulting from molecular graph
mode had a lower median CATS dis-
tance (2.07) than the designs from
the reduced graph mode (2.20) (Fig-
ure 4.7). From the 100 top-ranked
structures with the lowest CATS dis-
tance (CATS distance ≤ 1.8), 79 enti-
ties originated from molecular graph
representation and 21 from reduced
graph representation runs. Since re-
duced graph representations lead to
a higher level of abstraction from the structural composition and constitution of the
template molecule, this result seemed reasonable.[187]
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Closer inspection of the 802 unique designs revealed 334 unique Murcko scaffolds[72]
(42%) and 38 unique scaffolds (38%) for the top-ranked 100 designs. 2,4,5-Triphenyl
imidazole, known as lophine,[331]was the most frequent scaffold (122/802 entries,
15%, and 34/100 top-ranked designs, 34%, Figure A.11 and A.12). Thus, the 17 most
similar designs of the 34 samples comprising a 2,4,5-triphenyl imidazole scaffold were
further considered (Figure A.13). Compounds (85) and (86) ranking in position 1 and
17 were selected for synthesis and in vitro biological evaluation based on their favor-
able similarity to the template marinopyrrole A (84) and building block availability
for the computationally proposed synthetic routes (Figure 4.8). The computationally
proposed synthesic procedures contain an imidazole formation from a dicarbonyl com-
pound, an aldehyde and ammonia, known as a Debus-Radziszewski reaction.[331, 332]
To obtain compound 85 from the intermediate product 87 of this reaction, the software
proposed an esterification of the phenol with an acyl halide. Imidazole synthesis was
conducted for 87 and 86 as proposed by the software in good yields. Cyclization of
87 from the building blocks 88 and 89 was successful in batch whereas 86 was pre-
pared from 88 and 90 under microwave irradiation in a sealed vial. To avoid side
reactions in the software proposed esterification approach, this second synthetic step
to 85 was achieved by a Steglich esterification using DCC/DMAP and a silyl-protected
glycolic acid (Figure 4.9). Two additional derivatives (85a and 85b) of compound 85
were synthesized via the same synthetic strategy. The real synthetic pathway deviated
only slightly from the virtual synthetic route by an introduced protecting group. This
small adaption was necessary to avoid potential side reactions of competitive func-
tional groups. This small manual adjustments was necessary because the de novo de-
sign tool neglects both steric and stereoelectronic features of the virtual reactants which
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Figure 4.9: Synthesis overview of compounds 85,85a,85b, and 86. Reagents and
conditions: (i) NH4OAc, AcOH, reflux, 5 h, 66 % (87); (ii) (I) TBDPS-protected glycolic
acid, DCC, DMAP, CH2Cl2, rt, 16 h, 38 %, (II) TBAF, AcOH, THF, 0 °Cto rt, 2h, 82 %
(85); (iii) 2-methoxyacetic acid or acetic acid, DCC, DMAP, CH2Cl2, rt, 16h, 57 % (85a),
53 % (85b) (d) NH4OAc, AcOH, µw irradiation, 180 °C, 5 min, 48 % (86).

strongly effects the outcome of a "real world" synthesis. Therefore, the software is un-
able to estimate the reactivities of different functional group. Due to the fact that the
employed de novo design software did not include any kind of protection group, the
final synthetic procedure has been considered as a results of autonomous virtual syn-
thesis and its minor alterations based human expertise. To identify macromolecular
targets of the template marinopyrrole A and its computationally designed mimetics
85, 85a, 85b, 86 and 87, we employed the target prediction software SPiDER (self-
organizing map-based prediction of drug equivalence relationships)[211] which has
been recently applied to predict targets of natural products and de novo designed natu-
ral product mimetics.[196, 201, 214] Only predictions with low false-positive error esti-
mations (p-values<0.05)) were considered as potential molecular targets.We predicted
the targets for the entire collection of marinopyrrole-inspired de novo designs and the
100 top-ranked compounds according to their pharmacophore similarity (CATS dis-
tance). The distribution of the corresponding protein classes of the 100 top-ranked
designs resembled the protein class distribution of the target prediction of all de novo
designs (Figure A.14). Figure 4.10 depicts the ten most frequently predicted target fam-
ilies for the top-ranking 100 designs and within these, 6 out of 10 also occurred in the
most frequently predicted families for the entire collection of designs (Figure A.15).
Considering the target predictions of individual compounds, only six protein families

were predicted active for the template marinopyrrole A (91) and at least one its mimet-
ics (Table 4.3). Cyclooxygenases, prostanoid receptors and serine/threonine protein
kinases were predicted for both marinopyrrole A and all mimetics. The cannabinoid
receptor and the corticotropin-releasing factor receptor family were predicted active
for the template marinopyrrole A and the mimetic 85 and the related derivatives 85a,
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85b, and 87, and the nuclear peroxisome proliferator-activated receptors were identi-
fied as potential target family of marinopyrrole A and compounds 85, 85a, and 85b. To
assess their bioactivity, we screened the compounds against selected subtypes of the
predicted target families (Table A.4).
The inhibitory effects of marinopyrrole A and all mimetics on cyclooxygenase 1 (COX-
1) and 2 (COX-2) were investigated in cell-free assays (Table 4.4 and Figure A.16).
Marinopyrrole A inhibited COX-1 and COX-2 in the double-digit micro-molar range.
Compound 85a and intermediate 87 were markedly more potent COX-1 inhibitors with
nanomolar (85a, IC50 = 0.2±0.0 µM) and low micromolar (87, IC50 = 1.8±0.5 µM) activ-
ity. Both compounds were almost inactive against COX-2 (>100 µM, 93.4±53.3 µM).
Among known COX-1 and COX-2 inhibitors (7911 COX-1 and 9648 COX-2 inhibitors
in ChEMBL24, January 2019), the 2,4,5-triphenyl imidazole scaffold of 85a and 87 is
only found in seven compounds, which in contrast to 85a and 87 comprise selective
COX-2 inhibitors.[333]
From the prostanoid receptor family, we assessed the antagonistic effects on the four

Table 4.3: Protein families predicted for marinopyrrole A (84) and the mimetic com-
pounds (85, 85a, 85b, 86 and 87).

Protein Family Compounds

Cyclooxygenase 84, 85, 85a, 85b, 86, 87
Prostanoid receptor 84, 85, 85a, 85b, 86, 87
Serine/threonine protein kinase 84, 85, 85a, 85b, 86, 87
Cannabinoid receptor 84, 85, 85a, 85b, 87
Corticotropin-releasing factor receptor 84, 85, 85a, 85b, 87
Peroxisome proliferator-activated receptor 84, 85, 85a, 85b
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Table 4.4: Effects of marinopyrrole A (84) and its mimetics 85, 85a, 85b, 86, and 87,
on isolated ovine cyclooxygenase 1 (COX-1) and human recombinant cyclooxygenase
2 (COX-2).

compound COX-1 COX-2

84 16.6±2.61 45.2±21.31

85 n.d.2 n.d.2

85a 0.2±0.01 n.i.1,4 (up to 100 µM)
85b >101 (71.0±2.6**, 3 ) n.i.1,4 (up to 10 µM)
86 29.7±18.11 53.1±15.11

87 1.8±0.51 93.4±53.31

indomethacin 18.4±2.3***, 3 31.9±4.6***, 3

1 IC50 values are given as mean ±S.E.M. of single determinations obtained
in three,four (COX-2: cmpd 2) or five (indomethacin) independent experi-
ments.

2 n.d., not determined.
3 Residual activities (% of control) at a compound concentration of 10 µM.
4 n.i., no inhibition. (**) P <0.01, (***) P <0.001; student t-test.

prostaglandin E2 receptors (EP1-EP4) as these were the most frequently predicted sub-
types. Marinopyrrole A and the mimetics 85a, 85b, 86, and 87 showed no signifi-
cant inhibition of any of the four subtypes (<50%) at 50 µM (APPENDIX). Compound
85 was identified as an inhibitor of the EP1 receptor in the low micromolar range
(IC50 = 4.5 ± 1.3 µM, Ki = 0.7 µM, Figure A.17). 2,4,5-triphenyl imidazole core of
compound 85 represents a new scaffold for EP1 selective modulators compared to
scaffolds from known modulators in ChEMBL24 (1599 modulators with annotated
activity). To assess the kinase activity profile, we screened marinopyrrole A against
a selection of subtypes of the serine/threonine kinase family (14 kinases) that were
predicted by SPiDER (Table A.4). In particular, the kinases cyclin-dependent kinase 1
(CDK1),[334] mitogen-activated protein kinase-1 (MAPK1 or ERK2)[335] and glycogen
synthase kinase 3 (GSK3),[335, 336] which are involved in the regulation of Mcl-1 in tu-
mor cells.[337] As marinopyrrole A had no activities against the screened kinase panel
(Table A.4), thus, the mimetics were not tested. Therefore, we did not further screen
the mimetics against these kinases. We also studied marinopyrrole A for activation and
inhibition of cannabinoid receptors 1 and 2 (CB1 and CB2). Marinopyrrole A (50 µM)
weakly activated CB1 and CB2 at while mimetic 85 (50 µM) showed antagonistic ef-
fects on both cannabinoid receptors (Table A.4). Due to these contradictory effects, we
did not further investigate the target class. On corticotropin-releasing factor receptor
1, compound 86 and 87 had antagonistic effects on corticotropin-releasing factor recep-
tor 1 (IC50 = 5.7±1.2 µM, 36 ±2.3 µM, Figure A.17), whereas all other compounds were
inactive (Table A.4). Marinopyrrole A and its mimetics 85, 85a and 87, were character-
ized on peroxisome proliferator-activated receptors, and a panel of closely related nu-
clear receptors (Figure A.18). Marinopyrrole A caused agonistic effects on the retinoic
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Table 4.5: Bioactivity assessment of marinopyrrole A and mimetics 85, 86, and
87 on the glucocorticoid receptor (GR, binding competition), cholecystokinin re-
ceptor 2 (CCK2, antagonism), and the orexin receptors 1 and 2 (OX1 and OX2,
antagonism).IC50 curves are shown in Figure A.17.

compound GR CCK2 OX1 OX2

84 0.7
(1.3) 1

1
(8.4)1

0.3
(1.3)1

0.6
(2.3)1

85 0.6
(1.2±1.2) 2 inactive 3 inactive 3 inactive 3

86 2.2
(4.3±1.2) 2

1.1
(5.1±2) 2

8.4
(40±1) 2 inactive 3

87 0.7
(1.4 ±1.1) 2 inactive 3 inactive 3 inactive 3

1 Reported KB and IC50 values in parentheses of marinopyrrole A in
µM.[310]

2 IC50 values in parentheses are derived from eight different concentrations
with two replicates for each concentration and were reported in µM.

3 No activity in the initial screening at a concentration of 50 µM.

acid receptor α (EC50 = 0.63±0.11 µM), the vitamin D receptor (EC50 = 1.09±0.06 µM)
and the liver X receptor β (EC50 = 0.34±0.40 µM) (Figure A.19).
Moreover, we tested all mimetic structures against the cholecystokinin receptor 2 (CCK2),
glucocorticoid receptor (GR) and orexin receptors 1 and 2 (OX1 and OX2), which were
recently computationally predicted and biochemically confirmed molecular targets of
marinopyrrole A (Table 4.5, and A.17).[310] Marinopyrrole A was identified as an ac-
tive ligand of these four receptors with Ki and KB values ≤1 µM.[310] Competitive
binding to the glucocorticoid receptor was observed for 85 (Ki = 0.6 µM), 86 (Ki = 2.2
µM) and 87 (Ki = 0.7 µM). Compound 86 also had antagonistic effects on CCK2 and
OX1 with Ki values in the low micromolar range (Ki = 1.1 µM for CCK2, and 8.4 µM
for OX1 respectively).
The bioactivity data gained in this project uncovered further informative instances in
which either marinopyrrole was the only identified modulator of a certain target fam-
ily (e.g. LXRβ, VDR, RARα) or, on the other hand, solely the mimetic structures ex-
hibited activities on specific targets, for example on CRF1 or EP1. We also observed
that marinopyrrole A activated the cannabinoid receptors CB1 and CB2, whereas one
of its mimetics (85) showed antagonistic effects on both receptors at the initial screen-
ing concentration. Moreover, marinopyrrole A had no significant activity on a set of
selected kinases at the screening concentration, but which were predicted as potential
molecular targets.
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Conclusions

In this computational approach to discover natural product bioactivities and bioac-
tive synthetic mimetics we have identified further molecular targets of marinopyrrole
A and succeeded in designing synthetically feasible compounds that mimic the par-
ent natural product’s pharmacodynamic effects.The mimetic structures possess simi-
lar multi-target profiles confirming the assumption that key pharmacophoric features
have been inherited from marinopyrrole A in computational de novo design. The iden-
tification of bioactie NCEs mimicking the marine natural product marinopyrrole A
reveals the high potential of rule-based computational ligand design from a bioactive
template. Our strategy involved the virtual construction of potential mimetics, compu-
tational prediction of likely synthetic procedures and in silico pharmacophore similar-
ity ranking. The proposed synthesis routes turned out suitable to generate the desired
compounds in good yields and in vitro biological evaluation proved a large proportion
of predicted pharmacological activities correct. Applied on a structurally intricate nat-
ural product with desirable bioactivity, this approach results in synthesizable mimetic
structures that inherit the target spectrum of the natural product template. Thereby,
reaction-driven computational de novo design of natural product mimetics can acceler-
ate innovation in early drug discovery.
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4.3 Shape Similarity by Fractal Dimensionality:

An Application in De Novo Design of Natural Prod-

uct Mimetics

The former described studies (section 4.1 and 4.2) relied on two-dimensional methods
to assess similarity between the natural product templates and their relative mimetics.
In this study, a similarity metric has been incorporated into the design approach which
estimates the three-dimensional shape similarity between molecules. In prospective
application, this metric has been utilized to select de novo designs mimicking the nat-
ural product (-)-englerin A, which has already served as reference structure in a prior
study.[196] Synthesis and biological evaluation has been performed to assess the activ-
ity of selected shape similar compounds.
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Introduction

Virtual compound screening is one of the major techniques employed in the iden-
tification of novel bioactive molecules in drug discovery. The common underlying
principle of the various computational approaches, ranging from compound database
searching to automated de novo design, is the definition, quantification, and utiliza-
tion of molecular similarity. Any ‘similarity’ approach must encapsulate some features
correlated with aspects of interest to the chemist, and, ideally, extend that to provide
useful perspectives on chemical space. Various methods have been proposed and uti-
lized successfully to rank compound libraries predicated on physicochemical proper-
ties, topological indices, and higher-dimensional methods incorporating information
on the distribution of such properties in Euclidean (or other) spaces. Each of these are
to a greater-or-lesser extent correlated with the implicit similarity measure most of-
ten of interest for drug design; that molecules grouped by some measure should have
recognizably related biological activities.[156, 176, 338, 339]
The shape of a molecule has been observed to correlate well with that of its binding
pocket.[153, 340–342] One commonly-employed means of capturing this shape infor-
mation is through the alignment-based methods. Popular approaches in this group
are ROCS[343] and SHAEP[344], which utilize the maximum possible overlap in the
volume of pairs of molecules to rank query molecules against a template. Alignment-
independent methods, such as USR[345] and USRCAT[346], have been gaining in pop-
ularity, primarily owing to their speed. These provide a straightforward description
of the distance distribution between heavy atoms in a molecule and a set of fixed ref-
erence points, but fail to consider molecular surface curvature and shape. We here
aim to introduce and provide a proof-of-concept for a novel means to rapidly describe
and compare shape representations of molecular objects, enabling quick filtering of
large compound libraries. To this end, we expand on the concepts elucidated in our
earlier work[347] in applying the concept of fractal dimensionality in fast, shape-based
similarity-based virtual compound screening, with minimal sampling of ligand confor-
mational space. This approach allows for the description of a molecule through shape
analysis of its Connolly surface, and for comparison of molecules through a simple
Euclidean distance measure.
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Methods

Additional methods, which are not part of the general laboratory and computational
method section (chapter 3), are described below.

Fractal Dimensionality Calculation

Intuitively, fractal dimensionality is a measure of the density of a molecular surface
in a volume, and of how close the parts of that surface are to one another, describ-
ing the measured properties of an object as a function of the scale at which they are
measured.[348] This approach benefits from a rigorous mathematical foundation and
sensitivity to scale-dependency in shape description. Many natural objects and phe-
nomena demonstrate self-repeating behavior, but are not true fractals, rendering an
analytical solution inapplicable. A close approximation of this value can, however, be
obtained by means of the application of various algorithms, such as the correlation
exponent estimation approach adopted here.[349, 350]
For our ‘global’ fractal dimensionality approach (Figure 4.11), we first generate a sin-
gle low-energy conformer per compound using the MMFF94 force-field provided in
the RDKit (v. 2018.03.04) [261, 351] package for Python 3.6.5. Following this, we de-
scribe the solvent-accessible molecular Connolly surface[352] as a set of vertices using
a ray-tracing approach, as implemented in NanoShaper (v.0.7.5.).[353] We determine
the variation in an unbiased estimator of fractal dimensionality, the correlation sum
Ĉ(δ), with δ, a distance in the set of distances in a Euclidean space, E, as follows (Equa-
tion 4.1, Figure 4.11):

Ĉ(δ) =
2

N(N − 1)

∑
i<j

θ(δ − |xi − xj|) (4.1)

where N is the number of vertices in the surface representation, and θ represents the
Heaviside step function, where a given pair of vertices (xi and xj) is assigned a value of
one if they are within distance δ of one another, and zero otherwise. The linear range
of the Ĉ(δ)/δ relationship across the range of E is extracted through a set of derivative-
based rules, and we take its gradient, v, as an approximation of the correlation ex-
ponent using a Theil-Sen[354, 355] robust regression estimator. This value, v, strictly
obeys the inequality v ≤ D, where D is the canonical fractal dimension. In general, the
two values are very similar (R2 = 0.99),[349] therefore it provides an adequate approxi-
mation of D. Various methods for rendering this practicable in a reasonable time-frame
are employed, primarily in reducing the number of comparisons to be made through
heuristic optimizations, and through efficient matrix operations. This results in a nu-
merical representation of shape, which can be used to rank the similarity of molecules
based on the Euclidean distance of their fractal dimensionality to that of a given tem-
plate. The properties of this similarity metric, and the efficiency of the correlation
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Figure 4.11: a) Molecular structure of the natural product (-)-Englerin A (62), b) a
discrete representation of its Connolly surface (grey dots) for a generated conformer,
and c) an illustration of the behavior of the point-inclusion sphere, and the calculation
of the estimator, v, of fractal dimension, D. For each point in the surface representa-
tion, the relationship between the proportion of points (ζ(δ)) within a distance δ inclu-
sion sphere and that distance is stored. These relationships are then combined, and
described in terms of gradient, providing an unbiased estimation of the molecule’s
fractal dimensionality. V, or GFD, can be calculated for any small- or macro-molecule,
and allows for shape-based screening based on a simple distance-from-template mea-
sure.

exponent estimation, allow for this method to be applied to the shape comparison of
small molecules in a short time-frame.

