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Abstract. The application of a technique from quantum dy-
namics to the governing equation for hydraulic head leads to
a trajectory-based solution that is valid for a general porous
medium. The semi-analytic expressions for propagation path
and velocity of a change in hydraulic head form the basis of
a travel-time tomographic imaging algorithm. An application
of the imaging algorithm to synthetic arrival times reveals
that a cross-well inversion based upon the extended trajecto-
ries correctly reproduces the magnitude of a reference model,
improving upon an existing asymptotic approach. An inver-
sion of hydraulic head arrival times from cross-well slug tests
at the Widen field site in northern Switzerland captures a gen-
eral decrease in permeability with depth, which is in agree-
ment with previous studies, but also indicates the presence of
a high-permeability feature in the upper portion of the cross-
well plane.

1 Introduction

Understanding the spatial variation in subsurface flow prop-
erties is important for many applications, such as groundwa-
ter extraction and storage, hydrocarbon production, geother-
mal energy generation, and waste water disposal. Advanced
production processes like hydraulic fracturing require the de-
velopment of high-resolution reservoir models necessary to
capture the influence of the fractures (Zhang et al., 2014;
Fujita et al., 2015). Often there are very few observations
with which to infer such properties: typically measurements

from a few wells intersecting a formation of interest. How-
ever, developments such as cross-well transient pressure test-
ing (Hsieh et al., 1985; Paillet, 1993; Karasaki et al., 2000);
and hydraulic tomography (Tosaka et al., 1993; Gottlieb and
Dietrich, 1995; Butler et al., 1999; Yeh and Liu, 2000; Vasco
and Karasaki, 2001; Bohling et al., 2002, 2007; Brauchler
et al., 2003, 2010, 2011, 2013; Zhu and Yeh, 2006; Illman et
al., 2007, 2008; Fienen et al., 2008; Bohling, 2009; Cardiff et
al., 2009, 2013a, b; Huang et al., 2011; Sun et al., 2013; Par-
adis et al., 2015, 2016), have improved the ability to resolve
two- and three-dimensional variations in hydraulic proper-
ties. New techniques, including fiber-optic temperature and
pressure observations, and geophysical observations sensi-
tive to pressure changes (Yeh et al., 2008; Rucci et al., 2010;
Marchesini et al., 2017), will further improve spatial and
temporal coverage and generate large data sets. Finally, the
joint interpretation and inversion of geophysical and hydro-
logical data leads to better constrained imaging of flow prop-
erties (Rubin et al., 1992; Hyndman et al., 1994, 2000; Vasco
et al., 2001; Vasco, 2004; Kowalsky et al., 2004; Day-Lewis
et al., 2006; Brauchler et al., 2012; Lochbühler et al., 2013;
Soueid Ahmed et al., 2014: Ruggeri et al., 2014; Jimenez et
al., 2015; Binley et al., 2015; Linde and Doetsch, 2016).

The characterization of complicated aquifer and reservoir
models using sizable data sets points to the need for robust
and efficient approaches for modeling pressure propagation.
To this end, there are a number of approaches that aim to
reduce the computational burden and data handling require-
ments associated with hydraulic tomography. For example,
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there are methods that reduce the governing equation to a
simpler form for the moments of the transient head or pres-
sure variation (Li et al., 2005; Yin and Illman, 2009; Zhu and
Yeh, 2006). There are also approaches for the analysis of si-
nusoidal and oscillatory pumping tests that are based upon
the phase shifts and amplitude differences between observed
and calculated pressure variations, using these phase shifts
to infer properties between two wells (Bernabe et al., 2005;
Black and Kipp, 1981; Cardiff et al., 2013b; Kuo, 1972; Ras-
mussen et al., 2003; Renner and Messar, 2006). Another
technique relies upon a measure of the arrival time of a
pressure pulse or disturbance as a basis for transient travel-
time imaging or tomography (Vasco et al., 2000; Kulkarni et
al., 2001; Brauchler et al., 2003, 2007, 2010, 2011, 2013;
He et al., 2006; Hu et al., 2011; Vasco and Datta-Gupta,
2016). Finally, there are methods that attempt to find lower-
dimensional representations of the model or of the matrices
describing the forward and inverse problems. These meth-
ods include principal component analysis (Lee and Kitanidis,
2014), Karhunen–Loèève expansions (Zha et al., 2018), and
reduced-order models (Liu et al., 2013).

There are at least three advantages associated with the use
of travel times, an alternative to the direct treatment of the
entire transient head or pressure waveforms. First, the ar-
rival of the early onset of the transient pressure pulse can be
much sooner than the time at which steady-state conditions
are achieved. Thus, cross-well slug tests can be conducted
rapidly, facilitating improved spatial coverage. Second, the
relationship between such travel times and hydraulic diffu-
sivity is quasi-linear and convergence to a solution is not as
sensitive to the initial model as it is for the direct inversion
of transient pressure waveforms (Cheng et al., 2005). Third,
the interpretation and reduction of transient head or pressure
waveform data can be more complicated due to the sensitiv-
ity of amplitudes to various factors such as the packer cou-
pling, the calibration of the receiver transducers, and the con-
ditions surrounding the borehole.

Previous trajectory-based formulations of pressure arrival-
time tomography relied upon an asymptotic approach that
assumes smoothly varying properties (Vasco et al., 2000;
Brauchler et al., 2003, 2007; He et al., 2006; Vasco, 2008;
Vasco and Datta-Gupta, 2016). This assumption is certainly
violated in many commonly encountered situations, such
as a layered sedimentary environment and in the presence
of faults or fractures. Here we apply a newly developed
trajectory-based technique for travel-time tomography that
dispenses with the assumption of smoothly varying proper-
ties, enlarging its range of validity to any model that may
be treated using a numerical simulator (Vasco, 2018; Vasco
and Nihei, 2019). The semi-analytic approach provides in-
sight into factors controlling the propagation of a pressure
transient in a complex porous medium. As shown here, the
expression for the trajectories may form the basis for effi-
cient sensitivity computations. These sensitivities are partic-
ularly useful in inverting transient pressure propagation times

and in hydraulic travel-time tomography. All of the sensitiv-
ities required for the interpretation of a pressure test can be
obtained in a single numerical simulation of the test. We ap-
ply the method to cross-well hydraulic tomographic imaging,
considering both synthetic and field pressure arrival times.

