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ABSTRACT

Agent-based transport models demand that the daily activity patterns of artificial agents are described

in great detail. While established choice models for residential locations or work places exist, only

few approaches are available to find locations for highly constrained secondary activities such as

grocery shopping or recreation. The paper describes a novel data-driven approach of assigning

viable locations to such secondary locations while maintaining consistency with homes, work places

and other fixed points in an artificial traveller’s daily plan. Two use cases for Switzerland and

Île-de-France are presented which show that the algorithm is able to assign locations while providing

realistic distance distributions that are consistent with mode-specific travel times.



    

INTRODUCTION

In recent years, agent-based transport models have gained large interest, not only from researchers,

but also from practicioners. Main drivers of this development are cheap computing power which

allows for large-scale simulations with millions of agents and an ever growing amount of transport

data.

Still, setting up agent-based transport models involves considerable amounts of work. Contrary

to more aggregate approaches, the attributes, intentions and interaction between a large number

of indiviudal travellers need to be modelled. While for many dimensions useful data exists, such

as census data to determine home locations of agents, commuter matrices to assign work places,

or household travel surveys to describe daily mobility schedules, there are still gaps. One major

unknown are usually locations of secondary activities, i.e. where people go shopping, engage in

leisure or eat. A reason for that is that such choices are much more rich and detailed than residential

or work place choices, which can often be derived from macroeconomic principles.

Literature on residential location choice is vast and mostly related to discrete choice modelling

(1–4). Likewise, models such as the gravity model have emerged as standard procedures for assigning

work or education locations that resemble well daily commuting patterns (5–8). Also, models such

as (9) have been presented for capacitated work location choice. Unfortunately, these approaches

are difficult to apply to secondary locations, because they often “fill” gaps between the primary

home, work and education activities of people. Therefore, they are much more constrained in terms

of time to reach those locations, but depend highly on individual taste variations, and are among

hundred and thousands of alternatives.

Some discrete choice models have been proposed that give insight into the choice behaviour

for certain, very specific activity types given certain attributes of locations or zones. There are

examples for shopping activities (10) and recreational activities (11).

The problem of secondary location choice seems to be a challenge that is inherent to agent- and

activity-based models, because often not only peak hour commuter traffic is considered, but whole

day mobility patterns. Furthermore, discrete locations are considered rather than aggregate zones.

Since such models have only gained wide-speard interest in recent years, literature on secondary

location choice is scarce and no standard approach has emerged so far. Yet, a search for secondary

location choice or destination choice yields a number of various approaches that are linked to

activity-based modelling. For instance, ALBATROSS (12, 13) and TASHA (14) each apply different

strategies of implementing location choices into their activity scheduling frameworks by different

heuristic means of reducing the available choice set.

In the context of the agent-based transport simulation framework MATSim (15) efforts have

been pushed to put location choice into its evolutionary model of learning promising daily plan

alternatives. (16) consider a limited agent memory of known facilities for secondary locations, while

(17) explore the use of the concept of “frozen randomness” which applies constant error terms to

the attractivity of each possible secondary activity location. Again, the approaches tries to solve the

problem secondary location choice by defining limited search spaces to cope with the vast amount

of options.

In this paper we describe a new approach for finding viable locations for secondary activities that

is data-driven instead of trying to establish a behavioural or structural choice model. In our use case



    

we consider daily activity chains with fixed primary activities and variable secondary activities in

between. We seek to assign locations to those secondary activities from a predefined set of discrete

locations such that an acceptable fit with a reference distance distribution is achieved. Furthermore,

we require that expected transport modes and travel times, which are known a priori from the

activity chains, are consistent with the distances that emerge from newly assigned secondary activity

locations. This way a good starting solution for the full mobility simulation is provided.

The remaining part of the paper is structured as follows. First, we describe our method in detail.

By that we try to formalize the approach in a rather generic way and show path ways for future

research and a potentially more closed form treatment of the procedure. Afterwards, we present

results for two large-scale agent-based simulation models of Switzerland and Île-de-France, followed

by a discussion of our approach and concluding remarks.