In Vitro Characterization

The following assays were performed by Eurofins Cerep on a fee-for-service basis.

Table 4.6: Selected targets for in vitro characterization of englerin A (62) and its
mimetics 92 and 93.

Assay Description Number Reference
TRPM8 Human Transient Potential Ion Channel
Cell Based Agonist and Antagonist Calcium Flux
Assay

G185 [356]

TRPA1 Human Transient Potential Ion Channel
Cell Based Antagonist FLIPR Assay

CYL8066FL2

TRPV3 Human Transient Potential Ion Channel
Cell Based Antagonist FLIPR Assay

CYL8065FL2

TRPV4 Human Transient Potential Ion Channel
Cell Based Antagonist FLIPR Assay

CYL8064FL2
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Results and Discussion

To determine the utility of this shape-only method in de novo drug design, we applied
the fractal dimensionality description to identify computationally generated, small
molecule mimetics with similar biological activities to the structurally intricate (‘com-
plex’) natural product (-)-Englerin A (62) (Figure 4.11). The sesquiterpene (-)-Englerin
A was described as an inhibitor of renal cancer cell proliferation.[357] This natural
product acts as nanomolar activator of transient receptor potential canonical 4 and 5
(TRPC4/5) calcium-permeable cation channels which leads to selective growth inhi-
bitions of cancer cell lines.[198, 199] Utilizing (-)-Englerin A as a template, we previ-
ously generated NCEs by ligand-based, chemical reaction-driven de novo design.[196]
By topological pharmacophore-based scoring and manual refinement of the computa-
tional designs, we identified natural product mimetics inhibiting the TRP melastatin
8 (TRPM8) calcium permeable cation channel, also inhibited by (-)-Englerin A.[196,
199] We here extend this preliminary original study by introducing the FD shape sim-
ilarity metric. Given that the previously employed design software tool (DOGS)[187]
and the pharmacophore similarity metric (CATS)[147] each rely on two-dimensional
molecular representations, we investigated the use of fractal dimensionality as an sim-
ilarity ranking approach, to take the spatial disposition of molecules into account. This
approach represented a ranking approach orthogonal to the CATS ranking. By omit-
ting the proposed synthetic routes of the original designs, the library of 903 in silico
structures employed in our previous study resulted in a set of 323 unique de novo de-
signed small molecules. We ranked these computer-generated designs according to
their Euclidean distance from (-)-Englerin A in terms of their global fractal dimen-
sionality (GFD). To assess the potential of GFD as a shape-based descriptor for this
target case, we conducted a comparative, retrospective, analysis of the chemical space
retrieved by this method, against gold-standard fingerprint (ECFP4), moment (USR)
and alignment-based shape (SHAEP) approaches. Given that we lack a ground-truth
in this case, i.e. experimental activity data for each molecule in our compound library,
our retrospective analysis adopts two approaches.
We begin with an analysis of three data sets; (i) the initial de novo design set, (ii)
the thirty top-ranked compounds in terms of global fractal dimensionality distance
(GFD distance), and (iii) the TOP30 compounds according to their topological phar-
macophore similarity (CATS distance) to (-)-Englerin A.[6, 147] Set (iii) is included to
compare the GFD ranking approach with the CATS approach described previously.17

We extracted the molecular scaffolds (’Murcko scaffolds’)[72] of these compounds and
analyzed their molecular scaffold diversity by pairwise Jaccard-Tanimoto similarity co-
efficient (Tc) estimation based on Morgan structural fingerprints (radius = 2, 1024 bits),
equivalent to ECFP4[143]. This approach allows us to compare the areas of chemical
space retrieved by each method, a proxy for the likely on-target efficacy, necessitated
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by the lack of ground-truth activity data for each library compound (Figure A.20). The
323 initial de novo designs consisted of 152 unique scaffolds (47%) with high diver-
sity (Tc = 0.18). The 30 top-ranked molecules according to GFD distance contained 24
unique (80%) and diverse (Tc = 0.17) scaffolds, whereas the 30 top-ranked compounds
by CATS distance comprised 19 unique scaffolds (63%) with slightly lower diversity
(Tc = 0.24). Only two scaffolds were present in both top-ranking sets (Figure 4.12). Sec-
ondly, we employ an experimentally-validated target-prediction software developed
in-house (SPiDER)[211, 214] to provide an estimate of the likelihood of a given com-
pound being active against the target family ‘Transient Receptor Potential Ion Chan-
nel’. The top 30 compounds retrieved by screening with the GFD, USR, SHAEP, and
ECFP4 methods were analyzed to determine their predicted activity (number of com-
pounds with an annotated p < 0.05) for the target family and the proportion and di-
versity of the unique molecular scaffolds for the predicted active compounds. GFD
retrieved 10 compounds predicted as active, each with a unique scaffold (predicted ac-
tives = 10, proportion of unique scaffolds = 1.0, diversity of unique scaffolds (pairwise
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Tc) = 0.22). The SHAEP approach retrieved fewer predicted-active compounds, also
all having unique scaffolds (6, 1.0, 0.21). USR retrieved the same number of predicted
actives as the SHAEP approach, with fewer unique, but highly diverse, retrieved scaf-
folds (6, 0.66, 0.12). ECFP4 retrieved the same number of predicted actives as GFD,
but with fewer, less diverse, unique scaffolds (10, 0.8, 0.33). Given that topological ap-
proaches were used in the processes of library generation and target prediction, it is
corroborative that the GFD approach, which treats sub-structural information implic-
itly, achieved a similar predicted-active retrieval performance under evaluation with
topological methods. We also performed activity prediction and diversity analysis
for the library in its entirety (predicted actives = 0.25, scaffold diversity = 0.47). In
summary, SHAEP and USR have slightly lower performance in terms of proportion
of predicted actives in their top-ranked lists (0.2 for each), with variation in number
and diversity of retrieved scaffolds. ECFP4 and GFD retrieve an identical number of
predicted actives, with GFD having a higher, and highest-overall, number of unique
molecular scaffolds in the predicted active compounds retrieved.
For our prospective application, we selected the thirty top-ranked compounds accord-
ing to their GFD distance, and utilized computational target prediction to further refine
our selection. Of these, nine had p-values lower than 0.05 for the target class ’TRP Ion
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Channel’ (Figure 4.13). We selected compounds 92 and 93 for synthesis and bioactiv-
ity evaluation, considering their synthesizability[256] and building block availability
(Figure 4.13).
Compound 92, a piperidine extended derivative of the privileged quinazolinone scaf-
fold,[358] is a rare structural entity. No similar entries were found in the current ver-
sion of the ChEMBL database (ChEMBL24) by a substructure search. In a recent patent
application, design 92 is present as a fragment in a series of novel phosphatidylinosi-
tol 3-kinase inhibitors.[359] Of note, compound 93 contains a menthol moiety, a com-
mon substructure for TRP ion channel modulators, especially for TRPM8,[360] and
TRPA1[361]. To the best of our knowledge, no meaningful pharmacological interac-
tion between menthol-containing compounds and the TRPC4 ion channel is known
to date. The unmodified in silico structures 92 and 93 were synthesized in three steps
each (Figure 4.14). Condensation of (rac)-(2-piperidinyl)methanamine (94) and isatoic
anhydride (95) gave intermediate 96. Cyclization of 96 with formic acid followed by
Boc-protection gave final product 92. Compound 93 was synthesized from L-menthol
(97) and (2S,3aS,6aS)-octahydrocyclopenta[b]pyrrole-2-carboxylic acid (98). Interme-
diate 99 was obtained by a Williamson ether formation of 97 and 2-chloroacetic acid.
Esterification of 98 with benzyl alcohol gave intermediate 100. Amide coupling of 99
and 100 using EDC/HOBt afforded compound 93.
To assess their bioactivity profiles, we tested compound 92 and 93 in several TRP as-
says, in which (-)-Englerin A showed activitis on TRPC4, TRPM8, TRPA1, TRPV3,
and TRPV4.[199] Since (-)-Englerin A is a potent TRPC4 channel activator,[198] we
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analyzed the modulatory effects of compound 92 and 93 on TRPC4 channels. Com-
pound 92 had only a weak inhibitory effect of ≤20% on TRPC4 currents at a con-
centration of 100 µM performing electrophysiological whole-cell measurements with
TRPC4 over-expressing HEK293 cells (Figure A.22). In contrast, compound 93 dis-
played inhibitory effects on TRPC4 channels in the same electrophysiological assay
(Figure 4.15a,b). (-)-Englerin A was used to elicit maximal TRPC4 currents. Applica-
tion of stepwise increasing compound 93 concentrations in the presence of (-)-Englerin
A decreased the (-)-Englerin A-induced TRPC4 currents (Figure A.23). As a control,
(-)-Englerin A was applied for a second time inducing maximal TRPC4 currents which
were used for normalization. The summary of the maximal outward currents induced
by (-)-englerin A in the presence of compound 93 reveals an IC50 for compound 93 of
5.1±0.8 µM (Ki = 0.9 µM) (Figure 4.15b). Thus, we could identify compound 93 as a
novel TRPC4 channel blocker, and the first validation of an interaction of that channel
with a menthol-containing compounds.
The modulatory effects of both compounds were tested in a cell-based intracellular
calcium assay for TRPM8. Compound 92 did not modulate ion channel TRPM8 at
a concentration of 10 µM, whereas compound 93 showed an inhibitory effect in low
micromolar concentration on TRPM8 (IC50 = 1.8±1.1 µM, Ki = 0.3 µM, Figure A.24).
Electrophysiological whole-cell measurements with TRPM8 over-expressing HEK293
cells confirmed that compound 93 inhibits TRPM8 currents in a concentration depen-
dent manner (Figure 4.15c,d). Maximal TRPM8 currents were induced by application
of (-)-menthol. Application of 100 nM compound 93 in the presence of (-)-menthol
reduced (-)-menthol-induced maximal TRPM8 currents by 1.5±0.6%, 1 µM compound
93 suppressed TRPM8 currents by 45±7%, and 10 µM compound 93 fully blocked (-)-
menthol-induced maximal TRPM8 currents by 102±7% (Figure A.25). The summary of
the maximal (-)-menthol-induced outward currents in the presence of indicated com-
pound 93 concentrations suggests that the half maximal inhibitory concentration of
compound 93 is about 1 µM which is in line with the results obtained with the intra-
cellular calcium measurements. Compound 92 had no inhibitory effects on TRP ion
channels TRPA1, TRPV3, and TRPV4 up to a concentration of 100 µM (Figure A.26).
Compound 93 weakly inhibited TRPV4 (IC50 = 39±1 µM) and increased intracellu-
lar free calcium concentration in TRPA1 expressing cells during the compound pre-
incubation. Therefore, the measured inhibition of TRPA1 was likely caused by target
desensitization (Figure A.26).
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Figure 4.15: Electrophysiological whole-cell measurements of TRPC4 (a-b) or
TRPM8 (c-d) overexpressing HEK293 cells. a) Representative current density-voltage
curves before application of the first stimulus (black traces), during the first applica-
tion of 50 nM (-)-Englerin A (‘EA’) in the presence of indicated concentration (10 µM)
of compound 93 (‘cmpd 93 + EA’, red traces) and during the second application of
50 nM (-)-Englerin A (blue traces). b) Summary of maximal (-)-Englerin A-induced
outward currents in the presence of indicated concentrations of 93. Numbers indicate
the number of measured cells from at least 3 independent experiments. To determine
IC50 value the percentage of the maximal outward current at +100 mV elicited by the
second application of 50 nM (-)-Englerin A was used. Insets show current density
time courses at holding potentials of ±100 mV with indicated applications of com-
pound 93 (red), (-)-menthol (green, a) and (-)-Englerin A (blue, b). c) Representative
current density-voltage curves before application of the first stimulus (black traces),
during first application of 200 µM (-)-menthol (‘Menthol 1.’, light green traces) and
during application of indicated concentration (10 µM) of compound 93 in the pres-
ence of (-)-menthol (‘cmpd 93 + (-)-menthol’, red traces). The dark green line indi-
cates current density-voltage curve after washout of 93 in the presence of (-)-menthol
(‘Menthol 2.’, dark green traces). d) Summary of maximal (-)-menthol induced out-
ward currents in the presence of indicated concentrations of compound 93. Numbers
indicate the numbers of measured cells and the numbers of independent experiments.
The percentage of the maximal outward current at +100 mV elicited by the first appli-
cation of 200 µM (-)-menthol was used for normalization.
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Conclusions

Comparing the computational method employed here to existing shape-based screen-
ing approaches, our approach offers a molecular shape representation rooted in a well-
established field of mathematics, which captures information about local surface cur-
vature as well as volumetric information, and that can be rapidly calculated for large
compound libraries. That said, an assessment of the merits and limitations of this
approach on a broader basis is necessary before we can draw firm conclusions as to
its general applicability. The experimental results of this proof-of-principle study re-
veal the potential of fractal dimensionality as a shape-based descriptor in ligand-based
virtual screening and de novo molecular design. Given a limited sampling of ligand
conformational space, we were able to identify a compound with potent inhibitory
properties and a comparable activity profile to our template (-)-Englerin A, based on
the similarity in shape and local curvature of a library of small molecules generated
through a de novo approach to our template (-)-Englerin A. The combination of a novel
shape-based approach, together with a de novo design tool and a target prediction soft-
ware, proved useful in this instance. This extent to which this applies to other natural
products, and to larger sets of small molecules, is a matter for further investigation.
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4.4 From Synthetic and Natural Compounds to Bioactive

New Chemical Entities by Generative Deep Learning

Inspired by two theoretical studies,[239, 244] generative deep learning models have
been investigated as novel molecular de novo design tools to generate bioactive small
molecules. In two prospective applications, a model has been trained in a two step
process to create a target-focused libraries based solely on molecular structures of al-
ready known ligands. In a proof-of-principle study, we evaluated the ability of such
a model to generate bioactive compounds from a set of drug-like synthetic ligands.
In a second approach, we evaluated the potential of generative deep learning models
to design bioactive natural product mimetics from a set of bioactive natural products
targeting the same protein family.
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Introduction

Recent examples from the field of artificial intelligence (AI), for example deep learning,
and the availability of large chemical and biological datasets enable the development
of innovative concepts in drug discovery and development.[220] Recently, deep learn-
ing methods have been applied to overcome various challenges in the drug design
process.[218, 236, 362, 363] In 2018, a de novo design method has been proposed which
relies on generative AI.[239, 244] It consists of two essential steps: the deep neural net-
works learns the constitution of known bioactive compounds and then autonomously
generates novel molecules with intrinsically inherited characteristics, e.g. bioactivity
and synthesizability. Such a deep learning model comprises of a recurrent neural net-
work (RNN) with long short-term memory (LSTM) cells,[242] which have proven to
be effective generative models in various fields, for example in natural language pro-
cessing.[243] The construction of new molecules can be perceived as forming new sen-
tences by adding the most likely next word to a given sequence in consideration of all
previous existing words. The associated probability of each new word correlates to the
obtained probability distribution of all possible words from training the model with a
large set of sentences. In analogy to a natural language, molecules can be represented
as SMILES ("simplified molecular input line entry specification") strings, in which ev-
ery character indicates either an atom type, bond type, branching point, ring system,
or stereochemical information.[240] These structural representations can be employed
in RNN with LSTM cells to learn the probability of each single SMILES character in a
given of set molecule sequences. Based on the learned probability distributions, these
novel concepts in de novo design are supposed to correctly construct chemical struc-
tures without the need of explicitly included building block libraries and predefined
construction rules. Until now, generative AI has been applied to de novo design only
retrospectively. Here, we describe a first prospective application of generative AI to
design bioactive new chemical entities(NCEs).
Furthermore, we exploit natural products as source of inspiration in generating de
novo designs by AI. Natural products have always been a major sources of new lead
compounds for drug discovery.[1, 22] Natural products outperform synthetic small
molecules in terms of their unique structural features and scaffolds.[77] Still, the syn-
thesis of structurally complex natural products remains challenging which may hin-
der following structure-activity relationship studies. To overcome these limitations,
computer-assisted de novo design constitutes a strategy to reduce synthetic efforts and
create natural product-inspired molecules. It has been applied recently to generate
synthesizable and bioactive natural product mimetics with rule-based computational
de novo design methods.[196, 201] However, these rule-based approaches suffer from
several limitations. These methods can only construct molecules which are accessible
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from a fixed set of building blocks and pre-defined reaction pathways.[201, 364] There-
fore, we address these challenges by applying the described generative AI model[244]
to computationally design natural product mimetics.
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Methods

Additional methods, which are not part of the general laboratory and computational
method section (chapter 3), are described below.

Similarity searching with holistic molecular descriptors

The similarity between the unique and valid molecules generated by the machine-
learning model and the sets of RXR and PPAR actives was calculated using Weighted
Holistic Atom Localization and Entity Shape (WHALES) descriptors.[365] In a holistic
way, the WHALES descriptor incorporates relevant information about the molecular
shape, geometric interatomic distances, and atomic properties of chemical structures.
Molecular geometry was optimized using the MMFF94[366] force field with 1000 itera-
tions and 10 starting conformers for each compound; the minimum energy conforma-
tion was chosen for descriptor calculation. WHALES descriptors were computed with
in-house software, using Gasteiger-Marsili[367] partial charges as weighting scheme.
This scheme has shown to be the best compromise between scaffold hopping and
enrichment for WHALES.[368] RXR and PPAR query structures were retrieved from
ChEMBL: (1) RXR binding: the 12 most potent ligands from ChEMBL; (2) RXR ago-
nism: the top-4 agonists according to their EC50 value; (3) PPAR agonism: the top-4
agonists annotated in ChEMBL according to EC50 for each of the PPAR subtypes. For
each dataset, every compound was used as query to perform similarity ranking on the
basis of their Euclidean distance on Gaussian-normalized WHALES values. The re-
sults of the individual virtual screenings on each compound were merged according
to the sum of their reciprocal ranks.[369] The similarity search by WHALES and its
implementation was done by Dr. Francesca Grisoni.