2 Methodology

In this section we describe our iterative algorithm for updat-
ing an aquifer model in order to improve the fit to a set of ob-
served arrival times. We shall only discussion the elements
of the derivation of Vasco (2018), as well as a perturbation
technique, which are essential for understanding the inver-
sion procedure. The approach involves a number of steps, be-
ginning with the equation governing the transient variation in
hydraulic head, and ending with a linear system of equations
to be solved for the aquifer parameters. As an overview, the
major steps of the methodology are shown schematically in
Fig. 1. The approach is an offshoot of trajectory-based tech-
niques developed in quantum dynamics for the study of large
chemical systems (Wyatt, 2005; Liu and Makri, 2005; Gold-
farb et al., 2006; Garashchuk, 2010; Garashchuk and Vazhap-
pilly, 2010; Garashchuk et al., 2011; Gu and Garashchuk,
2016). As shown in Vasco (2018), the trajectory-mechanics
treatment leads to a set of coupled ordinary differential equa-
tions that may be solved numerically, as is done in quantum
mechanics. However, one can take advantage of existing nu-
merical simulators to compute one of the unknown vector
fields, reducing the system to a single set of equations for the
trajectory (Vasco, 2018). The result of this analysis is a semi-
analytic expression for the path of a transient pulse. This
expression, along with a perturbation technique, provides a
basis for an efficient method for imaging spatial variations in
hydraulic diffusivity in the subsurface – a form of travel-time
tomography. We illustrate the procedure with applications to
both synthetic and observed arrival times in the section that
follows this description.

2.1 Governing equation and trajectory calculations

We begin with the equation governing the evolution of a tran-
sient variation in hydraulic head h(x, t) (L) as a function of
space x and time t , adopting the form of the governing equa-
tion presented in de Marsily (1986, p. 109):

∇ · (K · ∇h)= ζ
∂h

∂t
, (1)

where K is the hydraulic conductivity (L/T ), a symmetric
tensor, and ζ is the specific storage coefficient with dimen-
sions of the inverse length (1/L). The specific storage coef-
ficient depends upon the total porosity of the medium, the
isothermal compressibility of the liquid, the compressibil-
ity of the solid constituents, and the compressibility of the
porous matrix, as discussed in de Marsily (1986, p. 109).
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Figure 1. Schematic illustration of the approach used to obtain the
sensitivities that form the basis for the linearized, iterative, cross-
well imaging algorithm.

From this point on, we shall assume that the hydraulic
head has been normalized by dividing both sides of Eq. (1)
by a constant reference head value h0 (L). We will still use
the variable h(x, t) for the normalized head, which is now
unitless. An expression for the trajectory associated with the
propagation of a transient fluid front follows from substitut-
ing the exponential representation

h(x, t)= e−S(x,t) (2)

into the governing Eq. (1) for hydraulic head. Because we
can choose the reference location such that the hydraulic
head is always positive, Eq. (2) is well defined and can al-
ways be solved for S. Upon substituting for h(x, t) in Eq. (1),
the resulting equation for S(x, t), known as the phase, may be
written as

∂S

∂t
+ v · ∇S =

1
ζ
∇ · (K ·p) . (3)

The vector p (1/L) is the spatial gradient of the phase

p =∇S, (4)

and v (L/T ) is a velocity vector given by

v = p ·
K
ζ
. (5)

Note that Eq. (3) has the form of a traveling front with a ve-
locity that depends upon the vector p and the medium prop-
erties ζ and K. As shown in Vasco (2018), the partial differ-
ential Eq. (3) is equivalent to the system of ordinary differ-

ential equations

dx
dt
=

1
ζ

p ·K (6)

dp

dt
= ∇

[
1
ζ
∇ · (K ·p)

]
. (7)

One can solve the two ordinary differential equations for the
trajectory x and the vector p (Cash and Carp, 1990; Press et
al., 1992; Wyatt, 2005). An alternative approach is to use a
reservoir simulator to calculate h(x, t) and then use Eqs. (2)
and (4) to determine p from the hydraulic head

p =−∇ lnh=−
∇h

h
. (8)

Substituting for p in Eq. (6) gives an expression for the tra-
jectory in terms of h(x, t)
dx
dt
= v =−

K
ζ
·
∇h

h
. (9)

We use the TOUGH2 numerical simulator (Pruess et al.,
1999) to calculate the pressure and head changes and then
use Eq. (9) to find the trajectories.

2.2 Semi-analytic sensitivities

A primary application of the trajectories described above
will be to estimate flow properties between boreholes via
hydraulic tomographic imaging. In this procedure a series
of pumping tests are conducted in isolated segments of one
borehole. During each test a rapid injection is used to gener-
ate a transient fluid pressure pulse that propagates to pressure
sensors in an adjacent well. For an impulsive source, the time
at which the peak pressure is observed in the adjacent bore-
hole is defined as the arrival time. For the inverse problem
we determine the flow properties from the arrival times ob-
served in isolated sections of the monitoring well. In order to
solve the inverse problem we must relate the travel time of
the pressure pulse to the hydraulic properties of the medium.

Our approach to the solution of the nonlinear inverse prob-
lem will be iterative in nature. That is, in order to estimate
flow properties we begin with an initial model and progres-
sively update it, solving the forward problem of reservoir
simulation at each step. We shall need model parameter sen-
sitivities, which are the partial derivatives of each observa-
tion with respect to changes in each of the model parameters
(Jacquard and Jain, 1965), for every iterative update. We will
be interested in transient pressure arrival times that are de-
fined as the time at which the peak of a pressure pulse is ob-
served at a measurement point. Expression (Eq. 9) forms the
basis for our sensitivity estimates. The only nonzero com-
ponent of the velocity vector v is along the trajectory x(t),
and it is given by the magnitude of the vector, denoted by v.
Integrating Eq. (9) along the path x(t) we have

T =

∫
x

dx
v
, (10)
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where x = |x| is the distance along the path x. One could re-
late perturbations in the arrival time of a pressure pulse to
changes in the velocity but this will lead to a sensitivity that
varies as v−2. This will magnify the influence of any vari-
ations in velocity along the trajectory, potentially leading to
instabilities in the inversion. Formulating the inverse prob-
lem in terms of the slowness, s (T/L), given by

s =
1
v
, (11)

eliminates this problem and leads to

T =

∫
x

s(x)dx, (12)

an integral relationship where the nonlinearity is contained
entirely within the definition of the path of integration. That
is, according to Eq. (9), the path of integration x depends
upon v and, in turn, s(x).