METHOD

The algorithm that is presented in the following section operates on chains of activities which are

connected by trips. Some activities already have a location in space assigned. We define those

as fixed activities. The algorithm has the purpose to find sensible locations for all other activities,

which we call variable activities. For instance, a typical activity chain in agent-based transport

modelling would have a fixed home location for each agent and its work place may be known from

a separate commuting destination model. In such a case it remains to determine where an agent

would perform secondary activities such as shopping or leisure.

The distinction between fixed and variable activities allows us to split up a whole activity

chain into smaller assignment problems, which can be classified into two types. The first type is a

one-sided constraint problem as is shown in Figure 1 on the left. These problems appear generally

at the start and end of an activity chain, for instance, when an agent comes home on Monday from a

weekend leisure activity. Note that most transport models even specify that agents need to start and

end their activity chain at home. In those cases the one-sided constraint problem is not relevant.

The second assignment problem type is the two-sided constraint problem. This problem is the

main focus of this work and is defined by two fixed activity locations with an arbitrary number of

variable activities between them. The task is then to find locations for those variable activities such

that certain criteria are met. Our criteria, which are detailed below, make sure that the algorithm

produces realistic distance distributions.

In any case, the assignment problem does not only consist of finding continuous locations in

Euclidean space for all variable activities, but to select candidates from a given set of discrete

locations. Such discrete location are generally known upfront, e.g. as a list of all shops in city.

Furthermore, the assignment process may rely on additional information about the activities in the

chain and attributes on their connecting trips. This way, a certain type of activity may demand that

it is assigned to a discrete location where such an activity can be performed. Likewise, a known

mode of transport on a certain trip may restrict the distance between two activities.

To solve the assignment problem, we propose a two-step algorithm. In the first step, the relaxation

problem is solved. Its purpose is to find viable locations for all variable activities in continuous

Euclidean space. Afterwards, the discretization problem is solved in the second step. There,

candidates are chosen from the set of discrete locations and assigned to the variable activities. The
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FIGURE 1 One-sided constraint and two-sided constraint assignment problems

result of the relaxation problem has strong influence on this choice process. Finally, a convergence

metric tests whether the algorithm should start again with the relaxation phase or can terminate for a

certain assignment problem.

More specifically, each round of relaxation and discretization should yield a certain objective

value J (·). This objective value is then used to determine whether the algorithm can termine. It

also ends if a certain number of iterations has been reached. In this case the solution with the best

objective value so far is returned. The procedure of solving the assignment problem is summarized

in Algorithm 1.

ALGORITHM 1: Assignment Problem Solver
Input: AssignmentProblem
Initialize: BestSolution = Null
Do:

RelaxedSolution = SolveRelaxationProblem(AssignmentProblem)
DiscretizedSolution = SolveDiscretizationProblem(AssignmentProblem, RelaxedSolution)

If J(RelaxedSolution, DiscretizedSolution) < J(BestSolution) Then:
BestSolution = (RelaxedSolution, DiscretizedSolution)

End If
Until Converged Or maximum number of iteratons is reached
Return BestSolution

There are multiple ways of how the two partial problems can be solved. The following sections

detail the implementation in this research.

Relaxation problem

While the discretization phase in this paper is rather seen as a way to “correct” continuous locations

to the set of discrete locations, the relaxation solver is the heart of the algorithm. At this stage, our

aim is to choose locations for all variable activities in an assignment problem such that we recover a

given distance distribution from reference data. In this specific case, we only consider Euclidean

distances.

In the case of the one-side constraint assignment problem (see Figure 1) we apply a simple



    

algorithm that constructs a chain of locations around the only fixed one. First, we sample a random

angle around the fixed location. Then we sample a distance from the predefined distance distribution.

Knowing these two values, the location of the first variable activity is completely specified. If there

is another variable activity, we can repeat the procedure but take the previously defined location as

the starting point. We call this process the angular solver to the one-side constrained assignment

problem. It is shown systematically in Algorithm 2.