Chemical Space Visualization

Principal component analysis (PCA)[370] and auto-scaling was conducted with python
package scikit-learn (v0.19.1). Molecular datasets (ChEMBL library used for train-
ing, ChEMBL annotated RXR agonists, ChEMBL annotated PPAR agonists, fine-tuning
compounds, sampled molecules and selected designs) were described by eight physic-
ochemical features (molecular weight, total polar surface area , clogP, fraction of sp3-
hybridized carbon atoms, number of H-bond donors, number of H-bond acceptors,
number of heavy atoms, number of heteroatoms) and calculated with RDKiT (version
2017.09) in Python (version 3.6). Descriptor values were auto-scaled (Gaussian nor-
malization) and used for PCA calculation.
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Chemical Syntheses

Syntheses of all selected designs(see Figure 4.17 and Figure 4.24) were conducted by
Daniel Merk. All detailed synthetic protocols and analytical data can be found in the
corresponding publications.
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Results and Discussion

De Novo Design of Bioactive Small Molecules by Artificial Intelligence

We utilized a deep recurrent neural network (RNN) with long short-term memory cells
(LSTM) as generative model.[244] In a first step, this LSTM based model was trained
on a dataset of bioactive molecules from ChEMBL22 [208] (541’555 entities, p(Affinity)
≥ 6) to learn the syntax of molecules string representations (SMILES strings) and con-
sequently the constitution of drug-like molecules. After this learning step, the model
generates chemical molecules by sampling stepwise SMILES characters according to
the learned probability distribution over all characters. From a set of 1000 sampled
structures, a large amount of designs was valid (94%) and a high percentage of these
valid molecules were unique (98%). Additionally, most of the unique structures were
novel (93%) which means the generated entities were found in the training set. In a
second step, the generic model was fine-tuned by transfer learning to enable the gen-
eration of de novo designs in a target-focused approach. Therefore, we employed a
set of 25 fatty acid mimetics[371] with known modulatory activities on two nuclear
receptors, namely retinoid X receptors (RXRs)[372] and/or peroxisome proliferator-
activated receptors (PPARs).[373] We sampled 1000 designs from this fine-tuned model
by using fragment growing from a carboxylic acid fragment (“-COOH”). The sam-
ples contained a high proportion of valid (93%) entries, whereof a large proportion
represented unique structures (90%). None of the sampled molecules were part of
training or fine-tuning set. To rank and select samples for synthesis and bioactivity
testing, we applied computational target prediction (SPiDER software)[211] and deter-
mined the similarity to known bioactive ligands by employing molecular shape and
partial charge descriptors (WHALES).[365] We merged the individual rankings and
obtained a final set of 49 high-scoring designs. Five compounds (101-105) were picked
for further investigations based on their individual in silico ranks and building block
availability. None of these selected samples were present in the ChEMBL,[208] Pub-
Chem,[301] SureChEMBL,[374], Reaxys [375] (accessed July 2018) and SciFinder[376]
(accessed July 2018) databases indicating their novelty. To visualize the occupied chem-
ical space of the generated designs, we performed a principal component analysis of 8
physicochemical properties (Figure 4.16).
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Figure 4.16: Chemical space visualization by principal component analysis (PCA)
of 8 physicochemical properties. a)ChEMBL molecules (grey) represent the chemical
space of the training set. The generated designs (blue) occupied an area around the 25
molecules used for fine-tuning (red). The five selected designs (101-105) (green) are
in close proximity to the fine-tuning set. b) The same chemical space of the training
molecules (grey) is shown. Known RXR (purple) and PPAR agonists (yellow) are
plotted to visualize the target-focused areas in chemical space of these two nuclear
receptor families. The selected designs 101-105 can be found in this target-focuses
area.

Utilizing a PCA, this set of potentially correlated physicochemical features was trans-
formed into two linear uncorrelated principal components which were the axes of the
two-dimensional chemical space representation. The training molecules from ChEMBL
(grey) are the basis of chemical space visualization. The generated samples (blue) are in
proximity to the fine-tuning compounds (red) but cover a much broader area in chemi-
cal space (Figure 4.16a). The five selected designs (green) are part of the chemical space
of RXR (purple) and PPAR agonists (yellow) extracted from ChEMBL (Figure 4.16b).
The selected compounds 101-105 were obtained in two to four synthetic steps (Fig-
ure 4.17). 101-105 were subsequently characterized for their agonistic effects on the
nuclear receptor RXRα/β/γ and PPARα/γ/δ.[266] Four of the compounds showed ag-
onistic effects on RXR and PPAR subtypes (Table 4.7). Moreover, we identified at least
one agonist for every receptor subtype. Compound 101 and 102 were dual agonists of
RXRs and PPARγ, while design 103 and 104 turned out to activate two PPAR subtypes
but had no activity on RXRs. Design 105 showed not activity on the nuclear recep-
tors studied. The potency of 101-104 ranged from double-digit nanomolar EC50 val-
ues of 101 on RXRs, to double-digit micromolar activity for compound 104 on PPARδ.
Compound 104 turned out as the least potent design with weak agonistic activities on
PPARγ and PPARδ.
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Cs2CO3, dioxane, 100 °C, 16 h; (iii) KOH, MeOH/THF/H2O, µw, 70 °C, 30 min;
(iv) HO−C6H3F−B(OH)2, Pd(PPh3)4, Cs2CO3, toluene/EtOH, 100 °C, 20 h; (v)
F−C6H4−CH2−Br, K2CO3, DMF, µw, 100 °C, 120 min; (vi) MeOH, conc. H2SO4,
reflux, 4 h; (vii) C5H9Br, K2CO3, DMF, µw, 100 °C, 6 h; (viii) HO−C6H4−B(OH)2,
Pd(PPh3)4, Cs2CO3, toluene/EtOH, 100 °C, 16 h; (ix) C6H4Cl−C6H4−COOH, EDC,
4-DMAP, CHCl3, reflux, 12 h; (x) C6H3Br(OH)2, Pd(PPh3)4, Cs2CO3, dioxane/DMF,
reflux, 4 h; (xi) malonic acid, pyridine/piperidine, µw, 100 °C, 30 min.
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Table 4.7: In vitro activity of designs 101-105 on RXRs and PPARs. Reported EC50
values represents mean ± SEM [µM] of at least two independent experiments in du-
plicates.

EC50 values ±SEM [µM]

Compound RXRα RXRβ RXRγ PPARα PPARγ PPARδ

101 0.13±0.01 1.1±0.3 0.06±0.02 >50 2.3±0.2 >50
102 13.0±0.1 9±2 8.0±0.7 >50 2.8±0.3 >50
103 >50 >50 >50 4.0±1.0 10.1±0.3 >50
104 >50 >50 >50 >50 9±3 14±2
105 >50 >50 >50 >50 >50 >50

Templates1 0.024 - 43 5.2 - 54
Ref. agonist2 0.033±0.002 0.024±0.004 0.025±0.002 0.06±0.002 0.6±0.1 0.5±0.1

1 Template activities were reported as given in literature.[201, 377–379]
2 reference agonists, literature data: bexarotene[380] for RXRs, GW7647[381] for

PPARα, pioglitazone[Willson2000] for PPARγ, L-165041[Willson2000] for PPARδ.

Overall, five out of 49 top-ranked designs were selected considering their indiviual
ranking, synthesizability and building block availability. An extended search in sev-
eral database revealed that none of these five molecules were not reported before. After
synthesizing these five designs in two to four steps, four of these five showed activity
on at least one subtype of the intended targets. Besides the individual activities of
compounds (101 - 104), the activity ranges of these four de novo designs on both sub-
types are in the potency ranges of fine-tuning structures. These experimental results
illustrated that generative deep learning models provide an innovative approach in
computational de novo design. After this first successful proof-of-principle study, we
employed the model to design chemical entities mimicking bioactive natural products.
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Tuning artificial intelligence on the de novo design of natural-product-inspired
retinoid X receptor modulators

We further expanded the prospective applications of this AI based generative model
by tuning the model to generate novel bioactive natural product mimetics with modu-
latory effects on RXRs. We employed again the same generic model trained on bioac-
tive molecules retrieved from ChEMBL.[208] In this study, six natural products with
known activities on RXRs served as fine-tuning set for transfer learning (Figure 4.18).

OH

OH

O

HO

H

OHO

H

O

O

O

O

O

H

H H

O

OH

HO

H

OHO

Valerenic acid (106) Drupanin (107)

Honokiol (108) Bigelovin (109)

Isoprimaric acid (110) Dehydroabietic acid (111)

Figure 4.18: Selected RXR modulators from natural
sources. All six natural products (106-111) have agonistic
effects on RXRs in the micromolar range.[201, 382–384]

We investigated three cases with
different numbers of natural
products for fine-tuning. As
a first approach, the generic
model was fine-tuned on the
natural product valerenic acid
(106) and 1000 designs were
sampled. Only 25% of sam-
pled SMILES strings were valid
chemical structures. These valid
designs contained over 55% uni-
que entities (14% with respect to
all samples) whereof almost all
unique compounds were novel
(99%). Further analysis of the
unique designs revealed that a
high percentage (22%) of the
designs were close molecular
analogs of valerenic acid with
only slight structural differences
to the template (e.g. addition of
methyl groups or variations in
ring size) (Figure 4.19a).

Moreover, the model generated high proportions of chemically instable structures (36%,
e.g. carbonic acid monoesters, anhydrides, imines, acetals, antiaromatic structures),
very small molecules (21%, molecular weight below 150 g/mol) as well as linear fatty
acids and nonfunctionalized hydrocarbons (14%). Out of the remaining compounds
(7%), none was predicted as RXR modulator by SPiDER target prediction software.[211]
Thus, no design was chosen for synthesis and bioactivity testing.
To increase number and quality of the generated designs, we extended the fine-tuning
set by the natural products drupanin (107) and honokiol (108). Both natural com-
pounds represent less intricate structures compared to other RXR activating natural
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Figure 4.19: Characteristics of sampled designs from three distinctly fine-tuned AI
models. a) After fine-tuning with the single natural product valerenic acid (106), a
large proportion of the generated designs comprised of template analogs, chemically
instable structures, non-functionalized fatty acids and very small molecular entities.
b) With expanding the fine-tuning set to three natural products (valerenic acid (106),
drupanin (107), honokiol (108)), more than half of the designs showed still unsuitable
characteristics. c) Utilizing all six natural products (106-111) for fine-tuning led to
reduced numbers of close template analogs and very small molecules. Unfunctional-
ized designs and instable structures still represented a considerable proportion of all
generated samples.

products. The assumption behind the selection was that a set of structurally less com-
plex template will increase the number and the quality of the generated designs. 1000
designs were sampled consisting of 79% valid SMILES strings from which 62% were
unique (49% with respect to all samples). Over 99.5% of these unique designs repre-
sented novel compounds with respect to the training and fine-tuning set. Compared
to the first experiment with a single fine-tuning template, the number of close analogs
(18%), instable structures (15%), and fragment-like compounds (4%) considerably de-
creased with three templates for transfer learning (Figure 4.19b). The amount of sam-
pled pure hydrocarbons remained high (19%). Out of the 215 residual designs (44%), 26
compounds were predicted as potential RXR modulators by SPiDER (p<0.1). The pre-
dicted actives were further ranked by determining the similarity to known RXR ligands
with the already used WHALES descriptor,[365] which have been successfully applied
to find novel RXR ligands.[Merk2018b, 201] The top-ranked design 112 (Figure 4.20)

O
NH C6H12 COOH

112

Figure 4.20: The top-ranked de-
sign 112 originated from fine-
tuning the LSTM model with
three natural product templates.

was selected for synthesis and bioactivity assessment.
In a third experiment, we added three additional natu-
ral products, namely bigelovin (109), isoprimaric acid
(110) and dehydroabietic acid (111), to the fine-tuning
set. We sampled again 1000 SMILES strings from this
fine-tuned model. A rise in valid sampled designs
(79%) was not observed with regard to the fine-tuning
with three templates. However, the amount of valid
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Figure 4.21: From fine-tuning the generative deep learning model with six natu-
ral products, the three high-ranked natural product mimetics 113, 114 and 115 were
selected for synthesis and bioactivity assessment.

unique structures did increase markedly (94%, 74% with respect to all samples) in com-
bination with a large proportion of novel compounds (99.8%). Within the unique sam-
ples, the fractions of close analogs (2%) and very small molecules (<1%) dropped no-
ticeably (Figure 4.19c). Despite the considerable number of chemically instable struc-
tures (25%), and non-functionalized compounds (18%), over 491 of the generated de-
signs (54%) were considered suitable for further investigations (Figure 4.19c). The 201
structures of these 491 preferred compounds, which were predicted as active for RXR
modulation by p<0.1 with SPiDER, were ranked using the WHALES descriptors. The
compounds 113-115 (Figure 4.21) were selected for synthesis and in vitro characteri-
zation from the 50 top-ranked designs according to their individual synthesizability
and building block availability. We evaluated the natural-product-likeness[257] of the
generated designs in comparison to the training molecules obtained from ChEMBL
and natural products retrieved from the Dictionary of Natural Products (DNP)[385]
(Figure 4.22). This score describes a similarity measure between the fragments de-
rived from the query molecule and natural product-derived fragments from a refer-
ence database. The de novo designs possessed a higher natural-product-likeness score
than ChEMBL molecules but were less natural-product-like than the natural product
entries from the dictionary of natural products. Furthermore, a scaffold analysis was
performed to further assess the structural novelty of generated de novo designs. The
molecular frameworks[72](graph scaffold) of the generated compounds were com-
pared to the frameworks of known RXR modulators from ChEMBL (EC50/IC50 < 50
µM, N = 521) and the natural product templates utilized for fine-tuning (Figure 4.23).
Independent from the fine-tuning set size, the most frequently occurring molecular
frameworks differed from frameworks of the natural templates and of known RXR
binders. This observation indicated that structural features of both synthetic and nat-
ural bioactive molecules were maintained by the training and fine-tuning step of the
generative model.
The computational designs 112-115 were synthesized as described in Figure 4.24. All
designs were obtained in one to four step(s) from commercially available building
blocks with established organic reactions. Compounds 112-115 were subsequently
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Figure 4.22: Comparison between the distribution of natural-product-likeness in-
dex[257] of the training molecules from ChEMBL[208], natural compounds from the
Dictionary of Natural Products (DNP),[385] the natural product templates, and the
sampled designs of the three different fine-tuned LSTM models. a) NP likeness in-
dex distribution of all compound sets and b) the corresponding boxplot representa-
tion. De novo designs showed a significantly higher natural-product-likeness than the
ChEMBL compounds but are less natural-product-like than the DNP entries (p<0.001,
Kruskal-Wallis test (H-Test) with post hoc Bonferroni correction with 30’000 randomly
selected entries from ChEMBL and DNP, respectively). Box plots indicate mean (cir-
cle), median (solid line), standard deviation (box) and 1st/99th percentile (whiskers).

characterized in vitro for their modulatory effects on three RXR subtypes (Table 4.8).
Design 112 and 113 showed no activities on RXRs at compound concentrations of 50
µM. 114 and 115 were confirmed as RXR agonists, whereof design 114 revealed po-
tency on all three RXR subtypes in the double-digit micromolar range. Design 115 had
agonistic activity on RXRα and RXRβ with low micromolar EC50 values, whereas no
activity of 115 on RXRγwas measured at 50 µM.
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We analyzed the novelty of designs 112-115 by calculating their structural similarity
to known RXR binders extracted from ChEMBL (EC50/IC50 < 50 µM) which were al-
ready used for scaffold analysis. We determined the maximum and average Jaccard-
Tanimoto similarity index between each selected design and the known RXR modula-
tors. The index ranges from 0 to 1 while greater values indicate higher molecular simi-
larity. The designs as well as the RXR binders from ChEMBL were represented by four
fingerprint descriptors commonly used in virtual screening[175] (AtomPairs finger-
prints,[386] RDKiT fingerprints,[261] Morgan fingerprints,[144] and MACCS keys.[142]
Low similarities were determined between designs 112-115 and known RXR modula-
tors (Table 4.9). Especially the low similarity in terms of the presence of branched atom-
centered fragments, as encoded by Morgan fingerprints, suggests structural novelty of

a) ChEMBL RXR binders

b) de novo designs - 1 template

c) de novo designs - 3 templates

d) de novo designs - 6 templates

e) natural product templates

8% 8% 4% 3% 3%

27% 5% 2% 1% 1%

13% 3% 2% 2% 2%

17% 7% 4% 3% 2%

33% 17% 17% 17% 17%

Figure 4.23: Molecular framework analysis of different compound sets.
Most frequent occurring frameworks of known RXR binders from ChEMBL
(EC50/IC50<50 µM, 521 compounds), the sampled designs generated by differently
fine-tuned AI-models, and of the natural product templates. Percentage indicates the
framework frequency within the considered compound set.
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Figure 4.24: Synthesis of designs 112-115.Reagents and conditions: (i) DMF, NEt3,
µw, 80 °C, 2 h, 18%; (ii) TBDMS−Cl, DMF, NEt3, room temperature, 24 h, 74%; (iii) 3-
formyl-4-methylphenylboronic acid, Cu(OAc)2, 4 Å-molecular sieve, CH2Cl2, NEt3,
room temperature, 4 h, 94%; (iv) malonic acid, pyridine/piperidine, µw, 100 °C, 30
min., 96%; (v) acryloyl chloride, CHCl3/DMF, NEt3, room temperature, 2 h, 23%; (vi)
EDC ·HCl, 4-DMAP, CHCl3, reflux, 16 h, 79%; (vii) acryloyl chloride, THF, pyridine,
r.t., 2 h, 66%; (viii) DMF, K2CO3, room temperature, 4 h, 39%; (ix) malonic acid, pyri-
dine/piperidine, µw, 100 °C, 30 min., 51%.
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Table 4.8: In vitro activity of designs 112-115 on RXRs. Reported EC50 values rep-
resent mean ± SEM [µM] and each concentration was tested in duplicates and each
experiment was repeated two times for inactive and four times for active compounds.