Model parameter sensitivities, in this case relating small
changes in the slowness along the trajectory, δs(x), to
changes in the travel time of a transient pressure pulse, fol-
low from a perturbation argument. Specifically, we consider
a perturbation of the slowness with respect to a background
model so(x):

s(x)= so(x)+ δs(x), (13)

where δs is assumed to be small. There is a corresponding
small change, δT (x), in the travel time from a source location
to an observation point

T (x)= To(x)+ δT (x). (14)

Substituting the perturbed forms of s(x) and T (x), given by
Eqs. (13) and (14), into the expression (Eq. 12) produces

To(x)+ δT (x)=
∫
x

so(x)dx+
∫
x

δs(x)dx, (15)

where the integration is along a perturbed path x= xo+ δx.
It has been shown that perturbations in the path lead to terms
that are second order in δs. Thus, in computing the sensi-
tivities, which are first order in δs, we can neglect perturba-
tions in the trajectory due to perturbations in s. Therefore,
we can integrate along the path calculated for the current or
background model, denoted by xo. Because the travel time in
the background model, To, is the integral of the background
slowness function so(x) along the trajectory, the initial terms
on each side of Eq. (15) cancel and we are left with

δT =

∫
xo

δs(x)dx, (16)

relating perturbations in the slowness, δs, along the trajectory
to perturbations in the arrival time, δT .

In order to update the model and the head or pressure field
using a numerical simulator, we shall need to map the up-
dated slowness estimates into the reservoir model parameters
ζ and K. This cannot be done in a unique fashion and re-
quires additional information or assumptions. Here, we will
assume that the permeability tensor is isotropic, so that it is
of the form K=KI, where K is the scalar permeability and
I is the identity matrix with ones on the diagonal and zeros
elsewhere. If the inversion is part of a joint inversion of sev-
eral data types it might be possible to solve for ζ or K using
other information, such as geophysical observations. In some
formations, such as a clean sand, it might be possible to relate
the permeability to the porosity, and to solve for the poros-
ity uniquely in terms of the slowness. Alternatively, as the
porosity typically has a much smaller range of variation than
permeability does, one might assume that the permeability
dominates variations in s, and hence solve for an effective
permeability, lumping both changes in ζ and permeability
into changes in K . It is evident from Eq. (9) that one has
to correct the estimates for variations in hydraulic head. As
shown below, we use the output of the numerical simulator,
based upon the current reservoir model, for this correction.

2.3 Comparison with existing asymptotic methods

Several trajectory-based methods for pressure arrival-time
tomography (Vasco et al., 2000; Brauchler et al., 2003; He
et al., 2006; Hu et al., 2011; Vasco and Datta-Gupta, p. 131,
2016) utilize a high-frequency asymptotic solution to the dif-
fusion equation. A major assumption of such solutions is that
the pressure variation is rapid in time (Virieux et al., 1994)
or that the dominant frequencies in a Fourier transform of
the trace are high. Equivalent results can be obtained if we
assume that the medium properties are smoothly varying in
comparison with the length scale associated with the prop-
agating pressure transient or that parameters take on values
in a particular range (Cohen and Lewis, 1967). In that case
we can neglect the divergence term on the right-hand side of
Eq. (3) and it reduces to an eikonal equation

∂S

∂t
+
K

ζ
∇S · ∇S = 0, (17)

where we have made use of Eqs. (4) and (5). There are ef-
ficient fast-marching methods for solving the eikonal equa-
tion (Podvin and Lecomte, 1991; Sethian, 1999; Osher and
Fedkiw, 2003), that are applicable to modeling transient pres-
sure propagation in high-resolution reservoir models (Zhang
et al. 2014; Fujita et al., 2015). The eikonal equation is equiv-
alent to a system of ordinary differential equations, the ray
equations, defining the path of the transient pulse and the
spatial variation of the phase (Courant and Hilbert, 1962).

From the high-frequency asymptotic solution and the ray
equations, Vasco et al. (2000) derived a semi-analytic expres-
sion, in which the square root of the peak arrival time is given
by the line integral along the trajectory xeikonal defined by the
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eikonal equation:√
Tpeak =

∫
xeikonal

ϕdr, (18)

where

ϕ =
1
6

√
ζ

K
(19)

has units of
√
T /L, xeikonal signifies the trajectory resulting

from the solution of the eikonal Eq. (17), and r is the distance
along the trajectory. Equation (18) is a nonlinear relationship
between the travel time Tpeak and ϕ because the path xeikonal
depends upon the spatial variation of ζ and K . As in the pre-
vious subsection, we can linearize the relationship by assum-
ing a background model and considering perturbations, or
small changes, with respect to the background model. Be-
cause the perturbations in the path xeikonal are second order
in perturbation of ϕ, we can write the perturbed expression
as

δ
√
Tpeak =

∫
x0

δϕdr, (20)

where δ
√
Tpeak is the perturbation in the square root of

the travel time and x0 is the trajectory in the background
medium.

In Vasco (2018) the limitations of the high-frequency
asymptotic approach are discussed and illustrated. In partic-
ular, it is shown that for abrupt boundaries and sharp layers,
the trajectories calculated using the eikonal equation bend
too strongly into high-permeability regions of a half-space or
layer. This leads to deviations in the trajectories from regions
with high model parameter sensitivity, and the potential for
errors when updating a simulation model. In the next section
we will explore these limitations in the context of hydraulic
tomography, using both synthetic and experimental data.

2.4 A linearized and iterative approach for
tomographic imaging

A reservoir model is typically defined over a two- or three-
dimensional grid that is used by a numerical reservoir simu-
lator. For such a discrete model with properties defined on a
grid of cells, and where one assumes constant values within
each cell of the model, we can break up the path integrals
Eqs. (16) and (20) into sums over all of the grid blocks in-
tersected by the trajectories. For the integral Eq. (16) the dis-
crete sum is given by

δT =

N∑
i=1

liδsi, (21)

where δsi is the perturbation of s in the ith grid block, and
li is the length of the trajectory xo in that grid block. Equa-
tion (21) constitutes a linear constraint on the perturbations

of s in the sampled grid blocks of the model (those inter-
sected by the path x0). By considering a number of sources
and receiver pairs, for example from a sequence of cross-well
slug tests, we arrive at a system of linear equations relating
the perturbations in s to perturbations in the observed arrival
times. We may write the system as a matrix equation

δT =Mδs, (22)

where δT is a vector of travel-time residuals, M is a matrix
containing the path lengths in each grid block intersected by
one or more trajectories, and δs is a vector whose elements
consist of the perturbations in each grid block (δsi or δϕi for
the ith block).

In the iterative, linearized inversion scheme that we shall
adopt here, we start with an initial model, perhaps derived
from well logs, denoted by ζ0 andK0, and calculate the back-
ground values of v or ϕ. Depending upon the method, we
either conduct a reservoir simulation and use Eq. (9) to de-
rive the trajectories, or solve the eikonal Eq. (17) and calcu-
late xeikonal as in Vasco et al. (2000). This allows us to com-
pute the trajectories and the lengths in each grid block and
to construct the elements of the matrix M. In order to update
the reservoir model we need to relate the updated field s to
the model parameters ζ and K . Recall that we can only re-
solve the ratio ζ/K and we cannot distinguish increases in ζ
from decreases in K or vice-versa. In this example only the
permeability varies, so we fix ζ and only solve for changes
in permeability. If ζ also varies, we can only find an effec-
tive permeability variation that will contain the effects of any
variation in ζ . The relationship follows from Eq. (9) and is
given by

K =
ζ

s|∇ lnh|
. (23)

Because the head field h(x, t) is present in the integral ex-
pression, we need to recalculate this field at each iteration.
But that calculation is already required in order to update the
trajectory x(t).