ALGORITHM 2: Angular relaxation solver
Input: Fixed location (x0, y0)
Initialize: i = 1
While i ≤ Number of variable activities n

r ∼ Distance distribution
α ∼ U (0, 2π)
(xi, yi) = (r cos(α) + xi−1, r sin(α) + xi−1)

Continue
Return ((x1, y1), ..., (xn, yn))

The relaxation problem is more interesting in the two-side constrained case. First, assume that

only one variable activity is framed by two fixed ones. Let c define their direct Euclidean distance.

Further, assume that two distances (d1, d2) have been sampled. Such a case is shown in Figure 2 on

the left. In example A, the condition d1 + d2 < c is true, i.e. given these two distances there is no

feasible solution to the problem of placing the variable activity in such a way that it has distance d1

to the first fixed activity and distance d2 to the second fixed activity. The special case d1 + d2 = c is

shown in example B. There, one solution exists to the problem, which is to place the variable activity

on a straight line between the fixed ones such that the distances match. Increasing distances even

more, we arrive in example C, where d1 + d2 > c is true. In that case two solutions exist, which can

be mirrored at the straight line connecting the fixed activities. The exact locations can be obtained

geometrically by intersecting two circles around the fixed activities with the respective radii d1 and

d2.

Theses example show one component of our proposed relaxation algorithm: Given a list of

distances (which we regard futher below) we want to place variable activities in such a way that the

Euclidean distance between their locations matches the sampled reference distances. This implies

that there is no “gap” in the chain.

How does the problem look like with more than one variable activity? Such a case is presented

as example D in Figure 2. It is easy to imagine that all dashed points can be moved around in space

almost freely while still maintaining all the correct distances. Only, one needs to “pull” or “push”

other points to do so. This tought directly leads to the solution algorithm in this case, where we

apply a force model. First, all variable activities are put on a straight line between the fixed activities,

according to their order. Then, a small lateral deviation from that straight line is sampled for each

activity and applied to the initial location. Then, a force model is run over multiple iterations.

In this model, we loop through all the variable activities and calculate their current distances to

their neighbors. If a distance is longer than the reference distance di the current point is moved

towards the neighbor, if it is shorter than expected, the point is moved away from the neighbor. The
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FIGURE 2 Possible solutions to the relaxation problem

displacement ∆p is calculated along the direction vectors to the neighbors with p being the current

location in Euclidean space, p′ being the neighbor and d the reference distance:

∆p′(p, p′, d) = γ ·
(

p − p′

 − d

)
·

(p − p′)
‖p − p′‖

(1)

With pL being the left neighbor and pR being the right neighbor the total displacement is then

∆p = f (·) = ∆p′(p, pL, dL) + ∆p′(p, pR, dR) (2)

The parameter γ is a learning factor that determines how strongly the force model is evolving. A

low γ leads to slow convergence (i.e. more iterations) to the equilibirum state, while a high γ tends

to lead to oscillations with points making large jumps in space. Note that in equilibirum the distance

between the observed distance and d vanishes and therefore no displacement takes place. Generally,

this state is only achieved exactly after an infinite number of iterations. Therefore, we define a

threshold value T . The algorithm then finishes as soon as all differences between expected and

observed distances fall below T or a maximum number of iterations is reached. The full procedure

is shown in Algorithm 3.

It is now defined how we solve the relaxation problem: In the case of one variable activity, the

solution does not exist, is unique or chosen at random between the two mirrored options. Note

that the implemented algorithm will still try to find a best guess solution (e.g. placing the location

directly between the two fixed activities) while reporting that it did not converge if there is not

feasible solution. In the case of more than one variable activity, the force model is used.