EC50 values ±SEM [µM]

Compound RXRα RXRβ RXRγ

112 >50 >50 >50
113 >50 >50 >50
114 29±5 27±1 19.1±0.1
115 16.9±0.6 15.7±0.8 >50

Natural product templates1 2.1 - 42.0 4.6 - 42.0 7.0 - 42.0
Ref. agonist2 0.033±0.002 0.024±0.004 0.025±0.002

1 Natural product template activities were reported as given in litera-
ture.[201, 382–384]

2 reference agonists, literature data: bexarotene[380] for RXRα/β/γ.

the selected designs.

Table 4.9: The Jaccard-Tanimoto similarity index was computed for four types of
molecular fingerprints (Atom Pairs, RdKiT, Morgan, MACCS keys) to quantify struc-
tural molecular similarity. Both the average and maximum similarity values to the
ChEMBL RXR binders are reported for each de novo design.

AtomPairs RdKiT Morgan MACCS

Compound average max average max average max average max

112 0.26 0.37 0.25 0.34 0.14 0.25 0.31 0.52
113 0.39 0.49 0.49 0.63 0.16 0.23 0.35 0.59
114 0.32 0.42 0.35 0.41 0.15 0.24 0.32 0.52
115 0.28 0.43 0.32 0.41 0.17 0.33 0.36 0.70

Conclusions

The results of the first study[246] validate the applicability of generative AI models to
molecular de novo design. The computational design approach led to the identifica-
tion of new agonists of nuclear receptors from known drug-like small molecules. The
bioactive designs 101-105 possess considerable potency and diverse selectivity profiles
on RXRs and PPARs. The designs were obtained by established chemical reactions
from commercially available building blocks suggesting that the model intrinsically
learned the chemical synthesizability. The results also indicate that a proper choice of
molecules for model fine-tuning permits task-related de novo design by generative AI.
With the second prospective study[247] we demonstrated that a small set of molecules
can be sufficient to fine-tune an AI-based model by transfer learning. A set of natu-
ral products, sharing similar activities on the same target family, has been utilized as
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template set for fine-tuning. The results illustrate the potential of this method to gen-
erate novel bioactive natural product mimetics located at uncharted areas in chemical
space at the interface of bioactive natural products and drug-like synthetic molecules.
Contrary to ruled-based de novo design approaches[128, 364] utilizing only one tem-
plate, the applied deep learning concept is not capable designing mimetics of a single
template. Under the currently used computational settings, the technique requires a
set of templates with a common biological target. If a model is fine-tuned purely on
a single template structure it will generate very often the template structure itself or
close analogs due to the minimization of the error function of the neural network. This
error function will reach a minimum if the template structure is reproduced. Therefore
one cannot expect de novo design generation from a single template without optimizing
the computational parameters of the deep neural network. On the basis of obtained re-
sults, even three templates are not sufficient to achieve the full potential of this method.
However, the great benefit of this generative AI model is its ability to design bioactive
NCEs from a set of selected bioactive molecules. The method was capable of designing
bioactive compounds from fine-tuning templates with different origins, in particular
synthetic drug-like molecules as well as natural products. Thus, generative AI for de
novo design has the potential to enhance future computational drug discovery and es-
pecially natural product-inspired medicinal chemistry.
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5 Conclusions and Outlook
Alternatively to traditional screening technologies for identifying novel bioactive mole-
cules, computational de novo design holds promise for discovering NCEs with prefer-
able biological activities by autonomous or semi-autonomous design approaches.[202]
These de novo design methods have been mainly applied to identify pharmacologically
active small molecules from drug-like reference compounds. In addition to such syn-
thetic molecules, another source of inspirations for developing novel drug-like com-
pounds are natural products. However, natural products have been rarely employed
as reference structures in computational de novo design. Therefore, this thesis exploits
the potential of the combination of natural products and computational de novo de-
sign. We employed the reaction-driven de novo design method as reported in my pre-
vious study[196] and extended our computational de novo design approach to generate
bioactive NCEs from pharmacologically active natural products. In addition, gener-
ative deep learning models were evaluated in prospective applications. Such models
present novel opportunities enabling the knowledge-driven design of molecules mim-
icking drug-like compounds and natural products.
In a first study, the neuroprotective 3,4-fused dihydrobenzofuran alkaloid galantha-
mine (68), an approved drug for treating mild to moderate Alzheimer’s Disease[275],
served as a template structure for reaction-driven de novo design tool DOGS (section 4.1).
After assessing the pharmacophoric similarity (CATS) to galanthamine, three out of
five designs with a CATS distance ≤1.2 contained the naturally occurring coumarin
core. For practicability, the proposed mimetic compounds were structurally simplified.
Such a manual modification step contradicts the basic principles of a reaction-driven
design concept. Although DOGS generates virtual products according to established
reactions, synthetic feasibility of each individual in silico design remains subject to eval-
uation by a chemist.
Six simplified coumarin-based mimetics were synthesized and evaluated in terms of
their biological acitivities on computationally predicted molecular targets, whereof
two mimetics weakly inhibited AChE, one of the main targets of galanthamine.[271]
This initial finding indicates both the potential as well as the limitation of our design
approach. On the one hand, the galanthamine mimetics inherited some of the essen-
tial structural features from their parent natural product for interacting with the known
parental molecular target. On the other hand, these structures possessed only weak ac-
tivities on AChE. This finding can be traced back to the similarity principle that similar
molecular structures have similar biological activities.[157] The similarity assessment
of two molecular structures varies by the choice of applied molecular descriptors and
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similarity metric.[156] Therefore, the obtained results are in agreement with reported
observations emphasizing that highly similar compounds do not inevitably possess
similar biological activities.[171] The identified coumarin-based mimetics contained a
natural product-derived "privileged" scaffold which is present in several natural prod-
ucts and drugs.[76] Privileged scaffolds are described as molecular frameworks which
can be decorated with different side chains to generate ligands binding to various tar-
get proteins.[77] The bioactivity data gathered in this study substantiates this descrip-
tion of privileged scaffolds and classifies the synthesized compounds as "frequent hit-
ters", a related concept designating structures which show activities in several biologi-
cal assays.[Roche2002a] However, the proposed structures can serve as starting points
for improving target specificity. Their molecular structures labeled as frequent hitters
can be also employed in database filtering to exclude these promiscuous compounds
from future screening collections and thereby increasing the efficiency of hit and lead
identification in drug discovery. Overall, the findings of this study revealed that com-
putational drug design has the potential of morphing a structurally intricate natural
product into small molecules comprising a natural product scaffold which differs form
the template scaffold. Contrary to the objective of generating NCEs, all mimetics were
described before, whereas only two had annotated bioactivities. At first glance, the
working hypothesis stating that our de novo design approach leads to novel bioactive
molecules, has to be rejected. But on closer inspection the results of this study show-
cased that our design concept provides opportunities to re-discover chemical entities
with readily available natural product-derived scaffolds. Also, hitherto unknown bio-
logical effects could be identified.
Based on the lessons learned from the aforementioned study, we applied our de novo
design approach to identify novel mimetics of the marine natural product marinopyr-
role A (section 4.2). The proposed target[306] of this anticancer agent was questioned
and partially disproved in the last few years[307–309]. Further molecular targets of
marinopyrrole A were computationally predicted and experimentally validated.[310]
We virtually generated marinopyrrole A mimetics by the computational de novo de-
sign tool DOGS, synthesized selected NCEs and evaluated their activities on confirmed
and other predicted molecular targets. The virtually constructed designs maintained
certain levels of similarity regarding the two implemented ways to represent molec-
ular structures. Both, molecular and reduced graph representation feature different
levels of abstraction from the template’s molecular constitution and composition aim-
ing to generate molecules with higher or lower similarity to their template structure.
Re-ranking the designs according to their pharmacophore similarity revealed that a
lower level of abstraction implies a higher level of molecular similarity. Among the
100 generated designs with the highest pharmacophore similarity (CATS distance ≤
1.8), 34 out of 100 designs contained a the 2,4,5-triphenyl imidazole scaffold. Selected
structurally unmodified designs containing the 2,4,5-triphenyl imidazole scaffold were
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synthesized according to the computationally proposed synthetic route. Opposite to
the results of our first study, this outcome showed that reaction-driven de novo design
tools are capable of proposing feasible synthetic routes to newly designed molecules
only on the basis of implemented organic reactions. However, the current version of
DOGS does not consider protecting groups. The proposed synthetic route was slightly
adapted by introducing a proctection group. This type of manual optimization still
requires human expertise. DOGS as rule-based tool is based on a pre-defined set of
common organic reactions which limits the covered spaces to areas which are similar
to those explored by medicinal chemists.[387] The question remains whether a larger
set of implemented reaction scheme can be beneficial to explore promising areas of the
biologically relevant chemical space. The fact that all synthesized mimetic structures
were NCEs indicates that many "white spots" in apparently well-explored areas of the
relevant chemical space still exist. Computational de novo design is well-suited to fill
these gaps.
After synthesizing the marinopyrrole A mimetics, we examined their bioactivities on
already known and potential novel targets as predicted by our computational target
prediction software (SPiDER). Both the template and its mimetics had several pre-
dicted target families in common (Table 4.3). The in vitro characterization of these tar-
gets unveiled that in some cases the natural product and its mimetics displayed similar
activities. In other cases no molecule had measurable effect at the compound concen-
tration of the initial screening. When determining the inhibitory effects of marinopyr-
role A and its mimetics on COX-1 and COX-2, we realized that both showed inhibition
of at least one cyclooxygenase subtype (Table 4.4). But we also found that mimetic
structures (85a and 87) not only inherited necessary features from their parental natu-
ral product to inhibit the cyclooxygenases. they exceeded the activity of marinopyrrole
A on COX-1 and showed a strong selectivity towards this subtype (Table 4.4). This re-
sults is a further indication that the molecular similarity concept holds true. Therefore,
our design approach led to the discovery of mimetics surpassing the effects of their
template structure. The characterized in vitro bioactivity of marinopyrrole A and its
mimetics showcased that structurally similar compounds can possess similar bioactiv-
ity, but deviations from the similarity principle can be observed.
Overall, these results illustrated that our approach to select molecular targets with
a computational ligand-based target prediction software like SPiDER relies again on
the molecular similarity principle.[157] The fact that our approach is built on ligand
information and their annotated targets but lacking structural information of the lat-
ter is both a blessing and a curse. A blessing because this concept can be applied to
molecules with yet unknown targets like many natural products, or in cases where the
protein structure has not been resolved yet. A curse because our approach covers a
target space that is limited to the annotated targets of the associated ligand set. This
excludes the identification of orphan targets. Methods which have been developed to
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predict ligands for orphan targets[388], still need information about structurally sim-
ilar protein structures as necessary prerequisite. Ligand-based concepts lack detailed
knowledge about interactions between a ligand and its target. Especially precise infor-
mation about regions of the ligands which are necessary for its binding to the target. It
is reasonable to assume that ligand-based target prediction with "fuzzy" molecular de-
scriptors will help to identify bioactive chemical entities with novel chemotypes rather
than finding ligands with a high affinity to a molecular target. Besides the in vitro
characterization of predicted targets, we tested our novel marinopyrrole A mimetics
against previously recognized targets. In the case of the glucocorticoid receptor, both
computationally retrieved designs 85 and 86 and the intermediate 87 exhibited both
the ability to interact with the target and also exhibited comparable potencies in the
performed binding competition assays. From a pharmacological point of view, these
activities represent the most relevant findings of this study due to fact that the expres-
sion of the initial proposed target of marinopyrrole A, MCL-1, is directly regulated by
the glucocorticoid receptor.[389] Further results from functional assays are necessary
to characterize whether these structures agonize or antagonize glucocorticoid recep-
tors and thus up- or downregulate the protein expression level of MCL-1 and other
targets. Besides the glucocorticoid receptor, marinopyrrole A displayed activities with
noteworthy potencies on CCK2 , OX1 and OX2, whereas only one mimetic compound
(86) showed bioactivity on two out of three targets (CCK2 and OX1). Finally, the re-
sults obtained in this study provide further evidence that our ligand-based design ap-
proach possesses a huge potential to successfully design and pick mimetic compounds
by in silico tools together with a computational selection of possible molecular targets.
This study comprising of a fully computer-guided "design-make-test" cycle offers op-
portunities to discover novel active compounds from bioactive ligands of which no
molecular targets have been disclosed yet, or a structure-based approach can be ex-
cluded due to the lack of resolved target protein structures.
The two previously mentioned studies comprised a computational design approach
combining 2D molecular representation, similarity assessment and target prediction.
As such, all kind of three-dimensional information was ignored. In principle, 2D-based
descriptors can provide comparable and in some cases better results than the corre-
sponding 3D descriptors.[131] A careful estimation of benefits and drawbacks of each
selected descriptor is a necessary requirement.[204] Due to the fact that both molecular
targets and ligands are 3D objects, the preferred spatial orientation of such a ligand is
an essential aspect. 3D Descriptions of molecules have a higher information content
and especially natural products with their unique frameworks displayed improved se-
lectivity and frequency to biological targets.[390] Consequently, we extended our de-
sign strategy by incorporating a 3D similarity method to select molecules with similar
shapes (section 4.3). The chosen method describes the molecular shape in terms of the
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fractal dimensionality of its surface, expressed as a float number. The concept of frac-
tal dimension has been applied before to identify surface patches of macromolecular
structures which are involved in ligand-protein interactions.[347] As a case study, we
reverted back to a previous example in which (-)-englerin A served as the template for
our design approach.[196] The resulting mimetics displayed activities on some known
targets of englerin A (TRPM8), but were inactive on TRPC4 activated by englerin A
with nanomolar concentrations.[198, 199] We re-ranked the de novo design collection
according to the shape similarity of each entry to (-)-englerin A. We further prioritized
designs of the most similar compounds which had a predicted activity on the TRP ion
channel family. 10 out of 30 structures were predicted as active and two compounds
(92 and 93) were synthesized and characterized by their modulatory effects on TRP ion
channels. Mimetic 92 showed weak activity on TRPC4 at the screening concentration,
but was inactive on all other examined TRP channels. Molecule 93, however, inhibited
TRPC4 and TRPM8 at low micromolar concentrations, and had weak inhibitory effects
on TRPV4. These observations illustrate that essential structural features have been
translated from the parent natural product to the mimetic through our earlier design
approach. But the results also indicate again the boundaries of our strategy. To com-
putationally predict the different modes of action of a given ligand, information about
the target structure, its flexibility and binding modes of other active ligands are an es-
sential prerequisite. Given that this information is not included in our ligand-based
approach, our strategy is unsuitable to intentionally design a modulator with a certain
mode of action.
Taken together, the results from these three studies implicate that the combination of
reaction-driven de novo design and natural products offers a promising concept to dis-
cover novel bioactive molecules for early drug discovery. Our concept provides a cus-
tomizable computational framework to identify pharmacologically active NCEs from
natural product templates. However, the major limitation of our design approach is
the inability to incorporate structural information from different molecules. Integrat-
ing several reference structures with common molecular targets could help to recog-
nize essential but non-obvious structural features conserved across different reference
structures. A way to overcome this limitation would be to combine the results from
independent design processes of each reference structure. In theory, joint chemical
entities of all generated designs should have inherited some of the shared structural
features from all reference structures. However, the probability to identify identical
structures from distinct design runs is rather small. It remains to be examined to what
extent this information is preserved during the entire design approach.

Generative deep learning models present an innovative solution to create new bioac-
tive chemical entities by capturing crucial features from large sets of reference struc-
tures. In detail, we utilized RNNs containing LSTM cells[242] and trained these on
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a large set of highly active compounds, retrieved from the ChEMBL database. These
generative LSTM models have been shown to generate valid molecular structures from
their SMILES representations.[244] In two prospective applications ((section 4.4)) we
showed that these deep learning models were capable of designing new bioactive
chemical entities from different sets of active ligands. In our first proof-of-principle
study, we employed 25 molecules with known agonistic effects on two nuclear receptor
types (PPAR and RXR) for transfer learning. The sampled designs from this fine-tuned
model showed high proportion of valid and unique structures (90%) of which all gen-
erated molecules represented novel entities with novel meaning that they were neither
identical to entries in the training nor to the fine-tuning set. The areas of chemical space
populated by the generated designs were located within the training data domain and
additionally covered target-related regions of the two investigated nuclear receptors
(Figure 4.16). This finding implies that LSTM-based generative models are able to en-
compass structural features shared among several active ligands of a particular target
by exclusively taking their SMILES representations into account. The possibility to
define a structural element as a common starting fragment of all samples turned out
to be a useful extension to obtain a target-focused library. Designs for synthesis and
in vitro characterization were selected by molecular similarity assessment and in silico
target prediction. The synthetic feasibility of the five selected designs is an indication
that the model implicitly learned to generate synthesizable moelcules form training on
drug-like compounds. The experimental results corroborate the theoretical observa-
tions that generative deep learning models are well suited to design bioactive NCEs
on the basis different ligands with annotated activities. The outcome of this proof-of-
principle study marks an important point in the field of generative deep learning as
novel approach in molecular de novo design. This study confirmed experimentally the
so far only theoretically proven capability to design novel bioactive molecules by gen-
erative deep learning. After this first successful application, we employed generative
deep learning models to obtain mimetic structures from a selection of natural prod-
ucts interacting with the same protein target family. As in the previous study, a deep
learning model, trained on drug-like molecules, was fine-tuned on up to six natural
products. Fine-tuning on a single natural product would be a comparable approach
to our previously applied reaction-driven de novo design concept. However, the find-
ings revealed that the model was not able to create appropriate chemical entities with
one fine-tuning template. The observed increased level of valid and unique structures
showed that with six template structures, our deep learning model can generate an suf-
ficient amount of de novo designs. Independent of the fine-tuning set size, all de novo
designs possessed molecular frameworks differing from their templates and known
RXR binders. This indicates that our model generates chemical entities with novel
structural features allowing to discover yet under-explored areas in chemical space.
In terms of their natural product likeness score,[257] the generated designs were less
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natural product-like than entries of the DNP, but more natural product-like than com-
pounds of the ChEMBL database. This reflects the fact that the model was initially
trained on molecules retrieved from ChEMBL and then fine-tuned on a set of natural
products. The model seemed to have captured structural features of both domains,
natural products and synthetic compounds. After synthesis of the four selected com-
pounds (112-115), in vitro characterization of these mimetics on the three RXR subtyes
revealed that two out of four molecules showed agonistic effects on at least two sub-
types of RXR with EC50 values between 16.9 - 29.0 µM. Although the individual in vitro
activities of the mimetics were lower in comparison to their natural product templates
(2.1 - 42.0 µM), the overall activity range of the designs was similar to the range of
their templates. Overall, our investigations confirm the hypothesis that novel bioac-
tive chemical entities can be designed by the help of generative deep learning.
In this thesis, we have demonstrated that the combination of computational methods
and natural products as a source of inspiration can lead to the identification of bioac-
tive NCEs for early drug discovery. Reaction-driven molecule assembly and generative
deep learning represent powerful tools which can utilize natural product templates to
design synthetically more accessible and bioactive mimetics. The current limitations,
like unfeasible proposed synthetic pathways, or the inability to work with more than
one template structure, or the uncertainties in predicting biological activities, only to
name a few, present valid starting points for future studies to enhance the full potential
of these tools.
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A Supplementary Information

A.1 Supplementary Information to Section 4.1

Computational Results

Table A.1: Target predictions by SPiDER for galanthamine (68) and the mimetics 72-
77. Only targets with a p-value ≤0.05 (false positive rate, rounded up to two decimal
places) were reported.