Due to errors in the data and modeling approximations, we
do not expect that the system of Eq. (22) will have an exact
solution. Thus, we seek a least squares solution in which the
sum of the squares of the residuals is minimized. Further-
more, due to resolution and uniqueness issues, a direct least
squares solution of Eq. (22) will probably be unstable and
small errors will lead to large changes in the estimates of δs
(Menke, 2012; Parker, 1994). Therefore, we introduce reg-
ularization or penalty terms in order to stabilize the inverse
problem. The penalty terms seek to minimize the norm of
the model update, and to minimize the roughness of the up-
dates, as measured by the difference operators that mimic the
second spatial derivatives of the model, the model Laplacian
(Menke, 2012). The function that we are minimizing,5(δs),
is the sum of the squares of the residuals, the weighted model

www.hydrol-earth-syst-sci.net/23/4541/2019/ Hydrol. Earth Syst. Sci., 23, 4541–4560, 2019
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norm and the weighted model roughness:

5(δs)= (δT −Mδs)t · (δT −Mδs)

+wnδs
t
· δs+wr(Lδs)t · (Lδs) , (24)

where L is a matrix operator that mimics the second spatial
derivative of the model, wn is the model norm weight, and
wr is the model roughness weight. Note that in Eq. (24) we
weight all of the data uniformly. It is possible to include a co-
variance matrix in order to account for correlations between
observations and variations in data quality (Tarantola, 2005).
Minimizing the quadratic function Eq. (24) with respect to
the model parameters leads to a linear system of equations
for δs:[
MtM+wnI+wrLtL

]
δs =MtδT . (25)

The penalized least squares problem is solved for the per-
turbations, δs, using the least squares QR algorithm (LSQR)
proposed by Paige and Saunders (1982). With the solution in
hand we then update the reservoir model. Because the high-
frequency asymptotic method only requires ϕ, we do not
need to convert back to the flow parameters ζ and K . There-
fore, we can update the model, solve the updated eikonal
equation, recompute the residuals, retrace the trajectories,
calculate the sensitivities, and continue the process until the
misfit to the travel times is reduced sufficiently. For the ex-
tended trajectory method we can use Eq. (23) to transform
from s to K before updating the reservoir model and con-
ducting another numerical simulation.

The linearized expression Eq. (25) also provides a basis
for the assessment of a solution to the inverse problem, that
is, the calculation of model parameter resolution and uncer-
tainty (Parker, 1994; Aster et al., 2005; Menke, 2012). Model
parameter resolution estimates can be particularly useful in
understanding spatial averaging and nonuniqueness in hydro-
logical inverse problems (Vasco et al., 1997; Bohling, 2009;
Paradis et al., 2016). We can define model parameter reso-
lution very simply in terms of the generalized inverse G†,
obtained from Eq. (25) by formally inverting the matrix on
the left-hand side:

G†
=
[
MtM+wnI+wrLtL

]−1Mt . (26)

Hence, the parameter estimates for a given iteration, denoted
by δŝ, are a linear function of the observations

δŝ =G†δT . (27)

Using Eq. (22) to replace δT with Mδs gives a relationship
between the estimated parameters and the “true” parameters,

δŝ =G†Mδs = Rδs, (28)

where R is the resolution matrix (Menke, 2012), with rows
that are coefficients describing the averaging that occurs in
estimating a parameter. We can also make use of the linear

relationship between the residuals and the model parameter
updates, given by Eqs. (22) and (27), to estimate an a poste-
riori model parameter covariance matrix Css in terms of the
covariance matrix of the errors associated with the observed
travel times. In particular, if the data errors are Gaussian,
characterized by the data covariance matrix CTT, then the
model parameter covariance matrix may be written in terms
of the generalized inverse and the data covariance matrix

Css =G†CTT

(
G†
)t
, (29)

a consequence of the linear nature of the problem and the
properties of the Gaussian distribution (Menke, 2012).

3 Applications

Cross-hole hydraulic travel-time tomography and cross-well
slug tests are valuable approaches for imaging spatial vari-
ations in flow properties (Paillet, 1993; Yeh and Liu, 2000;
Vasco and Karasaki, 2001; Bohling et al., 2002; Butler et al.,
2003; Brauchler et al., 2007, 2010, 2011). Such tests can re-
solve features between boreholes, similar to cross-well geo-
physical imaging, and are directly sensitive to flow proper-
ties. In this section we set up a synthetic hydraulic tomo-
graphic test, roughly based upon a field experiment at the
Widen site in Switzerland. Following that, we analyze data
from the actual field experiment, using them to image the
spatial variations of permeability between two shallow bore-
holes.

3.1 Synthetic hydraulic tomography test case

The overall setup of the test example is shown in Fig. 2, along
with the reference model. A set of sources in each well, de-
noted by filled squares and open circles, transmit transient
pressure signals to various receivers located in the adjacent
borehole. The reference distribution, a three-dimensional
permeability model with a dominantly vertical variation in
properties, was generated stochastically. That is, a uniform
number generator was used to derive permeability multipli-
ers between 1 and 12 for each layer in the model. A uniform
random variation of 50 % was introduced within each layer
and this variation was smoothed using a three-point moving
window. The model extends an additional 5 m in the x, y, and
z directions, beyond the boundaries of the plane defined by
the cross-well survey.

The reservoir simulator TOUGH2 (Pruess et al., 1999)
was used to model the complete set of cross-well slug tests
that comprised the full synthetic experiment. The computa-
tions were conducted using a three-dimensional mesh with
constant pressure boundary conditions, simulating a 300 s
transient pressure test for each source. This interval pro-
vided enough time for any head variation to propagate from
a source to the receivers due to the high background perme-
ability of 5.0×10−10 m2. The large background permeability
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Figure 2. Reference model for the cross-well test example. A cross-
section through the permeability model representing the cross-well
plane. The cross-well configuration, for imaging flow properties be-
tween two boreholes, consists of pressure sources in the two wells
(filled squares and open circles) transmitting transient pulses to re-
ceivers (open circles) in an adjacent well. The source–receiver ge-
ometry mimics that of the field experiment conducted in Widen,
Switzerland. The color scale varies linearly between permeability
multipliers from 1 to 12.

allowed us to match the rapid pulse propagation between the
boreholes that was observed during the actual Widen field
experiment described below. The initial conditions where a
constant pressure of 0.616 MPa and a uniform temperature
of 20 ◦C. The source-time function was defined by a jump in
flow rate followed by an exponentially decreasing rate. The
transient arrivals were defined as the time at which the rate of
change in the pressure or head reached a maximum value. A
set of synthetic arrival times were calculated using TOUGH2
simulations and then used as a test data set for the imaging
algorithm described above. Uniform random deviates, with
maximum variations of 5 % of the arrival time, were gener-
ated using a pseudo-random number generator and added to
the TOUGH2 calculated travel times.