Feasible distances

In the previous section it already has been pointed out that given two distances d1 and d2 the

relaxation problem is infeasible if their sum is smaller than the Euclidean distance between the fixed

activities. This criterion can be generalized to more than one variable activity. Consider a chain of



    

ALGORITHM 3: Force-based relaxation solver
Input:
Fixed locations p0 = (x0, y0) and pN = (xN, yN )
Reference distances d0, ..., dN−1

Initial locations:
c = ‖p0 − pn‖ (Direct distance)
u = (pn − p0)/c (Normed direction vector)
pi = p0 + u · (i/n) ∀i ∈ {1, ..., N − 1}

Lateral deplacement:
q = (ux,−uy) (Normal vector)
pi = pi + q · ei with ei ∼ N (0, σ) for all i

Do (Force model)
pi = pi + f (pi, pi−1, pi+1, di−1, di) for all i
Converged = ‖pi+1 − pi‖ ≤ di for all i

Until Converged Or maximum iterations reached

two fixed activities and two vairable ones as in Figure 2, example E. In this case the first distance is

quite long, such that the next variable location must be far away from the the fixed point. However,

the two other distances are so short, that they cannot cover the whole way back to the second fixed

location. The feasibility condition for the relaxation problem must therefore be generalized to: ∑
i, j

di − c ≥ di ∀i (3)

The condition says that no distance di can be larger than the sum of all other distances, minus

the direct distance between the fixed points, which can be interpreted as the slack of the distance

chain. Even before the relaxation algorithm can be run as stated above we therefore need to make

sure that the provided distances fullfil these conditions. While more intelligent sampling approaches

could be used in the future, we use the straight-forward scheme in Algorithm 4. There, we sample

N distances, check whether they fulfill the condition of Equation 3, and, if not, repeat the sampling.

Note that this process may skew the generated distance distribution.

ALGORITHM 4: Feasible distance chain sampler
Input: Distance distribution D
Do (Force model)

di ∼ D for all i
Converged =

∑
i, j di − c ≥ di for all i

Until Converged Or maximum iterations reached



    

Discretization problem and convergence

The discretization problem can be solved in many ways. Here, we decide to use the arguably simplest

approach. Given a sampled chain of locations from the relaxation solver, we find the closest discrete

location in terms of Euclidean distance, which fulfills certain criteria (for instance, it should be

compatible with the respective activity type).

More elaborate approaches would be possible, such as finding the M closest discrete locations

and sampling from them, or sampling from candidates within a specified radius around the relaxed

location. Also, such sampling approaches could be extended to make use of attractivity measures

for certain discrete locations.

Finally, the convergence objective can be defined in many ways. In this research, we determine

convergence by comparing the reference distances from the relaxed solution with those in the

discretized solution. As before, let pi be the relaxed locations (with p0 and pN as the fixed ones).

Let li be the discretized locations in Euclidean space. We can then define

δi = |‖pi+1 − pi‖ − ‖li+1 − li‖| (4)

as the absolute discretization error for each trip i. Based on the trip characteristics we can define

a desired upper bound δi for each trip i. Only if then δi ≤ δi ∀i we say that the discretization

problem is converged. If not, new discrete locations can be sampled until convergence is achieved

or the maximum number of iterations is reached. Note that in the discretization approach presented

above there is no need yet for performing more than one iteration, because given a set of relaxed

locations the result will always be the same.

Finally, we can define the objective for the upper-level assignment problem solver. In our

current approach, we simply define J = max(δi). This way, even if the whole algorithm may not

converge perfectly, we always yield the solution with the smallest maximum deviation. For the whole

assignment problem we define convergence when all parts, feasible distance sampler, relaxation

model, discretization solver, have converged.

Summary

Figure 3 summarizes the relaxation-discretization algorithm. In state (a) a whole activity chain of

an artificial traveller is shown. The traveller starts at home, goes to a shopping activity, and then to a

leisure activity. Afterwards he goes to work and back home. Locations are already known for home

and work, but not for the two other activities.

As the next step, feasible distances are sampled from a predefined distribution. The lengths of

the blue dotted lines in (b) represent those distances. Note that initially the distance between the

variable activities are smaller than the sampled ones. Therefore, the force model moves the activity

locations until they reside in the blue equilibrium state.

Given the equilibirum state, the activity locations are discretized in step (c). For both activities a

number of candidates is available from which the closest one is chosen. Finally, in (d), we can look

at the relaxed locations and their respective discretized versions and check how their connecting

distances compare to each other. Clearly, there is a discretization error for both trips, e.g. the
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FIGURE 3 Summary of relaxation-discretization assignment problem

discretized distance from home to the shopping activity is longer than the sampled distance. The

algorithm would now determine whether the deviations are too large and continue with the next

iteration if neccesary.