Cmpd Target p-value

68 Endopeptidase 0.05
Dopamine Receptor 0.04
Sodium:Neurotransmitter Symporter 0.03
Phosphodiesterase 0.04
Muscarinic Acetylcholine Receptor 0.05
Opioid Receptor 0.04
Sodium Channel 0.04
Acetylcholinesterase 0.03
Serotonin Receptor 0.03
Adrenergic Receptor 0.03
Sigma Receptor 0.03
Nicotinic Acetylcholine Receptor 0.02

72 Cystic Fibrosis Transmembrane Conductance Regulator 0.02
DNA Topoisomerase 0.04
Phosphodiesterase 0.02
Arachidonate 5-Lipoxygenase 0.03
Tyrosine Kinase 0.04
Cyclooxygenase 0.03
Adenosine Receptor 0.04

73 Cannabinoid Receptor 0.01
Sodium:Neurotransmitter Symporter 0.00
Phosphodiesterase 0.01
Muscarinic Acetylcholine Receptor 0.01
Aromatase 0.01
Nicotinicoid LGIC GABA Receptor 0.02
Phospholipase 0.03

Continued on next page
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Table A.1 – Continued from previous page
Cmpd Target p-value

Metabotropic Glutamate Receptor 0.01
Arachidonate 5-Lipoxygenase 0.02
Melatonin Receptor 0.02
Aggregation Inhibitor 0.01
Tyrosine Kinase 0.04
Serotonin Receptor 0.00
11beta-Hydroxysteroid Dehydrogenase 0.02
Adrenergic Receptor 0.01
Steroid 5-Alpha-Reductase 0.00
Cyclooxygenase 0.01
Prostanoid Receptor 0.03
Androgen Receptor 0.00
Nicotinic Acetylcholine Receptor 0.00
Histamin Receptor 0.04

74 DNA Topoisomerase 0.05
Phosphodiesterase 0.03
Phospholipase 0.03
Tyrosine Kinase 0.02
Endopeptidase 0.04
Hydroxycarboxylic Acid Receptor 0.02
RNA Polymerase 0.04
DNA Polymerase 0.03
Adenosine Receptor 0.03

75 Cannabinoid Receptor 0.01
Sodium:Neurotransmitter Symporter 0.01
Phosphodiesterase 0.01
Muscarinic Acetylcholine Receptor 0.00
Aromatase 0.01
Nicotinicoid LGIC GABA Receptor 0.02
Phospholipase 0.03
Metabotropic Glutamate Receptor 0.01
Arachidonate 5-Lipoxygenase 0.02
Melatonin Receptor 0.02
Aggregation Inhibitor 0.01
Tyrosine Kinase 0.04
Serotonin Receptor 0.00
11beta-Hydroxysteroid Dehydrogenase 0.03

Continued on next page
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Table A.1 – Continued from previous page
Cmpd Target p-value

Adrenergic Receptor 0.02
Steroid 5-Alpha-Reductase 0.00
Cyclooxygenase 0.02
Prostanoid Receptor 0.03
Androgen Receptor 0.00
Nicotinic Acetylcholine Receptor 0.00
Histamin Receptor 0.04

76 Cystic Fibrosis Transmembrane Conductance Regulator 0.02
DNA Topoisomerase 0.05
Phosphodiesterase 0.03
B-Cell Lymphoma 0.04
Arachidonate 5-Lipoxygenase 0.05
Tyrosine Kinase 0.04
Estrogen Receptor 0.01
Hydroxycarboxylic Acid Receptor 0.05
RNA Polymerase 0.04

77 Cannabinoid Receptor 0.01
Sodium:Neurotransmitter Symporter 0.01
Phosphodiesterase 0.01
Muscarinic Acetylcholine Receptor 0.01
Aromatase 0.02
Nicotinicoid LGIC GABA Receptor 0.02
Phospholipase 0.03
Metabotropic Glutamate Receptor 0.01
Arachidonate 5-Lipoxygenase 0.02
Melatonin Receptor 0.02
Aggregation Inhibitor 0.01
Tyrosine Kinase 0.04
Serotonin Receptor 0.00
11beta-Hydroxysteroid Dehydrogenase 0.02
Adrenergic Receptor 0.02
Steroid 5-Alpha-Reductase 0.00
Cyclooxygenase 0.02
Prostanoid Receptor 0.03
Androgen Receptor 0.00
Nicotinic Acetylcholine Receptor 0.00
Histamin Receptor 0.04
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Table A.2: Predicted Targets by SPiDER software with a p-value≤ 0.05. Entries were
sorted according to compound counts (large to small) per predicted target.

Predicted Target Compound(s) Count

Phosphodiesterase 68, 72, 73, 74, 75, 76, 77 7
Tyrosine Kinase 72, 73, 74, 75, 76, 77 6
Arachidonate 5-Lipoxygenase 72, 73, 75, 76, 77 5
Sodium:Neurotransmitter Symporter 68, 73, 75, 77 4
Muscarinic Acetylcholine Receptor 68, 73, 75, 77 4
Serotonin Receptor 68, 73, 75, 77 4
Adrenergic Receptor 68, 73, 75, 77 4
Nicotinic Acetylcholine Receptor 68, 73, 75, 77 4
Cyclooxygenase 72, 73, 75, 77 4
Phospholipase 73, 74, 75, 77 4
DNA Topoisomerase 72, 74, 76 3
Cannabinoid Receptor 73, 75, 77 3
Aromatase 73, 75, 77 3
Nicotinicoid LGIC GABA Receptor 73, 75, 77 3
Metabotropic Glutamate Receptor 73, 75, 77 3
Melatonin Receptor 73, 75, 77 3
Aggregation Inhibitor 73, 75, 77 3
11beta-Hydroxysteroid Dehydrogenase 73, 75, 77 3
Steroid 5-Alpha-Reductase 73, 75, 77 3
Prostanoid Receptor 73, 75, 77 3
Androgen Receptor 73, 75, 77 3
Histamin Receptor 73, 75, 77 3
Cystic Fibrosis Transmembrane Conductance Regulator 72, 76 2
Adenosine Receptor 72, 74 2
Hydroxycarboxylic Acid Receptor 74, 76 2
RNA Polymerase 74, 76 2
Endopeptidase 68 1
Dopamine Receptor 68 1
Opioid Receptor 68 1
Sodium Channel 68 1
Acetylcholinesterase 68 1
Sigma Receptor 68 1
Endopeptidase 74 1
DNA Polymerase 74 1
B-Cell Lymphoma 76 1
Estrogen Receptor 76 1
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Table A.3: Calculated properties of compounds 72-77. (MW = Total Molecular
Weight (g/mol), cLogP = calculated logarithmic partition coefficient, HBA = count of
hydrogen bond acceptors, HBD = count of hydrogen bond donors, PSA = polar sur-
face area (Å), RB = count of rotatable bonds, LE = ligand efficiency = 1.4(-logIC50)/N,
where N is number of non-hydrogen atoms)

Cmpd MW cLogP HBA HBD PSA RB Assay IC50 [nM] LE

72 216.24 2.06 3 1 46.53 0 PDE3A 2600 0.48
72 5-HT2b (anta.) 1600 0.50
73 230.26 2.34 3 0 35.53 1 5-HT2b(anta.) 2000 0.46
73 AChE 52000 0.35
74 232.23 1.72 4 2 66.76 0 PDE3A 2100 0.46
74 JAK2 59000 0.34
75 260.29 2.27 4 0 44.76 2 PDE3A 6300 0.38
75 M1 (anta.) 15000 0.35
75 AchE 16000 0.35
76 232.23 1.72 4 2 66.76 0 COX-1 370 0.52
76 5-HT2b(anta.) 1700 0.47
76 M1(anta.) 7100 0.42
76 JAK2 13000 0.39
76 ERß 46000 0.35
77 260.29 2.27 4 0 44.76 2 - - -
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Chemistry

General Procedure of a Microwave-Assisted Pechmann-Coumarin Synthesis

The coumarin derivatives were prepared following an updated literature procedure.[295]
An oven dried microwave vial (0.5-2 ml) equipped with a Teflon-coated stirring bar
was charged with phenol derivative (1.00 eq), ethyl 2-oxocyclohexane-1-carboxylate
(1.00 eq) and TFA (0.5 ml/mmol) and closed using an aluminum open-top seal with a
PTFE-faced septum. The reaction mixture was microwave-irradiated for 30 min at 100
°C. After cooling down to room temperature, the reaction mixture was added drop-
wise into intensely stirred (1000 rpm) ice cold water (50 ml). The formed precipitate
was filtered and washed with ice cold water ( 3 x 10 ml) to afford the product. The solid
product was dissolved in EtOH (60 °C) and allowed to cool down to room tempera-
ture. Deionized water was added after 24 h. The resulting crystals were collected by
suction filtration and washed with ice-cold water (3 x 10 ml). The crystals were dried
under high vacuum for at least 7 h.

3-Hydroxy-7,8,9,10-tetrahydro-6H-dibenzo[b,d]pyran-6-one (72)

O OHO

Reaction of resorcinol (113.6 mg, 1.02 mmol), ethyl 2-oxocyclohexane-1-carboxylate
(188.5 mg, 1.05 mmol) in TFA (0.51 ml) led to white crystals of 72 (0.132 g, 58 %).
MP: 205.8 °C(decmp.); 1H-NMR (400 MHz, DMSO-d6) δ = 10.31 (s, 1H, OH), 7.50 (d,
J = 8.73 Hz, 1H, CHar), 6.76 (d, J = 8.81 Hz, 1H, CHar), 6.67 (s, 1H, CHar), 2.71 (s, 2H,
CH2), 2.37 (s, 2H, CH2), 1.85 - 1.60 (m, 4H, 2x CH2); 13C-NMR (101 MHz, DMSO-d6)
δ = 161.42 , 160.30, 153.48, 125.48, 118.89, 113.12, 112.43, 102.38, 25.03, 23.95, 21.72,
21.35; HR-MS (ESI-TOF): calculated for C13H13O3: m/z 217.0859, found: m/z 217.0858
[M+H]+.

3-Methoxy-7,8,9,10-tetrahydro-6H-dibenzo[b,d]pyran-6-one (73)

O OO

Reaction of 3-methoxyphenol (0.120 ml, 1.05 mmol), ethyl 2-oxocyclohexane-1-carboxylate
(0.171 ml, 1.01 mmol) in TFA (0.5 ml) led to neon-green crystals of 73 (50.8 mg, 22%).
MP: 107.1 °C; 1H-NMR (400 MHz, DMSO-d6) δ = 7.61 (dd, J = 0.75, 8.43 Hz, 1H, CHar),
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6.98 - 6.88 (m, 2H, CHar), 3.84 (s, 3H, CH3), 2.80 - 2.72 (m, 2H, CH2), 2.43 - 2.36 (m, 2H,
CH2), 1.82 - 1.65 (m, 4H, 2x CH2); 13C-NMR (101 MHz, DMSO-d6) δ =161.67, 161.34,
153.44, 148.02, 125.39, 119.86, 113.54, 112.36, 100.90, 56.23, 25.11, 24.00, 21.67, 21.30;
HR-MS (ESI-TOF): calculated for C14H15O3: m/z 231.1016, found: m/z 231.1021 [M+H]+.

2,3-Dihydroxy-7,8,9,10-tetrahydro-6H-dibenzo[b,d]pyran-6-one (74)

O OHO

HO

Reaction of benzene-1,2,4-triol (300 mg, 2.35 mmol) and ethyl 2-oxocyclohexane-1-
carboxylate (422 mg, 2.35 mmol) in TFA (1 ml) led to brownish crystals of 74 (0.416
g, 76 %).
MP: 230.0 °C(decomp.); 1H-NMR (400 MHz, methanol-d4): δ = 7.00 (s, 1H, CHar), 6.71
(s, 1H, CHar), 2.80 - 2.70 (m, 2H, CH2), 2.53 - 2.43 (m, 2H, CH2), 1.91 - 1.75 (m, 4H, 2x
CH2); 13C-NMR (75 MHz, methanol-d4) δ = 164.8, 150.3, 150.1, 147.9, 144.2, 120.2, 113.7,
109.0, 103.5, 26.4, 24.9, 22.8, 22.5; HR-MS (ESI-TOF): calculated for C13H12O4Na : m/z
255.0628, found: m/z 255.0632 [M+Na]+.

2,3-Dimethoxy-7,8,9,10-tetrahydro-6H-dibenzo[b,d]pyran-6-one (75)

O OO

O

Reaction of 3,4-methoxyphenol (117 mg, 0.74 mmol) and ethyl 2-oxocyclohexane-1-
carboxylate (133 mg, 0.74 mmol) in TFA (0.37 ml) led to yellow crystals of 75 (172 mg,
89 %).
MP: 186.5 °C; 1H-NMR (400 MHz, chloroform-d): δ = 6.43 (d, J = 2.4 Hz, 1H, CHar),
6.29 (d, J = 2.4 Hz, 1H, CHar), 3.83 (d, J = 1.8 Hz, 6H, 2x OCH3), 3.05 (tt, J = 3.0, 5.9
Hz, 2H, CH2), 2.61 – 2.47 (m, 2H, CH2), 1.73 (p, J = 3.4 Hz, 4H, 2x CH2); 13C-NMR (101
MHz, chloroform-d) δ = 162.4, 151.5, 147.6, 147.1, 146.1, 121.1, 112.8, 104.3, 100.0, 56.5,
56.4, 25.6, 24.0, 21.8, 21.6; HR-MS (ESI-TOF): calculated for C15H16O4Na : m/z 283.0941,
found: m/z 283.0944 [M+Na]+.
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1,3-Dihydroxy-7,8,9,10-tetrahydro-6H-dibenzo[b,d]pyran-6-one (76)

O O

OH

HO

Reaction of benzene-1,3,5-triol (143 mg, 1.11 mmol) and ethyl 2-oxocyclohexane-1-
carboxylate (186 mg, 1.04 mmol) in TFA (0.5 ml) and purified by flash chromatography
(SiO2, CH2Cl2/MeOH, 20:1 (v/v)) led to white crystals of 76 (149 mg, 58 %).
MP: 265 °C; 1H-NMR (400 MHz, DMSO-d6) δ = 10.33 (s, 1H, OH), 10.08 (s, 1H, OH),
6.24 (d, J = 2.4 Hz, 1H, CHar), 6.14 (d, J = 2.4 Hz, 1H, CHar), 3.04 (dq, J = 2.8, 3.7, 5.6 Hz,
2H, CH2), 2.34 (dt, J = 1.8, 4.1 Hz, 2H, CH2), 1.74 – 1.58 (m, 4H, 2x CH2); 13C-NMR (101
MHz, DMSO-d6) δ = 161.30, 160.09, 157.78, 155.03, 150.49, 116.58, 102.51, 99.79, 94.69,
29.60, 24.51, 22.20, 21.34; HR-MS (ESI-TOF): calculated for C13H13O4: m/z 233. 0808,
found: m/z 233.0809 [M+Na]+.

1,3-Dimethoxy-7,8,9,10-tetrahydro-6H-dibenzo[b,d]pyran-6-one (77)

O O

O

O

Reaction of 3,5-dimethoxyphenol (200 mg, 1.26 mmol) and ethyl 2-oxocyclohexane-1-
carboxylate (225 mg, 1.26 mmol), in TFA (0.6 ml) led to white crystals of 77 (271 mg, 83
%).
MP: 176.2 °C; 1H-NMR (400 MHz, chloroform-d): δ = 6.43 (d, J = 2.5 Hz, 1H, CHar),
6.29 (d, J = 2.5 Hz, 1H, CHar), 3.84 (s, 3H, OCH3), 3.83 (s, 3H, OCH3), 3.10 - 3.00 (m,
2H, CH2), 2.59 - 2.49 (m, 2H, CH2), 1.78 - 1.67 (m, 4H, 2x CH2); 13C-NMR (101 MHz,
chloroform-d) δ = 162.1, 161.6, 158.9, 155.1, 150.1, 119.3, 105.3, 95.8, 93.3, 55.8, 55.8, 30.0,
24.7), 22.5, 21.4; HR-MS (ESI-TOF): calculated for C15H17O4: m/z 261.1121, found: m/z
261.1126 [M+H]+.



A.1. Supplementary Information to Section 4.1 141

X-Ray Structures

b

c

a o

b

a
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Figure A.1: X-ray structure and packing of compound 72 (top), 73 (middle) and 74
(bottom).
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Dynamic Light Scattering

Figure A.2: Compound 74 at 62.50 µM showed aggregation behaviour (exponential
decaying correlation function) in H2O after 0 min.