In order to image the permeability variations between the
boreholes we conducted a series of linearized inversion steps,
where we solve the system of Eq. (25) at each step. The
starting model is a uniform half-space with a permeability of
5.0×10−10 m2. The model extends from 0.0 to 15.0 m later-
ally and from 0.0 to 15.0 m in the vertical direction. We rep-
resent the cross-well area using a 33 by 33 grid of cells with
a block size of 0.45 m and embed this into a 15 m (in the z
direction) thick three-dimensional model. Each of the injec-

tion events was simulated for 300 s, even though the pressure
transient arrived at the observation points just a few seconds
after the beginning of the test. The pressure field from the
simulation was used to compute the trajectories, using the
expression (Eq. 9) for the tangent vector, and integrating it
to construct the entire path. The arrival times were calculated
using both the eikonal Eq. (17) and by post-processing the
simulation results to estimate the arrival time of the propa-
gating transient as it reached each observation point. The lin-
earized iterative algorithm, where Eq. (25) is solved at each
step, was applied using both the eikonal equation and the ex-
tended trajectory approach to compute the sensitivities in M.

The regularization weightings for each approach, wn and
wr in Eq. (25), were estimated by trial and error. In particu-
lar, a series of inversions were conducted for various values
of wn and wr and a balance was struck between satisfying
the data and minimizing the model norm and roughness. For
the eikonal-based inversion the misfit was calculated using
travel times from the eikonal equation. For the new approach
based upon the extended trajectories the travel-time misfit
was calculated using the pressures from the TOUGH2 nu-
merical simulator. The norm and roughness weights for the
iterative eikonal inversion were wr = 0.15 and wn = 0.15.
For the inversion utilizing the extended trajectories we set
wr and wn equal to 0.1 and 0.5, respectively.

At each iteration we solve for a permeability multiplier,
a factor that is multiplied by the background permeability
of the uniform starting model to get the estimated perme-
ability. A total of 10 iterations for the eikonal-based algo-
rithm took 6 s, whereas 10 iterations for the extended trajec-
tory approach took 129 min, illustrating the computational
advantage provided by an inversion approach based upon
the eikonal equation. In Fig. 3 we plot the misfit reduc-
tion as a function of the number of iterations for both the
high-frequency inversion algorithm (eikonal) and an inver-
sion based upon the extended trajectories computed using
Eq. (9). There is a large initial error reduction for both the
inversion based upon the eikonal paths and the inversion uti-
lizing the extended trajectories. However, as we continue
updating the model and the size of the anomalies increase
and the model becomes rougher, the error reduction for the
two approaches diverge, and the eikonal-based updates no
longer improve the fit when the reservoir simulator is used
to calculate the arrival times. Note that the iterations do re-
duce the error calculated using the eikonal equation and the
updated model, pointing to the differences between travel-
time predictions made using a high-frequency asymptotic ap-
proach and using the pressure equations. This highlights the
fact that the eikonal equation becomes less accurate as the
model starts to violate the assumptions of a smoothly varying
medium, an aspect supported by the results of Vasco (2018).
The misfit reduction associated with an iterative inversion al-
gorithm utilizing the extended trajectories is also shown in
Fig. 3. In this case, the reduction is essentially monotonic
and the final error is much less than that of the eikonal-based
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Figure 3. The sum of the squares of the residuals for the eikonal-based (a) and extended inversion (b) algorithms as a function of the number
of steps in the iterative updating algorithm. Two sets of errors are displayed for the eikonal equation-based approach, those produced by the
eikonal equation and those produced by the reservoir simulator. The reservoir simulator errors result when the current permeability model
is used in conjunction with the TOUGH2 simulation code (Pruess et al., 1999) to calculate head variations and arrival times at the receiver
locations.

Figure 4. The spatial variation in the permeability multiplier resulting from inversions based upon the eikonal equation (a) and on the
extended trajectory-mechanics algorithms (b). The color scale varies linearly between permeability multipliers from 1 to 12.

approach. The number of iterations required to attain con-
vergence depends upon several factors. Two important ele-
ments are how close the initial model is to the final solution
in model space and the level of errors in the observations
that are being fit, including modeling errors. For the synthetic
case considered here the level of random noise in the simu-
lated arrival times is only 5 %. However, the modeling error
becomes an issue when the asymptotic approach is no longer

valid or because we assume that the permeability outside of
the cross-well plane is uniform.

The final updated high-frequency solution, plotted in
Fig. 4, contains higher permeabilities between about 5.5 and
7.0 m. However, the amplitude of the permeability multi-
plier is less than that of the reference model (Fig. 2). Fur-
thermore, the amplitude of the high-permeability feature at
around 9.0 m is underestimated, perhaps due to its narrow
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Figure 5. (a) Vertical variation of the K multiplier for the reference model, the eikonal-based inversion, and the extended trajectory-based
inversion algorithm (solid lines). The maximum and minimum values of K and each depth interval are also plotted in each panel. Only the
variations within the cross-well plane, from 5.0 to 10.0 m in elevation, are shown.

Figure 6. Observed versus calculated arrival times for both the eikonal-based (a) and extended trajectory-based (b) inversion algorithms.
The initial travel times, calculated using the uniform starting model, are plotted as open circles. The travel times calculated using the final
model of each approach are plotted as filled squares.

width of less than 1 m. The iterative inversion based upon the
extended trajectories does image the two higher-permeability
zones seen in the reference model (Fig. 2). The estimated
amplitude of the features appears to be closer to those of the
reference model but it does overestimate the permeability of
the lower feature and underestimates the permeability of the
upper zone.

A better idea of the differences in the magnitude of the two
solutions is conveyed in Fig. 5, where we plot the depth varia-
tion of the reference, eikonal-based, and extended trajectory-
based models. That is, we display the depth variation of the
average of the two models, along with the upper and lower
permeability multiplier values obtained in each depth inter-
val. It is evident that the solution provided by a conventional
imaging algorithm which uses the eikonal equation displays
permeability changes with depth that are much smoother than

the reference model. The extended approach does contain K
multipliers that are similar in size to the those of the reference
model. Note that the exact locations of the high-permeability
features do vary in depth, deviating somewhat from the ref-
erence model shown in the leftmost panel. This may be due
to the wide (roughly 0.5 m) spacing of the source and re-
ceivers, and the low spatial resolution of pressure data in gen-
eral (Vasco et al., 1997).