EXPERIMENTS

The algorithm has successfully been applied to the synthesis of various populations for agent-based

transport simulations. The following sections show two of the existing use cases. In each case - for

the whole country of Switzerland and for the region of Île-de-France around Paris - similar data sets

are used, which we first introduce briefly. Afterwards, we give some background on the respective

simulation models and detail which data is relevant to the location assignment process. Finally, we

report results on the respective use cases.

Agent-based transport models of Switzerland and Île-de-France

We consider two agent-based transport models, one for the region of Île-de-France (upcoming, see

18) and one for the wohle country of Switzerland (19, 20). Both models are based on eqasim1,

which is a novel combination of the agent-based transport simulation frameworkMATSim (15) and a

flexible extension that makes it possible to use discrete mode choice models (21, 22). Furthermore,

eqasim features a couple of tools which ease the development of input data for large-scale agent-based

1http://www.eqasim.org



    

transport models. Each of the two use cases has its own data pipeline, but the process is very

similar. First, census data is used to synthesize an artificial population that resembles well the

sociodemographic structure of the region. Second, the respective household travel survey is used to

attach an activity chain to each of the synthetic persons, based on a number of predefined person

and household attributes. While the home location of agents is known from the census data in both

cases, activity locations for work and education are assigned based on known OD matrices. What

remains then is to find locations for all non-primary activities, i.e. shopping, leisure and others.

For those activities we have a set of discrete locations in both use cases. They are derived by the

respective enterprise census.

The assignment problem for these eqasimmodels is defined as follows: We seek to find locations

for secondary activities such that the overall distribution of distances matches well what we observe

in the respective household travel survey (HTS). At the same time time, we want to make sure that

distances between synthetic activities make sense given the mode of transport and travel time in

the initial activity chains that are attached to the agents. Also, activities should only take place at

locations where a viable discrete location exists.

Note that this is only an initial assignment. MATSim and the eqasim framework are used later on

to simulate this synthetic population. Then, agents are able to make new mode decisions dynamically

given the traffic conditions. In that sense, we seek to establish a credible starting solution for the

dynamic simulation. Since location choice is not (yet) part of our simulation, the initial assignment

must be of high quality as the generated distance distribution has strong influence on the mode

choice behaviour, which is the focus of those simulations.

Location assignment process

In line with the requirements above we first track distance distributions by transport mode and travel

bins in both use cases. We consider all trips in the respective HTS that do not solely connect fixed

activity types (home, work, education). As the next step, for each mode, we define travel time bins

by segmenting the distribution into N quantiles such that each quantile contains at least 400 samples.

The result is shown in Figure 4. In the case of Switzerland, we arrive at 26 travel time bins for the

“car driver” transport mode. Each of those bins then represents a distribution of Euclidean distances

and Figure 4 shows their mean. For the “car driver” and “public transport” modes also the area

between the 10% and 90% percentiles is shown in the background. As an example for reading the

plot one can look at the “car driver” graph for the travel time bin between 30min and 40min. For

these travel times a distance distribution exists which has a mean of around 19km.

Note that distributions of Euclidean distances are considered. This means that also for long

travel times rather short distances can be observed. Reasons for that can be “loops” where people

have reported that they just went for a round trip (and definitions whether to report an activity

in between vary between different household travel surveys). Especially for Switzerland winding

mountain roads may also explain rather short distances for long travel times.

In the location assignment algorithm the distributions are used as follows. When sampling

feasible distances for an assignment problem, the transport mode and initial HTS travel time is

known for each trip. Based on these two values a distance distribution is selected from the data

presented in Figure 4, and distance observations are sampled for all trips. This way trips by bike
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FIGURE 4 Input distributions to the location assignment algorithm. For all transport
modes the mean is shown; for driving a car and public transport the area
between the 10% and 90% percentile is indicated.

receive different distances than trips by public transport, for instance.