Figure A.3: No aggregation behaviour of compound 74 at 31.25 µM in H2O after 60
min was observed.
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In Vitro Characterization
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Figure A.4: Activation or inhibition of galanthamine (68) on selected targets in
an initial screening at a concentration of 10 µM with two replicates. Galanthamine
showed no or only weak activity on the investigated target set. The effect of galan-
thamine on estrogen ERβwas not determined.
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Figure A.5: Activation or inhibition of galanthamine mimetics a) 72 and b) 73 on
selected targets in an initial screening at a concentration of 10 µM with two replicates.
Galanthamine showed no or only weak activity on the investigated target set. The
effects of the mimetics 72 and 73 were not determined on the several indicated targets.
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Figure A.6: Activation or inhibition of galanthamine mimetics a) 74 and b) 75 on
selected targets in an initial screening at a concentration of 30 µM with two replicates.
Galanthamine showed no or only weak activity on the investigated target set. The
effects of the mimetics 74 and 75were not determined on the several indicated targets.
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Figure A.7: Activation or inhibition of galanthamine mimetics a) 76 and b)77 on
selected targets in an initial screening at a concentration of 10 (76) or 30 µM (77) with
two replicates. Galanthamine showed no or only weak activity on the investigated
target set. The effects of the mimetics 76 and 77were not determined on the several
indicated targets.
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Figure A.8: In vitro activity data of mimetics 72-76 against the targets: a) Phosphodi-
esterase 3A (PDE3A), b) serotonin receptor (5HT2b), c) choline receptor (muscarinic)
(M1), d) janus kinase 2 (JAK2), e) acetylcholineesterase (AChE), f) cyclooxygenase
(COX-1).
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Figure A.9: Effects of galanthamine and compound 76 on a) COX-1 activity in hu-
man platelets, b) isolated bovine COX-1, and c) isolated human recombinant COX-2.
Mean ± S.E. from n = 3 independent experiments. *P < 0.05, **P < 0.01, ***P < 0.001
vs. vehicle control. Repeated measures ANOVA+ Tukey HSD post hoc tests.
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Figure A.10: Effects of galanthamine and compound 76 (a – c) and reference COX
inhibitors (d) on COX-2-drived prostaglandin formation in human monocytes. Mean
± S.E. from n = 3 independent experiments. *P < 0.05, **P < 0.01, ***P < 0.001 vs.
vehicle control. Repeated measures ANOVA+ Tukey HSD post hoc tests.
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Computational Results
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Figure A.11: Five most frequent scaffolds in the de novo design set (Ntotal = 802). The
2,4,5-triphenyl imidazole scaffold was the most common scaffold.

N

H
N

O

N

N

O N

O

O

O

N

O

O

N

N

O N

O
N

O

N N

N = 34 9 4 3 3

N = 34 12 4 3 3
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respectively.
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Figure A.14: Proportion of protein families of predicted molecular targets of (a) all
designs obtained from DOGS (802 entities) and (b) of the 100 most similar designs
according to their CATS distance.
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Figure A.15: Ten most frequent predicted protein families of all DOGS designs.
From the target prediction of these top-ranked designs, all annotated subtypes of each
protein family were counted (Ntotal = 9418).
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Chemistry

2-Allyl-6-(4,5-bis(2-chlorophenyl)-1H-imidazol-2-yl)phenol (87)

Cl

Cl

N

N
H

HO

1,2-bis(2-Chlorophenyl)ethane-1,2-dione (88, 516 mg, 1.8 mmol, 1.0 eq), 3-allyl-2-hy-
droxybenzaldehyde (89, 300 mg, 1.8 mmol, 1.0 eq) and ammonium acetate (1.5 g 18.4
mmol, 10.2 eq) were dissolved in glacial acetic acid (10 ml) and heated for 5 minutes
to 180 °Cunder microwave irradiation. The mixture was then allowed to cool to room
temperature and added dropwise to a cold ammonium hydroxide solution (25%, 150
ml). A yellow precipitate was filtered off and the solid was washed with cold water.
The crude solid was purified by column chromatography using hexane/CH2Cl2 (6:1 +
5% MeOH) to CH2Cl2 with 5% MeOH as mobile phase to yield the title compound 87
as colorless solid (210 mg, 27%).
MP: 70 °C; 1H NMR (400 MHz, DMSO-d6): δ = 13.28 (s, 1H, NH), 13.09 (s, 1H, OH),
7.85 (dd, J = 7.9, 1.6 Hz, 1H, CHar), 7.60 – 7.52 (m, 1H,CHar), 7.51 – 7.25 (m, 7H, CHar),
7.15 (dd, J = 7.4, 1.4 Hz, 1H, CHar), 6.90 (t, J = 7.6 Hz, 1H, CHar), 6.01 (ddt, J = 16.7,
10.1, 6.6 Hz, 1H, CH2=CH), 5.12 – 5.00 (m, 2H, CH=CH2), 3.48 – 3.36 (m, 2H, CarCH2);
13C-NMR (100 MHz, DMSO-d6): δ = 154.5, 145.1, 136.7, 134.0, 133.2, 132.5, 132.3, 131.6,
130.6, 130.3, 129.9 , 129.8, 129.4, 129.3, 127.4, 127.3, 127.0, 126.1, 122.8, 119.5, 118.6, 115.6,
112.3, 33.6; HR-MS (ESI-TOF) calculated for C23H19Cl2N2O +

2 : m/z 421.0869, found: m/z
421.0871 [M+H]+.

2-Allyl-6-(4,5-bis(2-chlorophenyl)-1H-imidazol-2-yl)phenyl-2-((tert-butyldiphenyl-
silyl)oxy) acetate

2-((tert-Butyldiphenylsilyl)oxy)acetic acid (130 mg, 413.00 µmol, 1.16 eq) was dissolved
in CH2Cl2 (2 ml). 4-(Dimethylamino)pyridine (6.20 mg , 50.00 µmol, 0.14 eq) and 87
(150 mg, 356 µmol, 1 eq) were added to the reaction mixture and cooled to 0 °C. Af-
ter 15 min, N,N’-dicyclohexylcarbodiimide (44 mg, 214 µmol, 1.50 eq) in CH2Cl2 (1
ml) was added slowly and the mixture was stirred for 1 h at 0 °C. The reaction solu-
tion was allowed to warm up to room temperature and stirred for further 16 h. White
precipitates was filtered off, and the filtrate was diluted with EtOAc (20 ml). The or-
ganic solution was washed with water (25 ml) and brine (25 ml), dried over MgSO4,
and concentrated under reduced pressure. The crude product was purified by column
chromatography using hexane/EtOAc (7:1 to 3:1) as mobile phase to yield compound
as colorless solid (96 mg, 38%).
1H NMR (400 MHz, acetone-d6): δ = 11.77 (s, 1H, NH), 7.99 (dd, J = 3.0, 6.5 Hz, 1H,
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CHar), 7.76 – 7.71 (m, 4H, CHar), 7.52 (dd, J = 1.8, 7.5 Hz, 1H, CHar), 7.50 (d, J = 1.3 Hz,
1H, CHar), 7.48 (d, J = 1.4 Hz, 1H, CHar), 7.46 (t, J = 1.6 Hz, 1H, CHar), 7.44 (t, J = 1.0
Hz, 1H, CHar), 7.43 (t, J = 1.1 Hz, 1H, CHar), 7.41 (t, J = 1.6 Hz, 1H, CHar), 7.38 – 7.33
(m, 3H, CHar), 7.30 (dd, J = 1.8, 7.3 Hz, 1H, CHar), 7.28 – 7.23 (m, 2H, CHar), 7.21 (dd,
J = 1.4, 7.4 Hz, 1H, CHar), 5.89 (ddt, J = 6.7, 10.1, 16.8 Hz, 1H, (ddt, J = 16.7, 10.1, 6.6 Hz,
1H, CH2=CH), 5.07 – 4.97 (m, 2H, CH=CH2), 4.77 (d, J = 9.7 Hz, 2H, C(=O)CH2, 3.27
(dd, J = 1.5, 6.7 Hz, 2H, CarCH2), 1.05 (s, 9H, 3x CH3). 13C-NMR (100 MHz, DMSO-d6):
δ = 210.1, 169.8, 136.3, 135.4, 132.4, 130.5, 130.0, 129.4, 128.4, 127.6, 127.2, 34.5, 26.9; HR-
MS (ESI) calculated for C42H39Cl2N2O3Si+: m/z 717.2093, found: m/z 717.2093 [M+H]+.

2-Allyl-6-(4,5-bis(2-chlorophenyl)-1H-imidazol-2-yl)phenyl 2-hydroxyacetate (85)

Cl

Cl

N

N
H

O
O

OH

2-Allyl-6-(4,5-bis(2-chlorophenyl)-1H-imidazol-2-yl)phenyl-2-((tert-butyldiphenylsilyl)-
oxy) acetate (40 mg, 56 µmol, 1 eq) was dissolved in anhydrous THF (1 ml) and cooled
to 0 °C. Glacial acetic acid (65 µl, 1.1 mmol, 20.0 eq) was added and the mixture was
stirred for 15 min at 0 °C. Tetra-n-butylammonium fluoride (1M solution in THF, 150
µl, 150.0 µmol, 2.7 eq) was added slowly to the reaction mixture. The solution was
stirred for 30 min at 0 °Cand additional 90 min at room temperature. The reaction mix-
ture was then quenched with saturated aqueous ammonium chloride solution (15 ml)
and extracted with EtOAc (3x 15 ml). The combined organic layers were washed with
brine (30 ml), dried over MgSO4, filtered and concentrated under reduced pressure.
The crude product was purified by column chromatography using hexane/EtOAc (4:1
to 1:1) as mobile phase to yield compound 2 as colorless solid (22 mg, 82%).
1H NMR (500 MHz, DMSO-d6): δ = 12.88 – 12.81 (m, 1H, NH), 7.90 (ddt, J = 1.9, 4.2, 5.8
Hz, 1H, CHar), 7.53 (d, J = 8.0 Hz, 1H, CHar), 7.47 (ddd, J = 1.8, 3.8, 7.4 Hz, 1H, CHar),
7.40 – 7.29 (m, 7H, CHar), 7.29 – 7.24 (m, 1H, CHar), 5.97 – 5.86 (m, 1H, CH2=CH),
5.52 (dq, J = 2.0, 4.3 Hz, 1H, CH=CH2), 5.13 (dt, J = 2.1, 17.2 Hz, 1H, CH=CH2), 5.10
– 5.05 (m, 1H, OH), 4.41 (dd, J = 3.5, 4.5 Hz, 2H, C(=O)CH2), 3.35 – 3.30 (m, 2H,
CarCH2). 13C-NMR (126 MHz, DMSO-d6): δ = 172.0, 145.7, 143.0, 137.6, 136.4, 134.6,
134.4, 133.3, 132.6, 132.5, 130.7, 130.6, 130.4, 130.2, 123.0, 129.4, 127.6, 127.5, 127.4, 127.3,
126.9, 126.6, 123.7, 117.0, 60.7, 34.5; HR-MS (ESI) calculated for C26H21Cl2N2O +

3 : m/z
479.0924, found: m/z 479.0920 [M+H]+.
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2-Allyl-6-(4,5-bis(2-chlorophenyl)-1H-imidazol-2-yl)phenyl 2-methoxyacetate (85

2-Methoxyacetic acid (12.8 mg, 142.0 µmol, 1.0 eq) was dissolved in CH2Cl2 (1 ml).
4-(Dimethylamino)pyridine (1.7 mg, 1.4 µmol, 0.1 eq) and 4 (60 mg, 142 µmol, 1 eq)
were added to the reaction mixture. The mixture was cooled to 0 °C, and N,N’-dicyclo-
hexylcarbodiimide (44 mg, 213.0 µmol, 1.5 eq) was added. The reaction solution was
stirred for 5 min at 0 °C, then allowed to warm to room temperature and stirred for 16 h.
Formed precipitates were filtered off, and the filtrate was concentrated under reduced
pressure. The residue was dissolved in CH2Cl2 (20 ml) and washed with aqueous hy-
drochloric acid solution (0.5 M, 2 x 15 ml) and saturated aqueous NaHCO3 solution
(2 x 15 ml). The organic layer was dried over MgSO4, and concentrated under re-
duced pressure. The crude product was purified by column chromatography using
hexane/EtOAc(10:1 to 3:1) as mobile phase to yield the title compound 85a as colorless
solid (40 mg, 57%).
MP = 215 °C; 1H-NMR (400 MHz, DMSO-d6): δ = 12.90 (s, 1H, NH), 7.91 (dd, J = 7.5, 2.0
Hz, 1H, CHar), 7.52 (dd, 3J = 8.0, 1.3 Hz, 1H, CHar), 7.47 – 7.26 (m, 9H, CHar), 5.90 (ddt,
J = 16.7, 10.0, 6.6 Hz, 1H, CH2=CH), 5.16 - 5.03 (m, 2H, CH=CH2), 4.37 (s, 2H, OCH2),
3.33 (d, J = 7.6 Hz, 2H, CarCH2), 3.13 (s, 3H, OCH3); 13C-NMR (100 MHz, DMSO-d6):
δ = 168.9, 145.0, 142.3, 136.0, 134.1, 133.9, 132.9, 132.3, 132.1, 130.2, 130.0, 129.7, 129.4,
129.0, 127.1, 126.8, 126.2, 126.0, 122.9, 116.5, 69.2, 58.2, 34.0; HR-MS (ESI-TOF): calcu-
lated for C27H23Cl2N2O +

3 : m/z 493.1080, found: m/z 493.1085 [M+H]+.

2-Allyl-6-(4,5-bis(2-chlorophenyl)-1H-imidazol-2-yl)phenyl acetate (85b)

Cl

Cl

N

N
H

O
O

Glacial acetic acid (8.6 mg, 142.0 µmol, 1.0 eq) was dissolved in CH2Cl2 (1 ml).
4-(Dimethylamino)pyridine (1.7 mg, 14.2 µmol, 0.1 eq) and 87 (60 mg, 142 µmol, 1 eq)
were added to the reaction mixture. The mixture was cooled down to 0 °C, and N,N’-
dicyclohexylcarbodiimide (44 mg, 214.0 µmol, 1.5 eq) was added. The reaction solution
was stirred for 5 min at 0 °C, then allowed to warm up to room temperature and stirred
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for 16 h. Formed precipitates were filtered off, and the filtrate was concentrated un-
der reduced pressure. The residue was dissolved in CH2Cl2 (20 ml) and washed with
aqueous hydrochloric acid solution (0.5 M, 2 x 15 ml) and saturated aqueous NaHCO3

solution (2 x 15 ml). The organic layer was dried over MgSO4, and concentrated under
reduced pressure. The crude product was purified by column chromatography using
hexane/EtOAc (10:1 to 3:1) as mobile phase to yield the title compound 85b as color-
less solid (35 mg, 53%).
MP = 225 °C; 1H-NMR (400 MHz, DMSO-d6) δ = 12.83 (s, 1H, NH), 7.87 (dd, 3 = 7.3,
2.2 Hz, 1H, CHar), 7.52 (dd, J = 7.9, 1.4 Hz, 1H, CHar), 7.44 – 7.25 (m, 9H, CHar), 5.91
(ddt, J = 16.8, 10.0, 6.7 Hz, 1H, CH2=CH), 5.16 – 5.04 (m, 2H, CH=CH2), 3.35 – 3.29 (m,
2H, CarCH2), 2.26 (s, 3H, CH3); 13C-NMR (100 MHz, DMSO-d6): δ = 169.1, 145.7, 142.5,
136.1, 134.2, 133.8, 132.8, 132.1, 132.0, 130.1, 130.0, 129.7, 129.5, 128.9, 127.1, 126.8, 126.3,
126.0, 123.2, 116.4, 34.1, 21.2; HR-MS (ESI-TOF): calculated for C26H21Cl2N2O +

2 : m/z
463.0975, found: m/z 463.0976 [M+H]+.

2-Allyl-6-(4,5-bis(2-chlorophenyl)-4,5-dihydro-1H-imidazol-2-yl)phenol (86)

Cl

Cl

N

N
H O

OH

1,2-bis(2-chlorophenyl)ethane-1,2-dione (88, 140 mg, 0.5 mmol, 1.0 eq), 3-ethoxy-4-
hydroxybenzaldehyde (90, 83 mg, 0.5 mmol, 1.00 eq) and ammonium acetate (385 mg,
5 mmol, 10 eq) were dissolved in glacial acetic acid (2.5 ml) and heated for 5 minutes
to 180 °Cunder microwave irradiation. The mixture was allowed to cool to room tem-
perature and added dropwise to a cold ammonium hydroxide solution (25%, 50 ml).
The aqueous mixture was extracted with EtOAc (4 x 20 ml), the combined organic lay-
ers were washed with 50% (w/w) aqueous sodium bisulfite solution 6 x 30 ml). The
organic layer was dried over MgSO4, and concentrated under reduced pressure. The
crude solid was purified by column chromatography using CH2Cl2 with 5% MeOH as
mobile phase to yield the title compound as colorless solid (101 mg, 48%).
MP = 215 °C; 1H-NMR (400 MHz, DMSO-d6): δ = 12.90 (s, 1H, NH), 7.91 (dd, J = 7.5, 2.0
Hz, 1H, CHar), 7.52 (dd, J = 8.0, 1.3 Hz, 1H, CHar), 7.47 – 7.26 (m, 9H, CHar), 5.90 (ddt,
3J = 16.7, 10.0, 6.6 Hz, 1H, CH2=CH), 5.16 - 5.03 (m, 2H, CH=CH2), 4.37 (s, 2H, OCH2),
3.33 (d, J = 7.6 Hz, 2H, CarCH2), 3.13 (s, 3H, CH3); 13C-NMR (100 MHz, DMSO-d6):
δ = 147.1, 146.6, 145.9, 136.5, 134.2, 132.6, 132.1, 132.0, 131.9, 130.7, 129.6, 129.6, 129.5,
129.2, 128.6, 126.9, 126.5, 125.7, 121.6, 118.0, 115.5, 110.2, 63.7, 14.5. HR-MS (ESI-TOF):
calculated for C23H19Cl2N2O +

2 : m/z 425.0818, found: m/z 425.0822 [M+H]+.
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In Vitro Characterization

Table A.4: Initial Screening results of several assays provided from Eurofins (Cerep),
France. Rounded values are reported as the mean effect (agonist assays) or inhibition
(antagonist/binding assays) of two replicates [%]. tbd = to be determined; n.d. = not
determined; (COX = cyclooxygenase; EP = prostaglandin E2 receptor; CDK = cyclin-
dependent kinase; ERK/MAPK = mitogen-activated protein kinase; JNK = c-Jun N-
terminal kinase; GSK = glycogen synthase kinase; IKK = inhibitor of nuclear factor
kappa-B kinase; IRAK = interleukin-1 receptor-associated kinase; PKC = protein ki-
nase C; ROCK = Rho associated coiled-coil containing protein kinase; CB = cannabi-
noid receptor; CRF = corticotropin-releasing factor; CCK = cholecystokinin receptor;
GR = glutocorticoid receptor; OX = Orexin).