Figure 6 provides more information regarding the misfit
reductions for the inversions based upon the eikonal equa-
tion paths and the extended paths. It displays the calculated
travel times plotted against travel times calculated using the
reference model shown in Fig. 2. Both the initial travel times,
calculated using the homogeneous background model used
to start the inversions, and the final travel times based upon
the models obtained at the conclusion of the algorithms, are
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Figure 7. (a) Diagonal elements of the resolution matrix indicating the ability to determine the value of a parameter independently of
surrounding parameters. Values near one indicate a well resolved property that does not trade-off with values in adjacent grid blocks.
(b) Model parameter standard errors as a percentage of the average model update.

shown in the plots. The initial travel-time estimates are all
larger than the actual values calculated using the reference
model. This is to be expected because the largest anoma-
lies are the approximately order-of-magnitude increases as-
sociated with the upper and lower high-permeability layers
in the model. The high-permeability channels promote rapid
pressure propagation between the boreholes. The eikonal
equation-based algorithm does reduce the average of the cal-
culated travel times but does not lead to good fits. The inver-
sion based upon the extended trajectories produces relatively
good fits to the reference travel times.

An important aspect of the inverse problem is an assess-
ment of the resulting model parameters and estimates of
their reliability. As noted in Sect. 2, the calculation of two
key components of the model assessment – model parame-
ter resolution and model parameter covariance or uncertainty
– follow from the generalized inverse G† given by Eq. (26).
As noted in the discussion surrounding Eq. (21), the coeffi-
cients required for the construction of the sensitivity matrix
are provided by trajectory-based, semi-analytic quantities, in
particular by the ray lengths of the trajectories through each
grid block of the model. Equations (28) and (29) provide the
model parameter resolution and model parameter covariance,
respectively. In Fig. 7 we plot the diagonal elements of the
resolution matrix, and the standard errors associated with the
estimates are shown in Fig. 4. The diagonal elements of the
resolution matrix are plotted in the grid blocks to which they
correspond. Because the rows of the resolution matrix are

averaging coefficients that are normalized to have unit mag-
nitude, if the diagonal element approaches one, the other el-
ements approach zero. Therefore, diagonal values near one
signify well resolved parameters for those cells and little lat-
eral averaging between nearby grid blocks. In general, the
resolution for the test inversion is quite good and most pa-
rameters are well determined. Near the upper right-hand cor-
ner the resolution does approach zero due to the lack of sam-
pling in that region. The resolution is highest in the central
region, away from the edges of the model, due to the crossing
of trajectories in those areas. The estimated model parameter
standard errors, also plotted in Fig. 7, have a very different
distribution, with larger values at the edges of the cross-well
region where there are fewer crossing rays. We have scaled
the uncertainties by the magnitude of the estimated model
parameters in order to plot them as percentages of the pa-
rameter estimates. The data errors were of the order of 10 %
of the magnitude of the travel-time residuals that constitute
the elements of the vector δT in Eq. (27). The lowest errors
are in areas of high resolution, with the exception of the up-
per right-hand corner where there is little ray coverage. In
general, the errors are less than 5 % of the magnitude of the
estimated model parameters.

We end our treatment of the synthetic test with a dis-
cussion of some validation calculations, in which additional
sources were introduced to mimic independent pumping
tests. Two tests were simulated, with one source at the left
edge of the model shown in Fig. 2, at a height Y of 9.9 m,
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Figure 8. Validation exercise in which arrival times for two tests
that were not used in the inversion are calculated based upon the
final models estimated using the eikonal and extended approaches.
These calculated times are plotted against travel times computed
using the reference model.

and the other with a source in the right borehole at a height
of 10.3 m. The travel times of transient pulses that propagate
through the model, computed using the TOUGH2 simulator,
are shown in Fig. 2. Following that, TOUGH2 was used to
calculate propagation times through the models (shown in
Fig. 4). The respective arrival times through the two models
are plotted against the travel times for the reference model
(Fig. 8). The general trends of the residuals do agree, with
increasing calculated travel times following larger observed
arrival times. For the eikonal-based model there are notable
deviations from the 45◦ line indicating perfect fit. The calcu-
lated travel times are systematically larger than the reference
times. The estimates based upon the extended trajectory-
based algorithm are much closer to the reference times than
the times from the eikonal approach are.

3.2 The Widen field experiment

The Widen field site, adjacent to the Thur River in northern
Switzerland (Fig. 9), has been the subject of numerous geo-
physical and hydrological studies (Lochbühler et al., 2013).
The primary goal of the work at the Widen site is to under-
stand the hydrologic, ecologic, and biochemical effects of
river restoration. The geophysical and hydrological experi-
ments focused upon a sandy gravel aquifer that is in con-
tact with an unrestored section of the river (Doetsch et al.,
2010). The area was penetrated by a number of boreholes
and is relatively well characterized. Borehole cores revealed
that the roughly 7 m thick sandy gravel aquifer is overlain
by a silty sand layer and that it sits atop a thick imperme-
able clay aquitard. Early work at the site included individual

Figure 9. Schematic map of the Widen field site located adjacent to
the Thur River in Switzerland, as indicated in the inset. The labeled
wells, P2, P3, and P4, were used for several hydraulic tomographic
experiments.

and joint inversions of cross-well seismic, radar, and elec-
trical resistance tomography for a zoned model (Doetsch et
al., 2010). The model was consistent with the three-layer
structure defined by the existing boreholes. This study was
followed by several others, including a cross-hole ground-
penetrating radar investigation (Klotzsche et al., 2010), and
three-dimensional electrical resistance tomographic (ERT)
imaging of river infiltration into the site (Coscia et al., 2011,
2012). The three-dimensional ERT imaging indicates that the
highest flow velocities occur in the middle of the aquifer,
whereas the lowest speeds are at the base of the sequence
in clay and silt-rich gravels. A joint inversion of geophysi-
cal and hydrological data (Lochbühler et al., 2013) between
several well pairs was used to constrain spatial variations in
reservoir storage and hydraulic conductivity. That study im-
aged the large-scale decrease in hydraulic conductivity with
depth.