The activity chains also provide information on the type of each activity. It is divided into

“shopping”, “leisure” and “other”. For each of these categories, the respective data sets provide

distinct sets of discrete locations. Therefore, if an activity with type “shopping” is discretized, only

compatible discrete locations are considered.

In the standard form of the algorithm, which is used actively in our model development, we use

the following inputs and parameters:

• Data

– Distance distributions by mode and travel time

– Discrete locations by activity type

• Force model

– Lateral deviation: N (0, σ = 10m)

– Displacement factor γ = 0.1

– Convergence threshold: T = 10m

• Maximum iterations

– Feasible distance sampler: 1000

– Force model: 1000

– Assignment solver: 1000

• Maximum discretization errors δ

– Car driver, car passenger, public transport: 200m

– Walk, bike: 100m

Especially the last parameters have strong influence on the model performance. In the usual case,

we define that the discretized distances should not deviate by more than 200m or 100m, respectively,



    

Car driver Car passenger Public transport Bike Walk
Switzerland 0.8 1.0 1.0 0.0 0.0
Île-de-France 0.0 0.1 0.5 0.0 -0.5

TABLE 1 Reweighting factors for the input distance distributions.

from the relaxed solution.

Resampling of input distributions

In terms of model calibration, the two input data sets represent our degrees of freedom. Especially

the input distribution can heavily affect the distance distribution in the assigned activity chains. In

fact, experiments have shown that the algorithm tends to skew the distance distribution towards

shorter distances. This can most likely be explained by the constrained way in which feasible

distances are sampled and is a pathway for future research. For practical use, we do not use the

exact input distribution as shown in Figure 4, but perform a resampling of the data points.

Let di < di+1 be the ordered distance samples in any of the mode and travel time bins and let

f (di) be their normed weight. We then perform a linear reweighting according to

f ′(di) =



f (di) · (1 + α · (i/N )) if α ≥ 0
f (di) · (1 + |α | · [1 − (i/N )]) else

(5)

Afterwards, the weights are normalized again. Later, they are used when sampling feasible

distances. Note that if the reweighting factor α ≥ 0 we oversample long distances, and when α < 0

we focus on short distances. The values for the experiments in the paper at hand are documented in

Table 1.

Results

The location assignment model was run with the parameters and input as specified above. Figure

5 shows the resulting distance distribution in comparison to reference data from the household

travel surveys. After resampling we get a very good fit for all modes of transport. Note that the

reference data is sometimes too coarse to make a more analytical comparison in the sense of a

Kolmogorov-Smirnoff test, or similar, feasible. For instance, the data for Île-de-France shows heavy

rounding of short distances, as can be seen in the lower left part of Figure 5.

Figure 6 shows the mean, median and 90% quantile of mode-indepdendent distributions of

Euclidean distances by travel time bin. Note that the travel times in the assignment cases come

from the activity chains of the agents while the Euclidean distances are derived from the discrete

locations that have been assigned in the location assignment process. We see that, as expected from

the sampling, the distance distributions match well the reference values.

In Table 2 we provide some key metrics for the algorithm. Considering the large amount of

problems that need to be solved, the algorithm runs fairly quickly. It is possible to reassign a

whole agent population in a matter of few hours. We yet have to perform a detailed analysis on the

performance of the algorithm. With the convergence rate presented in Table 2 we obtain a good
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FIGURE 5 Comparison of assignment results with HTS data in terms of Euclidean distance
distributions by mode.
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FIGURE 6 Comparison of Euclidean distance distribution for specific travel time bins by
mean, median and 90% centile. The reference data is given in black.

Switzerland Île-de-France
Performance
Runtime 170 min 400 min
Agents 8 million 13 million
Assignment problems 8,135,921 13,718,250
Average trips per problem 2.3 2.35
Convergence
Feasible distance sampler 99.3% 98.7%
Relaxation 93.2% 92.4%
Discretization 98.3% 97.2%
Assignment 92.5% 91.0%
Errors
Mean discretization error 92 m 89 m
Mean excess error 19 m 29 m

TABLE 2 Key metrics for performance and convergence of the algorithm

match in distance distributions. It will be interesting to explore how changing the convergence

thresholds would affect precision and runtime of the algorithm. The lower part of Table 2 shows

the resulting errors. On average, our discretization error is less than 100 m. The excess error

describes the distance that exceeds the defined distance thresholds. With a value of less than 30 m

this indicates that the algorithm not always converges, but if it does not, the maximum deviation is

only 30 m on average.