Target (mode) 84 85 85a 85b 86 87

COX-1 (enzymatic) 95 tbd 95 78 98 98
EP1 (antagonism) 86 73 3 -4 19 11
EP2 (antagonism) 104 15 -30 10 34 35
EP3 (antagonism) 84 46 20 13 41 13
EP4 (antagonism) 37 7 -10 -21 -25 3
CDK1/CyclinB (enzymatic, antagonistic) 9 n.d.
CDK2/CyclinA (enzymatic, antagonistic) 22 n.d.
CKD4/CyclinD (enzymatic, antagonistic) -4 n.d.
p38alpha kinase (enzymatic, antagonistic) -4 n.d.
ERK2/MAPK1 (enzymatic, antagonistic) -2 n.d.
JNK3 (enzymatic, antagonistic) -10 n.d.
GSK3beta (enzymatic, antagonistic) 3 n.d.
IKKalpha (enzymatic, antagonistic) -9 n.d.
IKKbeta (enzymatic, antagonistic) -5 n.d.
IKKepsilon (enzymatic, antagonistic) 25 n.d.
IRAK4 (enzymatic, antagonistic) 2 n.d.
PKCµ (enzymatic, antagonistic) 16 n.d.
ROCK2 (enzymatic, antagonistic) 3 n.d.
CB1 (agonism) 43 -4 n.d.
CB1 (antagonism) -7 86 n.d.
CB2 (agonism) 31 -12 n.d.
CB2 (antagonism) 14 59 n.d.
CRF1(antagonism) 75 57 7 28 45 46
CCK2 (antagonism) 1 64 11 14 66 36
GR (binding competition) 98 85 27 22 59 86
OX1 (antagonism) 116 66 14 8 57 6
OX2 (antagonism) 103 63 15 9 37 11
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Figure A.16: Inhibition of isolated cyclooxygenase 1 (COX-1) and human re-
combinant COX-2 by marinopyrrole A (84), 85a, 85b, 86, and 87. 84 (COX-1:
IC50 = 16.6±2.6 µM, COX-2: IC50 = 45.2±21.3 µM) and 86 (COX-1: IC50 = 29.7±18.1 µM,
COX-2: IC50 = 53.1±15.13 µM) inhibited the activity of COX-1 and COX-2 in a
concentration-dependent manner and slightly selective to COX-1 inhibition. 85a
(COX-1: IC50 = 0.2±0.0 µM, COX-2: no inhibition up to 100 µM) and 87 (COX-1:
IC50 = 1.8±0.5 µM, COX-2: IC50 = 93.4±53.3 µM) showed potent and selective COX-1
inhibition.
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Figure A.17: In vitro activities of 85, 86, and 87 on glucocorticoid receptor (GR),
cholecystokinin receptor 2 (CCK2), corticotropin-releasing factor receptor 1 (CRF1),
and orexin receptor 1 (OX1). a) 85 (IC50 = 1.2±1.2 µM, Kd = 0.6 µM), 86 (IC50 = 4.3±1.2
µM, Kd = 2.2 µM) and 87 (IC50 = 1.4±1.1 µM, Kd = 0.7 µM) binds to the glucocorticoid
receptor (GR) in a competition binding assay. b) 86 (IC50 = 8.7±4.6 µM, Ki = 1.1 µM)
is an antagonist of the cholecystokinin B receptor (CCK2). c) 86 (IC50 = 4.7±1.2 µM,
Ki = 1.7 µM) and 87 (IC50 = 40±2 µM, Ki = 14 µM) have antagonistic effects on the
corticotropin-releasing factor receptor 1 (CRF1). d) Mimetic 86 (IC50 = 40±1 µM,
Ki = 8.4 µM) also antagonizes orexin receptor 1 (OX1).
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Figure A.18: In vitro characterization of marinopyrrole A (MP, 84), 85, 85a, and 87 on
nuclear receptors (PPAR = peroxisome proliferator-activated receptors; LXR = liver X
receptors; RXR = retinoid X receptor; RAR = retinoic acid receptor; FXR = farne-
soid X receptor; CAR = constitutive androstane receptor; VDR = vitamin D receptor).
Marinopyrrole A (84) activated on several nuclear receptors with weak activation ef-
ficacy at a concentration of 10 µM.

Figure A.19: Marinopyrrole A (84) activated RARα(EC50 = 0.63±0.11 µM), VDR
(EC50 = 1.09±0.06 µM and LXRβ (EC50 = 0.37±0.40 µM) with low micromolar EC50
values.
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A.3 Supplementary Information to Section 4.3

Computational Results

Figure A.20: Distance distributions for the set of unique de novo designs (n=323)
against the (-)-englerin A template. ECFP4 (extended-connectivity fingerprint, radius
= 2, 1024 bits) was used as the comparator. Here, global fractal dimension (GFD) rep-
resents max-scaled global FD distance, USR is the complement of the USR score[345],
and SHAEP shape is the complement of the shape-comparison-only component of
the SHAEP score.[344] For each description of the molecule set, the box-and-whisker
diagram is separated into the top 10% (n=32) designs as ranked by ECFP4 similar-
ity (in black), and the remaining molecules (in white). To quantify the enrichment,
we performed a two-sided Mann-Whitney U (MWU) test with the null hypothesis in
each instance that a value randomly chosen from the top 10% ECFP4 set has an equal
likelihood of being higher or lower than a randomly chosen value from the bottom
90%. Calculated p values are 0.03, 0.09, and 0.02 for GFD, USR, and SHAEP shape,
respectively, so we reject the null hypothesis for GFD and SHAEP, indicating that the
two distributions are separable.



A.3. Supplementary Information to Section 4.3 159

Chemistry

2-amino-N-[(piperidin-2-yl)methyl]benzamide (96)

N
H

O

H2N

H
N

Piperidin-2-ylmethanamine (94, 0.65 ml, 5.19 mmol, 1.10 eq) was dissolved in ethanol
(20 ml) and heated up to reflux. After the solution continuously reflux, 2H-3,1-benz-
oxazine-2,4(1H)-dione (95, 800 mg, 4.76 mmol, 1.00 eq) was added in one portion to
the mixture. The mixture was stirred for 6 h after the mixture turned into a clear so-
lution. After cool down to room temperature, the solution was acidified with aq. HCl
solution (6 M, 20 ml) to pH 1 and extracted with EtOAc (3 × 50 ml). The acidic aqueous
phase was alkalified with aqueous NaOH (1 M) until pH 9 was reached. The aque-
ous solution was extracted with EtOAc (5 × 200 ml), dried over MgSO4, filtered and
concentrated in vacuum. The crude product was purified by column chromatography
using CH2Cl2/MeOH/NEt3 (98:0:2 to 88:10:2) as mobile phase to yield the title com-
pound 96 as yellowish solid (449 mg, 40%).
1H-NMR (400 MHz, chloroform-d): δ = 7.36 (dd, J = 1.5, 7.9 Hz, 1H, CHar), 7.19 (ddd,
J = 1.5, 7.2, 8.2 Hz, 1H, CHar), 6.70 - 6.58 (m, 3H, 2x CHar, C(=O)NH, 5.53 (s,2H, NH2),
3.48 (ddd, J = 4.4, 5.6, 13.7 Hz, 1H, C(=O)NHCH2), 3.25 (ddd, J = 5.4, 7.5, 13.6 Hz, 1H,
C(=O)NHCH2), 3.12 - 3.05 (m, 1H, NHCH), 2.79 (dddd, J = 2.7, 4.4, 7.3, 10.5 Hz, 1H,
NHCH2), 2.64 (td, J = 2.9, 11.9 Hz, 1H, NHCH2), 1.96 - 1.76 (m, 3H, CH2), 1.70 (dqd,
J = 1.2, 3.2, 12.9 Hz, 1H, CH2), 1.61 (dddd, J = 2.4, 3.9, 6.2, 7.5 Hz, 1H, CH2), 1.48 - 1.31
(m, 2H, CH2), 1.21 (tddd, J = 5.5, 6.7, 10.9, 12.5 Hz, 1H, CH2); 13C-NMR (101 MHz,
chloroform-d) δ = 132.2, 127.3, 117.3, 116.6, 55.9, 46.6, 45.2, 30.4, 26.4, 24.2; HR-MS
(ESI-TOF): calculated for C13H20N3O: m/z 234.1601, found: m/z 234.1603 [M+H]+.

3-[(piperidin-2-yl)methyl]quinazolin-4(3H)-one

N

O

N

H
N

A suspension of 96 (119 mg, 0.51 mmol, 1.00 eq) in formic acid (5 ml, 129 mmol) was
heated to 100 °Cfor 4 h. Molecular sieves (4 Å) were added and the solution was stirred
for further 2 h. After cool down to room temperature, aqueous NaOH (1M, 25 ml) was
added and the aqueous phase was extracted with EtOAc (3 × 15 ml). The combined
organic layer was dried over MgSO4, and concentrated under reduced pressure. The
crude product was purified by column chromatography CH2Cl2/MeOH/NEt3 (98:0:2
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to 88:10:2) as mobile phase to yield the title compound as yellowish solid (103 mg,
83%).
1H-NMR (400 MHz, chloroform-d): δ = 8.31 (dd, J = 1.4, 7.9 Hz, 1H, NCHarN), 8.05 (s,
1H, CHar), 7.81 - 7.67 (m, 2H, CHar), 7.50 (ddd, J = 1.5, 6.9, 8.2 Hz, 1H, CHar), 4.07 (dd,
J = 4.8, 13.5 Hz, 1H, C(=O)NHCH2), 3.77 (dd, J = 7.9, 13.4 Hz, 1H, C(=O)NHCH2), 3.09
- 2.97 (m, 2H, NH,NHCH), 2.63 (q, J = 7.3 Hz, 2H, NHCH2), 1.87 - 1.78 (m, 1H, CH2),
1.74 (dtd, J= 1.5, 3.1, 14.3 Hz, 1H, CH2), 1.60 (dtd, J = 1.5, 3.2, 3.7, 9.5 Hz, 1H, CH2),
1.49 - 1.29 (m, 2H, CH2), 1.26 - 1.13 (m, 1H, CH2). 13C-NMR (101 MHz, chloroform-
d) δ = 169.7, 148.7, 132.3, 127.7, 117.3, 116.6, 56.2, 46.1, 44.4, 29.5, 25.4, 23.8; HR-MS
(ESI-TOF): calculated for C14H18N3O: m/z 244.1444, found: m/z 244.1446 [M+H]+.

tert-butyl 2-[(4-oxoquinazolin-3(4H)-yl)methyl]piperidine-1-carboxylate (92)

N

O

N

N

O O

3-[(piperidin-2-yl)methyl]quinazolin-4(3H)-one (93 mg, 0.38 mmol, 1.00 eq) was dis-
solved in anhydrous CH2Cl2 (2 ml). NEt3 (0.2 ml, 1.43 mmol, 3.75 eq) was added and
the solution was stirred for 15 min at 0 °C. Di-tert-butyl dicarbonate (0.11 ml, 0.46
mmol, 1.20 eq) was added dropwise to the mixture over a period of 5 min. After 15
min the ice bath was removed, and the solution was stirred at room temperature for 5
h. The mixture was diluted with water (15 ml) and extracted with EtOAc (3 × 25 ml).
The organic phases were combined, dried over MgSO4, filtered and concentrated un-
der reduced pressure. The crude product was purified with column chromatography
using EtOAc/hexane (83:17) as mobile phase to yield the title compound 92 as yellow-
ish solid (64 mg, 49%).
1H-NMR (400 MHz, chloroform-d): δ = 8.30 (dd, J = 1.4, 7.9 Hz, 1H, NCHarN), 7.94 (s,
1H, CHar), 7.78 - 7.65 (m, 2H, CHar), 7.55 - 7.45 (m, 1H, CHar), 4.67 (m, 1H, NHCH), 4.36
- 3.91 (m, 3H, C(=O)NHCH2, NHCH2), 2.97 (m, 1H, NHCH2), 1.81 - 1.53 (m, 5H, CH2),
1.53 - 1.34 (m, 1H, CH2), 1.07 (s, 9H, CH3); 13C-NMR (101 MHz, chloroform-d) δ = 204.7,
161.1, 146.4, 134.2, 127.2, 126.8, 79.8, 27.9, 25.2, 19.5; HR-MS (ESI-TOF): calculated for
C19H26N3O3: m/z 344.1969, found: m/z 344.1975 [M+H]+.
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[(1R,2S,5R)-5-methyl-2-(propan-2-yl)cyclohexyl]oxyacetic acid (99)

HO

O
O

Sodium hydride (605 mg, 15.13 mmol, 3.00 eq), potassium iodide (113 mg, 0.67 mmol,
0.14 eq) in anhydrous THF (20 ml) were stirred at 0 °Cfor 15 min. (1R,2S,5R)-2-isopropyl-
5-methylcyclohexan-1-ol (97) (1.87 g, 11.85 mmol, 2.40 eq) in anhydrous THF (15 ml)
was added dropwise over 10 min to the slurry mixture. After 30 min, 2-chloroacetic
acid (472 mg, 4.95 mmol, 1.00 eq) in THF (15 ml) was added slowly over 10 min to
the slurry. The mixture was stirred vigorously and heated up to reflux for 16 h. The
reaction was allowed to cool down to room temperature and the solvent was removed
under reduced pressure. Water (20 ml) and toluene (20 ml) were added and separated.
The aqueous layer was acidified to pH 2-3 and extracted with EtOAc (3 × 50 ml). The
combined organic phases were washed with brine, dried over MgSO4, filtered and
concentrated under reduced pressure. The crude product was purified with column
chromatography using hexane/EtOAc (100:0 to 75:25) as mobile phase to yield the ti-
tle compound 99 as colorless oil (191 mg, 18%).
1H-NMR (400 MHz, chloroform-d): δ = 4.19 (d, J = 16.4 Hz, 1H, C(=O)CH2O), 4.06
(d, J = 16.4 Hz, 1H, C(=O)CH2O), 3.24 (td, J = 4.2, 10.7 Hz, 1H, OCH), 2.17 (m,1H,
CH2CHCH3), 2.05 (dtd, J = 1.8, 3.8, 12.0 Hz, 1H, CHCH()CH3)2), 1.66 (dtd, J = 3.1,
6.4, 10.5 Hz, 2H, CHCHCH2), 1.45 - 1.22 (m, 2H), 1.06 - 0.82 (m, 9H), 0.79 (d, J = 7.0
Hz, 3H,CH3); 13C-NMR (101 MHz, chloroform-d) δ = 81.0, 65.6, 48.1, 40.1, 34.4, 31.6,
25.9, 23.3, 22.3, 21.1, 16.3; HR-MS (ESI-TOF): calculated for C12H22ONa: m/z 237.1461,
found: m/z 237.1461 [M+Na]+; [α]20D : -94.3◦ (c = 2.00, ethanol), (lit. -95.1◦).[391]

(2S,3aS,6aS)-2-[(benzyloxy)carbonyl]octahydrocyclopenta[b]pyrrol-1-ium chloride (100)

O

O H2
N Cl

(2S,3aS,6aS)-octahydrocyclopenta[b]pyrrole-2-carboxylic acid (98, 86 mg, 0.52 mmol,
1.00 eq) was suspended in a hydrochloric acid solution ( 4 M in dioxane, 0.25 ml).
Benzyl alcohol (2 ml, 19.13 mmol, 36.00 eq) was added and cooled down to 0-5 °C.
Thionyl chloride (0.15 ml, 2.04 mmol, 3.90 eq) was added dropwise and the mixture
was stirred for 16 h. The mixture was poured into methyl tert-butyl ether (50 ml) and
title compound 100 was filtered off as white solid (103 mg, 70%). 1H-NMR (400 MHz,
methanol-d4): δ = 7.47 - 7.31 (m, 5H, CHar), 5.35 - 5.22 (m, 2H, CarCH2O), 4.44 (dd, J = 6.9,
11.2 Hz, 1H, C(=O)CHNH), 4.12 (ddd, J = 2.9, 7.6, 8.8 Hz, 1H, NHCH), 2.97 (tdd, J = 2.9,



162 Appendix A. Supplementary Information

5.0, 8.6 Hz, 1H, NHCHCH), 2.64 (ddd, J = 6.9, 8.7, 13.5 Hz, 1H, CHCH2CH), 2.05 - 1.81
(m, 2H), 1.83 - 1.65 (m, 4H), 1.62 - 1.46 (m, 1H); 13C-NMR (101 MHz, methanol-d4)
δ = 135.0, 128.4, 128.4, 67.8, 64.8, 61.1, 42.2, 33.7, 30.9, 29.7, 23.9; HR-MS (ESI-TOF): cal-
culated for C1520NO2: m/z 246.1489, found: m/z 246.1490 [M+H]+; [α]20D : -41.5◦ (c = 1.00,
H2O), (lit. -40.0◦).[392]

Benzyl(2S,3aS,6aS)-1-(2-(((1R,2S,5R)-2-isopropyl-5-methylcyclohexyl)oxy)-acetyl)-
octahydrocyclopenta[b]pyrrole-2-carboxylate (93)