Cross-well slug interference tests, as described in Brauch-
ler et al. (2010, 2011), were conducted at the site and are
discussed in Lochbühler et al. (2013). In such tests, a near-
instantaneous change in hydraulic head in a packed-off sec-
tion of one well generates a fluid pressure transient in the
surrounding region. Pressure transducers in isolated sections
of a nearby well are used to measure the pulse that propa-
gates between the wells. Both the travel time of the pulse and
its amplitude can be used to infer hydraulic properties be-
tween the wells (Vasco et al., 2000; Brauchler et al., 2007,
2011; Vasco, 2008). Cross-well interference slug tests were
conducted at two well pairs at the Widen site, as described
by Lochbühler et al. (2013). The wells P2, P3, and P4 are
roughly in a line that parallels the Thur River at a distance of

www.hydrol-earth-syst-sci.net/23/4541/2019/ Hydrol. Earth Syst. Sci., 23, 4541–4560, 2019



4552 D. W. Vasco et al.: Extended trajectory-based tomography

Figure 10. Hydraulic head, from a cross-well slug test, recorded at
a set of packed-off intervals in observation well P2 from the Widen
field site. Each trace has been normalized in order to have a unit
peak amplitude.

15 m from the river bank (Lochbühler et al.; 2013), as shown
in Fig. 9. For our work we will focus on the P2–P3 well pair,
where P3 is the source well and P2 is the observation well,
some 3.5 m to the west. The tomographic system consists of
two double-packers in each well, where the extent of the iso-
lated regions was 0.25 m and the spacing of the intervals was
0.5 m. A suite of observed pressure variations for receivers
in the observation well are shown in Fig. 10. We are inter-
ested in the propagation time of the pulse, as measured by the
arrival time of the peak pressure at each observation point,
which is referenced to the time at which the peak pressure is
obtained in the source interval.

The overall inversion methodology was discussed and il-
lustrated above and the details will not be repeated here. Dur-
ing one step of the iterative linearized algorithm we mini-
mize the weighted sum of the squared misfit, the model norm,
and the model roughness, as given in Eq. (24). The requisite
equations are given by the conditions that the total misfit is
minimized, which is by the equations that result from setting
∇5 equal to zero, where the gradient is taken with respect
to the components of δs. Thus, at each iteration we solve the
set of linear equations, Eq. (25), for the perturbations in s.
The misfits5(δs), plotted as a function of the number of up-
dating steps in the iterative inversion algorithms, are shown
in Fig. 11. The eikonal equation residuals, calculated by the
reservoir simulator, tend to level off after about three itera-
tions and decrease gradually as the inversion algorithm pro-
gresses. This may reflect the fact that as the heterogeneity
increases, the eikonal paths begin to deviate from the actual
trajectories, as illustrated in Vasco (2018). The match to the
observations is shown in Fig. 12 for both the eikonal-based
inversion and the inversion based upon the extended trajecto-

Figure 11. Mean squared error for an inversion of the hydraulic
head arrival times. The inversion labeled eikonal is based upon the
eikonal equation and uses high-frequency asymptotic trajectories.
The open circles are the mean squared error calculated using travel
times produced by the TOUGH2 numerical simulator. The filled
squares denote the mean squared error as a function of the num-
ber of iterations of an inversion scheme that utilizes the extended
trajectories that follow from Eq. (9).

ries. The error reduction of 76 % for the extended inversion,
shown in Fig. 11, is generally monotonic. The error reduction
for the extended solution is significantly larger than that for
the eikonal-based inversion. Both algorithms improve the fit
to the observed arrival times, although considerable scatter
remains in the residuals (Fig. 12).

The final models produced by the two inversion algorithms
are plotted in Fig. 13. Both models display generally higher
permeabilities at shallower depths, with values decreasing as
the lower edge of the model is approached. The anomalies are
largely horizontal, suggesting a generally layered structure,
which is in agreement with previous studies (Klotzsche et al.,
2010; Lochbühler et al., 2013; Jimenez et al., 2016; Somo-
gyvari et al., 2017; Kong et al., 2018). The magnitude of the
permeability variations is larger in the trajectory-mechanics-
based inversion and a high-permeability layer is evident in
Fig. 13. These general features are observable in the upper
and lower permeability bounds plotted as a function of el-
evation in Fig. 14. Both models display a decrease in per-
meability with depth, but the variations in the eikonal-based
inversion are somewhat smaller than those of the extended
trajectory approach.

We can compare our results to previous work by Lochbüh-
ler et al. (2013), where a joint inversion of cross-well ground-
penetrating radar travel times and hydraulic tomography
(travel times and amplitudes) was discussed. In Fig. 15 the
spatial variations of the logarithm of hydraulic conductivity
corresponding to our inversion grid are plotted to the same
color scale. These results correspond to part of Fig. 4h in
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Figure 12. Initial (open circles) and final (filled squares) misfits for both the eikonal-based and trajectory-mechanics-based inversions.
(a) Calculated arrivals, based upon the TOUGH2 numerical simulator, run with the models from the eikonal-based inversion. The calculated
arrivals are plotted against the observed arrivals – for a perfect match the points would lie along the diagonal line. (b) Calculated travel times
plotted against the observed arrival times for the inversion that uses the extended trajectories that result from solving Eq. (8).

Figure 13. (a) Permeability multiplier estimates produced by the iterative updating algorithm based upon high-frequency asymptotic tra-
jectories. (b) Estimates of permeability multipliers resulting from an iterative inversion method that is based on the extended trajectories
calculated using Eq. (8).

Lochbühler et al. (2013). In addition, we extracted the high-
est and lowest permeability values as a function of depth in
the inversion region and the average permeability at each el-
evation. All results show the same general decrease of per-
meability with depth in the aquifer, as the clay aquitard is
approached. The variations in permeability in the extended
approach are of the same order as the joint inversion result.

As in the synthetic case, the magnitude of the variations in
the eikonal equation inversion is smaller.

As a validation effort, we left out data from the fifth source
from the bottom in Fig. 13 when conducting the inversion
for the permeability multipliers. This allowed us to use the
resulting models of K variation shown in Fig. 13 to esti-
mate the travel times of pressure pulses from the source at
position five to the corresponding observation points. The re-
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Figure 14. Upper (crosses) and lower (open circles) permeability values as a function of elevation within the model. The laterally averaged
permeabilities are also plotted as filled squares in each panel.

Figure 15. (a) The portion of the inversion results of Lochbühler et al. (2013) that corresponds to our inversion domain. Their joint inversion
includes ground-penetrating radar travel times as well as travel times and amplitudes from cross-well slug tests. (b) The highest and lowest
permeabilities at each depth in the inversion domain, plotted along with the average permeability as a function of elevation.

sulting observed and calculated travel times from this exper-
iment can then be used to validate the model, as indicated in
Fig. 16. There is considerable scatter in the arrival times but
the overall trend is a variation that increases in correspon-
dence with the observed arrival times. The largest disagree-
ment is between an eikonal-based arrival-time estimate and
the observed value, but the overall scatter seems comparable
for the eikonal and extended methods. The largest deviations
are the large predicted travel times for the arrivals observed
at around 1.35 s. Such long travel times might be due to the
significant low-permeability values near source position five.