DISCUSSION

To start the discussion about our algorithm it needs to be pointed out that the algorithm is considered

mainly data-driven in the sense that it does not try to uncover the underlying process of choosing

activity locations. This is the big difference to existing activity-based models where often choice



    

models are applied to make decisions. Therefore, we consider the alogrithm a location assignment

approach, rather than a location choice process.

Therefore, we do not get any deeper insight from our algorithm on why people go to certain

locations. We only reproduce the distances that that can be observed. While this can be seen as a

big drawback of the presented algorithm, we need to state that the foremost objective of developing

it was to find an easy and practical way of assigning secondary locations such that they can serve

as input to an agent-based transport simulation. In that sense, the algorithm performs well. In

fact, the only inputs it needs are the assignment problems (or whole activity chains), the reference

distance distributions, and a list of discrete locations. While the code (which is available open

source) currently operates on the respective data structures of the MATSim framework, a version

that solely acts on generic CSV data is planned. Given these data sets, which are usually easy to

obtain, researchers and practicioners can set up the code in a couple of minutes and the runtimes we

report in Table 2 for fairly large agent populations show that results can be obtained rather quickly.

Note that only very limited calibration effort is needed and no models need to be estimated prior to

applying the algorithm.

Yet, there are multiple points how the algorithm can be improved. The most important future

step we see is to verify spatial consistency. Our experiments with Switzerland and Île-de-France

have shown that realistic distance distributions emerge not only globally, but also in comparison

between rural and urban regions. A potential reason for that is that the constraints that are imposed

by the fixed and discrete locations automatically lead to distance distributions that are spatially

context-dependent. However, a more rigorous spatial validation would be interesting in the future.

Also, comparing the reference and synthesized joint distribution of sequential trip lengths will be an

interesting analysis.

Furthermore, there is reason to believe that secondary locations are distributed rather evenly

within their respective spatial context. In our current approach we do not consider attractivity levels

for discrete locations or their surrounding neighborhoods. In that sense large shopping malls are not

assigned more frequently than smaller shops. Therefore, implementing an attractivity measure into

the discretization process will be an interesting task for the future. Another intersting aspect that

goes beyond a simple sense of attractivity is the capacity of discrete locations. Applying the whole

algorithm in an iterative fashion or tracking occupancy rates during runtime could be two possible

ways forward in that direction.

A last drawback we want to mention is that the current setup makes heavy use of Euclidean

distances. One can actually think of using routed (maybe even congested) network distances at

several points in the algorithm. The most complicated idea would probably be to replace the

force-based relaxation process by one that meanders the network to find “network-relaxed” locations.

This could maybe even happen in a two-step process where the force model gives a first starting

solution. A more simple approach would be to integrate network distances into the assignment

objective. Then, one could perform a routing only after all discrete locations have been assigned.

One could compare them to sampled network distances that were fed into the force model, maybe

with a certain factor that translates roughly between network and Euclidean distance.



    

CONCLUSION

In conclusion, we have presented a novel location assignment algorithm that is able to produce an

agent population with realistic secondary activity locations. It has low demand on input data that

needs to be prepared a priori and it shows good run times on fairly large simulation scenarios. While

the general algorithm structure is straight-forward we give a non-compehensive list of potential

improvements that can be made to the very basic version that is presented in this paper.

While we show that the algorithm yields good fit and performance for two fairly large-scale

agent-based transport models for Swizerland and Île-de-France, it has already been applied to

other cities such as Sao Paulo. By providing the algorithm open source2 we hope to see more

applications of the algorithm, potentially with many creative extensions, and also outside of the

MATSim ecosystem.
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