O

O

N

O
O

99 (40 mg, 0.19 mmol, 1.29 eq) and 100 (41 mg, 0.14 mmol, 1.00 eq) were suspended
in THF (0.6 ml). After stirring for 5 min, NEt3 (30 µl, 0.22 mmol, 1.49 eq) and 1H-
benzo[d][1,2,3]triazol-1-ol hydrate (35 mg, 0.23 mmol, 1.59 eq) were added. The reac-
tion mixture was cooled down to 0 °C. After 30 min 3-(((ethylimino)methylene)-
amino)-N,N-dimethylpropan-1-amine (40.0 µl, 0.23 mmol, 1.58 eq) was added slowly
to the reaction mixture. The mixture was allowed to warm up to room tempera-
ture and stirred for 16 h. The reaction solvent was removed under reduced pressure.
The residue was redissolved in EtOAc (20 ml) and the organic phase was washed
with aqueous hydrochloric acid solution (0.1 M, 3 × 15 ml), saturated NaHCO3 (3
× 15 ml) and brine (25 ml). The organic phase was dried over MgSO4, filtered and
concentrated under reduced pressure. The crude product was purified with column
chromatography using hexane/EtOAc (66:33) as mobile phase to yield the title com-
pound 93 as white solid (55 mg, 86%). 1H-NMR (500 MHz, chloroform-d) (ratio of
cis/trans rotamers 1.5:1) δ = 7.50 – 7.28 (m, 5H, CHar), 5.21 – 5.11 (m, 2H, CarCH2O),
4.81 (dd, J = 4.3, 9.7 Hz, 1H, C(=O)CHNH), 4.40 (dt, J = 5.1, 8.1 Hz, 1H, C(=O)CHNH),
4.21 – 3.88 (m, 2H, C(=O)CH2O), 3.14 (td, J = 4.1, 10.5 Hz, 1H, OCH), 2.81 – 2.52
(m, 1H, NHCHCH), 2.46 – 2.32 (m, 1H,C(=O)NHCs2), 2.26 (m, 1H, CH2CHCH3), 2.18
– 1.99 (m, 3H, C(6)H2, CH2CHCH3), C(6’)H2), 1.87 – 1.68 (m, 3H, C(6)H2, C(5)H2,
C(4)H2), 1.67 – 1.47 (m, 3H, C(6)H2, C(3’)H2, C(4’)H2), 1.45 – 1.26 (m, 3H, C(5)H2,
C(4)H2, OCHCH, CHCH(CH3)2), 1.20 – 1.06 (m, 1H, C(4)H2), OCHCH), 1.01 – 0.81 (m,
9H, C(3’)H2), C(4’)H2), CH2CHCH3), OCHCH2), 0.78 (d, J = 7.0 Hz, 2H, CHCH(CH3)2),
0.70 (d, J = 7.0 Hz, 1H, C(6’)H2, CHCH(CH3)2); 13C-NMR (125 MHz, chloroform-d)
δ = 172.2, 168.6, 135.8, 128.6, 128.5, 128.1, 80.3, 79.3, 68.8, 68.0, 67.2, 66.8, 65.0, 63.1,
60.7, 59.6, 48.3, 48.1, 44.1, 40.9, 40.1, 39.4, 35.3, 34.4, 34.4, 33.6, 33.4, 33.3, 32.1, 31.5, 31.3,
25.7, 25.6, 25.4, 25.2, 23.2, 23.1, 22.3, 21.0, 16.2, 16.1; HR-MS (ESI-TOF): calculated for
C27H40NO4: m/z 442.2952, found: m/z 442.2950; [α]20D : -67.1◦ (c = 1.01, chloroform)
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X-ray Structure of 93

Figure A.21: X-ray structure (left) and crystal packing (right) of compound 93.
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In Vitro Characterization

92

92

92

92

Figure A.22: Compound 92 is a very weak inhibitor of TRPC4 channels. Electro-
physiological whole-cell measurements of TRPC4 expressing HEK293 cells. A, Repre-
sentative current density-voltage curves before application of the first stimulus (black
traces), during the first application of 50 nM (-)-Englerin A (‘EA’) in the presence of
10 µM compound 92 (‘cmpd 92 + EA’, red trace) and during the second application
of 50 nM (-)-Englerin A (blue trace) are displayed. Insets show current density time
courses at holding potentials of ±100 mV with indicated application of compound 92
(red bar) and of (-)-Englerin A (blue bars). B, Summary of maximal (-)-Englerin A-
induced outward currents in the presence of indicated concentrations of compound
92. Numbers indicate the number of measured cells and the number of experimen-
tal days. To percentage of the maximal outward current at +100 mV elicited by the
second application of 50 nM (-)-Englerin A was used for normalization.
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Figure A.23: Compound 93 is an inhibitor of TRPC4 channels. Electrophysiolog-
ical whole-cell measurements of TRPC4 expressing HEK293 cells. (A-H) Represen-
tative current density-voltage curves before application of the first stimulus (black
traces), during the first application of 50 nM (-)-Englerin A (62, ‘EA’) in the absence
(blue traces) (A) or in the presence (B-H) of indicated concentrations of compound 93
(‘cmpd 93 + EA’, red traces) and during the second application of 50 nM (-)-Englerin A
(blue traces) (A-H) are displayed. Insets show current density time courses at holding
potentials of ±100 mV with indicated applications of compound 93 (red bars) and of
(-)-Englerin A (blue bars). (I) Summary of maximal (-)-Englerin A-induced outward
currents in the presence of indicated concentrations of compound 93. Numbers indi-
cate the number of measured cells from at least three independent experiments. To
determine the IC50 value, the percentage of the maximal outward current at +100 mV
elicited by the second application of 50 nM (-)-Englerin A was used.
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Figure A.24: Inhibitory effects of compound 93 and the natural product (-)-Englerin
A (62, EA) on TRPM8 cation channels in an intracellular calcium assay. Compound
93 and EA showed inhibitory effects on TRPM8 at a screening concentration of
10 µM. In a follow-up characterization, the IC50 values of 93 and EA were determined
(IC50 = 1.8±1.1 µM for 93 and (IC50 = 3.0±1.2 µM for EA[196]). The dissociation con-
stants were obtained as Ki = IC50[1+(C/EC50.C)]-1, where C is the concentration of
control activator icilin (0.1 µM) in the assay and EC50.C its EC50 value (0.016 µM).
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Figure A.25: Compound 93 blocks TRPM8 currents in a concentration depen-
dent manner. Electrophysiological whole-cell measurements of TRPM8 expressing
HEK293 cells. A-C, Representative current density-voltage curves before applica-
tion of the first stimulus (black traces), during first application of 200 µM (-)-menthol
(97, ‘Menthol 1.’, light green traces) and during application of indicated concentra-
tions of 93 in the presence of (-)-menthol (‘cmpd 93 + Menthol’, red traces). A,B,
The dark green lines indicate current density-voltage curves during second applica-
tion of 200 µM (-)-menthol after washout of (-)-menthol and compound 93 (‘Men-
thol 2.’, dark green traces). C, The dark green line indicates current density-voltage
curve after washout of compound 93 in the presence of (-)-menthol (‘Menthol 2.’, dark
green traces). A-C, Insets show current density time courses at holding potentials of
±100 mV with indicated applications of compound 93 (red bars) and of (-)-menthol
(green bars). D, Summary of maximal (-)-menthol induced outward currents in the
presence of indicated concentrations of compound 93. Numbers indicate the numbers
of measured cells and the numbers of independent experiments. The percentage of
the maximal outward current at +100 mV elicited by the first application of 200 µM
(-)-menthol was used for normalization.
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Figure A.26: Compound 93 is a weak inhibitor of TRPV4. Compound 92 and 93 were
tested on their inhibitory effects in calcium assays of TRPA1 (top), TRPV3 (middle) and
TRPV4 (bottom). Compound 92 showed no activity below 100 µM in all three assays.
During the TRPA1 assay measurements, a calcium increase during the pre-incubation
time was observed for compound 93 at concentrations 10, 30 and 100 µM. This desen-
sitization of the receptor might impact the measures of the inhibitor assay of TRPA1.
93 inhibited TRPV4 in a concentration dependent manner with an IC50 = 39±1 µM.
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A.4 1H- and 13C-NMR spectra

NMR Spectra of Compounds from Section 4.1
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Figure A.27: (Top) 1H-NMR of compound 72. (Bottom) 13C-NMR of compound 72.
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1H	NMR	(400	MHz,	DMSO-d6)	δ	7.63	(d,	J	=	8.6	Hz,	1H),	6.98	–	6.91	(m,	2H),	3.84	(s,
3H),	2.83	–	2.72	(m,	2H),	2.40	(tt,	J	=	5.7,	1.9	Hz,	2H),	1.82	–	1.67	(m,	4H).
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13C NMR (101 MHz, DMSO) δ 161.69, 161.35, 153.47, 148.05, 125.42, 119.97, 113.57,
112.38, 100.93, 56.25, 25.12, 24.00, 21.67, 21.31.
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Figure A.28: (Top) 1H-NMR of compound 73. (Bottom) 13C-NMR of compound 73.
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1H	NMR	(400	MHz,	MeOD)	δ	7.02	(s,	1H),	6.73	(s,	1H),	2.81	–	2.71	(m,	2H),	2.54	–
2.45	(m,	2H),	1.92	–	1.76	(m,	4H).
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13C NMR (75 MHz, MeOD) δ 164.78, 150.27, 150.10, 147.90, 144.25, 120.21, 113.72, 108.96, 103.50,
49.85, 49.57, 49.28, 49.00, 48.72, 48.43, 48.15, 26.38, 24.87, 22.84, 22.55.
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Figure A.29: (Top) 1H-NMR of compound 74. (Bottom) 13C-NMR of compound 74.
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1H	NMR	(400	MHz,	CDCl3)	δ	6.91	(s,	1H),	6.81	(s,	1H),	3.92	(s,	3H),	3.91	(s,	3H),	2.74
(ddd,	J	=	1.9,	4.2,	6.2	Hz,	2H),	2.60	–	2.51	(m,	2H),	1.90	–	1.75	(m,	4H).
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13C NMR (101 MHz, CDCl3) δ 162.36, 151.54, 147.63, 147.14, 146.11, 121.10, 112.81, 104.31, 99.98,
56.53, 56.35, 25.59, 24.04, 21.81, 21.55.
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Figure A.30: (Top) 1H-NMR of compound 75. (Bottom) 13C-NMR of compound 75.
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1H	NMR	(400	MHz,	DMSO)	δ	10.33	(s,	1H),	10.08	(s,	1H),	6.24	(d,	J	=	2.4	Hz,	1H),
6.14	(d,	J	=	2.4	Hz,	1H),	3.04	(dq,	J	=	2.8,	3.7,	5.6	Hz,	2H),	2.34	(dt,	J	=	1.8,	4.1	Hz,
2H),	1.74	–	1.58	(m,	4H).
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13C NMR (101 MHz, DMSO) δ 161.30, 160.09, 157.78, 155.03, 150.49, 116.58, 102.51,
99.79, 94.69, 29.60, 24.51, 22.20, 21.34.
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Figure A.31: (Top) 1H-NMR of compound 76. (Bottom) 13C-NMR of compound 76.
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1H	NMR	(300	MHz,	Chloroform-d)	δ	6.43	(d,	J	=	2.4	Hz,	1H),	6.29	(d,	J	=	2.4	Hz,
1H),	3.84	(s,	3H),	3.83	(s,	3H),	3.05	(tt,	J	=	5.9,	3.0	Hz,	2H),	2.61	–	2.47	(m,	2H),
1.73	(p,	J	=	3.4	Hz,	4H).
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13C NMR (75 MHz, CDCl3) δ 162.12, 161.57, 158.94, 155.10, 150.07, 119.27, 105.34,
95.77, 93.30, 55.81, 55.75, 29.96, 24.70, 22.48, 21.38.
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Figure A.32: (Top) 1H-NMR of compound 77. (Bottom) 13C-NMR of compound 77.
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NMR Spectra of Compounds from Section 4.2
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1H	NMR	(400	MHz,	DMSO)	δ	13.28	(s,	1H),	13.09	(s,	1H),	7.85	(dd,	J	=	1.6,	7.9	Hz,	1H),	7.62
–	7.26	(m,	8H),	7.15	(dd,	J	=	1.4,	7.4	Hz,	1H),	6.90	(t,	J	=	7.6	Hz,	1H),	6.01	(ddt,	J	=	6.6,	10.1,
16.7	Hz,	1H),	5.12	–	5.00	(m,	2H),	3.48	–	3.36	(m,	2H),	.
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13C	NMR	(101	MHz,	DMSO)	δ	154.47,	146.06,	136.73,	134.00,	133.17,	132.54,	132.32,	131.63,
130.57,	130.31,	129.91,	129.80,	129.42,	129.26,	127.42,	127.31,	127.04,	126.02,	122.81,
118.62,	115.61,	112.30,	33.64.

Figure A.33: (Top) 1H-NMR of compound 87. (Bottom) 13C-NMR of compound 87.
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1H	NMR	(400	MHz,	Acetone)	δ	11.77	(s,	1H),	7.99	(dd,	J	=	3.0,	6.5	Hz,	1H),	7.76	–	7.70
(m,	4H),	7.54	–	7.20	(m,	16H),	5.89	(ddt,	J	=	6.7,	10.1,	16.8	Hz,	1H),	5.07	–	4.97	(m,	2H),
4.77	(d,	J	=	9.7	Hz,	2H),	3.27	(dd,	J	=	1.5,	6.7	Hz,	2H),	1.05	(s,	9H).

NH

N

Cl

Cl

O

O

O

Si

0102030405060708090100110120130140150160170180190200210220230240
f1 (ppm)

-200000

-100000

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

1100000

1200000

1300000

1400000

1500000

1600000

19
.3

2

26
.8

8

34
.5

0

12
7.

57
12

8.
39

13
0.

01
13

0.
52

13
2.

38
13

5.
43

13
6.

33

16
9.

84

21
0.

07

13C	NMR	(101	MHz,	DMSO)	δ	210.07,	169.84,	136.33,	135.43,	132.38,	130.52,	130.01,	128.39,
127.57,	34.50,	26.88,	19.32.
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Figure A.34: (Top) 1H-NMR of 2-Allyl-6-(4,5-bis(2-chlorophenyl)-1H-imidazol-2-
yl)phenyl-2-((tert-butyldiphenyl-silyl)oxy) acetate. (Bottom) 13C-NMR of 2-Allyl-6-
(4,5-bis(2-chlorophenyl)-1H-imidazol-2-yl)phenyl-2-((tert-butyldiphenyl-silyl)oxy)
acetate.
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1H	NMR	(500	MHz,	DMSO)	δ	12.88	–	12.81	(m,	1H),	7.90	(ddt,	J	=	1.9,	4.2,	5.8	Hz,
1H),	7.53	(d,	J	=	8.0	Hz,	1H),	7.47	(ddd,	J	=	1.8,	3.8,	7.4	Hz,	1H),	7.40	–	7.29	(m,	7H),
7.29	–	7.24	(m,	1H),	5.97	–	5.86	(m,	1H),	5.52	(dq,	J	=	2.0,	4.3	Hz,	1H),	5.13	(dt,	J	=	2.1,
17.2	Hz,	1H),	5.10	–	5.05	(m,	1H),	4.41	(q,	J	=	3.5,	4.5	Hz,	2H),	3.35	–	3.30	(m,	2H).
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13C	NMR	(126	MHz,	DMSO)	δ	171.97,	145.74,	143.00,	137.62,	136.43,	134.55,	134.40,
133.30,	132.61,	132.53,	130.65,	130.60,	130.41,	130.22,	129.98,	129.44,	127.57,	127.54,
127.38,	127.31,	126.88,	126.64,	123.65,	117.02,	60.73,	34.53.

Figure A.35: (Top) 1H-NMR of compound 85. (Bottom) 13C-NMR of compound 85.
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1H	NMR	(400	MHz,	DMSO-d6)	δ	12.90	(s,	1H),	7.91	(dd,	J	=	7.5,	2.0	Hz,	1H),	7.52	(dd,	J	=	8.0,
1.3	Hz,	1H),	7.45	–	7.26	(m,	9H),	5.90	(ddt,	J	=	16.7,	10.0,	6.6	Hz,	1H),	5.17	–	5.02	(m,	2H),
4.37	(s,	2H),	3.33	(d,	J	=	7.7	Hz,	3H),	3.13	(s,	3H),	.
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13C NMR (101 MHz, DMSO) δ 168.93, 145.02, 142.32, 136.02, 134.09, 133.94, 132.85,
132.31, 132.14, 130.18, 130.02, 129.72, 129.44, 129.06, 127.12, 126.82, 126.24, 126.06,
122.88, 116.45, 69.24, 58.20, 34.05.
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Figure A.36: (Top) 1H-NMR of compound 85a. (Bottom) 13C-NMR of compound 85a.
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1H	NMR	(400	MHz,	DMSO-d6)	δ	12.83	(s,	1H),	7.86	(dd,	J	=	7.3,	2.2	Hz,	1H),	7.52
(dd,	J	=	7.9,	1.4	Hz,	1H),	7.44	–	7.25	(m,	9H),	5.90	(ddt,	J	=	16.8,	10.0,	6.7	Hz,	1H),
5.16	–	5.04	(m,	2H),	3.32	(s,	3H),	2.26	(s,	3H),	.
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13C NMR (101 MHz, DMSO) δ 169.12, 145.72, 142.51, 136.07, 134.17, 133.80, 132.84,
132.12, 132.03, 130.08, 129.96, 129.73, 129.54, 128.95, 127.12, 126.85, 126.28, 125.99,
123.18, 116.40, 34.11, 21.15.
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Figure A.37: (Top) 1H-NMR of compound 85b. (Bottom) 13C-NMR of compound
85b.
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1H	NMR	(400	MHz,	DMSO-d6)	δ	12.61	(s,	1H),	9.18	(s,	1H),	7.64	–	7.24	(m,	10H),	6.85
(d,	J	=	8.3	Hz,	1H),	4.09	(q,	J	=	7.0	Hz,	2H),	1.37	(t,	J	=	7.0	Hz,	3H).
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13C NMR (101 MHz, DMSO) δ 147.09, 146.61, 145.94, 136.47, 134.18, 132.60, 132.11,
132.02, 131.89, 130.26, 129.57, 129.47, 129.18, 128.61, 126.88, 126.54, 125.71, 121.61,
117.98, 115.50, 110.19, 63.67, 14.54.
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Figure A.38: (Top) 1H-NMR of compound 86. (Bottom) 13C-NMR of compound 86.
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NMR Spectra of Compounds from Section 4.3

01234567891011121314
f1 (ppm)

-10000

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

110000

120000

1.
21

2.
11

1.
10

1.
11

2.
43

1.
00

1.
00

0.
99

1.
00

1.
00

1.
60

2.
75

0.
97

0.
97

NH2

NH

O

NH

1H	NMR	(400	MHz,	CDCl3)	δ	7.36	(dd,	J	=	1.5,	7.9	Hz,	1H),
7.19	(ddd,	J	=	1.5,	7.2,	8.2	Hz,	1H),	6.70	–	6.58	(m,	3H),	5.53
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Figure A.44: (Top) 1H-NMR of compound 93. (Bottom) 13C-NMR of compound 93.
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