The source–receiver distribution is rather sparse, and there
may not be sufficient redundancy to conduct an accurate val-
idation experiment.

Lastly, we used Eqs. (28) and (29) to calculate the diagonal
elements of the matrices R and Css, respectively, in order to
assess our trajectory-based solution. The diagonal elements
of the matrices are plotted in Fig. 17, in the locations of the
grid blocks that they represent. The diagonal coefficients of
the resolution matrix are close to one if the parameter can be
determined without interference from other grid block esti-
mates (Vasco et al., 1997). That is the ith row of the reso-
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Figure 16. Validation test in which arrival times from source five,
which was not used in the inversion, are calculated based upon the
final models estimated using the eikonal and extended approaches.
These calculated times are plotted against the observed travel times.

lution matrix contains averaging coefficients associated with
the ith parameter. The row approaches a delta-function-like
distribution and the diagonal element approaches the value
one when there is little averaging with other parameters. The
diagonal elements of the resolution matrix in Fig. 17, with
peak values around 0.6, indicate moderate spatial averaging
in these estimates. In particular, there is greater averaging
than in the synthetic test due to the fact that we are only using
sources situated in a single well in the field case. The spatial
averaging is greatest and the resolution poorest for the grid
blocks at the edges of the model, particular at the top of the
cross-well region. Similarly, the model errors, also shown in
Fig. 17, are larger than in the synthetic test – around 20 %
of the size of the model estimates. The resolution and co-
variance estimates indicate that the high-permeability layer,
located in the upper portion of the model, is moderately well
constrained by the observations. Due to sampling issues the
error estimates are not reliable at the edges of the model and
tend to zero where there are few or no trajectories. As in-
dicated in the synthetic test, putting sources in both wells
would increase the resolution and reduce the uncertainty as-
sociated with our estimates, suggesting how we might im-
prove our imaging in the future.

4 Conclusions

The trajectory-mechanics approach described in
Vasco (2018) and applied here is very general and can
be used to model other hydrological processes such as tracer
transport (Vasco et al., 2018a) and multiphase fluid flow.
One advantage associated with transient pressure is the

rapid propagation of a disturbance in comparison with the
velocities associated with fluid transport. Thus, transient
cross-well pressure testing can be conducted relatively
rapidly in formations with moderate hydraulic conductivity.
This is particularly true when transient pressure travel times,
such as the arrival time of the peak of a pressure pulse or
the peak of the time derivative of the pressure (Vasco et al.,
2000) are used. For the Widen field experiment the peaks
are observed in the first few seconds of the measured traces
in the adjacent borehole. Another advantage of hydraulic
travel-time tomography is that the relationship between the
arrival times and the hydraulic conductivity or diffusivity
is quasi-linear (Cheng et al., 2005). Thus, the final model
resulting from an inversion of travel times is less sensitive
to the initial or starting aquifer model and less likely to
become trapped in a local minimum. Finally, travel-time
tomography provides an element of data reduction, from an
entire transient pressure waveform, to a single arrival time.
This can be advantageous when dealing with many intervals
from multiple boreholes, time-lapse pressure changes, or
large data sets derived from geophysical observations.

We have presented two examples of hydraulic tomo-
graphic imaging, one using synthetic transient pressure ar-
rival times and the other using data from an experiment at the
Widen field site on the Thur River in northern Switzerland.
We do find that an algorithm based upon the eikonal equa-
tion is significantly faster than one utilizing the extended tra-
jectories calculated using a reservoir simulator, taking only
about 10 s compared with 129 min. From the synthetic ap-
plication we find that an imaging technique based upon the
eikonal equation, the current method used for trajectory-
based modeling, has difficulty accurately imaging large and
abrupt changes in permeability. Such rapid spatial changes in
flow properties are a common occurrence in geologic media,
with the presence of layering and fractures, with correspond-
ingly large variations in hydraulic conductivity. For example,
in well logs it is quite common to observe thin layers with
permeabilities that are orders of magnitude larger than values
in the surrounding formations. Indeed, in our field case at the
Widen field site we image an order of magnitude change in
permeability in agreement with previous results at the site.
While the eikonal equation is much faster and can recover
large-scale spatial variations, it is likely to produce smoothed
images of sharp features and to underestimate rapid changes
in properties. Thus, the approach is useful as a rapid recon-
naissance tool, as in real-time imaging, and for regions where
the properties are thought to be smoothly varying. This usage
is supported by that fact that both the eikonal-based and the
extended trajectory-based methods share the quasi-linearity
of travel-time inversion approaches (Cheng et al., 2005), and
are less sensitive, in comparison with inversions based upon
head magnitudes, to the initial or starting model.

For a full analysis and interpretation of field data, how-
ever, we recommend the trajectory-mechanics approach; this
is due to the fact that it does not invoke assumptions about
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Figure 17. (a) Diagonal elements of the model parameter resolution matrix associated with the Widen field experiment. Diagonal elements
with values near one are well resolved, meaning that their estimates do not trade-off with the values of other parameters. Values near zero
are not well determined. (b) Square roots of the diagonal elements of the covariance matrix plotted in the location of the corresponding grid
block.

model smoothness and is therefore more robust and accurate,
yet it retains the semi-analytic sensitivities that are character-
istic of trajectory-based approaches. The semi-analytic sen-
sitivities are computed after a single simulation, using either
numerical methods to solve the coupled system for x and p

or using a numerical simulator to determine p directly. Even
if one resorts to a numerical simulation, the semi-analytical
nature of the sensitivities provide some advantages over con-
ventional methods. The most efficient conventional method
for computing numerical sensitivities is based upon adjoint
methods and requires the formulation and solution of the ad-
joint equation along with an additional simulation to calcu-
late the residuals. Thus, two simulations are required in order
to estimate the sensitivities for a given test.

The approach that we have described is useful for imaging
permeability variations between boreholes but it does have
some limitations. The use of slug tests limits the allowable
distance between wells that may be used for imaging varia-
tions in K . However, as noted in Vasco et al. (2000), one can
use a constant rate test and consider the arrival time of the
steepest slope, extending the range of the test to larger offsets
between wells. We have chosen to fix the reservoir storage
and determine variations in an effective K . This assumption
needs to be explored in future studies and tested under re-
alistic conditions. The computation aspects of this approach
are significant, requiring full reservoir simulations for the in-
version. As noted in Vasco (2018), there are more efficient

methods that involve solving the equations for the trajectory
directly, without a reservoir simulation. This should reduce
the computation burden of the approach at the cost of a more
complicated implementation.

Data availability. The pressure data from the Widen
field test are available on the Zenodo archive
(https://doi.org/10.5281/zenodo.1445756, Vasco et al., 2018b).
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